Non-overlapping Schwarz algorithms for the incompressible Navier–Stokes equations with DDFV discretizations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1271-1321

We propose and analyze non-overlapping Schwarz algorithms for the domain decomposition of the unsteady incompressible Navier–Stokes problem with Discrete Duality Finite Volume (DDFV) discretization. The design of suitable transmission conditions for the velocity and the pressure is a crucial issue. We establish the well-posedness of the method and the convergence of the iterative process, pointing out how the numerical fluxes influence the asymptotic problem which is intended to be a discretization of the Navier–Stokes equations on the entire computational domain. Finally we numerically illustrate the behavior and performances of the algorithm. We discuss on numerical grounds the impact of the parameters for several mesh geometries and we perform simulations of the flow past an obstacle with several domains.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021024
Classification : 65M08, 35Q30, 76D05
Keywords: DDFV methods, domain decomposition, simulation of incompressible viscous flows
@article{M2AN_2021__55_4_1271_0,
     author = {Goudon, Thierry and Krell, Stella and Lissoni, Giulia},
     title = {Non-overlapping {Schwarz} algorithms for the incompressible {Navier{\textendash}Stokes} equations with {DDFV} discretizations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1271--1321},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021024},
     mrnumber = {4281736},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021024/}
}
TY  - JOUR
AU  - Goudon, Thierry
AU  - Krell, Stella
AU  - Lissoni, Giulia
TI  - Non-overlapping Schwarz algorithms for the incompressible Navier–Stokes equations with DDFV discretizations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1271
EP  - 1321
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021024/
DO  - 10.1051/m2an/2021024
LA  - en
ID  - M2AN_2021__55_4_1271_0
ER  - 
%0 Journal Article
%A Goudon, Thierry
%A Krell, Stella
%A Lissoni, Giulia
%T Non-overlapping Schwarz algorithms for the incompressible Navier–Stokes equations with DDFV discretizations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1271-1321
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021024/
%R 10.1051/m2an/2021024
%G en
%F M2AN_2021__55_4_1271_0
Goudon, Thierry; Krell, Stella; Lissoni, Giulia. Non-overlapping Schwarz algorithms for the incompressible Navier–Stokes equations with DDFV discretizations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1271-1321. doi: 10.1051/m2an/2021024

[1] Y. Achdou, C. Japhet, F. Nataf and Y. Maday, A new cement to glue non-conforming grids with Robin interface conditions: the finite volume case. Numer. Math. 92 (2002) 593–620. | MR | Zbl | DOI

[2] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D-meshes. Numer. Methods PDEs 23 (2007) 145–195. | MR | Zbl | DOI

[3] E. Blayo, D. Cherel and A. Rousseau, Towards optimized schwarz methods for the Navier-Stokes equations. J. Sci. Comput. 66 (2016) 275–295. | MR | DOI

[4] F. Boyer, F. Hubert and S. Krell, Non-overlapping Schwarz algorithm for solving 2d m-DDFV schemes. IMA J. Numer. Anal. 30 (2010) 1062–1100. | MR | Zbl | DOI

[5] F. Boyer, S. Krell and F. Nabet, Inf-sup stability of the discrete duality finite volume method for the 2D Stokes problem. Math. Comput. 84 (2015) 2705–2742. | MR | DOI

[6] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations. In: Vol. 10 of Efficient Solutions of Elliptic Systems. Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1984) 11–19. | MR | Zbl | DOI

[7] R. Cautrès, R. Herbin and F. Hubert, The Lions domain decomposition algorithm on non-matching cell-centred finite volume meshes. IMA J. Numer. Anal. 24 (2004) 465–490. | MR | Zbl | DOI

[8] C. Chainais-Hillairet and J. Droniou, Finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. IMA J. Numer. Anal. 31 (2011) 61–85. | MR | Zbl | DOI

[9] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. | MR | Zbl | Numdam | DOI

[10] S. Delcourte, Développement de méthodes de volumes finis pour la mécanique des fluides. Ph.D. Thesis, Univ. Paul Sabatier (2007).

