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NON-OVERLAPPING SCHWARZ ALGORITHMS FOR THE INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH DDFV DISCRETIZATIONS

THIERRY GOUDONY, STELLA KRELL! AND GIULIA LISSONI?

Abstract. We propose and analyze non-overlapping Schwarz algorithms for the domain decomposition
of the unsteady incompressible Navier—Stokes problem with Discrete Duality Finite Volume (DDFV)
discretization. The design of suitable transmission conditions for the velocity and the pressure is a
crucial issue. We establish the well-posedness of the method and the convergence of the iterative
process, pointing out how the numerical fluxes influence the asymptotic problem which is intended
to be a discretization of the Navier—Stokes equations on the entire computational domain. Finally we
numerically illustrate the behavior and performances of the algorithm. We discuss on numerical grounds
the impact of the parameters for several mesh geometries and we perform simulations of the flow past
an obstacle with several domains.
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1. INTRODUCTION

The aim of this paper is to develop a non-overlapping iterative Schwarz algorithm for the incompressible
Navier—Stokes problem with DDFV schemes. The problem we are interested in reads

Opu+ (u-V)u—div(o(u,p)) =f in Qx[0,7T],
div(u) =0 in Qx[0,7T], (L1)
u=0 on JN x[0,T],
u(0) =ujpie in €,

where €2 is an open connected bounded polygonal domain of R?, f € (L?(Q2))? is a given force field, w;,;; €

(L*°(2))2. The unknowns u : Q x [0,7] — R? and p : Q x [0,7] — R are respectively the velocity and the
pressure; o(u,p) = %Du — pld stands for the stress tensor, and Re > 0 is the Reynolds number. Here and
below, the strain rate tensor is defined by the symmetric part of the velocity gradient Du = 3(Vu + Vu).
Non-overlapping Schwarz algorithms enter the class of domain decomposition methods, in which a domain is
decomposed into smaller subdomains. The main advantage is that, contrarily to direct methods, decomposition

Keywords and phrases. DDFV methods, domain decomposition, simulation of incompressible viscous flows.

1 Université Cote d’Azur, Inria, CNRS, LJAD, Sophia Antipolis Cedex, France.

2 Université de Nantes, LMJL, CNRS, Nantes, France.
*Corresponding author: thierry.goudon@inria.fr

(© The authors. Published by EDP Sciences, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/m2an/2021024
https://www.esaim-m2an.org
mailto:thierry.goudon@inria.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

1272 T. GOUDON ET AL.

methods are naturally parallel; in fact, subdomain problems are connected by some transmission conditions
on the interface, but they are uncoupled by an iterative procedure. This makes those methods interesting
for high performance computing perspectives. The classical Schwarz algorithm, proposed in 1870 by Schwarz
[39] for the Laplace problem, is an iterative method that consists in transmitting the solution, or its normal
derivative, from a subdomain to the others, in order to deal with complex domains. This method converges only
if the subdomains overlap. Moreover, this convergence becomes slower as the overlap between the subdomains
is smaller. In non-overlapping Schwarz algorithms, the subdomains intersect only on their interfaces and in
order to obtain convergence, more elaborated transmission conditions should be defined on the interfaces. In
1990, P.-L. Lions [35] showed that, with Fourier-Robin transmission conditions, the Schwarz algorithm for the
Laplace operator converges even without overlap. This method has been adapted to the discrete setting for many
problems of isotropic diffusion [1,7,19], and for advection-diffusion-reaction problems [17,26]. For the Navier—
Stokes problem, different approaches have been proposed, with different design of the interface conditions, that
depend also on the discretization framework. In the spirit of Halpern and Schatzman [27], Blayo et al. [3]
derives optimal transparent boundary conditions for the Stokes equation; these conditions are tested with finite
difference methods. In the finite element setting, it is proposed in [37] a non-overlapping domain decomposition
algorithm of Robin—Robin type for the discretized Oseen equations (i.e. linearized Navier—Stokes). In [40], still
in the finite element setting, the authors build a Dirichlet—Neumann domain decomposition method for the
nonlinear steady Navier—Stokes equations, under the hypothesis that the Reynolds number is sufficiently small
and Girault et al. [22] studies a family of discontinuous Galerkin finite element methods for Stokes and Navier—
Stokes problems on triangular meshes. The Inf-Sup condition, which is a crucial ingredient of the stability
analysis of numerical methods for Incompressible Navier—Stokes equations, has to be adapted to the domain
decomposition formulation, in particular to satisfy the incompressibility constraint, and it might depend on
the Reynolds number, see [22,37]. Therefore, our objective is to decompose the domain € of problem (1.1)
into smaller subdomains, to solve the incompressible Navier—Stokes problem on those subdomains by imposing
some transmission conditions on the interfaces, and to recover by an iterative Schwarz algorithm the discrete
solution of (1.1) on the entire computational domain €. Since we are interested in the unsteady problem, we
shall apply this iterative algorithm at each time iteration. Moreover, we want the interface conditions to be
local and we wish the method to remain free of any restrictive condition on the Reynolds number. We address
these issues in the framework of finite volume methods, and more specifically by using Discrete Duality Finite
Volume discretizations.

The introduction of the DDFV formalism dates back to [9,12,29,30], in order to approximate anisotropic
diffusion problems on general meshes, including non-conformal and distorted meshes. Such schemes require
unknowns on both the vertices and centers of primal control volumes and allow us to build two-dimensional
discrete gradient and divergence operators that satisfy discrete duality relations analogous to the standard
integration by parts formula. The DDFV scheme is extended in [2] to general linear and nonlinear elliptic prob-
lems with non homogeneous Dirichlet boundary conditions, including the case of anisotropic elliptic problems.
Applying the DDFV method for Stokes and Navier—Stokes problems leads naturally to locate the unknowns
of velocity and pressure in different points; the velocity unknowns are associated to the vertices and centers of
primal control volumes, while the pressure unknowns are located on the edges of the mesh [5,10,11,24,32,33].
Hence, DDFV enters the class of staggered methods, reminiscent of the MAC scheme [28] constructed on Carte-
sian meshes for incompressible flows. The DDFV approach has, at least, two important advantages. First of
all, it applies to very general meshes. It is useful, for instance, in the domain decomposition setting where the
subdomains can be meshed separately and non-conformal edges appear on the interface, or simply if one wants
to locally refine the mesh with cells adapted to complex geometries. Second of all, DDFV operators mimic at the
discrete level the duality properties of the continuous differential operators, which leads to important properties
for the numerical analysis of the schemes.

As a starting point of this study, we refer the reader to [20,26]: they both build a non-overlapping Schwarz
algorithm in a finite volume framework with Fourier-like transmission conditions between subdomains, respec-
tively for anisotropic diffusion with a DDFV discretization, see also [4], and for advection-diffusion-reaction in a
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TPFA discretization. The case of the Navier—Stokes equations (1.1) is more demanding, since it combines further
difficulties: the vectorial nature of the unknowns, the non-linear convection terms and the incompressibility
constraint. Of course, there are no explicit interface conditions, and one should construct suitable transmission
conditions between the subdomains, which have the shape of Fourier-like conditions on the velocity and account
for the constraint by involving the divergence of the velocity and the pressure. Let us split the computational
domain €2 into two smaller subdomains 2 = Q; U Q5. We denote by I' the interface Q; N Q5. The Schwarz
algorithm defines a sequence of solutions (uz) leN of the Navier-Stokes problem in ;, with j € {1, 2}, endowed
with the following two-fold transmission condition

1 1
o (wj,py) 8y = 5 (W) ) (W) + Mg = o (i pi ) = o (wg ) () A
div (ué) + apé- = —div (uéfl) + apéfl,

(1.2)

where ¢ # j and ii; is the outward normal to ;. The former condition, which involves the parameters o > 0,
A > 0, is inspired by the classical Fourier condition; it linearly combines the values of the unknown and the
values of its derivative; here, also the convection is included. The latter, which depends only on «, combines the
divergence of the velocity with the pressure; it will be useful to satisfy the incompressibility constraint at the
convergence of the algorithm. The first condition is comparable to the transmission conditions in [37]. However
they need to justify a modified Inf-Sup condition which induces Reynolds-dependent stability constraints. This
can be relaxed by imposing the new condition for the pressure on the interface. Once the transmission condition
is fixed — which in practice will be solved in an approximated form — it remains to establish the convergence of
the iterative process: as [ — 0o, one expects to recover the solution of a discrete version of the Navier—Stokes
equations on the entire domain 2. We shall see that the asymptotic scheme depends on the details of the
numerical fluxes of the domain decomposition method. To analyze this issue, it is convenient to discuss general
discretizations of the convection terms, inspired by Chainais-Hillairet and Droniou [8] and Halpern and Hubert
[26].

Outline. This paper is organized as follows. In Section 2, we introduce the main elements of the DDFV
framework. This section does not contain original material, but it collects the necessary definitions and notations.
It can be safely skipped by the reader familiar to the DDFV methods. In Section 3, we set up the reference
scheme for the Navier—Stokes problem on the entire domain 2. The convection fluxes are seen as a centered
discretization plus a diffusive perturbation, defined through a certain function B, as it appeared in [8] when
designing finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. We
establish the well-posedness of such schemes, see Theorem 3.3, which generalize the mere upwind or centered
discretizations. It turns out that this notion of B-schemes, which encompasses quite general diffusion fluxes, is
crucial when studying the convergence of iterative domain decomposition methods. In Section 4, we introduce
the composite meshes, i.e. the meshes on the subdomains, and we construct the DDFV Schwarz algorithm. The
convergence issue is investigated in Sections 5 and 6, corresponding to the following discussion:

— starting with the “natural” domain decomposition approach, the limit problem — which can be proved to be
well-posed — does not coincide with the reference scheme. Instead, some fluxes near the interface need to be
modified;

— nevertheless, it is possible to recover the reference scheme, having unified fluxes over the entire domain 2,
at the price of modifying the fluxes in the original domain decomposition method.

This discussion motivates the need of a general analysis of B-schemes for Navier—Stokes equations. Finally, in
Section 7 we illustrate the theoretical results with numerical simulations. In particular, we discuss the influence
of the parameters A\, a of (1.2) and we apply the method to the simulation of flows past an obstacle, with a
multi-domain approach.

2. DDFV FRAMEWORK

Here and below, we adopt the main definitions and notation introduced in [2,32].
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FIGURE 1. DDFV meshes on a non conformal mesh: primal mesh 9t U 09 (blue), dual mesh
M* U IM™* (red) and diamond mesh D (green).

2.1. Meshes

The DDFV method requires unknowns on vertices, centers and edges of control volumes; for this reason, it
works on (three) staggered meshes. From an initial mesh, called the “primal mesh” (denoted with 9t U 090),
we construct the “dual mesh” (denoted with 2t* U 090t*), centered on the vertices of the primal mesh, and the
“diamond mesh” (denoted with @), centered on the edges of the primal mesh; see Figure 1. The union of the
primal and dual meshes will be denoted by ¥.

More precisely, we consider a primal mesh 9t consisting of open disjoints polygons k such that Uxesm k=
We denote 9 the set of edges of the primal mesh included in 92, considered as degenerated primal cells. We

associate to each x a point x, called center. For the volumes of the boundary, z, is situated at the midpoint of
the edge.

Hp 2.1. All control volumes x are star-shaped with respect to x,.

We build two others meshes: the dual mesh 9" U 991" and the diamond mesh ®. The dual mesh 2T* U oM™
is made of dual cells k* and the diamond mesh ® is made of diamond b. We set X* the set of vertices of the
primal mesh 91 and z,+ is an element of this set X*. When x and v are neighboring volumes, that is if the
measure of Ok N L is positive, we define a diamond b as the quadrilateral (see Fig. 2) whose vertices are xy, x,,
2+ and x;» where z» and x,» are common vertices of k and L such that [z, z,«] C 9k N OL. To each diamond,
we define its diagonals as a primal edge o = k|L = [+, ,+] and a dual edge o* = k*|L* = |2y, 2,]. We denote a
diamond o or b, ,+. (In the framework adopted here this is an interpretation and not a restrictive assumption;
in particular, it is possible to consider non-conformal meshes. For instance, this is meaningful for the shadowed
cell in Fig. 1-left since it is actually considered as a pentagon, not as a rectangle.) Let £ be the set of all primal
edges and &iyy = €\ {o € € such that o C 9Q}. The DDFV framework is free of “admissibility constraint”, in
particular we do not need to assume the orthogonality of the segment z,,x, with 0 = k[. Let £* be the set
of all dual edges. The diagonal ¢ and ¢* intersect at the center of the diamond, xp € o and every diamond is

star-shaped with respect to zp. As a consequence of this setting, all segments o* belong to the physical domain
Q. We distinguish the diamonds on the interior and of the boundary:

Dext = {0y, €D, such that o C 00}, Dint = D\Dext-

From the primal mesh, we build the associated dual mesh. A dual cell x* is associated to a vertex x of
the primal mesh. The dual cells are obtained by joining the centers of the primal control volumes that have
T+ as vertex. We distinguish interior dual mesh, for which z,+ does not belong to 912, denoted by 9t* and the
boundary dual mesh, for which z,~ belongs to 02, denoted by 99*. In what follows, we assume:

Hp 2.2. All control volumes x* are star-shaped with respect to Tyx.

There are several possible constructions of the dual mesh, and it can happen that dual cells overlap. To avoid
this inconvenience, we can either suppose that the diamonds are convex or consider the barycentric dual mesh,
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FIGURE 2. A diamond b =»p, .-, on the interior (leff) and on the boundary (right).

obtained by joining the centers z, of the primal control volumes to the middle point of the edges that have xy«
as a vertex. Thanks to Hypothesis 2.1, barycentric dual cells have disjoint interiors. Throughout the paper, we
restrict to the case where all diamond cells are convez.

2.2. Notations

The following notation will be used throughout the paper. The reader familiar with DDFV may skip this
section.

For a volume v € 9t U 99t U M* U OM™* we define:

— my the measure of the cell v,

— &y the set of edges of v € MU M* U IM™* and the edge o = v for v € OM,
- Oy ={p, ., €D,0 €&},

— Dint — {Da - €Dy N Z)mt} Dt = {Dﬁ -~ €Dy N ’Dext}

— dy the diameter of v.

For a diamond b, ,~ whose vertices are (x, Ty, ., T+ ), we denote:

— xp the center of the diamond b: zp = o0 N o™,
— m, the length of the edge o,

— m,~ the length of o™,

— m, the measure of the diamond o, ,-,

— dp the diameter of the diamond o, =,

— ap the angle between o and o*.

We introduce for every diamond two orthonormal basis (Fyrx, ) and (=, Ty ), where:

— i, the unit normal to o going out from x,

— T~ the unit tangent vector to o oriented from &* to L*,
— M x the unit normal vector to o* going out from x*,

— Ty the unit tangent vector to o* oriented from « to ¢.

