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A GENERALIZED FINITE ELEMENT METHOD FOR THE STRONGLY
DAMPED WAVE EQUATION WITH RAPIDLY VARYING DATA

PER LjungY*, AXEL MALQVIST! AND ANNA PERSSON?

Abstract. We propose a generalized finite element method for the strongly damped wave equation with
highly varying coefficients. The proposed method is based on the localized orthogonal decomposition
introduced in Malqvist and Peterseim [Math. Comp. 83 (2014) 2583-2603], and is designed to handle
independent variations in both the damping and the wave propagation speed respectively. The method
does so by automatically correcting for the damping in the transient phase and for the propagation
speed in the steady state phase. Convergence of optimal order is proven in Lo (H 1)—norm, independent of
the derivatives of the coefficients. We present numerical examples that confirm the theoretical findings.
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1. INTRODUCTION

This paper is devoted to the study of numerical solutions to the strongly damped wave equation with highly
varying coefficients. The equation takes the general form

i — V- (AVi+ BVu) = f, (1.1)

on a bounded domain ). Here, A and B represent the system’s damping and wave propagation respectively, f
denotes the source term, and the solution w is a displacement function. This equation commonly appears in the
modelling of viscoelastic materials, where the strong damping —V - AV4 arises due to the stress being repre-
sented as the sum of an elastic part and a viscous part [6,13]. Viscoelastic materials have several applications
in engineering, including noise dampening, vibration isolation, and shock absorption (see [20] for more applica-
tions). In particular, in multiscale applications, such as modelling of porous media or composite materials, A
and B are both rapidly varying.

There has been much recent work regarding strongly damped wave equations. For instance, well-posedness
of the problem is discussed in [7, 19, 21], asymptotic behavior in [3,8, 30, 34] solution blowup in [2,12], and
decay estimates in [18]. In particular, FEM for the strongly damped wave equation has been analyzed in [24]
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using the Ritz—Volterra projection, and [23] uses the classical Ritz-projection in the homogeneous case with
Rayleigh damping. In these papers, convergence of optimal order is shown. However, in the case of piecewise
linear polynomials, the convergence relies on at least H?2-regularity in space. Consequently, since the H2-norm
depends on the derivatives of the coefficients, the error is bounded by ||u|| 72 ~ max(e;*,e5") where £ 4 and €5
denote the scales at which A and B vary respectively. The convergence order is thus only valid when the mesh
width h fulfills b < min(e4,ep). In other words, we require a mesh that is fine enough to resolve the variations
of A and B, which becomes computationally challenging. This type of difficulty is common for equations with
rapidly varying data, an issue for which several numerical methods have been developed (see e.g. [4,5,22,28]).
None of these methods are however applicable to the strongly damped wave equation, where two different
multiscale coefficients have to be dealt with. In this paper, we propose a novel multiscale method based on the
localized orthogonal decomposition (LOD) method.

The LOD method is based on the variational multiscale method presented in [17]. It was first introduced in
[29], and has since then been further developed and analyzed for several types of problems (see e.g. [1, 15,16,
25,27]). In particular, Malqvist and Peterseim [26] studies the LOD method for quadratic eigenvalue problems,
which correspond to time-periodic wave equations with weak damping. The main idea of the method is based
on a decomposition of the solution space into a coarse and a fine part. The decomposition is done by defining an
interpolant that maps functions from an infinite dimensional space into a finite dimensional FE-space. In this
way, the kernel of the interpolant captures the finescale features that the coarse FE-space misses, and hence
defines the finescale space. Subsequently, one may use the orthogonal complement to this finescale space with
respect to a problem-dependent Ritz-projection as a modified FE-space. In the case of time-dependent problems,
the LOD method performs particularly well in the sense that the modified FE-space only needs to be computed
once, and can then be re-used in each time step.

Multiscale methods, as the localized orthogonal decomposition, are usually designed to handle problems
with a single multiscale coefficient. In this sense, the strongly damped wave equation is different, as an extra
coefficient appears due to the strong damping. Hence, one of the main challenges for the novel method is how
to incorporate the finescale behavior of both coefficients in the computation. Nevertheless, it should be noted
that existing multiscale methods are applicable for some special cases of this equation. An example is the case
of Rayleigh damping where the coefficients are proportional to each other. Other examples are the steady state
case, the transient phase in which the solution evolves rapidly in time, as well as the case of weak damping
where no spatial derivatives are present on the damping term.

In this paper we present a generalized finite element method (GFEM), with a backward Euler time stepping
for solving the strongly damped wave equation. The method uses both the damping and diffusion coefficients
to construct a generalized finite element space, similar to those in e.g. [25,29]. The solution is then evaluated
in this space, but to account for the time dependence, an additional correction is added to it. However, this
correction is evaluated on the fine scale, and thus expensive to compute. To overcome this issue, we prove spatial
exponential decay for the corrections so that we can restrict the problems to patches in a similar manner as for
the modified basis functions in [29]. The effect of the proposed method is that the multiscale basis compensates
for the damping early on in the simulation when it is dominant and then gradually starts to compensate for the
wave propagation which is dominant at steady state. This is done seamlessly and automatically by the method.
Furthermore, we prove optimal order convergence in Lo(H!)-norm for this method. Following this, we show
that it is sufficient to compute the finescale corrections for only a few time steps by applying reduced basis (RB)
techniques. For related work on RB methods, see e.g. [9,10,14], and for an introduction to the topic we refer to
[32].

The outline of the paper is as follows: In Section 2 we present the weak formulation and classical FEM for
the strongly damped wave equation, along with necessary assumptions. Section 3 is devoted to the generalized
finite element method and its localization procedure. In Section 4 error estimates for the method are proven.
Section 5 covers the details of the RB approach, and finally in Section 6 we illustrate numerical examples that
confirm the theory derived in this paper.
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2. WEAK FORMULATION AND CLASSICAL FEM

We consider the wave equation with strong damping of the following form

it — V- (AVi+ BVu)=f, in Q x (0,T], (2.1)
u=0, onT x (0,7, (2.2)

u(0) = up, in (2.3)

4(0) =v9 in €, (2.4)

where T' > 0 and (2 is a polygonal (or polyhedral) domain in R?, d = 2,3, and I := 9. The coefficients A and

B describe the damping and propagation speed respectively, and f denotes the source function of the system.

We assume A = A(z), B = B(z) and f = f(x,t), i.e. the multiscale coefficients are independent of time.
Denote by Hg(€) the classical Sobolev space with norm

||UH511(Q) = ||v||%2(sz) + va|‘%2(sz)

whose functions vanish on I'. Moreover, let L,(0,T; B) be the Bochner space with norm

T 1/p
v||L,J<o7T;B>:( / ||v||’,;dt) . pe o),

11| Lo (0.7:8) = esssup [|vl]s,
telo

where B is a Banach space with norm || - ||5. In this paper, the following assumptions are made on the data.

Assumption 2.1. The damping and propagation coefficients A, B € Lo (2, R¥*?) are symmetric and satisfy

. . A(z)v-v A(z)v-v
0<a_:=essinf inf ——— <esssup sup ——— =:ay <00,
z€Q veRI\{0} V-V z€Q wpeRd\{0} V'V
B . B .
0 < fB_ :=essinf inf M < esssup sup M =: B4 < o0.
z€Q veRd\{0} V-V z€Q weRd\{0} V'V

In addition, we assume that f € Loo([0,T]; L2(Q)) and f € La([0, T]; La(2)).

For the spatial discretization, let {7}, }x~0 denote a family of shape regular elements that form a partition
of the domain Q. For an element K € 7j, let the corresponding mesh size be defined as hx := diam(K), and
denote the largest diameter of the partition by h := maxge7, hx. We now define the classical FE-space using
continuous piecewise linear polynomials as

Sp={vec): ’U’F =0, U|K is a polynomial of partial degree < 1, VK € 71},
and let V;, = S, N H} (). The semi-discrete FEM becomes: find uy, : [0,T] — V}, such that

(tip,v) + altp,v) + b(up,v) = (f,v), Yv eV, te€0,T], (2.5)

with initial values uy(0) = uf) and 4,(0) = oY) where ul),v) € V}, are appropriate approximations of ug and v

respectively. Here (-,-) denotes the usual Ly-inner product, a(-,-) = (AV-,V-), and b(-,-) = (BV-, V-).
For the temporal discretization, let 0 = tg < t; < ... < ty = T be a uniform partition with time step
t, —tn—1 = 7. We apply a backward Euler scheme to get the fully discrete system: find u}} € V}, such that

(OFu,v) + a(Opul,v) + b(ul,v) = (f*,v), Yv € Vi, (2.6)
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for n > 2. Here, the discrete derivative is defined as dju}} = (ul —u}'"')/7. The first initial value is given by
uY € Vj,. The second initial value u} should be an approximation of u(t1) and could be chosen as uj, = u9 +7vY.

