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NON-OVERLAPPING SCHWARZ ALGORITHMS FOR THE INCOMPRESSIBLE
NAVIER–STOKES EQUATIONS WITH DDFV DISCRETIZATIONS

Thierry Goudon1,*, Stella Krell1 and Giulia Lissoni2

Abstract. We propose and analyze non-overlapping Schwarz algorithms for the domain decomposition
of the unsteady incompressible Navier–Stokes problem with Discrete Duality Finite Volume (DDFV)
discretization. The design of suitable transmission conditions for the velocity and the pressure is a
crucial issue. We establish the well-posedness of the method and the convergence of the iterative
process, pointing out how the numerical fluxes influence the asymptotic problem which is intended
to be a discretization of the Navier–Stokes equations on the entire computational domain. Finally we
numerically illustrate the behavior and performances of the algorithm. We discuss on numerical grounds
the impact of the parameters for several mesh geometries and we perform simulations of the flow past
an obstacle with several domains.
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1. Introduction
The aim of this paper is to develop a non-overlapping iterative Schwarz algorithm for the incompressible

Navier–Stokes problem with DDFV schemes. The problem we are interested in reads⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡u + (u · ∇)u − div(𝜎(u, 𝑝)) = f in Ω × [0, 𝑇 ],

div(u) = 0 in Ω × [0, 𝑇 ],
u = 0 on 𝜕Ω × [0, 𝑇 ],

u(0) = u𝑖𝑛𝑖𝑡 in Ω,

(1.1)

where Ω is an open connected bounded polygonal domain of R2, f ∈ (𝐿2(Ω))2 is a given force field, u𝑖𝑛𝑖𝑡 ∈
(𝐿∞(Ω))2. The unknowns u : Ω × [0, 𝑇 ] → R2 and 𝑝 : Ω × [0, 𝑇 ] → R are respectively the velocity and the
pressure; 𝜎(u, 𝑝) = 2

Re Du − 𝑝Id stands for the stress tensor, and Re > 0 is the Reynolds number. Here and
below, the strain rate tensor is defined by the symmetric part of the velocity gradient Du = 1

2 (∇u + 𝑡∇u).
Non-overlapping Schwarz algorithms enter the class of domain decomposition methods, in which a domain is
decomposed into smaller subdomains. The main advantage is that, contrarily to direct methods, decomposition
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methods are naturally parallel; in fact, subdomain problems are connected by some transmission conditions
on the interface, but they are uncoupled by an iterative procedure. This makes those methods interesting
for high performance computing perspectives. The classical Schwarz algorithm, proposed in 1870 by Schwarz
[39] for the Laplace problem, is an iterative method that consists in transmitting the solution, or its normal
derivative, from a subdomain to the others, in order to deal with complex domains. This method converges only
if the subdomains overlap. Moreover, this convergence becomes slower as the overlap between the subdomains
is smaller. In non-overlapping Schwarz algorithms, the subdomains intersect only on their interfaces and in
order to obtain convergence, more elaborated transmission conditions should be defined on the interfaces. In
1990, P.-L. Lions [35] showed that, with Fourier-Robin transmission conditions, the Schwarz algorithm for the
Laplace operator converges even without overlap. This method has been adapted to the discrete setting for many
problems of isotropic diffusion [1, 7, 19], and for advection-diffusion-reaction problems [17, 26]. For the Navier–
Stokes problem, different approaches have been proposed, with different design of the interface conditions, that
depend also on the discretization framework. In the spirit of Halpern and Schatzman [27], Blayo et al. [3]
derives optimal transparent boundary conditions for the Stokes equation; these conditions are tested with finite
difference methods. In the finite element setting, it is proposed in [37] a non-overlapping domain decomposition
algorithm of Robin–Robin type for the discretized Oseen equations (i.e. linearized Navier–Stokes). In [40], still
in the finite element setting, the authors build a Dirichlet–Neumann domain decomposition method for the
nonlinear steady Navier–Stokes equations, under the hypothesis that the Reynolds number is sufficiently small
and Girault et al. [22] studies a family of discontinuous Galerkin finite element methods for Stokes and Navier–
Stokes problems on triangular meshes. The Inf-Sup condition, which is a crucial ingredient of the stability
analysis of numerical methods for Incompressible Navier–Stokes equations, has to be adapted to the domain
decomposition formulation, in particular to satisfy the incompressibility constraint, and it might depend on
the Reynolds number, see [22, 37]. Therefore, our objective is to decompose the domain Ω of problem (1.1)
into smaller subdomains, to solve the incompressible Navier–Stokes problem on those subdomains by imposing
some transmission conditions on the interfaces, and to recover by an iterative Schwarz algorithm the discrete
solution of (1.1) on the entire computational domain Ω. Since we are interested in the unsteady problem, we
shall apply this iterative algorithm at each time iteration. Moreover, we want the interface conditions to be
local and we wish the method to remain free of any restrictive condition on the Reynolds number. We address
these issues in the framework of finite volume methods, and more specifically by using Discrete Duality Finite
Volume discretizations.

The introduction of the DDFV formalism dates back to [9, 12, 29, 30], in order to approximate anisotropic
diffusion problems on general meshes, including non-conformal and distorted meshes. Such schemes require
unknowns on both the vertices and centers of primal control volumes and allow us to build two-dimensional
discrete gradient and divergence operators that satisfy discrete duality relations analogous to the standard
integration by parts formula. The DDFV scheme is extended in [2] to general linear and nonlinear elliptic prob-
lems with non homogeneous Dirichlet boundary conditions, including the case of anisotropic elliptic problems.
Applying the DDFV method for Stokes and Navier–Stokes problems leads naturally to locate the unknowns
of velocity and pressure in different points; the velocity unknowns are associated to the vertices and centers of
primal control volumes, while the pressure unknowns are located on the edges of the mesh [5, 10, 11, 24, 32, 33].
Hence, DDFV enters the class of staggered methods, reminiscent of the MAC scheme [28] constructed on Carte-
sian meshes for incompressible flows. The DDFV approach has, at least, two important advantages. First of
all, it applies to very general meshes. It is useful, for instance, in the domain decomposition setting where the
subdomains can be meshed separately and non-conformal edges appear on the interface, or simply if one wants
to locally refine the mesh with cells adapted to complex geometries. Second of all, DDFV operators mimic at the
discrete level the duality properties of the continuous differential operators, which leads to important properties
for the numerical analysis of the schemes.

As a starting point of this study, we refer the reader to [20, 26]: they both build a non-overlapping Schwarz
algorithm in a finite volume framework with Fourier-like transmission conditions between subdomains, respec-
tively for anisotropic diffusion with a DDFV discretization, see also [4], and for advection-diffusion-reaction in a
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TPFA discretization. The case of the Navier–Stokes equations (1.1) is more demanding, since it combines further
difficulties: the vectorial nature of the unknowns, the non-linear convection terms and the incompressibility
constraint. Of course, there are no explicit interface conditions, and one should construct suitable transmission
conditions between the subdomains, which have the shape of Fourier-like conditions on the velocity and account
for the constraint by involving the divergence of the velocity and the pressure. Let us split the computational
domain Ω into two smaller subdomains Ω = Ω1 ∪ Ω2. We denote by Γ the interface Ω1 ∩ Ω2. The Schwarz
algorithm defines a sequence of solutions

(︀
u𝑙

𝑗

)︀
𝑙∈N of the Navier–Stokes problem in Ω𝑗 , with 𝑗 ∈ {1, 2}, endowed

with the following two-fold transmission condition

𝜎
(︀
u𝑙

𝑗 , 𝑝𝑙
𝑗

)︀
· n⃗𝑗 − 1

2
(︀
u𝑙

𝑗 · n⃗𝑗

)︀ (︀
u𝑙

𝑗

)︀
+ 𝜆u𝑙

𝑗 = 𝜎
(︀
u𝑙−1

𝑖 , 𝑝𝑙−1
𝑖

)︀
· n⃗𝑖 − 1

2
(︀
u𝑙−1

𝑖 · n⃗𝑖

)︀ (︀
u𝑙−1

𝑖

)︀
+ 𝜆u𝑙−1

𝑖 ,

div
(︀
u𝑙

𝑗

)︀
+ 𝛼𝑝𝑙

𝑗 = −div
(︀
u𝑙−1

𝑖

)︀
+ 𝛼𝑝𝑙−1

𝑖 ,
(1.2)

where 𝑖 ̸= 𝑗 and n⃗𝑗 is the outward normal to Ω𝑗 . The former condition, which involves the parameters 𝛼 > 0,
𝜆 > 0, is inspired by the classical Fourier condition; it linearly combines the values of the unknown and the
values of its derivative; here, also the convection is included. The latter, which depends only on 𝛼, combines the
divergence of the velocity with the pressure; it will be useful to satisfy the incompressibility constraint at the
convergence of the algorithm. The first condition is comparable to the transmission conditions in [37]. However
they need to justify a modified Inf-Sup condition which induces Reynolds-dependent stability constraints. This
can be relaxed by imposing the new condition for the pressure on the interface. Once the transmission condition
is fixed – which in practice will be solved in an approximated form – it remains to establish the convergence of
the iterative process: as 𝑙 → ∞, one expects to recover the solution of a discrete version of the Navier–Stokes
equations on the entire domain Ω. We shall see that the asymptotic scheme depends on the details of the
numerical fluxes of the domain decomposition method. To analyze this issue, it is convenient to discuss general
discretizations of the convection terms, inspired by Chainais-Hillairet and Droniou [8] and Halpern and Hubert
[26].
Outline. This paper is organized as follows. In Section 2, we introduce the main elements of the DDFV
framework. This section does not contain original material, but it collects the necessary definitions and notations.
It can be safely skipped by the reader familiar to the DDFV methods. In Section 3, we set up the reference
scheme for the Navier–Stokes problem on the entire domain Ω. The convection fluxes are seen as a centered
discretization plus a diffusive perturbation, defined through a certain function 𝐵, as it appeared in [8] when
designing finite volume schemes for non-coercive elliptic problems with Neumann boundary conditions. We
establish the well-posedness of such schemes, see Theorem 3.3, which generalize the mere upwind or centered
discretizations. It turns out that this notion of 𝐵-schemes, which encompasses quite general diffusion fluxes, is
crucial when studying the convergence of iterative domain decomposition methods. In Section 4, we introduce
the composite meshes, i.e. the meshes on the subdomains, and we construct the DDFV Schwarz algorithm. The
convergence issue is investigated in Sections 5 and 6, corresponding to the following discussion:
– starting with the “natural” domain decomposition approach, the limit problem – which can be proved to be

well-posed – does not coincide with the reference scheme. Instead, some fluxes near the interface need to be
modified;

– nevertheless, it is possible to recover the reference scheme, having unified fluxes over the entire domain Ω,
at the price of modifying the fluxes in the original domain decomposition method.

This discussion motivates the need of a general analysis of 𝐵-schemes for Navier–Stokes equations. Finally, in
Section 7 we illustrate the theoretical results with numerical simulations. In particular, we discuss the influence
of the parameters 𝜆, 𝛼 of (1.2) and we apply the method to the simulation of flows past an obstacle, with a
multi-domain approach.

2. DDFV framework
Here and below, we adopt the main definitions and notation introduced in [2, 32].
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Figure 1. DDFV meshes on a non conformal mesh: primal mesh M ∪ 𝜕M (blue), dual mesh
M* ∪ 𝜕M* (red) and diamond mesh D (green).

2.1. Meshes
The DDFV method requires unknowns on vertices, centers and edges of control volumes; for this reason, it

works on (three) staggered meshes. From an initial mesh, called the “primal mesh” (denoted with M ∪ 𝜕M),
we construct the “dual mesh” (denoted with M* ∪ 𝜕M*), centered on the vertices of the primal mesh, and the
“diamond mesh” (denoted with D), centered on the edges of the primal mesh; see Figure 1. The union of the
primal and dual meshes will be denoted by T.

More precisely, we consider a primal mesh M consisting of open disjoints polygons K such that
⋃︀

K∈M K̄ = Ω̄.
We denote 𝜕M the set of edges of the primal mesh included in 𝜕Ω, considered as degenerated primal cells. We
associate to each K a point 𝑥K, called center. For the volumes of the boundary, 𝑥K is situated at the midpoint of
the edge.

Hp 2.1. All control volumes K are star-shaped with respect to 𝑥K.

We build two others meshes: the dual mesh M* ∪ 𝜕M* and the diamond mesh D. The dual mesh M* ∪ 𝜕M*

is made of dual cells K* and the diamond mesh D is made of diamond D. We set 𝑋* the set of vertices of the
primal mesh M and 𝑥K* is an element of this set 𝑋*. When K and L are neighboring volumes, that is if the
measure of 𝜕K ∩ 𝜕L is positive, we define a diamond D as the quadrilateral (see Fig. 2) whose vertices are 𝑥K, 𝑥L,
𝑥K* and 𝑥L* where 𝑥K* and 𝑥L* are common vertices of K and L such that [𝑥K* , 𝑥L* ] ⊂ 𝜕K ∩ 𝜕L. To each diamond,
we define its diagonals as a primal edge 𝜎 = K|L = [𝑥K* , 𝑥L* ] and a dual edge 𝜎* = K*|L* = [𝑥K, 𝑥L]. We denote a
diamond D or D𝜎,𝜎* . (In the framework adopted here this is an interpretation and not a restrictive assumption;
in particular, it is possible to consider non-conformal meshes. For instance, this is meaningful for the shadowed
cell in Fig. 1-left since it is actually considered as a pentagon, not as a rectangle.) Let ℰ be the set of all primal
edges and ℰint = ℰ ∖ {𝜎 ∈ ℰ such that 𝜎 ⊂ 𝜕Ω}. The DDFV framework is free of “admissibility constraint”, in
particular we do not need to assume the orthogonality of the segment 𝑥K, 𝑥L with 𝜎 = K|L. Let ℰ* be the set
of all dual edges. The diagonal 𝜎 and 𝜎* intersect at the center of the diamond, 𝑥D ∈ D and every diamond is
star-shaped with respect to 𝑥𝐷. As a consequence of this setting, all segments 𝜎* belong to the physical domain
Ω. We distinguish the diamonds on the interior and of the boundary:

Dext = {D𝜎,𝜎* ∈ D, such that 𝜎 ⊂ 𝜕Ω}, Dint = D∖Dext.

From the primal mesh, we build the associated dual mesh. A dual cell K* is associated to a vertex 𝑥K* of
the primal mesh. The dual cells are obtained by joining the centers of the primal control volumes that have
𝑥K* as vertex. We distinguish interior dual mesh, for which 𝑥K* does not belong to 𝜕Ω, denoted by M* and the
boundary dual mesh, for which 𝑥K* belongs to 𝜕Ω, denoted by 𝜕M*. In what follows, we assume:

Hp 2.2. All control volumes K* are star-shaped with respect to 𝑥K* .

There are several possible constructions of the dual mesh, and it can happen that dual cells overlap. To avoid
this inconvenience, we can either suppose that the diamonds are convex or consider the barycentric dual mesh,
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Figure 2. A diamond D = D𝜎,𝜎* , on the interior (left) and on the boundary (right).

obtained by joining the centers 𝑥K of the primal control volumes to the middle point of the edges that have 𝑥K*

as a vertex. Thanks to Hypothesis 2.1, barycentric dual cells have disjoint interiors. Throughout the paper, we
restrict to the case where all diamond cells are convex.

2.2. Notations
The following notation will be used throughout the paper. The reader familiar with DDFV may skip this

section.
For a volume V ∈ M ∪ 𝜕M ∪ M* ∪ 𝜕M* we define:

– 𝑚V the measure of the cell V,
– ℰV the set of edges of V ∈ M ∪ M* ∪ 𝜕M* and the edge 𝜎 = V for V ∈ 𝜕M,
– DV = {D𝜎,𝜎* ∈ D, 𝜎 ∈ ℰV},
– Dint

V =
{︀

D𝜎,𝜎* ∈ DV ∩ Dint
}︀

, Dext
V =

{︀
D𝜎,𝜎* ∈ DV ∩ Dext

}︀
,

– dV the diameter of V.

For a diamond D𝜎,𝜎* whose vertices are (𝑥K, 𝑥K* , 𝑥L, 𝑥L*), we denote:

– 𝑥D the center of the diamond D: 𝑥D = 𝜎 ∩ 𝜎*,
– 𝑚𝜎 the length of the edge 𝜎,
– 𝑚𝜎* the length of 𝜎*,
– 𝑚D the measure of the diamond D𝜎,𝜎* ,
– dD the diameter of the diamond D𝜎,𝜎* ,
– 𝛼D the angle between 𝜎 and 𝜎*.

We introduce for every diamond two orthonormal basis (𝜏⃗ K*L* , n⃗𝜎K) and (n⃗𝜎*K* , 𝜏⃗ KL), where:

– n⃗𝜎K the unit normal to 𝜎 going out from K,
– 𝜏⃗ K*L* the unit tangent vector to 𝜎 oriented from K* to L*,
– n⃗𝜎*K* the unit normal vector to 𝜎* going out from K*,
– 𝜏⃗ KL the unit tangent vector to 𝜎* oriented from K to L.

We denote for each diamond:

– its edges s (e.g. s = [𝑥K, 𝑥K* ]), such segments are interfaces between diamond cells, and when necessary we
will write s = D|D′ to emphasize that s separates the diamonds D and D′,

– ℰD = {s, s ⊂ 𝜕D and s * 𝜕Ω} the set of all interior sides of the diamond,
– 𝑚s the length of s,
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– n⃗sD the unit normal to s going out from D,
– S = {s ∈ ℰD, ∀D ∈ D} the set of interior edges of all diamond cells D ∈ D,
– SK = {s ∈ S, such that s ⊂ K} and SK* = {s ∈ S, such that s ⊂ K*}.

Let size(T) be the maximum of the diameters of the diamond cells in D. The flattening of the triangles is
measured by the angle 𝛼T ∈]0, 𝜋

2 ] such that sin(𝛼T) := minD∈D | sin(𝛼D)|. We introduce a positive number reg(T)
that measures the regularity of the mesh:

reg(T) = max
(︂

1
sin(𝛼T) , 𝒩 , 𝒩 *, max

D∈D
max
s∈ℰD

dD

𝑚s
, max

K∈M

dK√
𝑚K

, max
K*∈M*∪𝜕M*

(︂
dK*

√
𝑚K*

)︂
,

max
K∈M

max
D∈D𝐾

(︂
dK

dD

)︂
, max

K*∈M*∪𝜕M*
max

D∈DK*

(︂
dK*

dD

)︂)︂
where 𝒩 and 𝒩 * are the maximal number of edges of each primal cell and the maximal number of edges incident
to any vertex.

Hp 2.3. The number reg(T) is uniformly bounded from above and below as size(T) → 0.

Accordingly, there exist two constants 𝐶1 and 𝐶2, which both depend on reg(T), such that ∀K ∈ M, ∀K* ∈
M* ∪ 𝜕M* and ∀D ∈ D such that D ∩ K ̸= 0 and D ∩ K* ̸= 0 we have:

𝑙𝑙𝐶1𝑚K ≤ 𝑚D ≤ 𝐶2𝑚K, 𝐶1𝑚K* ≤ 𝑚D ≤ 𝐶2𝑚K*

𝐶1 dK ≤ dD ≤ 𝐶2 dK, 𝐶1 dK* ≤ dD ≤ 𝐶2 dK* .

2.3. Unknowns and meshes
The DDFV method for Navier–Stokes problem uses staggered unknowns. We associate to each primal volume

K ∈ M ∪ 𝜕M an unknown uK ∈ R2 for the velocity, to every dual volume K* ∈ M* ∪ 𝜕M* an unknown uK* ∈ R2

for the velocity and to each diamond D ∈ D an unknown 𝑝D ∈ R for the pressure. Those unknowns are collected
in the families:

uT =
(︀
(uK)K∈(M∪𝜕M), (uK*)K*∈(M*∪𝜕M*)

)︀
∈
(︀
R2)︀T and 𝑝D = ((𝑝D)D∈D) ∈ RD.

We define now two discrete average projections, for all functions v in (𝐻1(Ω))2:
– one on the interior:

PM
𝑚 v =

(︂(︂
1

𝑚K

∫︁
K

v(𝑥)d𝑥

)︂
K∈M

)︂
PM*

𝑚 v =
(︂(︂

1
𝑚K*

∫︁
K*

v(𝑥)d𝑥

)︂
K*∈M*

)︂
,

– one on the boundary:

P𝜕Ω
𝑚 v =

(︂(︂
1

𝑚K

∫︁
K

v(𝑥)d𝑥

)︂
K∈𝜕M

,

(︂
1

𝑚K*

∫︁
K*

v(𝑥)d𝑥

)︂
K*∈𝜕M*

)︂
.

We can collect them in a shorthand notation PT
𝑚v =

(︀
PM

𝑚 v, PM*

𝑚 v, P𝜕Ω
𝑚 v

)︀
. We introduce also a centered

projection on the mesh T:

PT
𝑐 v =

(︁
(v(𝑥K))K∈(M∪𝜕M) , (v(𝑥K*))K*∈(M*∪𝜕M*)

)︁
, ∀v ∈

(︀
𝐻2(Ω)

)︀2
.

(This projection makes sense owing to the regularity assumption 𝐻2(Ω) ⊂ 𝐶(Ω).) Next, we define subspaces of(︀
R2)︀T, which take in account Dirichlet boundary conditions. Let ΓDir ⊂ 𝜕Ω, the boundary on which homoge-

neous Dirichlet conditions will be imposed. When ΓDir ̸= 𝜕Ω, we need to distinguish the subsets of the boundary
mesh

𝜕MDir = {K ∈ 𝜕M : 𝑥K ∈ ΓDir} , 𝜕M*
Dir = {K* ∈ 𝜕M* : 𝑥K* ∈ ΓDir} ,
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and we set
EΓDir

0 =
{︁

uT ∈
(︀
R2)︀T , s.t. ∀K ∈ 𝜕MDir, uK = 0 and ∀K* ∈ 𝜕M*

Dir, uK* = 0
}︁

.

When ΓDir = 𝜕Ω, we simply denote E0 the discrete space satisfying the Dirichlet condition.

2.4. Discrete operators
In this section we define the discrete operators of the DDFV scheme.

Definition 2.4. We define the discrete gradient of a vector field of
(︀
R2)︀T as the operator

∇D : uT ∈
(︀
R2)︀T ↦−→

(︀
∇DuT

)︀
D∈D

∈ (ℳ2 (R))D
,

with ℳ2 (R) the space of 2 × 2 matrices with real entries, such that for D ∈ D:

∇DuT = 1
sin (𝛼D)

[︂
uL − uK

𝑚𝜎*
⊗ n⃗𝜎K + uL* − uK*

𝑚𝜎

⊗ n⃗𝜎*K*

]︂
,

where ⊗ represents the tensor product. It can equivalently be written as

∇DuT = 1
2𝑚D

[𝑚𝜎(uL − uK) ⊗ n⃗𝜎K + 𝑚𝜎*(uL* − uK*) ⊗ n⃗𝜎*K* ] .

The discrete strain rate tensor DD : uT ∈ (R2)T ↦→ (DDuT)D∈D ∈ (ℳ2(R))D is defined by:

DDuT = ∇DuT + 𝑡(∇DuT)
2 , for D ∈ D.

