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A GENERALIZED FINITE ELEMENT METHOD FOR THE STRONGLY
DAMPED WAVE EQUATION WITH RAPIDLY VARYING DATA

Per Ljung1,*, Axel Målqvist1 and Anna Persson2

Abstract. We propose a generalized finite element method for the strongly damped wave equation with
highly varying coefficients. The proposed method is based on the localized orthogonal decomposition
introduced in Målqvist and Peterseim [Math. Comp. 83 (2014) 2583–2603], and is designed to handle
independent variations in both the damping and the wave propagation speed respectively. The method
does so by automatically correcting for the damping in the transient phase and for the propagation
speed in the steady state phase. Convergence of optimal order is proven in 𝐿2(𝐻

1)-norm, independent of
the derivatives of the coefficients. We present numerical examples that confirm the theoretical findings.
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1. Introduction

This paper is devoted to the study of numerical solutions to the strongly damped wave equation with highly
varying coefficients. The equation takes the general form

𝑢̈−∇ · (𝐴∇𝑢̇ + 𝐵∇𝑢) = 𝑓, (1.1)

on a bounded domain Ω. Here, 𝐴 and 𝐵 represent the system’s damping and wave propagation respectively, 𝑓
denotes the source term, and the solution 𝑢 is a displacement function. This equation commonly appears in the
modelling of viscoelastic materials, where the strong damping −∇ · 𝐴∇𝑢̇ arises due to the stress being repre-
sented as the sum of an elastic part and a viscous part [6, 13]. Viscoelastic materials have several applications
in engineering, including noise dampening, vibration isolation, and shock absorption (see [20] for more applica-
tions). In particular, in multiscale applications, such as modelling of porous media or composite materials, 𝐴
and 𝐵 are both rapidly varying.

There has been much recent work regarding strongly damped wave equations. For instance, well-posedness
of the problem is discussed in [7, 19, 21], asymptotic behavior in [3, 8, 30, 34] solution blowup in [2, 12], and
decay estimates in [18]. In particular, FEM for the strongly damped wave equation has been analyzed in [24]
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using the Ritz–Volterra projection, and [23] uses the classical Ritz-projection in the homogeneous case with
Rayleigh damping. In these papers, convergence of optimal order is shown. However, in the case of piecewise
linear polynomials, the convergence relies on at least 𝐻2-regularity in space. Consequently, since the 𝐻2-norm
depends on the derivatives of the coefficients, the error is bounded by ‖𝑢‖𝐻2 ∼ max(𝜀−1

𝐴 , 𝜀−1
𝐵 ) where 𝜀𝐴 and 𝜀𝐵

denote the scales at which 𝐴 and 𝐵 vary respectively. The convergence order is thus only valid when the mesh
width ℎ fulfills ℎ < min(𝜀𝐴, 𝜀𝐵). In other words, we require a mesh that is fine enough to resolve the variations
of 𝐴 and 𝐵, which becomes computationally challenging. This type of difficulty is common for equations with
rapidly varying data, an issue for which several numerical methods have been developed (see e.g. [4, 5, 22, 28]).
None of these methods are however applicable to the strongly damped wave equation, where two different
multiscale coefficients have to be dealt with. In this paper, we propose a novel multiscale method based on the
localized orthogonal decomposition (LOD) method.

The LOD method is based on the variational multiscale method presented in [17]. It was first introduced in
[29], and has since then been further developed and analyzed for several types of problems (see e.g. [1, 15, 16,
25,27]). In particular, Målqvist and Peterseim [26] studies the LOD method for quadratic eigenvalue problems,
which correspond to time-periodic wave equations with weak damping. The main idea of the method is based
on a decomposition of the solution space into a coarse and a fine part. The decomposition is done by defining an
interpolant that maps functions from an infinite dimensional space into a finite dimensional FE-space. In this
way, the kernel of the interpolant captures the finescale features that the coarse FE-space misses, and hence
defines the finescale space. Subsequently, one may use the orthogonal complement to this finescale space with
respect to a problem-dependent Ritz-projection as a modified FE-space. In the case of time-dependent problems,
the LOD method performs particularly well in the sense that the modified FE-space only needs to be computed
once, and can then be re-used in each time step.

Multiscale methods, as the localized orthogonal decomposition, are usually designed to handle problems
with a single multiscale coefficient. In this sense, the strongly damped wave equation is different, as an extra
coefficient appears due to the strong damping. Hence, one of the main challenges for the novel method is how
to incorporate the finescale behavior of both coefficients in the computation. Nevertheless, it should be noted
that existing multiscale methods are applicable for some special cases of this equation. An example is the case
of Rayleigh damping where the coefficients are proportional to each other. Other examples are the steady state
case, the transient phase in which the solution evolves rapidly in time, as well as the case of weak damping
where no spatial derivatives are present on the damping term.

In this paper we present a generalized finite element method (GFEM), with a backward Euler time stepping
for solving the strongly damped wave equation. The method uses both the damping and diffusion coefficients
to construct a generalized finite element space, similar to those in e.g. [25, 29]. The solution is then evaluated
in this space, but to account for the time dependence, an additional correction is added to it. However, this
correction is evaluated on the fine scale, and thus expensive to compute. To overcome this issue, we prove spatial
exponential decay for the corrections so that we can restrict the problems to patches in a similar manner as for
the modified basis functions in [29]. The effect of the proposed method is that the multiscale basis compensates
for the damping early on in the simulation when it is dominant and then gradually starts to compensate for the
wave propagation which is dominant at steady state. This is done seamlessly and automatically by the method.
Furthermore, we prove optimal order convergence in 𝐿2(𝐻1)-norm for this method. Following this, we show
that it is sufficient to compute the finescale corrections for only a few time steps by applying reduced basis (RB)
techniques. For related work on RB methods, see e.g. [9,10,14], and for an introduction to the topic we refer to
[32].

The outline of the paper is as follows: In Section 2 we present the weak formulation and classical FEM for
the strongly damped wave equation, along with necessary assumptions. Section 3 is devoted to the generalized
finite element method and its localization procedure. In Section 4 error estimates for the method are proven.
Section 5 covers the details of the RB approach, and finally in Section 6 we illustrate numerical examples that
confirm the theory derived in this paper.
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2. Weak formulation and classical FEM

We consider the wave equation with strong damping of the following form

𝑢̈−∇ · (𝐴∇𝑢̇ + 𝐵∇𝑢) = 𝑓, in Ω× (0, 𝑇 ], (2.1)
𝑢 = 0, on Γ× (0, 𝑇 ], (2.2)

𝑢(0) = 𝑢0, in Ω, (2.3)
𝑢̇(0) = 𝑣0 in Ω, (2.4)

where 𝑇 > 0 and Ω is a polygonal (or polyhedral) domain in R𝑑, 𝑑 = 2, 3, and Γ := 𝜕Ω. The coefficients 𝐴 and
𝐵 describe the damping and propagation speed respectively, and 𝑓 denotes the source function of the system.
We assume 𝐴 = 𝐴(𝑥), 𝐵 = 𝐵(𝑥) and 𝑓 = 𝑓(𝑥, 𝑡), i.e. the multiscale coefficients are independent of time.

Denote by 𝐻1
0 (Ω) the classical Sobolev space with norm

‖𝑣‖2𝐻1(Ω) = ‖𝑣‖2𝐿2(Ω) + ‖∇𝑣‖2𝐿2(Ω)

whose functions vanish on Γ. Moreover, let 𝐿𝑝(0, 𝑇 ;ℬ) be the Bochner space with norm

‖𝑣‖𝐿𝑝(0,𝑇 ;ℬ) =
(︂∫︁ 𝑇

0

‖𝑣‖𝑝
ℬ d𝑡

)︂1/𝑝

, 𝑝 ∈ [1,∞),

‖𝑣‖𝐿∞(0,𝑇 ;ℬ) = ess sup
𝑡∈[0,𝑇 ]

‖𝑣‖ℬ,

where ℬ is a Banach space with norm ‖ · ‖ℬ. In this paper, the following assumptions are made on the data.

Assumption 2.1. The damping and propagation coefficients 𝐴, 𝐵 ∈ 𝐿∞(Ω, R𝑑×𝑑) are symmetric and satisfy

0 < 𝛼− := ess inf
𝑥∈Ω

inf
𝑣∈R𝑑∖{0}

𝐴(𝑥)𝑣 · 𝑣
𝑣 · 𝑣

< ess sup
𝑥∈Ω

sup
𝑣∈R𝑑∖{0}

𝐴(𝑥)𝑣 · 𝑣
𝑣 · 𝑣

=: 𝛼+ < ∞,

0 < 𝛽− := ess inf
𝑥∈Ω

inf
𝑣∈R𝑑∖{0}

𝐵(𝑥)𝑣 · 𝑣
𝑣 · 𝑣

< ess sup
𝑥∈Ω

sup
𝑣∈R𝑑∖{0}

𝐵(𝑥)𝑣 · 𝑣
𝑣 · 𝑣

=: 𝛽+ < ∞.

In addition, we assume that 𝑓 ∈ 𝐿∞([0, 𝑇 ]; 𝐿2(Ω)) and 𝑓 ∈ 𝐿2([0, 𝑇 ]; 𝐿2(Ω)).

For the spatial discretization, let {𝒯ℎ}ℎ>0 denote a family of shape regular elements that form a partition
of the domain Ω. For an element 𝐾 ∈ 𝒯ℎ, let the corresponding mesh size be defined as ℎ𝐾 := diam(𝐾), and
denote the largest diameter of the partition by ℎ := max𝐾∈𝒯ℎ

ℎ𝐾 . We now define the classical FE-space using
continuous piecewise linear polynomials as

𝑆ℎ := {𝑣 ∈ 𝒞(Ω̄) : 𝑣
⃒⃒
Γ

= 0, 𝑣
⃒⃒
𝐾

is a polynomial of partial degree ≤ 1, ∀𝐾 ∈ 𝒯ℎ},

and let 𝑉ℎ = 𝑆ℎ ∩𝐻1
0 (Ω). The semi-discrete FEM becomes: find 𝑢ℎ : [0, 𝑇 ] → 𝑉ℎ such that

(𝑢̈ℎ, 𝑣) + 𝑎(𝑢̇ℎ, 𝑣) + 𝑏(𝑢ℎ, 𝑣) = (𝑓, 𝑣), ∀𝑣 ∈ 𝑉ℎ, 𝑡 ∈ [0, 𝑇 ], (2.5)

with initial values 𝑢ℎ(0) = 𝑢0
ℎ and 𝑢̇ℎ(0) = 𝑣0

ℎ where 𝑢0
ℎ, 𝑣0

ℎ ∈ 𝑉ℎ are appropriate approximations of 𝑢0 and 𝑣0

respectively. Here (·, ·) denotes the usual 𝐿2-inner product, 𝑎(·, ·) = (𝐴∇·,∇·), and 𝑏(·, ·) = (𝐵∇·,∇·).
For the temporal discretization, let 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 be a uniform partition with time step

𝑡𝑛 − 𝑡𝑛−1 = 𝜏 . We apply a backward Euler scheme to get the fully discrete system: find 𝑢𝑛
ℎ ∈ 𝑉ℎ such that

(𝜕2
𝑡 𝑢𝑛

ℎ, 𝑣) + 𝑎(𝜕𝑡𝑢
𝑛
ℎ, 𝑣) + 𝑏(𝑢𝑛

ℎ, 𝑣) = (𝑓𝑛, 𝑣), ∀𝑣 ∈ 𝑉ℎ, (2.6)
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for 𝑛 ≥ 2. Here, the discrete derivative is defined as 𝜕𝑡𝑢
𝑛
ℎ = (𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ )/𝜏 . The first initial value is given by

𝑢0
ℎ ∈ 𝑉ℎ. The second initial value 𝑢1

ℎ should be an approximation of 𝑢(𝑡1) and could be chosen as 𝑢1
ℎ = 𝑢0

ℎ +𝜏𝑣0
ℎ.

For results on regularity and error estimates for the FEM solution of the strongly damped wave equation, we
refer to [23]. Moreover, existence and uniqueness of a solution to (2.6) is guaranteed by Lax–Milgram.

In the analysis, we use the notations ‖·‖2𝑎 := 𝑎(·, ·), ‖·‖2𝑏 := 𝑏(·, ·), as well as |||·|||2 = 𝑎̃(·, ·) := 𝑎(·, ·)+𝜏𝑏(·, ·), and
the fact that these are equivalent with the 𝐻1-norm. That is, there exist positive constants 𝐶𝑎, 𝐶𝑏, 𝐶𝑎̃, 𝑐𝑎, 𝑐𝑏, 𝑐𝑎̃ ∈
R, such that

𝑐𝑎‖𝑣‖2𝐻1 ≤ ‖𝑣‖2𝑎 ≤ 𝐶𝑎‖𝑣‖2𝐻1 , ∀𝑣 ∈ 𝐻1(Ω),
𝑐𝑏‖𝑣‖2𝐻1 ≤ ‖𝑣‖2𝑏 ≤ 𝐶𝑏‖𝑣‖2𝐻1 , ∀𝑣 ∈ 𝐻1(Ω), (2.7)

𝑐𝑎̃‖𝑣‖2𝐻1 ≤ |||𝑣|||2 ≤ 𝐶𝑎̃‖𝑣‖2𝐻1 , ∀𝑣 ∈ 𝐻1(Ω).

Theorem 2.2. The solution 𝑢𝑛
ℎ to (2.6) satisfies the following bounds

‖𝜕𝑡𝑢
𝑛
ℎ‖2𝐿2

+
𝑛∑︁

𝑗=2

𝜏‖𝜕𝑡𝑢
𝑗
ℎ‖

2
𝐻1 + ‖𝑢𝑛

ℎ‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝑓 𝑗‖2𝐻−1 + 𝐶
(︀
‖𝜕𝑡𝑢

1
ℎ‖2𝐿2

+ ‖𝑢1
ℎ‖2𝐻1

)︀
, for 𝑛 ≥ 2, (2.8)

𝑛∑︁
𝑗=2

𝜏‖𝜕2
𝑡 𝑢𝑗

ℎ‖
2
𝐿2

+ ‖𝜕𝑡𝑢
𝑛
ℎ‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝑓 𝑗‖2𝐿2
+ 𝐶

(︀
‖𝜕𝑡𝑢

1
ℎ‖2𝐻1 + ‖𝑢1

ℎ‖2𝐻1

)︀
, for 𝑛 ≥ 2. (2.9)

Proof. To prove (2.8), choose 𝑣 = 𝜏𝜕𝑡𝑢
𝑛
ℎ in (2.6) to get

𝜏
(︀
𝜕2

𝑡 𝑢𝑛
ℎ, 𝜕𝑡𝑢

𝑛
ℎ

)︀
+ 𝜏‖𝜕𝑡𝑢

𝑛
ℎ‖2𝑎 + 𝜏𝑏

(︀
𝑢𝑛

ℎ, 𝜕𝑡𝑢
𝑛
ℎ

)︀
= 𝜏

(︀
𝑓𝑛, 𝜕𝑡𝑢

𝑛
ℎ

)︀
. (2.10)

Due to Cauchy–Schwarz and Young’s inequality we have the following lower bound

𝜏(𝜕2
𝑡 𝑢𝑛

ℎ, 𝜕𝑡𝑢
𝑛
ℎ) = ‖𝜕𝑡𝑢

𝑛
ℎ‖2𝐿2

−
(︀
𝜕𝑡𝑢

𝑛−1
ℎ , 𝜕𝑡𝑢

𝑛
ℎ

)︀
≥ 1

2
‖𝜕𝑡𝑢

𝑛
ℎ‖2𝐿2

− 1
2
‖𝜕𝑡𝑢

𝑛−1
ℎ ‖2𝐿2

,

and similarly

𝜏𝑏(𝑢𝑛
ℎ, 𝜕𝑡𝑢

𝑛
ℎ) ≥ 1

2
‖𝑢𝑛

ℎ‖2𝑏 −
1
2
‖𝑢𝑛−1

ℎ ‖2𝑏 .

Similar bounds will be used repeatedly throughout the paper. Summing (2.10) over 𝑛 gives

1
2
‖𝜕𝑡𝑢

𝑛
ℎ‖2𝐿2

− 1
2
‖𝜕𝑡𝑢

1
ℎ‖2𝐿2

+
𝑛∑︁

𝑗=2

𝜏‖𝜕𝑡𝑢
𝑗
ℎ‖

2
𝑎 +

1
2
‖𝑢𝑛

ℎ‖2𝑏 −
1
2
‖𝑢1

ℎ‖2𝑏 ≤
𝑛∑︁

𝑗=2

𝜏‖𝑓 𝑗‖𝐻−1‖𝜕𝑡𝑢
𝑗
ℎ‖𝐻1 .