For results on regularity and error estimates for the FEM solution of the strongly damped wave equation, we
refer to [23]. Moreover, existence and uniqueness of a solution to (2.6) is guaranteed by Lax—Milgram.

In the analysis, we use the notations ||-||2 := a(-, ), ||-[|Z := b(-, "), as well as II-II* = a(-,-) == a(-,-)+7b(-,-), and
the fact that these are equivalent with the H'-norm. That is, there exist positive constants Cy, Cy, Cs, Ca, Cb, Cs €
R, such that

callvln < lvllG < Callvlzn, Vo € HY(Q),

eollvllEn < olly < Collvll, Vo € HY (), (2.7)
2

callvln <llvll” < Callvll, Vo e HY(Q).

Theorem 2.2. The solution u} to (2.6) satisfies the following bounds

18012, + 3 7100 s + a1 < €3 7l 3+ C (103, + b l3) . forn=2,  (28)
j=2 j=2
n _ ) _ n _
S 02, + 100 3 < O S TP, + C (10l + b l3) . forn>2. (29
j=2 j=2

Proof. To prove (2.8), choose v = Tdu} in (2.6) to get
T (5t2uﬁ, agu;:) + 7| Osult||? + Tb (UZ, étuZ) =7 (f", 5tu2) . (2.10)
Due to Cauchy—Schwarz and Young’s inequality we have the following lower bound
2, n 9, n a,,m 9,n—1 5, n 1’71, 1’71—
7(0Fup, dup) = 10ui |2, — (™", Ouit) = SN0 2, — 110012,
and similarly

= 1 1 _
b, Do) = 5l — 5 3

Similar bounds will be used repeatedly throughout the paper. Summing (2.10) over n gives

1 - 1 - “ 1 1 ~ . -
QllatUZH%Q - §||3tui\|%2 + ZTH@U%Hi + §IIUZ||§ - §IIU}LII§ < ZTHf]HH*l”atuiL”Hl-
j=2 j=2

Using the equivalence of the norms (2.7), Cauchy-Schwarz and Young’s (weighted) inequality to subtract
> o 7||0puy |3, from both sides, we get exactly 7(2.8).
The proof of (2.9) is similar. We choose v = 797! in (2.6) and sum over n to get

n o Lo 1 _ n o n ) o
S92l 3, + 510p 2 = 510k 2+ S 7b (], Buf ) < D7 al10Fer] e

j=2 j=2 j=2
For the sum involving the bilinear form b(-,-) we use summation by parts to get

i Tb (ui, a?ufl) = i —7b (@u{w 5tufl_1) — b (up, Opup,) + b (uf, Opu) .

=2 =3
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Using (2.8), the equivalence of the norms (2.7), and Young’s weighted inequality we have

> b (B, Bl ™) + b (ud Bruh) — b (uf, D)
j=3

n
<Y 70w |3 + C (lunll3 + 10eup|3) + Cllug 7 + Cell O
=2

n
<CY 7N+ C (10l + lluplizp) + Celldeui |2

=2

Since C, can be made arbitrarily small, it can be kicked to the left hand side. Using that || f7]|3,_, < C|f7||%,
we deduce (2.9).

3. GENERALIZED FINITE ELEMENT METHOD

This section is dedicated to the development of a multiscale method based on the framework of the standard
LOD. First of all, we introduce some notation for the discretization. Let Vg be a FE-space defined analogously
to V}, in previous section, but with larger mesh size H > h. Moreover, we assume that the corresponding family
of partitions {7y } g~ is, in addition to shape-regular, also quasi-uniform. Denote by A the set of interior nodes
of Vi and by A, the standard hat function for x € N, such that Vi = span({\; }zen). Finally, we make the
assumption that 7 is a refinement of 7z, such that Vi C V},.

3.1. Ideal method

To define a generalized finite element method for our problem, we aim to construct a multiscale space V;,5 of
the same dimension as Vg, but with better approximation properties. For the construction of such a multiscale
space, let Iy : V), — Vi be an interpolation operator that has the projection property Iy = Iy oIy and satisfies

H;(IH’U — IH”HLQ(K) + ||VIHU||L2(K) S CIHVUHLQ(N(K))7 VK € TH, NS Vh, (3.1)

where N(K) := {K' € Ty : K' N K # (}. Furthermore, for a shape-regular and quasi-uniform partition, the
estimate (3.1) can be summed into the global estimate

H o = Ty + IVIgv] 1y0) < Cy VOl Ly,
where C, depends on the interpolation constant Cr and the shape regularity parameter defined as

. L _ diam(Bg)
T Ir{réa%({ TH WACTE K= diam(K) '
Here By denotes the largest ball inside K. A commonly used example of such an interpolant is Iy = Fy oIy,
where Iy is the piecewise La-projection onto P;(7f), the space of functions that are affine on each triangle
K € Ty, and Ey : Pi(Tg) — Vg is an averaging operator that, to each free node x € A/, assigns the arithmetic
mean of corresponding function values on intersecting elements, i.e.

(Br(v)(x) = : S ().

card{K € Ty : x € K} KR
H:T

For more discussion regarding possible choices of interpolants, see e.g. [11] or [31].
Let the space V; be defined by the kernel of the interpolant, i.e.

Vi =ker(Iy) ={v eV, : Igv=0}.
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(a) (B)

F1GURE 1. The modified basis function A\, — ¢, and the Ritz-projected hat function ¢,.

That is, V; is a finescale space in the sense that it captures the features that are excluded from the coarse
FE-space. This consequently leads to the decomposition

Vh:VHQB‘/fv

such that every function v € V}, has a unique decomposition v = vy + v¢, where vy € Vg and v € V5.

In the case of the LOD method for the standard wave equation (see [1]), one considers a Ritz-projection
based solely on the B-coefficient to construct a multiscale space. Instead, the goal is to define a multiscale
space based on the inner product a(-,-) + 7b(-,-) (for a fixed 7) and add additional correction to account for
the time-dependency. This particular choice of scalar product comes from the backward Euler time-stepping
formulation and both simplifies the analysis and is more natural in the implementation. Another possibility is
to choose a(-, ) as scalar product. For v € Vj, we consider the Ritz-projection R¢ : Vi — V; defined by

a(Rev, w) + 7b(Rev, w) = a(v,w) + 7b(v,w), Yw € V.
Using this projection, we may define the multiscale space Vs := Vg — R¢Vp such that
Vh=Vis ® Vs, and  a(vpms, ve) + 70(ms, v¢) = 0. (3.2)

Note that dim(Vi,s) = dim(Vy), and hence we can view Vj,s as a modified coarse space that contains finescale
information of A and B. Next, we may use the Ritz-projection to define the basis functions for the space Vis.
For x € N, denote by ¢, := R, € Vi the solution to the (global) corrector problem

(P, W) + T (g, w) = a(Ag, w) + Tb( Ay, w), Vw € V4. (3.3)

We can now construct our basis for Vi, as {A\; — ¢z }zen which includes the behavior of the coefficients. For
an illustration of the Ritz-projected hat function, as well as the modified basis function for Vg, see Figure 1.
We may now formulate our ideal (but impractical) method. Since the solution space can be decomposed as
Vi = Vins ® V4, the idea is to solve a coarse scale problem in V4, and then add additional correction from a
problem on the fine scale. The method reads: find uj,; = v" + w™, where v" € V. and w™ € V¢ such that

T (0", 2) +a (v, z) + b (v, 2) =7 (", 2) +a(ulg' 2), Yz € Vi, (3.4)

a(w”,z)—l—Tb(w",z):a(uﬁ);l,z), Vz € Vg,

for n > 2 with initial data u?od = ug € Vs and ullod = u,ll € Vins. The initial data is chosen in V¢ to simplify
the implementation of the finescale correctors. We further discuss this choice in Section 4.4.
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Remark 3.1. Note that in (3.5), we do not take the source function nor the second derivative into account.
This is because we can subtract an interpolant within the Ls-product, so that the corresponding error converges
at the same order as the method itself. Moreover, the v™-part and w™-part have been excluded from the bilinear
form a(-,-) + 7b(-,-) in (3.4) and (3.5) respectively, due to the orthogonality between Vs and V;.