[11] S. Delcourte and P. Omnes, A Discrete Duality Finite Volume discretization of the vorticity-velocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids. Numer. Methods PDEs (2015) 1–30. | MR | Zbl | DOI

[12] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. | MR | Zbl | Numdam | DOI

[13] J. Droniou, Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. | MR | Zbl | DOI

[14] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, edited by P. Ciarlet and J.-L. Lions. In: Vol. VII of Handbook of Numerical Analysis. Handb. Numer. Anal. North-Holland (2000) 715–1022. | MR | Zbl

[15] R. Eymard, R. Herbin and J. C. Latché, On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: M2AN 40 (2006) 501–527. | MR | Zbl | Numdam | DOI

[16] R. Eymard, R. Herbin and J. C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1–36. | MR | Zbl | DOI

[17] M. J. Gander and L. Halpern, Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal. 45 (2007) 666–697. | MR | Zbl | DOI

[18] M. J. Gander and K. Santugini-Repiquet, Cross-points in domain decomposition methods with a finite element discretization. ETNA 45 (2016) 219–240. | MR

[19] M. J. Gander, C. Japhet, Y. Maday and F. Nataf, A new cement to glue nonconforming grids with Robin interface conditions: the finite element case. Lect. Notes Comput. Sci. Eng. 40 (2005) 259–266. | MR | Zbl | DOI

[20] M. J. Gander, L. Halpern, F. Hubert and S. Krell, Optimized Schwarz methods for anisotropic diffusion with Discrete Duality Finite Volume discretizations. Technical report, Univ. Côte d’Azur, Inria, CNRS, LJAD (2018) https://hal.archives-ouvertes.fr/hal-01782357.

[21] M. J. Gander, L. Halpern, F. Hubert and S. Krell, Discrete optimization of robin transmission conditions for anisotropic diffusion with discrete duality finite volume methods. Technical report, Univ. Côte d’Azur, Inria, CNRS, LJAD (2020). | MR

[22] V. Girault, B. Rivière and M. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74 (2005) 53–84. | MR | Zbl | DOI

[23] T. Goudon, S. Krell and G. Lissoni, Numerical analysis of the DDFV method for the Stokes problem with mixed Neumann/Dirichlet boundary conditions, edited by C. Cancès and P. Omnes. In: Vol. 199 of Proceeding of the 8th International Symposium on Finite Volumes for Complex Applications. Springer Proceedings in Mathematics & Statistics. Springer (2017) 361–369. | MR

[24] T. Goudon, S. Krell and G. Lissoni, DDFV method for Navier-Stokes problem with outflow boundary conditions. Numer. Math. 142 (2019) 55–102. | MR | DOI

[25] T. Goudon, S. Krell and G. Lissoni, Convergence study of a DDFV scheme for the Navier–Stokes equations arising in the domain decomposition setting. In: Finite Volumes for Complex Applications IX. June 15-19, 2020, Bergen, Norway (2020). To appear. | MR

[26] L. Halpern and F. Hubert, A finite volume Ventcell-Schwarz algorithm for advection-diffusion equations. SIAM J. Numer. Anal. 52 (2014) 1269–1291. | MR | DOI

[27] L. Halpern and M. Schatzman, Artificial boundary conditions for incompressible flows. SIAM J. Math. Anal 20 (1989) 308–353. | MR | Zbl | DOI

[28] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (1965) 2182. | MR | Zbl | DOI

[29] F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. | MR | Zbl | DOI

[30] F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. | MR | Zbl | DOI

[31] V. John, Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Meth. Fluids 44 (2004) 777–788. | Zbl | DOI

[32] S. Krell, Schémas Volumes Finis en mécanique des fluides complexes. Ph.D. Thesis, Univ. de Provence (2010).

[33] S. Krell, Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes. Numer. Methods PDEs 27 (2011) 1666–1706. | MR | Zbl | DOI

[34] S. Krell, Stabilized DDFV schemes for the incompressible Navier-Stokes equations. In: Finite Volumes for Complex Applications VI, Problems & Perspectives (2011) 605–612. | MR | Zbl | DOI

[35] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. SIAM, Philadelphia, PA (1990) 202–223. | MR | Zbl

[36] G. Lissoni, DDFV method: applications to fluid mechanics and domain decomposition. Ph.D. Thesis, Université Côte d’Azur (2019).

[37] G. Lube, L. Müller and F. C. Otto, A nonoverlapping domain decomposition method for stabilized finite element approximations of the Oseen equations. J. Comput. Appl. Math. 132 (2001) 211–236. | MR | Zbl | DOI

[38] M. Schäfer, S. Turek, F. Durst, E. Krause and R. Rannacher, Benchmark computations of laminar flow around a cylinder, edited by E. H. Hirschel. In: Vol. 48 of Flow Simulation with High-Performance Computers. Notes on Num. Fluid Mech. (NNFM). Vieweg+Teubner Verlag (1996) 547–566. | Zbl | DOI

[39] H. A. Schwarz, Über einen grenzübergang durch alternierendes verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 15 (1870) 272–286. | JFM

[40] X. Xu, C. O. Chow and S. H. Lui, On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations. ESAIM: M2AN 39 (2005) 1251–1269. | MR | Zbl | Numdam | DOI

Cité par Sources :