Using the equivalence of the norms (2.7), Cauchy–Schwarz and Young’s (weighted) inequality to subtract∑︀𝑛
𝑗=2 𝜏‖𝜕𝑡𝑢

𝑗
ℎ‖2𝐻1 from both sides, we get exactly (2.8).

The proof of (2.9) is similar. We choose 𝑣 = 𝜏𝜕2
𝑡 𝑢𝑛

ℎ in (2.6) and sum over 𝑛 to get

𝑛∑︁
𝑗=2

𝜏‖𝜕2
𝑡 𝑢𝑗

ℎ‖
2
𝐿2

+
1
2
‖𝜕𝑡𝑢

𝑛
ℎ‖2𝑎 −

1
2
‖𝜕𝑡𝑢

1
ℎ‖2𝑎 +

𝑛∑︁
𝑗=2

𝜏𝑏
(︁
𝑢𝑗

ℎ, 𝜕2
𝑡 𝑢𝑗

ℎ

)︁
≤

𝑛∑︁
𝑗=2

𝜏‖𝑓 𝑗‖𝐿2‖𝜕2
𝑡 𝑢𝑗

ℎ‖𝐿2 .

For the sum involving the bilinear form 𝑏(·, ·) we use summation by parts to get

𝑛∑︁
𝑗=2

𝜏𝑏
(︁
𝑢𝑗

ℎ, 𝜕2
𝑡 𝑢𝑗

ℎ

)︁
=

𝑛∑︁
𝑗=3

−𝜏𝑏
(︁
𝜕𝑡𝑢

𝑗
ℎ, 𝜕𝑡𝑢

𝑗−1
ℎ

)︁
− 𝑏

(︀
𝑢2

ℎ, 𝜕𝑡𝑢
1
ℎ

)︀
+ 𝑏

(︀
𝑢𝑛

ℎ, 𝜕𝑡𝑢
𝑛
ℎ

)︀
.
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Using (2.8), the equivalence of the norms (2.7), and Young’s weighted inequality we have⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑗=3

𝜏𝑏
(︁
𝜕𝑡𝑢

𝑗
ℎ, 𝜕𝑡𝑢

𝑗−1
ℎ

)︁
+ 𝑏

(︀
𝑢2

ℎ, 𝜕𝑡𝑢
1
ℎ

)︀
− 𝑏

(︀
𝑢𝑛

ℎ, 𝜕𝑡𝑢
𝑛
ℎ

)︀⃒⃒⃒⃒⃒⃒
≤ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑢
𝑗
ℎ‖

2
𝐻1 + 𝐶

(︀
‖𝑢2

ℎ‖2𝐻1 + ‖𝜕𝑡𝑢
1
ℎ‖2𝐻1

)︀
+ 𝐶‖𝑢𝑛

ℎ‖2𝐻1 + 𝐶𝜖‖𝜕𝑡𝑢
𝑛
ℎ‖2𝑎

≤ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝑓 𝑗‖2𝐻−1 + 𝐶
(︀
‖𝜕𝑡𝑢

1
ℎ‖2𝐻1 + ‖𝑢1

ℎ‖2𝐻1

)︀
+ 𝐶𝜖‖𝜕𝑡𝑢

𝑛
ℎ‖2𝑎.

Since 𝐶𝜖 can be made arbitrarily small, it can be kicked to the left hand side. Using that ‖𝑓 𝑗‖2𝐻−1 ≤ 𝐶‖𝑓 𝑗‖2𝐿2

we deduce (2.9). �

3. Generalized finite element method

This section is dedicated to the development of a multiscale method based on the framework of the standard
LOD. First of all, we introduce some notation for the discretization. Let 𝑉𝐻 be a FE-space defined analogously
to 𝑉ℎ in previous section, but with larger mesh size 𝐻 > ℎ. Moreover, we assume that the corresponding family
of partitions {𝒯𝐻}𝐻>ℎ is, in addition to shape-regular, also quasi-uniform. Denote by 𝒩 the set of interior nodes
of 𝑉𝐻 and by 𝜆𝑥 the standard hat function for 𝑥 ∈ 𝒩 , such that 𝑉𝐻 = span({𝜆𝑥}𝑥∈𝒩 ). Finally, we make the
assumption that 𝒯ℎ is a refinement of 𝒯𝐻 , such that 𝑉𝐻 ⊆ 𝑉ℎ.

3.1. Ideal method

To define a generalized finite element method for our problem, we aim to construct a multiscale space 𝑉ms of
the same dimension as 𝑉𝐻 , but with better approximation properties. For the construction of such a multiscale
space, let 𝐼𝐻 : 𝑉ℎ → 𝑉𝐻 be an interpolation operator that has the projection property 𝐼𝐻 = 𝐼𝐻 ∘𝐼𝐻 and satisfies

𝐻−1
𝐾 ‖𝑣 − 𝐼𝐻𝑣‖𝐿2(𝐾) + ‖∇𝐼𝐻𝑣‖𝐿2(𝐾) ≤ 𝐶𝐼‖∇𝑣‖𝐿2(𝑁(𝐾)), ∀𝐾 ∈ 𝒯𝐻 , 𝑣 ∈ 𝑉ℎ, (3.1)

where 𝑁(𝐾) := {𝐾 ′ ∈ 𝒯𝐻 : 𝐾 ′ ∩ 𝐾 ̸= ∅}. Furthermore, for a shape-regular and quasi-uniform partition, the
estimate (3.1) can be summed into the global estimate

𝐻−1‖𝑣 − 𝐼𝐻‖𝐿2(Ω) + ‖∇𝐼𝐻𝑣‖𝐿2(Ω) ≤ 𝐶𝛾‖∇𝑣‖𝐿2(Ω),

where 𝐶𝛾 depends on the interpolation constant 𝐶𝐼 and the shape regularity parameter defined as

𝛾 := max
𝐾∈𝒯𝐻

𝛾𝐾 , where 𝛾𝐾 =
diam(𝐵𝐾)
diam(𝐾)

·

Here 𝐵𝐾 denotes the largest ball inside 𝐾. A commonly used example of such an interpolant is 𝐼𝐻 = 𝐸𝐻 ∘Π𝐻 ,
where Π𝐻 is the piecewise 𝐿2-projection onto 𝑃1(𝒯𝐻), the space of functions that are affine on each triangle
𝐾 ∈ 𝒯𝐻 , and 𝐸𝐻 : 𝑃1(𝒯𝐻) → 𝑉𝐻 is an averaging operator that, to each free node 𝑥 ∈ 𝒩 , assigns the arithmetic
mean of corresponding function values on intersecting elements, i.e.

(𝐸𝐻(𝑣))(𝑥) =
1

card{𝐾 ∈ 𝒯𝐻 : 𝑥 ∈ 𝐾}

∑︁
𝐾∈𝒯𝐻 :𝑥∈𝐾

𝑣
⃒⃒
𝐾

(𝑥).

For more discussion regarding possible choices of interpolants, see e.g. [11] or [31].
Let the space 𝑉f be defined by the kernel of the interpolant, i.e.

𝑉f = ker(𝐼𝐻) = {𝑣 ∈ 𝑉ℎ : 𝐼𝐻𝑣 = 0}.
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Figure 1. The modified basis function 𝜆𝑥 − 𝜑𝑥 and the Ritz-projected hat function 𝜑𝑥.
(A) 𝜆𝑥 − 𝜑𝑥. (B) 𝜑𝑥.

That is, 𝑉f is a finescale space in the sense that it captures the features that are excluded from the coarse
FE-space. This consequently leads to the decomposition

𝑉ℎ = 𝑉𝐻 ⊕ 𝑉f ,

such that every function 𝑣 ∈ 𝑉ℎ has a unique decomposition 𝑣 = 𝑣𝐻 + 𝑣f , where 𝑣𝐻 ∈ 𝑉𝐻 and 𝑣f ∈ 𝑉f .
In the case of the LOD method for the standard wave equation (see [1]), one considers a Ritz-projection

based solely on the 𝐵-coefficient to construct a multiscale space. Instead, the goal is to define a multiscale
space based on the inner product 𝑎(·, ·) + 𝜏𝑏(·, ·) (for a fixed 𝜏) and add additional correction to account for
the time-dependency. This particular choice of scalar product comes from the backward Euler time-stepping
formulation and both simplifies the analysis and is more natural in the implementation. Another possibility is
to choose 𝑎(·, ·) as scalar product. For 𝑣 ∈ 𝑉𝐻 , we consider the Ritz-projection 𝑅f : 𝑉𝐻 → 𝑉f defined by

𝑎(𝑅f𝑣, 𝑤) + 𝜏𝑏(𝑅f𝑣, 𝑤) = 𝑎(𝑣, 𝑤) + 𝜏𝑏(𝑣, 𝑤), ∀𝑤 ∈ 𝑉f .

Using this projection, we may define the multiscale space 𝑉ms := 𝑉𝐻 −𝑅f𝑉𝐻 such that

𝑉ℎ = 𝑉ms ⊕ 𝑉f , and 𝑎(𝑣ms, 𝑣f) + 𝜏𝑏(𝑣ms, 𝑣f) = 0. (3.2)

Note that dim(𝑉ms) = dim(𝑉𝐻), and hence we can view 𝑉ms as a modified coarse space that contains finescale
information of 𝐴 and 𝐵. Next, we may use the Ritz-projection to define the basis functions for the space 𝑉ms.
For 𝑥 ∈ 𝒩 , denote by 𝜑𝑥 := 𝑅f𝜆𝑥 ∈ 𝑉f the solution to the (global) corrector problem

𝑎(𝜑𝑥, 𝑤) + 𝜏𝑏(𝜑𝑥, 𝑤) = 𝑎(𝜆𝑥, 𝑤) + 𝜏𝑏(𝜆𝑥, 𝑤), ∀𝑤 ∈ 𝑉f . (3.3)

We can now construct our basis for 𝑉ms as {𝜆𝑥 − 𝜑𝑥}𝑥∈𝒩 which includes the behavior of the coefficients. For
an illustration of the Ritz-projected hat function, as well as the modified basis function for 𝑉ms, see Figure 1.

We may now formulate our ideal (but impractical) method. Since the solution space can be decomposed as
𝑉ℎ = 𝑉ms ⊕ 𝑉f , the idea is to solve a coarse scale problem in 𝑉ms, and then add additional correction from a
problem on the fine scale. The method reads: find 𝑢𝑛

lod = 𝑣𝑛 + 𝑤𝑛, where 𝑣𝑛 ∈ 𝑉ms and 𝑤𝑛 ∈ 𝑉f such that

𝜏
(︀
𝜕2

𝑡 𝑣𝑛, 𝑧
)︀

+ 𝑎 (𝑣𝑛, 𝑧) + 𝜏𝑏 (𝑣𝑛, 𝑧) = 𝜏 (𝑓𝑛, 𝑧) + 𝑎
(︀
𝑢𝑛−1

lod , 𝑧
)︀
, ∀𝑧 ∈ 𝑉ms, (3.4)

𝑎 (𝑤𝑛, 𝑧) + 𝜏𝑏 (𝑤𝑛, 𝑧) = 𝑎
(︀
𝑢𝑛−1

lod , 𝑧
)︀
, ∀𝑧 ∈ 𝑉f , (3.5)

for 𝑛 ≥ 2 with initial data 𝑢0
lod = 𝑢0

ℎ ∈ 𝑉ms and 𝑢1
lod = 𝑢1

ℎ ∈ 𝑉ms. The initial data is chosen in 𝑉ms to simplify
the implementation of the finescale correctors. We further discuss this choice in Section 4.4.
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Remark 3.1. Note that in (3.5), we do not take the source function nor the second derivative into account.
This is because we can subtract an interpolant within the 𝐿2-product, so that the corresponding error converges
at the same order as the method itself. Moreover, the 𝑣𝑛-part and 𝑤𝑛-part have been excluded from the bilinear
form 𝑎(·, ·) + 𝜏𝑏(·, ·) in (3.4) and (3.5) respectively, due to the orthogonality between 𝑉ms and 𝑉f .

Note that the multiscale space 𝑉ms is created using (3.3) with small 𝜏 . Thus, the 𝐴-coefficient dominates the
system for short times. Moreover, we note from (3.5) that for 𝑁 large enough, we reach a steady state so that
𝑤𝑁 ≈ 𝑤𝑁−1 and 𝑣𝑁 ≈ 𝑣𝑁−1. We get for 𝑧 ∈ 𝑉f

𝑎
(︀
𝑤𝑁 , 𝑧

)︀
+ 𝜏𝑏

(︀
𝑤𝑁 , 𝑧

)︀
≈ 𝑎

(︀
𝑢𝑁

lod, 𝑧
)︀

= 𝑎
(︀
𝑣𝑁 , 𝑧

)︀
+ 𝑎

(︀
𝑤𝑁 , 𝑧

)︀
= −𝜏𝑏

(︀
𝑣𝑁 , 𝑧

)︀
+ 𝑎

(︀
𝑤𝑁 , 𝑧

)︀
,

due to the orthogonality. Hence, by rearranging terms we have that

𝑏
(︀
𝑣𝑁 , 𝑧

)︀
+ 𝑏

(︀
𝑤𝑁 , 𝑧

)︀
= 𝑏

(︀
𝑢𝑁

lod, 𝑧
)︀
≈ 0,

which shows that the solution converges to a state where it is orthogonal with respect to 𝐵.

3.2. Localized method

The method we have considered so far is based on the global projection (3.3) onto the finescale space 𝑉f ,
which results in a large linear system that is expensive to solve. Moreover, the basis correctors yield a global
support that makes the linear system (3.4) not sparse, but dense. Hence, we wish to localize the computations
onto coarse grid patches in order to yield a sparse matrix system.

To localize the corrector problem, we first introduce the patches to which the support of each basis function
is to be restricted. For 𝜔 ⊂ Ω, let 𝑁(𝜔) := {𝐾 ∈ 𝒯𝐻 : 𝐾 ∩ 𝜔 ̸= ∅}, and define a patch 𝑁𝑘(𝜔) of size 𝑘 as

𝑁1(𝜔) := 𝑁(𝜔),

𝑁𝑘(𝜔) := 𝑁(𝑁𝑘−1(𝜔)), for 𝑘 ≥ 2.

Given these coarse grid patches, we may restrict the finescale space 𝑉f to them by defining

𝑉 𝜔
f,𝑘 := {𝑣 ∈ 𝑉f : supp(𝑣) ⊆ 𝑁𝑘(𝜔)},

for a subdomain 𝜔 ⊂ Ω. In particular, we will commonly use 𝜔 = 𝑇 ∈ 𝒯𝐻 and 𝜔 = 𝑥 ∈ 𝒩 .
Next, define the element restricted Ritz-projection 𝑅𝑇

f such that 𝑅𝑇
f 𝑣 ∈ 𝑉f is the solution to the system

𝑎
(︀
𝑅𝑇

f 𝑣, 𝑧
)︀

+ 𝜏𝑏
(︀
𝑅𝑇

f 𝑣, 𝑧
)︀

=
∫︁

𝑇

(𝐴 + 𝜏𝐵)∇𝑣 · ∇𝑧 d𝑥, ∀𝑧 ∈ 𝑉f .

Note that we may construct the global Ritz-projection as the sum

𝑅f𝑣 =
∑︁

𝑇∈𝒯𝐻

𝑅𝑇
f 𝑣.

For 𝑘 ∈ N, we may restrict the projection to a patch by letting 𝑅𝑇
f,𝑘 : 𝑉𝐻 → 𝑉 𝑇

f,𝑘 be such that 𝑅𝑇
f,𝑘𝑣 ∈ 𝑉 𝑇

f,𝑘 solves

𝑎
(︀
𝑅𝑇

f,𝑘𝑣, 𝑧
)︀

+ 𝜏𝑏
(︀
𝑅𝑇

f,𝑘𝑣, 𝑧
)︀

=
∫︁

𝑇

(𝐴 + 𝜏𝐵)∇𝑣 · ∇𝑧 d𝑥, ∀𝑧 ∈ 𝑉 𝑇
f,𝑘.

By summation we yield the corresponding global version as

𝑅f,𝑘𝑣 =
∑︁

𝑇∈𝒯𝐻

𝑅𝑇
f,𝑘𝑣.