Note that the multiscale space Vs is created using (3.3) with small 7. Thus, the A-coeflicient dominates the
system for short times. Moreover, we note from (3.5) that for N large enough, we reach a steady state so that
w ~wV "1 and vV ~ vV "1 We get for z € 1§

a(wh,z) +7b(wN,2) ma(upg,z) =a (W, z) +aw",z) =—-1b (N, 2) +a(w",z),
due to the orthogonality. Hence, by rearranging terms we have that
b(vN,2) +b(wN,2) = b (upg,2) =0,

which shows that the solution converges to a state where it is orthogonal with respect to B.

3.2. Localized method

The method we have considered so far is based on the global projection (3.3) onto the finescale space V%,
which results in a large linear system that is expensive to solve. Moreover, the basis correctors yield a global
support that makes the linear system (3.4) not sparse, but dense. Hence, we wish to localize the computations
onto coarse grid patches in order to yield a sparse matrix system.

To localize the corrector problem, we first introduce the patches to which the support of each basis function
is to be restricted. For w C Q, let N(w) := {K € Ty : K Nw # ()}, and define a patch N*(w) of size k as

NY(w) := N(w),
N¥(w) := N(N¥Y(w)), for k > 2.
Given these coarse grid patches, we may restrict the finescale space V; to them by defining

Vi o= (v € Vi supp(v) € N (),

for a subdomain w C Q. In particular, we will commonly use w =T € Ty and w =x € N.
Next, define the element restricted Ritz-projection R! such that R} v € V is the solution to the system

a (R?U, z) +7b (R?v, z) = / (A4+7B)Vv-Vzdx, Vze ;.
T
Note that we may construct the global Ritz-projection as the sum

RfU = Z Rgv.
TeET

For k € N, we may restrict the projection to a patch by letting Rg:k Ve — qu;e be such that RfTJCv € Vka solves

a (ngv, z) +7b (ngv, z) = /T (A4+7B)Vv-Vzdx, Vze qu;€

By summation we yield the corresponding global version as

§ T
Rf’kv == Rf,kv.

TETH

Finally, we may construct a localized multiscale space as Viys i := Vi — Re x Vi, spanned by {Ay — Rr x Az }uen

In order to justify the act of localization, it is required that a corrector ¢, vanishes rapidly outside an area
of its corresponding node z. Indeed, the following theorem (see [27], Thm. 4.1) shows that the corrector ¢,
satisfies an exponential decay away from its node, making the localization procedure viable.
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Theorem 3.2. There exists a constant ¢ > (8C1v(2 + CI))fl, that only depends on the mesh constant v, such
that for any T € Ty and any v € HE(Q) the solution ¢ € Vi of the variational problem

a(p,w) = / (AVU) -Vwdz, YweV;
T

satisfies

1AV Ly e (1)) < V2exp (‘CLML k) IAY2V 0l Lyery, VR EN,

at+704

where A = A+ 7B.

With the space Vi defined, we are able to localize the computations on the coarse scale system in (3.4)
by replacing the multiscale space by its localized counterpart. It remains to localize the computations of the
finescale system in (3.5), which equivalently can be written as

a (@w",z) +b(w", z) = 1a (U"_l,z) )

1 n—1

We replace the right hand side by its localized version vy~ € Vi and note that vy =
Y owen @2 (A = Reg)g). Thus, we seek our localized finescale solution as wjf = 3, o - wit ., where wi , € Vi,
solves

a (Bywg 4, 2) +b (Wi ., 2) = %a (27 (Ao — Regds),2), Vz € Vi (3.6)

x

so that the computation of this equation is localized to a patch surrounding the node x € A'. We introduce the
functions £fw € V¢, as solution to the parabolic equation

_ 1
a (8@,@@, z) +b (E,lw, z) =a (TX1(Z) (Ae — RikAa) s z) . Vze Vi, (3.7)

for | =1,2,..., N with initial value 52@, = 0, and where x1(l) is an indicator function that equals 1 when [ = 1
and 0 otherwise. We claim that wj , = Y7L, a;l*lffw is the solution to (3.6). This follows as for all z € Vi,

a (&wzm z) +b (wﬁ»z, z) =aq (& Za;l*%%m z) +b (Z Oé;cl*lgllcy$7 z)
=1 =1

= Z ar ! a (gtffwc, z)+b (f,lmc, 2))+al ! (a (étfli,w z)+b (ﬁix, z))
=0+a(a? ' (A — Repds), 2) -

With the localized computations established, the GFEM reads: find Upqr = U + wy, where vy =
Y owen @ (Az — Re g As) € Ving i solves

T (Ofvp, 2) +a(vf,z) + b (v, 2) =7 (f",2) +a (uﬁg}k,z) , V2 € Vinsk, (3.8)

and wil = Y e oy @i L, where &, € V%, solves (3.7).

To justify the fact that we localize the finescale equation, we require a result similar to that of Theorem 3.2,
but for the functions {{i}l]\il We finish this section about localization by proving that these functions satisfy
the exponential decay required for the localization procedure to be viable.
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Theorem 3.3. For any node x € N, let £ € V; be the solution to
_ 1
a (atfgrclv Z) + b( ;Lv Z) =a <7_X1(n) (AI - Rf}‘x) ’ Z> ’ Vz € ‘/va

with initial value £ = 0. Then there exist constants ¢ > 0 and C' > 0 such that for any k > 1

1€ @ wn (@) < CemF Al
for sufficiently small time step 7.

Proof. Assume k > 5. First, we analyze the problem for the first time step, which when multiplied by 7 can be
written as

a(fi,z)—I—Tb (f;,z) =a(Ae — ¢s,2), VzeEW, (3.9)
where ¢, = R¢),. We denote @ = a + 7b such that a@ (¢, z) = a (A, 2) for all z € V. Furthermore we use the
energy norm |||-||| :== \/a(-,-), and by ||-||, we denote the restriction of the norm onto a domain D. As seen in

the proof of Theorem 4.1 in [27], the result in Theorem 3.2 can be written as

162 Mo e ey < Con® 1Al

for some pu < 1. Moreover we define the cut-off function 7, € Vg by

1, in Q\N*+1 (z),
Nk ‘= . k
0, in N* (),

for z € N. Now let v = n;_3. Then we have that

supp (v) = QN2 (),
supp (Vv) = N¥=2 (2) \N*73 (2).