We denote for each diamond:

— its edges s (e.g. § = [z, 2x+]), such segments are interfaces between diamond cells, and when necessary we
will write s = p|p’ to emphasize that s separates the diamonds b and p’,

— & ={s,5 C dp and s € IO} the set of all interior sides of the diamond,

— ms the length of s,
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— Mg, the unit normal to s going out from b,
- 6 ={s €&,V € D} the set of interior edges of all diamond cells o € D,
— 6 = {s € 6, such that s C x} and &y = {s € &, such that s C x*}.

Let size(%) be the maximum of the diameters of the diamond cells in ®. The flattening of the triangles is
measured by the angle ag €]0, 7] such that sin(asg) := minpep | sin(ap)|. We introduce a positive number reg(¥)
that measures the regularity of the mesh:

1 d d dg+
reg(%) = max [ ———, N, N'*, max max —, max — max £ ,
sin(ag) DED s€Ep My KEM /My K*€M*UOM* M

dg dg-
max max | — max max
keMmdeD i \ dp / Kk em*Uom* peDpx \ dp
where A/ and A/* are the maximal number of edges of each primal cell and the maximal number of edges incident
to any vertex.

Hp 2.3. The number reg(%) is uniformly bounded from above and below as size(T) — 0.

Accordingly, there exist two constants Cy and Cs, which both depend on reg(¥), such that Vk € 9, Vk* €
M* U oM* and Vo € © such that o Nk # 0 and o Nk* # 0 we have:

HCymy < my < Comy, Cimy= < my, < Comy
Crdg < dp < Cad, Crdg < dp < Codg.
2.3. Unknowns and meshes

The DDFV method for Navier—Stokes problem uses staggered unknowns. We associate to each primal volume
K € MM U OM an unknown u, € R? for the velocity, to every dual volume k* € 9* U 9* an unknown u,~ € R?
for the velocity and to each diamond b € ® an unknown pp € R for the pressure. Those unknowns are collected
in the families:

T
Uz = ((W)ke@muom): (W) em-uom=)) € (R?)™  and po = ((pp)oeo) € R®.
We define now two discrete average projections, for all functions v in (H*(2))*:

— one on the interior:

PRy — ((ﬂiK /Kv(:c)d:c>K€m> P v = ((le /K v(w)dx)x*ezm*) ,

— one on the boundary:
0 1 1
Pov=|(— [ v(z)dz , v(z)da .
My Jx keoom N\ Jx K* €oMm*

We can collect them in a shorthand notation Pf,v = (P%V,P%*V,P?ngv). We introduce also a centered
projection on the mesh ¥:

Piv = ((V(wx))xe(muam) ’ <V(wK*>)K*€(£DI*u69ﬁ*)> , WE (HQ(Q))2

(This projection makes sense owing to the regularity assumption H2(Q) C C(£2).) Next, we define subspaces of

(R2)S, which take in account Dirichlet boundary conditions. Let I'py, C 052, the boundary on which homoge-
neous Dirichlet conditions will be imposed. When I'p;, # 92, we need to distinguish the subsets of the boundary
mesh

OMpiy = {k € OM : x, € Tpir}, OMY;, = {x* € OM™ : z« € Tpir}s
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and we set <
]EgDir = {uT S (]RQ) ,  s.t. Vk€ 0Mpir, uxy =0 and Vk* € OMp;,, U = O}.

When I'p;, = 092, we simply denote Eq the discrete space satisfying the Dirichlet condition.

2.4. Discrete operators
In this section we define the discrete operators of the DDFV scheme.
Definition 2.4. We define the discrete gradient of a vector field of (}R2)Kz as the operator
V2 us € (R — (VPus), o € (Ms (R))®,
with Mo (R) the space of 2 x 2 matrices with real entries, such that for o € ©:

DeED

1 u, — Uy — Uy« — Uy
QNgy + ———

D - =
Viue = — & Tgw |
sin (ap) | m,» m,

where ® represents the tensor product. It can equivalently be written as

1
D =
Viu: S
The discrete strain rate tensor D® : us € (R?)* = (DPus)pen € (M2(R))?® is defined by:
Vius + H(Viug)
2 )

[mo'(uy. - uK) ® ﬁo‘K + m = (uL* - uK*) ® ﬁo’*K*] .

DPu. = foro € ®.

We define the discrete divergence of a vector field of (]RQ)g as the operator
div® : us € (R2)F — (divPug)peo € R
with divPus = Tr(VPus) for any o € D.
Definition 2.5. We define the discrete divergence of a tensor field of (My(R))® as the operator
divT : &n € (My(R))® — diviéo € (R?)T,
where divi¢y = (divf’”g@,divmgg,divfm*gg,div@fm*g@), with div™¢n = (divién )y, div?™ o = 0,
div™ ¢p = (divk*&))xezm* and div?™ ¢p = (diVK*£9)K*eam* and we have set

1

diviénp = — E meéphigy, V€M
m,
“ D, ,x €Dk
x 1 i
divt &p = E My+&phgeer, Vk* € M*
My
K D, o+ EDyx
. 1 - Z Mo, o
leK f@ = E ma*fDnU*K* —|— TG-gDno'K VK* (S am*
M=
K D, €Dy~ D, o* €Dyr ND oyt

For the boundary dual cells k* € 9M*, we have in the definition two sums corresponding to two differents
parts of the boundary of k*. Indeed, we can express Jk* (see Fig. 2) as an union over o* = [z, #,] and an union
over a part [Ty, 2] of 0 = [@y=, 2+ ]:

» €Dyr MDext

DO’.U

Ok* = U @, 2] U [y, ).
D, o €Dy

Since we only have [2,-, z,], we have the factor 1/2 when considering the edges o.
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2.5. Scalar products and norms

Now, we define the scalar products on the approximation spaces:

1
Ve uslls = 5 (Z MU Vit Y My U v> Ve, ve € (B)7

KeM K* eMm*uom
(lo:Po)p= > my(&: Dp) ¥éo, B € (Ma(R))?,
D, ,xED
(Po.99)p = Z MyPpGp Vpo,qo € R?,
Da,o*eg

where (£ : §~) =Y i<ij<2 §i7j,§~i,j = Tr(tgg) for all £,€ € M3 (R). They define respectively the norms |ju<||2,
lléo]ll2 and ||po]l2. We also set

Dext om

(Po,vom)on = O, M.Pp-ve Vg € (R vam € (R?)7.

D, ,* EDext

We next define the trace operators. Let 4% : ug € (Rz)T =y (us) = (Yo (us))seom € (R2>asm be given by

K* 2 L L*
Yo (ug) = %, Vo =[x, 2] € OM.

On the diamond mesh we set v° : &5 € R® — (dp) € (Rz)gm, which is the operator of restriction to
the boundary diamonds.
The discrete gradient and divergence operators are linked by a discrete Stokes formula. This is precisely the

duality property that gives its name to the method [12], see for instance Theorem IV.9 of [32].

DEDext

Theorem 2.6 (Discrete Green’s formula). For all & € (M3(R))® ,us € (R2)1, we have:

HdiVTEQauIHf = - (E@ : V’DUT)Q + (’79(6@)"_‘;’7 ’Y‘I(u‘t))ag ’
where T is the unitary outward normal.

2.6. Brezzi—Pitkiranta stabilization

The Inf-Sup condition is a crucial structure property for the stability of a scheme for the simulation of
incompressible viscous flows. A stabilization term involving the pressure can be added to enforce this condition.
This idea dates back to [6] for finite element methods. It has been adapted to the finite volume framework too
[15,16] and we refer the reader to [33] for the specific case of DDFV schemes. Note that the Inf-Sup condition
actually holds for a large class of meshes, which do not require any stabilization [5].

The stabilization term involves the second order discrete operator, denoted by A® : pgy € R® — A®pgy € R?,
defined by

1 dj + dg,
APpy = prot Z ———(p —pp), YED.
® s=p|D’€&p D

It resembles an approximation of the Laplace’s operator (endowed with the homogeneous Neumann boundary
condition), however it is consistent only under orthogonality condition (as in the case of admissible meshes, see
[13,14]); that is not true in general for diamond meshes obtained from 9. In relation with this operator we
define a semi-norm | - | on R® that depends on the mesh:

pol*= > (B +d3) (pw —p)®, Vpo €R®.

s=D|D'E®
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Observe that

— (A3A%po,po)g =D m >, (d+d3) (o —pv)

DED  s=D|D'EEp

= > (B+dy) ey —m)* = Ipol (2.1)

s=D|D'EB

This operator is just needed to introduce a stabilisation, which is necessary in a few very specific situations,
like when working with Cartesian meshes where the stabilisation prevents oscillations due to spurious modes
associated to the chessboard pressure lying in the kernel of the Stokes operator. Other constructions can be
considered as well, with similar purposes.

3. DDFV SCHEME FOR THE NAVIER—STOKES PROBLEM ON ¢)

This section is concerned by the analysis of DDFV schemes for the Navier—Stokes problem with Dirichlet
boundary conditions on the entire domain 2. The choice of the Dirichlet boundary conditions is adopted on 92
for the sake of simplicity; the discussion can be readlily adapted to handle more general boundary conditions on
0, see [23,36]. As far as the convection is treated by upwind discretization, the analysis has been performed
in [32]. As mentioned above, it is convenient to extend this analysis to general B-schemes where the convection
term is approximated by a centered discretization plus a diffusive perturbation, which depends on a certain
function B, see [8,26]. In what follows, b, .- will be denoted by b, to simplify the notations.

3.1. The scheme (P)

Let N € N* and 0 < T < oo. We note 6t = % and t, = ndt for n € {0,...,N}. We use an implicit
Euler time-discretization, except for the nonlinear convection term, which is linearized by using a semi-implicit
approximation. Here and below, the time step is supposed to be constant; of course the discussion can be directly

adapted to handle variable time steps. At each time step, we shall enforce the equality
div® (u") — BdAA®p" =0 (3.1)

which takes into account the Brezzi—Pitkédranta stabilization, with a parameter 5 > 0.

We look for u®07] = (u")neqo,.., N} € (EO)NH
crete velocities satisfying the homogeneous Dirichlet condition, and p©:07] = (P")neqo,...N} € (R®)N+1 The
sequence is initialized with:

, where, as stated in Section 2.3, Eq is the space of dis-

u = ]P’fuo € Ey,

1
p° € R® such that A®p° = —Qdivg(uo) with Z mypy = 0.
pdy DED

The vector p° is well defined since it is solution of a square system, whose matrix is invertible (owing to the
fact that ug is supposed to belong to Eg, and because in the formulation of the problem we take into account
the constraint of null average on the pressure). With those choices of (u°,p°) we guarantee the property (3.1)
at the initial time step and it will be propagated at each time step. The discrete force term is also defined by
a projection over T, with Pf and IP’ZJf*f . From now on, to simplify the notations we will denote (u"*!, pntl)
with (us,pp) and (u™, p™) with (g, po).
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Given (ug, pp) satisfying (3.1) the update us € Eg and pp € R® is such that:

Uy Uy

mKE—’_ ngfUK:meK+mK 5 Vk € M
DEDg
M= 2y Z Mg Forr = Myer Fex + My 2 e e
ot ot
DED (P)

div® (ug) — fdp AP =0

Z mypp = 0.

DED

The fluxes are defined as a sum of a “diffusion” term and a “convection” term:
d C d C
m, Fox = m, (F& + F2,), Mye Fegr = Migr (Folge + Fnge) -

The diffusion fluxes are defined as:

2
m,Fl =—m, (ReDDus - pDId> T

2
mg*}'g*K* = — m = (ReDDuT — pDId> 3 S

that can be naturally denoted —mUUD(uI7p@) i and —m,« O'D(u357p@) i« , respectively. The convection fluxes
are expressed as the sum of a centered discretization and a diffusive perturbation

u, +u, m?2 2m,Re
c _— FK B F(,K xk — UL),
mo T = (M5 ) e (P ) (0w

Ugr + U m2. B 2m,Re
2 2Rem, m, =

Mgr Foage = Mgn Fays < F(,*K*> (ugx — wpx).

The diffusive part depends on the function B, which describes the different schemes that we can work with.
The centered scheme corresponds to B(s) = 0 and the upwind scheme corresponds to B(s) = 3|s|. However,

for further purposes and the analysis of the domain decomposition method, it is relevant to consider a quite

general framework where B can be matrix-valued. In what follows, we denote B (% F0K> with B,, and

B (QLDRe Fww) with Bg+. The total fluxes then become:

m,*

u, + u, m2
fUK:_ oD ) _‘o'K aFoK = BD’K x — W
T = (e, ) i 1, o (S5 ) 4 B (0, )
W 1 2 (3.2)
ma*]:a*x* = _ma*JD(uT7p®) ﬁa*x* + mo*Fa*K* ( . 2 - > 2Rgmn Bo’*K* (uK* - uL*) .

The definition of F,, F,«» comes from [32,34], up to the boundary terms. They are approximations of the
fluxes: [ (TW- M) ~» MeF, (UF) and [ . (W- A wp) ~» Mg+ F,- (WF). Note that this part of the scheme is
explicit: the velocity-pressure pair is updated by solving a linear system corresponding to a semi-explicit time
discretisation.

For o € ®j,, we can rewrite the discrete divergence div® as follows

Uy + Uy
. D/— X K —
mydiv®(ag) = E My ——5— T,

s=[xx,zyx |€EED
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F,=—-F,, Vo=« and F,o =—F,x, Vo'=x"t".
Ty Ty
5= [xmxx*] ,R‘ 5= [‘rka xx*} ,E
* \ *
q\/ . N\ .2
g, \ ng, —
. - - n_ g
/’, n \‘ /',*
T @ o =gt Box N\, re@- 0 _TKILT
\0 Tte- L \ \’ B
N \\\‘::®ac RN
* — L * J—
., U—K|L‘,’ ., o=x[L
\ R \
NP ‘N
g X
Xp*

and deduce that

deiVD(ﬁg) — BdeDQADﬁ@ = Z

g —
2
s=[xg,x* |=D|D’ €EDY

We introduce the flux msGs, to approximate [, ug - fgds for s = [z, z+] = o’ € &, noting that this flux

Xyp*

FIGURE 3. Left: diamond o =, ,« with o € &p. Right: diamond o = b, ,» with o C 9.

B(dn + dn/) (pD _ﬁD’) .

must be perturbed by the stabilisation term imposed in (3.1), so that we have

Thanks to (3.1), it implies

mydiv’ (ix) — Bm,dp? APpe = Z MGy =
5=D‘D/€€D
For b € Dext, (see Fig. 3), a similar reasoning leads to
deiVD(ﬁgj) — BdegADﬁ@ =
5=D|D’€&p
Based on these considerations, we define the convections fluxes as follows:

— For the primal edges that is for a primal cell x € 90t and b € D,:

mo‘Fo'K = - E mﬁGE,D'

scSgN&p
This sum contains two terms s = [x, 2+ | and § = [xy, 2,+].