Finally, we may construct a localized multiscale space as 𝑉ms,𝑘 := 𝑉𝐻 −𝑅f,𝑘𝑉𝐻 , spanned by {𝜆𝑥−𝑅f,𝑘𝜆𝑥}𝑥∈𝒩 .
In order to justify the act of localization, it is required that a corrector 𝜑𝑥 vanishes rapidly outside an area

of its corresponding node 𝑥. Indeed, the following theorem (see [27], Thm. 4.1) shows that the corrector 𝜑𝑥

satisfies an exponential decay away from its node, making the localization procedure viable.
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Theorem 3.2. There exists a constant 𝑐 ≥ (8𝐶𝐼𝛾(2 + 𝐶𝐼))−1, that only depends on the mesh constant 𝛾, such
that for any 𝑇 ∈ 𝒯𝐻 and any 𝑣 ∈ 𝐻1

0 (Ω) the solution 𝜑 ∈ 𝑉f of the variational problem

𝑎̃(𝜑, 𝑤) =
∫︁

𝑇

(︁
𝐴∇𝑣

)︁
· ∇𝑤 d𝑥, ∀𝑤 ∈ 𝑉f

satisfies

‖𝐴1/2∇𝜑‖𝐿2(Ω∖𝑁𝑘(𝑇 )) ≤
√

2 exp
(︁
−𝑐𝛼−+𝜏𝛽−

𝛼++𝜏𝛽+
𝑘
)︁
‖𝐴1/2∇𝑣‖𝐿2(𝑇 ), ∀𝑘 ∈ N,

where 𝐴 = 𝐴 + 𝜏𝐵.

With the space 𝑉ms,𝑘 defined, we are able to localize the computations on the coarse scale system in (3.4)
by replacing the multiscale space by its localized counterpart. It remains to localize the computations of the
finescale system in (3.5), which equivalently can be written as

𝑎
(︀
𝜕𝑡𝑤

𝑛, 𝑧
)︀

+ 𝑏 (𝑤𝑛, 𝑧) =
1
𝜏

𝑎
(︀
𝑣𝑛−1, 𝑧

)︀
.

We replace the right hand side by its localized version 𝑣𝑛−1
𝑘 ∈ 𝑉ms,𝑘 and note that 𝑣𝑛−1

𝑘 =∑︀
𝑥∈𝒩 𝛼𝑛−1

𝑥 (𝜆𝑥 −𝑅f,𝑘𝜆𝑥). Thus, we seek our localized finescale solution as 𝑤𝑛
𝑘 =

∑︀
𝑥∈𝒩 𝑤𝑛

𝑘,𝑥, where 𝑤𝑛
𝑘,𝑥 ∈ 𝑉 𝑥

f,𝑘

solves

𝑎
(︀
𝜕𝑡𝑤

𝑛
𝑘,𝑥, 𝑧

)︀
+ 𝑏

(︀
𝑤𝑛

𝑘,𝑥, 𝑧
)︀

=
1
𝜏

𝑎
(︀
𝛼𝑛−1

𝑥 (𝜆𝑥 −𝑅f,𝑘𝜆𝑥) , 𝑧
)︀
, ∀𝑧 ∈ 𝑉 𝑥

f,𝑘, (3.6)

so that the computation of this equation is localized to a patch surrounding the node 𝑥 ∈ 𝒩 . We introduce the
functions 𝜉𝑙

𝑘,𝑥 ∈ 𝑉 𝑥
f,𝑘 as solution to the parabolic equation

𝑎
(︀
𝜕𝑡𝜉

𝑙
𝑘,𝑥, 𝑧

)︀
+ 𝑏

(︀
𝜉𝑙
𝑘,𝑥, 𝑧

)︀
= 𝑎

(︂
1
𝜏

𝜒1(𝑙) (𝜆𝑥 −𝑅f,𝑘𝜆𝑥) , 𝑧

)︂
, ∀𝑧 ∈ 𝑉 𝑥

f,𝑘, (3.7)

for 𝑙 = 1, 2, . . . , 𝑁 with initial value 𝜉0
𝑘,𝑥 = 0, and where 𝜒1(𝑙) is an indicator function that equals 1 when 𝑙 = 1

and 0 otherwise. We claim that 𝑤𝑛
𝑘,𝑥 =

∑︀𝑛
𝑙=1 𝛼𝑛−𝑙

𝑥 𝜉𝑙
𝑘,𝑥 is the solution to (3.6). This follows as for all 𝑧 ∈ 𝑉 𝑥

f,𝑘

𝑎
(︀
𝜕𝑡𝑤

𝑛
𝑘,𝑥, 𝑧

)︀
+ 𝑏

(︀
𝑤𝑛

𝑘,𝑥, 𝑧
)︀

= 𝑎

(︃
𝜕𝑡

𝑛∑︁
𝑙=1

𝛼𝑛−𝑙
𝑥 𝜉𝑙

𝑘,𝑥, 𝑧

)︃
+ 𝑏

(︃
𝑛∑︁

𝑙=1

𝛼𝑛−𝑙
𝑥 𝜉𝑙

𝑘,𝑥, 𝑧

)︃

=
𝑛∑︁

𝑙=2

𝛼𝑛−𝑙
𝑥

(︀
𝑎
(︀
𝜕𝑡𝜉

𝑙
𝑘,𝑥, 𝑧

)︀
+ 𝑏

(︀
𝜉𝑙
𝑘,𝑥, 𝑧

)︀)︀
+ 𝛼𝑛−1

𝑥

(︀
𝑎
(︀
𝜕𝑡𝜉

1
𝑘,𝑥, 𝑧

)︀
+ 𝑏

(︀
𝜉1
𝑘,𝑥, 𝑧

)︀)︀
= 0 + 𝑎

(︀
𝛼𝑛−1

𝑥 (𝜆𝑥 −𝑅f,𝑘𝜆𝑥) , 𝑧
)︀
.

With the localized computations established, the GFEM reads: find 𝑢𝑛
lod,𝑘 = 𝑣𝑛

𝑘 + 𝑤𝑛
𝑘 , where 𝑣𝑛

𝑘 =∑︀
𝑥∈𝒩 𝛼𝑛

𝑥 (𝜆𝑥 −𝑅f,𝑘𝜆𝑥) ∈ 𝑉ms,𝑘 solves

𝜏
(︀
𝜕2

𝑡 𝑣𝑛
𝑘 , 𝑧
)︀

+ 𝑎 (𝑣𝑛
𝑘 , 𝑧) + 𝜏𝑏 (𝑣𝑛

𝑘 , 𝑧) = 𝜏 (𝑓𝑛, 𝑧) + 𝑎
(︁
𝑢𝑛−1

lod,𝑘, 𝑧
)︁

, ∀𝑧 ∈ 𝑉ms,𝑘, (3.8)

and 𝑤𝑛
𝑘 =

∑︀
𝑥∈𝒩

∑︀𝑛
𝑙=1 𝛼𝑛−𝑙

𝑥 𝜉𝑙
𝑘,𝑥, where 𝜉𝑙

𝑘,𝑥 ∈ 𝑉 𝑥
f,𝑘 solves (3.7).

To justify the fact that we localize the finescale equation, we require a result similar to that of Theorem 3.2,
but for the functions {𝜉𝑙

𝑥}𝑁
𝑙=1. We finish this section about localization by proving that these functions satisfy

the exponential decay required for the localization procedure to be viable.
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Theorem 3.3. For any node 𝑥 ∈ 𝒩 , let 𝜉𝑛
𝑥 ∈ 𝑉f be the solution to

𝑎
(︀
𝜕𝑡𝜉

𝑛
𝑥 , 𝑧
)︀

+ 𝑏 (𝜉𝑛
𝑥 , 𝑧) = 𝑎

(︂
1
𝜏

𝜒1(𝑛) (𝜆𝑥 −𝑅f𝜆𝑥) , 𝑧

)︂
, ∀𝑧 ∈ 𝑉f ,

with initial value 𝜉0
𝑥 = 0. Then there exist constants 𝑐 > 0 and 𝐶 > 0 such that for any 𝑘 ≥ 1

‖𝜉𝑛
𝑥‖𝐻1(Ω∖𝑁𝑘(𝑥)) ≤ 𝐶𝑒−𝑐𝑘‖𝜆𝑥‖𝐻1 ,

for sufficiently small time step 𝜏 .

Proof. Assume 𝑘 ≥ 5. First, we analyze the problem for the first time step, which when multiplied by 𝜏 can be
written as

𝑎
(︀
𝜉1
𝑥, 𝑧
)︀

+ 𝜏𝑏
(︀
𝜉1
𝑥, 𝑧
)︀

= 𝑎 (𝜆𝑥 − 𝜑𝑥, 𝑧) , ∀𝑧 ∈ 𝑉f , (3.9)

where 𝜑𝑥 = 𝑅f𝜆𝑥. We denote 𝑎̃ = 𝑎 + 𝜏𝑏 such that 𝑎̃ (𝜑𝑥, 𝑧) = 𝑎̃ (𝜆𝑥, 𝑧) for all 𝑧 ∈ 𝑉f . Furthermore we use the
energy norm |||·||| :=

√︀
𝑎̃ (·, ·), and by |||·|||𝐷 we denote the restriction of the norm onto a domain 𝐷. As seen in

the proof of Theorem 4.1 in [27], the result in Theorem 3.2 can be written as

|||𝜑𝑥|||Ω∖𝑁𝑘(𝑥) ≤ 𝐶𝜑𝜇⌊𝑘/4⌋|||𝜆𝑥|||,

for some 𝜇 < 1. Moreover we define the cut-off function 𝜂𝑘 ∈ 𝑉𝐻 by

𝜂𝑘 :=

{︃
1, in Ω∖𝑁𝑘+1 (𝑥),
0, in 𝑁𝑘 (𝑥),

for 𝑥 ∈ 𝒩 . Now let 𝜈 = 𝜂𝑘−3. Then we have that

supp (𝜈) = Ω∖𝑁𝑘−3 (𝑥) ,

supp (∇𝜈) = 𝑁𝑘−2 (𝑥) ∖𝑁𝑘−3 (𝑥) .

With this setting, we note that⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘 ≤

∫︁
Ω

𝜈𝐴∇𝜉1
𝑥 · ∇𝜉1

𝑥 d𝑥 =
∫︁

Ω

𝐴∇𝜉1
𝑥 · ∇

(︀
𝜈𝜉1

𝑥

)︀
d𝑥−

∫︁
Ω

𝐴∇𝜉1
𝑥 · 𝜉1

𝑥∇𝜈 d𝑥

≤
⃒⃒⃒⃒∫︁

Ω

𝐴∇𝜉1
𝑥 · ∇ (1− 𝐼𝐻)

(︀
𝜈𝜉1

𝑥

)︀
d𝑥

⃒⃒⃒⃒
⏟  ⏞  

=:𝑀1

+
⃒⃒⃒⃒∫︁

Ω

𝐴∇𝜉1
𝑥 · ∇𝐼𝐻

(︀
𝜈𝜉1

𝑥

)︀
d𝑥

⃒⃒⃒⃒
⏟  ⏞  

=:𝑀2

+
⃒⃒⃒⃒∫︁

Ω

𝐴∇𝜉1
𝑥 · 𝜉1

𝑥∇𝜈 d𝑥

⃒⃒⃒⃒
⏟  ⏞  

=:𝑀3

,

where we have denoted 𝐴 = 𝐴 + 𝜏𝐵. We now proceed to estimate the terms 𝑀1, 𝑀2 and 𝑀3 separately. For
𝑀1, we use the problem (3.9) with 𝑧 = (1− 𝐼𝐻)

(︀
𝜈𝜉1

𝑥

)︀
∈ 𝑉f to get

𝑀1 =
⃒⃒⃒⃒∫︁

Ω

𝐴∇ (𝜆𝑥 − 𝜑𝑥) · ∇ (1− 𝐼𝐻)
(︀
𝜈𝜉1

𝑥

)︀
d𝑥

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒𝜏
∫︁

Ω∖𝑁𝑘−3
𝐵∇ (𝜑𝑥) · ∇ (1− 𝐼𝐻)

(︀
𝜈𝜉1

𝑥

)︀
d𝑥

⃒⃒⃒⃒
⃒ ,

where we have used the 𝑎̃-orthogonality between 𝑉ms and 𝑉f , that the integral is zero on supp (𝜆𝑥), and that
the support of the remaining integrand is Ω∖𝑁𝑘−4. Thus, we get that

𝑀1 ≤ 𝜏
𝛽+

𝛼−
|||𝜑𝑥|||Ω∖𝑁𝑘−4

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘−4 ≤ 𝜏

𝛽+

𝛼−
𝐶𝜑𝜇⌊

𝑘−4
4 ⌋|||𝜆𝑥|||

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘−4 .
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Moreover, by similar calculations as in the proof of Theorem 4.1 in [27], from 𝑀2 and 𝑀3 we get

𝑀2, 𝑀3 ≤ 𝐶
⃒⃒⃒⃒ ⃒⃒

𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
𝑁𝑘∖𝑁𝑘−4 ,

for a constant 𝐶 > 0. In total, for 𝜀 ∈ (0, 1), we find that⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘 ≤ 𝜏

𝛽+

𝛼−
𝐶𝜑𝜇⌊

𝑘−4
4 ⌋|||𝜆𝑥|||

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘−4 + 𝐶

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
𝑁𝑘∖𝑁𝑘−4

≤ (𝛽+𝐶𝜑)2

𝛼2
−𝜀

𝜏2𝜇2⌊ 𝑘−4
4 ⌋|||𝜆𝑥|||2 + 𝜀

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘−4 + 𝐶

(︁⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘−4 −

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘

)︁
.

Let 𝛿 :=
(︁
𝜀 + 𝐶

)︁(︁
1 + 𝐶

)︁−1

< 1, and set 𝜅 = max (𝛿, 𝜇) < 1. Then, by rearranging the terms we get the
inequality

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘 ≤

(𝛽+𝐶𝜑)2

𝛼2
−𝜀
(︁

1 + 𝐶
)︁𝜏2𝜅2⌊ 𝑘−4

4 ⌋|||𝜆𝑥|||2 + 𝜅
⃒⃒⃒⃒ ⃒⃒

𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘−4 .

Repeating the estimate, we end up with

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘 ≤ 𝜅⌊𝑘/4⌋ ⃒⃒⃒⃒ ⃒⃒𝜉1

𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω

+
(𝛽+𝐶𝜑)2

𝛼2
−𝜀
(︁

1 + 𝐶
)︁ |||𝜆𝑥|||2

⌊𝑘/4⌋−1∑︁
𝑖=0

𝜏2𝜅𝑖𝜅2⌊ 𝑘−4−4𝑖
4 ⌋.

We proceed by estimating
⃒⃒⃒⃒ ⃒⃒

𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω

. By choosing 𝑧 = 𝜉1
𝑥 in (3.9) we get⃒⃒⃒⃒ ⃒⃒

𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒2 ≤ |||𝜆𝑥 − 𝜑𝑥|||
⃒⃒⃒⃒ ⃒⃒

𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
≤ |||𝜆𝑥|||

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
,

since

|||𝜆𝑥 − 𝜑𝑥|||2 = 𝑎̃ (𝜆𝑥 − 𝜑𝑥, 𝜆𝑥 − 𝜑𝑥) ≤ |||𝜆𝑥 − 𝜑𝑥||||||𝜆𝑥|||.

Moreover, for 𝑖 = 0, 1, 2, . . . , ⌊𝑘/4⌋ − 1, we note that

𝜅𝑖+2⌊ 𝑘−4−4𝑖
4 ⌋ ≤ 𝜅⌊𝑘/4⌋−1+2⌊ 𝑘−4−4(𝑘/4−1)

4 ⌋ = 𝜅⌊𝑘/4⌋−1 (3.10)

so in total we have the estimate⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘 ≤

√︀
1 + 𝐶0𝜏2𝜅

1
2 ⌊𝑘/4⌋|||𝜆𝑥|||, with 𝐶0 =

(𝛽+𝐶𝜑)2 𝜅−1

𝛼2
−𝜀
(︁

1 + 𝐶
)︁ (⌊𝑘/4⌋ − 1) .

Recall that this is for the first time step. In next time step, we consider the problem

𝑎
(︀
𝜉2
𝑥, 𝑧
)︀

+ 𝜏𝑏
(︀
𝜉2
𝑥, 𝑧
)︀

= 𝑎
(︀
𝜉1
𝑥, 𝑧
)︀
, ∀𝑧 ∈ 𝑉f .