With this setting, we note that
llEtllg e < / VAV, - VE, do = / AVEL -V (vE)) do — / AVEL - Vrda
Q Q Q

< +

AVEL -V (1—Iy) (v€l) da
Q

+ ‘ / AVEL VI (v€)) dz
Q

AveL - elvvda
Q

)

=:M,; =:M> =:M3

where we have denoted A = A + 7B. We now proceed to estimate the terms M7, Ms and Ms separately. For
My, we use the problem (3.9) with z = (1 — Iy) (v€}) € V; to get

M,y =

)

[ AV O = 60 (1= 1) (v6}) do

T/ BV (¢3) -V (1 —1Iy) (v&;) da
Q\Nk—3

where we have used the a-orthogonality between Vi,s and V¢, that the integral is zero on supp (\;), and that
the support of the remaining integrand is Q\N*~%. Thus, we get that

My < 2l a1 M s < 72 Conl T A€ -
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Moreover, by similar calculations as in the proof of Theorem 4.1 in [27], from Ms and M5 we get
~ 2
M2a M3 S CH’&;H‘Nk\Nk—AU

for a constant C' > 0. In total, for £ € (0,1), we find that

B
X Men e < 7o Conl T Il Mg s + CIE s

(3.Cy)° k—a 2 ~ 2 2
< 2RI 4 €2 e+ C (G nns = TIEE ) -

. -1
Let § := (5—|— C’) (1 + C) < 1, and set kK = max (d, ) < 1. Then, by rearranging the terms we get the

inequality

(B:Cy)”

Ei : kS7~
el < 5200

2 A 4+ €211 e

Repeating the estimate, we end up with

Lk/4]—1
SHW@,H¢|,,;+W¢),M 2 Z s e}
@]

2¢ (1+

By choosing z = &1 in (3.9) we get

2
l€lllen s

We proceed by estimating |H§%H‘Q

lleall® < 1Ae = gelllllerl < Mrle Il
since
IXe = @all” = @ (Ao — bas Ao — 62) < IXa — dallllAall-
Moreover, for i = 0,1,2,...,|k/4] — 1, we note that
P R e P T (3.10)

so in total we have the estimate

1€ o e < VI T CorZrd A0l with %fﬁﬁ@i¥an .
\ (1+O)

Recall that this is for the first time step. In next time step, we consider the problem

a(&,2)+7b(2.2) =a(&.2), VeV

As for the first time step, we split the estimate into the similar integrals M7, My, and M3, and get

My < 725 € gy s 2 M s < 70/ T Cari LTI g e
while My and M3 remain the same. In total, we get the estimate

~ 2 k—4 ~
(14 O) I ne < S (14 o) WL + (=4 C) 2 2y o
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Once again, by letting § = (s + C’) / (1 + C‘) and since § < k, we get

2 32 k-4 2
[/ Py Mﬂ (1+ Cor?) kLT LN + o [ et
ﬁ2 Lk/4J_1 k—4—41
< KA+ — < (14 Cor?) Y il
a’e (1 + C’) i=0

Once again we use (3.10) to conclude that

€2 llgne < VI+Crr? (14 Cor?)rz WA | = /14 C172 + Cir?Cor?m2 4 A,

where
ﬁ2 Hfl
Cr = ———— ([k/4] - 1).
o’e (1 + C)
Inductively, we get for arbitrary time step n the estimate
. n—1 )
€z N < w2 H AN | D (C172)" + (Car2)" Cor®. (3.11)
i=0

Since rz*/4 < g3(k/4=1) = x=3e=5108(1/KF and since the energy norm is equivalent to the H'-norm, the
theorem holds for k£ > 5. We show that the estimate (3.11) is still valid for & < 4. For the n:th time step, let
z =¢&" in (3.9). This yields the estimate

ez < &zl < - < &z lll < MAell-
Furthermore if k < 4 we have that x2#/4] = 1, and under the assumption that C;72 < 1, we have that

n—1 n
i (0172) —1
; () =g >1

which shows that the estimate holds for k < 4. If k = 4 we can bound 3 [¥/4] < k3 L*/5] and repeat the same
argument. 0

Remark 3.4. Note that the sum that appears in (3.11) converges to

|
—

s i 1
2
(CIT ) n—oo 1— Cy72’

I
=

i

which means that the total constant in (3.11) behaves nicely for sufficiently small time steps. More specifically,
for time steps

a?ek (1 + C’)
B3 (Lk/4] = 1)
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4. ERROR ESTIMATES

In this section we derive error estimates of the ideal method (3.4) and (3.5). The additional error due to
localization can be controlled in terms of the localization parameter k. This is further discussed in Remark 4.9.
We begin by considering an auxiliary problem.

4.1. Auxiliary problem

The auxiliary problem is defined as the standard variational formulation for the strongly damped wave
equation, but we exclude the second order time derivative. Moreover, we let the starting time ¢ = t; be general
and set the time discretization to t = tg < t; < ... < ty = T. Note that N here might be different from the
discretization of the fully discrete equation (2.6), but the time step 7, and thus the multiscale space, are the
same. The auxiliary problem is to find Z}' € V}, for n =1,..., N, such that

a (0 Zp,v) +b(Zv) = (f",v), YweEV,, (4.1)
with initial value Z}) € Vius. Equivalently, multiply (4.1) by 7 and we may consider
a(Zy,v)+7b(Z7,0)=7(f"v)+a (Z;f_l,v) , YveV,. (4.2)

Existence of a solution to this problem is guaranteed by Lax—Milgram. For simplicity, we make the assumption
that the initial data for the damped wave equation (2.6) is already in the multiscale space Vi,s, such that

0 0 1 1
Uyp, = Uynq S Vms, Uy, = Uypq S Vms~

For general initial data we refer to Section 4.4 below. Furthermore, to limit the technical details in the proof
we have chosen to analyze the error in the Lo (H 1)—norm instead of the pointwise (in time) H'-norm.

The solution space can be decomposed as V}, = Vi,s® V%, such that the solution can be written as Z}' = v" +w"
where v™ € Vi, and w™ € V;. If we insert this into the system in (4.2) and consider test functions z € Vg, the
left hand side becomes

a(Z,2)+7b(Z), 2) =a (v, 2) +7b (V") 2),

where we have used the orthogonality between Vi,s and V¢ with respect to a(-,-) + 7b(-,-). Likewise, if test
functions z € V; are considered, the left hand side becomes

a(Zy,z)+ 70 (2], 2) =a(w",z) + 76 (w", 2).

With these findings, we define the approximation to the auxiliary problem as to find Z'; = v™ + w", where
V™ € Vins and w™ € V; such that

a(v",2) +7b(W",2) =T (f"2)+a(Zl5"2), Vz€ Vi, (4.3)
a(w", z)+7b(W", 2) =a (Zﬂl)gl,z) , Vz e Vi,

with initial data Z, € Vins. Note that if f = 0, then Z' = Z[, for every n, meaning that the method
reproduces Z; exactly. For the auxiliary problem, we prove the following error estimates.

Theorem 4.1. Let Z} be the solution to (4.1) and Z; the solution to (4.3) and (4.4). Assume that Z ,—Z) =
0, and f™ € Ly (), for n > 0, then the error is bounded by

125 = Zisallur < CHY 7l £ 1o (4.5)
j=1
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In addition,

n

Y72 -z, < CH? Y 7l |,

j=1 j=1
and if f* = 0yg", for some {g"}N_, such that g" € V},, then

n n

> 7lZh — Zialli, < CH Yl I, + 19°01, | -

j=1 j=1

where C does not depend on the variations in A or B.
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(4.6)

(4.7)

Proof. Since Z;' € Vj, there are " € Vi,s and w™ € Vi such that Z;) = v" + @w". Let e" = Z) — Z]},, and

consider

lle™ 1 == a (", e”) + b (e e™)

=7(f" e +a(Zp ' e") —a(w™,e") — b (v",e") —a(w",e") — b (w",e").
For v™ € Vs we have due to the orthogonality and (4.3)

a@™e")+71b(w"e") =a (™, " —v") +7b (W™, " — ™)

=7(f", 1" —v")+a (Zfégl,ﬁ” - v”) :
Similarly, for w™ € V; we use the orthogonality and (4.4) to get
a(w",e”)+71b(w" e") =a (25" 0" —w").