We define the discrete divergence of a vector field of
(︀
R2)︀T as the operator

divD : uT ∈
(︀
R2)︀T ↦−→ (divDuT)D∈D ∈ RD

with divDuT = Tr(∇DuT) for any D ∈ D.

Definition 2.5. We define the discrete divergence of a tensor field of (ℳ2(R))D as the operator

divT : 𝜉D ∈ (ℳ2(R))D ↦−→ divT𝜉D ∈
(︀
R2)︀T ,

where divT𝜉D =
(︁

divM𝜉D, div𝜕M𝜉D, divM*
𝜉D, div𝜕M*

𝜉D

)︁
, with divM𝜉D = (divK𝜉D)K∈M, div𝜕M𝜉D = 0,

divM*
𝜉D =

(︀
divK*

𝜉D

)︀
K∈M* and div𝜕M*

𝜉D =
(︀
divK*

𝜉D

)︀
K*∈𝜕M* and we have set

divK𝜉D = 1
𝑚K

∑︁
D𝜎,𝜎* ∈DK

𝑚𝜎𝜉Dn⃗𝜎K, ∀K ∈ M

divK*
𝜉D = 1

𝑚K*

∑︁
D𝜎,𝜎* ∈DK*

𝑚𝜎*𝜉Dn⃗𝜎*K* , ∀K* ∈ M*

divK*
𝜉D = 1

𝑚K*

⎛⎝ ∑︁
D𝜎,𝜎* ∈DK*

𝑚𝜎*𝜉Dn⃗𝜎*K* +
∑︁

D𝜎,𝜎* ∈DK* ∩Dext

𝑚𝜎

2 𝜉Dn⃗𝜎K

⎞⎠ ∀K* ∈ 𝜕M*.

For the boundary dual cells K* ∈ 𝜕M*, we have in the definition two sums corresponding to two differents
parts of the boundary of K*. Indeed, we can express 𝜕K* (see Fig. 2) as an union over 𝜎* = [𝑥K, 𝑥L] and an union
over a part [𝑥K* , 𝑥L] of 𝜎 = [𝑥K* , 𝑥L* ]:

𝜕K* = ∪
D𝜎,𝜎* ∈DK*

[𝑥K, 𝑥L] ∪
D𝜎,𝜎* ∈DK* ∩Dext

[𝑥K* , 𝑥L].

Since we only have [𝑥K* , 𝑥L], we have the factor 1/2 when considering the edges 𝜎.
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2.5. Scalar products and norms
Now, we define the scalar products on the approximation spaces:

[[vT, uT]]T = 1
2

(︃∑︁
K∈M

𝑚K uK · vK +
∑︁

K*∈M*∪𝜕M*

𝑚K* uK* · vK*

)︃
∀uT, vT ∈

(︀
R2)︀T ,

(𝜉D : ΦD)D =
∑︁

D𝜎,𝜎* ∈D

𝑚D

(︀
𝜉D : ΦD

)︀
∀𝜉D, ΦD ∈ (ℳ2(R))D

,

(𝑝D, 𝑞D)D =
∑︁

D𝜎,𝜎* ∈D

𝑚D𝑝D𝑞D ∀𝑝D, 𝑞D ∈ RD,

where (𝜉 : ̃︀𝜉) =
∑︀

1≤𝑖,𝑗≤2 𝜉𝑖,𝑗 , ̃︀𝜉𝑖,𝑗 = Tr(𝑡𝜉̃︀𝜉) for all 𝜉, ̃︀𝜉 ∈ ℳ2(R). They define respectively the norms ‖uT‖2,
‖|𝜉D‖|2 and ‖𝑝D‖2. We also set

(ΦD, v𝜕M)𝜕Ω =
∑︁

D𝜎,𝜎* ∈Dext

𝑚𝜎ΦD · v𝜎 ∀ΦD ∈
(︀
R2)︀Dext

, v𝜕M ∈
(︀
R2)︀𝜕M

.

We next define the trace operators. Let 𝛾T : uT ∈
(︀
R2)︀T ↦→ 𝛾T(uT) = (𝛾𝜎(uT))𝜎∈𝜕M ∈

(︀
R2)︀𝜕M be given by

𝛾𝜎(uT) = uK* + 2uL + uL*

4 , ∀𝜎 = [𝑥K* , 𝑥L* ] ∈ 𝜕M.

On the diamond mesh we set 𝛾D : ΦD ∈ RD → (ΦD)D∈Dext
∈
(︀
R2)︀Dext , which is the operator of restriction to

the boundary diamonds.
The discrete gradient and divergence operators are linked by a discrete Stokes formula. This is precisely the

duality property that gives its name to the method [12], see for instance Theorem IV.9 of [32].

Theorem 2.6 (Discrete Green’s formula). For all 𝜉D ∈ (ℳ2(R))D
, uT ∈

(︀
R2)︀T, we have:

[[divT𝜉D, uT]]T = −
(︀
𝜉D : ∇DuT

)︀
D

+
(︀
𝛾D(𝜉D)n⃗, 𝛾T(uT)

)︀
𝜕Ω ,

where −→n is the unitary outward normal.

2.6. Brezzi–Pitkäranta stabilization
The Inf-Sup condition is a crucial structure property for the stability of a scheme for the simulation of

incompressible viscous flows. A stabilization term involving the pressure can be added to enforce this condition.
This idea dates back to [6] for finite element methods. It has been adapted to the finite volume framework too
[15, 16] and we refer the reader to [33] for the specific case of DDFV schemes. Note that the Inf-Sup condition
actually holds for a large class of meshes, which do not require any stabilization [5].

The stabilization term involves the second order discrete operator, denoted by ΔD : 𝑝D ∈ RD ↦→ ΔD𝑝D ∈ RD,
defined by

ΔD𝑝D = 1
𝑚D

∑︁
s=D|D′∈ℰD

d2
D + d2

D′

d2
D

(𝑝D′ − 𝑝D), ∀D ∈ D.

It resembles an approximation of the Laplace’s operator (endowed with the homogeneous Neumann boundary
condition), however it is consistent only under orthogonality condition (as in the case of admissible meshes, see
[13, 14]); that is not true in general for diamond meshes obtained from M. In relation with this operator we
define a semi-norm | · | on RD that depends on the mesh:

|𝑝D|2 =
∑︁

s=D|D′∈G

(︀
d2

D + d2
D′

)︀
(𝑝D′ − 𝑝D)2

, ∀𝑝D ∈ RD.
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Observe that

−
(︀
d2

DΔD𝑝D, 𝑝D

)︀
D

=
∑︁
D∈D

𝑝D

∑︁
s=D|D′∈ℰD

(︀
d2

D + d2
D′

)︀
(𝑝D − 𝑝D′)

=
∑︁

s=D|D′∈G

(︀
d2

D + d2
D′

)︀
(𝑝D′ − 𝑝D)2 = |𝑝D|2. (2.1)

This operator is just needed to introduce a stabilisation, which is necessary in a few very specific situations,
like when working with Cartesian meshes where the stabilisation prevents oscillations due to spurious modes
associated to the chessboard pressure lying in the kernel of the Stokes operator. Other constructions can be
considered as well, with similar purposes.

3. DDFV scheme for the Navier–Stokes problem on Ω

This section is concerned by the analysis of DDFV schemes for the Navier–Stokes problem with Dirichlet
boundary conditions on the entire domain Ω. The choice of the Dirichlet boundary conditions is adopted on 𝜕Ω
for the sake of simplicity; the discussion can be readlily adapted to handle more general boundary conditions on
𝜕Ω, see [23, 36]. As far as the convection is treated by upwind discretization, the analysis has been performed
in [32]. As mentioned above, it is convenient to extend this analysis to general 𝐵-schemes where the convection
term is approximated by a centered discretization plus a diffusive perturbation, which depends on a certain
function 𝐵, see [8, 26]. In what follows, D𝜎,𝜎* will be denoted by D, to simplify the notations.

3.1. The scheme (𝒫)

Let 𝑁 ∈ N* and 0 < 𝑇 < ∞. We note 𝛿𝑡 = 𝑇
𝑁 and 𝑡𝑛 = 𝑛𝛿𝑡 for 𝑛 ∈ {0, . . . , 𝑁}. We use an implicit

Euler time-discretization, except for the nonlinear convection term, which is linearized by using a semi-implicit
approximation. Here and below, the time step is supposed to be constant; of course the discussion can be directly
adapted to handle variable time steps. At each time step, we shall enforce the equality

divD(u𝑛) − 𝛽d2
DΔD𝑝𝑛 = 0 (3.1)

which takes into account the Brezzi–Pitkäranta stabilization, with a parameter 𝛽 > 0.
We look for uT,[0,𝑇 ] = (u𝑛)𝑛∈{0,...,𝑁} ∈

(︀
E0
)︀𝑁+1, where, as stated in Section 2.3, E0 is the space of dis-

crete velocities satisfying the homogeneous Dirichlet condition, and 𝑝D,[0,𝑇 ] = (𝑝𝑛)𝑛∈{0,...,𝑁} ∈ (RD)𝑁+1. The
sequence is initialized with:

u0 = PT
𝑐 u0 ∈ E0,

𝑝0 ∈ RD such that ΔD𝑝0 = 1
𝛽d2

D

divD(u0) with
∑︁
D∈D

𝑚D𝑝
0
D = 0.

The vector 𝑝0 is well defined since it is solution of a square system, whose matrix is invertible (owing to the
fact that u0 is supposed to belong to E0, and because in the formulation of the problem we take into account
the constraint of null average on the pressure). With those choices of (u0, 𝑝0) we guarantee the property (3.1)
at the initial time step and it will be propagated at each time step. The discrete force term is also defined by
a projection over T, with PM

𝑚 f and PM*

𝑚 f . From now on, to simplify the notations we will denote (u𝑛+1, 𝑝𝑛+1)
with (uT, 𝑝D) and (u𝑛, 𝑝𝑛) with (ūT, 𝑝D).
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Given (ūT, 𝑝D) satisfying (3.1) the update uT ∈ E0 and 𝑝D ∈ RD is such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚K

uK

𝛿𝑡
+
∑︁

D∈DK

𝑚𝜎ℱ𝜎K = 𝑚KfK + 𝑚K

ūK

𝛿𝑡
∀K ∈ M

𝑚K*
uK*

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K* = 𝑚K*fK* + 𝑚K*
ūK*

𝛿𝑡
∀K* ∈ M*

divD(uT) − 𝛽dD
2ΔD𝑝D = 0∑︁

D∈D

𝑚D𝑝D = 0.

(𝒫)

The fluxes are defined as a sum of a “diffusion” term and a “convection” term:

𝑚𝜎ℱ𝜎K = 𝑚𝜎

(︀
ℱ𝑑

𝜎K + ℱ𝑐
𝜎K

)︀
, 𝑚𝜎*ℱ𝜎*K* = 𝑚𝜎*

(︀
ℱ𝑑

𝜎*K* + ℱ𝑐
𝜎*K*

)︀
.

The diffusion fluxes are defined as:

𝑚𝜎ℱ𝑑
𝜎K = − 𝑚𝜎

(︂
2

ReDDuT − 𝑝DId
)︂

n⃗𝜎K,

𝑚𝜎*ℱ𝑑
𝜎*K* = − 𝑚𝜎*

(︂
2

ReDDuT − 𝑝DId
)︂

n⃗𝜎*K*

that can be naturally denoted −𝑚𝜎𝜎D(uT, 𝑝D) n⃗𝜎K and −𝑚𝜎*𝜎D(uT, 𝑝D) n⃗𝜎*K* , respectively. The convection fluxes
are expressed as the sum of a centered discretization and a diffusive perturbation

𝑚𝜎ℱ𝑐
𝜎K = 𝑚𝜎𝐹𝜎K

(︂
uK + uL

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

𝐵

(︂
2𝑚DRe

𝑚𝜎

𝐹𝜎K

)︂
(uK − uL) ,

𝑚𝜎*ℱ𝑐
𝜎*K* = 𝑚𝜎*𝐹𝜎*K*

(︂
uK* + uL*

2

)︂
+ 𝑚2

𝜎*

2Re𝑚D

𝐵

(︂
2𝑚DRe
𝑚𝜎*

𝐹𝜎*K*

)︂
(uK* − uL*).

The diffusive part depends on the function 𝐵, which describes the different schemes that we can work with.
The centered scheme corresponds to 𝐵(𝑠) = 0 and the upwind scheme corresponds to 𝐵(𝑠) = 1

2 |𝑠|. However,
for further purposes and the analysis of the domain decomposition method, it is relevant to consider a quite
general framework where 𝐵 can be matrix-valued. In what follows, we denote 𝐵

(︁
2𝑚DRe

𝑚𝜎
𝐹𝜎K

)︁
with 𝐵𝜎K and

𝐵
(︁

2𝑚DRe
𝑚𝜎* 𝐹𝜎*K*

)︁
with 𝐵𝜎*K* . The total fluxes then become:

𝑚𝜎ℱ𝜎K = −𝑚𝜎𝜎D(uT, 𝑝D) n⃗𝜎K + 𝑚𝜎𝐹𝜎K

(︂
uK + uL

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

𝐵𝜎K (uK − uL)

𝑚𝜎*ℱ𝜎*K* = −𝑚𝜎*𝜎D(uT, 𝑝D) n⃗𝜎*K* + 𝑚𝜎*𝐹𝜎*K*

(︂
uK* + uL*

2

)︂
+ 𝑚2

𝜎*

2Re𝑚D

𝐵𝜎*K* (uK* − uL*) .

(3.2)

The definition of 𝐹𝜎K, 𝐹𝜎*K* comes from [32, 34], up to the boundary terms. They are approximations of the
fluxes:

∫︀
𝜎

(u · n⃗𝜎K)  𝑚𝜎𝐹𝜎K (uT) and
∫︀

𝜎* (u · n⃗𝜎*K*)  𝑚𝜎*𝐹𝜎*K* (uT). Note that this part of the scheme is
explicit: the velocity-pressure pair is updated by solving a linear system corresponding to a semi-explicit time
discretisation.

For D ∈ Dint, we can rewrite the discrete divergence divD as follows

𝑚DdivD(ūT) =
∑︁

s=[𝑥K,𝑥K* ]∈ℰD

𝑚s
ūK + ūK*

2 · n⃗sD,



NON OVERLAPPING SCHWARZ ALGORITHMS WITH DDFV DISCRETIZATIONS 1281

Figure 3. Left: diamond D = D𝜎,𝜎* with 𝜎 ∈ ℰint. Right: diamond D = D𝜎,𝜎* with 𝜎 ⊂ 𝜕Ω.

and deduce that

𝑚DdivD(ūT) − 𝛽𝑚DdD
2ΔD𝑝D =

∑︁
s=[𝑥K,𝑥K* ]=D|D′∈ℰD

𝑚s
ūK + ūK*

2 · n⃗sD − 𝛽(dD + dD′) (𝑝D − 𝑝D′) .

We introduce the flux 𝑚s𝐺s,D to approximate
∫︀

s
ūT · n⃗sDd𝑠 for s = [𝑥K, 𝑥K* ] = D|D′ ∈ ℰD, noting that this flux

must be perturbed by the stabilisation term imposed in (3.1), so that we have

𝑚s𝐺s,D = 𝑚s
ūK + ūK*

2 · n⃗sD − 𝛽(dD + dD′)(𝑝D − 𝑝D′).

Thanks to (3.1), it implies

𝑚DdivD(ūT) − 𝛽𝑚DdD
2ΔD𝑝D =

∑︁
s=D|D′∈ℰD

𝑚s𝐺s,D = 0.

For D ∈ Dext, (see Fig. 3), a similar reasoning leads to

𝑚DdivD(ūT) − 𝛽𝑚Dd2
DΔD𝑝D =

∑︁
s=D|D′∈ℰD

𝑚s𝐺s,D + 𝑚𝜎𝛾𝜎(ūT) · n⃗𝜎K.

Based on these considerations, we define the convections fluxes as follows:

– For the primal edges that is for a primal cell K ∈ M and D ∈ DK:

𝑚𝜎𝐹𝜎K = −
∑︁

s∈SK∩ℰD

𝑚s𝐺s,D.

This sum contains two terms s = [𝑥K, 𝑥K* ] and s = [𝑥K, 𝑥L* ].
– For the dual edges, we have two differents cases (see Fig. 3):

∙ for K* ∈ M* ∪ 𝜕M* and D ∈ DK* ∩ Dint

𝑚𝜎*𝐹𝜎*K* = −
∑︁

s∈SK* ∩ℰD

𝑚s𝐺s,D.

This sum contains two terms s = [𝑥K, 𝑥K* ] and s = [𝑥L, 𝑥K* ].
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∙ for K* ∈ 𝜕M* and D ∈ DK* ∩ Dext

𝑚𝜎*𝐹𝜎*K* = −𝑚s𝐺s,D − 1
2𝑚𝜕Ω∩𝜕K*𝐻K* ,

where s = [𝑥K, 𝑥K* ] and 𝑚𝜕Ω∩𝜕K* indicates the measure of the intersection between 𝜕K* ∩ 𝜕Ω and

𝑚𝜕Ω∩𝜕K*𝐻K* =
∑︁

D∈Dext
K*

𝑚𝜎∩𝜕K* ūK* · n⃗𝜎K, ∀K* ∈ 𝜕M*.

That the scheme preserves the conservation laws of the continuous problem is a remarkable property of the
construction. It means that mass exchanges between the cells are well reproduced by the scheme.

Proposition 3.1. Let (3.1) be satisfied. Then the fluxes 𝐹𝜎K and 𝐹𝜎*K* are conservative, that is to say

𝐹𝜎K = −𝐹𝜎L, ∀𝜎 = K|L and 𝐹𝜎*K* = −𝐹𝜎*L* , ∀𝜎* = K*|L*.

Proposition 3.2. Let T be a DDFV mesh associated to Ω. For all (uT, 𝑝D) ∈ E0 × RD, 𝛽 ∈ R* we have∑︁
D∈DK

𝑚𝜎𝐹𝜎K = 0 ∀K ∈ M,

∑︁
D∈DK*

𝑚𝜎*𝐹𝜎*K* = 0 ∀K* ∈ M*,

∑︁
D∈DK*

𝑚𝜎*𝐹𝜎*K* = −𝑚𝜕Ω∩𝜕K*𝐻K* ∀K* ∈ 𝜕M*.

Proof. For the interior mesh, we proceed as in [32]. If K ∈ M, by reorganizing the sum on the sides s ∈ GK
belonging to the primal cell K, we obtain:

−
∑︁

D∈DK

∑︁
s∈GK∩ℰD

𝑚s
uK + uK*

2 · n⃗sD = −
∑︁

s∈GK

𝑚s
uK + uK*

2 · (n⃗sD + n⃗sD′) = 0 (3.3)

since n⃗sD = −n⃗sD′ , where D and D′ denote the two neighboring diamonds which share the edge s, of vertices
𝑥K, 𝑥K* . In the same way,

−
∑︁

D∈DK

∑︁
s∈GK∩ℰD

(︀
d2

D + d2
D′

)︀
(𝑝D′ − 𝑝D) = −

∑︁
s∈GK

(︀
d2

D + d2
D′

)︀
(𝑝D′ − 𝑝D + 𝑝D − 𝑝D′) = 0. (3.4)

We deduce that
∑︀

D∈DK
𝑚𝜎𝐹𝜎K = 0. The proof is similar for

∑︀
D∈DK* 𝑚𝜎*𝐹𝜎*K* = 0 if K* ∈ M*.

We now focus on the case in which K* ∈ 𝜕M*. By definition of 𝑚𝜎*𝐹𝜎*K* , we have

−
∑︁

D∈DK*

∑︁
s∈GK* ∩ℰD

{︂
𝑚s

uK + uK*

2 · n⃗sD +
(︀
d2

D + d2
D′

)︀
(𝑝D′ − 𝑝D)

}︂
−

∑︁
D∈DK* ∩𝜕Ω

1
2𝑚𝜕Ω∩𝜕K*𝐻K* = 0 − 𝑚𝜕Ω∩𝜕K*𝐻K*

where the first sum vanishes thanks to (3.3), (3.4), and for the second term we use the fact that each vertex K*

is shared by two boundary diamonds. �

3.2. Well-posedness of problem (𝒫)
The well-posedness of the scheme (𝒫), which is known when the centered or upwind discretization is used,

generalizes to a wide class of functions 𝐵. In what follows, for a 𝑁 × 𝑁 matrix 𝐴, we write 𝐴 ≥ 0 when the
symmetric part of 𝐴 is positive semi-definite, which means that 𝐴𝑧 · 𝑧 ≥ 0 holds for any vector 𝑧 ∈ R𝑁 .
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Theorem 3.3. Let 𝜎 = K|L ∈ ℰ, 𝜎* = K*|L⋆ ∈ ℰ*. Let 𝐵𝜎K, 𝐵𝜎*K* be the (possibly matrix valued) coefficients
arising in the definition of the fluxes (3.2), as the diffusive correction with respect to the centered approximation.
Assume that

𝐵𝜎K = 𝐵𝜎L, 𝐵𝜎K ≥ 0
𝐵𝜎*K* = 𝐵𝜎*L* , 𝐵𝜎*K* ≥ 0.

(ℋ𝑝)

Then the problem (𝒫) is well-posed.

Proof. The scheme (𝒫) is a linear system in (uT, 𝑝D) ∈
(︀
R2)︀T × RD. It corresponds to the specific case where

g𝜕M = g𝜕M* = 𝑞D = 𝜑 = 0, in⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚K

uK

𝛿𝑡
+
∑︁

D∈DK

𝑚𝜎ℱ𝜎K = 𝑚KfK + 𝑚K

ūK

𝛿𝑡
∀K ∈ M

𝑚K*
uK*

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K* = 𝑚K*fK* + 𝑚K*
ūK*

𝛿𝑡
∀K* ∈ M*

u𝜕M = g𝜕M

u𝜕M*
= g𝜕M*

divD(uT) − 𝛽d2
DΔD𝑝D = 𝑞D∑︁

D∈D

𝑚D𝑝D = 𝜑.

(𝒫)

Let us denote by 𝑁 the dimension of
(︀
R2)︀T × RD. Equation (𝒫) is a linear system 𝐴𝑣 = 𝑏 with a rectangular

matrix 𝐴 ∈ ℳ𝑁+1,𝑁 (R), 𝑣 ∈ R𝑁 and 𝑏 ∈ R𝑁+1. Let 𝑋 be the following set:

𝑋 =
{︃

(fM, fM* , g𝜕M, g𝜕M* , 𝑞D, 𝜑) ∈ R𝑁+1,
∑︁

D∈Dext

𝑚𝜎𝛾𝜎(gT) · n⃗𝜎K =
∑︁
D∈D

𝑚D𝑞D

}︃
.

We have dim(𝑋) = 𝑁 , 𝑡 (fM, fM* , 0, 0, 0) belongs to X and Im(𝐴) ⊂ 𝑋 as a consequence of the Green formula in
Theorem 2.6. If we show that the matrix is injective, we conclude that dim(Im(𝐴)) = 𝑁 and that Im(𝐴) = 𝑋.
We are going to show that if fM = fM* = 0, then uT = 0 and 𝑝D = 0.

We multiply the equations on the primal and dual mesh of (𝒫) by uT and we sum over all the control volumes:

1
2

⎡⎣ 1
𝛿𝑡

(︃∑︁
K∈M

𝑚K |uK|2 +
∑︁

K∈M*

𝑚K* |uK* |2
)︃

+
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝜎K +
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K*

⎤⎦ = 0.