As for the first time step, we split the estimate into the similar integrals 𝑀1, 𝑀2, and 𝑀3, and get

𝑀1 ≤ 𝜏
𝛽+

𝛼−

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘−4

⃒⃒⃒⃒ ⃒⃒
𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘−4 ≤ 𝜏

𝛽+

𝛼−

√︀
1 + 𝐶0𝜏2𝜅

1
2⌊ 𝑘−4

4 ⌋|||𝜆𝑥|||
⃒⃒⃒⃒ ⃒⃒

𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘−4 ,

while 𝑀2 and 𝑀3 remain the same. In total, we get the estimate(︁
1 + 𝐶

)︁ ⃒⃒⃒⃒ ⃒⃒
𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘 ≤

𝛽2
+

𝛼2
−𝜀

𝜏2
(︀
1 + 𝐶0𝜏

2
)︀
𝜅⌊

𝑘−4
4 ⌋|||𝜆𝑥|||2 +

(︁
𝜀 + 𝐶

)︁ ⃒⃒⃒⃒ ⃒⃒
𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘−4 .
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Once again, by letting 𝛿 =
(︁
𝜀 + 𝐶

)︁
/
(︁

1 + 𝐶
)︁

and since 𝛿 ≤ 𝜅, we get

⃒⃒⃒⃒ ⃒⃒
𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘 ≤

𝛽2
+

𝛼2
−𝜀
(︁

1 + 𝐶
)︁𝜏2

(︀
1 + 𝐶0𝜏

2
)︀
𝜅⌊

𝑘−4
4 ⌋|||𝜆𝑥|||2 + 𝜅

⃒⃒⃒⃒ ⃒⃒
𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒2
Ω∖𝑁𝑘−4

≤ 𝜅⌊𝑘/4⌋|||𝜆𝑥|||2 +
𝛽2

+

𝛼2
−𝜀
(︁

1 + 𝐶
)︁ (︀1 + 𝐶0𝜏

2
)︀ ⌊𝑘/4⌋−1∑︁

𝑖=0

𝜏2𝜅𝑖𝜅⌊
𝑘−4−4𝑖

4 ⌋.

Once again we use (3.10) to conclude that⃒⃒⃒⃒ ⃒⃒
𝜉2
𝑥

⃒⃒⃒⃒ ⃒⃒
Ω∖𝑁𝑘 ≤

√︀
1 + 𝐶1𝜏2 (1 + 𝐶0𝜏2)𝜅

1
2 ⌊𝑘/4⌋|||𝜆𝑥||| =

√︀
1 + 𝐶1𝜏2 + 𝐶1𝜏2𝐶0𝜏2𝜅

1
2 ⌊𝑘/4⌋|||𝜆𝑥|||,

where

𝐶1 =
𝛽2

+𝜅−1

𝛼2
−𝜀
(︁

1 + 𝐶
)︁ (⌊𝑘/4⌋ − 1) .

Inductively, we get for arbitrary time step 𝑛 the estimate

|||𝜉𝑛
𝑥 |||Ω∖𝑁𝑘 ≤ 𝜅

1
2 ⌊𝑘/4⌋|||𝜆𝑥|||

⎯⎸⎸⎷𝑛−1∑︁
𝑖=0

(𝐶1𝜏2)𝑖 + (𝐶1𝜏2)𝑛
𝐶0𝜏2. (3.11)

Since 𝜅
1
2 ⌊𝑘/4⌋ ≤ 𝜅

1
2 (𝑘/4−1) = 𝜅−

1
2 𝑒−

1
8 log(1/𝜅)𝑘, and since the energy norm is equivalent to the 𝐻1-norm, the

theorem holds for 𝑘 ≥ 5. We show that the estimate (3.11) is still valid for 𝑘 ≤ 4. For the 𝑛:th time step, let
𝑧 = 𝜉𝑛

𝑥 in (3.9). This yields the estimate

|||𝜉𝑛
𝑥 ||| ≤

⃒⃒⃒⃒ ⃒⃒
𝜉𝑛−1
𝑥

⃒⃒⃒⃒ ⃒⃒
≤ . . . ≤

⃒⃒⃒⃒ ⃒⃒
𝜉1
𝑥

⃒⃒⃒⃒ ⃒⃒
≤ |||𝜆𝑥|||.

Furthermore if 𝑘 < 4 we have that 𝜅
1
2 ⌊𝑘/4⌋ = 1, and under the assumption that 𝐶1𝜏

2 < 1, we have that

𝑛−1∑︁
𝑖=0

(︀
𝐶1𝜏

2
)︀𝑖

=

(︀
𝐶1𝜏

2
)︀𝑛 − 1

𝐶1𝜏2 − 1
> 1,

which shows that the estimate holds for 𝑘 < 4. If 𝑘 = 4 we can bound 𝜅
1
2 ⌊𝑘/4⌋ ≤ 𝜅

1
2 ⌊𝑘/5⌋ and repeat the same

argument. �

Remark 3.4. Note that the sum that appears in (3.11) converges to

𝑛−1∑︁
𝑖=0

(︀
𝐶1𝜏

2
)︀𝑖 −−−−→

𝑛→∞

1
1− 𝐶1𝜏2

,

which means that the total constant in (3.11) behaves nicely for sufficiently small time steps. More specifically,
for time steps

𝜏 ≤

⎯⎸⎸⎷𝛼2
−𝜀𝜅

(︁
1 + 𝐶

)︁
𝛽2

+ (⌊𝑘/4⌋ − 1)
·
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4. Error estimates

In this section we derive error estimates of the ideal method (3.4) and (3.5). The additional error due to
localization can be controlled in terms of the localization parameter 𝑘. This is further discussed in Remark 4.9.
We begin by considering an auxiliary problem.

4.1. Auxiliary problem

The auxiliary problem is defined as the standard variational formulation for the strongly damped wave
equation, but we exclude the second order time derivative. Moreover, we let the starting time 𝑡 = 𝑡0 be general
and set the time discretization to 𝑡 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑁 = 𝑇 . Note that 𝑁 here might be different from the
discretization of the fully discrete equation (2.6), but the time step 𝜏 , and thus the multiscale space, are the
same. The auxiliary problem is to find 𝑍𝑛

ℎ ∈ 𝑉ℎ for 𝑛 = 1, . . . , 𝑁 , such that

𝑎
(︀
𝜕𝑡𝑍

𝑛
ℎ , 𝑣
)︀

+ 𝑏 (𝑍𝑛
ℎ , 𝑣) = (𝑓𝑛, 𝑣) , ∀𝑣 ∈ 𝑉ℎ, (4.1)

with initial value 𝑍0
ℎ ∈ 𝑉ms. Equivalently, multiply (4.1) by 𝜏 and we may consider

𝑎 (𝑍𝑛
ℎ , 𝑣) + 𝜏𝑏 (𝑍𝑛

ℎ , 𝑣) = 𝜏 (𝑓𝑛, 𝑣) + 𝑎
(︀
𝑍𝑛−1

ℎ , 𝑣
)︀
, ∀𝑣 ∈ 𝑉ℎ. (4.2)

Existence of a solution to this problem is guaranteed by Lax–Milgram. For simplicity, we make the assumption
that the initial data for the damped wave equation (2.6) is already in the multiscale space 𝑉ms, such that

𝑢0
ℎ = 𝑢0

lod ∈ 𝑉ms, 𝑢1
ℎ = 𝑢1

lod ∈ 𝑉ms.

For general initial data we refer to Section 4.4 below. Furthermore, to limit the technical details in the proof
we have chosen to analyze the error in the 𝐿2

(︀
𝐻1
)︀
-norm instead of the pointwise (in time) 𝐻1-norm.

The solution space can be decomposed as 𝑉ℎ = 𝑉ms⊕𝑉f , such that the solution can be written as 𝑍𝑛
ℎ = 𝑣𝑛+𝑤𝑛

where 𝑣𝑛 ∈ 𝑉ms and 𝑤𝑛 ∈ 𝑉f . If we insert this into the system in (4.2) and consider test functions 𝑧 ∈ 𝑉ms, the
left hand side becomes

𝑎 (𝑍𝑛
ℎ , 𝑧) + 𝜏𝑏 (𝑍𝑛

ℎ , 𝑧) = 𝑎 (𝑣𝑛, 𝑧) + 𝜏𝑏 (𝑣𝑛, 𝑧) ,

where we have used the orthogonality between 𝑉ms and 𝑉f with respect to 𝑎 (·, ·) + 𝜏𝑏 (·, ·). Likewise, if test
functions 𝑧 ∈ 𝑉f are considered, the left hand side becomes

𝑎 (𝑍𝑛
ℎ , 𝑧) + 𝜏𝑏 (𝑍𝑛

ℎ , 𝑧) = 𝑎 (𝑤𝑛, 𝑧) + 𝜏𝑏 (𝑤𝑛, 𝑧) .

With these findings, we define the approximation to the auxiliary problem as to find 𝑍𝑛
lod = 𝑣𝑛 + 𝑤𝑛, where

𝑣𝑛 ∈ 𝑉ms and 𝑤𝑛 ∈ 𝑉f such that

𝑎 (𝑣𝑛, 𝑧) + 𝜏𝑏 (𝑣𝑛, 𝑧) = 𝜏 (𝑓𝑛, 𝑧) + 𝑎
(︀
𝑍𝑛−1

lod , 𝑧
)︀
, ∀𝑧 ∈ 𝑉ms, (4.3)

𝑎 (𝑤𝑛, 𝑧) + 𝜏𝑏 (𝑤𝑛, 𝑧) = 𝑎
(︀
𝑍𝑛−1

lod , 𝑧
)︀
, ∀𝑧 ∈ 𝑉f , (4.4)

with initial data 𝑍0
lod ∈ 𝑉ms. Note that if 𝑓 = 0, then 𝑍𝑛

ℎ = 𝑍𝑛
lod for every 𝑛, meaning that the method

reproduces 𝑍𝑛
ℎ exactly. For the auxiliary problem, we prove the following error estimates.

Theorem 4.1. Let 𝑍𝑛
ℎ be the solution to (4.1) and 𝑍𝑛

lod the solution to (4.3) and (4.4). Assume that 𝑍0
lod−𝑍0

ℎ =
0, and 𝑓𝑛 ∈ 𝐿2 (Ω), for 𝑛 ≥ 0, then the error is bounded by

‖𝑍𝑛
ℎ − 𝑍𝑛

lod‖𝐻1 ≤ 𝐶𝐻

𝑛∑︁
𝑗=1

𝜏‖𝑓 𝑗‖𝐿2 . (4.5)
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In addition,

𝑛∑︁
𝑗=1

𝜏‖𝑍𝑗
ℎ − 𝑍𝑗

lod‖
2
𝐿2
≤ 𝐶𝐻2

𝑛∑︁
𝑗=1

𝜏‖𝑓 𝑗‖2𝐿2
, (4.6)

and if 𝑓𝑛 = 𝜕𝑡𝑔
𝑛, for some {𝑔𝑛}𝑁

𝑛=0 such that 𝑔𝑛 ∈ 𝑉ℎ, then

𝑛∑︁
𝑗=1

𝜏‖𝑍𝑗
ℎ − 𝑍𝑗

lod‖
2
𝐿2
≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=1

𝜏‖𝑔𝑗‖2𝐿2
+ ‖𝑔0‖2𝐿2

⎞⎠ , (4.7)

where C does not depend on the variations in 𝐴 or 𝐵.

Proof. Since 𝑍𝑛
ℎ ∈ 𝑉ℎ there are 𝑣𝑛 ∈ 𝑉ms and 𝑤̄𝑛 ∈ 𝑉f such that 𝑍𝑛

ℎ = 𝑣𝑛 + 𝑤̄𝑛. Let 𝑒𝑛 = 𝑍𝑛
ℎ − 𝑍𝑛

lod, and
consider

|||𝑒𝑛|||2 := 𝑎 (𝑒𝑛, 𝑒𝑛) + 𝜏𝑏 (𝑒𝑛, 𝑒𝑛)
= 𝜏 (𝑓𝑛, 𝑒𝑛) + 𝑎

(︀
𝑍𝑛−1

ℎ , 𝑒𝑛
)︀
− 𝑎 (𝑣𝑛, 𝑒𝑛)− 𝜏𝑏 (𝑣𝑛, 𝑒𝑛)− 𝑎 (𝑤𝑛, 𝑒𝑛)− 𝜏𝑏 (𝑤𝑛, 𝑒𝑛) .

For 𝑣𝑛 ∈ 𝑉ms we have due to the orthogonality and (4.3)

𝑎 (𝑣𝑛, 𝑒𝑛) + 𝜏𝑏 (𝑣𝑛, 𝑒𝑛) = 𝑎 (𝑣𝑛, 𝑣𝑛 − 𝑣𝑛) + 𝜏𝑏 (𝑣𝑛, 𝑣𝑛 − 𝑣𝑛)
= 𝜏 (𝑓𝑛, 𝑣𝑛 − 𝑣𝑛) + 𝑎

(︀
𝑍𝑛−1

lod , 𝑣𝑛 − 𝑣𝑛
)︀
.

Similarly, for 𝑤𝑛 ∈ 𝑉f we use the orthogonality and (4.4) to get

𝑎 (𝑤𝑛, 𝑒𝑛) + 𝜏𝑏 (𝑤𝑛, 𝑒𝑛) = 𝑎
(︀
𝑍𝑛−1

lod , 𝑤̄𝑛 − 𝑤𝑛
)︀
.

Hence,

|||𝑒𝑛|||2 = 𝜏 (𝑓𝑛, 𝑒𝑛) + 𝑎
(︀
𝑍𝑛−1

ℎ , 𝑒𝑛
)︀
− 𝜏 (𝑓𝑛, 𝑣𝑛 − 𝑣𝑛)− 𝑎

(︀
𝑍𝑛−1

lod , 𝑣𝑛 − 𝑣𝑛
)︀
− 𝑎

(︀
𝑍𝑛−1

lod , 𝑤̄𝑛 − 𝑤𝑛
)︀

= 𝜏 (𝑓𝑛, 𝑤̄𝑛 − 𝑤𝑛) + 𝑎
(︀
𝑍𝑛−1

ℎ − 𝑍𝑛−1
lod , 𝑒𝑛

)︀
.

The first term can be bounded by using the interpolation operator 𝐼𝐻

𝜏 | (𝑓𝑛, 𝑤̄𝑛 − 𝑤𝑛) | ≤ 𝜏‖𝑓𝑛‖𝐿2‖𝑤̄𝑛 − 𝑤𝑛 − 𝐼𝐻 (𝑤̄𝑛 − 𝑤𝑛) ‖𝐿2 ≤ 𝐶𝐻𝜏‖𝑓𝑛‖𝐿2‖𝑤̄𝑛 − 𝑤𝑛‖𝐻1

≤ 𝐶𝐻𝜏‖𝑓𝑛‖𝐿2‖𝑒𝑛‖𝐻1 ≤ 𝐶𝐻𝜏‖𝑓𝑛‖𝐿2 |||𝑒𝑛|||.

For the second term we note that 𝑍𝑛−1
ℎ − 𝑍𝑛−1

lod = 𝑒𝑛−1 so that

|||𝑒𝑛||| ≤ 𝐶𝐻𝜏‖𝑓𝑛‖𝐿2 +
⃒⃒⃒⃒ ⃒⃒

𝑒𝑛−1
⃒⃒⃒⃒ ⃒⃒

.

Using this bound repeatedly and 𝑒0 = 0 we get

|||𝑒𝑛||| ≤ 𝐶𝐻

𝑛∑︁
𝑗=1

𝜏‖𝑓 𝑗‖𝐿2 .