Hence,

lle™I* =7 (f",€") +a (Zp~ em) = r (f" 0" =) —a(Zigh o = o") —a (Zigt @ — w")

=7 (" " —w") +a(Z - 20 ).
The first term can be bounded by using the interpolation operator Iy

| (" 0" —w) [ < 7| |z, [0 = w" = Ta (0" = w") ||, < CHT|[f"| 1, [[@" — w1
< CH7|f"zalle™ g < CHT[f" ([ zollle™ Il

For the second term we note that Z,?_l - Zﬂ‘)gl =¢e" ! 50 that
lle™l < CHT[|f" |, + [[[e" ]|
Using this bound repeatedly and e = 0 we get
n
el < CH Y 7| ]| .-
j=1

This concludes the proof since ||€"|| 7 < C|lle™|-

To prove the remaining bounds in Ly-norm, we define the forward difference operator Dy = (:c”“ — x”) /T

and consider the dual problem: find xil € Vy for j=n—1,...,0, such that z}) =0 and

a —5@{1,2 +b x{wz = (e7t12), Vze V.
(<0ah ) +0 (ah2) = (171.2)

(4.8)
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Note that this problem moves backwards in time. By choosing z = m% in (4.8) and performing a classical energy
argument, we deduce

[EA i +ZTIIxh||H1 <C Z Tlle* |, (4.9)
=J k=j+1
Similarly, by choosing z = fo;'t:ri, we achieve
7,117 + ZTllatxhllHl <C Z 7lle* )1z, (4.10)
k=j+1
Now, use (4.8) to get
Sorllelli, = ra(=daf el )+ b (2] e).
j=1 j=1

Summation by parts gives

jéfnejn%z:gm(_@xi—l’a)wb(% o) - Zm(xh ao)en(H o), @

where we have used 2" = e = 0. Furthermore, we use the equations (4.1) and (4.3), and the orthogonality in
(3.2), to show that the following Galerkin orthogonality holds for zy,s € Vins

a (5tej, zms) +b (ej, zms) =a <5tZZ> zms) +b (Z}{, zms) - %a (vj, zms) ) (vj, zms) + %a (Zﬂ;ll, zms) (4.12)

— (fj7zms) — (fjazms) —0.

Let xil =zl + xf, for some xi; € Vips, mf € Vt. Using the orthogonality (4.12) and the equations (4.4) and
(4.1) we deduce

ZT& (ach Btej) +7b (x{;l, ej>

M=

Ta (x{fl,étej) +7b (xffl, ej> = ZT@ (m¥7175t2,2) +7b (mffl, Zi)
j=1
T (xg717f-j> .

If f9 € Ly (Q), then we may subtract Iyz] " =0 and use (3.1) to achieve

1

<.
Il

\E

<.
Il
—

1/2 1/2
i—1 i1 ; i1 ;
Sor(af ) <CHY el MmN < CH [ S 7lled S,
=1 =1 =1 =1
Note that H’xf ‘H + ||| 295 ||| < mxh H’ Hence the energy estimate (4.9) can now be used to achieve (4.6).

If f7 = 9,¢’ one may use summation by parts to achieve

Xn:THejH?LQ = Zn:T (zg_l,étgj) iT( 3t117f .9 j) - (x?,go)

Jj=1 Jj=1 j=1
n ~ .
< CHY |0l 11991l a + CH 2l s 190l o
j=1

where we have used zf = z}' = 0. Using (4.10) we conclude (4.7). O
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Remark 4.2. The bound in (4.6) is not of optimal order, but it is useful in the error analysis.
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The next lemma gives error estimates for the discrete time derivative of the error. In the analysis of the (full)
damped wave equation we use g = dyup, see Lemma 4.5. If the initial data is nonzero we expect d,g' below to
be of order tl_l in Lo-norm. A detailed explanation of this is given below. Hence, we have a blow up close to
zero due to low regularity of the initial data. Therefore, we need to multiply the error by ¢;. This is similar to

the parabolic case for nonsmooth initial data see, e.g. [33].

Lemma 4.3. Let Z' be the solution to (4.1) and Z[, the solution to (4.3) and (4.4). Assume Z0 4 — Z) = 0.

If O, f™ € Ly (), for n > 1, then

n n

>o7lo: (20— Zha) 13, < CH | D7l IR, + 1713,

Jj=2 Jj=2

and if f* = 0yg", for some {g"}N_,, such that g" € Vi, then

n=0

n n

S0 (2 - Zia) I, < CH [ S rla I3, + 199" 2,

Jj=2 j=2
and, in addition, the following bound holds

n n
> r210: (2] - Za) 13, < CH* | Yo rldg’ 13, + B19:g 13, |
Jj=2 j=2

where C does not depend on the variations in A or B.

Proof. The proof of (4.13) is similar to (4.6). Let e/ = Z}{ — le q and define the dual problem

a(—éwi,z) —l—b(xi,z) = (5tej+1,z), Vz2eV,, j=n—1,...,0,

with z} = 0. Choosing z = 0’1 and performing summation by parts we deduce

n n
ZTH&@W%Q = ZTU, (fétx{;l, 5t6j> +7b (:Eifl,étej)
i=2 =2
n . .
= ZTG (ac{fl, 8367) +7b (:c{fl, 5‘t63> +a(z},0pe'),

j=2

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

where we used that x}; = 0. Following the same argument as for (4.7), but with a difference quotient, we arrive

at

z”: 10”7, = zn:Ta (mfz_l,gtzej) +7b (xfl_l, 5tej) +a(z},0e") = zn:T (xg_l,étfj) +a(z},0et) .
=2 =2

=2

Using € = 0, we deduce

- 1 C
a(x, Oe') = —a(zy,el) < ?HIII}LIIHITIIflllh < CH|lzp )l mo | ]l as
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and with 0, f7 € Lo (Q) we get

Yooz, < CHY rllat mll0f || . + CHlwhllm L/ ] 2.

j=2 j=2

and (4.13) follows by using an energy estimate of mi similar to (4.9), but with d;e’ on the right hand side.
If f7 = 0;9° we proceed as for (4.7) to achieve

Sor (ol 0uf7) < CH Y 710d 109 |2 + CHlt |12 19ug™ |
j=2 j=2

and (4.14) follows by using energy estimates similar to (4.10).
For (4.15) we consider the dual problem

a (—@xi, Z) +b (mfl, z) = (tj+15tej+1, z) , VzeV,, j=n—1,...,0. (4.18)
A simple energy estimate shows
) n—1 B n—1
M7 + D Tldailin < O il dee™ M7, G=0,...,n—1. (4.19)
k=j k=j

Now choosing z = tj+15tej+1 in (4.18) and performing summation by parts gives

Z Tt?||5tej|\%2 = ZT@ (—5@{1_1, tjétej) +7b (mfl_l, tjétej) (4.20)
=2 j=2
n . — . —
= (TCL (mfl_l,tjafe]> +7b (x%_l,tj8t67>
j=2

o (e~ o)) + ek

The first two terms of the sum can be handled similarly to (4.14),

ZT (aﬁg_l,tjgtfj) .

n
Jj=2

ZTG (a:fl_l,tjgfej) +7b (xfl_l,tjgtej) =
=2

Now, using summation by parts we achieve

(o) = S (Bt ) - (o) - et
j=2 Jj=

n

< CH | 37 (10t i 1 s + oo 171 ) + ol s 1

j=2
where we can use (4.19). Note that in the first term we can use the (crude) bound 3 < 2 and let the constant
C depend on T'. Moreover, we use that t5 < 2t;. We get

1/2 1/2

n n

Sor(af L u0) < CH Y o3, ST+t

=2 j=1 =2
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For the third term in (4.20), we use t; —t;_1 = 7 and once again perform summation by parts to get

n

n
= <
E Ta (xib , 0l 1):5 Ta (*3#% , e 1),
i=2 i=2

where we have used z} = €® = 0. Combining (4.19) and (4.5) we get

1/2 1/2
n

n
Ta <_5txi_1,ej_1> =0 max e e [ D7 > 7o I
J1=1,...,n
j=2

Jj=2

.
i M:
[\

1/2

n n
SCHY 7l fl. | Do rt10i€12,
j=1

j=1
For the last term in (4.20) we use (4.19) and (4.5) for n = 1 to achieve
1/2
a (xbtlétel) =a (x,lz, el) <CH Zﬁ?”gtejﬂig tllf L,
j=1
and (4.15) follows by letting f/ = 0;¢7. O

4.2. The damped wave equation

For the error analysis of the full damped wave equation we shall make use of the projection corresponding
to the auxiliary problem. For uj € V3, let X" = X! + X} € V}, with X} € Vs and X} € V; such that

@ (XD =, 2)+ b (XD~ 2) = a (X" =i 2), Vr € Vi, (4.21)
a(Xp,2)+71b(Xp,2)=a (X" 2), Vz € Vi (4.22)

Note that since uj solves (2.6), the system (4.21) and (4.22) is equivalent to
a(X),2)+7b(X),2) =7 (f"—0Fup,z) +a (X" 1 2), Vzé€ Vi, (4.23)
a(XP,z)+7b(X}z)=a(X"1,2), Vz € Vi (4.24)

That is, we may view uj and X" as the solution and approximation to the auxiliary problem with source data
[ — 02ul. We deduce following lemma.

