A generalized finite element method for the strongly damped wave equation with rapidly varying data
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1375-1404

We propose a generalized finite element method for the strongly damped wave equation with highly varying coefficients. The proposed method is based on the localized orthogonal decomposition introduced in Målqvist and Peterseim [Math. Comp. 83 (2014) 2583–2603], and is designed to handle independent variations in both the damping and the wave propagation speed respectively. The method does so by automatically correcting for the damping in the transient phase and for the propagation speed in the steady state phase. Convergence of optimal order is proven in L2(H1)-norm, independent of the derivatives of the coefficients. We present numerical examples that confirm the theoretical findings.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021023
Classification : 35K10, 65M60
Keywords: Strongly damped wave equation, multiscale, localized orthogonal decomposition, finite element method, reduced basis method
@article{M2AN_2021__55_4_1375_0,
     author = {Ljung, Per and M\r{a}lqvist, Axel and Persson, Anna},
     title = {A generalized finite element method for the strongly damped wave equation with rapidly varying data},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1375--1404},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021023},
     mrnumber = {4281738},
     zbl = {07523502},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021023/}
}
TY  - JOUR
AU  - Ljung, Per
AU  - Målqvist, Axel
AU  - Persson, Anna
TI  - A generalized finite element method for the strongly damped wave equation with rapidly varying data
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1375
EP  - 1404
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021023/
DO  - 10.1051/m2an/2021023
LA  - en
ID  - M2AN_2021__55_4_1375_0
ER  - 
%0 Journal Article
%A Ljung, Per
%A Målqvist, Axel
%A Persson, Anna
%T A generalized finite element method for the strongly damped wave equation with rapidly varying data
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1375-1404
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021023/
%R 10.1051/m2an/2021023
%G en
%F M2AN_2021__55_4_1375_0
Ljung, Per; Målqvist, Axel; Persson, Anna. A generalized finite element method for the strongly damped wave equation with rapidly varying data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1375-1404. doi: 10.1051/m2an/2021023

[1] A. Abdulle and P. Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comput. 86 (2017) 549–587. | MR | Zbl | DOI

[2] G. Avalos and I. Lasiecka, Optimal blowup rates for the minimal energy null control of the strongly damped abstract wave equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 601–616. | MR | Zbl | Numdam

[3] J. Azevedo, C. Cuevas and H. Soto, Qualitative theory for strongly damped wave equations. Math. Methods Appl. Sci. 40 (2017) 08. | MR | Zbl | DOI

[4] I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. SIAM J. Multiscale Model. Simul. 9 (2010) 373–406. | MR | Zbl | DOI

[5] I. Babuska and J. E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. | MR | Zbl | DOI

[6] E. Bonetti, E. Rocca, R. Scala and G. Schimperna, On the strongly damped wave equation with constraint. Commun. Part. Differ. Equ. 42 (2017) 1042–1064. | MR | Zbl | DOI

[7] A. Carvalho and J. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities. Bull. Aust. Math. Soc. 66 (2002) 443–463. | MR | Zbl | DOI

[8] C. Cuevas, C. Lizama and H. Soto, Asymptotic periodicity for strongly damped wave equations. In: Vol. 2013 of Abstract and Applied Analysis. Hindawi (2013). | MR | Zbl | DOI

[9] N. Dal Santo, S. Deparis, A. Manzoni and A. Quarteroni, Multi space reduced basis preconditioners for large-scale parametrized PDEs. SIAM J. Sci. Comput. 40 (2018) A954–A983. | MR | Zbl | DOI

[10] M. Drohmann, B. Haasdonk and M. Ohlberger, Adaptive reduced basis methods for nonlinear convection-diffusion equations. In: Vol. 4 of Finite Volumes for Complex Applications VI. Problems & Perspectives. Volume 1, 2, Springer Proc. Springer, Heidelberg (2011) 369–377. | MR | Zbl

[11] C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. | MR | Zbl | DOI

[12] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 185–207. | MR | Zbl | Numdam | DOI

[13] P. J. Graber and J. L. Shomberg, Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions. Nonlinearity 29 (2016) 1171. | MR | Zbl | DOI

[14] B. Haasdonk, M. Ohlberger and G. Rozza, A reduced basis method for evolution schemes with parameter-dependent explicit operators. Electron. Trans. Numer. Anal. 32 (2008) 145–161. | MR | Zbl

[15] P. Henning and A. Målqvist, Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput. 36 (2014) A1609–A1634. | MR | Zbl | DOI

[16] P. Henning, A. Målqvist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: M2AN 48 (2014) 1331–1349. | MR | Zbl | Numdam | DOI

[17] T. J. Hughes, G. R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. | MR | Zbl | DOI

[18] R. Ikehata, Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains. Math. Methods Appl. Sci. 24 (2001) 659–670. | MR | Zbl | DOI

[19] V. Kalantarov and S. Zelik, A note on a strongly damped wave equation with fast growing nonlinearities. J. Math. Phys. 56 (2015). | MR | Zbl | DOI

[20] P. Kelly, Solid Mechanics Part I: An Introduction to Solid Mechanics. University of Auckland (2019).

[21] A. Khanmamedov, Strongly damped wave equation with exponential nonlinearities. J. Math. Anal. Appl. 419 (2014) 663–687. | MR | Zbl | DOI

[22] M. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 2313–2324. | MR | Zbl | DOI

[23] S. Larsson, V. Thomée and L. B. Wahlbin, Finite-element methods for a strongly damped wave equation. IMA J. Numer. Anal. 11 (1991) 115–142. | MR | Zbl | DOI

[24] Y. Lin, V. Thomée and L. Wahlbin, Ritz-Volterra projections to finite element spaces and applications to integro-differential and related equations. Technical report (Cornell University. Mathematical Sciences Institute). Mathematical Sciences Institute, Cornell University (1989). | MR | Zbl

[25] A. Målqvist and A. Persson, Multiscale techniques for parabolic equations. Numer. Math. 138 (2018) 191–217. | MR | Zbl | DOI

[26] A. Målqvist and D. Peterseim, Generalized finite element methods for quadratic eigenvalue problems. ESAIM: M2AN 51 (2017) 147–163. | MR | Zbl | Numdam | DOI

[27] A. Målqvist and D. Peterseim, Numerical Homogenization beyond Periodicity and Scale Separation. To appear in SIAM Spotlight (2020).

[28] A. Målqvist and D. Peterseim, Computation of eigenvalues by numerical upscaling. Numer. Math. 130 (2012) 337–361. | MR | Zbl | DOI

[29] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. | MR | Zbl | DOI

[30] P. Massatt, Limiting behavior of strongly damped nonlinear wave equations. J. Differ. Equ. 48 (1983) 334–349. | MR | Zbl | DOI

[31] D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors. In: Vol. 114 of Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lect. Notes Comput. Sci. Eng. Springer, [Cham] (2016) 341–367. | MR | Zbl

[32] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer (2016). | MR | Zbl

[33] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2006). | MR | Zbl

[34] G. F. Webb, Existence and asymptotic behavior for a strongly damped nonlinear wave equation. Can. J. Math. 32 (1980) 631–643. | MR | Zbl | DOI

Cité par Sources :