— For the dual edges, we have two differents cases (see Fig. 3):
e for k* € M  UIM™ and b € Dx N Ding

My B e = — E msGs,D-

EGGK* Né&p
This sum contains two terms s = [xy, Ty« ] and § = [2,, Ty].

Z msGs,D + M,Ys (ﬁT) 1l

T : ﬁsn - B(dn + dD/)(ﬁD _ﬁD’)-

0.

k.

1281
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o for x* € OM* and p € Dyr N Doyt

ma*Fo*K* = _msGs,D - §m89max* HK*7

where § = [z, T« ] and Mmugnee indicates the measure of the intersection between dk* N O and

_ — . *
Maanox* HK* = E Mgnok* Ugx * Mgy, Ve* € 0",

De@;;‘t

That the scheme preserves the conservation laws of the continuous problem is a remarkable property of the
construction. It means that mass exchanges between the cells are well reproduced by the scheme.

Proposition 3.1. Let (3.1) be satisfied. Then the fluzes F,, and F,«~ are conservative, that is to say

F,.=-F,, Vo=xv and F,u =—F,+, Vo' =«

Proposition 3.2. Let T be a DDFV mesh associated to Q. For all (ug,pp) € Eg x R®, B € R* we have

Z m,F.,.=0 Vk € M,
DEDg

> Mg Fpee =0 Vie € IM*,
DED

Z Mgs Foee = —Mpano- Hyex V&= € OM™.
DED,

Proof. For the interior mesh, we proceed as in [32]. If k € 9, by reorganizing the sum on the sides s € &
belonging to the primal cell k, we obtain:

B Z Z uK+uK* A Z uK+uK* (g + 1) =0 (3.3)

DeEDy SGQSKHSD 5€Q5K

since fg, = —fi,y, where p and b’ denote the two neighboring diamonds which share the edge s, of vertices
Ty, Ty« . In the same way,

- Z Z (12-|-d2 ) (P — pp) = — Z (dg‘i‘d,?/)(pn'—pn +pp —pp) = 0. (3.4)

DeDk 5661(05]) 5€Q5K

We deduce that ZDEQK myF,, = 0. The proof is similar for ZDEDK* My« Fospe = 0 if x* € 9*.
We now focus on the case in which k* € 0991*. By definition of m,« F, ., we have

K+ K* — 1
- Z Z {m5112u ‘N + (dg + dx%) (po — pn)} - Z imasmax* Hy =0 — Mogron- Hy

DED = 5€®K* Nép DED* NON

where the first sum vanishes thanks to (3.3), (3.4), and for the second term we use the fact that each vertex x*
is shared by two boundary diamonds. (I

3.2. Well-posedness of problem (P)

The well-posedness of the scheme (P), which is known when the centered or upwind discretization is used,
generalizes to a wide class of functions B. In what follows, for a N x N matrix A, we write A > 0 when the
symmetric part of A is positive semi-definite, which means that Az - z > 0 holds for any vector z € RV.
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Theorem 3.3. Let 0 =k|L € €, 0" = x*|* € E*. Let By, By be the (possibly matriz valued) coefficients
arising in the definition of the fluxzes (3.2), as the diffusive correction with respect to the centered approximation.

Assume that

BO’K = Bom BG‘K >0 H )
Byeys = Byere, Byepe > 0. (Hp

Then the problem (P) is well-posed.

Proof. The scheme (P) is a linear system in (us,pop) € (]RQ)T x R®. It corresponds to the specific case where
8o = o= = qo = ¢ =0, in

m“ét Zm}"ﬂ—me—i—mKat Yk € M
DEDk
U+
M — o Forgr = My fir + My 5—; Vk* € M
DED
oMm
u = Zom (P)
u? = o=

div® (ug) — BA2A®py = ¢o

Z MyPp = (b

DED

Let us denote by N the dimension of (RQ)T x R®. Equation (P) is a linear system Av = b with a rectangular
matrix A € My nv(R), v e RY and b € RN¥*1. Let X be the following set:

X = {(fDﬁvfmT*vgamtagam*aQ’D7¢) € RN+17 Z msYo g‘Z Z meD}

DEDoxt DED

We have dim(X) = N, * (fan, fon+, 0,0, 0) belongs to X and Im(A) C X as a consequence of the Green formula in
Theorem 2.6. If we show that the matrix is injective, we conclude that dim(Im(A4)) = N and that Im(A4) = X.
We are going to show that if foy = fon« = 0, then uz = 0 and pp = 0.

We multiply the equations on the primal and dual mesh of (P) by us and we sum over all the control volumes:

111
2 |5t <Z mK‘uK|2 + Z Mgx uK*|2> + Z Uy - Z Mo Fox + Z Ug* - Z MoxForgx | = 0.
KeM Kem* Kem DED K* e+ DED
By definition of the scalar products we have % [ (3 ycon M [Wel® + Y gcon- M [ue )] = & |luz||3 and, by

replacing the definition of the fluxes, we get

||u:||2 ZuK > m,o’(us,po) ax—f D oue Ym0 (s, po )l e

Kem DEDk K e DEDx
1 u +u 1 Uy + U=
+§Z“K'vaFaxK2 . ZUK*'Zma*Fa*K*%
KEM  DEDy Wil N
+35 Z uy Z 2Rem Z Uy - Z 2Rem e (Wer —wpx ) = 0. (3.5)
Kesm DEDy K em= DED,+

We can consider separately the terms. By replacing the definition of the divergence operator and then by appying
Green’s formula (Thm. 2.6) for us € Eg, we obtain
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_%Zux' Z moUD (ump’D)ﬁax_% Z Ugx - Z ma*UD (u‘57p®)ﬁ0’*l(*

KEM DEDy K* €M* DED
2

. 2 2 )
=— Hdlv“" (RGDgufI —pg) ,uT”I = §|||D@uTH|§ — (p@,dlvgufs)@ = %‘HDQUTH@ + Blpo|?,

where for the last equality we use that div® (ug) — ﬂd% A®py =0 and we apply (2.1).

For the convection terms, we sum over diamonds recalling that us € Ey, so we do not have boundary terms.
For the centered part, we apply Propositions 3.2 and 3.1, to conclude that

%Z“K' ngFaKuK—guLJr% DY mp%

Kem  DeDy K* € DED
1 1
- Z Z m"F”K(‘uKF - ‘uL|2) + 1 Z Mox o*K*(|uK*‘2 - |uL*|2)
DED DED
1 9 1 )
=3 S u? > m, ot S e ) meFoepe =0.
kem DEDk K*em* DEDk
w_/
=0 -0

For the diffusive perturbation, (Hp) implies

1 2 1 2
3 Z uy - Z %;RDBJK (uy —u) + 3 Z U - Z %fmt)Ba*x*(uK* —u-)

KeMm DEDy K*em= DED

1 2 1 2,
= 3 2 SRy Do (=) (=) + 5 37 ope B (e — W) - (e = we) 2 0.
DED DeED

Putting all together, equation (3.5) becomes:
1 2, 2 o) 2 2
L3 + o JIDPusl + Blpol? <0,

from which we deduce that us = 0 and pp is a constant (we recall that 3 > 0). Since pp verifies Y ) m,pp = 0,
we have pp = 0. ]

4. DDFV DOMAIN DECOMPOSITION

We start by defining a discretization for the problem set on the subdomain €2;. As in Section 3, the nonlinear
convection term will be approximated through B-schemes; we will see that the coefficients By, By play an
important role in the convergence of the Schwarz algorithm. We start by defining the meshes, and we analyse
the scheme on each subdomain, denoted by (P;), and we introduce the Schwarz algorithm for the domain
decomposition. We present the study for two subdomains for the sake of simplicity, but it could be extended
to an arbitrary number of adjacent subdomains. (Difficulties arise when more than two domains have common
points on their interfaces, a situation which deserves a specific analysis see e.g. [18].)

4.1. DDFV on composite meshes

For each subdomain §; of , j = 1,2, we consider a DDFV mesh T; = (9; U 9M;, M5 U 9M7) and the
associated diamond mesh ®;. Note that the DDFV approach allows us to work with non conformal meshes,
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— Primal mesh 9

******* Dual mesh 9t* U 09t

Q=0 U

FIGURE 4. DDFV meshes.

and the two subdomains can be meshed differently. Letting I" be the interface between the two subdomains and
I'},;, the boundary of 99, intersecting 9, we denote:

— the diamond cells intersecting I': 9} :={peD;,pNT #0};

— the boundary primal cells intersecting I': OM,r:={xk € 0M;,xNT # 0},

— the boundary dual cells intersecting I': O = {x= € O, NT # 0}

— the boundary primal cells intersecting I’f)ir: OM; pir := {xk € OM;,kN F{Dir £ 0};
— the boundary dual cells intersecting F%ir: 0N 1y = {x* € O,k N F]ﬁ)ir #0};

see Figure 4 for an example.

Definition 4.1 (Composite mesh). We say that ¥; and To are compatible, if the following conditions are
satisfied:

(1) The two meshes share the same vertices on I'. This, in particular, implies that the two meshes have the
same degenerate volumes on I, i.e. 09 r = 0Ma 1.

(2) The center x, of the degenerate volumes of the interface L = [z, ] € Oy, = OMo 1 is the intersection
between (x4, x,+) and (xx,, 2k, ), where k; € 9y and ky € My are the two primal cells such that L € Jk; and
L € Oka (see Fig. 4).

In order to build a composite mesh, it is equivalent to either build a global mesh by gluing two subdomain
meshes, or to build the subdomain meshes starting from a global mesh (which has edges along T').
Consider the composite mesh of Figure 4; remark that:

— a diamond b, of vertices @y, , Ty, v, Ty, that intersects I' in the domain 2 can be written as the union of
diamonds by, of vertices xy, , Ty, X+, 2, and by, of vertices xy,, Xy, X+, ., respectively in €y, Q. Moreover,
on the subdomain meshes we have additional unknowns on x, on I' with respect to the mesh on ;

— equivalently, a volume k* that intersects I' in Q is the union of kj,x5 in Qy,Qs. In particular, an edge
o* = |wk, , Tx,] can be split into o* = o] U o) = [xg,, 2] U [2, 2k, ];

— an edge 0 = [z, x,+] on the interface I' is shared by all the meshes.

Due to the fact that each dual cell on the global mesh that intersects I' is split in two between the subdomains,
it is necessary to introduce some additional unknowns fluxes \I/K;«, for all k7 € BSJT;TI, as in [20]. Those unknowns

are intended to approximate the dual fluxes F,++ on the interface. For a diamond b € @5, the unknowns are
illustrated in Figure 5.
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FIGURE 5. The unknowns on a diamond on the interface for the subdomain £2;.

4.2. The subdomain problem: transmission conditions

On each subdomain Q; of ), we want to solve a Navier-Stokes system with mixed boundary conditions. On
the fraction of the boundary that intersects 02, we impose Dirichlet boundary conditions. On the the interface

I’ between the two subdomains, we impose the discretized version of the transmission conditions (1.2).

To construct the scheme, we integrate the momentum equation over 9t; U9: U asm;;r, we impose Dirichlet
boundary conditions on 99M; pir U O ;. and transmission conditions on 0M; r U 0N 1. The transmission
conditions involve three positive parameters:

— A which arises in the Fourier-like transmission condition for the velocity,
— « which arises in the Fourier-like transmission condition for the pressure,
— [ that relies on the Brezzi—Pitkaranta stabilization.

Precisely, the solenoidal constraint is approximated on the diamond mesh ©; and for the diamonds in @5 a
transmission term is added, controlled by the parameter o. We give now, formally, an hint of why it is necessary
to add this condition on the interface diamonds Z)]r: our goal is to recover, at convergence of the Schwarz
algorithm, the solenoidal constraint div’(us) = 0 for all o that intersect I" in © (that we write here for sake of
simplicity without the stabilization term). As described in Definition 4.1, a diamond b in 2 that intersects I' can
be written as the union of diamonds py1,p2 in Q1,$s. By definition of the discrete divergence, see Section 2.4,
we wish to decompose m,divius = mbldileuT1 + My, diVDzuTT Therefore, we expect on I' an expression which

would look like

.. D :..D
My, div " e, = =My, div Uy, (4.1)

However, equation (4.1) does not make sense and a detailed construction of the Ug, € (R%)%3’s is needed, where
(R%)* C (R?)*1 x (R%)*2. This can be understood by a dimensional argument. Of course, we naturally identify
the values of u; and u<, when they are evaluated on common points of the grids ¥ and ;. But, we should bear
in mind that 9 UMy = M, while I is strictly included in M] UM3: what happens is (M7 UM3) U (9M] U
89)?;1“) = M*. Similarly, 0901 is strictly included in 09t U0Ma: we have OMU (0 r UOMa r) = 0Ny UIOM,.
Moreover, imposing a condition of this kind along the iterations of the Schwarz algorithm is not sufficient to
prove convergence of the algorithm, as we will show later in Theorem 5.8; in order to apply the analytical tools
of the proof, it is necessary to add to (4.1) a Fourier-like term for the pressure, controlled by a.

The DDFV discretization leads to the following system on €;:

Find (ugj,p@]., \I/;c].) € Egg“ x RPi x (Rg)afm;‘f such that
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uy Uy

My 5t + Z My Fox = Myf + my 5 Vk € M;
DEDy
Ug* ﬁK* . %
e 5t + Z mg*]:o'*l(* = mK*fK* + M W VK € m]
DE@K*
Ug* ﬁK* %
e + Z Mor Forgr + Mognoxs Yer = My=fir +my —  Vk* € O 1
ot ot J,
DED = (Pj)
1
—Fox + §F0KuL +Au, =h, Vo € 89ﬁj,p
1 *
—W + §HK* U + Augx = hy- Vk* € amjr
mpdiv’(ug,) — ﬂmbdgADp@j =0 Yo €D, \’D;
mydiv®(ug;) — ﬁmndgADij + amypp = gp Vo € DJF-,

where ug, the solution computed at the previous time step t,,_1 = (n — 1)dt for n € {1,...,N — 1}, and h, g
J

are certain boundary data in (R2)?%Ur x (R2)%™ir and RO, respectively. Here, we denote fg, = Phif. We
will refer to the system (P;) in the shorthand form:

[’Qj,F (ufjap’D]w\ijj7f3,'jau(§j7h(fj7g@j) =0.

Remark 4.2. When we impose transmission conditions in Schwarz’ algorithm, we are led to approximate the

boundary term fa (a(u, p)-id— %(u . ﬁ)u), which keeps track of the anti-symmetrization of the convection term.