By definition of the scalar products we have 1
2
[︀ 1

𝛿𝑡

(︀∑︀
K∈M 𝑚K |uK|2 +

∑︀
K∈M* 𝑚K* |uK* |2

)︀]︀
= 1

𝛿𝑡 ‖uT‖2
2 and, by

replacing the definition of the fluxes, we get
1
𝛿𝑡

‖uT‖2
2 − 1

2
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚𝜎𝜎D(uT, 𝑝D)n⃗𝜎K − 1
2
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚𝜎*𝜎D(uT, 𝑝D)n⃗𝜎*K*

+ 1
2
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚𝜎𝐹𝜎K

uK + uL

2 + 1
2
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚𝜎*𝐹𝜎*K*
uK* + uL*

2

+ 1
2
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K (uK − uL) + 1
2
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*) = 0. (3.5)

We can consider separately the terms. By replacing the definition of the divergence operator and then by appying
Green’s formula (Thm. 2.6) for uT ∈ E0, we obtain
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− 1
2
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚𝜎𝜎D (uT, 𝑝D) n⃗𝜎K − 1
2
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚𝜎*𝜎D (uT, 𝑝D) n⃗𝜎*K*

= −
[︂[︂

divT

(︂
2

ReDDuT − 𝑝D

)︂
, uT

]︂]︂
T

= 2
Re‖|DDuT‖|22 −

(︁
𝑝D, divDuT

)︁
D

= 2
Re‖|DDuT‖|22 + 𝛽|𝑝D|2,

where for the last equality we use that divD(uT) − 𝛽d2
DΔD𝑝D = 0 and we apply (2.1).

For the convection terms, we sum over diamonds recalling that uT ∈ E0, so we do not have boundary terms.
For the centered part, we apply Propositions 3.2 and 3.1, to conclude that

1
2
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚𝜎𝐹𝜎K

uK + uL

2 + 1
2
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚𝜎*𝐹𝜎*K*
uK* + uL*

2

= 1
4
∑︁
D∈D

𝑚𝜎𝐹𝜎K(|uK|2 − |uL|2) + 1
4
∑︁
D∈D

𝑚𝜎*𝐹𝜎*K*(|uK* |2 − |uL* |2)

= 1
4
∑︁
K∈M

|uK|2
∑︁

D∈DK

𝑚𝜎𝐹𝜎K⏟  ⏞  
=0

+1
4
∑︁

K*∈M*

|uK* |2
∑︁

D∈DK

𝑚𝜎*𝐹𝜎*K*

⏟  ⏞  
=0

= 0.

For the diffusive perturbation, (ℋ𝑝) implies

1
2
∑︁
K∈M

uK ·
∑︁

D∈DK

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K (uK − uL) + 1
2
∑︁

K*∈M*

uK* ·
∑︁

D∈DK*

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*)

= 1
2
∑︁
D∈D

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K (uK − uL) · (uK − uL) + 1
2
∑︁
D∈D

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*) · (uK* − uL*) ≥ 0.

Putting all together, equation (3.5) becomes:

1
𝛿𝑡

||uT||22 + 2
Re‖|DDuT‖|22 + 𝛽|𝑝D|2 ≤ 0,

from which we deduce that uT = 0 and 𝑝D is a constant (we recall that 𝛽 > 0). Since 𝑝D verifies
∑︀

D∈D 𝑚D𝑝D = 0,
we have 𝑝D = 0. �

4. DDFV domain decomposition

We start by defining a discretization for the problem set on the subdomain Ω𝑗 . As in Section 3, the nonlinear
convection term will be approximated through 𝐵-schemes; we will see that the coefficients 𝐵𝜎K, 𝐵𝜎*K* play an
important role in the convergence of the Schwarz algorithm. We start by defining the meshes, and we analyse
the scheme on each subdomain, denoted by (𝒫𝑗), and we introduce the Schwarz algorithm for the domain
decomposition. We present the study for two subdomains for the sake of simplicity, but it could be extended
to an arbitrary number of adjacent subdomains. (Difficulties arise when more than two domains have common
points on their interfaces, a situation which deserves a specific analysis see e.g. [18].)

4.1. DDFV on composite meshes

For each subdomain Ω𝑗 of Ω, 𝑗 = 1, 2, we consider a DDFV mesh T𝑗 = (M𝑗 ∪ 𝜕M𝑗 , M*
𝑗 ∪ 𝜕M*

𝑗 ) and the
associated diamond mesh D𝑗 . Note that the DDFV approach allows us to work with non conformal meshes,
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Figure 4. DDFV meshes.

and the two subdomains can be meshed differently. Letting Γ be the interface between the two subdomains and
Γ𝑗

Dir the boundary of 𝜕Ω𝑗 intersecting 𝜕Ω, we denote:

− the diamond cells intersecting Γ: DΓ
𝑗 := {D ∈ D𝑗 , D ∩ Γ ̸= ∅};

− the boundary primal cells intersecting Γ: 𝜕M𝑗,Γ := {K ∈ 𝜕M𝑗 , K ∩ Γ ̸= ∅};
− the boundary dual cells intersecting Γ: 𝜕M*

𝑗,Γ := {K* ∈ 𝜕M*
𝑗 , K* ∩ Γ ̸= ∅};

− the boundary primal cells intersecting Γ𝑗
Dir: 𝜕M𝑗,Dir := {K ∈ 𝜕M𝑗 , K ∩ Γ𝑗

Dir ̸= ∅};
− the boundary dual cells intersecting Γ𝑗

Dir: 𝜕M*
𝑗,Dir := {K* ∈ 𝜕M*

𝑗 , K* ∩ Γ𝑗
Dir ̸= ∅};

see Figure 4 for an example.

Definition 4.1 (Composite mesh). We say that T1 and T2 are compatible, if the following conditions are
satisfied:
(1) The two meshes share the same vertices on Γ. This, in particular, implies that the two meshes have the

same degenerate volumes on Γ, i.e. 𝜕M1,Γ = 𝜕M2,Γ.
(2) The center 𝑥L of the degenerate volumes of the interface L = [𝑥K* , 𝑥L* ] ∈ 𝜕M1,Γ = 𝜕M2,Γ is the intersection

between (𝑥K* , 𝑥L*) and (𝑥K1 , 𝑥K2), where K1 ∈ M1 and K2 ∈ M2 are the two primal cells such that L ∈ 𝜕K1 and
L ∈ 𝜕K2 (see Fig. 4).

In order to build a composite mesh, it is equivalent to either build a global mesh by gluing two subdomain
meshes, or to build the subdomain meshes starting from a global mesh (which has edges along Γ).

Consider the composite mesh of Figure 4; remark that:
– a diamond D, of vertices 𝑥K1 , 𝑥K* , 𝑥L* , 𝑥K2 that intersects Γ in the domain Ω can be written as the union of

diamonds D1, of vertices 𝑥K1 , 𝑥K* , 𝑥L* , 𝑥L, and D2, of vertices 𝑥K2 , 𝑥K* , 𝑥L* , 𝑥L, respectively in Ω1, Ω2. Moreover,
on the subdomain meshes we have additional unknowns on 𝑥L on Γ with respect to the mesh on Ω;

– equivalently, a volume K* that intersects Γ in Ω is the union of K*
1, K*

2 in Ω1, Ω2. In particular, an edge
𝜎* = [𝑥K1 , 𝑥K2 ] can be split into 𝜎* = 𝜎*

1 ∪ 𝜎*
2 = [𝑥K1 , 𝑥L] ∪ [𝑥L, 𝑥K2 ];

– an edge 𝜎 = [𝑥K* , 𝑥L* ] on the interface Γ is shared by all the meshes.
Due to the fact that each dual cell on the global mesh that intersects Γ is split in two between the subdomains,

it is necessary to introduce some additional unknowns fluxes ΨK*
j
, for all K*

j ∈ 𝜕M*
𝑗,Γ, as in [20]. Those unknowns

are intended to approximate the dual fluxes ℱ𝜎*K* on the interface. For a diamond D ∈ DΓ
𝑗 , the unknowns are

illustrated in Figure 5.
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Figure 5. The unknowns on a diamond on the interface for the subdomain Ω𝑗 .

4.2. The subdomain problem: transmission conditions

On each subdomain Ω𝑗 of Ω, we want to solve a Navier–Stokes system with mixed boundary conditions. On
the fraction of the boundary that intersects 𝜕Ω, we impose Dirichlet boundary conditions. On the the interface
Γ between the two subdomains, we impose the discretized version of the transmission conditions (1.2).

To construct the scheme, we integrate the momentum equation over M𝑗 ∪ M*
𝑗 ∪ 𝜕M*

𝑗,Γ, we impose Dirichlet
boundary conditions on 𝜕M𝑗,Dir ∪ 𝜕M*

𝑗,Dir and transmission conditions on 𝜕M𝑗,Γ ∪ 𝜕M*
𝑗,Γ. The transmission

conditions involve three positive parameters:

– 𝜆 which arises in the Fourier-like transmission condition for the velocity,
– 𝛼 which arises in the Fourier-like transmission condition for the pressure,
– 𝛽 that relies on the Brezzi–Pitkäranta stabilization.

Precisely, the solenoidal constraint is approximated on the diamond mesh D𝑗 and for the diamonds in DΓ
𝑗 a

transmission term is added, controlled by the parameter 𝛼. We give now, formally, an hint of why it is necessary
to add this condition on the interface diamonds DΓ

𝑗 : our goal is to recover, at convergence of the Schwarz
algorithm, the solenoidal constraint divD(uT) = 0 for all D that intersect Γ in Ω (that we write here for sake of
simplicity without the stabilization term). As described in Definition 4.1, a diamond D in Ω that intersects Γ can
be written as the union of diamonds D1, D2 in Ω1, Ω2. By definition of the discrete divergence, see Section 2.4,
we wish to decompose 𝑚DdivDuT = 𝑚D1divD1uT1 + 𝑚D2divD2uT2 . Therefore, we expect on Γ an expression which
would look like

𝑚D1divD1uT1 = −𝑚D2divD2uT2 . (4.1)

However, equation (4.1) does not make sense and a detailed construction of the uT𝑗
∈ (R2)T𝑗 ’s is needed, where

(R2)T ⊂ (R2)T1 × (R2)T2 . This can be understood by a dimensional argument. Of course, we naturally identify
the values of uT and uT𝑗

when they are evaluated on common points of the grids T and T𝑗 . But, we should bear
in mind that M1 ∪ M2 = M, while M* is strictly included in M*

1 ∪ M*
2: what happens is (M*

1 ∪ M*
2) ∪ (𝜕M*

1,Γ ∪
𝜕M*

2,Γ) = M*. Similarly, 𝜕M is strictly included in 𝜕M1 ∪𝜕M2: we have 𝜕M∪ (𝜕M1,Γ ∪𝜕M2,Γ) = 𝜕M1 ∪𝜕M2.
Moreover, imposing a condition of this kind along the iterations of the Schwarz algorithm is not sufficient to
prove convergence of the algorithm, as we will show later in Theorem 5.8; in order to apply the analytical tools
of the proof, it is necessary to add to (4.1) a Fourier-like term for the pressure, controlled by 𝛼.

The DDFV discretization leads to the following system on Ω𝑗 :

Find
(︀
uT𝑗

, 𝑝D𝑗
, ΨT𝑗

)︀
∈ EΓ𝑗

Dir
0 × RD𝑗 × (R2)𝜕M*

𝑗,Γ such that
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𝑚K

uK

𝛿𝑡
+
∑︁

D∈DK

𝑚𝜎ℱ𝜎K = 𝑚KfK + 𝑚K

ūK

𝛿𝑡
∀K ∈ M𝑗

𝑚K*
uK*

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K* = 𝑚K*fK* + 𝑚K

ūK*

𝛿𝑡
∀K* ∈ M*

𝑗

𝑚K*
uK*

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K* + 𝑚𝜕Ω∩𝜕K*ΨK* = 𝑚K*fK* + 𝑚K

ūK*

𝛿𝑡
∀K* ∈ 𝜕M*

𝑗,Γ

−ℱ𝜎K + 1
2𝐹𝜎KuL + 𝜆uL = hL ∀𝜎 ∈ 𝜕M𝑗,Γ

−ΨK* + 1
2𝐻K* uK* + 𝜆uK* = hK* ∀K* ∈ 𝜕M*

𝑗,Γ

𝑚DdivD(uT𝑗
) − 𝛽𝑚Dd2

DΔD𝑝D𝑗
= 0 ∀D ∈ D𝑗 ∖ DΓ

𝑗

𝑚DdivD(uT𝑗
) − 𝛽𝑚Dd2

DΔD𝑝D𝑗
+ 𝛼𝑚D𝑝D = 𝑔D ∀D ∈ DΓ

𝑗 ,

(𝒫𝑗)

where ūT𝑗
the solution computed at the previous time step 𝑡𝑛−1 = (𝑛 − 1)𝛿𝑡 for 𝑛 ∈ {1, . . . , 𝑁 − 1}, and h, 𝑔

are certain boundary data in (R2)𝜕M𝑗,Γ × (R2)𝜕M*
𝑗,Γ and RDΓ

𝑗 , respectively. Here, we denote fT𝑗
= PT𝑗

𝑚 f . We
will refer to the system (𝒫𝑗) in the shorthand form:

ℒT𝑗

Ω𝑗 ,Γ
(︀
uT𝑗 , 𝑝D𝑗 , ΨT𝑗 , fT𝑗 , ūT𝑗 , hT𝑗 , 𝑔D𝑗

)︀
= 0.

Remark 4.2. When we impose transmission conditions in Schwarz’ algorithm, we are led to approximate the
boundary term

∫︀
𝜎

(︀
𝜎(u, 𝑝) · n⃗ − 1

2 (u · n⃗)u
)︀
, which keeps track of the anti-symmetrization of the convection term.

Formally, at the continuous level, if 𝜙 is a test function in 𝑉 = {𝜙 ∈ (𝐻1(Ω))2, Ψ|ΓDir = 0, div(𝜙) = 0}, the
variational formulation of (1.1) reads:∫︁

Ω
𝜕𝑡u · 𝜙 +

∫︁
Ω

(u · ∇)u · 𝜙 −
∫︁

Ω
div(𝜎(u, 𝑝))𝜙 = 0. (4.2)

The convection term can be written as∫︁
Ω

(u · ∇)u · 𝜙 = 1
2

∫︁
Ω

(u · ∇)u · 𝜙 + 1
2

∫︁
Ω

(u · ∇)u · 𝜙

= 1
2

∫︁
Ω

(u · ∇)u · 𝜙 − 1
2

∫︁
Ω

(u · ∇)𝜙 · u +
∫︁

𝜕Ω

1
2(u · n⃗)u · 𝜙,

by integration by parts, since u is divergence free. Coming back to (4.2), we integrate by parts also the diffusion
terms, and we end up with:∫︁

Ω
𝜕𝑡u · 𝜙 + 1

2

∫︁
Ω

(u · ∇)u · 𝜙 − 1
2

∫︁
Ω

(u · ∇)𝜙 · u +
∫︁

Ω
𝜎(u, 𝑝) : ∇𝜙 −

∫︁
𝜕Ω

(︂
𝜎(u, 𝑝)n⃗ − 1

2(u · n⃗)u
)︂

· 𝜙 = 0.

This is the reason why, when working with transmission conditions, we impose a condition on 𝜎(u, 𝑝)n⃗− 1
2 (u·n⃗)u,

that contains just “half of the convection”. Besides, the numerical flux ℱ𝜎K is constructed to approximate the
term ∫︁

𝜎

(−𝜎(u, 𝑝)n⃗ + (u · n⃗)u) .

This is why in the approximation it gives:

𝜎(u, 𝑝)n⃗ − 1
2(u · n⃗)u = 𝜎(u, 𝑝)n⃗ − (u · n⃗)u + 1

2(u · n⃗)u ≈ −ℱ𝜎K + 1
2𝐹𝜎KuL.
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Theorem 4.3 (Well-posedness of the DDFV subdomain problem). Under the hypothesis (ℋ𝑝) and 𝜆, 𝛽, 𝛼 > 0,
the problem (𝒫𝑗) is well-posed.

The proof relies on the following energy estimate (where we bear in mind that 𝐵𝜎K and 𝐵𝜎*K* can be matrix-
valued).

Theorem 4.4 (Energy estimate on (𝒫𝑗)). Under the hypothesis (ℋ𝑝), the scheme (𝒫𝑗) satisfies the following
relation

1
𝛿𝑡

‖uT𝑗
‖2

2 + 2
Re‖|DD𝑗 uT𝑗

‖|22 −
(︁

𝑝D𝑗
, divD𝑗 uT𝑗

)︁
D𝑗

+ 1
2
∑︁

D∈DΓ
𝑗

𝑚𝜎

(︂
ℱ𝜎K − 1

2𝐹𝜎KuL

)︂
· uL + 1

2
∑︁

K*∈𝜕M*
𝑗,Γ

𝑚𝜕Ω∩𝜕K*

(︂
ΨK* − 1

2𝐻K*uK*

)︂
· uK*

+ 1
2
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K (uK − uL) · (uK − uL) + 1
2
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K* (uK* − uL*) · (uK* − uL*)

= [[fT𝑗
, uT𝑗

]]T𝑗
+ 1

𝛿𝑡
[[uT𝑗

, uT𝑗
]]T𝑗

. (4.3)

Proof of Theorem 4.3. Let us explain how Theorem 4.4 can be used to justify the well-posedness of the equation
with mixed conditions. We are going to prove that if all quantities fT𝑗

, hT𝑗
, 𝑔D𝑗

, and uT𝑗
vanish, then uT𝑗

=
0 = ΨT𝑗

and 𝑝D𝑗
= 0. Starting from (4.3), we apply:

– the transmission conditions on the sums over DΓ
𝑗 and 𝜕M*

𝑗,Γ:

−ℱ𝜎K + 1
2𝐹𝜎KuL + 𝜆uL = hL ∀𝜎 ∈ 𝜕M𝑗,Γ,

−ΨK* + 1
2𝐻K* uK* + 𝜆uK* = hK* ∀K* ∈ 𝜕M*

𝑗,Γ,

– the conditions on the equation of mass conservation:

divD
(︁

uT𝑗

)︁
− 𝛽𝑚Dd2

DΔD𝑝D𝑗
= 0 ∀D ∈ D𝑗 ∖ DΓ

𝑗 ,

divD
(︁

uT𝑗

)︁
− 𝛽𝑚Dd2

DΔD𝑝D𝑗
+ 𝛼𝑚D𝑝D = 𝑔D ∀D ∈ DΓ

𝑗 .

This implies:

1
𝛿𝑡

‖uT𝑗
‖2

2 + 2
Re‖|DD𝑗 uT𝑗

‖|22 + 𝛽|𝑝D𝑗
|2 + 𝛼

∑︁
D∈DΓ

𝑗

𝑚D|𝑝D|2 + 𝜆

2
∑︁

D∈DΓ
𝑗

𝑚𝜎|uL|2 + 𝜆

2
∑︁

K*∈𝜕M*
𝑗,Γ

𝑚𝜕Ω∩𝜕K* |uK* |2

+ 1
2
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K(uK − uL) · (uK − uL) + 1
2
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*) · (uK* − uL*)

= [[fT𝑗
, uT𝑗

]]T𝑗
+ 1

𝛿𝑡
[[uT𝑗

, uT𝑗
]]T𝑗

+ (𝑝D𝑗
, 𝑔D𝑗

)DΓ
𝑗

+ 1
2
∑︁

D∈DΓ
𝑗

𝑚𝜎hL · uL + 1
2

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K*hK* · uK* .

(4.4)

If now we impose that all data fT𝑗
, hT𝑗

, 𝑔D𝑗
and uT𝑗

in (4.4) vanish, we have:

1
𝛿𝑡

‖uT𝑗
‖2

2 + 2
Re‖|DD𝑗 uT𝑗

‖|22 + 𝛽|𝑝D𝑗 |2 + 𝛼
∑︁

D∈DΓ
𝑗

𝑚D|𝑝D|2 + 𝜆

2
∑︁

D∈DΓ
𝑗

𝑚𝜎|uL|2 + 𝜆

2
∑︁

K*∈𝜕M*
𝑗,Γ

𝑚𝜕Ω∩𝜕K* |uK* |2

⏟  ⏞  
≥0
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+ 1
2
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K(uK − uL) · (uK − uL) + 1
2
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*) · (uK* − uL*)

⏟  ⏞  
≥0

= 0,

that leads to:
1
𝛿𝑡

||uT𝑗
||22 + 2

Re‖|DD𝑗 uT𝑗
‖|22 + 𝛽|𝑝D𝑗

|2 ≤ 0,

from which we deduce that uT𝑗
= 0 and 𝑝D𝑗

is a constant (since 𝛽 > 0). Thanks to the transmission conditions
on DΓ

𝑗 , since 𝛼 > 0 and uT𝑗
= 0, we obtain 𝑝D𝑗 = 0. Finally, thanks to the transmission condition on 𝜕M*

𝑗,Γ
and uT𝑗

= 0, we also have ΨT𝑗
= 0. �

Proof of Theorem 4.4. We multiply the equations on the primal and dual mesh of (𝒫𝑗) by uT𝑗
and we sum over

all the control volumes:

1
2

⎡⎣ 1
𝛿𝑡

⎛⎝∑︁
K∈M𝑗

𝑚K |uK|2 +
∑︁

K∈M*
𝑗

∪𝜕M*
𝑗

𝑚K* |uK* |2
⎞⎠+

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K*ΨK* · uK*

+
∑︁

K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝜎K +
∑︁

K*∈M*
𝑗

∪𝜕M*
𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K*

⎤⎦ = [[fT𝑗
, uT𝑗

]]T𝑗
+ 1

𝛿𝑡
[[uT𝑗

, uT𝑗
]]T𝑗

.

By definition of the scalar products we have

1
2

⎡⎣ 1
𝛿𝑡

⎛⎝∑︁
K∈M𝑗

𝑚K |uK|2 +
∑︁

K∈M*
𝑗

∪𝜕M*
𝑗

𝑚K* |uK* |2
⎞⎠⎤⎦ = 1

𝛿𝑡
‖uT𝑗

‖2
2

and, by rewriting the fluxes as a sum of the diffusive and convective contribution we obtain:

1
𝛿𝑡

‖uT𝑗 ‖2
2 + 1

2

⎡⎣ ∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K*ΨK* · uK* +
∑︁

K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑑
𝜎K +

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑑
𝜎*K*

+
∑︁

K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑐
𝜎K +

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑐
𝜎*K*

⎤⎦ = [[fT𝑗
, uT𝑗

]]T𝑗
+ 1

𝛿𝑡
[[uT𝑗 , uT𝑗 ]]T𝑗 .

We consider separately the two contributions. For the diffusion terms, we have, by the definition of the divergence
operator

1
2

⎡⎣ ∑︁
K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑑
𝜎K +

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑑
𝜎*K*

⎤⎦
= −

[︂[︂
divT𝑗

(︂
2

ReDD𝑗 uT𝑗
− 𝑝D𝑗 Id

)︂
, uT𝑗

]︂]︂
T𝑗

− 1
4

∑︁
K*∈𝜕M*

𝑗,Γ

uK* ·
∑︁

D∈Dext
K*

𝑚𝜎ℱ𝑑
𝜎K.