This concludes the proof since ‖𝑒𝑛‖𝐻1 ≤ 𝐶|||𝑒𝑛|||.
To prove the remaining bounds in 𝐿2-norm, we define the forward difference operator 𝜕𝑡𝑥

𝑛 =
(︀
𝑥𝑛+1 − 𝑥𝑛

)︀
/𝜏

and consider the dual problem: find 𝑥𝑗
ℎ ∈ 𝑉ℎ for 𝑗 = 𝑛− 1, . . . , 0, such that 𝑥𝑛

ℎ = 0 and

𝑎
(︁
−𝜕𝑡𝑥

𝑗
ℎ, 𝑧
)︁

+ 𝑏
(︁
𝑥𝑗

ℎ, 𝑧
)︁

=
(︀
𝑒𝑗+1, 𝑧

)︀
, ∀𝑧 ∈ 𝑉ℎ. (4.8)
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Note that this problem moves backwards in time. By choosing 𝑧 = 𝑥𝑗
ℎ in (4.8) and performing a classical energy

argument, we deduce

‖𝑥𝑗
ℎ‖

2
𝐻1 +

𝑛∑︁
𝑘=𝑗

𝜏‖𝑥𝑘
ℎ‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑘=𝑗+1

𝜏‖𝑒𝑘‖2𝐿2
. (4.9)

Similarly, by choosing 𝑧 = −𝜕𝑡𝑥
𝑗
ℎ, we achieve

‖𝑥𝑗
ℎ‖

2
𝐻1 +

𝑛−1∑︁
𝑘=𝑗

𝜏‖𝜕𝑡𝑥
𝑘
ℎ‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑘=𝑗+1

𝜏‖𝑒𝑘‖2𝐿2
. (4.10)

Now, use (4.8) to get
𝑛∑︁

𝑗=1

𝜏‖𝑒𝑗‖2𝐿2
=

𝑛∑︁
𝑗=1

𝜏𝑎
(︁
−𝜕𝑡𝑥

𝑗−1
ℎ , 𝑒𝑗

)︁
+ 𝜏𝑏

(︁
𝑥𝑗−1

ℎ , 𝑒𝑗
)︁

.

Summation by parts gives
𝑛∑︁

𝑗=1

𝜏‖𝑒𝑗‖2𝐿2
=

𝑛∑︁
𝑗=1

𝜏𝑎
(︁
−𝜕𝑡𝑥

𝑗−1
ℎ , 𝑒𝑗

)︁
+ 𝜏𝑏

(︁
𝑥𝑗−1

ℎ , 𝑒𝑗
)︁

=
𝑛∑︁

𝑗=1

𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝜕𝑡𝑒
𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝑒𝑗
)︁

, (4.11)

where we have used 𝑥𝑛 = 𝑒0 = 0. Furthermore, we use the equations (4.1) and (4.3), and the orthogonality in
(3.2), to show that the following Galerkin orthogonality holds for 𝑧ms ∈ 𝑉ms

𝑎
(︀
𝜕𝑡𝑒

𝑗 , 𝑧ms

)︀
+ 𝑏

(︀
𝑒𝑗 , 𝑧ms

)︀
= 𝑎

(︁
𝜕𝑡𝑍

𝑗
ℎ, 𝑧ms

)︁
+ 𝑏

(︁
𝑍𝑗

ℎ, 𝑧ms

)︁
− 1

𝜏
𝑎
(︀
𝑣𝑗 , 𝑧ms

)︀
− 𝑏

(︀
𝑣𝑗 , 𝑧ms

)︀
+

1
𝜏

𝑎
(︁
𝑍𝑗−1

lod , 𝑧ms

)︁
(4.12)

=
(︀
𝑓 𝑗 , 𝑧ms

)︀
−
(︀
𝑓 𝑗 , 𝑧ms

)︀
= 0.

Let 𝑥𝑗
ℎ = 𝑥𝑗

ms + 𝑥𝑗
f , for some 𝑥𝑗

ms ∈ 𝑉ms, 𝑥𝑗
f ∈ 𝑉f . Using the orthogonality (4.12) and the equations (4.4) and

(4.1) we deduce
𝑛∑︁

𝑗=1

𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝜕𝑡𝑒
𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝑒𝑗
)︁

=
𝑛∑︁

𝑗=1

𝜏𝑎
(︁
𝑥𝑗−1

f , 𝜕𝑡𝑒
𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

f , 𝑒𝑗
)︁

=
𝑛∑︁

𝑗=1

𝜏𝑎
(︁
𝑥𝑗−1

f , 𝜕𝑡𝑍
𝑗
ℎ

)︁
+ 𝜏𝑏

(︁
𝑥𝑗−1

f , 𝑍𝑗
ℎ

)︁
=

𝑛∑︁
𝑗=1

𝜏
(︁
𝑥𝑗−1

f , 𝑓 𝑗
)︁

.

If 𝑓 𝑗 ∈ 𝐿2 (Ω), then we may subtract 𝐼𝐻𝑥𝑗−1
f = 0 and use (3.1) to achieve

𝑛∑︁
𝑗=1

𝜏
(︁
𝑥𝑗−1

f , 𝑓 𝑗
)︁
≤ 𝐶𝐻

𝑛∑︁
𝑗=1

𝜏‖𝑥𝑗−1
f ‖𝐻1‖𝑓 𝑗‖𝐿2 ≤ 𝐶𝐻

⎛⎝ 𝑛∑︁
𝑗=1

𝜏‖𝑥𝑗−1
f ‖2𝐻1

⎞⎠1/2⎛⎝ 𝑛∑︁
𝑗=1

𝜏‖𝑓 𝑗‖2𝐿2

⎞⎠1/2

.

Note that
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒

𝑥𝑗−1
f

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒2
+
⃒⃒⃒⃒ ⃒⃒

𝑥𝑗−1
ms

⃒⃒⃒⃒ ⃒⃒2 ≤ ⃒⃒⃒⃒⃒⃒ ⃒⃒⃒𝑥𝑗−1
ℎ

⃒⃒⃒⃒⃒⃒ ⃒⃒⃒2
. Hence the energy estimate (4.9) can now be used to achieve (4.6).

If 𝑓 𝑗 = 𝜕𝑡𝑔
𝑗 one may use summation by parts to achieve

𝑛∑︁
𝑗=1

𝜏‖𝑒𝑗‖2𝐿2
=

𝑛∑︁
𝑗=1

𝜏
(︁
𝑥𝑗−1

f , 𝜕𝑡𝑔
𝑗
)︁
≤

𝑛∑︁
𝑗=1

𝜏
(︁
−𝜕𝑡𝑥

𝑗−1
f , 𝑔𝑗

)︁
−
(︀
𝑥0

f , 𝑔
0
)︀

≤ 𝐶𝐻

𝑛∑︁
𝑗=1

𝜏‖𝜕𝑡𝑥
𝑗−1
f ‖𝐻1‖𝑔𝑗‖𝐿2 + 𝐶𝐻‖𝑥0

f ‖𝐻1‖𝑔0‖𝐿2 ,

where we have used 𝑥𝑛
f = 𝑥𝑛

ℎ = 0. Using (4.10) we conclude (4.7). �
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Remark 4.2. The bound in (4.6) is not of optimal order, but it is useful in the error analysis.

The next lemma gives error estimates for the discrete time derivative of the error. In the analysis of the (full)
damped wave equation we use 𝑔 = 𝜕𝑡𝑢ℎ, see Lemma 4.5. If the initial data is nonzero we expect 𝜕𝑡𝑔

1 below to
be of order 𝑡−1

1 in 𝐿2-norm. A detailed explanation of this is given below. Hence, we have a blow up close to
zero due to low regularity of the initial data. Therefore, we need to multiply the error by 𝑡𝑗 . This is similar to
the parabolic case for nonsmooth initial data see, e.g. [33].

Lemma 4.3. Let 𝑍𝑛
ℎ be the solution to (4.1) and 𝑍𝑛

lod the solution to (4.3) and (4.4). Assume 𝑍0
lod − 𝑍0

ℎ = 0.
If 𝜕𝑡𝑓

𝑛 ∈ 𝐿2 (Ω), for 𝑛 ≥ 1, then

𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡

(︁
𝑍𝑗

ℎ − 𝑍𝑗
lod

)︁
‖2𝐿2

≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑓
𝑗‖2𝐿2

+ ‖𝑓1‖2𝐿2

⎞⎠ (4.13)

and if 𝑓𝑛 = 𝜕𝑡𝑔
𝑛, for some {𝑔𝑛}𝑁

𝑛=0, such that 𝑔𝑛 ∈ 𝑉ℎ, then

𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡

(︁
𝑍𝑗

ℎ − 𝑍𝑗
lod

)︁
‖2𝐿2

≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑔
𝑗‖2𝐿2

+ ‖𝜕𝑡𝑔
1‖2𝐿2

⎞⎠ (4.14)

and, in addition, the following bound holds

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝜕𝑡

(︁
𝑍𝑗

ℎ − 𝑍𝑗
lod

)︁
‖2𝐿2

≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑔
𝑗‖2𝐿2

+ 𝑡21‖𝜕𝑡𝑔
1‖2𝐿2

⎞⎠ , (4.15)

where C does not depend on the variations in 𝐴 or 𝐵.

Proof. The proof of (4.13) is similar to (4.6). Let 𝑒𝑗 = 𝑍𝑗
ℎ − 𝑍𝑗

lod and define the dual problem

𝑎
(︁
−𝜕𝑡𝑥

𝑗
ℎ, 𝑧
)︁

+ 𝑏
(︁
𝑥𝑗

ℎ, 𝑧
)︁

=
(︀
𝜕𝑡𝑒

𝑗+1, 𝑧
)︀
, ∀𝑧 ∈ 𝑉ℎ, 𝑗 = 𝑛− 1, . . . , 0, (4.16)

with 𝑥𝑛
ℎ = 0. Choosing 𝑧 = 𝜕𝑡𝑒

𝑗+1 and performing summation by parts we deduce

𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑒
𝑗‖2𝐿2

=
𝑛∑︁

𝑗=2

𝜏𝑎
(︁
−𝜕𝑡𝑥

𝑗−1
ℎ , 𝜕𝑡𝑒

𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝜕𝑡𝑒
𝑗
)︁

(4.17)

=
𝑛∑︁

𝑗=2

𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝜕2
𝑡 𝑒𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝜕𝑡𝑒
𝑗
)︁

+ 𝑎
(︀
𝑥1

ℎ, 𝜕𝑡𝑒
1
)︀
,

where we used that 𝑥𝑛
ℎ = 0. Following the same argument as for (4.7), but with a difference quotient, we arrive

at

𝑛∑︁
𝑗=2

‖𝜕𝑡𝑒
𝑗‖2𝐿2

=
𝑛∑︁

𝑗=2

𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝜕2
𝑡 𝑒𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝜕𝑡𝑒
𝑗
)︁

+ 𝑎
(︀
𝑥1

ℎ, 𝜕𝑡𝑒
1
)︀

=
𝑛∑︁

𝑗=2

𝜏
(︁
𝑥𝑗−1

f , 𝜕𝑡𝑓
𝑗
)︁

+ 𝑎
(︀
𝑥1

ℎ, 𝜕𝑡𝑒
1
)︀
.

Using 𝑒0 = 0, we deduce

𝑎
(︀
𝑥1

ℎ, 𝜕𝑡𝑒
1
)︀

=
1
𝜏

𝑎
(︀
𝑥1

ℎ, 𝑒1
)︀
≤ 𝐶

𝜏
𝐻‖𝑥1

ℎ‖𝐻1𝜏‖𝑓1‖𝐿2 ≤ 𝐶𝐻‖𝑥1
ℎ‖𝐻1‖𝑓1‖𝐿2 ,



1390 P. LJUNG ET AL.

and with 𝜕𝑡𝑓
𝑗 ∈ 𝐿2 (Ω) we get

𝑛∑︁
𝑗=2

‖𝜕𝑡𝑒
𝑗‖2𝐿2

≤ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏‖𝑥𝑗−1
f ‖𝐻1‖𝜕𝑡𝑓

𝑗‖𝐿2 + 𝐶𝐻‖𝑥1
ℎ‖𝐻1‖𝑓1‖𝐿2 ,

and (4.13) follows by using an energy estimate of 𝑥𝑗
ℎ similar to (4.9), but with 𝜕𝑡𝑒

𝑗 on the right hand side.
If 𝑓 𝑗 = 𝜕𝑡𝑔

𝑗 we proceed as for (4.7) to achieve
𝑛∑︁

𝑗=2

𝜏
(︁
𝑥𝑗−1

f , 𝜕𝑡𝑓
𝑗
)︁
≤ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑥
𝑗−1
f ‖𝐻1‖𝜕𝑡𝑔

𝑗‖𝐿2 + 𝐶𝐻‖𝑥1
f ‖𝐻1‖𝜕𝑡𝑔

1‖𝐿2

and (4.14) follows by using energy estimates similar to (4.10).
For (4.15) we consider the dual problem

𝑎
(︁
−𝜕𝑡𝑥

𝑗
ℎ, 𝑧
)︁

+ 𝑏
(︁
𝑥𝑗

ℎ, 𝑧
)︁

=
(︀
𝑡𝑗+1𝜕𝑡𝑒

𝑗+1, 𝑧
)︀
, ∀𝑧 ∈ 𝑉ℎ, 𝑗 = 𝑛− 1, . . . , 0. (4.18)

A simple energy estimate shows

‖𝑥𝑗
ℎ‖

2
𝐻1 +

𝑛−1∑︁
𝑘=𝑗

𝜏‖𝜕𝑡𝑥
𝑘
ℎ‖2𝐻1 ≤ 𝐶

𝑛−1∑︁
𝑘=𝑗

𝜏𝑡2𝑘+1‖𝜕𝑡𝑒
𝑘+1‖2𝐿2

, 𝑗 = 0, . . . , 𝑛− 1. (4.19)

Now choosing 𝑧 = 𝑡𝑗+1𝜕𝑡𝑒
𝑗+1 in (4.18) and performing summation by parts gives

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝜕𝑡𝑒
𝑗‖2𝐿2

=
𝑛∑︁

𝑗=2

𝜏𝑎
(︁
−𝜕𝑡𝑥

𝑗−1
ℎ , 𝑡𝑗𝜕𝑡𝑒

𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝑡𝑗𝜕𝑡𝑒
𝑗
)︁

(4.20)

=
𝑛∑︁

𝑗=2

(︁
𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝑡𝑗𝜕
2
𝑡 𝑒𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝑡𝑗𝜕𝑡𝑒
𝑗
)︁

+ 𝑎
(︁
𝑥𝑗−1

ℎ , (𝑡𝑗 − 𝑡𝑗−1) 𝜕𝑡𝑒
𝑗−1
)︁)︁

+ 𝑎
(︀
𝑥1

ℎ, 𝑡1𝜕𝑡𝑒
1
)︀
.

The first two terms of the sum can be handled similarly to (4.14),
𝑛∑︁

𝑗=2

𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝑡𝑗𝜕
2
𝑡 𝑒𝑗
)︁

+ 𝜏𝑏
(︁
𝑥𝑗−1

ℎ , 𝑡𝑗𝜕𝑡𝑒
𝑗
)︁

=
𝑛∑︁

𝑗=2

𝜏
(︁
𝑥𝑗−1

f , 𝑡𝑗𝜕𝑡𝑓
𝑗
)︁

.

Now, using summation by parts we achieve
𝑛∑︁

𝑗=2

𝜏
(︁
𝑥𝑗−1

f , 𝑡𝑗𝜕𝑡𝑓
𝑗
)︁

=
𝑛∑︁

𝑗=2

𝜏
(︁(︁
−𝜕𝑡𝑥

𝑗−1
f , 𝑡𝑗𝑓

𝑗
)︁
−
(︁
𝑥𝑗

f , 𝑓
𝑗
)︁)︁

−
(︀
𝑥1

f , 𝑡2𝑓
1
)︀

≤ 𝐶𝐻

⎛⎝ 𝑛∑︁
𝑗=2

𝜏
(︁
𝑡𝑗‖𝜕𝑡𝑥

𝑗−1
f ‖𝐻1‖𝑓 𝑗‖𝐿2 + ‖𝑥𝑗

f ‖𝐻1‖𝑓 𝑗‖𝐿2

)︁
+ 𝑡2‖𝑥1

f ‖𝐻1‖𝑓1‖𝐿2

⎞⎠
where we can use (4.19). Note that in the first term we can use the (crude) bound 𝑡2𝑗 ≤ 𝑡2𝑛 and let the constant
𝐶 depend on 𝑇 . Moreover, we use that 𝑡2 ≤ 2𝑡1. We get

𝑛∑︁
𝑗=2

𝜏
(︁
𝑥𝑗−1

f , 𝑡𝑗𝜕𝑡𝑓
𝑗
)︁
≤ 𝐶𝐻

⎛⎝ 𝑛∑︁
𝑗=1

𝜏𝑡2𝑗‖𝜕𝑡𝑒
𝑗‖2𝐿2

⎞⎠1/2
⎛⎜⎝
⎛⎝ 𝑛∑︁

𝑗=2

𝜏‖𝑓 𝑗‖2𝐿2

⎞⎠1/2

+ 𝑡1‖𝑓1‖𝐿2

⎞⎟⎠ .
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For the third term in (4.20), we use 𝑡𝑗 − 𝑡𝑗−1 = 𝜏 and once again perform summation by parts to get

𝑛∑︁
𝑗=2

𝜏𝑎
(︁
𝑥𝑗−1

ℎ , 𝜕𝑡𝑒
𝑗−1
)︁

=
𝑛∑︁

𝑗=2

𝜏𝑎
(︁
−𝜕𝑡𝑥

𝑗−1
ℎ , 𝑒𝑗−1

)︁
,

where we have used 𝑥𝑛
ℎ = 𝑒0 = 0. Combining (4.19) and (4.5) we get

𝑛∑︁
𝑗=2

𝜏𝑎
(︁
−𝜕𝑡𝑥

𝑗−1
ℎ , 𝑒𝑗−1

)︁
≤ 𝐶 max

𝑗=1,...,𝑛
‖𝑒𝑗‖𝐻1

⎛⎝ 𝑛∑︁
𝑗=2

𝜏

⎞⎠1/2⎛⎝ 𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝑥
𝑗−1
ℎ ‖2𝐻1

⎞⎠1/2

≤ 𝐶𝐻

𝑛∑︁
𝑗=1

𝜏‖𝑓 𝑗‖𝐿2

⎛⎝ 𝑛∑︁
𝑗=1

𝜏𝑡2𝑗‖𝜕𝑡𝑒
𝑗‖2𝐿2

⎞⎠1/2

.