Formally, at the continuous level, if ¢ is a test function in V = {¢ € (HY(Q))?, ¥|r,, = 0, div(y) = 0}, the
variational formulation of (1.1) reads:

/Q ou- o+ /Q(“ Vu-p— /Q div(a(u, p))e = 0. (4.2)

The convection term can be written as

5 [ e [@veas [ S

by integration by parts, since u is divergence free. Coming back to (4.2), we integrate by parts also the diffusion
terms, and we end up with:

Jom-osg [vup—g [-Verus [ atwp:ve- [ (a<u,p>ﬁ—§<u-ﬁ>u)-so=o.

This is the reason why, when working with transmission conditions, we impose a condition on o(u, p)ii— % (u-d)u,

that contains just “half of the convection”. Besides, the numerical flux F,, is constructed to approximate the
term

[ Cotnpit ).

This is why in the approximation it gives:

olu,p)id— —(u-Du=oc(u,p)id — (u-du+ —(u-DH)ur —Fyuy + 5F(,KuL.

N |
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Theorem 4.3 (Well-posedness of the DDFV subdomain problem). Under the hypothesis (Hp) and A, 5, > 0,
the problem (Pj) is well-posed.

The proof relies on the following energy estimate (where we bear in mind that By, and By« can be matrix-
valued).

Theorem 4.4 (Energy estimate on (P;)). Under the hypothesis (Hp), the scheme (P;) satisfies the following
relation

Sl I3 + 1D us I3 = (po, divorue, )

1 1 1
+§ Z m, <‘F0K2F0KUL) 'uL+§

Jj
1
Z Maanox* <‘Ijx* - iHK* uK*> * Uy

DED K" €om .
1 m? 1 m2.
+ 5 Z 2RemD BO‘K (uK - uL) . (ux - u]_) + 5 Z 2RemD BO‘*K* (uK* —_ uL*) . (uK* — uL*)
DeD; DED;
1.
= [[ijauTj]]Tj + E[[uzj,u%ﬂgj, (43)

Proof of Theorem 4.3. Let us explain how Theorem 4.4 can be used to justify the well-posedness of the equation
with mixed conditions. We are going to prove that if all quantities fs,,hz, gp,, and Uz, vanish, then ug, =
0 = Ug, and pp, = 0. Starting from (4.3), we apply:

— the transmission conditions on the sums over DJF» and O p:
,

—Fox + %F(,KuL +Au, =h, Yo € OM; 1,
U + %HK* Wer + AU = hys Vk* € O,
— the conditions on the equation of mass conservation:
div’ (uf;j) — andgADp@j =0 Yo e D; \’D;,
div® (ugj) — medgADp@j + amypp = gp = 33;.

This implies:

1 2 _ A A
sl 3+ oI ug I3 + Blpo, P + o 3 malpo? + 5 D moful+ 5 D0 monna fu
De@JF, De@JF. K" €0My
1 m? 1 m2.
+ 5 Z 2Rem, BUK(uK - uL) : (uK - uL) + 5 Z mBn*x* (ux* - uL*) : (ux* - uL*)
€9 DED;
1. 1 1
= Hfgwugj]]ij + &[[u‘l’jaufj]]fj =+ (pgjhggj)@]r =+ 5 Z m,h, - u, + 5 Z Moanac Pge = Uyx.
el K*€om* |,
J Js
(4.4)
If now we impose that all data fz , hs,,go, and Ug, in (4.4) vanish, we have:
1 2, 2 D; 2 2 2 A 2 A 2
E”usj”z + %MD "uz |z + Blpe, " + o Z my|po|” + 3 Z m,|u|” + 3 Z Mognor | |

T T * *
peD! peD! K*eom

>0
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T LS PR B N S o L S )< ( )=0
5 ox\Ug — ) - (Ux — U, = orgx (Ugx — Upx )« (Ugx — Upx ) = U,
2 o 2Rem, 2 o 2Rem,

>0

that leads to: ) 5
’Z)v
sl B+ o IID® g, I3 + Blpo, 2 <0,

from which we deduce that ug, =0 and pp, is a constant (since 8 > 0). Thanks to the transmission conditions
on 33?, since a > 0 and uz, =0, we obtain pp, = 0. Finally, thanks to the transmission condition on 893?;7,1“

and Uc, = 0, we also have Ug, = 0. O

Proof of Theorem 4.4. We multiply the equations on the primal and dual mesh of (P;) by u<; and we sum over
all the control volumes:

1|1
2 2
§ g E My \ux\ + E My* UK*I + E Mognor Yir + Uy
KM KEM> UM K" €M |,

1.
+ Z Uy - Z ma]:ox + Z Uy + Z mﬂ*‘Fﬂ*K* = [[ijvuTj]]Tj + E[[ufﬁufjﬂfj'

KeM; DEDg K" €M uom; DEDy=

By definition of the scalar products we have

D ST S

1
w2 | = 5l I3
KeM; KEM s UOM*

and, by rewriting the fluxes as a sum of the diffusive and convective contribution we obtain:

%Huiﬁug +% Z Maanac P+ Uy + Z Uy - Z mgng + Z Uyr * Z m,« g*K*

K* €0M |, KEM;; DED K™ €My Loy DEDyx
c (& _ f 1 —
+ g Uy - 5 mg]:O-K + E Uyg* - E ma*fg'*](* - H Tj7u‘3j]]fj + a[[uTqu‘ZjHTj'
KeM; DEDy K" €5 UOM; DEDy~

We consider separately the two contributions. For the diffusion terms, we have, by the definition of the divergence
operator

% Z u - Z m,,ngJr Z Uy - Z mf,*}"g*K*

KeM; DEDg K" €M UM DEDy+

2
= — Hdiv:" (ReDquIj —p@jld) ,qu” — E Uy - E mgng.
‘IA

J K*€om” DEDEF

NP

We can now apply Green’s formula to the RHS, and remark that

Z Uy - Z md]:((rix = Z mff]:cLTiK : (uK* + uL*)'

K*€OM . DEDEE DEDT
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We thus find:

S we Y mA s Y we Y me R

KEM; DEDy K*em;uaim; DED =

2 D LD Wer + U
= D™ 1B (po, div®us, )+ 37 mo s (e, ) = 30w B

I DEDT DeDY
By the definition of the trace operator, we obtain:

% Zux'szffﬁ Z Zm CFl

KEM; DEDy K" em; uaim; DEDyx

2 . D,
= QHD@JU:ng - (P@_jaleg”usj)g +3 Z m, . (4.5)
DG@F

For the convection terms, we get

Souc Y mFL A D e Y meFo | = %(TlJrTg)

KeM; DEDk K*eMruoms DED

We estimate the term T4; we first integrate by parts thanks to Proposition 3.1 and (Hp):

T1: Z uK~Zma.7-"c

KEM;  DED
= E meFey - (g — ) + g my,Fy
DED; De’D}"

We replace the definition of F, for allp € D;:

u; +u, m;
Tl = Z mcho'K 2 : (uK - uL) + Z MBJK(UK - uL) . - uL Z m,
beD; DED; ’ peDT
m2
= Z my Fo(Jug? — [u ) + Z mBJK(uK —uw) - (u—w) + Z My F oy - U,
DE@ DED; Dez)JF

Passing to the sum over primal cells k for the first term and applying Proposition 3.2 we get:

T :% >l ) maFoK— S omFauf Y e Boe(ue —w) - (u—uy) + > m,

KeM; DEDk De@F DED; De@]F

=0

It can be rewritten as:

Ti=> m (P I u) wt Y QR: B (we —w) - (0 —wy). (4.6)

DE’DF DED;
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We estimate the term T5; we first integrate by parts, by using Proposition 3.1 and (Hp):

TQ = Z Ug* - Z mu*]:

K*emfuasm DED
= E Mgr Fgnge * (e — Upx ).
DED;

We replace the definition of F7, for all o € ®;:

U+ + U M
T, = Z My P — L 1" (Wee — ux) + Z T Byegr (Ur — px) - (Wer — uyx)

2 2 25, 2Rem,
2 2 m2*
= — E m, *F gk |uK*| — |uL*‘ ) + E g BO’*K* (uK* — uL*) . (uk* — uL*) .
2Rem,
DECD DED;

Passing to the sum over dual cells x* for the first term we get:

T=g Y el Y Pt 3 S B (e — ) (e — ). (4.7)

K*eim]*. uom DED = DED;

From the definition of F,«»~ and by Proposition 3.2 we have that ZDEQK* my«F «» = 0 for all x* € sm; and
ZDEDK* Mgs Fer = —Mpane He= for all x* € 393?;%, that gives:

Z mBSZmBK*HK* Uy * |2 + Z 2Re a— *K* (uK* - uL*) ° (u;(* - uL*).
K 63931* DED;

Gathering (4.5)—(4.7) together, we find:

ol 12 + en\DD-fuzjm% = (po, div®us, )
D;
1 1 1
+ 5 Z (.7:31( + ]:gK aKuL> “u + 5 Z Mognac: Vs + Wer — Z Z Mognox= Hyx |uK*|2
DEDY K" eom K*€oms .

1 m?2 1 m2.
+ ) Z Bo (ue—w) - (we —u) + 5 Z Byogs (W — s ) - (Wer — 1)

2Rem, " 2 2Rem,
j DEQJ
1.
= HfT]‘ ) u‘Ij]]T]‘ + & [[U‘Ij 9 u‘fj“fj .
Since F& + FS, = Fox, it leads to (4.3). O

4.3. DDFV Schwarz algorithm

We can now introduce the iterative process that defines the Schwarz algorithm. Let N € N*. We note

ot = % and t,, = ndt for n € {0,..., N}. At each time step ¢, we apply the following parallel DDFV Schwarz

algorithm: for arbitrary initial guesses h%j € (R2)asmj,pua§m]*.,r and g%j € R®i, at each iteration I = 1,2, ... and
1,7, € {1,2}, j # i we proceed with the following two steps:

(1) Compute (u%j,p%j,‘l’lzj) € (RQ)% x R®i x (RZ)BW;F solution to

‘i{.
EQJJ7F <u$ ,p@ 7\113 ’fgﬂ’uzﬁhl -17gz)r> =0 (S1)



1292 T. GOUDON ET AL.

(2) Compute the new values of hfIJ and of glgr_ by:

1
h =F,, - 5 Fou ul + A/, Vi =1; € OM;r
! 1 ! l . x (S2)
hK; =V, — §HKJ'* u- +Au,., Vk; € O such that zyg: = @y
géj = — (mp,div™ (ulT) — Bmp, dgi ADipl@i) + amDip,lji, W, € 335 such that xp, = xp,.

5. CONVERGENCE ANALYSIS OF THE DDFV SCHWARZ ALGORITHM

Bearing in mind the properties of the mesh discussed after Definition 4.1, we infer that the asymptotic fluxes
as | — oo should satisfy

ma]:m( - meUKl == 7ma"F0'K27 Vb € @F (51)
ma*fa'*K* == ma;fa'fl(* +ma';fO';K*7 VO'* = O'T UO’;’ K* € 393??

In order to obtain these relations, it will become necessary to modify the fluxes on the interface, either for
the limit or for the subdomain problem. For this reason, the convergence will be studied in two steps. In this
Section, we shall identify the limit of the Schwarz algorithm defined in Section 4.3. We focus here on the natural
situation where By, By« take scalar values, like with the upwind and centered discretizations. We will show
that this limit is still a DDFV scheme for the problem (1.1), but with modified fluxes on I'. We will then prove
convergence to this limit scheme, to which we will refer to as (73) In the next Section 6, we will show that it
is possible to obtain (P) asymptotically, at the price of modifying the fluxes of the Schwarz algorithm (&),
dealing with matrix coefficients By, By++. That (P) provides a consistent approximation of the Navier—Stokes

equation is justified, with error estimates, in [33,34]; the arguments can be adapted for (P) and numerical tests
of convergence are presented in [25]. Here, we focus on the convergence of the Schwarz iterations.

5.1. The limit problem (P)

We consider the following DDFV scheme for (1.1), on the domain §: given (ug, pp ), satisfying (3.1), we look
for uz € Eg and pp € R® such that:

u ~ u
™y 6—; + Z My Fox + Z My For = MLy + my 6—; Yk € M
DEDK\ Dy DED]

Uy * jond U+ *
Ty« + Z ma*]:a*x* + Z mg*]:a*K* = mk*fk* + My ﬁ Vi € M

ot

DED \1‘)1{* De@}(’* (P)
mydiv’ (us) — fm,dZAPpe = 0 weD
Z mypp = 0.
DED

In the interior of the domain, the fluxes coincide with the fluxes in (P), see (3.2). On the interface, they are
defined as:

2
~ u, +u m ~
D — K L o
M, Fox = —M,0 (Ug, Po ) Mgy + M, Fly ( 5 ) Re DBaK (4 —w),
2
~ W + ug - mo. =~
D — K L o
Myx Fgrgr = —Mg*0 (ug’pg) N weex + M« Fwpx ( 5 ) e DBU*K* (uK* — 111_*),

where EJK and BU*K* are matrix-valued quantities that come from the transmission condition of the iterative
process. Their expressions are established in Propositions 5.4 and 5.5.
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5.2. Definition of E,,K and §G*K*

Let us start with some preliminary definition, bearing in mind that By, By« are supposed to be scalars.
Definition 5.1. For i = 1,2, and o € 09, r, we set P = Id + i, ® i« and
2

m
A; = —=— (P + By, 1d),
’ 2RemDi( + Bo 1d)

where we recall that By, = B (%Fm). Next, we set A = Ay + As.

Remark 5.2. The matrix A = A; + A5 is symmetric and definite positive, thus invertible, since it is the sum

of two symmetric and definite positive matrices. In fact, with @, = (Z , we have:

14+ Boy, + x? Ty
Ai = 2>
Ty 1+ Box, +y

which is symmetric and for any v = (Z;) it holds:

(Ajv,v) = (1 + Bay,) (v +v3) + (zv1 + yv2)’ >0 and (Aw,v) =0 < v =0,

owing to Hypothesis (Hp). For i,j = 1,2, ¢ # j, since A; and A; are polynomial in P, the following properties
hold:
AiAj = AjA;,
AjAT = AT1A;

since from Hypothesis (Hp) we have B,,, = By, for o € 09, .