Lemma 4.4. Let u}} be the solution to (2.6) and X" the solution to (4.21) and (4.22). The error satisfies the
following bounds

IX™ — wplln < CH Y 7llf? = o, n>2, (4.25)
j=2
& j 712 2 = 112 .72 .12
Sorx? a3, < cH* [ D07 (11, + 10wd 3, ) + 19wdl, | n>2, (4.26)
j=2 j=2

where C does not depend on the variations in A or B.

Proof. We let the auxiliary problem (4.1) start at ¢; with initial data u},, such that the error at the initial time
is zero, i.e. €® = 0. The bound (4.25) now follows directly from (4.5) with f™ — d7uj as right hand side. The
second bound (4.26) follows from (4.6) and (4.7) with f" € Ly (Q) and ¢g" = dyuj*. O
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In a similar way me may deduce bounds for the (discrete) time derivative of the error. As a direct consequence
of Lemma 4.3, we get the following result.

Lemma 4.5. Let uj be the solution to (2.6) and X™ the solution to (4.21) and (4.22). The following bounds
hold

n

n
Sorloc (X7 =) 13, < o (3o (100713, + 1023, ) + 17213, + 10733, | (4.27)
Jj=3 j=3
S0 (X7l ) 13, < CH2 [ Yo7 (107118, + 1023, ) + BIF205, + B10Rad I3, | (428)
j=3 j=3

where C does not depend on the variations in A or B.

Lemma 4.6. Let u}} and uj, be the solutions to (2.6) and (3.4), (3.5), respectively. Assume that ug = uy = 0.
The error is bounded by

n n
D rlueg —whllFn < CH* [ (1717, + 10:712,) + max |7, |

forn > 2, where C does not depend on the variations in A or B.

Proof. Begin by splitting the error into two contributions

Ul — =l — X" X = 0"
where X" is the solution to the simplified problem in (4.21) and (4.22). By Lemma 4.4 p™ is bounded by
n .
Il < CH Y 7 (1 s + 10012, )
j=2

and we can now apply the energy bound (2.9). It remains to bound 6™. Recall that for any z € V}, we have
2 = Zms + 2t for some zyms € Vins and 2; € V4. Using that uj; = v™ + w" satisfies (3.4) and the orthogonality
(3.2) we get

(O7ull g, zms) + @ (Opufl g, Zms) + b (Uhas 2ms) = (™, Zms) + (O7w", Zms) -
Similarly, due to (3.5) and the orthogonality,
(0fultg, zt) + a (Opujbg, 2¢) + b (ulng, 2t) = (OFujbg, 2t) -
For X™ we use (4.21) and (4.22) and the orthogonality to deduce
(7 X™,2) +a (X", 2) +b(X"™,2) = (0F X", 2) + (f" — Ofufl, 2ms) , 2 € Vi,
Hence, 0" satisfies
(970™,2) +a (040", 2) +b(0",2) = (=07 p". 2) — (OFup, 2) + (OFulbq, 2¢) + (Fw", 2ms) , 2 € Vi,

with 0 = ' = 0, since uly, = u) = X° and ul,; = up = X'. Let §" = > j—o T07. Multiplying by 7 and
summing over n gives

(3607, 2) +a (0", 2) + b (9 z) < (=Bup™, 2) — (Bult — Byub, 2¢) + (Brufq — Brulg, ) (4.29)
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+ (O™ — yw, Zms)
where we have used that ' = % = p! = p¥ = 0. Using the interpolant Iy we deduce
(Oeuy, 2t) + (Deuipa, zt) + (0", 2ms) < CH ([0pupy ||, + 10vuivqllz,) 2l + CH|[Opuipall s || 2ms| o

for 1 <n < N.Let a(n) = ||0pu}|| 1, + |0l 4|l - Since ||zms 2, < C|lz|| g and a (1) = 0 due to the vanishing
initial data, we get

((‘i@",z) +a(0",2)+0b (5",2’) < (—@p",z) +CHa(n) ||z||lg1, 2 € V.
Now, choose z = 0" = §,0™ in (4.29). We get
1 1 n— n 1 on 1 an— 5 n n n
L0 3, — S8, 4 1072 4 18R — 2187 < 7 a0 + CHre () 167

Summing over n gives

16712, + > 16713 + 16" 17 <> 710 22 167Nz + CH Y max (5) 167|111

j=2 j=2 j=2

Now using that ||0" ||z, < ||0" ||z and Young’s weighted inequality, 67 can be kicked back to the left hand side.
We deduce

n

S oTleNF < CY a7, + CH? Y rali)’

j=2 j=2 j=2
Using Lemma 4.5 we have
Sorlor s < or? | S r (1071, + 102613, ) + 102313, | + CH® Y ra ().
j=2 j=2 j=2

To bound [|87u? |7, we consider (2.6) for n = 2 and choose v = d7uj7, which gives

(5t2ui, 5t2u%) +a (5tui, 5?“%) +b (u%, 5?11%) = (5tf2, agui) .

Due to the vanishing initial data 5tu,2L = T’lu,% and 5?“% = T’2ui. We get

_ 1 1 _
107 ui|I7, + gIIUilli + ;IIU%II% = (f*,07ui), (4.30)
and we deduce
10FuzlZ, < CIIF2I7,

All terms, except E?:g 7'||5tu{0 dHf_{l ‘Fhat appears in 2?22 OiQ (j), can now be bounded by using the regularity
in Theorem 2.2. To bound Z?:z 7]|0pui 4 ||%: we choose z = 9;v™ and z = yw™ in (3.4) and (3.5) respectively.
Adding the two equations and using the orthogonality between V5 and V; we achieve

(5t2vn75tvn) +a (étuﬂada 5tuﬁd) +b (UIT:)dv 5tuﬂ)d) = (fnv 5tvn) < CE||fn||2L2 + 6Hgtvn||2L2-
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Note that |00 ||, < C||VO" |1, < C|Hc‘§tv”H| = C|Hc‘§tuﬁ)d|‘| < C|0ul ylla » S0 We may choose € small enough
such that H‘gt“ﬁ)dm can be kicked to the left hand side. As in the proof of Theorem 2.2 we may now deduce

n n
10:0™ 1, + Y TlOutoqllzn + lufoallFr < O { D117, + 10wz, + luillFn | (4.31)
j=2 j=2

where we have used that v! = u110 q= “}11 € Vis. However, we have assumed vanishing initial data so these terms
disappear. The lemma, follows. O

Lemma 4.7. Let u} and uj 4 be the solutions to (2.6) and (3.4), (3.5), respectively. Assume that f = 0. The
error is bounded by

n
Y il — upllin < CH? (18euhl|F + lupl3p + IuflFn), n =2,
j=2

where C does not depend on the variations in A or B.

Proof. We follow the steps in the proof of Lemma 4.6 to equation (4.29). Note that ||p"™|| g1 can be bounded by
Lemma 4.4 and the energy bound in (2.9) with f = 0.
Now, let 6" = Z;-L:Q 767. Choose z = 6" = 3;0™ in (4.29) and multiply by 7¢2. We get

t721 n|2 t%71 n—12 2 1mn|2 t?21 an (|2 t721*1 an—12
S 110"z, — 167 Iz, + 711612 + <1015 — 16"~ 1l3
2 2 2 2
213 n n 2 n (tfl_ %—1) n—1)2 (t%_t%—l) an—112
< 7tu[|0ep" (2,107 |2, + CHE, 7 (@ (n) + a (D) [10% |1 + 10" L, + 55— 110"""[[;-

Summing over n and using t2 — t2_, < 27t,, gives

tallO™ 17, + D T30 5 + 10" 1 < C Y 10 | L 07]], + CH Y 783 ( () + a (1) [07]l - (4.32)

j=2 Jj=2 j=2
n n 5
+CY i [|07]7, + C DTt ll67].
j=2 j=2

From the first two sums on the right hand side we can kick ¢;(|67]|, < ;67| g1 and t;]|67] 1 to the left hand
side. The remaining two sums needs to be bounded by other energy estimates.
Multiply (4.29) by 7 and sum over n to get