We can now apply Green’s formula to the RHS, and remark that∑︁
K*∈𝜕M*

𝑗,Γ

uK* ·
∑︁

D∈Dext
K*

𝑚𝜎ℱ𝑑
𝜎K =

∑︁
D∈DΓ

𝑗

𝑚𝜎ℱ𝑑
𝜎K · (uK* + uL*).
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We thus find:

1
2

⎡⎣ ∑︁
K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑑
𝜎K +

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑑
𝜎*K*

⎤⎦
= 2

Re‖|DD𝑗 uT𝑗
‖|22 −

(︁
𝑝D𝑗 , divD𝑗 uT𝑗

)︁
D𝑗

+
∑︁

D∈DΓ
𝑗

𝑚𝜎ℱ𝑑
𝜎K · 𝛾𝜎

(︁
uT𝑗

)︁
−
∑︁

D∈DΓ
𝑗

𝑚𝜎ℱ𝑑
𝜎K · uK* + uL*

4 ·

By the definition of the trace operator, we obtain:

1
2

⎡⎣ ∑︁
K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑑
𝜎K +

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑑
𝜎*K*

⎤⎦
= 2

Re‖DD𝑗 uT𝑗
‖2

2 −
(︁

𝑝D𝑗
, divD𝑗 uT𝑗

)︁
D𝑗

+ 1
2
∑︁

D∈DΓ
𝑗

𝑚𝜎ℱ𝑑
𝜎K · uL. (4.5)

For the convection terms, we get

1
2

⎡⎣ ∑︁
K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑐
𝜎K +

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑐
𝜎*K*

⎤⎦ := 1
2(𝑇1 + 𝑇2)

We estimate the term 𝑇1; we first integrate by parts thanks to Proposition 3.1 and (ℋ𝑝):

𝑇1 =
∑︁

K∈M𝑗

uK ·
∑︁

D∈DK

𝑚𝜎ℱ𝑐
𝜎K

=
∑︁

D∈D𝑗

𝑚𝜎ℱ𝑐
𝜎K · (uK − uL) +

∑︁
D∈DΓ

𝑗

𝑚𝜎ℱ𝑐
𝜎K · uL.

We replace the definition of ℱ𝑐
𝜎K for all D ∈ D𝑗 :

𝑇1 =
∑︁

D∈D𝑗

𝑚𝜎𝐹𝜎K

uK + uL

2 · (uK − uL) +
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K(uK − uL) · (uK − uL) +
∑︁

D∈DΓ
𝑗

𝑚𝜎ℱ𝑐
𝜎K · uL

= 1
2
∑︁

D∈D𝑗

𝑚𝜎𝐹𝜎K(|uK|2 − |uL|2) +
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K(uK − uL) · (uK − uL) +
∑︁

D∈DΓ
𝑗

𝑚𝜎ℱ𝑐
𝜎K · uL.

Passing to the sum over primal cells K for the first term and applying Proposition 3.2 we get:

𝑇1 = 1
2
∑︁

K∈M𝑗

|uK|2
∑︁

D∈DK

𝑚𝜎𝐹𝜎K⏟  ⏞  
=0

−1
2
∑︁

D∈DΓ
𝑗

𝑚𝜎𝐹𝜎K|uL|2 +
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K(uK − uL) · (uK − uL) +
∑︁

D∈DΓ
𝑗

𝑚𝜎ℱ𝑐
𝜎K · uL.

It can be rewritten as:

𝑇1 =
∑︁

D∈DΓ
𝑗

𝑚𝜎

(︂
ℱ𝑐

𝜎K − 1
2𝐹𝜎KuL

)︂
· uL +

∑︁
D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K (uK − uL) · (uK − uL) . (4.6)
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We estimate the term 𝑇2; we first integrate by parts, by using Proposition 3.1 and (ℋ𝑝):

𝑇2 =
∑︁

K*∈M*
𝑗

∪𝜕M*
𝑗

uK* ·
∑︁

D∈DK*

𝑚𝜎*ℱ𝑐
𝜎*K*

=
∑︁

D∈D𝑗

𝑚𝜎*ℱ𝑐
𝜎*K* · (uK* − uL*).

We replace the definition of ℱ𝑐
𝜎K for all D ∈ D𝑗 :

𝑇2 =
∑︁

D∈D𝑗

𝑚𝜎*𝐹𝜎*K*
uK* + uL*

2 · (uK* − uL*) +
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K* (uK* − uL*) · (uK* − uL*)

= 1
2
∑︁

D∈D𝑗

𝑚𝜎*𝐹𝜎*K*
(︀
|uK* |2 − |uL* |2

)︀
+
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K* (uK* − uL*) · (uK* − uL*) .

Passing to the sum over dual cells K* for the first term we get:

𝑇2 = 1
2

∑︁
K*∈M*

𝑗
∪𝜕M*

𝑗

|uK* |2
∑︁

D∈DK*

𝑚𝜎*𝐹𝜎*K* +
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*) · (uK* − uL*). (4.7)

From the definition of 𝐹𝜎*K* and by Proposition 3.2 we have that
∑︀

D∈DK* 𝑚𝜎*𝐹𝜎*K* = 0 for all K* ∈ M*
𝑗 and∑︀

D∈DK* 𝑚𝜎*𝐹𝜎*K* = −𝑚𝜕Ω∩𝜕K*𝐻K* for all K* ∈ 𝜕M*
𝑗,Γ, that gives:

𝑇2 = −1
2

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K*𝐻K* |uK* |2 +
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K*(uK* − uL*) · (uK* − uL*).

Gathering (4.5)–(4.7) together, we find:

1
𝛿𝑡

‖uT𝑗
‖2 + 2

Re‖|DD𝑗 uT𝑗
‖|22 −

(︁
𝑝D𝑗

, divD𝑗 uT𝑗

)︁
D𝑗

+ 1
2
∑︁

D∈DΓ
𝑗

𝑚𝜎

(︂
ℱ𝑑

𝜎K + ℱ𝑐
𝜎K − 1

2𝐹𝜎KuL

)︂
· uL + 1

2
∑︁

K*∈𝜕M*
𝑗,Γ

𝑚𝜕Ω∩𝜕K*ΨK* · uK* − 1
4

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K*𝐻K* |uK* |2

+ 1
2
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K (uK − uL) · (uK − uL) + 1
2
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K* (uK* − uL*) · (uK* − uL*)

= [[fT𝑗 , uT𝑗
]]T𝑗 + 1

𝛿𝑡
[[uT𝑗 , uT𝑗 ]]T𝑗 .

Since ℱ𝑑
𝜎K + ℱ𝑐

𝜎K = ℱ𝜎K, it leads to (4.3). �

4.3. DDFV Schwarz algorithm
We can now introduce the iterative process that defines the Schwarz algorithm. Let 𝑁 ∈ N*. We note

𝛿𝑡 = 𝑇
𝑁 and 𝑡𝑛 = 𝑛𝛿𝑡 for 𝑛 ∈ {0, . . . , 𝑁}. At each time step 𝑡𝑛 we apply the following parallel DDFV Schwarz

algorithm: for arbitrary initial guesses h0
T𝑗

∈ (R2)𝜕M𝑗,Γ∪𝜕M*
𝑗,Γ and 𝑔0

D𝑗
∈ RD𝑗 , at each iteration 𝑙 = 1, 2, . . . and

𝑖, 𝑗, ∈ {1, 2}, 𝑗 ̸= 𝑖 we proceed with the following two steps:

(1) Compute
(︁

u𝑙
T𝑗

, 𝑝𝑙
D𝑗

, Ψ𝑙
T𝑗

)︁
∈
(︀
R2)︀T𝑗 × RD𝑗 ×

(︀
R2)︀𝜕M*

𝑗,Γ solution to

ℒT𝑗

Ω𝑗 ,Γ

(︂
u𝑙

T𝑗
, 𝑝𝑙

D𝑗
, Ψ𝑙

T𝑗
, fT𝑗

, ūT𝑗
, h𝑙−1

T𝑗
, 𝑔𝑙−1

DΓ
𝑗

)︂
= 0. (𝒮1)
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(2) Compute the new values of h𝑙
T𝐽

and of 𝑔𝑙
DΓ

𝑗

by:

h𝑙
Lj

= ℱ 𝑙
𝜎K𝑖

− 1
2𝐹𝜎K𝑖u𝑙

Li
+ 𝜆u𝑙

Li
, ∀L𝑗 = L𝑖 ∈ 𝜕M𝑗,Γ

h𝑙
K*
j

= Ψ𝑙
K*
i

− 1
2𝐻K*

j
u𝑙

K*
i

+ 𝜆u𝑙
K*
i
, ∀K*

j ∈ 𝜕M*
𝑗,Γ such that 𝑥K*

j
= 𝑥K*

i

𝑔𝑙
D𝑗

= −
(︀
𝑚D𝑖divD𝑖(u𝑙

T𝑖
) − 𝛽𝑚D𝑖d

2
D𝑖

ΔD𝑖𝑝𝑙
D𝑖

)︀
+ 𝛼𝑚D𝑖𝑝

𝑙
D𝑖

, ∀D𝑗 ∈ DΓ
𝑗 such that 𝑥D𝑗 = 𝑥D𝑖 .

(𝒮2)

5. Convergence analysis of the DDFV Schwarz algorithm
Bearing in mind the properties of the mesh discussed after Definition 4.1, we infer that the asymptotic fluxes

as 𝑙 → ∞ should satisfy

𝑚𝜎ℱ𝜎K = 𝑚𝜎ℱ𝜎K1 = −𝑚𝜎ℱ𝜎K2 , ∀D ∈ DΓ (5.1)
𝑚𝜎*ℱ𝜎*K* = 𝑚𝜎*

1
ℱ𝜎*

1 K* + 𝑚𝜎*
2
ℱ𝜎*

2 K* , ∀𝜎* = 𝜎*
1 ∪ 𝜎*

2 , K* ∈ 𝜕M*
Γ. (5.2)

In order to obtain these relations, it will become necessary to modify the fluxes on the interface, either for
the limit or for the subdomain problem. For this reason, the convergence will be studied in two steps. In this
Section, we shall identify the limit of the Schwarz algorithm defined in Section 4.3. We focus here on the natural
situation where 𝐵𝜎K, 𝐵𝜎*K* take scalar values, like with the upwind and centered discretizations. We will show
that this limit is still a DDFV scheme for the problem (1.1), but with modified fluxes on Γ. We will then prove
convergence to this limit scheme, to which we will refer to as ( ̃︀𝒫). In the next Section 6, we will show that it
is possible to obtain (𝒫) asymptotically, at the price of modifying the fluxes of the Schwarz algorithm (𝒮1),
dealing with matrix coefficients 𝐵𝜎K, 𝐵𝜎*K* . That (𝒫) provides a consistent approximation of the Navier–Stokes
equation is justified, with error estimates, in [33,34]; the arguments can be adapted for ( ̃︀𝒫) and numerical tests
of convergence are presented in [25]. Here, we focus on the convergence of the Schwarz iterations.

5.1. The limit problem ( ̃︀𝒫)
We consider the following DDFV scheme for (1.1), on the domain Ω: given (ūT, 𝑝D), satisfying (3.1), we look

for uT ∈ E0 and 𝑝D ∈ RD such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚K

uK

𝛿𝑡
+

∑︁
D∈DK∖DΓ

K

𝑚𝜎ℱ𝜎K +
∑︁

D∈DΓ
K

𝑚𝜎
̃︀ℱ𝜎K = 𝑚KfK + 𝑚K

ūK

𝛿𝑡
∀K ∈ M

𝑚K*
uK*

𝛿𝑡
+

∑︁
D∈DK* ∖DΓ

K*

𝑚𝜎*ℱ𝜎*K* +
∑︁

D∈DΓ
K*

𝑚𝜎* ̃︀ℱ𝜎*K* = 𝑚K*fK* + 𝑚K*
ūK*

𝛿𝑡
∀K* ∈ M*

𝑚DdivD(uT) − 𝛽𝑚Dd2
DΔD𝑝D = 0 ∀D ∈ D∑︁

D∈D

𝑚D𝑝D = 0.

( ̃︀𝒫)

In the interior of the domain, the fluxes coincide with the fluxes in (𝒫), see (3.2). On the interface, they are
defined as:

𝑚𝜎
̃︀ℱ𝜎K = −𝑚𝜎𝜎D(uT, 𝑝D) n⃗𝜎K + 𝑚𝜎𝐹𝜎K

(︂
uK + uL

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

̃︀𝐵𝜎K (uK − uL) ,

𝑚𝜎* ̃︀ℱ𝜎*K* = −𝑚𝜎*𝜎D(uT, 𝑝D) n⃗𝜎*K* + 𝑚𝜎*𝐹𝜎*K*

(︂
uK* + uL*

2

)︂
+ 𝑚2

𝜎*

2Re𝑚D

̃︀𝐵𝜎*K*(uK* − uL*),

where ̃︀𝐵𝜎K and ̃︀𝐵𝜎*K* are matrix-valued quantities that come from the transmission condition of the iterative
process. Their expressions are established in Propositions 5.4 and 5.5.
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5.2. Definition of ̃︁𝐵𝜎K and ̃︁𝐵𝜎*K*

Let us start with some preliminary definition, bearing in mind that 𝐵𝜎K, 𝐵𝜎*K* are supposed to be scalars.

Definition 5.1. For 𝑖 = 1, 2, and 𝜎 ∈ 𝜕M𝑖,Γ, we set 𝑃 = Id + n⃗𝜎K ⊗ n⃗𝜎K and

𝐴𝑖 = 𝑚2
𝜎

2Re𝑚D𝑖

(𝑃 + 𝐵𝜎K𝑖
Id),

where we recall that 𝐵𝜎K𝑖
= 𝐵

(︁
2𝑚D𝑖

Re
𝑚𝜎

𝐹𝜎K𝑖

)︁
. Next, we set 𝐴 = 𝐴1 + 𝐴2.

Remark 5.2. The matrix 𝐴 = 𝐴1 + 𝐴2 is symmetric and definite positive, thus invertible, since it is the sum

of two symmetric and definite positive matrices. In fact, with n⃗𝜎K =
(︂

𝑥
𝑦

)︂
, we have:

𝐴𝑖 =
(︂

1 + 𝐵𝜎K𝑖 + 𝑥2 𝑥𝑦
𝑥𝑦 1 + 𝐵𝜎K𝑖

+ 𝑦2

)︂
,

which is symmetric and for any 𝑣 =
(︂

𝑣1
𝑣2

)︂
it holds:

⟨𝐴𝑖𝑣, 𝑣⟩ = (1 + 𝐵𝜎K𝑖
)
(︀
𝑣2

1 + 𝑣2
2
)︀

+ (𝑥𝑣1 + 𝑦𝑣2)2 ≥ 0 and ⟨𝐴𝑖𝑣, 𝑣⟩ = 0 ⇐⇒ 𝑣 = 0,

owing to Hypothesis (ℋ𝑝). For 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, since 𝐴𝑖 and 𝐴𝑗 are polynomial in 𝑃 , the following properties
hold:

𝐴𝑖𝐴𝑗 = 𝐴𝑗𝐴𝑖,

𝐴𝑗𝐴−1 = 𝐴−1𝐴𝑗 ,

since from Hypothesis (ℋ𝑝) we have 𝐵𝜎K𝑖 = 𝐵𝜎K𝑗 for 𝜎 ∈ 𝜕M𝑖,Γ.

The fluxes ̃︀ℱ𝜎K, ̃︀ℱ𝜎*K* are constructed in order to satisfy the properties (5.1) and (5.2). The system ( ̃︀𝒫) is a
scheme defined on the mesh T on Ω; in particular, this means that there are no additional unknowns uL on the
interface Γ, see Figure 4. The following results apply for a general diamond:

Proposition 5.3. Let D ∈ DΓ be a diamond and let D1, D2 be the two semi-diamonds such that D = D1 ∪ D2, see
Figure 6. We denote by (𝑥K, 𝑥K* , 𝑥L* , 𝑥L) the vertices of D and by (𝑥K1 , 𝑥K* , 𝑥L* , 𝑥𝜎), (𝑥K2 , 𝑥K* , 𝑥L* , 𝑥𝜎) the vertices
of D1 and D2. Let 𝜎 = K1|K2, and let 𝐴, 𝐴1, 𝐴2 be as in Definition 5.1. Then, there exists a unique u𝜎, given by

u𝜎 = 𝐴−1
[︂
𝐴1uK1 + 𝐴2uK2 + 1

2𝑚𝜎𝐹𝜎K1(uK1 − uK2)
]︂

, (5.3)

which satisfies
ℱ𝜎K1 = −ℱ𝜎K2 . (5.4)

Proof. Condition (5.4) is a linear equation in u𝜎, where ℱ𝜎K1 is a flux on D1, and ℱ𝜎K2 is a flux on D2. Inserting
the definitions of the fluxes, equation (5.4) becomes:

𝑚𝜎ℱ𝜎K1 = −𝑚𝜎𝜎D1(uT, 𝑝D) n⃗𝜎K1 + 𝑚𝜎𝐹𝜎K1

(︂
uK1 + u𝜎

2

)︂
+ 𝑚2

𝜎

2Re𝑚D1

𝐵𝜎K1 (uK1 − u𝜎)

= −ℱ𝜎K2 = 𝑚𝜎𝜎D2 (uT, 𝑝D) n⃗𝜎K2 − 𝑚𝜎𝐹𝜎K2

(︂
uK2 + u𝜎

2

)︂
− 𝑚2

𝜎

2Re𝑚D2

𝐵𝜎K2 (uK2 − u𝜎) . (5.5)
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Figure 6. A diamond D, of vertices 𝑥K, 𝑥K* , 𝑥L* , 𝑥L as a union of two semi-diamonds: D1 of vertices
𝑥K1 , 𝑥K* , 𝑥𝜎, 𝑥L* and D2 of vertices 𝑥K2 , 𝑥K* , 𝑥𝜎, 𝑥L* . In particular, 𝜎*

1 = [𝑥K1 , 𝑥L] and 𝜎*
2 = [𝑥L, 𝑥K2 ].

The strain rate tensors can be written by using the matrix 𝑃 as:

−𝑚𝜎𝜎D1 (uT, 𝑝D) · n⃗𝜎K1 = 𝑚2
𝜎

2Re𝑚D1

𝑃 (uK1 − u𝜎) +
𝑚𝜎𝑚𝜎*

1

2Re𝑚D1

(n⃗𝜎K1 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K1) (uK* − uL*)

+ 𝑚𝜎𝑝Dn⃗𝜎K1 , (5.6)

𝑚𝜎𝜎D2 (uT, 𝑝D) · n⃗𝜎K2 = − 𝑚2
𝜎

2Re𝑚D2

𝑃 (uK2 − u𝜎) −
𝑚𝜎𝑚𝜎*

2

2Re𝑚D2

(n⃗𝜎K2 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K2) (uK* − uL*)

− 𝑚𝜎𝑝Dn⃗𝜎K2 . (5.7)

Using (5.6), (5.7) in (5.5), since n⃗𝜎K1 = −n⃗𝜎K2 and
𝑚𝜎𝑚𝜎*

1
2Re𝑚D1

= 1
sin(𝛼D) =

𝑚𝜎𝑚𝜎*
2

2Re𝑚D2
, the contributions of the pressure

𝑝D and of the velocity uK* , uL* on the vertices cancel out. So (5.5) becomes:

𝑚2
𝜎

2Re𝑚D1

𝑃 (uK1 − u𝜎) + 𝑚𝜎𝐹𝜎K1

(︂
uK1 + u𝜎

2

)︂
+ 𝑚2

𝜎

2Re𝑚D1

𝐵𝜎K1(uK1 − u𝜎)

= − 𝑚2
𝜎

2Re𝑚D2

𝑃 (uK2 − u𝜎) − 𝑚𝜎𝐹𝜎K2

(︂
uK2 + u𝜎

2

)︂
− 𝑚2

𝜎

2Re𝑚D2

𝐵𝜎K2(uK2 − u𝜎).

We group the terms in u𝜎 thanks to 𝐹𝜎K1 = −𝐹𝜎K2 , and we obtain:

𝑚2
𝜎

2Re𝑚D1

(𝑃 + 𝐵𝜎K1Id) uK1 + 𝑚2
𝜎

2Re𝑚D2

(𝑃 + 𝐵𝜎K2Id) uK2 + 1
2𝑚𝜎𝐹𝜎K1(uK1 − uK2)

=
(︂

𝑚2
𝜎

2Re𝑚D1

(𝑃 + 𝐵𝜎K1Id) + 𝑚2
𝜎

2Re𝑚D2

(𝑃 + 𝐵𝜎K2Id)
)︂

u𝜎. (5.8)

By Definition 5.1, equation (5.8) becomes:

𝐴1uK1 + 𝐴2uK2 + 1
2𝑚𝜎𝐹𝜎K1(uK1 − uK2) = 𝐴u𝜎. (5.9)

It is sufficient to show that this expression is injective; if (uT, 𝑝D) is equal to zero, we are going to show that
u𝜎 is zero. This is true because, if (uT, 𝑝D) vanishes, this means in particular uK1 = uK2 = 0 and (5.9) becomes
𝐴u𝜎 = 0. Since 𝐴 is definite positive, see Remark 5.2, we deduce u𝜎 = 0. �
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It is possible to obtain property (5.1), by adapting the fluxes on the interface.

Proposition 5.4. Let D be a diamond and let D1, D2 be the two semi-diamonds such that D = D1 ∪D2, see Figure 6.
Then there exists a unique flux ̃︀ℱ𝜎K on 𝜎 = K1|K2 such that

𝑚𝜎
̃︀ℱ𝜎K = 𝑚𝜎ℱ𝜎K1 = −𝑚𝜎ℱ𝜎K2 ,

given by

𝑚𝜎
̃︀ℱ𝜎K = −𝑚𝜎𝜎D(uT, 𝑝D) n⃗𝜎K + 𝑚𝜎𝐹𝜎K

(︂
uK1 + uK2

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

̃︀𝐵𝜎K(uK1 − uK2), (5.10)

̃︀𝐵𝜎K = 2Re𝑚D

𝑚2
𝜎

(︃
𝐴1𝐴2 +

(︂
1
2𝑚𝜎𝐹𝜎K

)︂2
Id
)︃

𝐴−1 − 𝑃. (5.11)

Proof. We consider ℱ𝜎K1 and we refer the reader to Figure 6: we recall that it is a flux on the semi-diamond D1
of vertices 𝑥K1 , 𝑥K* , 𝑥L* , 𝑥𝜎. Thanks to (5.6), it can be written as:

𝑚𝜎ℱ𝜎K1 = 𝐴1(uK1 − u𝜎) + 𝑚𝜎𝐹𝜎K1

(︂
uK1 + u𝜎

2

)︂
+

𝑚𝜎𝑚𝜎*
1

2Re𝑚D1

(n⃗𝜎K1 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K1)(uK* − uL*) + 𝑚𝜎𝑝Dn⃗𝜎K1 .