The fluxes Fyy, o= are constructed in order to satisfy the properties (5.1) and (5.2). The system (P) is a
scheme defined on the mesh ¥ on 2; in particular, this means that there are no additional unknowns u, on the
interface I', see Figure 4. The following results apply for a general diamond:

Proposition 5.3. Let o € Dr be a diamond and let p1,p2 be the two semi-diamonds such that o = by Uy, see
Figure 6. We denote by (&g, Ty, 2+, ;) the vertices of b and by (xy,, Tyr, Tix, T,), (Xgy, Tyx, Tux, X,,) the vertices
of 1 and pe. Let 0 = xy|ka, and let A, Ay, Ay be as in Definition 5.1. Then, there exists a unique u,, given by

1
u, =A"" Ay, + Aouy, + §m(,Fm<1(uK1 —Uy,) |, (5.3)
which satisfies
]:okl = 7-70'}(2' (54)

Proof. Condition (5.4) is a linear equation in u,, where Fgy, is a flux on by, and Fyy, is a flux on pe. Inserting
the definitions of the fluxes, equation (5.4) becomes:

. u,, +u, m?2
ma]:mq = _m(TUDl (utap’D) nch1 + mUFO'Kl < - 2 > + 2Rem qu (uKl - ua)
D1
N u, + u, mf
= 7-7:01(2 = me.Dz (u‘IaPQ) Ny, — m0F0K2 < — 2 ) - 2Rem BO’K2 (uK2 - ua) . (55)
D2
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Ly *

FIGURE 6. A diamond b, of vertices x, 2+, T.+, x, as a union of two semi-diamonds: by of vertices
Ty s Ty, Loy Tpe and by of vertices ay, , Ty, x,, ¥+ . In particular, o = [z, x.] and o3 = [z, 2, ]

The strain rate tensors can be written by using the matrix P as:

2

—m, o™ (Usg,Pp) - Tipe, = M. p (ug, —u,) + oMo (ﬁaKl e Id 4 Bprgr @ Ty ) (W — 1)
2Remy, QRemD1
+ M, PoTioy, » (5.6)
b - m2 Mmooy - _
M,02 (Ug, Do) - oy, = fmp (ug, —u,) — m (B gy * Do [d + o @ Doy ) (U — )

— My PpTigyy - (5.7)

Using (5.6), (5.7) in (5.5), since Mz, = —M, and Z;::; L= gin(la y = ;nlg e , the contributions of the pressure

Dy s D emp

pp and of the velocity uex, u,» on the vertices cancel out. So (5.5) becomes

m?2 u, +u m?2
——P k1 — Us aFoK L = = BUK k1 ~ Yo
Moy, | (U — Uo) +m 1( 2 >+2Rembl (8 — )
m?2 u, +u m>2
=—-——"P ko — Wg) — aFoK =2 z - = Bm( ko — Ug ).
2Rem,, (W = 1o) = Fong ( 2 ) 2Remy, 2 (U — U0)
We group the terms in u, thanks to F,y, = —Fyy,, and we obtain:
2 2 1
ZRemnl (P4 By Id) uy, + TRer o (P 4 By, Id) uy, + §maFm(1 (uy, — uy,)

m2 m2
P + B, 1d) + P + By, Id o .
— (G (P Boad) + 507 (P4 Bl . (55)

By Definition 5.1, equation (5.8) becomes:

1
=M, Foe, (0, — uy,) = Au,. (5.9)

AluKl + A2uK2 + 2

Tt is sufficient to show that this expression is injective; if (us,po) is equal to zero, we are going to show that
u, is zero. This is true because, if (us,pp) vanishes, this means in particular uy, = u,, = 0 and (5.9) becomes
Au, = 0. Since A is definite positive, see Remark 5.2, we deduce u, = 0. O
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It is possible to obtain property (5.1), by adapting the fluxes on the interface.

Proposition 5.4. Letp be a diamond and let p1,p2 be the two semi-diamonds such that o = p; Upg, see Figure 0.
Then there exists a unique flux Foy on o = kq|ka such that

mcr]:m( - ma]:mq = _meUng
given by
~ 2 ~
ma]:ox = _mUUD(u«:,p@) ﬁak —+ m“FaK (uK1 ;’ uKQ) 4+ 21:7:3;% BO’K(uK1 — uKz)) (510)
~  2Rem, 1 2
By = 0 <A1A2 T (mF) Id) Al - p (5.11)
ms 2

Proof. We consider F,y, and we refer the reader to Figure 6: we recall that it is a flux on the semi-diamond p;
of vertices xy, , T+, T+, T,. Thanks to (5.6), it can be written as:

Uy, +u,
meO'Kl - Al(uxl - ua‘) + ma'FO'Kl <K12>

mMeMegx
+ 1
2Rem,,

o _, _ - _
(Mg - Tore Id 4 T pwgx @ T, ) (U — Upx ) + 1M, PpT oy, -

Definition (5.3) of u, ensures (5.4), i.e. m,Fgy, = —M,Fox,- By grouping the terms in u,, and u, in m,Fyy,,
we are thus led to

1 1 1
m,Fox, = (A1 + 2m0F0K11d> u,, + (—A1 + 2maFm(lId> At [AluKl + Asju,, + §maFm(1(uK1 - uKz)}
+ 2Rem[,1 nch1 1 wg* + 1 g & naKl Ugx — Up* mapDnalq

that can be written as:

1 1 1
m,fﬂl = |:(A1 + 2m0F0K11d> —+ <A1 —+ 277?/,,}7171(1Id) A71 (Al —+ 2mﬂF0K11d>:| uKl

1 1
+ <_A1 + 2maFaK11d> ATt (AQ - 2maF0K1) Uy,

me m,,r
+
2Remy,,

—

— — — —
(ncrl(l c T gwgx Id + 1 g X naKl)(uK* - uL*) + mapDnaxl .

According to Remark 5.2, the matrices A and A; commute, for i = 1,2. Hence, we can write

Az

1 —_— 1 .
MeFox, = | A1 + §m”FUK1 Id| (A— A +§m,,FoKlId A7y,

1 1
+ (—Al + 2vamlld) <A2 — 2m0F0K11d> Aty
+ m()‘mUI
2Remy,,

—

. . . .
(k- HomerId + Homgr @ Houy ) (Wer — Wix ) + M Py -

We develop the computations and we find:

2
1
m(r]:m(l = <A1A2 + <2mUFdK> Id) A_l (l,lK1 — uKz)
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m,m, (ﬁ Ao Id + Tgrgr @ Moy, ) (Wer — Wy ) 4 M, Ppiiey, +m, F, u, + Uy,
2Rem’ﬁl srL T et a*K* oK1 K* L* o PpNok,y oL oKy 2
Let By, be the matrix defined in (5.11). We get:
m2 1 2
P BO’K = | AA — UF(TK Id A*l
QRemD( + ) ( 1 2+<2m ) >
Since m, Fy = m,Fypy, = —m, Fpyy, By = gy, and Z 1 Mor (see Fig. 6), we end up with:
Dy mp
2
mgfcﬂ(l = 2RemD (P —+ BO.K> (uKl _ qu)
S (o T T4 e © Fis) (e — ) + 1 poie + 0, Fr (ll;u> .

We remark that now the expression of m,F,y, depends only on the unknowns uy,, Uy,, Ug, Uy=; so it is a flux
defined on the entire diamond o (see Fig. 6). It can be rewritten as:

u, tu mi ~ ~
i 5 K2) SRem. Bo(uy, — uy,) :=m, Foy.

So that we find (5.10). O

ma]:m(l = —m,0 (utapﬁ) N, +m, Fax(

We proceed similarly to obtain (5.2):

Proposition 5.5. Letp be a diamond and let D1, D2 be the two semi-diamonds such thatp = by Ubs, see Figure 6.
Then, for x* € O}, there exists a unique flux For on o* = o} Uos = [zx,, 2] U [2., Tx,] such that

ma*j:v‘a*x* = mUI‘FGIK* + ma;‘FG';K*? (512)
given by
~ N U+ + Up» mf* ~
Forgr = _ma*O'D(llg,pQ) N gx + My« B wps ( K 5 L ) SRerm, B (llx* — lly_*)> (513)
~ M, *
Boer = — 1 Byrye + 3 Bo; .. (5.14)
m._«
Proof. This is a direct consequence of the computation of (5.12). By definition,
2
. U + U= m, ¥
mo’{ ofk* = _maI‘JD (uiapg) 1 e +moi‘ oFKF < : - > 2Rem BG‘ *g* (uK* uL*)7
D _ K> + U~ mf;
Moz Foser = —Mys 0 (U, pp) Tomer + Mz Fois 2Rem,,2 Boger (W —ui).

Since 0* = o} Uos, we have m,~ = m,= +m, and — ot = m—zl By definition, it holds m« F,«c = My Foer +
2 1

Mgy Forgs . So if we take the sum of the two ﬂuxes, we get:
W+ + U, *

D — K L

mo;*foi"x* + m(r;‘FU;K* = —Myx0 (115717@) N xex + mo*Fa*K* <2>

m2. Mo

1 2
BG*K* + Bagx* (ux* - uL*)a
2Remy,, | m,= m

o*

=B g

which ends the proof. O
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5.3. Well-posedness of the limit problem (P)
The expression of the new fluxes Fyy, Fypr permits us to justify the well-posedness of (75)

Theorem 5.6. Under Hypothesis (Hp) for Byy, By, problem (75) is well-posed.

Proof. By Theorem 3.3, we need to verify that Hypothesis (Hp) holds. Since we are supposing it for By, Bory+,
we just need to check it for By, By, the modified fluxes on the interface. As a direct consequence of (5.11)
and (5.14), we have:

BO’K = BO’L7 Bo’*x* = BU*L*-

In fact, if we consider a diamond on the interface between the two subdomains Q1, {25, it can be seen as the one
in Figure 6. For k = k; and L = kg, equation (5.11) reads

-~ = 2Rem, 1 ?
BO'K - Baxl = 'nj;n <A1A2 + <2maFax1> Id) A_l — _P7

2
g(rL = EG‘KQ = 2RemD <A2A1 + <1mD-Fa'K2> Id> Ail — P.

2
m2 2

Observe that A, P do not depend on the index of the subdomain; moreover, we have m,Fy, = —m,Fpy,, s0
that (m, Fyy, )% = (m, Fyy,)? and Ay Ay = AsA; from Remark 5.2. We conclude that By, = Bo,.
For the dual flux, equation (5.14) becomes

~ m,,af ok
Bo’*K* = Ba’fK* + BG‘;K*v
M= o*
~ m, = m, =
B *pk — L B kK + 2 B Hyok,
o*L orL oiL
My ' My 2

Thanks to (Hp), we have By = Bosi» and By = Bozix. So we get Byegr = Byep.
We are left with the task of proving that Emﬁégw are semi-definite positive. If i, = (‘;), then P =

1+ 22 Ty

Id+naK®naK:( Ty 1+y2

). Let us introduce the quantities

den = 4m? (2 + 3B, + BZ,)

and
a = (myReF,)*(1 4+ Byy) + 8m2 By, + 12m2 B2, + 4m?2B3..

Coming back to (5.11), we have

5 1 o (¥ —wy

By = Jon [aId + (myReFy) (—xy 22 .
Let v = <U1); then:
V2

~ 1 sReF,)?
(Boxv,v) = @a@,v} + % (y%% — 2zyvivg + x%%)
1 myReF,,)?
= —alv||* + g (yv1 — xvg)2 > 0.

den den

thanks to Hypothesis (Hp) on By, that ensures a > 0 and den > 0. So Em( is semi-definite positive.
For what concerns the dual flux, by (5.14) we obtain directly that By« is semi-definite positive since it is
the sum of the two semi-definite positive matrices By« and Bogy-. O



1298 T. GOUDON ET AL.

Further comments on problem (P) can be found in [25].

5.4. Identification of the limit

In order to prove the convergence of the Schwarz algorithm towards the solution of (P), it is necessary to
project this solution, that is defined on §2, on the subdomains §2;, j =1,2.
Theorem 5.7. Let T be the composite mesh T = T3 U Ty and (us,pon) be the solution of the DDFV scheme
5] . - . . . oo 00 [eS) oo 00 2\%j D
(P) on the domain Q. For j € {1,2}, there exists a projection (ufzj,pgj,\llzj,hij,ggj) € (]R ) x R®i x

(B2)775r 5 (B2)™ x R®5 of (ue,po), such that:
T [e'e] o0 o0 — o0 00 ~oo
Ly r (ufzjapsaja\I/gj,fzj,u;cj,hzﬁggj) =0. (P)

Proof. On the primal cells 9t; U 09 pir and on the dual cells i)ﬁ; U oMt

* pir YO 1 we can simply define the
values of u%’; as the values of ux:

— for all x € 9M; and x* € MT U IM 1, we set ur = u and U = Uy,
’ J
for all x € 09, pir and x* € GSJT;T,DH, we set uKof =0 and uf;? =0.
— for all o € @, such that z, ¢ I', we set P, = Po.
— for all p € ©; such that z, € I', p; € ’D? and p; € DY, we set Pp; = Pp, = Pp-

We then need to introduce new unknowns near the boundary I':
— for all L € 09, we impose (see Prop. 5.3):

1

QTnaF[,.Kl (uKJ. — uKi) , (5.15)

L Lj Lj

WP =u®=u® =41 |:Ajqu + Aiuxi +

— for all k* € M* such that z € T, x* =k Ux; with k; € O] 1, we impose:

o0 —

0 0 U 1 0 e My Oy
L B e ) - £ + 7
J * Moonoxs Ot Moo nox* 7 Maqnox* Moonoxs Ot

DEDK’.‘
3

— forallL =1; € 99 and for all k* € M* such that z« € I', x* = x; Ux; with x; € 00 1, k7 € OMT 1, we

impose:
1
1

h%" = \Ilfo — §HK;« uf" + )\uf;f,
— for all p € © such that x, € I', p; € CDE and p; € D{, we set
957 = — (mp,div™ (ug) — By, dy. AP ps) + amy, pe.
Consequence on the equations
We now show that from a solution (ux, pp) of the DDFV scheme (P) we built a solution to (P>):
- Vk € M, (us,po) satisfies:

Uy

My % + Z myFox + Z mafﬂ = m,f, + m, 5t

DEDK\ DY DEDL
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If we look at the composite mesh (see Fig. 4), we remark that the primal cells k € 9t correspond to k; € M

(or to k;, € M;). This implies that m, = My, Mk = fK f(z)da = my, £, and my % = my, %.

Moreover, for a diamond » € D, \ D!, remark that the limit unknowns ufj, uy, pgj on ¥, for j = 1,2 coincide
J

with u, ue,pp on T; so if

oo

we +u 2

fDO _ D [e’s) 0 — F K3 Lj m, B [e%s) [e%s}
m, oKj —m,o u‘Ij7p©j naKj + My 1L o 2 + QRem OK qu - uLj )
D

we have:

Z ma]:m( = Z mc,]:gfj.