(0", 2) +a (én,z) +5b ZT@j,z < (p"2) = (up —up,z) + (ufhg — g, 2¢) + (W" — W', 2ins) (4.33)
j=2

+ 1ty (((’Zu}wzf) - (8_tu110d,zf) — (5tw1,zms)) .
where we have used 6! = p! = 0. As in the proof of Lemma 4.6 we get
(uhy, z6) + (uiga, 26) + (W", 2ms) < CH (Jup ||z, + llwioallz.) 12l ar + CH |[uioall [l 2ms |l 2o

for 1 <n < N.Let 8(n) = |u}| £, +|ul’ gl z1- Choose z = 6™ = > 767. Similar to above energy estimates,
we get

16717, + D TI0N2 + 1Dl < Y7l Iz, + CH? Y 7 (B() + B (1) +a (1) (4.34)

=2 =2 j=2 j=2
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Since Y7, Tt; 167]12 < C (tn) Z;l:zTHéng we may use (4.34) in (4.32). This gives
10", + DT [ + 10" 1 < C YT (18717, + 10717,) + C Y7167, (4.35)
j=2 j=2 j=2
+CH22 (BaG)+a@)’+BG)+B81) +aD)).

It remains to bound C 2?22 7t;(07]|7, . For this purpose, choose z = " = 9;6™ in (4.33). Multiply by t,7 and
sum over n to achieve

ZTt 167113, + tn 67 + Zt iTh <Z Ték,8t§j> < CZthHij%z + CZTHéjHi (4.36)

j=2 k=2 j=1 =2

+CHY i (B() + 8 (1) +a (1)) 167] .

Jj=2

Note that [|67] 71 is the last sum in only present in the right hand side. The second term on the right hand side
is bounded by (4.34). For the term involving the bilinear form b (-, -) we use summation by parts to get

n n 7 n
—ZTb ( 279 Oy ZT9k> < Zrb <tj§j + 279*1«7(53‘—1) —-b thTéj,é”
j=2 k=2 j=2 k=2 =2
<CY 0 NG +CI Y85+ Cetn 1675
j=2 j=2
Here the constant C. can be made arbitrarily small due to Young’s weighted inequality. The first two terms can
be bounded by (4.34). Thus, (4.36) becomes

n

YTl L, + tall0MNE < C YT (10T, + 17 NT,) + CH Yty (B() + 5 (1) + (1)) 167
j=2 j=1 j=2

+CH? Y 7 (B(j) + (1) +a(1)” + Ctpll6" |3
Using this in (4.35) we arrive at

tallo™ 1z, + ZTtQHQJ”Hl + 107 < CZ (10 I, + il 112,)

Jj=2

+ Y 7 (Bla()+a )+ BG)+5(1) +a1)?)  (437)

'Mz

Jj=2

+CHY rt; (B() +B1) +a W) 167 g + Cetp]|07]7-
=2

Using Lemmas 4.5 and 4.4 with f = 0 we deduce for the first two terms in (4.37)

n

n
CY T (B0 |17, + tl112,) < CH? [ Y 7lloFupllz, + 31107 urllZ, + 10uili, |
j=2 j=2
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where we can use (2.9) for n =2 and f = 0 to bound 02u3. We get
30107 unlIZ, < C7 (10wl + lunllZe)

For the remaining terms in (4.37) we note that ¢;]|6’|| g1 now may be kicked to left hand side using Cauchy—
Schwarz and Young’s weighted inequality. The term involving C. can also be moved to the left hand side. All
terms involving « (j) and £ (j) can be bounded by (2.8) and (4.31). This finishes the proof after using the
regularity in Theorem 2.2 with f = 0. (]

4.3. Error bound for the ideal method

We get the final result by combining the two previous lemmas.

Corollary 4.8. Let u} and ujl, be the solutions to (2.6) and (3.4), (3.5), respectively. The solutions can be
split into up = up § + up 5 and ujgq = ujoqq + Ulpq 0. where the first part has vanishing initial data, and the
second part a vanishing right hand side. The error is bounded by
n . . n
ZT”uiJ - ’U’{od,lH%ﬂ < CH”?

(171 + 1007 12,) +  max £, |, forn>2
j=2 J

1

and
n . . —
D rtilud o, — wdgoll3n < CH? (10ull3 + lup 3 + lugl3n),  forn > 2.
=2

Proof. This is a direct consequence of Lemmas 4.6 and 4.7 together with the fact that the problem is linear so
the error can be split into two contributions satisfying the conditions of each lemma. O

Remark 4.9. The result from Corollary 4.8 is derived for the ideal method presented in (3.4) and (3.5). The
GFEM in (3.7) and (3.8) will yield yet another error from the localization procedure. However, due to the
exponential decay in Theorems 3.2 and 3.3, it holds for the choice k ~ |log (H) | that the perturbation from the
ideal method is of higher order and the derived result in Corollary 4.8 is still valid. For the details regarding
the error from the localization procedure, we refer to [29].

4.4. Initial data

For general initial data u%, u,l1 € Vi, we consider the projections Rmsug and Rmsu,ll, where Ry, = I — Ry is
the Ritz-projection onto V. Let v be the difference between two solutions to the damped wave equation with
the different initial data. From (2.8) it follows that

[l < € (110k (up, — Runstn) 17, + I, — Bmstn|[7)

where we have chosen to keep the b-norm. For the first term we may use the interpolant Iy to achieve H. For
the second term use

B+
||u%b — Rmsu;lLHg < m (||u,1l — RmsU;lIHi + THU}L — RmsUng) . (4.38)

If the initial data fulfills the following condition for some g € Ly (€2)
a (u}b,v) +7b (u,ll, U) =(g,v), Yv€&Vp, (4.39)
then we may deduce

Hu}ll - Rmsu}lle + T”uilz - Rmsu}z”% = (gaU}lL - Rmsu}ll) < CH||g||L2 Hu}ll - RmsU}LHHL
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FIGURE 2. The behavior of the correction functions ;' , with increasing n. The time step is
7 =0.01 and k is here chosen so that the support covers the entire interval.

Hence, the error introduced by the projection of the initial data is of order H. The condition (4.39) appears
when applying the LOD method to classical wave equations, see [1], where it is referred to as “well prepared
data”. We note in our case that if B is small compared to A, that is if the damping is strong, then the constant in
(4.38) is small. In some sense, this means that the condition in (4.39) is of “less importance”, which is consistent
with the fact that strong damping reduces the impact of the initial data over time.

5. REDUCED BASIS METHOD

The GFEM as it is currently stated requires us to solve the system in (3.7) for each coarse node in each time
step, i.e. N number of times. We will alter the method by applying a reduced basis method, such that it will
suffice to find the solutions for M < N time steps, and compute the remaining in a significantly cheaper and
efficient way.

First of all, we note how the system (3.7) that &k . solves resembles a parabolic type equation with no source
term. That is, the solution will decay exponentially until it is completely vanished. An example of how &},
vanish with increasing n can be seen in Figure 2, where the coefficients are given as ’

Az) = (Q—Sin (?—A"E))_l and B (z) = (2—008 (25%1))_17

with e4 =27% and e = 276.

In Figure 2 it is also seen how the solutions decay with a similar shape through all time steps. This gives
the idea that it is possible to only evaluate the solutions for a few time steps, and utilize these solutions to
find the remaining ones. This idea can be further investigated by storing the solutions {5};% N_| and analyzing
the corresponding singular values. The singular values are plotted and seen in Figure 3. It is seen how the
values decrease rapidly, and that most of the values lie on machine precision level. In practice, this means that
the information in {€ }M_; can be extracted from only a few £ ’s. We use this property to decrease the
computational complex&ty by means of a reduced basis method. We remark that singular value decomposition
is not used for the method itself, but is merely used as a tool to analyze the possibility of applying reduced
basis methods.

The main idea behind reduced basis methods is to find an approximate solution in a low-dimensional space
VAF/}%W which is created using a number of already computed solutions. More precisely, to construct a basis
for this space, one first computes M solutions {5,:’?:0}%:1, where M < N. By orthonormalizing these solutions

using e.g. Gram-Schmidt orthonormalization, we yield a set of vectors {C,TT M_ ., called the reduced basis.
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0 20 40 60 80 100

FiGURE 3. The singular values obtained when performing a singular value decomposition of
the matrix created by storing the finescale corrections {52796}27:1 with NV = 100.