Definition (5.3) of u𝜎 ensures (5.4), i.e. 𝑚𝜎ℱ𝜎K1 = −𝑚𝜎ℱ𝜎K2 . By grouping the terms in uK1 and u𝜎 in 𝑚𝜎ℱ𝜎K1 ,
we are thus led to

𝑚𝜎ℱ𝜎K1 =
(︂

𝐴1 + 1
2𝑚𝜎𝐹𝜎K1Id

)︂
uK1 +

(︂
−𝐴1 + 1

2𝑚𝜎𝐹𝜎K1Id
)︂

𝐴−1
[︂
𝐴1uK1 + 𝐴2uK2 + 1

2𝑚𝜎𝐹𝜎K1(uK1 − uK2)
]︂

+
𝑚𝜎𝑚𝜎*

1

2Re𝑚D1

(n⃗𝜎K1 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K1) (uK* − uL*) + 𝑚𝜎𝑝Dn⃗𝜎K1

that can be written as:

𝑚𝜎ℱ𝜎K1 =
[︂(︂

𝐴1 + 1
2𝑚𝜎𝐹𝜎K1Id

)︂
+
(︂

−𝐴1 + 1
2𝑚𝜎𝐹𝜎K1Id

)︂
𝐴−1

(︂
𝐴1 + 1

2𝑚𝜎𝐹𝜎K1Id
)︂]︂

uK1

+
(︂

−𝐴1 + 1
2𝑚𝜎𝐹𝜎K1Id

)︂
𝐴−1

(︂
𝐴2 − 1

2𝑚𝜎𝐹𝜎K1

)︂
uK2

+
𝑚𝜎𝑚𝜎*

1

2Re𝑚D1

(n⃗𝜎K1 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K1)(uK* − uL*) + 𝑚𝜎𝑝Dn⃗𝜎K1 .

According to Remark 5.2, the matrices 𝐴 and 𝐴𝑖 commute, for 𝑖 = 1, 2. Hence, we can write

𝑚𝜎ℱ𝜎K1 =
(︂

𝐴1 + 1
2𝑚𝜎𝐹𝜎K1Id

)︂⎡⎣ =𝐴2⏞  ⏟  
𝐴 − 𝐴1 +1

2𝑚𝜎𝐹𝜎K1Id

⎤⎦𝐴−1 uK1

+
(︂

−𝐴1 + 1
2𝑚𝜎𝐹𝜎K1Id

)︂(︂
𝐴2 − 1

2𝑚𝜎𝐹𝜎K1Id
)︂

𝐴−1 uK2

+
𝑚𝜎𝑚𝜎*

1

2Re𝑚D1

(n⃗𝜎K1 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K1)(uK* − uL*) + 𝑚𝜎𝑝Dn⃗𝜎K1 .

We develop the computations and we find:

𝑚𝜎ℱ𝜎K1 =
[︃(︃

𝐴1𝐴2 +
(︂

1
2𝑚𝜎𝐹𝜎K

)︂2
Id
)︃

𝐴−1

]︃
(uK1 − uK2)
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+
𝑚𝜎𝑚𝜎*

1

2Re𝑚D1

(n⃗𝜎K1 · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K1) (uK* − uL*) + 𝑚𝜎𝑝Dn⃗𝜎K1 + 𝑚𝜎𝐹𝜎K1

(︂
uK1 + uK2

2

)︂
·

Let ̃︀𝐵𝜎K be the matrix defined in (5.11). We get:

𝑚2
𝜎

2Re𝑚D

(𝑃 + ̃︀𝐵𝜎K) =
(︃

𝐴1𝐴2 +
(︂

1
2𝑚𝜎𝐹𝜎K

)︂2
Id
)︃

𝐴−1.

Since 𝑚𝜎𝐹𝜎K = 𝑚𝜎𝐹𝜎K1 = −𝑚𝜎𝐹𝜎K2 , n⃗𝜎K = n⃗𝜎K1 and
𝑚𝜎*

1
𝑚D1

= 𝑚𝜎*

𝑚D
(see Fig. 6), we end up with:

𝑚𝜎ℱ𝜎K1 = 𝑚2
𝜎

2Re𝑚D

(︁
𝑃 + ̃︀𝐵𝜎K

)︁
(uK1 − uK2)

+ 𝑚𝜎𝑚𝜎*

2Re𝑚D

(n⃗𝜎K · n⃗𝜎*K*Id + n⃗𝜎*K* ⊗ n⃗𝜎K) (uK* − uL*) + 𝑚𝜎𝑝Dn⃗𝜎K + 𝑚𝜎𝐹𝜎K

(︂
uK1 + uK2

2

)︂
·

We remark that now the expression of 𝑚𝜎ℱ𝜎K1 depends only on the unknowns uK1 , uK2 , uK* , uL* ; so it is a flux
defined on the entire diamond D (see Fig. 6). It can be rewritten as:

𝑚𝜎ℱ𝜎K1 = −𝑚𝜎𝜎D(uT, 𝑝D) n⃗𝜎K + 𝑚𝜎𝐹𝜎K

(︂
uK1 + uK2

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

̃︀𝐵𝜎K(uK1 − uK2) := 𝑚𝜎
̃︀ℱ𝜎K.

So that we find (5.10). �

We proceed similarly to obtain (5.2):
Proposition 5.5. Let D be a diamond and let D1, D2 be the two semi-diamonds such that D = D1 ∪D2, see Figure 6.
Then, for K* ∈ 𝜕M*

Γ, there exists a unique flux ̃︀ℱ𝜎*K* on 𝜎* = 𝜎*
1 ∪ 𝜎*

2 = [𝑥K1 , 𝑥L] ∪ [𝑥L, 𝑥K2 ] such that

𝑚𝜎* ̃︀ℱ𝜎*K* = 𝑚𝜎*
1
ℱ𝜎*

1 K* + 𝑚𝜎*
2
ℱ𝜎*

2 K* , (5.12)

given by

̃︀ℱ𝜎*K* = −𝑚𝜎*𝜎D(uT, 𝑝D) n⃗𝜎*K* + 𝑚𝜎*𝐹𝜎*K*

(︂
uK* + uL*

2

)︂
+ 𝑚2

𝜎*

2Re𝑚D

̃︀𝐵𝜎*K*(uK* − uL*), (5.13)

̃︀𝐵𝜎*K* =
𝑚𝜎*

1

𝑚𝜎*
𝐵𝜎*

1 K* +
𝑚𝜎*

2

𝑚𝜎*
𝐵𝜎*

2 K* . (5.14)

Proof. This is a direct consequence of the computation of (5.12). By definition,

𝑚𝜎*
1
ℱ𝜎*

1 K* = −𝑚𝜎*
1
𝜎D (uT, 𝑝D) n⃗𝜎*K* + 𝑚𝜎*

1
𝐹𝜎*K*

1

(︂
uK* + uL*

2

)︂
+

𝑚2
𝜎*

1

2Re𝑚D1

𝐵𝜎*
1 K* (uK* − uL*) ,

𝑚𝜎*
2
ℱ𝜎*

2 K* = −𝑚𝜎*
2
𝜎D (uT, 𝑝D) n⃗𝜎*K* + 𝑚𝜎*

2
𝐹𝜎*K*

2

(︂
uK* + uL*

2

)︂
+

𝑚2
𝜎*

2

2Re𝑚D2

𝐵𝜎*
2 K* (uK* − uL*) .

Since 𝜎* = 𝜎*
1 ∪ 𝜎*

2 , we have 𝑚𝜎* = 𝑚𝜎*
1

+ 𝑚𝜎*
2

and
𝑚𝜎*

2
𝑚D2

=
𝑚𝜎*

1
𝑚D1

. By definition, it holds 𝑚𝜎*𝐹𝜎*K* = 𝑚𝜎*
1
𝐹𝜎*K*

1
+

𝑚𝜎*
2
𝐹𝜎*K*

2
. So if we take the sum of the two fluxes, we get:

𝑚𝜎*
1
ℱ𝜎*

1 K* + 𝑚𝜎*
2
ℱ𝜎*

2 K* = −𝑚𝜎*𝜎D (uT, 𝑝D) n⃗𝜎*K* + 𝑚𝜎*𝐹𝜎*K*

(︂
uK* + uL*

2

)︂
+ 𝑚2

𝜎*

2Re𝑚D1

[︂
𝑚𝜎*

1

𝑚𝜎*
𝐵𝜎*

1 K* +
𝑚𝜎*

2

𝑚𝜎*
𝐵𝜎*

2 K*

]︂
⏟  ⏞  

=̃︀𝐵𝜎*K*

(uK* − uL*) ,

which ends the proof. �
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5.3. Well-posedness of the limit problem ( ̃︀𝒫)

The expression of the new fluxes ̃︀ℱ𝜎K, ̃︀ℱ𝜎*K* permits us to justify the well-posedness of ( ̃︀𝒫).

Theorem 5.6. Under Hypothesis (ℋ𝑝) for 𝐵𝜎K, 𝐵𝜎*K* , problem ( ̃︀𝒫) is well-posed.

Proof. By Theorem 3.3, we need to verify that Hypothesis (ℋ𝑝) holds. Since we are supposing it for 𝐵𝜎K, 𝐵𝜎*K* ,
we just need to check it for ̃︀𝐵𝜎K, ̃︀𝐵𝜎*K* , the modified fluxes on the interface. As a direct consequence of (5.11)
and (5.14), we have: ̃︀𝐵𝜎K = ̃︀𝐵𝜎L, ̃︀𝐵𝜎*K* = ̃︀𝐵𝜎*L* .

In fact, if we consider a diamond on the interface between the two subdomains Ω1, Ω2, it can be seen as the one
in Figure 6. For K = K1 and L = K2, equation (5.11) reads

̃︀𝐵𝜎K = ̃︀𝐵𝜎K1 = 2Re𝑚D

𝑚2
𝜎

(︃
𝐴1𝐴2 +

(︂
1
2𝑚𝜎𝐹𝜎K1

)︂2
Id
)︃

𝐴−1 − 𝑃,

̃︀𝐵𝜎L = ̃︀𝐵𝜎K2 = 2Re𝑚D

𝑚2
𝜎

(︃
𝐴2𝐴1 +

(︂
1
2𝑚𝜎𝐹𝜎K2

)︂2
Id
)︃

𝐴−1 − 𝑃.

Observe that 𝐴, 𝑃 do not depend on the index of the subdomain; moreover, we have 𝑚𝜎𝐹𝜎K1 = −𝑚𝜎𝐹𝜎K2 , so
that (𝑚𝜎𝐹𝜎K1)2 = (𝑚𝜎𝐹𝜎K2)2 and 𝐴1𝐴2 = 𝐴2𝐴1 from Remark 5.2. We conclude that ̃︀𝐵𝜎K = ̃︀𝐵𝜎L.

For the dual flux, equation (5.14) becomes

̃︀𝐵𝜎*K* =
𝑚𝜎*

1

𝑚𝜎*
𝐵𝜎*

1 K* +
𝑚𝜎*

2

𝑚𝜎*
𝐵𝜎*

2 K* ,

̃︀𝐵𝜎*L* =
𝑚𝜎*

1

𝑚𝜎*
𝐵𝜎*

1 L* +
𝑚𝜎*

2

𝑚𝜎*
𝐵𝜎*

2 L* .

Thanks to (ℋ𝑝), we have 𝐵𝜎*
1 K* = 𝐵𝜎*

1 L* and 𝐵𝜎*
2 K* = 𝐵𝜎*

2 L* . So we get ̃︀𝐵𝜎*K* = ̃︀𝐵𝜎*L* .

We are left with the task of proving that ̃︀𝐵𝜎K, ̃︀𝐵𝜎*K* are semi-definite positive. If n⃗𝜎K =
(︂

𝑥
𝑦

)︂
, then 𝑃 =

Id + n⃗𝜎K ⊗ n⃗𝜎K =
(︂

1 + 𝑥2 𝑥𝑦
𝑥𝑦 1 + 𝑦2

)︂
. Let us introduce the quantities

den = 4𝑚2
𝜎

(︀
2 + 3𝐵𝜎K + 𝐵2

𝜎K

)︀
,

and
𝑎 = (𝑚DRe𝐹𝜎K)2(1 + 𝐵𝜎K) + 8𝑚2

𝜎𝐵𝜎K + 12𝑚2
𝜎𝐵2

𝜎K + 4𝑚2
𝜎𝐵3

𝜎K.

Coming back to (5.11), we have

̃︀𝐵𝜎K = 1
den

[︂
𝑎Id + (𝑚DRe𝐹𝜎K)2

(︂
𝑦2 −𝑥𝑦

−𝑥𝑦 𝑥2

)︂]︂
.

Let 𝑣 =
(︂

𝑣1
𝑣2

)︂
; then:

⟨ ̃︀𝐵𝜎K𝑣, 𝑣⟩ = 1
den𝑎⟨𝑣, 𝑣⟩ + (𝑚DRe𝐹𝜎K)2

den
(︀
𝑦2𝑣2

1 − 2𝑥𝑦𝑣1𝑣2 + 𝑥2𝑣2
2
)︀

= 1
den𝑎‖𝑣‖2 + (𝑚DRe𝐹𝜎K)2

den (𝑦𝑣1 − 𝑥𝑣2)2 ≥ 0.

thanks to Hypothesis (ℋ𝑝) on 𝐵𝜎K, that ensures 𝑎 ≥ 0 and den > 0. So ̃︀𝐵𝜎K is semi-definite positive.
For what concerns the dual flux, by (5.14) we obtain directly that ̃︀𝐵𝜎*K* is semi-definite positive since it is

the sum of the two semi-definite positive matrices 𝐵𝜎*
1 K* and 𝐵𝜎*

2 K* . �
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Further comments on problem ( ̃︀𝒫) can be found in [25].

5.4. Identification of the limit
In order to prove the convergence of the Schwarz algorithm towards the solution of ( ̃︀𝒫), it is necessary to

project this solution, that is defined on Ω, on the subdomains Ω𝑗 , 𝑗 = 1, 2.

Theorem 5.7. Let T be the composite mesh T = T1 ∪ T2 and (uT, 𝑝D) be the solution of the DDFV scheme
( ̃︀𝒫) on the domain Ω. For 𝑗 ∈ {1, 2}, there exists a projection

(︁
u∞

T𝑗
, 𝑝∞

D𝑗
, Ψ∞

T𝑗
, h∞

T𝑗
, 𝑔∞

D𝑗

)︁
∈
(︀
R2)︀T𝑗 × RD𝑗 ×(︀

R2)︀𝜕M*
𝑗,Γ ×

(︀
R2)︀T𝑗 × RD𝑗 of (uT, 𝑝D), such that:

ℒT𝑗

Ω𝑗 ,Γ

(︁
u∞

T𝑗
, 𝑝∞

D𝑗
, Ψ∞

T𝑗
, fT𝑗

, ūT𝑗
, h∞

T𝑗
, 𝑔∞

D𝑗

)︁
= 0. ( ̃︀𝒫∞)

Proof. On the primal cells M𝑗 ∪ 𝜕M𝑗,Dir and on the dual cells M*
𝑗 ∪ 𝜕M*

𝑗,Dir ∪ 𝜕M*
𝑗,Γ we can simply define the

values of u∞
T𝑗

as the values of uT:

– for all K ∈ M𝑗 and K* ∈ M*
𝑗 ∪ 𝜕M*

𝑗,Γ, we set u∞
K𝑗

= uK and u∞
K*
j

= uK* ,
– for all K ∈ 𝜕M𝑗,Dir and K* ∈ 𝜕M*

𝑗,Dir, we set u∞
K𝑗

= 0 and u∞
K*
j

= 0.
– for all D ∈ D𝑗 such that 𝑥D /∈ Γ, we set 𝑝∞

D𝑗
= 𝑝D.

– for all D ∈ D𝑗 such that 𝑥D ∈ Γ, D𝑗 ∈ DΓ
𝑗 and D𝑖 ∈ DΓ

𝑖 , we set 𝑝∞
D𝑗

= 𝑝∞
D𝑖

= 𝑝D.

We then need to introduce new unknowns near the boundary Γ:

– for all L ∈ 𝜕M𝑗,Γ, we impose (see Prop. 5.3):

u∞
L = u∞

L𝑗
= u∞

Li
= 𝐴−1

[︂
𝐴𝑗uK𝑗 + 𝐴𝑖uK𝑖 + 1

2𝑚𝜎𝐹𝜎K1

(︀
uK𝑗 − uK𝑖

)︀]︂
, (5.15)

– for all K* ∈ M* such that 𝑥K* ∈ Γ, K* = K*
j ∪ K*

i with K*
j ∈ 𝜕M*

𝑗,Γ, we impose:

Ψ∞
K*
j

= −Ψ∞
K*
i

= −
𝑚K*

j

𝑚𝜕Ω∩𝜕K*

u∞
K*
j

𝛿𝑡
− 1

𝑚𝜕Ω∩𝜕K*

∑︁
D∈DK*

j

ℱ∞
𝜎*

𝑗
K* +

𝑚K*
j

𝑚𝜕Ω∩𝜕K*
fK*

j
+

𝑚K*
j

𝑚𝜕Ω∩𝜕K*

ūK*
j

𝛿𝑡
,

– for all L = L𝑗 ∈ 𝜕M𝑗,Γ and for all K* ∈ M* such that 𝑥K* ∈ Γ, K* = K*
j ∪ K*

i with K*
j ∈ 𝜕M*

𝑗,Γ, K*
i ∈ 𝜕M*

𝑖,Γ, we
impose:

h∞
L𝑗

= ℱ∞
𝜎K𝑖

− 1
2𝐹𝜎K𝑖u∞

L + 𝜆u∞
L ,

h∞
K*
j

= Ψ∞
K*
i

− 1
2𝐻K*

i
u∞

K*
i

+ 𝜆u∞
K*
i

,

– for all D ∈ D such that 𝑥D ∈ Γ, D𝑗 ∈ DΓ
𝑗 and D𝑖 ∈ DΓ

𝑖 , we set

𝑔∞
D𝑗

= −
(︀
𝑚D𝑖divD𝑖

(︀
u∞

T𝑖

)︀
− 𝛽𝑚D𝑖d

2
D𝑖

ΔD𝑖𝑝∞
D𝑖

)︀
+ 𝛼𝑚D𝑖𝑝

∞
D𝑖

.

Consequence on the equations
We now show that from a solution (uT, 𝑝D) of the DDFV scheme ( ̃︀𝒫) we built a solution to ( ̃︀𝒫∞):

– ∀K ∈ M, (uT, 𝑝D) satisfies:

𝑚K

uK

𝛿𝑡
+

∑︁
D∈DK∖DΓ

K

𝑚𝜎ℱ𝜎K +
∑︁

D∈DΓ
K

𝑚𝜎
̃︀ℱ𝜎K = 𝑚KfK + 𝑚K

ūK

𝛿𝑡
·
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If we look at the composite mesh (see Fig. 4), we remark that the primal cells K ∈ M correspond to Kj ∈ M𝑗

(or to Ki ∈ M𝑖). This implies that 𝑚K = 𝑚Kj , 𝑚KfK =
∫︀

K f(𝑥)d𝑥 = 𝑚KjfK𝑗
and 𝑚K

ūK
𝛿𝑡 = 𝑚Kj

ūKj
𝛿𝑡 .

Moreover, for a diamond D ∈ DK ∖DΓ
K , remark that the limit unknowns u∞

K𝑗
, u∞

K*
j

, 𝑝∞
D𝑗

on T𝑗 for 𝑗 = 1, 2 coincide
with uK, uK* , 𝑝D on T; so if

𝑚𝜎ℱ∞
𝜎K𝑗

= −𝑚𝜎𝜎D
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

)︁
n⃗𝜎K𝑗 + 𝑚𝜎𝐹𝜎K

(︂u∞
K𝑗

+ u∞
L𝑗

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

𝐵𝜎K

(︁
u∞

K𝑗
− u∞

L𝑗

)︁
,

we have: ∑︁
D∈DK∖DΓ

K

𝑚𝜎ℱ𝜎K =
∑︁

D∈DKj ∖DΓ
K𝑗

𝑚𝜎ℱ∞
𝜎K𝑗

.

For a diamond D ∈ DΓ
K , if

𝑚𝜎ℱ∞
𝜎K𝑗

= −𝑚𝜎𝜎D
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

)︁
n⃗𝜎K𝑗 + 𝑚𝜎𝐹𝜎K

(︂u∞
K𝑗

+ u∞
L

2

)︂
+ 𝑚2

𝜎

2Re𝑚D

𝐵𝜎K𝑗

(︁
u∞

K𝑗
− u∞

L

)︁
,

thanks to the choice (5.15) of u∞
L for all L ∈ 𝜕M𝑗,Γ and thanks to Proposition 5.4, we have

𝑚𝜎
̃︀ℱ𝜎K = 𝑚𝜎ℱ∞

𝜎K𝑗
,

that implies: ∑︁
D∈DΓ

K

𝑚𝜎
̃︀ℱ𝜎K =

∑︁
D∈DΓ

K𝑗

𝑚𝜎ℱ∞
𝜎K𝑗

.

So in the end
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
satisfies:

𝑚Kj

u∞
K𝑗

𝛿𝑡
+
∑︁

D∈DKj

𝑚𝜎ℱ∞
𝜎K𝑗

= 𝑚KjfKj + 𝑚Kj

ūKj

𝛿𝑡
, ∀Kj ∈ M𝑗 . (5.16)

– ∀K* ∈ M*, (uT, 𝑝D) satisfies:

𝑚K*
uK*

𝛿𝑡
+

∑︁
D∈DK* ∖DΓ

K*

𝑚𝜎*ℱ𝜎*K* +
∑︁

D∈DΓ
K*

𝑚𝜎* ̃︀ℱ𝜎*K* = 𝑚K*fK* + 𝑚K*
ūK*

𝛿𝑡
· (5.17)

We need to distinguish two cases.
(1) If 𝜕K* ∩ Γ = ∅, equation (5.17) reduces to:

𝑚K*
uK*

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ𝜎*K* = 𝑚K*fK* + 𝑚K*
ūK*

𝛿𝑡
,

and the cells K* ∈ M* correspond to K*
j ∈ M*

𝑗 (or to Ki ∈ M*
𝑖 ). This implies that 𝑚K* = 𝑚K*

j
, 𝑚K*fK* =∫︀

K* f(𝑥)d𝑥 = 𝑚K*
j
fK*

j
, 𝑚K*

ūK*

𝛿𝑡 = 𝑚K*
j

ūK*
j

𝛿𝑡 and 𝑚𝜎* = 𝑚𝜎*
𝑗
.

Moreover, for a diamond D ∈ DK* ∖DΓ
K* , (that is the case here since we are supposing 𝜕K* ∩ Γ = ∅) remark

that the limit unknowns u∞
K𝑗

, u∞
K*
j

, 𝑝∞
D𝑗

on T𝑗 for 𝑗 = 1, 2 coincide with uK, uK* , 𝑝D on T. So if

𝑚𝜎*ℱ∞
𝜎*

𝑗
K* = −𝑚𝜎*

𝑗
𝜎D𝑗

(︁
u∞

T𝑗
, 𝑝∞

D𝑗

)︁
n⃗𝜎*K* + 𝑚𝜎*

𝑗
𝐹𝜎*

𝑗
K*

(︃
u∞

K*
j

+ u∞
L*
j

2

)︃
+ 𝑚2

𝜎

2Re𝑚D𝑗

𝐵𝜎*
𝑗

K*

(︁
u∞

K*
j

− u∞
L*
j

)︁
,
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we have: ∑︁
D∈DK*

𝑚𝜎*ℱ𝜎*K* =
∑︁

D∈DK*
j

𝑚𝜎*ℱ∞
𝜎*

𝑗
K* .