DEDK\ DL DEDy \ Dy

For a diamond o € D!, if

(e'e} D 00 o0 = ul(‘)jo + u’?o mi [e’e} [e’e)
Mo Foe, = =m0 (Ug Py, ) Tog; +m, Fo 5 + TRom By, (0 —u® ),
D

thanks to the choice (5.15) of u® for all . € 99, r and thanks to Proposition 5.4, we have

mo]:m( = mg]_-oo

oKj )

that implies:

Z My Fog = Z meFo-

DEDL peDL.
J

So in the end (u%‘; ,p%oj, \Il%‘;) satisfies:

u’?;) 00 ﬁKj
My =D mFoy = m b fmg 2, Y €O (5.16)
DE@KJ-
Ve € M*, (ug, po) satisfies:
Uy ~ .
s 5t + Z Mys Forgr + Z Mgr Forgr = mK"fK" & My W (517)
DED* \i);* DeZ)KF*

We need to distinguish two cases.
(1) If Ox* N T = B, equation (5.17) reduces to:

Uy

ot

Ug*

ot

MMy

+ E Mg Fgrge = Mygr b + Mg
DED

and the cells k* € 9* correspond to k; € M (or to k; € MF). This implies that me = My, My Fr =
G 1_1K>_r
Jg- f(z)dx = s f,q, My = = My - and m,« = M.
Moreover, for a diamond b € D, \ DL, (that is the case here since we are supposing 9x* NT" = (}) remark
that the limit unknowns ufjo, uf_?,pgj on T, for j = 1,2 coincide with u,, ue,pp on . So if
J

b ux +u¥y m2
m*.F**———man(u ) ,)n*K*—l—m»fFofK* + Bgfk*(u*—u*)
o Uj K o'j ‘IJ 9 ZDJ o a] P 2 2Re o P Kj bl
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we have:

(oo}
g Mys Forgs = E m(,*]-'g;,(*.

DED DEDyx
3

So (u%i ,p%oj , \P%‘j) satisfies on the interior dual mesh:

uXy Uy
M 5; + Z ma}"g;x* = my B + e 5—;, Vk; € M. (5.18)

DED
J

If Ox* N T # B, the cell k* can be written as the union of x; € OM - and k. € 99 . This implies
that me = Mg + Mg, Moe = Mox + Myr, Mefe = [ f(2)de = mefe + mefe and me 35 =
i J i it

ﬁK’f ﬁK*

J i
x5 +m1‘{‘ 5t -

Moreover, for a diamond b € D, \ DL, remark that the limit unknowns u;’jo, ux, pgj on T; for j =1,2
J

coincide with uy, ug, pp on €. So if

5 ux + uy m2
Mo F v = —M 50 (u°°_ OO,) e + Mgx Fprys 2 = | 4+ e By (uo*<> — u°f)
a']K ijapD] K O'jK 2 2R€77’LD G’JK Kj Lj 9
and
uy +uX¥ 2
oo _ D; oo .00\ = . Ky Ly m; . 0o _ .00
Mor e = =My 0% (UF,PF,) Bomer + Me oo ( 2 " 2Rem,, Bope (0 — w7 ),
we have:
(o ] (o o)
E M* S grgx — E m(,;]:o;](* + E mo.;‘.FUsz.
DEDy= \911;* DEDyx \D;‘* DEDyx \9;‘*
J j B i
For a diamond o € DL, thanks to (5.12), we have
Myr Fgrge = majfgi’;(* + My F %o
;o Vo
that implies:
— o0 (o'}
E mo‘*‘FO'*K* = E m(,;]:g;}(* + E m(,;«‘Fo.:K*.
r r r
peDL, De@Kj* DED
We deduce from (5.17):
oo — —
% i S e P+ S m FE £ £ % s
Myx —— + Myx —— + MoxJ 5« + Myx 5 = Myelir + My Lix + My —— + My ——-
ot 5ot i 95" i 7iK N i ot 5ot
DED = DEDyx
J i
By definition, U2 satisfies:
o _
Mgx U 1 Mx Mg Uy»
;?:7\:[!?:, i 51 _ mg: ;X;K*+ i fo“” 1 617
* J Mognoxs 0T Moanox* b ' v Moonox* Magnoxs O
€Dy
. 00 )00 0 | aatiefoa e
SO (u‘zj,pgj , ‘I/‘z]) satisfies on the boundary dual mesh:
ul??? ﬁK’.‘
J (o o] oo J * *
ij* W + E mo;]:o.;l(* + Maanox* \IIK; = mK; fKak + mK;‘ W, VKj S 69)2]*,1—*. (519)

De@x’f
bl
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— Vk € M, with Ok NT # (), if we look at the composite mesh, the diamond o € D! can be written as the union

of p; € @F and p; € ’DF By definition, we have F,, = —Fg,; moreover, thanks to the choice (5.15) of u>®
forall L € 893@ r and thanks to Proposition 5.4, we "have meFoo = —m,F .
From the definition of h, we get the relation:
1 1
h .Fgfl §F0'K1-ULOO + )\'llL j’_’OO + 2FUK]11 + )\u

So (u%oj , p%’j , \Il%oj ) satisfies:

1 1
Fo5 = 5P 4 M = — T35 4 5 Fo 0 4 A0, (5.20)

- Vkr € M, with dx* NT # 0, the cell x* can be written as the union of x; € 99} 1 and k, € IM; .. By
definition, we have HK; = —H: and V¥ = —\III‘(’?. This leads, from the definition of h¥’, to the relation:

1
hffj:\llff—iHK_*uK +/\u*——\I/°°+2H u +/\u

So (u%‘j , p%oj , \I@‘j) satisfies:

1 1
Uy — —Heul +Auy = -7 + —He-ul + Auy. (5.21)
P ; PR ;

— for allp € D, (ug,pop) satisfies:
mpdiv®(ug) — fmyd2APpy = 0, Yo eD. (5.22)

We need to distinguish two cases:
(1) IfoNI = 0, the diamond b coincides with a diamond p; € ®; (or with a diamond p; € ®;). For a diamond
p € D\ D', remark that the limit unknowns u’, ur, ppo on %, for j = 1,2 coincide with uy, ue, pp on
J

%. Thus we can directly deduce that (u%cj,p%’j , \IL%‘?) satisfies Vb; € D, \’Dg:

my, div® (u%ﬁ) — By, dgj AD"pgf =0. (5.23)

(2) If oNT # 0, the diamond b can be written as the union of o; € D% and p; € D} . This implies that the
divergence can be split as: m,div’(us) = My, divP (u%‘;) + My, divP (u%o) From (5.22), the choice of
unknowns pg’ and from the definition of 9o, we obtain:

gﬁf =— (muidivDi (u%o) — ﬁmnidgi AD"pSf)—i—amDipgf = (ij div® (u%i) — By, dgj ADjpgj)+aijp§f,

that implies for (u%j_,p%oj,\ll%i) that Vp; € @?:

— (M, div® (u) — By, g, AP ps) + amy, pe
= (mnj div® (u%j) — Bm,, dgj ADjpgj) + am,, pp; . (5.24)

To recapitulate, equations (5.16), (5.18)—(5.20), (5.21), (5.23), (5.24) show that (u%}p%c7 , \If%;) is a solution to
(P>). O
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5.5. Convergence of the DDFV Schwarz algorithm towards (73)

Theorem 5.8 (Convergence of the discrete Schwarz algorithm). Under the hypothesis that m,« = 2m - = 2m,,«
fori,j =1,2, i # j, the iterates of the Schwarz algorithm (S1) and (S2) converge as l tends to infinity to the
solution of the DDFV scheme (P) (up to a constant for the pressure).

The relation imposed on the m,«’s — which also appears in Theorem 6.1 below — is not a restriction in
practice. Given a mesh of the entire domain and the interface I', we can adjust the centers z, neighboring the
interface so that the condition is fulfilled. It ensures that the diamonds of the global mesh are split into two
half-diamonds with equal area, see Figure 4. All meshes used for the simulations satisfy this condition.

Proof. The iterates of (S1) and (Sz) satisfy:

T l l l — -1 1-1
[’Q;)F (u‘IprDja\I/ZjafTau(zjah‘}j, 79@]- ) = 07

J

and (u%‘; T, p%o), constructed from the solution of (P) is solution to:

T 00 .00 ) — 0o 00
‘Cﬂjv,l" (ugj,p@j7\Ilgj7f§j,llgj,hgj7g@j) = 0.

We define the errors

l l l l 1 !
ey, =ug —ug, P =¥ —VF, Iy =py —p3,- (5.25)
By linearity, they satisfy:
T — 1—
’CQ;,F (eli_,» ’ Hl@_,»a (I)glj ) Oa Oa H‘S,'Jl’ G©J1) = 0’ (526)
with
1
H' = 7ol = gFoe 4 e, Vi =1 € 0Ny
1
Hll(:l = @igl — iHKI‘ ei;l + )\eigl, Vk; € OO - such that Ty = Ty
G]l)j_1 =— (mni div® (efil) — ﬁmDidgi ADin):l) + amy, Hé:l Vo, € @? such that zp; = mp,.

To prove the convergence of the iterates of Schwarz algorithm, it is sufficient to prove the convergence to 0 of
the solution of (5.26). In the expanded form, equation (5.26) is written as:

!
e,
1 _
my <L+ > m,FlL, =0 Vi, € M;
DEDk
!
e,
j 1 _ . *
M = +De§©: My Fhepe =0 Vi; € M
"
l
e 1 ! . «
e 5t + Z mU*Fg;K* —|—m9maK*<I>K; =0 Vk; € O ¢

DED

1
_]:(lrxj + §Faxj e,l_j + )\eij = Hl__1 Yo € 893’9"{*
1
—®l, + ZHe el + Xel, = HIZD wkr e OM* -
520 5 3 7,

g, div® (egj) — By, d3 AV, =0 Vb, € D;\ D)

- D l 2 iTT! l l— r
ma,div® (el ) = Bmy, a3 AP, -+ am,, Ty = Gl Vo, € DT
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Thanks to the hypothesis m,« = 2m,» = 2m,~, we have m,, = m,,; so, in the equation on p; € @g, we can
i J
simplify the measures and it becomes:

div® (e, ) = a3 AP, + allh, = — (div™ (e;') — AdZ, AP TIE) + allj .

We multiply the equations by elg]_ and we sum over all the control volumes, as in the proof of Theorem 4.4. We
obtain, analogously to (4.3), the following;:

1 l 2 2 D, 1 2 1 c D 1
gl B+ g IID el 1 = (M, aiv® (e )
1 1 1
1Y m, (ff,xj - 2Fl) T (qj* e ;> o
D€©£ K" €oms .
1 m? 1 m2.
+ 9 Z mBadex[«j - eﬁj |2 + 5 Z MBJ*K* ‘ei; — ei*j |2 =0. (5.27)
DED; p
>0

By the equations on @5, we can split the scalar product into interior diamonds 2 \@5 and boundary diamonds
r.
D;:
L 3095 (ol U 305 (Al U oD (ol ).
— (H@j,dlv J (e%))g =— Z my, Ly div' (egj) — Z my, L div' (egj) ;
’ D,€D;\D ;€D

for the diamonds p; € ©; \@5 we apply the equation of conservation of mass, for the diamonds o; € @g we add
and subtract the term }°, o 1y, 5d[2)j ADPi Hl}gjF : HfD?:

- (Hl@j,diV@j (elsj))g_ =—6 D e AP TIge Mge =B Y o, dy A%l - Tlr
! D;ED;\D] D,eD
= >0 T, (div® (e, ) — B3 AT ).

. T
D,€D!

We apply (2.1) to the term —/j ZD7€©j my, dgj ADi Hé—)r . Hl@r =-p (d%j AP Hl@j , Hl@j); we then multiply and

divide ZDJ_EQF_ My, H,l)j (diVDJ (elgj) - ﬂdgj ADi Héaf) by « to finally obtain:
J J
| 1 o, |
— (M, aiv® (o)) =8Iy 2=~ 3 myaty (div (e ) - gd3 AP, ).
D (% DjE’Dr J
So (5.27) becomes:
Lod vz, 2 imosal (12 o2 1 U505 (L 2 AD; T
Sl I3+ - lID% ek I3+ 81y 2 = = 3~ my,alth, (div™ (e, ) — B3 AP I, )
Dje’i)_‘;

1 1 1 l l 1 l 1 l l
+5x > m, (fﬂj -5 mjeLj) Ael, + o > Monnore (cpk; — 5 Hgel: | A <0, (5.28)

r « *
DED; K* €M} 1

where we multiplied and divided by A > 0 the terms on the second line.
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We start by considering iZDez)F m, (ffﬂ] Foneﬁj) . )\eﬁj. By applying now the equality —ab
J

1 ((ma+b)? = (a+b)?) we can write:

1 1 1
1 l o+ L 1 12
_ E (7—“ =y o eLJ_) .)\eLj =1 E m, | F. I~ FUKjeLj + /\eLj\

O'KJ 2
DEZ)? De:DF
[ 2
- = E JK7+ FgKe + e, \
De’DF
-1
:HLj

Owing to the transmission conditions it becomes:

1 1 1
/—_'l l 2
- § : mff( oK; 2F<7K] LJ> e, = 4 E a| ox; 2FgK]e +Ae ‘

DEDJF. DG@F
1
1— 1 -1 1—-12
—_ = Z f 2F0KieLi )\eLi ‘ N
DeDF

Pl — lHKg‘elﬂ*) - Ael., we obtain:
H 3

1
Equivalently for 55 > i+ coom+  Moanox T2
1 1 1
l l l l l 12
— E Moonox* (I)K,_F — —Hy~ €, ')\er = - g Moqnax* q)xf — 5 Hy» € + /\eK?‘
J 2 J J J 4 J 2 J J J
K*€omy K" €om .
1 1
-1 -1 1-1)2
- Z g Moanox* (bk_* - §HKJ* €u )\er | :
K*€omy

If now we consider m,, o IT (divDJ ( ) ﬁd2 APITTL ), thanks to the presence of the parameter « in the

transmission conditions for the incompressibility constralnt, we can treat it as the previous terms. In fact, with

the equality —ab = 1 ((—a + b)? — (a + b)?), we can write:

1
> moally, (div® (e, ) - a3 AM I ) = 7 37 my, |div® (ek, ) — 57, AP Ty — a1 |

a o j = Dy . :
D,;€DY DEDT
1

Dy (Al 2 AD;TT! 12
~1 g my, | div™ (egj) — Bdy, A JHQJp +ally |*

DeDT

=t Gyt
o g

The hypothesis m,« = 2m,« = 2m,~ implies m,, = m,,, so that this expression becomes
J

D, | 1 b,
> ma,atth (v (e, ) - Ba3 APy ) = 5 D7 my [div® (ek, ) — Bd3 AV ITGe — aTH) |

D;€DY DEDY
D, 11 2 AD;Tl—1 1-12
- - E my, |div® (e ) Bdp, A H,DirfaHDi |-
DGCDF

Replacing those results into (5.28), we have:
1 2 o
ek I3+ e Dk 13 + 51T, P
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1 . D, .
+ o Z my|div®s (e%j) — ﬁdgj AP Hl@f — ozH,l)j|2

DeDY
1 . D, _ R —
I Z my|div®s (elgil) — ﬂdgiAmeD{l - aH]l)i 12
DeDY
+ S m,|FL }F e —|—)\el |2 — m,|Fit — fF elml 4 el 12
8)\ oK 2 OKj 8)\ OK; OKj “~Ly Lj
DeDl DD’

1 l l 1 -1 1 -1 1-12
q)K* — §HK;BK; + )\eK;F 2 _ 87 Z Moanox* \@K: — §HKJ* eK; + )\eK; | < 0.