For the last term in (4.20) we use (4.19) and (4.5) for 𝑛 = 1 to achieve

𝑎
(︀
𝑥1

ℎ, 𝑡1𝜕𝑡𝑒
1
)︀

= 𝑎
(︀
𝑥1

ℎ, 𝑒1
)︀
≤ 𝐶𝐻

⎛⎝ 𝑛∑︁
𝑗=1

𝜏𝑡2𝑗‖𝜕𝑡𝑒
𝑗‖2𝐿2

⎞⎠1/2

𝑡1‖𝑓1‖𝐿2 ,

and (4.15) follows by letting 𝑓 𝑗 = 𝜕𝑡𝑔
𝑗 . �

4.2. The damped wave equation

For the error analysis of the full damped wave equation we shall make use of the projection corresponding
to the auxiliary problem. For 𝑢𝑛

ℎ ∈ 𝑉ℎ, let 𝑋𝑛 = 𝑋𝑛
𝑣 + 𝑋𝑛

𝑤 ∈ 𝑉ℎ with 𝑋𝑛
𝑣 ∈ 𝑉ms and 𝑋𝑛

𝑤 ∈ 𝑉f such that

𝑎 (𝑋𝑛
𝑣 − 𝑢𝑛

ℎ, 𝑧) + 𝜏𝑏 (𝑋𝑛
𝑣 − 𝑢𝑛

ℎ, 𝑧) = 𝑎
(︀
𝑋𝑛−1 − 𝑢𝑛−1

ℎ , 𝑧
)︀
, ∀𝑧 ∈ 𝑉ms, (4.21)

𝑎 (𝑋𝑛
𝑤, 𝑧) + 𝜏𝑏 (𝑋𝑛

𝑤, 𝑧) = 𝑎
(︀
𝑋𝑛−1, 𝑧

)︀
, ∀𝑧 ∈ 𝑉f . (4.22)

Note that since 𝑢𝑛
ℎ solves (2.6), the system (4.21) and (4.22) is equivalent to

𝑎 (𝑋𝑛
𝑣 , 𝑧) + 𝜏𝑏 (𝑋𝑛

𝑣 , 𝑧) = 𝜏
(︀
𝑓𝑛 − 𝜕2

𝑡 𝑢𝑛
ℎ, 𝑧
)︀

+ 𝑎
(︀
𝑋𝑛−1, 𝑧

)︀
, ∀𝑧 ∈ 𝑉ms, (4.23)

𝑎 (𝑋𝑛
𝑤, 𝑧) + 𝜏𝑏 (𝑋𝑛

𝑤, 𝑧) = 𝑎
(︀
𝑋𝑛−1, 𝑧

)︀
, ∀𝑧 ∈ 𝑉f . (4.24)

That is, we may view 𝑢𝑛
ℎ and 𝑋𝑛 as the solution and approximation to the auxiliary problem with source data

𝑓𝑛 − 𝜕2
𝑡 𝑢𝑛

ℎ. We deduce following lemma.

Lemma 4.4. Let 𝑢𝑛
ℎ be the solution to (2.6) and 𝑋𝑛 the solution to (4.21) and (4.22). The error satisfies the

following bounds

‖𝑋𝑛 − 𝑢𝑛
ℎ‖𝐻1 ≤ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏‖𝑓 𝑗 − 𝜕2
𝑡 𝑢𝑗

ℎ‖𝐿2 , 𝑛 ≥ 2, (4.25)

𝑛∑︁
𝑗=2

𝜏‖𝑋𝑗 − 𝑢𝑗
ℎ‖

2
𝐿2
≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=2

𝜏
(︁
‖𝑓 𝑗‖2𝐿2

+ ‖𝜕𝑡𝑢
𝑗
ℎ‖

2
𝐿2

)︁
+ ‖𝜕𝑡𝑢

1
ℎ‖2𝐿2

⎞⎠ , 𝑛 ≥ 2, (4.26)

where C does not depend on the variations in 𝐴 or 𝐵.

Proof. We let the auxiliary problem (4.1) start at 𝑡1 with initial data 𝑢1
ℎ, such that the error at the initial time

is zero, i.e. 𝑒0 = 0. The bound (4.25) now follows directly from (4.5) with 𝑓𝑛 − 𝜕2
𝑡 𝑢𝑛

ℎ as right hand side. The
second bound (4.26) follows from (4.6) and (4.7) with 𝑓𝑛 ∈ 𝐿2 (Ω) and 𝑔𝑛 = 𝜕𝑡𝑢

𝑛+1
ℎ . �
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In a similar way me may deduce bounds for the (discrete) time derivative of the error. As a direct consequence
of Lemma 4.3, we get the following result.

Lemma 4.5. Let 𝑢𝑛
ℎ be the solution to (2.6) and 𝑋𝑛 the solution to (4.21) and (4.22). The following bounds

hold

𝑛∑︁
𝑗=3

𝜏‖𝜕𝑡

(︁
𝑋𝑗 − 𝑢𝑗

ℎ

)︁
‖2𝐿2

≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=3

𝜏
(︁
‖𝜕𝑡𝑓

𝑗‖2𝐿2
+ ‖𝜕2

𝑡 𝑢𝑗
ℎ‖

2
𝐿2

)︁
+ ‖𝑓2‖2𝐿2

+ ‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2

⎞⎠ , (4.27)

𝑛∑︁
𝑗=3

𝜏𝑡2𝑗‖𝜕𝑡

(︁
𝑋𝑗 − 𝑢𝑗

ℎ

)︁
‖2𝐿2

≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=3

𝜏
(︁
‖𝜕𝑡𝑓

𝑗‖2𝐿2
+ ‖𝜕2

𝑡 𝑢𝑗
ℎ‖

2
𝐿2

)︁
+ 𝑡22‖𝑓2‖2𝐿2

+ 𝑡22‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2

⎞⎠ , (4.28)

where C does not depend on the variations in 𝐴 or 𝐵.

Lemma 4.6. Let 𝑢𝑛
ℎ and 𝑢𝑛

lod be the solutions to (2.6) and (3.4), (3.5), respectively. Assume that 𝑢0 = 𝑢1 = 0.
The error is bounded by

𝑛∑︁
𝑗=2

𝜏‖𝑢𝑗
lod − 𝑢𝑗

ℎ‖
2
𝐻1 ≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=1

𝜏
(︀
‖𝑓 𝑗‖2𝐿2

+ ‖𝜕𝑡𝑓
𝑗‖2𝐿2

)︀
+ max

𝑗=1,...,𝑛
‖𝑓 𝑗‖2𝐿2

⎞⎠ ,

for 𝑛 ≥ 2, where C does not depend on the variations in 𝐴 or 𝐵.

Proof. Begin by splitting the error into two contributions

𝑢𝑛
lod − 𝑢𝑛

ℎ = 𝑢𝑛
lod −𝑋𝑛 + 𝑋𝑛 − 𝑢𝑛

ℎ =: 𝜃𝑛 + 𝜌𝑛,

where 𝑋𝑛 is the solution to the simplified problem in (4.21) and (4.22). By Lemma 4.4 𝜌𝑛 is bounded by

‖𝜌𝑛‖𝐻1 ≤ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏
(︁
‖𝑓 𝑗‖𝐿2 + ‖𝜕2

𝑡 𝑢𝑗
ℎ‖𝐿2

)︁
,

and we can now apply the energy bound (2.9). It remains to bound 𝜃𝑛. Recall that for any 𝑧 ∈ 𝑉ℎ we have
𝑧 = 𝑧ms + 𝑧f for some 𝑧ms ∈ 𝑉ms and 𝑧f ∈ 𝑉f . Using that 𝑢𝑛

lod = 𝑣𝑛 + 𝑤𝑛 satisfies (3.4) and the orthogonality
(3.2) we get (︀

𝜕2
𝑡 𝑢𝑛

lod, 𝑧ms

)︀
+ 𝑎

(︀
𝜕𝑡𝑢

𝑛
lod, 𝑧ms

)︀
+ 𝑏 (𝑢𝑛

lod, 𝑧ms) = (𝑓𝑛, 𝑧ms) +
(︀
𝜕2

𝑡 𝑤𝑛, 𝑧ms

)︀
.

Similarly, due to (3.5) and the orthogonality,(︀
𝜕2

𝑡 𝑢𝑛
lod, 𝑧f

)︀
+ 𝑎

(︀
𝜕𝑡𝑢

𝑛
lod, 𝑧f

)︀
+ 𝑏 (𝑢𝑛

lod, 𝑧f) =
(︀
𝜕2

𝑡 𝑢𝑛
lod, 𝑧f

)︀
.

For 𝑋𝑛 we use (4.21) and (4.22) and the orthogonality to deduce(︀
𝜕2

𝑡 𝑋𝑛, 𝑧
)︀

+ 𝑎
(︀
𝜕𝑡𝑋

𝑛, 𝑧
)︀

+ 𝑏 (𝑋𝑛, 𝑧) =
(︀
𝜕2

𝑡 𝑋𝑛, 𝑧
)︀

+
(︀
𝑓𝑛 − 𝜕2

𝑡 𝑢𝑛
ℎ, 𝑧ms

)︀
, 𝑧 ∈ 𝑉ℎ,

Hence, 𝜃𝑛 satisfies(︀
𝜕2

𝑡 𝜃𝑛, 𝑧
)︀

+ 𝑎
(︀
𝜕𝑡𝜃

𝑛, 𝑧
)︀

+ 𝑏 (𝜃𝑛, 𝑧) =
(︀
−𝜕2

𝑡 𝜌𝑛, 𝑧
)︀
−
(︀
𝜕2

𝑡 𝑢𝑛
ℎ, 𝑧f

)︀
+
(︀
𝜕2

𝑡 𝑢𝑛
lod, 𝑧f

)︀
+
(︀
𝜕2

𝑡 𝑤𝑛, 𝑧ms

)︀
, 𝑧 ∈ 𝑉ℎ,

with 𝜃0 = 𝜃1 = 0, since 𝑢0
lod = 𝑢0

ℎ = 𝑋0 and 𝑢1
lod = 𝑢1

ℎ = 𝑋1. Let 𝜃𝑛 =
∑︀𝑛

𝑗=2 𝜏𝜃𝑗 . Multiplying by 𝜏 and
summing over 𝑛 gives(︀

𝜕𝑡𝜃
𝑛, 𝑧
)︀

+ 𝑎 (𝜃𝑛, 𝑧) + 𝑏
(︁
𝜃𝑛, 𝑧

)︁
≤
(︀
−𝜕𝑡𝜌

𝑛, 𝑧
)︀
−
(︀
𝜕𝑡𝑢

𝑛
ℎ − 𝜕𝑡𝑢

1
ℎ, 𝑧f

)︀
+
(︀
𝜕𝑡𝑢

𝑛
lod − 𝜕𝑡𝑢

1
lod, 𝑧f

)︀
(4.29)
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+
(︀
𝜕𝑡𝑤

𝑛 − 𝜕𝑡𝑤
1, 𝑧ms

)︀
,

where we have used that 𝜃1 = 𝜃0 = 𝜌1 = 𝜌0 = 0. Using the interpolant 𝐼𝐻 we deduce(︀
𝜕𝑡𝑢

𝑛
ℎ, 𝑧f

)︀
+
(︀
𝜕𝑡𝑢

𝑛
lod, 𝑧f

)︀
+
(︀
𝜕𝑡𝑤

𝑛, 𝑧ms

)︀
≤ 𝐶𝐻

(︀
‖𝜕𝑡𝑢

𝑛
ℎ‖𝐿2 + ‖𝜕𝑡𝑢

𝑛
lod‖𝐿2

)︀
‖𝑧‖𝐻1 + 𝐶𝐻‖𝜕𝑡𝑢

𝑛
lod‖𝐻1‖𝑧ms‖𝐿2 ,

for 1 ≤ 𝑛 ≤ 𝑁 . Let 𝛼 (𝑛) = ‖𝜕𝑡𝑢
𝑛
ℎ‖𝐿2 +‖𝜕𝑡𝑢

𝑛
lod‖𝐻1 . Since ‖𝑧ms‖𝐿2 ≤ 𝐶‖𝑧‖𝐻1 and 𝛼 (1) = 0 due to the vanishing

initial data, we get (︀
𝜕𝑡𝜃

𝑛, 𝑧
)︀

+ 𝑎 (𝜃𝑛, 𝑧) + 𝑏
(︁
𝜃𝑛, 𝑧

)︁
≤
(︀
−𝜕𝑡𝜌

𝑛, 𝑧
)︀

+ 𝐶𝐻𝛼 (𝑛) ‖𝑧‖𝐻1 , 𝑧 ∈ 𝑉ℎ.

Now, choose 𝑧 = 𝜃𝑛 = 𝜕𝑡𝜃
𝑛 in (4.29). We get

1
2
‖𝜃𝑛‖2𝐿2

− 1
2
‖𝜃𝑛−1‖2𝐿2

+ 𝜏‖𝜃𝑛‖2𝑎 +
1
2
‖𝜃𝑛‖2𝑏 −

1
2
‖𝜃𝑛−1‖2𝑏 ≤ 𝜏‖𝜕𝑡𝜌

𝑛‖𝐿2‖𝜃𝑛‖𝐿2 + 𝐶𝐻𝜏𝛼 (𝑛) ‖𝜃𝑛‖𝐻1 .

Summing over 𝑛 gives

‖𝜃𝑛‖2𝐿2
+

𝑛∑︁
𝑗=2

𝜏‖𝜃𝑗‖2𝐻1 + ‖𝜃𝑛‖2𝐻1 ≤
𝑛∑︁

𝑗=2

𝜏‖𝜕𝑡𝜌
𝑗‖𝐿2‖𝜃𝑗‖𝐿2 + 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏𝛼 (𝑗) ‖𝜃𝑗‖𝐻1 .

Now using that ‖𝜃𝑛‖𝐿2 ≤ ‖𝜃𝑛‖𝐻1 and Young’s weighted inequality, 𝜃𝑗 can be kicked back to the left hand side.
We deduce

𝑛∑︁
𝑗=2

𝜏‖𝜃𝑗‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝜕𝑡𝜌
𝑗‖2𝐿2

+ 𝐶𝐻2
𝑛∑︁

𝑗=2

𝜏𝛼 (𝑗)2 .

Using Lemma 4.5 we have

𝑛∑︁
𝑗=2

𝜏‖𝜃𝑗‖2𝐻1 ≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=2

𝜏
(︁
‖𝜕𝑡𝑓

𝑗‖2𝐿2
+ ‖𝜕2

𝑡 𝑢𝑗
ℎ‖

2
𝐿2

)︁
+ ‖𝜕2

𝑡 𝑢2
ℎ‖2𝐿2

⎞⎠+ 𝐶𝐻2
𝑛∑︁

𝑗=2

𝜏𝛼 (𝑗)2 .