So
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
satisfies on the interior dual mesh:

𝑚K*
j

u∞
K*
j

𝛿𝑡
+
∑︁

D∈DK*
j

𝑚𝜎ℱ∞
𝜎*

𝑗
K* = 𝑚KjfK*

j
+ 𝑚K*

j

ūK*
j

𝛿𝑡
, ∀K*

j ∈ M*
𝑗 . (5.18)

(2) If 𝜕K* ∩ Γ ̸= ∅, the cell K* can be written as the union of Kj ∈ 𝜕M*
𝑗,Γ and Ki ∈ 𝜕M*

𝑖,Γ. This implies
that 𝑚K* = 𝑚K*

j
+ 𝑚K*

i
, 𝑚𝜎* = 𝑚𝜎*

𝑗
+ 𝑚𝜎*

𝑖
, 𝑚K*fK* =

∫︀
K* f(𝑥)d𝑥 = 𝑚K*

j
fK*

j
+ 𝑚K*

i
fK*

i
and 𝑚K*

ūK*

𝛿𝑡 =

𝑚K*
j

ūK*
j

𝛿𝑡 + 𝑚K*
i

ūK*
i

𝛿𝑡 .
Moreover, for a diamond D ∈ DK* ∖ DΓ

K* , remark that the limit unknowns u∞
K𝑗

, u∞
K*
j

, 𝑝∞
D𝑗

on T𝑗 for 𝑗 = 1, 2
coincide with uK, uK* , 𝑝D on T. So if

𝑚𝜎*ℱ∞
𝜎*

𝑗
K* = −𝑚𝜎*𝜎D

(︁
u∞

T𝑗
, 𝑝∞

D𝑗

)︁
n⃗𝜎*K* + 𝑚𝜎*𝐹𝜎*

𝑗
K*

(︃
u∞

K*
j

+ u∞
L*
j

2

)︃
+ 𝑚2

𝜎

2Re𝑚D

𝐵𝜎*
𝑗

K*

(︁
u∞

K*
j

− u∞
L*
j

)︁
,

and

𝑚𝜎*ℱ∞
𝜎*

𝑖
K* = −𝑚𝜎*

𝑖
𝜎D𝑗
(︀
u∞

T𝑖
, 𝑝∞

D𝑖

)︀
n⃗𝜎*K* + 𝑚𝜎*

𝑖
𝐹𝜎*

𝑖
K*

(︂u∞
K*
i

+ u∞
L*
i

2

)︂
+ 𝑚2

𝜎

2Re𝑚D𝑖

𝐵𝜎*
𝑖

K*

(︁
u∞

K*
i

− u∞
L*
i

)︁
,

we have: ∑︁
D∈DK* ∖DΓ

K*

𝑚𝜎*ℱ𝜎*K* =
∑︁

D∈DK*
j

∖DΓ
K*
j

𝑚𝜎*
𝑗
ℱ∞

𝜎*
𝑗

K* +
∑︁

D∈DK*
i

∖DΓ
K*
i

𝑚𝜎*
𝑖
ℱ∞

𝜎*
𝑖

K* .

For a diamond D ∈ DΓ
K* , thanks to (5.12), we have

𝑚𝜎* ̃︀ℱ𝜎*K* = 𝑚𝜎*
𝑗
ℱ∞

𝜎*
𝑗

K* + 𝑚𝜎*
𝑖
ℱ∞

𝜎*
𝑖

K* ,

that implies: ∑︁
D∈DΓ

K*

𝑚𝜎*ℱ𝜎*K* =
∑︁

D∈DΓ
K*
j

𝑚𝜎*
𝑗
ℱ∞

𝜎*
𝑗

K* +
∑︁

D∈DΓ
K*
i

𝑚𝜎*
𝑖
ℱ∞

𝜎*
𝑖

K* .

We deduce from (5.17):

𝑚K*
j

u∞
K*
j

𝛿𝑡
+ 𝑚K*

i

u∞
K*
i

𝛿𝑡
+
∑︁

D∈DK*
j

𝑚𝜎*
𝑗
ℱ∞

𝜎*
𝑗

K* +
∑︁

D∈DK*
i

𝑚𝜎*
𝑖
ℱ∞

𝜎*
𝑖

K* = 𝑚K*
j
fK*

j
+ 𝑚K*

i
fK*

i
+ 𝑚K*

j

ūK*
j

𝛿𝑡
+ 𝑚K*

i

ūK*
i

𝛿𝑡
·

By definition, Ψ∞
K*
i

satisfies:

Ψ∞
K*
i

= −Ψ∞
K*
j

= −
𝑚K*

i

𝑚𝜕Ω∩𝜕K*

u∞
K*
i

𝛿𝑡
− 1

𝑚𝜕Ω∩𝜕K*

∑︁
D∈DK*

i

𝑚𝜎*
𝑖
ℱ∞

𝜎*
𝑖

K* +
𝑚K*

i

𝑚𝜕Ω∩𝜕K*
fK*

i
+

𝑚K*
i

𝑚𝜕Ω∩𝜕K*

ūK*
i

𝛿𝑡
,

so
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
satisfies on the boundary dual mesh:

𝑚K*
j

u∞
K*
j

𝛿𝑡
+
∑︁

D∈DK*
j

𝑚𝜎*
𝑗
ℱ∞

𝜎*
𝑗

K* + 𝑚𝜕Ω∩𝜕K*Ψ∞
K*
j

= 𝑚K*
j
fK*

j
+ 𝑚K*

j

ūK*
j

𝛿𝑡
, ∀K*

j ∈ 𝜕M*
𝑗,Γ. (5.19)
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– ∀K ∈ M, with 𝜕K ∩ Γ ̸= ∅, if we look at the composite mesh, the diamond D ∈ DΓ
K can be written as the union

of D𝑗 ∈ DΓ
K𝑗

and D𝑖 ∈ DΓ
K𝑖

. By definition, we have 𝐹𝜎K𝑗
= −𝐹𝜎K𝑖

; moreover, thanks to the choice (5.15) of u∞
L

for all L ∈ 𝜕M𝑗,Γ and thanks to Proposition 5.4, we have 𝑚𝜎ℱ∞
𝜎K𝑗

= −𝑚𝜎ℱ∞
𝜎K𝑖

.
From the definition of h∞

T𝑖
, we get the relation:

h∞
L = ℱ∞

𝜎K𝑖
− 1

2𝐹𝜎K𝑖
u∞

L + 𝜆u∞
L = −ℱ∞

𝜎K𝑗
+ 1

2𝐹𝜎K𝑗
u∞

L + 𝜆u∞
L .

So
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
satisfies:

ℱ∞
𝜎K𝑖

− 1
2𝐹𝜎K𝑖

u∞
L + 𝜆u∞

L = −ℱ∞
𝜎K𝑗

+ 1
2𝐹𝜎K𝑗

u∞
L + 𝜆u∞

L . (5.20)

– ∀K* ∈ M*, with 𝜕K* ∩ Γ ̸= ∅, the cell K* can be written as the union of Kj ∈ 𝜕M*
𝑗,Γ and Ki ∈ 𝜕M*

𝑖,Γ. By
definition, we have 𝐻K*

j
= −𝐻K*

i
and Ψ∞

K*
i

= −Ψ∞
K*
j

. This leads, from the definition of h∞
T𝑖

, to the relation:

h∞
K*

𝑗
= Ψ∞

K*
i

− 1
2𝐻K*

i
u∞

K*
i

+ 𝜆u∞
K*
i

= −Ψ∞
K*
j

+ 1
2𝐻K*

j
u∞

K*
j

+ 𝜆u∞
K*
j

.

So
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
satisfies:

Ψ∞
K*
i

− 1
2𝐻K*

i
u∞

K*
i

+ 𝜆u∞
K*
i

= −Ψ∞
K*
j

+ 1
2𝐻K*

j
u∞

K*
j

+ 𝜆u∞
K*
j

. (5.21)

– for all D ∈ D, (uT, 𝑝D) satisfies:

𝑚DdivD(uT) − 𝛽𝑚Dd2
DΔD𝑝D = 0, ∀D ∈ D. (5.22)

We need to distinguish two cases:
(1) If D∩Γ = ∅, the diamond D coincides with a diamond D𝑗 ∈ D𝑗 (or with a diamond D𝑖 ∈ D𝑖). For a diamond

D ∈ D ∖ DΓ, remark that the limit unknowns u∞
K𝑗

, u∞
K*
j

, 𝑝∞
D𝑗

on T𝑗 for 𝑗 = 1, 2 coincide with uK, uK* , 𝑝D on

T. Thus we can directly deduce that
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
satisfies ∀D𝑗 ∈ D𝑗 ∖ DΓ

𝑗 :

𝑚D𝑗
divD𝑗

(︁
u∞

T𝑗

)︁
− 𝛽𝑚D𝑗

d2
D𝑗

ΔD𝑗 𝑝∞
D𝑗

= 0. (5.23)

(2) If D ∩ Γ ̸= ∅, the diamond D can be written as the union of D𝑗 ∈ DΓ
𝑗 and D𝑖 ∈ DΓ

𝑖 . This implies that the
divergence can be split as: 𝑚DdivD(uT) = 𝑚D𝑗

divD𝑗

(︁
u∞

T𝑗

)︁
+ 𝑚D𝑖

divD𝑖
(︀
u∞

T𝑖

)︀
. From (5.22), the choice of

unknowns 𝑝∞
D and from the definition of 𝑔∞

D𝑗
we obtain:

𝑔∞
D𝑗

= −
(︀
𝑚D𝑖divD𝑖

(︀
u∞

T𝑖

)︀
− 𝛽𝑚D𝑖d

2
D𝑖

ΔD𝑖𝑝∞
D𝑖

)︀
+𝛼𝑚D𝑖𝑝

∞
D𝑖

=
(︁

𝑚D𝑗
divD𝑗

(︁
u∞

T𝑗

)︁
− 𝛽𝑚D𝑗

d2
D𝑗

ΔD𝑗 𝑝∞
D𝑗

)︁
+𝛼𝑚D𝑗

𝑝∞
D𝑗

,

that implies for
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
that ∀D𝑗 ∈ DΓ

𝑗 :

−
(︀
𝑚D𝑖divD𝑖(u∞

T𝑖
) − 𝛽𝑚D𝑖d

2
D𝑖

ΔD𝑖𝑝∞
D𝑖

)︀
+ 𝛼𝑚D𝑖𝑝

∞
D𝑖

=
(︁

𝑚D𝑗 divD𝑗

(︁
u∞

T𝑗

)︁
− 𝛽𝑚D𝑗 d2

D𝑗
ΔD𝑗 𝑝∞

D𝑗

)︁
+ 𝛼𝑚D𝑗 𝑝∞

D𝑗
. (5.24)

To recapitulate, equations (5.16), (5.18)–(5.20), (5.21), (5.23), (5.24) show that
(︁

u∞
T𝑗

, 𝑝∞
D𝑗

, Ψ∞
T𝑗

)︁
is a solution to

( ̃︀𝒫∞). �
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5.5. Convergence of the DDFV Schwarz algorithm towards ( ̃︀𝒫)
Theorem 5.8 (Convergence of the discrete Schwarz algorithm). Under the hypothesis that 𝑚𝜎* = 2𝑚𝜎*

𝑖
= 2𝑚𝜎*

𝑗

for 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, the iterates of the Schwarz algorithm (𝒮1) and (𝒮2) converge as 𝑙 tends to infinity to the
solution of the DDFV scheme ( ̃︀𝒫) (up to a constant for the pressure).

The relation imposed on the 𝑚𝜎*
𝑖
’s – which also appears in Theorem 6.1 below – is not a restriction in

practice. Given a mesh of the entire domain and the interface Γ, we can adjust the centers 𝑥K neighboring the
interface so that the condition is fulfilled. It ensures that the diamonds of the global mesh are split into two
half-diamonds with equal area, see Figure 4. All meshes used for the simulations satisfy this condition.

Proof. The iterates of (𝒮1) and (𝒮2) satisfy:

ℒT𝑗

Ω𝑗 ,Γ

(︁
u𝑙

T𝑗
, 𝑝𝑙

D𝑗
, Ψ𝑙

T𝑗
, fT, ūT𝑗 , h𝑙−1

T𝑗
, 𝑔𝑙−1

D𝑗

)︁
= 0,

and
(︁

u∞
T𝑗

, Ψ∞
T𝑗

, 𝑝∞
D

)︁
, constructed from the solution of ( ̃︀𝒫) is solution to:

ℒT𝑗

Ω𝑗 ,Γ

(︁
u∞

T𝑗
, 𝑝∞

D𝑗
, Ψ∞

T𝑗
, fT𝑗 , ūT𝑗 , h∞

T𝑗
, 𝑔∞

D𝑗

)︁
= 0.

We define the errors
e𝑙

T𝑗
= u𝑙

T𝑗
− u∞

T𝑗
, Φ𝑙

T𝑗
= Ψ𝑙

T𝑗
− Ψ∞

T𝑗
, Π𝑙

D𝑗
= 𝑝𝑙

D𝑗
− 𝑝∞

D𝑗
. (5.25)

By linearity, they satisfy:
ℒT𝑗

Ω𝑗 ,Γ

(︁
e𝑙

T𝑗
, Π𝑙

D𝑗
, Φ𝑙

T𝑗
, 0, 0, H𝑙−1

T𝑗
, G𝑙−1

D𝑗

)︁
= 0, (5.26)

with

H𝑙−1
L𝑗

= ℱ 𝑙−1
𝜎K𝑖

− 1
2𝐹𝜎K𝑖e𝑙−1

Li
+ 𝜆e𝑙−1

Li
, ∀L𝑗 = L𝑖 ∈ 𝜕M𝑗,Γ

H𝑙−1
K*
j

= Φ𝑙−1
K*
i

− 1
2𝐻K*

i
e𝑙−1

K*
i

+ 𝜆e𝑙−1
K*
i

, ∀K*
j ∈ 𝜕M*

𝑗,Γ such that 𝑥K*
j

= 𝑥K*
i

G𝑙−1
D𝑗

= −
(︀
𝑚D𝑖divD𝑖

(︀
e𝑙−1

T𝑖

)︀
− 𝛽𝑚D𝑖d

2
D𝑖

ΔD𝑖Π𝑙−1
D𝑖

)︀
+ 𝛼𝑚D𝑖Π𝑙−1

D𝑖
∀D𝑗 ∈ DΓ

𝑗 such that 𝑥D𝑗 = 𝑥D𝑖 .

To prove the convergence of the iterates of Schwarz algorithm, it is sufficient to prove the convergence to 0 of
the solution of (5.26). In the expanded form, equation (5.26) is written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑚K

e𝑙
K𝑗

𝛿𝑡
+
∑︁

D∈DK

𝑚𝜎ℱ 𝑙
𝜎K𝑗

= 0 ∀Kj ∈ M𝑗

𝑚K*

e𝑙
K*
j

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ 𝑙
𝜎*

𝑗
K* = 0 ∀K*

j ∈ M*
𝑗

𝑚K*

e𝑙
K*
j

𝛿𝑡
+
∑︁

D∈DK*

𝑚𝜎*ℱ 𝑙
𝜎*

𝑗
K* + 𝑚𝜕Ω∩𝜕K*Φ𝑙

K*
j

= 0 ∀K*
j ∈ 𝜕M*

𝑗,Γ

−ℱ 𝑙
𝜎K𝑗

+ 1
2𝐹𝜎K𝑗 e𝑙

Lj
+ 𝜆e𝑙

Lj
= H𝑙−1

L𝑗
∀𝜎 ∈ 𝜕M𝑗,Γ

−Φ𝑙
K*
j

+ 1
2𝐻K*

j
e𝑙

K*
j

+ 𝜆e𝑙
K*
j

= H𝑙−1
K*
j

∀K*
j ∈ 𝜕M*

𝑗,Γ

𝑚D𝑗
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽𝑚D𝑗

d2
D𝑗

ΔD𝑗 Π𝑙
D𝑗

= 0 ∀D𝑗 ∈ D𝑗 ∖ DΓ
𝑗

𝑚D𝑗
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽𝑚D𝑗

d2
D𝑗

ΔD𝑗 Π𝑙
D𝑗

+ 𝛼𝑚D𝑗
Π𝑙

D𝑗
= G𝑙−1

D𝑗
∀D𝑗 ∈ DΓ

𝑗 .
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Thanks to the hypothesis 𝑚𝜎* = 2𝑚𝜎*
𝑖

= 2𝑚𝜎*
𝑗
, we have 𝑚D𝑖

= 𝑚D𝑗
; so, in the equation on D𝑗 ∈ DΓ

𝑗 , we can
simplify the measures and it becomes:

divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

D𝑗
+ 𝛼 Π𝑙

D𝑗
= −

(︀
divD𝑖

(︀
e𝑙−1

T𝑖

)︀
− 𝛽d2

D𝑖
ΔD𝑖Π𝑙−1

D𝑖

)︀
+ 𝛼Π𝑙−1

D𝑖
.

We multiply the equations by e𝑙
T𝑗

and we sum over all the control volumes, as in the proof of Theorem 4.4. We
obtain, analogously to (4.3), the following:

1
𝛿𝑡

‖e𝑙
T𝑗

‖2
2 + 2

Re‖|DD𝑗 e𝑙
T𝑗

‖|22 −
(︁

Π𝑙
D𝑗

, divD𝑗

(︁
e𝑙

T𝑗

)︁)︁
D𝑗

+ 1
2
∑︁

D∈DΓ
𝑗

𝑚𝜎

(︂
ℱ 𝑙

𝜎K𝑗
− 1

2𝐹𝜎K𝑗 e𝑙
Lj

)︂
· e𝑙

Lj
+ 1

2
∑︁

K*∈𝜕M*
𝑗,Γ

𝑚𝜕Ω∩𝜕K*

(︂
Φ𝑙

K*
j

− 1
2𝐻K*

j
e𝑙

K*
j

)︂
· e𝑙

K*
j

+ 1
2
∑︁

D∈D𝑗

𝑚2
𝜎

2Re𝑚D

𝐵𝜎K|e𝑙
K𝑗

− e𝑙
Lj

|2 + 1
2
∑︁

D∈D𝑗

𝑚2
𝜎*

2Re𝑚D

𝐵𝜎*K* |e𝑙
K*
j

− e𝑙
L*

𝑗
|2

⏟  ⏞  
≥0

= 0. (5.27)

By the equations on DΓ
𝑗 , we can split the scalar product into interior diamonds D∖DΓ

𝑗 and boundary diamonds
DΓ

𝑗 :
−
(︁

Π𝑙
D𝑗

, divD𝑗

(︁
e𝑙

T𝑗

)︁)︁
D𝑗

= −
∑︁

D𝑗∈D𝑗∖DΓ
𝑗

𝑚D𝑗 Π𝑙
D𝑗

divD𝑗

(︁
e𝑙

T𝑗

)︁
−
∑︁

D𝑗∈DΓ
𝑗

𝑚D𝑗 Π𝑙
D𝑗

divD𝑗

(︁
e𝑙

T𝑗

)︁
;

for the diamonds D𝑗 ∈ D𝑗 ∖ DΓ
𝑗 we apply the equation of conservation of mass, for the diamonds D𝑗 ∈ DΓ

𝑗 we add
and subtract the term

∑︀
D𝑗∈D𝑗

𝑚D𝑗
𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

· Π𝑙
DΓ

𝑗

:

−
(︁

Π𝑙
D𝑗

, divD𝑗

(︁
e𝑙

T𝑗

)︁)︁
D𝑗

= −𝛽
∑︁

D𝑗∈D𝑗∖DΓ
𝑗

𝑚D𝑗
d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

· Π𝑙
DΓ

𝑗
− 𝛽

∑︁
D𝑗∈DΓ

𝑗

𝑚D𝑗
d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

· Π𝑙
DΓ

𝑗

−
∑︁

D𝑗∈DΓ
𝑗

𝑚D𝑗
Π𝑙

D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁
.

We apply (2.1) to the term −𝛽
∑︀

D𝑗∈D𝑗
𝑚D𝑗

d2
D𝑗

ΔD𝑗 Π𝑙
DΓ

𝑗

· Π𝑙
DΓ

𝑗

= −𝛽
(︁

d2
D𝑗

ΔD𝑗 Π𝑙
D𝑗

, Π𝑙
D𝑗

)︁
; we then multiply and

divide
∑︀

D𝑗∈DΓ
𝑗

𝑚D𝑗
Π𝑙

D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁
by 𝛼 to finally obtain:

−
(︁

Π𝑙
D𝑗

, divD𝑗

(︁
e𝑙

T𝑗

)︁)︁
D𝑗

= 𝛽 |Π𝑙
D𝑗

|2 − 1
𝛼

∑︁
D𝑗∈DΓ

𝑗

𝑚D𝑗
𝛼 Π𝑙

D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁
.

So (5.27) becomes:

1
𝛿𝑡

‖e𝑙
T𝑗

‖2
2 + 2

Re‖|DD𝑗 e𝑙
T𝑗

‖|22 + 𝛽 |Π𝑙
D𝑗

|2 − 1
𝛼

∑︁
D𝑗∈DΓ

𝑗

𝑚D𝑗 𝛼 Π𝑙
D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁

+ 1
2𝜆

∑︁
D∈DΓ

𝑗

𝑚𝜎

(︂
ℱ 𝑙

𝜎K𝑗
− 1

2𝐹𝜎K𝑗
e𝑙

Lj

)︂
· 𝜆e𝑙

Lj
+ 1

2𝜆

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K*

(︂
Φ𝑙

K*
j

− 1
2𝐻K*

j
e𝑙

K*
j

)︂
· 𝜆e𝑙

K*
j

≤ 0, (5.28)

where we multiplied and divided by 𝜆 > 0 the terms on the second line.
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We start by considering 1
2𝜆

∑︀
D∈DΓ

𝑗
𝑚𝜎

(︁
ℱ 𝑙

𝜎K𝑗
− 1

2 𝐹𝜎K𝑗 e𝑙
Lj

)︁
· 𝜆e𝑙

Lj
. By applying now the equality −𝑎𝑏 =

1
4
(︀
(−𝑎 + 𝑏)2 − (𝑎 + 𝑏)2)︀ we can write:

−
∑︁

D∈DΓ
𝑗

𝑚𝜎

(︂
ℱ 𝑙

𝜎K𝑗
− 1

2𝐹𝜎K𝑗 e𝑙
Lj

)︂
· 𝜆e𝑙

Lj
= 1

4
∑︁

D∈DΓ
𝑗

𝑚𝜎|ℱ 𝑙
𝜎K𝑗

− 1
2𝐹𝜎K𝑗 e𝑙

Lj
+ 𝜆e𝑙

Lj
|2

− 1
4
∑︁

D∈DΓ
𝑗

𝑚𝜎| −ℱ 𝑙
𝜎K𝑗

+ 1
2𝐹𝜎K𝑗

e𝑙
Lj

+ 𝜆e𝑙
Lj⏟  ⏞  

=H𝑙−1
L𝑗

|2.

Owing to the transmission conditions it becomes:

−
∑︁

D∈DΓ
𝑗

𝑚𝜎

(︂
ℱ 𝑙

𝜎K𝑗
− 1

2𝐹𝜎K𝑗 e𝑙
Lj

)︂
· 𝜆e𝑙

Lj
= 1

4
∑︁

D∈DΓ
𝑗

𝑚𝜎|ℱ 𝑙
𝜎K𝑗

− 1
2𝐹𝜎K𝑗 e𝑙

Lj
+ 𝜆e𝑙

Lj
|2

− 1
4
∑︁

D∈DΓ
𝑗

𝑚𝜎|ℱ 𝑙−1
𝜎K𝑖

− 1
2𝐹𝜎K𝑖e𝑙−1

Li
+ 𝜆e𝑙−1

Li
|2.