E Maanox*

K" €om; |, K" €OM
Summing over [ = 0,...,lnhax and j = 1,2 we obtain:
I!ldx ]!ldx 9 max
D BRIENCED b SEATSHNIES 3B oIty
1=0 j=1,2 10112 1=0 j=1,2
+7 D07 muldiv (o) — Ay, A% g — Tl ?
] 1.2peDY !
+ 7 Z Z mﬂ‘f‘lmmx _ FO_K] emex _|_ Ae m'}x|2
] L.2pe®T

l
manmax*q) max __ 7HK*e max | )\ell(y*nax |2
J

+ oy Z Z Moonax*

] 1,2K* €om |

1
=30 mafdiv® (e%,) — B, >A> Ty, — aIg |

J=1,2peD¥

+— Z Z AFD,, Fax,eL +Aep 2

1 1
+ o ‘Z Z [mannoe B — 5 H el + Aej:
J=1,2K"€0M

that shows how the total energy stays bounded as the iteration index lna.x goes to infinity. The series
Yo D12 %He%j”% and >,°, dj—128 |l’[l®j|2 converge, so their general term tends to zero, that implies
the convergence to zero of the errors ||efzj 13, |Hé3j |2, defined in (5.25). Thus the algorithm converges.

The limit is the solution of problem (73), that is problem (P) with an appropriate choice of the flux on I'; in
fact, we can deduce that, as l,.x goes to infinity:

- ||elgj |2 tends to zero implies u%j —ug for j=1,2.

- |1_I£Dj|2 tends to zero implies (since | - | is a semi-norm): pl@j + const!(Q;) — p3, for j = 1,2. Thus the
pressure converges up to a constant that depends on the subdomain. In some cases we are able to determine
const! ().

O

Remark 5.9. We can determine the constant const’ () if we suppose that the mesh satisfies the Inf-Sup
inequality [5]. In fact, this implies that the norm ||Hé3j —-m (H%j) |2 < CHe%j |l = 0 holds as I — oo, where
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m (I ) = & m,I1®3. This means that [[pt, —p% — (m (ph ) —m (pZ 9 — 0, from which we
D ;] £-DED D D D; D;
j j J 3j

const! ()

deduce that p%j —-m (pfgj) — p%"j -m (p%"j) for j =1,2.

6. A MODIFIED DDFV SCHWARZ ALGORITHM

We now investigate whether it is possible to construct a discrete Schwarz algorithm with modified fluxes that
converges to the solution of (P). We show that this is possible if we suppose an asymmetric discretization of
(1.1), in the sense that we need to consider an upwind discretization of the convection term on the primal mesh
and a centered scheme on the dual mesh, that corresponds to the choice

Bou(s) = %|s| and  Byer(s) = 0
in (P). We remind the reader that the convergence to (P) holds if and only if both (5.11) and (5.14) hold, which
can be seen as a definition of EUK (resp. EU*K*) as a function of By, , Box, (resp. By, ngK*). The idea is to
modify the Schwarz algorithm, so that it converges to the solution of (P); this relies on the ability to invert
these relations. Accordingly, the fluxes of the limit equation depend only on By, By++ and a different definition
of the fluxes is not required on the interface I'.

Theorem 6.1. Let (us,pon) be a solution of (P) for convective flures defined by a constant upwind flux Byy(s) =
Lls| for all o € €, and by the centered flur By« (s) = 0 for all o* € E*. Define (S) the Schwarz algorithm
where

— On the primal mesh, the discrete convective fluzes are defined as:
By (s)Id if o ¢ ér, By(s) if o€ é&r,

with:
_ 1 (1s|—2+42/1+ 4] 0 )
Bm( =5 y 6.1
(s)=3@ ( 0 s =1+ T2 ¢ (6.1)

and Q = z —yx> , where M, = (Z) is the outward normal to the interface I'.
— On the dual mesh, By« (s) = 0.

Assuming m,« = 2m,» = 2m,», for j,i = 1,2, j # 1, equation (P) is the limit of the Schwarz algorithm (S).
i i

Proof. The assumption m,~ = 2m,- = 2m,- implies that m,, = m,, = %mb and By, = By, = By This
; i
means that )

m
A=Ay = e (P + Bl
! 2 RemD( + Bodd)

and
2

P
A=Ay + Ay = —22 (P + B,,Id) = 24; = 24,.
Rem,

D

Moreover, A™1 = % (P+ BUKId)_l. Therefore, we get

2

-~ 2Rem, [1 1

B, = 2Bem (s (L p Y 1a)atop
m?2 4 2
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Expanding this expression, we get:

2
B - <Rem,,> A4 2Rem, (;maFaK) A-1_p

2m?2 m2
- -

Rem, \? /1 2
= P+ B, lId + ( 2D> <m0F0K> (P+BJKId)71 —P.
m 2

o

Mo

2
by using the definition of A and A~'. Let us set s = 2™ 7 We have (%) (%mgFax)z = %82’ so we end
up with:

~ 1

By = By dd + Z52(13 + B, d)™ L

If we make explicit the dependences of By, By« as a function of s, since By, is a function of ™R and B,,
Mo
a function of LZ;’RG F_., we are led to

~ 1 _
B,(25) = By(s)Id + 152 (P + Bo(s)Id)™", forl=1,2.

We can rewrite this condition as: B
By = T(Boy)-
This relation implies that the Schwarz algorithm (S;) and (S2), whose convection fluxes depend on By, converges

towards the solution of (P), whose convection fluxes depend on B, for o € &r.
We want to build a new Schwarz algorithm (S) that converges toward (P), whose fluxes are defined by Boy;
so we need to build B,, such that:

BUK = T(Bak)a

where B, can be a full matrix. Since our goal is to converge towards the fluxes that define an upwind scheme,
i.e. defined by B(s) = 3|s|, B is actually a diagonal matrix, that will be denoted by BeId to make its matrix
nature clear.

Thus we need to invert the function T defined above to find the new coefficients B,,. The inverse of T does
not exist for every Bgyy. Given s and By (2s), we have a second-degree equation for B, (s):

_ _ 1
Bou(s)? + Bun(s) (P = Bou(25)1d) + 151 — P B (25)1d = (g 8) ,
—_———

v

that is: - -
B(8)? + B(s)T +V =0.
Since the matrices T,V are symmetric and they commute (because they are polynomials in P), they can be
€ Y

y is an orthogonal matrix, and we

diagonalized using the same basis of eigenvectors. The matrix @ =

can write: _ _
T=QTQ ", V=QVQ"

with T and V' diagonal matrices, whose expressions are:

~ _ (2— By 0 = (1s?—2B,, 0
= () (T )

We then look for B,,(s) of the form B,,(s) = QM Q~!, with M a diagonal matrix such that

M2+ MT+V=0.
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Since we are supposing By(s) = %|s|, the solution exists and is given by

le |s| —2+42y/1+ |s 0 7
2 0 Is| — 1+ 1+ 23]

that leads to our result (6.1).
For what concerns property (5.14), we would like to define a unique B+~ (s*) for o* € £* in the limit scheme

Remp, )
(P). With the assumption m,« = 2m,x = 2m,, we can define s* = I}HE—T:’F,,*K* and s} = n; FJ;K* for j =1,2:

mg
J
remark that there is no relation between the s;. We have s* = 5; + s}, since mﬁfFa;K* + Mg Forgr = mos«F s,
7 i i
This leads to the new expression for (5.14):

Boe (55 +57) = 5 (Bowi= (5]) + Boeie (s7)) -

DO =

This is true only if By« = Bo++ = 0; in this way, property (5.13) is verified. So the dual flux for the algorithm

(S) and for the limit (P) correspond to a centered discretization of the convection flux on the dual mesh.

The Schwarz algorithm (S) is well posed, since (Hp) is verified by its fluxes, and it converges towards (P)
with the choice of Boy(s) = 35| for all o € € and By« (s) =0 for all 0* € €. O

7. NUMERICAL RESULTS
In this section, the objectives are the following:

— to show and compare the convergence properties of the Schwarz algorithms (S;) and (Sz) (presented in
Sect. 4.3)) and (S) (presented in Sect. 6);
— to study on numerical grounds the influence of the parameters A, o, 8 of (1.2) on the convergence;

— to further validate the method with the simulation of a benchmark of a flow past an obstacle.

We will refer to (S1) and (Sz2) as “first Schwarz algorithm”, and to (S) as “second Schwarz algorithm”. We recall
that the difference between the two algorithms relies in the definition of the fluxes at the interface; the former
converges towards the solution of (P) (see Thm. 5.8), the latter towards the solution of (P) (see Thm. 6.1).
For the first Schwarz algorithm, in all the following test cases, we will consider an upwind discretization of the
convection flux, i.e. we set B(s) = 1|s|.

The scheme needs the resolution of large linear systems; for the simulations discussed below, the linear systems

— possibly non symmetric due to the interface — are treated by a direct method, appealing to Umfpack libraries.

7.1. Numerical study of the convergence

We recall that the domain decomposition algorithm is an iterative algorithm that is employed at each time
step; this, in particular, implies that at each iteration of the Schwarz algorithm we solve a steady problem. In
the following tests, we fix the time step (6t = 107%), and we apply the iterative method on the time interval
[0, 6t]. The time step is voluntarily picked quite small here in order to focus the discussion on the spacial error
and the effects of the interface; its influence is also discussed below (see Fig. 14). In all the test cases, the domain
0 =[-1,1] x[0,1] will be divided into two subdomains £ = Q UQs. The meshes we will consider are illustrated,
in their first level of refinement, in Figure 7. The subscript in the name of the mesh (see Fig. 7) denotes the level
of refinement, i.e. Mesh} represents the coarse mesh of a family of refined meshes (Mesh¥),,. More precisely,
Mesh” is obtained by dividing by two all the edges of Mesh® ;. We consider the following exact solution to
(1.1):



NON OVERLAPPING SCHWARZ ALGORITHMS WITH DDFV DISCRETIZATIONS 1309

(c)

FIGURE 7. Coarse level of refinement of the composite meshes on €, Meshf. (a) Meshi. (b)
Mesh?. (c) Meshj.

Test 1: (r2) sin(219) ( 2)
_( —2m cos(mx) sin(2my) exp(—o5ntm=),
u(z,y,t) = ( 7 sin(mz) cos(2my) exp(—bntr?) ) ’
2
p(z,y,t) = —%(4 cos(2mx) + cos(4my)) exp(—10tnm?).

The algorithms, in all the following simulations, are initialized with initial random guesses h%j and g%j for
j =1,2. As a stopping criterion, we impose:

mas (el 2. [, 1) < 107,

where the errors are defined in (5.25).

7.1.1. Error on the interface

In this first test case, we consider the first Schwarz algorithm; our goal is to point out that the error computed
with respect to the solution of (P), along the iterations of the algorithm, stays localized at the interface between
the two subdomains.

The domain € is meshed with Mesh$, we fix the parameters A = 100, = 1, 3 = 10~2. Since the initialization
assigns random values, the initial error is [[u2 — ug||o = 100. for both primal and dual mesh.

As we pass to the 1st iteration, we observe in Figure 8 how it immediately locates on the interface between
the subdomains; it decreases, passing from 100 to 1.9 on the primal mesh and to 6.9 on the dual mesh. Already
at the 10th iteration we see in Figure 9 how it has diminished, staying localized on the interface, passing from
1.9 to 0.52 on the primal mesh and from to 6.9 to 0.05 on the dual mesh.

7.1.2. Study of the parameters

In this section our goal is to study the influence of the parameters A, «, 8 and of the mesh on the convergence
of the first and second Schwarz algorithms. We recall that § is associated to the Brezzi—Pitkaranta stabilization
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FIGURE 8. Error ul — uz at the 1st iteration. Left: primal mesh, |ul; — |l = 1.9. Right:
dual mesh, |[ufy. oo — Um-usm-|lso = 6.9.

FIGURE 9. Error uf’ —ug at the 10th iteration. Left: primal mesh, ||u; —um| s = 0.52. Right:
dual mesh, |[udy. oo — Um-usm+ |0 = 0.05.
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FIGURE 10. Test 1, Meshi, first Schwarz algorithm. Left: optimization of A\, with a = 1,
B = 1072. Right: optimization of o, with A = 100, 8 = 1072.

(see Sect. 2.6) while the parameters A and « are associated to the transmission conditions between subdomains.
In each test case we fix all parameters, but one. First, the value of § associated to the stabilization is set to
10~2. In Figures 10 and 11 we represent on the z-axis the number of iterations, on the y-axis the error.

We start by considering the first Schwarz algorithm; we can observe in Figure 10 the convergence of the
algorithm to the solution of Test 1 on Mesh].
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FIGURE 11. Test 1, Mesh}, second Schwarz algorithm. Left: optimization of A, with o = 1,
B = 1072, Right: optimization of o, with A\ = 100, 3 = 1072.
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FIGURE 12. Test 1, (Meshl ),,, m = 1,2,3,4. Left: optimization of A to obtain an error of
order 107°, with o = 1,8 = 10~'. Right: optimization of o to obtain an error of order 1075,
with A = 100, 8 = 10~L.
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In particular, on the left of Figure 10, « is fixed to 1, and we observe how, as A increases, the number of
iterations necessary to converge decreases until A = 200; past this critical value, the number of iterations starts
to increase again. This suggests that on Meshi, for « = 1 and 8 = 1072, A = 200 is a good choice to have a
better convergence. On the right of Figure 10, we set A = 100 and we let « vary: we observe the same kind
of behavior as the one of \. We consider now the second Schwarz algorithm on the same test case, i.e. Test 1
on Meshl. We show its convergence in Figure 11. This indicates that on Mesh}, for A = 100 and 8 = 1072,
a = 0.25 is a good choice to have a better convergence.