To bound ‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2
, we consider (2.6) for 𝑛 = 2 and choose 𝑣 = 𝜕2

𝑡 𝑢2
ℎ, which gives(︀

𝜕2
𝑡 𝑢2

ℎ, 𝜕2
𝑡 𝑢2

ℎ

)︀
+ 𝑎

(︀
𝜕𝑡𝑢

2
ℎ, 𝜕2

𝑡 𝑢2
ℎ

)︀
+ 𝑏

(︀
𝑢2

ℎ, 𝜕2
𝑡 𝑢2

ℎ

)︀
=
(︀
𝜕𝑡𝑓

2, 𝜕2
𝑡 𝑢2

ℎ

)︀
.

Due to the vanishing initial data 𝜕𝑡𝑢
2
ℎ = 𝜏−1𝑢2

ℎ and 𝜕2
𝑡 𝑢2

ℎ = 𝜏−2𝑢2
ℎ. We get

‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2
+

1
𝜏3
‖𝑢2

ℎ‖2𝑎 +
1
𝜏2
‖𝑢2

ℎ‖2𝑏 =
(︀
𝑓2, 𝜕2

𝑡 𝑢2
ℎ

)︀
, (4.30)

and we deduce

‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2
≤ 𝐶‖𝑓2‖2𝐿2

.

All terms, except
∑︀𝑛

𝑗=2 𝜏‖𝜕𝑡𝑢
𝑗
lod‖2𝐻1 that appears in

∑︀𝑛
𝑗=2 𝛼2 (𝑗), can now be bounded by using the regularity

in Theorem 2.2. To bound
∑︀𝑛

𝑗=2 𝜏‖𝜕𝑡𝑢
𝑗
lod‖2𝐻1 we choose 𝑧 = 𝜕𝑡𝑣

𝑛 and 𝑧 = 𝜕𝑡𝑤
𝑛 in (3.4) and (3.5) respectively.

Adding the two equations and using the orthogonality between 𝑉ms and 𝑉f we achieve(︀
𝜕2

𝑡 𝑣𝑛, 𝜕𝑡𝑣
𝑛
)︀

+ 𝑎
(︀
𝜕𝑡𝑢

𝑛
lod, 𝜕𝑡𝑢

𝑛
lod

)︀
+ 𝑏

(︀
𝑢𝑛

lod, 𝜕𝑡𝑢
𝑛
lod

)︀
=
(︀
𝑓𝑛, 𝜕𝑡𝑣

𝑛
)︀
≤ 𝐶𝜖‖𝑓𝑛‖2𝐿2

+ 𝜖‖𝜕𝑡𝑣
𝑛‖2𝐿2

.
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Note that ‖𝜕𝑡𝑣
𝑛‖𝐿2 ≤ 𝐶‖∇𝜕𝑡𝑣

𝑛‖𝐿2 ≤ 𝐶
⃒⃒⃒⃒ ⃒⃒

𝜕𝑡𝑣
𝑛
⃒⃒⃒⃒ ⃒⃒

= 𝐶
⃒⃒⃒⃒ ⃒⃒

𝜕𝑡𝑢
𝑛
lod

⃒⃒⃒⃒ ⃒⃒
≤ 𝐶‖𝜕𝑡𝑢

𝑛
lod‖𝑎 , so we may choose 𝜖 small enough

such that
⃒⃒⃒⃒ ⃒⃒

𝜕𝑡𝑢
𝑛
lod

⃒⃒⃒⃒ ⃒⃒
can be kicked to the left hand side. As in the proof of Theorem 2.2 we may now deduce

‖𝜕𝑡𝑣
𝑛‖2𝐿2

+
𝑛∑︁

𝑗=2

𝜏‖𝜕𝑡𝑢
𝑗
lod‖

2
𝐻1 + ‖𝑢𝑛

lod‖2𝐻1 ≤ 𝐶

⎛⎝ 𝑛∑︁
𝑗=2

‖𝑓 𝑗‖2𝐿2
+ ‖𝜕𝑡𝑢

1
ℎ‖2𝐿2

+ ‖𝑢1
ℎ‖2𝐻1

⎞⎠ , (4.31)

where we have used that 𝑣1 = 𝑢1
lod = 𝑢1

ℎ ∈ 𝑉ms. However, we have assumed vanishing initial data so these terms
disappear. The lemma follows. �

Lemma 4.7. Let 𝑢𝑛
ℎ and 𝑢𝑛

lod be the solutions to (2.6) and (3.4), (3.5), respectively. Assume that 𝑓 = 0. The
error is bounded by

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝑢
𝑗
lod − 𝑢𝑗

ℎ‖
2
𝐻1 ≤ 𝐶𝐻2

(︀
‖𝜕𝑡𝑢

1
ℎ‖2𝐻1 + ‖𝑢1

ℎ‖2𝐻1 + ‖𝑢0
ℎ‖2𝐻1

)︀
, 𝑛 ≥ 2,

where C does not depend on the variations in 𝐴 or 𝐵.

Proof. We follow the steps in the proof of Lemma 4.6 to equation (4.29). Note that ‖𝜌𝑛‖𝐻1 can be bounded by
Lemma 4.4 and the energy bound in (2.9) with 𝑓 = 0.

Now, let 𝜃𝑛 =
∑︀𝑛

𝑗=2 𝜏𝜃𝑗 . Choose 𝑧 = 𝜃𝑛 = 𝜕𝑡𝜃
𝑛 in (4.29) and multiply by 𝜏𝑡2𝑛. We get

𝑡2𝑛
2
‖𝜃𝑛‖2𝐿2

−
𝑡2𝑛−1

2
‖𝜃𝑛−1‖2𝐿2

+ 𝜏𝑡2𝑛‖𝜃𝑛‖2𝑎 +
𝑡2𝑛
2
‖𝜃𝑛‖2𝑏 −

𝑡2𝑛−1

2
‖𝜃𝑛−1‖2𝑏

≤ 𝜏𝑡2𝑛‖𝜕𝑡𝜌
𝑛‖𝐿2‖𝜃𝑛‖𝐿2 + 𝐶𝐻𝑡2𝑛𝜏 (𝛼 (𝑛) + 𝛼 (1)) ‖𝜃𝑛‖𝐻1 +

(︀
𝑡2𝑛 − 𝑡2𝑛−1

)︀
2

‖𝜃𝑛−1‖2𝐿2
+

(︀
𝑡2𝑛 − 𝑡2𝑛−1

)︀
2

‖𝜃𝑛−1‖2𝑏 .

Summing over 𝑛 and using 𝑡2𝑛 − 𝑡2𝑛−1 ≤ 2𝜏𝑡𝑛 gives

𝑡2𝑛‖𝜃𝑛‖2𝐿2
+

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝜃𝑗‖2𝐻1 + 𝑡2𝑛‖𝜃𝑛‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝜕𝑡𝜌
𝑗‖𝐿2‖𝜃𝑗‖𝐿2 + 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗 (𝛼 (𝑗) + 𝛼 (1)) ‖𝜃𝑗‖𝐻1 (4.32)

+ 𝐶

𝑛∑︁
𝑗=2

𝜏𝑡𝑗‖𝜃𝑗‖2𝐿2
+ 𝐶

𝑛∑︁
𝑗=2

𝜏𝑡𝑗‖𝜃𝑗‖2𝑏 .

From the first two sums on the right hand side we can kick 𝑡𝑗‖𝜃𝑗‖𝐿2 ≤ 𝑡𝑗‖𝜃𝑗‖𝐻1 and 𝑡𝑗‖𝜃𝑗‖𝐻1 to the left hand
side. The remaining two sums needs to be bounded by other energy estimates.

Multiply (4.29) by 𝜏 and sum over 𝑛 to get

(𝜃𝑛, 𝑧) + 𝑎
(︁
𝜃𝑛, 𝑧

)︁
+ 𝑏

⎛⎝ 𝑛∑︁
𝑗=2

𝜏𝜃𝑗 , 𝑧

⎞⎠ ≤ (𝜌𝑛, 𝑧)−
(︀
𝑢𝑛

ℎ − 𝑢1
ℎ, 𝑧f

)︀
+
(︀
𝑢𝑛

lod − 𝑢1
lod, 𝑧f

)︀
+
(︀
𝑤𝑛 − 𝑤1, 𝑧ms

)︀
(4.33)

+ 𝑡𝑛
(︀(︀

𝜕𝑡𝑢
1
ℎ, 𝑧f

)︀
−
(︀
𝜕𝑡𝑢

1
lod, 𝑧f

)︀
−
(︀
𝜕𝑡𝑤

1, 𝑧ms

)︀)︀
.

where we have used 𝜃1 = 𝜌1 = 0. As in the proof of Lemma 4.6 we get

(𝑢𝑛
ℎ, 𝑧f) + (𝑢𝑛

lod, 𝑧f) + (𝑤𝑛, 𝑧ms) ≤ 𝐶𝐻 (‖𝑢𝑛
ℎ‖𝐿2 + ‖𝑢𝑛

lod‖𝐿2) ‖𝑧‖𝐻1 + 𝐶𝐻‖𝑢𝑛
lod‖𝐻1‖𝑧ms‖𝐿2 ,

for 1 ≤ 𝑛 ≤ 𝑁 . Let 𝛽 (𝑛) = ‖𝑢𝑛
ℎ‖𝐿2 +‖𝑢𝑛

lod‖𝐻1 . Choose 𝑧 = 𝜃𝑛 = 𝜕𝑡

∑︀𝑛
𝑗=1 𝜏𝜃𝑗 . Similar to above energy estimates,

we get

‖𝜃𝑛‖2𝐿2
+

𝑛∑︁
𝑗=2

𝜏‖𝜃𝑗‖2𝑎 + ‖
𝑛∑︁

𝑗=2

𝜏𝜃𝑗‖2𝑏 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝜌𝑗‖2𝐿2
+ 𝐶𝐻2

𝑛∑︁
𝑗=2

𝜏 (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1))2 . (4.34)
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Since
∑︀𝑛

𝑗=2 𝜏𝑡𝑗‖𝜃𝑗‖2𝑏 ≤ 𝐶 (𝑡𝑛)
∑︀𝑛

𝑗=2 𝜏‖𝜃𝑗‖2𝑎 we may use (4.34) in (4.32). This gives

𝑡2𝑛‖𝜃𝑛‖2𝐿2
+

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝜃𝑗‖2𝐻1 + 𝑡2𝑛‖𝜃𝑛‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏
(︀
𝑡2𝑗‖𝜕𝑡𝜌

𝑗‖2𝐿2
+ ‖𝜌𝑗‖2𝐿2

)︀
+ 𝐶

𝑛∑︁
𝑗=2

𝜏𝑡𝑗‖𝜃𝑗‖2𝐿2
(4.35)

+ 𝐶𝐻2
𝑛∑︁

𝑗=2

𝜏
(︁
𝑡2𝑗 (𝛼 (𝑗) + 𝛼 (1))2 + (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1))2

)︁
.

It remains to bound 𝐶
∑︀𝑛

𝑗=2 𝜏𝑡𝑗‖𝜃𝑗‖2𝐿2
. For this purpose, choose 𝑧 = 𝜃𝑛 = 𝜕𝑡𝜃

𝑛 in (4.33). Multiply by 𝑡𝑛𝜏 and
sum over 𝑛 to achieve

𝑛∑︁
𝑗=2

𝜏𝑡𝑗‖𝜃𝑗‖2𝐿2
+ 𝑡𝑛‖𝜃𝑛‖2𝑎 +

𝑛∑︁
𝑗=2

𝑡𝑗𝜏𝑏

(︃
𝑗∑︁

𝑘=2

𝜏𝜃𝑘, 𝜕𝑡𝜃
𝑗

)︃
≤ 𝐶

𝑛∑︁
𝑗=1

𝜏𝑡𝑗‖𝜌𝑗‖2𝐿2
+ 𝐶

𝑛∑︁
𝑗=2

𝜏‖𝜃𝑗‖2𝑎 (4.36)

+ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏𝑡𝑗 (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1)) ‖𝜃𝑗‖𝐻1 .

Note that ‖𝜃𝑗‖𝐻1 is the last sum in only present in the right hand side. The second term on the right hand side
is bounded by (4.34). For the term involving the bilinear form 𝑏 (·, ·) we use summation by parts to get

−
𝑛∑︁

𝑗=2

𝜏𝑏

(︃
𝑡𝑗

𝑗∑︁
𝑘=2

𝜏𝜃𝑘, 𝜕𝑡

𝑗∑︁
𝑘=2

𝜏𝜃𝑘

)︃
≤

𝑛∑︁
𝑗=2

𝜏𝑏

(︃
𝑡𝑗𝜃

𝑗 +
𝑗∑︁

𝑘=2

𝜏𝜃𝑘, 𝜃𝑗−1

)︃
− 𝑏

⎛⎝𝑡𝑛

𝑛∑︁
𝑗=2

𝜏𝜃𝑗 , 𝜃𝑛

⎞⎠
≤ 𝐶

𝑛∑︁
𝑗=2

𝜏𝑡𝑗‖𝜃𝑗‖2𝑏 + 𝐶‖
𝑛∑︁

𝑗=2

𝜏𝜃𝑗‖2𝑏 + 𝐶𝜖𝑡
2
𝑛‖𝜃𝑛‖2𝐻1 .

Here the constant 𝐶𝜖 can be made arbitrarily small due to Young’s weighted inequality. The first two terms can
be bounded by (4.34). Thus, (4.36) becomes

𝑛∑︁
𝑗=2

𝜏𝑡𝑗‖𝜃𝑗‖2𝐿2
+ 𝑡𝑛‖𝜃𝑛‖2𝑎 ≤ 𝐶

𝑛∑︁
𝑗=1

𝜏
(︀
𝑡𝑗‖𝜌𝑗‖2𝐿2

+ ‖𝜌𝑗‖2𝐿2

)︀
+ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏𝑡𝑗 (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1)) ‖𝜃𝑗‖𝐻1

+ 𝐶𝐻2
𝑛∑︁

𝑗=2

𝜏 (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1))2 + 𝐶𝜖𝑡
2
𝑛‖𝜃𝑛‖2𝐻1 .

Using this in (4.35) we arrive at

𝑡2𝑛‖𝜃𝑛‖2𝐿2
+

𝑛∑︁
𝑗=2

𝜏𝑡2𝑗‖𝜃𝑗‖2𝐻1 + 𝑡2𝑛‖𝜃𝑛‖2𝐻1 ≤ 𝐶

𝑛∑︁
𝑗=2

𝜏
(︀
𝑡2𝑗‖𝜕𝑡𝜌

𝑗‖2𝐿2
+ 𝑡𝑗‖𝜌𝑗‖2𝐿2

)︀
+ 𝐶𝐻2

𝑛∑︁
𝑗=2

𝜏
(︁
𝑡2𝑗 (𝛼 (𝑗) + 𝛼 (1))2 + (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1))2

)︁
(4.37)

+ 𝐶𝐻

𝑛∑︁
𝑗=2

𝜏𝑡𝑗 (𝛽 (𝑗) + 𝛽 (1) + 𝛼 (1)) ‖𝜃𝑗‖𝐻1 + 𝐶𝜖𝑡
2
𝑛‖𝜃𝑛‖2𝐻1 .

Using Lemmas 4.5 and 4.4 with 𝑓 = 0 we deduce for the first two terms in (4.37)

𝐶

𝑛∑︁
𝑗=2

𝜏
(︀
𝑡2𝑗‖𝜕𝑡𝜌

𝑗‖2𝐿2
+ 𝑡𝑗‖𝜌𝑗‖2𝐿2

)︀
≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=2

𝜏‖𝜕2
𝑡 𝑢𝑗

ℎ‖
2
𝐿2

+ 𝑡22‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2
+ ‖𝜕𝑡𝑢

1
ℎ‖2𝐿2

⎞⎠ ,
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where we can use (2.9) for 𝑛 = 2 and 𝑓 = 0 to bound 𝜕2
𝑡 𝑢2

ℎ. We get

𝑡22‖𝜕2
𝑡 𝑢2

ℎ‖2𝐿2
≤ 𝐶𝜏

(︀
‖𝜕𝑡𝑢

1
ℎ‖2𝐻1 + ‖𝑢1

ℎ‖2𝐻1

)︀
.

For the remaining terms in (4.37) we note that 𝑡𝑗‖𝜃𝑗‖𝐻1 now may be kicked to left hand side using Cauchy–
Schwarz and Young’s weighted inequality. The term involving 𝐶𝜖 can also be moved to the left hand side. All
terms involving 𝛼 (𝑗) and 𝛽 (𝑗) can be bounded by (2.8) and (4.31). This finishes the proof after using the
regularity in Theorem 2.2 with 𝑓 = 0. �

4.3. Error bound for the ideal method

We get the final result by combining the two previous lemmas.