Equivalently for 1
2𝜆

∑︀
K*∈𝜕M*

𝑗,Γ
𝑚𝜕Ω∩𝜕K*

(︁
Φ𝑙

K*
j

− 1
2 𝐻K*

j
e𝑙

K*
j

)︁
· 𝜆e𝑙

K*
j
, we obtain:

−
∑︁

K*∈𝜕M*
𝑗,Γ

𝑚𝜕Ω∩𝜕K*

(︂
Φ𝑙

K*
j

− 1
2𝐻K*

j
e𝑙

K*
j

)︂
· 𝜆e𝑙

K*
j

= 1
4

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K* |Φ𝑙
K*
j

− 1
2𝐻K*

j
e𝑙

K*
j

+ 𝜆e𝑙
K*
j
|2

− 1
4

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K* |Φ𝑙−1
K*
i

− 1
2𝐻K*

j
e𝑙−1

K*
i

+ 𝜆e𝑙−1
K*
i

|2.

If now we consider 𝑚D𝑗 𝛼 Π𝑙
D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁
, thanks to the presence of the parameter 𝛼 in the

transmission conditions for the incompressibility constraint, we can treat it as the previous terms. In fact, with
the equality −𝑎𝑏 = 1

4
(︀
(−𝑎 + 𝑏)2 − (𝑎 + 𝑏)2)︀, we can write:

− −
∑︁

D𝑗∈DΓ
𝑗

𝑚D𝑗
𝛼 Π𝑙

D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁
= 1

4
∑︁

D∈DΓ
𝑗

𝑚D𝑗
|divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

− 𝛼 Π𝑙
D𝑗

|2

− 1
4
∑︁

D∈DΓ
𝑗

𝑚D𝑗
| divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

+ 𝛼 Π𝑙
D𝑗⏟  ⏞  

=
𝑚D𝑖
𝑚D𝑗

G𝑙−1
D𝑗

|2.

The hypothesis 𝑚𝜎* = 2𝑚𝜎*
𝑖

= 2𝑚𝜎*
𝑗

implies 𝑚D𝑖 = 𝑚D𝑗 , so that this expression becomes:

− −
∑︁

D𝑗∈DΓ
𝑗

𝑚D𝑗
𝛼 Π𝑙

D𝑗

(︁
divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

)︁
= 1

4
∑︁

D∈DΓ
𝑗

𝑚D𝑗
|divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

− 𝛼 Π𝑙
D𝑗

|2

− 1
4
∑︁

D∈DΓ
𝑗

𝑚D𝑖
|divD𝑗

(︀
e𝑙−1

T𝑖

)︀
− 𝛽d2

D𝑖
ΔD𝑖Π𝑙−1

DΓ
𝑖

− 𝛼 Π𝑙−1
D𝑖

|2.

Replacing those results into (5.28), we have:

1
𝛿𝑡

‖e𝑙
T𝑗

‖2
2 + 2

Re‖|DD𝑗 e𝑙
T𝑗

‖|22 + 𝛽 |Π𝑙
D𝑗

|2
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+ 1
4𝛼

∑︁
D∈DΓ

𝑗

𝑚D|divD𝑗

(︁
e𝑙

T𝑗

)︁
− 𝛽d2

D𝑗
ΔD𝑗 Π𝑙

DΓ
𝑗

− 𝛼 Π𝑙
D𝑗

|2

− 1
4𝛼

∑︁
D∈DΓ

𝑗

𝑚D|divD𝑗
(︀
e𝑙−1

T𝑖

)︀
− 𝛽d2

D𝑖
ΔD𝑖Π𝑙−1

DΓ
𝑖

− 𝛼 Π𝑙−1
D𝑖

|2

+ 1
8𝜆

∑︁
D∈DΓ

𝑗

𝑚𝜎|ℱ 𝑙
𝜎K𝑗

− 1
2𝐹𝜎K𝑗 e𝑙

Lj
+ 𝜆e𝑙

Lj
|2 − 1

8𝜆

∑︁
D∈DΓ

𝑗

𝑚𝜎|ℱ 𝑙−1
𝜎K𝑖

− 1
2𝐹𝜎K𝑖e𝑙−1

Li
+ 𝜆e𝑙−1

Li
|2

+ 1
8𝜆

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K* |Φ𝑙
K*
j

− 1
2𝐻K*

j
e𝑙

K*
j

+ 𝜆e𝑙
K*
j
|2 − 1

8𝜆

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K* |Φ𝑙−1
K*
i

− 1
2𝐻K*

j
e𝑙−1

K*
i

+ 𝜆e𝑙−1
K*
i

|2 ≤ 0.

Summing over 𝑙 = 0, . . . , 𝑙max and 𝑗 = 1, 2 we obtain:

𝑙max∑︁
𝑙=0

∑︁
𝑗=1,2

1
𝛿𝑡

‖e𝑙
T𝑗

‖2
2 +

𝑙max∑︁
𝑙=0

∑︁
𝑗=1,2

2
Re‖|DD𝑗 e𝑙

T𝑗
‖|22 +

𝑙max∑︁
𝑙=0

∑︁
𝑗=1,2

𝛽 |Π𝑙
D𝑗

|2

+ 1
4𝛼

∑︁
𝑗=1,2

∑︁
D∈DΓ

𝑗

𝑚D|divD𝑗

(︁
e𝑙max

T𝑗

)︁
− 𝛽dD𝑗

2ΔD𝑗 Π𝑙max
DΓ

𝑗

− 𝛼 Π𝑙max
D𝑗

|2

+ 1
8𝜆

∑︁
𝑗=1,2

∑︁
D∈DΓ

𝑗

𝑚𝜎|ℱ 𝑙max
𝜎K𝑗

− 1
2𝐹𝜎K𝑗

e𝑙max
Lj

+ 𝜆e𝑙max
Lj

|2

+ 1
8𝜆

∑︁
𝑗=1,2

∑︁
K*∈𝜕M*

𝑗,Γ

𝑚𝜕Ω∩𝜕K* |𝑚𝜕Ω∩𝜕K*Φ𝑙max
K*
j

− 1
2𝐻K*

j
e𝑙max

K*
j

+ 𝜆e𝑙max
K*
j

|2

≤ 1
4𝛼

∑︁
𝑗=1,2

∑︁
D∈DΓ

𝑗

𝑚D|divD𝑗

(︁
e0

T𝑗

)︁
− 𝛽dD𝑗

2ΔD𝑗 Π0
DΓ

𝑗
− 𝛼 Π0

D𝑗
|2

+ 1
8𝜆

∑︁
𝑗=1,2

∑︁
D∈DΓ

𝑗

𝑚𝜎|ℱ0
𝜎K𝑗

− 1
2𝐹𝜎K𝑗

e0
Lj

+ 𝜆e0
Lj

|2

+ 1
8𝜆

∑︁
𝑗=1,2

∑︁
K*∈𝜕M*

𝑗,Γ

|𝑚𝜕Ω∩𝜕K*Φ0
K*
j

− 1
2𝐻K*

j
e0

K*
j

+ 𝜆e0
K*
j
|2

that shows how the total energy stays bounded as the iteration index 𝑙max goes to infinity. The series∑︀∞
𝑙=0
∑︀

𝑗=1,2
1
𝛿𝑡 ‖e𝑙

T𝑗
‖2

2 and
∑︀∞

𝑙=0
∑︀

𝑗=1,2 𝛽 |Π𝑙
D𝑗

|2 converge, so their general term tends to zero, that implies
the convergence to zero of the errors ‖e𝑙

T𝑗
‖2

2, |Π𝑙
D𝑗

|2, defined in (5.25). Thus the algorithm converges.
The limit is the solution of problem ( ̃︀𝒫), that is problem (𝒫) with an appropriate choice of the flux on Γ; in

fact, we can deduce that, as 𝑙max goes to infinity:

– ‖e𝑙
T𝑗

‖2
2 tends to zero implies u𝑙

T𝑗
→ u∞

T𝑗
for 𝑗 = 1, 2.

– |Π𝑙
D𝑗

|2 tends to zero implies (since | · | is a semi-norm): 𝑝𝑙
D𝑗

+ const𝑙(Ω𝑗) → 𝑝∞
D𝑗

for 𝑗 = 1, 2. Thus the
pressure converges up to a constant that depends on the subdomain. In some cases we are able to determine
const𝑙(Ω𝑗).

�

Remark 5.9. We can determine the constant const𝑙(Ω𝑗) if we suppose that the mesh satisfies the Inf-Sup
inequality [5]. In fact, this implies that the norm ‖Π𝑙

D𝑗
− 𝑚

(︁
Π𝑙

D𝑗

)︁
‖2 ≤ 𝐶‖e𝑙

T𝑗
‖2 → 0 holds as 𝑙 → ∞, where
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𝑚
(︁

Π𝑙
D𝑗

)︁
= 1

|Ω𝑗 |
∑︀

D∈D 𝑚DΠD𝑗 . This means that ‖𝑝𝑙
D𝑗

− 𝑝∞
D𝑗

−
(︁

𝑚
(︁

𝑝𝑙
D𝑗

)︁
− 𝑚

(︁
𝑝∞

D𝑗

)︁)︁
⏟  ⏞  

const𝑙(Ω𝑗)

‖2 → 0, from which we

deduce that 𝑝𝑙
D𝑗

− 𝑚
(︁

𝑝𝑙
D𝑗

)︁
→ 𝑝∞

D𝑗
− 𝑚

(︁
𝑝∞

D𝑗

)︁
for 𝑗 = 1, 2.

6. A modified DDFV Schwarz algorithm
We now investigate whether it is possible to construct a discrete Schwarz algorithm with modified fluxes that

converges to the solution of (𝒫). We show that this is possible if we suppose an asymmetric discretization of
(1.1), in the sense that we need to consider an upwind discretization of the convection term on the primal mesh
and a centered scheme on the dual mesh, that corresponds to the choice

𝐵𝜎K(𝑠) = 1
2 |𝑠| and 𝐵𝜎*K*(𝑠) = 0

in (𝒫). We remind the reader that the convergence to ( ̃︀𝒫) holds if and only if both (5.11) and (5.14) hold, which
can be seen as a definition of ̃︀𝐵𝜎K (resp. ̃︀𝐵𝜎*K*) as a function of 𝐵𝜎K1 , 𝐵𝜎K2 (resp. 𝐵𝜎*

1 K* , 𝐵𝜎*
2 K*). The idea is to

modify the Schwarz algorithm, so that it converges to the solution of (𝒫); this relies on the ability to invert
these relations. Accordingly, the fluxes of the limit equation depend only on 𝐵𝜎K, 𝐵𝜎*K* and a different definition
of the fluxes is not required on the interface Γ.

Theorem 6.1. Let (uT, 𝑝D) be a solution of (𝒫) for convective fluxes defined by a constant upwind flux 𝐵𝜎K(𝑠) =
1
2 |𝑠| for all 𝜎 ∈ ℰ, and by the centered flux 𝐵𝜎*K*(𝑠) = 0 for all 𝜎* ∈ ℰ*. Define (𝑆) the Schwarz algorithm
where

– On the primal mesh, the discrete convective fluxes are defined as:

𝐵𝜎K(𝑠)Id if 𝜎 /∈ ℰΓ, 𝐵̄𝜎K(𝑠) if 𝜎 ∈ ℰΓ,

with:
𝐵̄𝜎K(𝑠) = 1

2𝑄

(︂
|𝑠| − 2 + 2

√︀
1 + |𝑠| 0

0 |𝑠| − 1 +
√︀

1 + 2|𝑠|

)︂
𝑄−1, (6.1)

and 𝑄 =
(︂

𝑥 𝑦
𝑦 −𝑥

)︂
, where n⃗𝜎K =

(︂
𝑥
𝑦

)︂
is the outward normal to the interface Γ.

– On the dual mesh, 𝐵𝜎*K*(𝑠) = 0.

Assuming 𝑚𝜎* = 2𝑚𝜎*
𝑗

= 2𝑚𝜎*
𝑖
, for 𝑗, 𝑖 = 1, 2, 𝑗 ̸= 𝑖, equation (𝒫) is the limit of the Schwarz algorithm (𝑆).

Proof. The assumption 𝑚𝜎* = 2𝑚𝜎*
𝑗

= 2𝑚𝜎*
𝑖

implies that 𝑚D1 = 𝑚D2 = 1
2 𝑚D and 𝐵𝜎K1 = 𝐵𝜎K2 = 𝐵𝜎K. This

means that
𝐴1 = 𝐴2 = 𝑚2

𝜎

Re𝑚D

(𝑃 + 𝐵𝜎KId)

and
𝐴 = 𝐴1 + 𝐴2 = 2𝑚2

𝜎

Re𝑚D

(𝑃 + 𝐵𝜎KId) = 2𝐴1 = 2𝐴2.

Moreover, 𝐴−1 = Re𝑚D
2𝑚2

𝜎
(𝑃 + 𝐵𝜎KId)−1. Therefore, we get

̃︀𝐵𝜎K = 2Re𝑚D

𝑚2
𝜎

(︃
1
4𝐴2 +

(︂
1
2𝑚𝜎𝐹𝜎K

)︂2
Id
)︃

𝐴−1 − 𝑃.
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Expanding this expression, we get:

̃︀𝐵𝜎K =
(︂

Re𝑚D

2𝑚2
𝜎

)︂
𝐴 + 2Re𝑚D

𝑚2
𝜎

(︂
1
2𝑚𝜎𝐹𝜎K

)︂2
𝐴−1 − 𝑃

= 𝑃 + 𝐵𝜎KId +
(︂

Re𝑚D

𝑚2
𝜎

)︂2(︂1
2𝑚𝜎𝐹𝜎K

)︂2
(𝑃 + 𝐵𝜎KId)−1 − 𝑃.

by using the definition of 𝐴 and 𝐴−1. Let us set 𝑠 = Re𝑚D
𝑚𝜎

𝐹𝜎K, We have
(︁

Re𝑚D
𝑚2

𝜎

)︁2 (︀ 1
2 𝑚𝜎𝐹𝜎K

)︀2 = 1
4 𝑠2, so we end

up with: ̃︀𝐵𝜎K = 𝐵𝜎KId + 1
4𝑠2(𝑃 + 𝐵𝜎KId)−1.

If we make explicit the dependences of ̃︀𝐵𝜎K, 𝐵𝜎K as a function of 𝑠, since 𝐵𝜎K is a function of 𝑚DRe
𝑚𝜎

𝐹𝜎K and ̃︀𝐵𝜎K

a function of 2𝑚DRe
𝑚𝜎

𝐹𝜎K, we are led to

̃︀𝐵𝜎K(2𝑠) = 𝐵𝜎K(𝑠)Id + 1
4𝑠2 (𝑃 + 𝐵𝜎K(𝑠)Id)−1

, for 𝑙 = 1, 2.

We can rewrite this condition as: ̃︀𝐵𝜎K = ϒ(𝐵𝜎K).

This relation implies that the Schwarz algorithm (𝒮1) and (𝒮2), whose convection fluxes depend on 𝐵𝜎K, converges
towards the solution of ( ̃︀𝒫), whose convection fluxes depend on ̃︀𝐵𝜎K for 𝜎 ∈ ℰΓ.

We want to build a new Schwarz algorithm (𝑆) that converges toward (𝒫), whose fluxes are defined by 𝐵𝜎K;
so we need to build 𝐵̄𝜎K such that:

𝐵𝜎K = ϒ(𝐵̄𝜎K),

where 𝐵𝜎K can be a full matrix. Since our goal is to converge towards the fluxes that define an upwind scheme,
i.e. defined by 𝐵(𝑠) = 1

2 |𝑠|, 𝐵𝜎K is actually a diagonal matrix, that will be denoted by 𝐵𝜎KId to make its matrix
nature clear.

Thus we need to invert the function ϒ defined above to find the new coefficients 𝐵̄𝜎K. The inverse of ϒ does
not exist for every 𝐵𝜎K. Given 𝑠 and 𝐵𝜎K(2𝑠), we have a second-degree equation for 𝐵̄𝜎K(𝑠):

𝐵̄𝜎K(𝑠)2 + 𝐵̄𝜎K(𝑠) (𝑃 − 𝐵𝜎K(2𝑠)Id)⏟  ⏞  
𝑇

+ 1
4𝑠2Id − 𝑃 𝐵𝜎K(2𝑠)Id⏟  ⏞  

𝑉

=
(︂

0 0
0 0

)︂
,

that is:
𝐵̄𝜎K(𝑠)2 + 𝐵̄𝜎K(𝑠)𝑇 + 𝑉 = 0.

Since the matrices 𝑇, 𝑉 are symmetric and they commute (because they are polynomials in 𝑃 ), they can be

diagonalized using the same basis of eigenvectors. The matrix 𝑄 =
(︂

𝑥 𝑦
𝑦 −𝑥

)︂
is an orthogonal matrix, and we

can write:
𝑇 = 𝑄 ̃︀𝑇 𝑄−1, 𝑉 = 𝑄 ̃︀𝑉 𝑄−1,

with ̃︀𝑇 and ̃︀𝑉 diagonal matrices, whose expressions are:

̃︀𝑇 =
(︂

2 − 𝐵𝜎K 0
0 1 − 𝐵𝜎K

)︂
, ̃︀𝑉 =

(︂ 1
4 𝑠2 − 2𝐵𝜎K 0

0 1
4 𝑠2 − 𝐵𝜎K

)︂
.

We then look for 𝐵̄𝜎K(𝑠) of the form 𝐵̄𝜎K(𝑠) = 𝑄 ̃︁𝑀 𝑄−1, with ̃︁𝑀 a diagonal matrix such that

̃︁𝑀2 + ̃︁𝑀 ̃︀𝑇 + ̃︀𝑉 = 0.
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Since we are supposing 𝐵𝜎K(𝑠) = 1
2 |𝑠|, the solution exists and is given by

̃︁𝑀 = 1
2

(︂
|𝑠| − 2 + 2

√︀
1 + |𝑠| 0

0 |𝑠| − 1 +
√︀

1 + 2|𝑠|

)︂
,

that leads to our result (6.1).
For what concerns property (5.14), we would like to define a unique 𝐵𝜎*K*(𝑠*) for 𝜎* ∈ ℰ* in the limit scheme

(𝒫). With the assumption 𝑚𝜎* = 2𝑚𝜎*
1

= 2𝑚𝜎*
2
, we can define 𝑠* = Re𝑚D

𝑚𝜎* 𝐹𝜎*K* and 𝑠*
𝑗 = Re𝑚D𝑗

𝑚𝜎*
𝑗

𝐹𝜎*
𝑗

K* for 𝑗 = 1, 2:
remark that there is no relation between the 𝑠*

𝑗 . We have 𝑠* = 𝑠*
𝑗 + 𝑠*

𝑖 , since 𝑚𝜎*
𝑗
𝐹𝜎*

𝑗
K* + 𝑚𝜎*

𝑖
𝐹𝜎*

𝑖
K* = 𝑚𝜎*𝐹𝜎*K* .

This leads to the new expression for (5.14):

̃︀𝐵𝜎*K*(𝑠*
𝑗 + 𝑠*

𝑖 ) = 1
2
(︀
𝐵𝜎*K*(𝑠*

𝑗 ) + 𝐵𝜎*K*(𝑠*
𝑖 )
)︀

.

This is true only if 𝐵𝜎*K* = ̃︀𝐵𝜎*K* = 0; in this way, property (5.13) is verified. So the dual flux for the algorithm
(𝑆) and for the limit (𝒫) correspond to a centered discretization of the convection flux on the dual mesh.

The Schwarz algorithm (𝑆) is well posed, since (ℋ𝑝) is verified by its fluxes, and it converges towards (𝒫)
with the choice of 𝐵𝜎K(𝑠) = 1

2 |𝑠| for all 𝜎 ∈ ℰ and 𝐵𝜎*K*(𝑠) = 0 for all 𝜎* ∈ ℰ . �

7. Numerical results

In this section, the objectives are the following:

– to show and compare the convergence properties of the Schwarz algorithms (𝒮1) and (𝒮2) (presented in
Sect. 4.3)) and (𝒮) (presented in Sect. 6);

– to study on numerical grounds the influence of the parameters 𝜆, 𝛼, 𝛽 of (1.2) on the convergence;
– to further validate the method with the simulation of a benchmark of a flow past an obstacle.

We will refer to (𝒮1) and (𝒮2) as “first Schwarz algorithm”, and to (𝒮) as “second Schwarz algorithm”. We recall
that the difference between the two algorithms relies in the definition of the fluxes at the interface; the former
converges towards the solution of ( ̃︀𝒫) (see Thm. 5.8), the latter towards the solution of (𝒫) (see Thm. 6.1).
For the first Schwarz algorithm, in all the following test cases, we will consider an upwind discretization of the
convection flux, i.e. we set 𝐵(𝑠) = 1

2 |𝑠|.
The scheme needs the resolution of large linear systems; for the simulations discussed below, the linear systems

– possibly non symmetric due to the interface – are treated by a direct method, appealing to Umfpack libraries.

7.1. Numerical study of the convergence

We recall that the domain decomposition algorithm is an iterative algorithm that is employed at each time
step; this, in particular, implies that at each iteration of the Schwarz algorithm we solve a steady problem. In
the following tests, we fix the time step (𝛿𝑡 = 10−4), and we apply the iterative method on the time interval
[0, 𝛿𝑡]. The time step is voluntarily picked quite small here in order to focus the discussion on the spacial error
and the effects of the interface; its influence is also discussed below (see Fig. 14). In all the test cases, the domain
Ω = [−1, 1]× [0, 1] will be divided into two subdomains Ω = Ω1 ∪Ω2. The meshes we will consider are illustrated,
in their first level of refinement, in Figure 7. The subscript in the name of the mesh (see Fig. 7) denotes the level
of refinement, i.e. Mesh𝑘

1 represents the coarse mesh of a family of refined meshes (Mesh𝑘
𝑚)𝑚. More precisely,

Mesh𝑘
𝑚 is obtained by dividing by two all the edges of Mesh𝑘

𝑚−1. We consider the following exact solution to
(1.1):
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Figure 7. Coarse level of refinement of the composite meshes on Ω, Mesh𝑘
1 . (a) Mesh1

1. (b)
Mesh2

1. (c) Mesh3
1.

Test 1:
u(𝑥, 𝑦, 𝑡) =

(︂
−2𝜋 cos(𝜋𝑥) sin(2𝜋𝑦) exp(−5𝜂𝑡𝜋2),

𝜋 sin(𝜋𝑥) cos(2𝜋𝑦) exp(−5𝜂𝑡𝜋2)

)︂
,

𝑝(𝑥, 𝑦, 𝑡) = −𝜋2

4 (4 cos(2𝜋𝑥) + cos(4𝜋𝑦)) exp(−10𝑡𝜂𝜋2).

The algorithms, in all the following simulations, are initialized with initial random guesses h0
T𝑗

and 𝑔0
D𝑗

for
𝑗 = 1, 2. As a stopping criterion, we impose:

max
(︁

‖e𝑙
T𝑗

‖2, ‖Π𝑙
D𝑗

‖2

)︁
< 10−5,

where the errors are defined in (5.25).