Consequently, the reduced basis space becomes VAF}%I = span ({C}fw %:1) for each node z € N. With this

M

ne 1, and then approximate the

space created, the procedure of finding {{,2‘7w},]¥:1 is now reduced to finding {£}’

remaining solutions by mrb N C VRB  More precisely, for | = M +1, M+2,..., N we seek Lrb o RB
kax Sn=M+1 M.k k@ M.k
such that

o r r ]‘
a (B z) +0 (€00 2) = a <TX1 (1) (A — Reahs) z) , VzeViR .. (5.1)

The matrix system to solve for a solution in Vl\%ﬁc,x is of dimension M x M, so when M is chosen small, the
last N — M solutions are significantly cheaper to compute, which solves the issue of computing N problems on
the finescale space.

When constructing the reduced basis {C,’C’TI}%:D it is important to be aware of the fact that the solution
corrections {5,?1 N_, all show very similar behavior. In practice, this implies that many of the &k..'s are linearly
dependent, hence causing floating point errors to become of significant size in the RB-space V]EE’W. To work
around this issue, one may include a relative tolerance level that removes a vector from the basis if it is too
close to being linearly dependent to one of the previously orthonormalized vectors. Note that this may imply
that we get M < M basis vectors in our RB-space instead of M. One may moreover use this tolerance level as
a criterion for the amount of solutions, M, to pre-compute. That is, once the first vector is removed from the
orthonormalization process, then the RB-space contains sufficient information and no more solutions need to
be added.

In total, the novel method first requires that we solve Ny number of systems on the localized fine scale in
order to construct the multiscale space Vi, ;. Moreover, we require to solve a localized fine system Ng times
for M time steps to create the RB-space V]\Pﬁ€ , for each coarse node x € N. By utilizing the RB-space, the
remaining N — M finescale corrections are then solved for in an M x M matrix system, and we yield the sought
solution ufziz by computing a matrix system on the coarse grid with the multiscale space Viys 1. We summarize
the reduced basis approach in Algorithm 1.
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FIGURE 4. The two different coefficients used for the numerical examples. The contrast is
ayp/a_ = p./B- =10 (A) A(z,y). (B) B(x,y).

Algorithm 1: Summary how to compute the finescale correctors {&f N_, with the RB-approach.

1 Pick M, relative_tol;
2 for allx € N do

3 for [ =1,2,...,M do

4 L Solve (3.7) for sz and store;

5 Compute reduced basis {C,Z’fz}fg:l = gram_schmidt({gﬁfz}ff:l, relative_tol);
6 Construct VAP;}];@ = span ({C,fo}i\zﬂ);

7 fori=M+1,...,N do

8 L Solve (5.1) for §L’f; and store;

6. NUMERICAL EXAMPLES

In this section we illustrate numerical examples for the novel method. At first, we present numerical examples
that confirm the theoretical findings derived in this paper. In addition, we provide a practical example related
to seismology where the Marmousi model is used together with the Ricker wavelet as source function.

6.1. Academic example

In this section we present numerical examples that illustrate the performance of the established theory. For
all examples, we consider the domain to be the unit square Q = [0,1] x [0,1]. The coefficients A (z,y) and
B (z,y) used in these examples are generated randomly with values in the interval [107!,10%], and examples
of such are seen in Figure 4. Moreover, as initial value for each example we set ug = u; = 0, and the source
function is given by f = 1.

The first example is used to show how the performance is effected by the localization parameter k. Here, we
evaluate the solution on the full grid, uj} 4, and compare it with the localized solution, u{ 4 ;., as k varies. For the
example the time step 7 = 0.02 was used and final time was set to 1" = 1. The fine and coarse meshes were set
to h =277 and H = 27 respectively, and we let k = 2,3,...,7. The relative error between the functions can
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FIGURE 5. Relative H!-error ||vvcf(\)7d—uf:)[d7,C &1/ |uf¥y || g2 between the non-localized and localized
method, plotted against the layer number k.

be seen in Figure 5. Here we can see how the error decays exponentially as k increases, verifying the theoretical
findings regarding the localization procedure.

For the second example, the performance of the GFEM in (3.7) and (3.8) depending on the coarse mesh
width H is shown. For this example, the fine mesh width is set to h = 278, and for each coarse mesh width
the localization parameter is set to k = log, (1/H). Moreover, the time step is set to 7 = 0.02 (for the GFEM
as well as the reference solution) and the solution is evaluated at T'= 1. To compute the error, we use a FEM
solution on the fine mesh as a reference solution. The error as a function of 1/H can be seen in Figure 6. Here it
is seen how the error for the novel method decays faster than linearly, confirming the error estimates derived in
Section 4. For comparison, Figure 6 also shows the error of the standard FEM solution, as well as the solution
using the standard LOD method with correction solely on A and B respectively, i.e. corrections based on the
bilinear forms a (-,-) and b(-,-) respectively and without finescale correctors. As expected, the error of these
methods stay at a constant level through all coarse grid sizes.

At last, we compute the solution where the system (3.7) is computed using the reduced basis approach. For
this example, we let the number of pre-computed solutions M vary, and see how the error between the solutions
Ujpq  and uﬂ);bk behaves. In the example we have the fine mesh h = 278, the coarse mesh H = 27°, the time step
7 = 0.02, and the final time 7" = 1. The result can be seen in Figure 7. Here it is seen how the error decreases
rapidly with the amount of pre-computed solutions. Note that it is sufficient to compute approximately 10
solutions to yield an error smaller than the discretization error for the main method in Figure 6. This for the
case when the number of time steps are N = 50. We emphasize that a large increment in time steps does not
impact the number of pre-computed solutions M significantly, making the RB-approach relatively more efficient
the more time steps that are considered.

6.2. Marmousi model

We finish by demonstrating the novel method (with the reduced basis approach) on a more practical example.
A commonly used model problem in seismology is the Marmousi model, which we use to construct our coefficients
A(z,y) and B (x,y). This is done by applying midpoint quadrature on the image seen in Figure 8a so that the
dimensions work with the fine mesh, which is set to h = 278. The scales on the coefficients are set to a_ = 2,
ar =5, - =1and B4 = 10. As earlier, the spatial domain is set to the unit square and the temporal domain
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FIGURE 6. Relative H'-error ||ull; — uly . |lmi/||ulls|/zn between the reference solution
and the approximate solution computed with the proposed method (without reduced basis
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FIGURE 7. Relative H'-error ||uf§d’,C — ’LL{X&T’ZHHI/HUIJXd’k”Hl between the solution with and

without the reduced basis approach, plotted against the number of pre-computed solutions.

to [0, 1], discretized with time step 7 = 0.02. As source function we use the Ricker wavelet defined as
f(@,y,t) = xp (z,y) (1 — om0 (t — t’)Q) e~ (1Y)

where v denotes the frequency, ¢’ is the center of the wavelet and xp (z,y) is the indicator function equal to 1 on
P C Q and 0 elsewhere. For our example we let v = 3, ¢ = 0.5 and P = [0.5 —2h, 0.5+ 2h] x [0.5 — 2h, 0.5+ 2h].
The temporal behaviour of the wavelet can be seen in Figure 8b. The solution is computed for coarse mesh sizes
H =271272...,276 with localization parameter k = log, (1/H), and for the construction of each reduced

basis space V]\P}E}C . We pre-compute 15 vectors, i.e. M = 15. The error is computed with respect to a reference
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FIGURE 8. Left: Marmousi data used to create the coefficients A (z,y) and B (z,y). Right: how
the Ricker wavelet f (¢) varies over time. (A) Marmousi data. (B) Ricker wavelet f(t).
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FIGURE 9. Relative H'-error |[ufY; — U{Zgi”Hl/Hui\eff”Hl between the full method with reduced
basis approach and the reference solution for the practical example using Marmousi data.

solution evaluated on the fine grid, and is displayed in Figure 9. It seen here how the full method converges
faster than linearly.
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