We remark that the second Schwarz algorithm behaves similarly to the first one, if we compare Figures 10
and 11; thus, both algorithms converge and the speed of convergence is influenced by the choice of A or «, once
fixed the value of 5 and the mesh. Since the parameters have the same behavior and the number of iterations
necessary to the convergence is almost identical between the two algorithms, from now on we will only focus on

the first one.
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FIGURE 13. Test 1, (Mesh?)),,, m = 1,2,3. Left: optimization of A to obtain an error of order
107%, with o = 1,3 = 10~!. Right: Summary table of the optimal values of \.
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FIGURE 14. Left: Testl, optimization of A for different time steps to obtain an error of order
1075, a =1 and 8 = 10~!. Right: summary table of the optimal values of .

In the following, in Figures 12—16 we represent on the z-axis the value of the parameter under study, and on
the y-axis the number of iterations.

In the first test case of Figure 12, our goal is to show how the level of refinement of the mesh can influence
the choice of the optimal parameter; we consider Test 1 on the family (Mesh? ),,, m = 1,2,3,4. As before, we
set the value of 3, we fix one of the two parameters between \ and « and we let the other vary; we represent on
the z-axis the value of the parameter that changes, on the y-axis the number of iterations required to obtain
an error of order 1075,

As illustrated in Figure 12 and summarized in Table 1, we observe different results for the two parameters;
the mesh refinement has an impact on A but not really on «. The mesh size h is divided by two at each level of
refinement, and we see that it has an influence on the value of \; unfortunately, we can not conclude by defining
a relation between the two.

In Figure 13 (left) and Table 2 we want to confirm the results obtained for A on Figure 12 (left) and Table 1,
by considering the same test case (Test 1) on a different family of meshes, (Mesh3 ),,,, m = 1,2,3,4. As before,
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FIGURE 15. Test 1, Mesh$. Left: optimization of A with different values of 3 on Mesh$; o = 1.
Right: summary table of the optimal values of .
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FIGURE 16. Left: Testl, optimization of X for different meshes to obtain an error of order 1079,
a=1and B =10"1. Right: summary table of the optimal values of \.

TABLE 1. Test 1 on (Meshl ),,, m = 1,2,3. First line: optimal value of A for « = 1,3 = 10~1.
Second line: optimal value of a for A = 100, 8 = 1071,

Meshi Meshd Mesh! Mesh}

A 15236 293.36  404.63 929.36
a 0.5 0.5 0.5 0.6

A is influenced by the mesh discretization step but we can not conclude by defining a relation between the two;
moreover, we remark that its optimal values change with respect to Table 1, due to the different meshes.

In Figure 14 (left) and Table 3 we want to point out that also the choice of the time step influences the
optimal ). In fact, we can see that for a bigger 6t (such as 6t = 1072), the optimal X is smaller (A = 21.18),
and the more the §t decreases, the bigger becomes the value of A.
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TABLE 2. Test 1 on (Mesh?)),,,, m = 1,2,3,4. Optimal value of \ for « = 1,3 = 10"1.

Mesh? Mesh3 Mesh3 Mesh3
A 122 253.27 384.45 667.51

TABLE 3. Test 1. Optimal value of A for o = 1, 3 = 10~! with different time steps.

St=10"% 6t=10"* St=5x10"* st=10"°
A 21.18 146.2 212.9 515.63

TABLE 4. Test 1 on Mesh?. Optimal value of A and the number of iterations for different values
of B and for o = 1.

8 1074 1072 107t 1
A 436.81 122 122 25.2
# iter 818 53 40 246

TABLE 5. Test 1. Optimal value of A for & = 1,8 = 10! on different meshes.

Meshl Mesh? Mesh? Cartesian
A 146.2 154.3 130.1 105.91

In Figure 15 and in Table 4 we study the influence of the parameter 3, associated to the Brezzi—Pitkéranta
stabilization. We see how the choice of this parameter affects the convergence of the algorithm and how it affects
the optimal value of \: we pass from 818 iterations with A\ = 436.81 (for 8 = 10~%) to 40 iterations with A\ = 122
(for B =1071). There is then an optimal choice even for this parameter.

As last simulation, on Figure 16 and Table 5 we compare the optimal values of A\ for Test 1 on different
meshes. We see that even the choice of the mesh influences the optimal choice of the parameter: for a Cartesian
mesh, A = 105.91 while for Mesh? \ = 154.3.

For every test case, we have observed that the following four parameters — the parameters A and « associated
to the transmission conditions, the parameter § of the Brezzi—Pitkdranta stabilization and the mesh choice
(its geometry and its level of refinement) — impact the convergence of the algorithm. Considering three of
these parameters as fixed, it is possible to optimize the remaining one in order to reach a faster convergence.
This preliminary study also confirms the high interdependence between the parameters: a conclusion can be
substantially changed by modifying the conditions, like the geometry of the mesh. The understanding of the
elliptic equation, which is still in its infancy, can give relevant hints [20,21], as well as a further analysis of the
continuous system.

7.2. Cylinder test case

In this section, we test the first Schwarz algorithm (S;) and (Ss), on a test case inspired by the benchmark
of [38] (we precisely use the detailed results in [31]). In both [31, 38], the drag and lift coefficients of the flow
past an obstacle are computed from simulations on a domain €2, with Dirichlet boundary conditions. Our goal
is to measure the quality of the DDFV solution obtained on €2 with a domain decomposition algorithm.
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FIGURE 17. Domain 2 = [0,2.2] x [0,0.41], decomposed in €; = [0,0.56] x [0,0.41] and Qs =
0.56,2.2] x [0,0.41].

FIGURE 18. Mesh on the domain €2 of Figure 17. The number of primal cells is 34 634; 18 250
in the left domain, 16 384 in the right one.

The benchmark is defined with dimensional equations, so we adopt the same framework, see Figure 17.
References [31,38] consider a long channel Q = [0,2.2m] x[0,0.41 m] with a cylindrical obstacle S whose center
is at (0.2m,0.2m); we decompose the domain ) into two subdomains 2, Qs and we place the interface I" at
x = 0.56m. On 0f) we impose Dirichlet boundary conditions, as in [31].

The mesh that we consider on (Q is represented in Figure 18; it is obtained with GMSH, it has 34634 cells
and it is locally refined around the cylinder. Remark that on the left domain €; (the one with triangles) there
are 18 250 cells and on the right domain s (the one with rectangles) there are 16 384 cells.

The viscosity of the fluid is set to n = 1073 m?s~! and the final time is 7' = 8s. The time-dependent inflow
on x = 0 and outflow on z = 2.2 is:

g, (z,y,t) = 0.41 2 sin(7t/8) (6y(0.41 — ), 0).

The initial condition is Wit (x,y) = (0,0). The density of the fluid is given by p = 1kgm—2, and the reference
velocity is U = 1ms~! (note that the maximum velocity is %U ). The diameter of the cylinder is L = 0.1 m, so
that the Reynold’s number is 0 < Re(t) < 100. The time step is ¢ = 0.00166s.

We use the limit scheme (73), but at some fixed times, we use instead the iterative Schwarz algorithm (Sy)
and (Sz), with the initial guesses h%j and g%j, for j = 1,2, given by (75) at the previous time step. The stopping
criterion is

max ((lek, [z, [Ty, [2) < 1072 (7.1)

and the values of the parameters are set to A = 200, = 1 and § = 0.01. To discretize the convection term, we
choose B = 0 which gives a second order accurate method.

To start with, we consider the profile of the first component of the velocity. The iterative algorithm is applied
at each time step. We compare the solution of the limit problem (P) (Figs. 19 and 21) to the solution obtained
by the iterative algorithm (S1) and (Sz) (Figs. 20 and 22) at times T = 2s and 7" = 6s. As we can see, the

profile is the same and the domain decomposition does not introduce any spurious modes to the solution; the
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e ——

FI1GURE 19. First component of the velocity solution to the Navier—Stokes problem on 2 at T' = 2s.

e

—_—

F1GURE 20. First component of the velocity solution to the Navier—Stokes problem on 2,
obtained at the 559th iteration of the Schwarz algorithm, at T' = 2s.

F1GURE 21. First component of the velocity solution to the Navier—Stokes problem on  at T' = 6s.

FIGURE 22. First component of the velocity solution to the Navier—Stokes problem on (2,
obtained at the 689th iteration of the Schwarz algorithm, at T = 6s.

stopping criterion (7.1) is sufficient to obtain a fair approximation of the expected solution. The convergence of
the algorithm is obtained in 559 iterations at 7' = 2s and in 689 iterations at T' = 6's; the number of iterations,
as remarked in Section 7.1.2, can be optimized through the choice of the parameters A, a, 8 (the parameters
are fixed once for all and do not evolve in time). For instance, with the choice of A\ = 50 and a = 0.5, the
convergence of the algorithm can be sped up, obtaining 102 iterations at 7' = 2s and 178 iterations at 7' = 6.
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Drag and lift coefficients. In order to measure the quality of the obtained results, we focus on the computation

of the drag and lift coefficients for the limit problem (P) and for the solution of (S;) and (S3). We define the
drag coefficient c4(t) and the lift coefficient ¢;(t) as

calt) = 2 [ (™, = i ).
alt) =2 [ (™5 400, )

where S stands for the boundary of the obstacle, ig = (ng,n,) is the normal vector on S pointing to €,
ts = (ny, —n,) the tangential vector and u,, the tangential velocity. In the DDFV setting,

2
= rpe > m (VP (0" Feis) - fige gy — p0g)
P DED extNS
2 . .
G = 3 m (Ve R s + 97,
P DED extNS

We study the evolution of the coefficients in Figure 23 and their maximum value in Table 6, defined as:

n n
Cdmar = MaX € Climaz = mMax__ ¢
nef0..N}y & nef{0..N}

The results shown in Table 6 and in Figure 23 prove that the approximation given by the limit problem (ﬁ)
and the results obtained with the Schwarz algorithm (S7) and (S3) are robust and quantitatively correct. The
behavior of the drag and lift coefficients of (P) is coherent with the reference values from [31], and the extreme
values of both coefficients are similar, see Table 6. The slight discrepancy in the maximum value of the coefficients
is due to level of refinement of the mesh and to the order of the scheme: we work with approximately 90 000
unknowns, for all velocity components and pressure, compared to the approximately 500 000 unknowns used in
[31]. Figure 23 shows that the lift coefficient is sensitive to the choice of the time discretization: the time step in
[31] is 6t = 0.00125s with a second order scheme in time. Our scheme is first order in time, and we work with
0t = 0.00166s.

We have implemented a second order backward difference formula in time, as in [23]: the first iteration in time
remains unchanged, while for n € {1,..., N} the term d,u is discretized by 3 (3u™™! —2u™ + Lu"~!) instead
of % (u"‘”‘1 — u") and the convection fluxes F,, depend on (2u” — u”_l) instead of u™. This approach indeed
improves the quality of the approximation of the lift coefficient, see Figure 23. The drag and lift coefficients
associated to the domain decomposition method (S;) and (Sz) have been computed with the second order
scheme. The iterative process is applied at each time step; we then compute the coefficients associated to the
solution given by the algorithm. The results are illustrated in Figure 23, where we can observe that the values
of the coefficients associated to the Schwarz algorithm reproduce the curves given by the solution of (P); since
we established that they are a coherent reproduction of the reference values in [31], we can conclude that the

algorithm produces a good approximation of the solution of the Navier—Stokes problem on the entire domain.

Multi-domains. We study now the convergence of the Schwarz algorithm in the case of more than two sub-
domains; in particular, we decompose the domain €2 into four and five subdomains.

We consider the mesh of Figure 18 on 2. We first decompose €2 into four subdomains 2 = U?:1 Q;, with
three interfaces: I'y at = 0.56m, 'y at x = 1.11m and I's at x = 1.66 m. The subdomain 2; has 18 250 cells,
and §;, i = 2,3, 4, have 5440 cells.

Then, we decompose (2 into five subdomains 2 = Ule Q;, with four interfaces: I'y at x = 0.56 m, I's at
z=097m, I's at x = 1.38m and I'y at x = 1.79m. The subdomain €2; has 18250 cells, and £2;, ¢ = 2,3,4,5,
have 4096 cells. We consider as a stopping criterion:

max (el 2, [Ty, [12) < 5 x 10~
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FIGURE 23. Comparison between the evolution of cfj,cj' on the time interval [0, 8] obtained

with the DDFV scheme (P), of order 1 and 2 in time, and with the Schwarz algorithm (S;) and
(S2) of order 2 (left) and the reference values of [31] (right). (a) DDFV. (b) Reference values.
(c) DDFV. (c) DDFV.

TABLE 6. Comparison between the values of ¢4 max, ¢, max Obtained with DDEFV scheme (P) of
order 1 and 2 in time, with the Schwarz algorithm and and the reference values of [31].

Schwarz (73) order 2 (73) order 2  Reference
Cdymax  2-9999 2.9985 2.9987 2.9509
Cl,max  0.5100 0.5183 0.53246 0.4779
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FIGURE 24. First component of the velocity solution to the Navier—Stokes problem on 2,
obtained at the 388th iteration of the Schwarz algorithm, at 7' = 6 s, in the case of 2 subdomains.

FiGURE 25. First component of the velocity solution to the Navier—Stokes problem on 2,
obtained at the 484th iteration of the Schwarz algorithm, at 7' = 6 s, in the case of 4 subdomains.

FIGURE 26. First component of the velocity solution to the Navier—Stokes problem on 2,
obtained at the 663th iteration of the Schwarz algorithm, at 7' = 6 s, in the case of 5 subdomains.

TABLE 7. At T = 6s, we compare the number of iterations at convergence between the case of
2, 4 and 5 subdomains.

f subdomains 2 4 5
f iterations 388 484 663

and the values of the parameters are set, as for the two-subdomains case, to A =200, a =1, 5 =0.01, B =0.

We compare the results at T' = 6 s, when the flow is more turbulent and with sensitive variations of the flow
in all subdomains; we take as a reference the solution shown in Figure 21. As we can see in Figures 24-26,
the profiles are similar and the introduction of more subdomains does not affect the solution. As resumed in
Table 7, we see that by increasing the number of subdomains, we increase the number of iterations necessary to
the convergence; this is due to the fact that the subdomains have to share the information between an increasing
number of interfaces. Nevertheless, we gain computational time since, as we decompose the domain, we have to
solve smaller linear systems.
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8. CONCLUSION

This paper establishes the well-posedness of DDFV schemes for solving the incompressible Navier—Stokes
system on the entire domain ) with general convection fluxes defined by means of B-schemes, and it proposes two
non-overlapping DDFV Schwarz algorithms. DDFV discretizations are constructed with suitable transmission
conditions, which are equally well-posed. When using standard convection fluxes in the domain decomposition
method, the iterative process converges to a system with modified fluxes at the interface. However, it is possible
to modify the fluxes of the domain decomposition algorithm so that it converges to the reference scheme on the
entire domain. The algorithms are numerically tested on classical benchmarks, and the numerical experiments
also shed some light on the role of the parameters of the method.
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