7.1.1. Error on the interface
In this first test case, we consider the first Schwarz algorithm; our goal is to point out that the error computed

with respect to the solution of ( ̃︀𝒫), along the iterations of the algorithm, stays localized at the interface between
the two subdomains.

The domain Ω is meshed with Mesh3
5, we fix the parameters 𝜆 = 100, 𝛼 = 1, 𝛽 = 10−2. Since the initialization

assigns random values, the initial error is ‖u0
T − uT‖∞ = 100. for both primal and dual mesh.

As we pass to the 1st iteration, we observe in Figure 8 how it immediately locates on the interface between
the subdomains; it decreases, passing from 100 to 1.9 on the primal mesh and to 6.9 on the dual mesh. Already
at the 10th iteration we see in Figure 9 how it has diminished, staying localized on the interface, passing from
1.9 to 0.52 on the primal mesh and from to 6.9 to 0.05 on the dual mesh.

7.1.2. Study of the parameters
In this section our goal is to study the influence of the parameters 𝜆, 𝛼, 𝛽 and of the mesh on the convergence

of the first and second Schwarz algorithms. We recall that 𝛽 is associated to the Brezzi–Pitkäranta stabilization
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Figure 8. Error u1
T − uT at the 1st iteration. Left: primal mesh, ‖u1

M − uM‖∞ = 1.9. Right:
dual mesh, ‖u1

M*∪𝜕M* − uM*∪𝜕M*‖∞ = 6.9.

Figure 9. Error u10
T −uT at the 10th iteration. Left: primal mesh, ‖u2

M −uM‖∞ = 0.52. Right:
dual mesh, ‖u2

M*∪𝜕M* − uM*∪𝜕M*‖∞ = 0.05.

Figure 10. Test 1, Mesh1
1, first Schwarz algorithm. Left: optimization of 𝜆, with 𝛼 = 1,

𝛽 = 10−2. Right: optimization of 𝛼, with 𝜆 = 100, 𝛽 = 10−2.

(see Sect. 2.6) while the parameters 𝜆 and 𝛼 are associated to the transmission conditions between subdomains.
In each test case we fix all parameters, but one. First, the value of 𝛽 associated to the stabilization is set to
10−2. In Figures 10 and 11 we represent on the 𝑥-axis the number of iterations, on the 𝑦-axis the error.

We start by considering the first Schwarz algorithm; we can observe in Figure 10 the convergence of the
algorithm to the solution of Test 1 on Mesh1

1.
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Figure 11. Test 1, Mesh1
1, second Schwarz algorithm. Left: optimization of 𝜆, with 𝛼 = 1,

𝛽 = 10−2. Right: optimization of 𝛼, with 𝜆 = 100, 𝛽 = 10−2.

Figure 12. Test 1, (Mesh1
𝑚)𝑚, 𝑚 = 1, 2, 3, 4. Left: optimization of 𝜆 to obtain an error of

order 10−5, with 𝛼 = 1, 𝛽 = 10−1. Right: optimization of 𝛼 to obtain an error of order 10−5,
with 𝜆 = 100, 𝛽 = 10−1.

In particular, on the left of Figure 10, 𝛼 is fixed to 1, and we observe how, as 𝜆 increases, the number of
iterations necessary to converge decreases until 𝜆 = 200; past this critical value, the number of iterations starts
to increase again. This suggests that on Mesh1

1, for 𝛼 = 1 and 𝛽 = 10−2, 𝜆 = 200 is a good choice to have a
better convergence. On the right of Figure 10, we set 𝜆 = 100 and we let 𝛼 vary: we observe the same kind
of behavior as the one of 𝜆. We consider now the second Schwarz algorithm on the same test case, i.e. Test 1
on Mesh1

1. We show its convergence in Figure 11. This indicates that on Mesh1
1, for 𝜆 = 100 and 𝛽 = 10−2,

𝛼 = 0.25 is a good choice to have a better convergence.
We remark that the second Schwarz algorithm behaves similarly to the first one, if we compare Figures 10

and 11; thus, both algorithms converge and the speed of convergence is influenced by the choice of 𝜆 or 𝛼, once
fixed the value of 𝛽 and the mesh. Since the parameters have the same behavior and the number of iterations
necessary to the convergence is almost identical between the two algorithms, from now on we will only focus on
the first one.
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Figure 13. Test 1, (Mesh3
𝑚)𝑚, 𝑚 = 1, 2, 3. Left: optimization of 𝜆 to obtain an error of order

10−5, with 𝛼 = 1, 𝛽 = 10−1. Right: Summary table of the optimal values of 𝜆.

Figure 14. Left: Test1, optimization of 𝜆 for different time steps to obtain an error of order
10−5, 𝛼 = 1 and 𝛽 = 10−1. Right: summary table of the optimal values of 𝜆.

In the following, in Figures 12–16 we represent on the 𝑥-axis the value of the parameter under study, and on
the 𝑦-axis the number of iterations.

In the first test case of Figure 12, our goal is to show how the level of refinement of the mesh can influence
the choice of the optimal parameter; we consider Test 1 on the family (Mesh1

𝑚)𝑚, 𝑚 = 1, 2, 3, 4. As before, we
set the value of 𝛽, we fix one of the two parameters between 𝜆 and 𝛼 and we let the other vary; we represent on
the 𝑥-axis the value of the parameter that changes, on the 𝑦-axis the number of iterations required to obtain
an error of order 10−5.

As illustrated in Figure 12 and summarized in Table 1, we observe different results for the two parameters;
the mesh refinement has an impact on 𝜆 but not really on 𝛼. The mesh size ℎ is divided by two at each level of
refinement, and we see that it has an influence on the value of 𝜆; unfortunately, we can not conclude by defining
a relation between the two.

In Figure 13 (left) and Table 2 we want to confirm the results obtained for 𝜆 on Figure 12 (left) and Table 1,
by considering the same test case (Test 1) on a different family of meshes, (Mesh3

𝑚)𝑚, 𝑚 = 1, 2, 3, 4. As before,



NON OVERLAPPING SCHWARZ ALGORITHMS WITH DDFV DISCRETIZATIONS 1313

Figure 15. Test 1, Mesh3
1. Left: optimization of 𝜆 with different values of 𝛽 on Mesh3

1; 𝛼 = 1.
Right: summary table of the optimal values of 𝜆.

Figure 16. Left: Test1, optimization of 𝜆 for different meshes to obtain an error of order 10−6,
𝛼 = 1 and 𝛽 = 10−1. Right: summary table of the optimal values of 𝜆.

Table 1. Test 1 on (Mesh1
𝑚)𝑚, 𝑚 = 1, 2, 3. First line: optimal value of 𝜆 for 𝛼 = 1, 𝛽 = 10−1.

Second line: optimal value of 𝛼 for 𝜆 = 100, 𝛽 = 10−1.

Mesh1
1 Mesh1

2 Mesh1
3 Mesh1

4

𝜆 152.36 293.36 404.63 929.36
𝛼 0.5 0.5 0.5 0.6

𝜆 is influenced by the mesh discretization step but we can not conclude by defining a relation between the two;
moreover, we remark that its optimal values change with respect to Table 1, due to the different meshes.

In Figure 14 (left) and Table 3 we want to point out that also the choice of the time step influences the
optimal 𝜆. In fact, we can see that for a bigger 𝛿𝑡 (such as 𝛿𝑡 = 10−3), the optimal 𝜆 is smaller (𝜆 = 21.18),
and the more the 𝛿𝑡 decreases, the bigger becomes the value of 𝜆.
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Table 2. Test 1 on (Mesh3
𝑚)𝑚, 𝑚 = 1, 2, 3, 4. Optimal value of 𝜆 for 𝛼 = 1, 𝛽 = 10−1.

Mesh3
1 Mesh3

2 Mesh3
3 Mesh3

4

𝜆 122 253.27 384.45 667.51

Table 3. Test 1. Optimal value of 𝜆 for 𝛼 = 1, 𝛽 = 10−1 with different time steps.

𝛿𝑡 = 10−3 𝛿𝑡 = 10−4 𝛿𝑡 = 5 × 10−4 𝛿𝑡 = 10−5

𝜆 21.18 146.2 212.9 515.63

Table 4. Test 1 on Mesh3
1. Optimal value of 𝜆 and the number of iterations for different values

of 𝛽 and for 𝛼 = 1.

𝛽 10−4 10−2 10−1 1
𝜆 436.81 122 122 25.2
# iter 818 53 40 246

Table 5. Test 1. Optimal value of 𝜆 for 𝛼 = 1, 𝛽 = 10−1 on different meshes.

Mesh1
1 Mesh2

1 Mesh3
1 Cartesian

𝜆 146.2 154.3 130.1 105.91

In Figure 15 and in Table 4 we study the influence of the parameter 𝛽, associated to the Brezzi–Pitkäranta
stabilization. We see how the choice of this parameter affects the convergence of the algorithm and how it affects
the optimal value of 𝜆: we pass from 818 iterations with 𝜆 = 436.81 (for 𝛽 = 10−4) to 40 iterations with 𝜆 = 122
(for 𝛽 = 10−1). There is then an optimal choice even for this parameter.

As last simulation, on Figure 16 and Table 5 we compare the optimal values of 𝜆 for Test 1 on different
meshes. We see that even the choice of the mesh influences the optimal choice of the parameter: for a Cartesian
mesh, 𝜆 = 105.91 while for Mesh2

1 𝜆 = 154.3.
For every test case, we have observed that the following four parameters – the parameters 𝜆 and 𝛼 associated

to the transmission conditions, the parameter 𝛽 of the Brezzi–Pitkäranta stabilization and the mesh choice
(its geometry and its level of refinement) – impact the convergence of the algorithm. Considering three of
these parameters as fixed, it is possible to optimize the remaining one in order to reach a faster convergence.
This preliminary study also confirms the high interdependence between the parameters: a conclusion can be
substantially changed by modifying the conditions, like the geometry of the mesh. The understanding of the
elliptic equation, which is still in its infancy, can give relevant hints [20,21], as well as a further analysis of the
continuous system.

7.2. Cylinder test case
In this section, we test the first Schwarz algorithm (𝒮1) and (𝒮2), on a test case inspired by the benchmark

of [38] (we precisely use the detailed results in [31]). In both [31, 38], the drag and lift coefficients of the flow
past an obstacle are computed from simulations on a domain Ω, with Dirichlet boundary conditions. Our goal
is to measure the quality of the DDFV solution obtained on Ω with a domain decomposition algorithm.
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Figure 17. Domain Ω = [0, 2.2] × [0, 0.41], decomposed in Ω1 = [0, 0.56] × [0, 0.41] and Ω2 =
[0.56, 2.2] × [0, 0.41].

Figure 18. Mesh on the domain Ω of Figure 17. The number of primal cells is 34 634; 18 250
in the left domain, 16 384 in the right one.

The benchmark is defined with dimensional equations, so we adopt the same framework, see Figure 17.
References [31,38] consider a long channel Ω = [0, 2.2 m] ×[0, 0.41 m] with a cylindrical obstacle 𝑆 whose center
is at (0.2 m, 0.2 m); we decompose the domain Ω into two subdomains Ω1, Ω2 and we place the interface Γ at
𝑥 = 0.56 m. On 𝜕Ω we impose Dirichlet boundary conditions, as in [31].

The mesh that we consider on Ω is represented in Figure 18; it is obtained with GMSH, it has 34 634 cells
and it is locally refined around the cylinder. Remark that on the left domain Ω1 (the one with triangles) there
are 18 250 cells and on the right domain Ω2 (the one with rectangles) there are 16 384 cells.

The viscosity of the fluid is set to 𝜂 = 10−3 m2 s−1 and the final time is 𝑇 = 8 s. The time-dependent inflow
on 𝑥 = 0 and outflow on 𝑥 = 2.2 is:

g1(𝑥, 𝑦, 𝑡) = 0.41−2 sin(𝜋𝑡/8)(6𝑦(0.41 − 𝑦), 0).

The initial condition is u𝑖𝑛𝑖𝑡(𝑥, 𝑦) = (0, 0). The density of the fluid is given by 𝜌 = 1 kg m−3, and the reference
velocity is 𝑈̄ = 1 m s−1 (note that the maximum velocity is 3

2 𝑈̄). The diameter of the cylinder is 𝐿 = 0.1 m, so
that the Reynold’s number is 0 ≤ Re(𝑡) ≤ 100. The time step is 𝛿𝑡 = 0.00166 s.

We use the limit scheme ( ̃︀𝒫), but at some fixed times, we use instead the iterative Schwarz algorithm (𝒮1)
and (𝒮2), with the initial guesses h0

T𝑗
and 𝑔0

D𝑗
, for 𝑗 = 1, 2, given by ( ̃︀𝒫) at the previous time step. The stopping

criterion is
max

(︁
‖e𝑙

T𝑗
‖2, ‖Π𝑙

D𝑗
‖2

)︁
< 10−3 (7.1)

and the values of the parameters are set to 𝜆 = 200, 𝛼 = 1 and 𝛽 = 0.01. To discretize the convection term, we
choose 𝐵 = 0 which gives a second order accurate method.

To start with, we consider the profile of the first component of the velocity. The iterative algorithm is applied
at each time step. We compare the solution of the limit problem ( ̃︀𝒫) (Figs. 19 and 21) to the solution obtained
by the iterative algorithm (𝒮1) and (𝒮2) (Figs. 20 and 22) at times 𝑇 = 2 s and 𝑇 = 6 s. As we can see, the
profile is the same and the domain decomposition does not introduce any spurious modes to the solution; the
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Figure 19. First component of the velocity solution to the Navier–Stokes problem on Ω at 𝑇 = 2 s.

Figure 20. First component of the velocity solution to the Navier–Stokes problem on Ω,
obtained at the 559th iteration of the Schwarz algorithm, at 𝑇 = 2 s.

Figure 21. First component of the velocity solution to the Navier–Stokes problem on Ω at 𝑇 = 6 s.

Figure 22. First component of the velocity solution to the Navier–Stokes problem on Ω,
obtained at the 689th iteration of the Schwarz algorithm, at 𝑇 = 6 s.

stopping criterion (7.1) is sufficient to obtain a fair approximation of the expected solution. The convergence of
the algorithm is obtained in 559 iterations at 𝑇 = 2 s and in 689 iterations at 𝑇 = 6 s; the number of iterations,
as remarked in Section 7.1.2, can be optimized through the choice of the parameters 𝜆, 𝛼, 𝛽 (the parameters
are fixed once for all and do not evolve in time). For instance, with the choice of 𝜆 = 50 and 𝛼 = 0.5, the
convergence of the algorithm can be sped up, obtaining 102 iterations at 𝑇 = 2 s and 178 iterations at 𝑇 = 6 s.
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Drag and lift coefficients. In order to measure the quality of the obtained results, we focus on the computation
of the drag and lift coefficients for the limit problem ( ̃︀𝒫) and for the solution of (𝒮1) and (𝒮2). We define the
drag coefficient 𝑐𝑑(𝑡) and the lift coefficient 𝑐𝑙(𝑡) as

𝑐𝑑(𝑡) = 2
𝜌𝐿𝑈̄2

∫︁
𝑆

(︂
𝜌𝜂

𝜕u𝑡𝑆
(𝑡)

𝜕𝑛
𝑛𝑦 − 𝑝(𝑡)𝑛𝑥

)︂
,

𝑐𝑙(𝑡) = − 2
𝜌𝐿𝑈̄2

∫︁
𝑆

(︂
𝜌𝜂

𝜕u𝑡𝑆
(𝑡)

𝜕𝑛
𝑛𝑥 + 𝑝(𝑡)𝑛𝑦

)︂
,

where 𝑆 stands for the boundary of the obstacle, n⃗𝑆 = (𝑛𝑥, 𝑛𝑦) is the normal vector on 𝑆 pointing to Ω,
t𝑆 = (𝑛𝑦, −𝑛𝑥) the tangential vector and u𝑡𝑆

the tangential velocity. In the DDFV setting,

𝑐𝑛
𝑑 = 2

𝜌𝐿𝑈̄2

∑︁
D∈Dext∩𝑆

𝑚𝜎 (𝜌𝜂∇D (u𝑛 · 𝜏⃗ K*L*) · n⃗𝜎K 𝑛𝑦 − 𝑝𝑛𝑛𝑥) ,

𝑐𝑛
𝑙 = − 2

𝜌𝐿𝑈̄2

∑︁
D∈Dext∩𝑆

𝑚𝜎 (𝜌𝜂∇D (u𝑛 · 𝜏⃗ K*L*) · n⃗𝜎K 𝑛𝑥 + 𝑝𝑛𝑛𝑦) .

We study the evolution of the coefficients in Figure 23 and their maximum value in Table 6, defined as:

𝑐𝑑,𝑚𝑎𝑥 = max
𝑛∈{0...𝑁}

𝑐𝑛
𝑑 , 𝑐𝑙,𝑚𝑎𝑥 = max

𝑛∈{0...𝑁}
𝑐𝑛

𝑙 .

The results shown in Table 6 and in Figure 23 prove that the approximation given by the limit problem ( ̃︀𝒫)
and the results obtained with the Schwarz algorithm (𝒮1) and (𝒮2) are robust and quantitatively correct. The
behavior of the drag and lift coefficients of ( ̃︀𝒫) is coherent with the reference values from [31], and the extreme
values of both coefficients are similar, see Table 6. The slight discrepancy in the maximum value of the coefficients
is due to level of refinement of the mesh and to the order of the scheme: we work with approximately 90 000
unknowns, for all velocity components and pressure, compared to the approximately 500 000 unknowns used in
[31]. Figure 23 shows that the lift coefficient is sensitive to the choice of the time discretization: the time step in
[31] is 𝛿𝑡 = 0.00125 s with a second order scheme in time. Our scheme is first order in time, and we work with
𝛿𝑡 = 0.00166 s.

We have implemented a second order backward difference formula in time, as in [23]: the first iteration in time
remains unchanged, while for 𝑛 ∈ {1, . . . , 𝑁} the term 𝜕𝑡u is discretized by 1

𝛿𝑡

(︀ 3
2 u𝑛+1 − 2u𝑛 + 1

2 u𝑛−1)︀ instead
of 1

𝛿𝑡

(︀
u𝑛+1 − u𝑛

)︀
and the convection fluxes 𝐹𝜎K depend on

(︀
2u𝑛 − u𝑛−1)︀ instead of u𝑛. This approach indeed

improves the quality of the approximation of the lift coefficient, see Figure 23. The drag and lift coefficients
associated to the domain decomposition method (𝒮1) and (𝒮2) have been computed with the second order
scheme. The iterative process is applied at each time step; we then compute the coefficients associated to the
solution given by the algorithm. The results are illustrated in Figure 23, where we can observe that the values
of the coefficients associated to the Schwarz algorithm reproduce the curves given by the solution of ( ̃︀𝒫); since
we established that they are a coherent reproduction of the reference values in [31], we can conclude that the
algorithm produces a good approximation of the solution of the Navier–Stokes problem on the entire domain.
Multi-domains. We study now the convergence of the Schwarz algorithm in the case of more than two sub-
domains; in particular, we decompose the domain Ω into four and five subdomains.

We consider the mesh of Figure 18 on Ω. We first decompose Ω into four subdomains Ω =
⋃︀4

𝑖=1 Ω𝑖, with
three interfaces: Γ1 at 𝑥 = 0.56 m, Γ2 at 𝑥 = 1.11 m and Γ3 at 𝑥 = 1.66 m. The subdomain Ω1 has 18 250 cells,
and Ω𝑖, 𝑖 = 2, 3, 4, have 5440 cells.

Then, we decompose Ω into five subdomains Ω =
⋃︀5

𝑖=1 Ω𝑖, with four interfaces: Γ1 at 𝑥 = 0.56 m, Γ2 at
𝑥 = 0.97 m, Γ3 at 𝑥 = 1.38 m and Γ4 at 𝑥 = 1.79 m. The subdomain Ω1 has 18 250 cells, and Ω𝑖, 𝑖 = 2, 3, 4, 5,
have 4096 cells. We consider as a stopping criterion:

max
(︁

‖e𝑙
T𝑗

‖2, ‖Π𝑙
D𝑗

‖2

)︁
< 5 × 10−3
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Figure 23. Comparison between the evolution of 𝑐𝑛
𝑑 , 𝑐𝑛

𝑙 on the time interval [0, 8] obtained
with the DDFV scheme ( ̃︀𝒫), of order 1 and 2 in time, and with the Schwarz algorithm (𝒮1) and
(𝒮2) of order 2 (left) and the reference values of [31] (right). (a) DDFV. (b) Reference values.
(c) DDFV. (c) DDFV.

Table 6. Comparison between the values of 𝑐𝑑,max, 𝑐𝑙,max obtained with DDFV scheme ( ̃︀𝒫) of
order 1 and 2 in time, with the Schwarz algorithm and and the reference values of [31].

Schwarz (̃︀𝒫) order 2 (̃︀𝒫) order 2 Reference

𝑐𝑑,max 2.9999 2.9985 2.9987 2.9509
𝑐𝑙,max 0.5100 0.5183 0.53246 0.4779
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Figure 24. First component of the velocity solution to the Navier–Stokes problem on Ω,
obtained at the 388th iteration of the Schwarz algorithm, at 𝑇 = 6 s, in the case of 2 subdomains.

Figure 25. First component of the velocity solution to the Navier–Stokes problem on Ω,
obtained at the 484th iteration of the Schwarz algorithm, at 𝑇 = 6 s, in the case of 4 subdomains.

Figure 26. First component of the velocity solution to the Navier–Stokes problem on Ω,
obtained at the 663th iteration of the Schwarz algorithm, at 𝑇 = 6 s, in the case of 5 subdomains.

Table 7. At 𝑇 = 6 s, we compare the number of iterations at convergence between the case of
2, 4 and 5 subdomains.

♯ subdomains 2 4 5

♯ iterations 388 484 663

and the values of the parameters are set, as for the two-subdomains case, to 𝜆 = 200, 𝛼 = 1, 𝛽 = 0.01, 𝐵 = 0.
We compare the results at 𝑇 = 6 s, when the flow is more turbulent and with sensitive variations of the flow

in all subdomains; we take as a reference the solution shown in Figure 21. As we can see in Figures 24–26,
the profiles are similar and the introduction of more subdomains does not affect the solution. As resumed in
Table 7, we see that by increasing the number of subdomains, we increase the number of iterations necessary to
the convergence; this is due to the fact that the subdomains have to share the information between an increasing
number of interfaces. Nevertheless, we gain computational time since, as we decompose the domain, we have to
solve smaller linear systems.
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8. Conclusion
This paper establishes the well-posedness of DDFV schemes for solving the incompressible Navier–Stokes

system on the entire domain Ω with general convection fluxes defined by means of 𝐵-schemes, and it proposes two
non-overlapping DDFV Schwarz algorithms. DDFV discretizations are constructed with suitable transmission
conditions, which are equally well-posed. When using standard convection fluxes in the domain decomposition
method, the iterative process converges to a system with modified fluxes at the interface. However, it is possible
to modify the fluxes of the domain decomposition algorithm so that it converges to the reference scheme on the
entire domain. The algorithms are numerically tested on classical benchmarks, and the numerical experiments
also shed some light on the role of the parameters of the method.
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