Corollary 4.8. Let 𝑢𝑛
ℎ and 𝑢𝑛

lod be the solutions to (2.6) and (3.4), (3.5), respectively. The solutions can be
split into 𝑢𝑛

ℎ = 𝑢𝑛
ℎ,1 + 𝑢𝑛

ℎ,2 and 𝑢𝑛
lod = 𝑢𝑛

lod,1 + 𝑢𝑛
lod,2, where the first part has vanishing initial data, and the

second part a vanishing right hand side. The error is bounded by

𝑛∑︁
𝑗=2

𝜏‖𝑢𝑗
ℎ,1 − 𝑢𝑗

lod,1‖
2
𝐻1 ≤ 𝐶𝐻2

⎛⎝ 𝑛∑︁
𝑗=1

𝜏
(︀
‖𝑓 𝑗‖2𝐿2

+ ‖𝜕𝑡𝑓
𝑗‖2𝐿2

)︀
+ max

𝑗=1,...,𝑛
‖𝑓 𝑗‖2𝐿2

⎞⎠ , for 𝑛 ≥ 2

and
𝑛∑︁

𝑗=2

𝜏𝑡2𝑗‖𝑢
𝑗
ℎ,2 − 𝑢𝑗

lod,2‖
2
𝐻1 ≤ 𝐶𝐻2

(︀
‖𝜕𝑡𝑢

1
ℎ‖2𝐻1 + ‖𝑢1

ℎ‖2𝐻1 + ‖𝑢0
ℎ‖2𝐻1

)︀
, for 𝑛 ≥ 2.

Proof. This is a direct consequence of Lemmas 4.6 and 4.7 together with the fact that the problem is linear so
the error can be split into two contributions satisfying the conditions of each lemma. �

Remark 4.9. The result from Corollary 4.8 is derived for the ideal method presented in (3.4) and (3.5). The
GFEM in (3.7) and (3.8) will yield yet another error from the localization procedure. However, due to the
exponential decay in Theorems 3.2 and 3.3, it holds for the choice 𝑘 ≈ | log (𝐻) | that the perturbation from the
ideal method is of higher order and the derived result in Corollary 4.8 is still valid. For the details regarding
the error from the localization procedure, we refer to [29].

4.4. Initial data

For general initial data 𝑢0
ℎ, 𝑢1

ℎ ∈ 𝑉ℎ we consider the projections 𝑅ms𝑢
0
ℎ and 𝑅ms𝑢

1
ℎ, where 𝑅ms = 𝐼 − 𝑅f is

the Ritz-projection onto 𝑉ms. Let 𝑣 be the difference between two solutions to the damped wave equation with
the different initial data. From (2.8) it follows that

‖𝑣‖2𝐻1 ≤ 𝐶
(︀
‖𝜕𝑡

(︀
𝑢1

ℎ −𝑅ms𝑢
1
ℎ

)︀
‖2𝐿2

+ ‖𝑢1
ℎ −𝑅ms𝑢

1
ℎ‖2𝑏
)︀
,

where we have chosen to keep the 𝑏-norm. For the first term we may use the interpolant 𝐼𝐻 to achieve 𝐻. For
the second term use

‖𝑢1
ℎ −𝑅ms𝑢

1
ℎ‖2𝑏 ≤

𝛽+

𝛼− + 𝜏𝛽−

(︀
‖𝑢1

ℎ −𝑅ms𝑢
1
ℎ‖2𝑎 + 𝜏‖𝑢1

ℎ −𝑅ms𝑢
1
ℎ‖2𝑏
)︀
. (4.38)

If the initial data fulfills the following condition for some 𝑔 ∈ 𝐿2 (Ω)

𝑎
(︀
𝑢1

ℎ, 𝑣
)︀

+ 𝜏𝑏
(︀
𝑢1

ℎ, 𝑣
)︀

= (𝑔, 𝑣) , ∀𝑣 ∈ 𝑉ℎ, (4.39)

then we may deduce

‖𝑢1
ℎ −𝑅ms𝑢

1
ℎ‖2𝑎 + 𝜏‖𝑢1

ℎ −𝑅ms𝑢
1
ℎ‖2𝑏 =

(︀
𝑔, 𝑢1

ℎ −𝑅ms𝑢
1
ℎ

)︀
≤ 𝐶𝐻‖𝑔‖𝐿2‖𝑢1

ℎ −𝑅ms𝑢
1
ℎ‖𝐻1 .
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Figure 2. The behavior of the correction functions 𝜉𝑛
𝑘,𝑥 with increasing 𝑛. The time step is

𝜏 = 0.01 and 𝑘 is here chosen so that the support covers the entire interval.

Hence, the error introduced by the projection of the initial data is of order 𝐻. The condition (4.39) appears
when applying the LOD method to classical wave equations, see [1], where it is referred to as “well prepared
data”. We note in our case that if 𝐵 is small compared to 𝐴, that is if the damping is strong, then the constant in
(4.38) is small. In some sense, this means that the condition in (4.39) is of “less importance”, which is consistent
with the fact that strong damping reduces the impact of the initial data over time.

5. Reduced basis method

The GFEM as it is currently stated requires us to solve the system in (3.7) for each coarse node in each time
step, i.e. 𝑁 number of times. We will alter the method by applying a reduced basis method, such that it will
suffice to find the solutions for 𝑀 < 𝑁 time steps, and compute the remaining in a significantly cheaper and
efficient way.

First of all, we note how the system (3.7) that 𝜉𝑛
𝑘,𝑥 solves resembles a parabolic type equation with no source

term. That is, the solution will decay exponentially until it is completely vanished. An example of how 𝜉𝑛
𝑘,𝑥

vanish with increasing 𝑛 can be seen in Figure 2, where the coefficients are given as

𝐴 (𝑥) =
(︁

2− sin
(︁

2𝜋𝑥
𝜀𝐴

)︁)︁−1

and 𝐵 (𝑥) =
(︁

2− cos
(︁

2𝜋𝑥
𝜀𝐵

)︁)︁−1

,

with 𝜀𝐴 = 2−4 and 𝜀𝐵 = 2−6.
In Figure 2 it is also seen how the solutions decay with a similar shape through all time steps. This gives

the idea that it is possible to only evaluate the solutions for a few time steps, and utilize these solutions to
find the remaining ones. This idea can be further investigated by storing the solutions {𝜉𝑛

𝑘,𝑥}𝑁
𝑛=1 and analyzing

the corresponding singular values. The singular values are plotted and seen in Figure 3. It is seen how the
values decrease rapidly, and that most of the values lie on machine precision level. In practice, this means that
the information in {𝜉𝑛

𝑘,𝑥}𝑁
𝑛=1 can be extracted from only a few 𝜉𝑛

𝑘,𝑥’s. We use this property to decrease the
computational complexity by means of a reduced basis method. We remark that singular value decomposition
is not used for the method itself, but is merely used as a tool to analyze the possibility of applying reduced
basis methods.

The main idea behind reduced basis methods is to find an approximate solution in a low-dimensional space
𝑉 RB

𝑀,𝑘,𝑥, which is created using a number of already computed solutions. More precisely, to construct a basis
for this space, one first computes 𝑀 solutions {𝜉𝑚

𝑘,𝑥}𝑀
𝑚=1, where 𝑀 < 𝑁 . By orthonormalizing these solutions

using e.g. Gram–Schmidt orthonormalization, we yield a set of vectors {𝜁𝑚
𝑘,𝑥}𝑀

𝑚=1, called the reduced basis.
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Figure 3. The singular values obtained when performing a singular value decomposition of
the matrix created by storing the finescale corrections {𝜉𝑛

𝑘,𝑥}𝑁
𝑛=1 with 𝑁 = 100.

Consequently, the reduced basis space becomes 𝑉 RB
𝑀,𝑘,𝑥 = span

(︁
{𝜁𝑚

𝑘,𝑥}𝑀
𝑚=1

)︁
for each node 𝑥 ∈ 𝒩 . With this

space created, the procedure of finding {𝜉𝑛
𝑘,𝑥}𝑁

𝑛=1 is now reduced to finding {𝜉𝑛
𝑘,𝑥}𝑀

𝑛=1, and then approximate the
remaining solutions by {𝜉𝑛,rb

𝑘,𝑥 }𝑁
𝑛=𝑀+1 ⊂ 𝑉 RB

𝑀,𝑘,𝑥. More precisely, for 𝑙 = 𝑀+1, 𝑀+2, . . . , 𝑁 we seek 𝜉𝑙,rb
𝑘,𝑥 ∈ 𝑉 RB

𝑀,𝑘,𝑥

such that

𝑎
(︁
𝜕𝑡𝜉

𝑙,rb
𝑘,𝑥 , 𝑧

)︁
+ 𝑏

(︁
𝜉𝑙,rb
𝑘,𝑥 , 𝑧

)︁
= 𝑎

(︂
1
𝜏

𝜒1 (𝑙) (𝜆𝑥 −𝑅f,𝑘𝜆𝑥) , 𝑧

)︂
, ∀𝑧 ∈ 𝑉 RB

𝑀,𝑘,𝑥. (5.1)

The matrix system to solve for a solution in 𝑉 RB
𝑀,𝑘,𝑥 is of dimension 𝑀 ×𝑀 , so when 𝑀 is chosen small, the

last 𝑁 −𝑀 solutions are significantly cheaper to compute, which solves the issue of computing 𝑁 problems on
the finescale space.

When constructing the reduced basis {𝜁𝑚
𝑘,𝑥}𝑀

𝑚=1, it is important to be aware of the fact that the solution
corrections {𝜉𝑛

𝑘,𝑥}𝑁
𝑛=1 all show very similar behavior. In practice, this implies that many of the 𝜉𝑛

𝑘,𝑥’s are linearly
dependent, hence causing floating point errors to become of significant size in the RB-space 𝑉 RB

𝑀,𝑘,𝑥. To work
around this issue, one may include a relative tolerance level that removes a vector from the basis if it is too
close to being linearly dependent to one of the previously orthonormalized vectors. Note that this may imply
that we get 𝑀̃ < 𝑀 basis vectors in our RB-space instead of 𝑀 . One may moreover use this tolerance level as
a criterion for the amount of solutions, 𝑀 , to pre-compute. That is, once the first vector is removed from the
orthonormalization process, then the RB-space contains sufficient information and no more solutions need to
be added.

In total, the novel method first requires that we solve 𝑁𝐻 number of systems on the localized fine scale in
order to construct the multiscale space 𝑉ms,𝑘. Moreover, we require to solve a localized fine system 𝑁𝐻 times
for 𝑀 time steps to create the RB-space 𝑉 RB

𝑀,𝑘,𝑥 for each coarse node 𝑥 ∈ 𝒩 . By utilizing the RB-space, the
remaining 𝑁 −𝑀 finescale corrections are then solved for in an 𝑀 ×𝑀 matrix system, and we yield the sought
solution 𝑢𝑁,rb

lod,𝑘 by computing a matrix system on the coarse grid with the multiscale space 𝑉ms,𝑘. We summarize
the reduced basis approach in Algorithm 1.
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Figure 4. The two different coefficients used for the numerical examples. The contrast is
𝛼+/𝛼− = 𝛽+/𝛽− = 104. (A) 𝐴(𝑥, 𝑦). (B) 𝐵(𝑥, 𝑦).

Algorithm 1: Summary how to compute the finescale correctors {𝜉𝑛
𝑘,𝑥}𝑁

𝑛=1 with the RB-approach.

1 Pick 𝑀, relative tol;
2 for all 𝑥 ∈ 𝒩 do
3 for 𝑙 = 1, 2, . . . , 𝑀 do
4 Solve (3.7) for 𝜉𝑙

𝑘,𝑥 and store;

5 Compute reduced basis {𝜁𝑚
𝑘,𝑥}𝑀̃

𝑚=1 = gram schmidt({𝜉𝑚
𝑘,𝑥}𝑀

𝑚=1, relative tol);

6 Construct 𝑉 RB
𝑀̃,𝑘,𝑥

= span
(︁
{𝜁𝑚

𝑘,𝑥}𝑀̃
𝑚=1

)︁
;

7 for 𝑙 = 𝑀 + 1, . . . , 𝑁 do

8 Solve (5.1) for 𝜉𝑙,rb
𝑘,𝑥 and store;

6. Numerical examples

In this section we illustrate numerical examples for the novel method. At first, we present numerical examples
that confirm the theoretical findings derived in this paper. In addition, we provide a practical example related
to seismology where the Marmousi model is used together with the Ricker wavelet as source function.

6.1. Academic example

In this section we present numerical examples that illustrate the performance of the established theory. For
all examples, we consider the domain to be the unit square Ω = [0, 1] × [0, 1]. The coefficients 𝐴 (𝑥, 𝑦) and
𝐵 (𝑥, 𝑦) used in these examples are generated randomly with values in the interval [10−1, 103], and examples
of such are seen in Figure 4. Moreover, as initial value for each example we set 𝑢0 = 𝑢1 = 0, and the source
function is given by 𝑓 = 1.

The first example is used to show how the performance is effected by the localization parameter 𝑘. Here, we
evaluate the solution on the full grid, 𝑢𝑛

lod, and compare it with the localized solution, 𝑢𝑛
lod,𝑘, as 𝑘 varies. For the

example the time step 𝜏 = 0.02 was used and final time was set to 𝑇 = 1. The fine and coarse meshes were set
to ℎ = 2−7 and 𝐻 = 2−4 respectively, and we let 𝑘 = 2, 3, . . . , 7. The relative error between the functions can
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Figure 5. Relative 𝐻1-error ‖𝑢𝑁
lod−𝑢𝑁

lod,𝑘‖𝐻1/‖𝑢𝑁
lod‖𝐻1 between the non-localized and localized

method, plotted against the layer number 𝑘.

be seen in Figure 5. Here we can see how the error decays exponentially as 𝑘 increases, verifying the theoretical
findings regarding the localization procedure.

For the second example, the performance of the GFEM in (3.7) and (3.8) depending on the coarse mesh
width 𝐻 is shown. For this example, the fine mesh width is set to ℎ = 2−8, and for each coarse mesh width
the localization parameter is set to 𝑘 = log2 (1/𝐻). Moreover, the time step is set to 𝜏 = 0.02 (for the GFEM
as well as the reference solution) and the solution is evaluated at 𝑇 = 1. To compute the error, we use a FEM
solution on the fine mesh as a reference solution. The error as a function of 1/𝐻 can be seen in Figure 6. Here it
is seen how the error for the novel method decays faster than linearly, confirming the error estimates derived in
Section 4. For comparison, Figure 6 also shows the error of the standard FEM solution, as well as the solution
using the standard LOD method with correction solely on 𝐴 and 𝐵 respectively, i.e. corrections based on the
bilinear forms 𝑎 (·, ·) and 𝑏 (·, ·) respectively and without finescale correctors. As expected, the error of these
methods stay at a constant level through all coarse grid sizes.

At last, we compute the solution where the system (3.7) is computed using the reduced basis approach. For
this example, we let the number of pre-computed solutions 𝑀 vary, and see how the error between the solutions
𝑢𝑛

lod,𝑘 and 𝑢𝑛,rb
lod,𝑘 behaves. In the example we have the fine mesh ℎ = 2−8, the coarse mesh 𝐻 = 2−5, the time step

𝜏 = 0.02, and the final time 𝑇 = 1. The result can be seen in Figure 7. Here it is seen how the error decreases
rapidly with the amount of pre-computed solutions. Note that it is sufficient to compute approximately 10
solutions to yield an error smaller than the discretization error for the main method in Figure 6. This for the
case when the number of time steps are 𝑁 = 50. We emphasize that a large increment in time steps does not
impact the number of pre-computed solutions 𝑀 significantly, making the RB-approach relatively more efficient
the more time steps that are considered.

6.2. Marmousi model

We finish by demonstrating the novel method (with the reduced basis approach) on a more practical example.
A commonly used model problem in seismology is the Marmousi model, which we use to construct our coefficients
𝐴 (𝑥, 𝑦) and 𝐵 (𝑥, 𝑦). This is done by applying midpoint quadrature on the image seen in Figure 8a so that the
dimensions work with the fine mesh, which is set to ℎ = 2−8. The scales on the coefficients are set to 𝛼− = 2,
𝛼+ = 5, 𝛽− = 1 and 𝛽+ = 10. As earlier, the spatial domain is set to the unit square and the temporal domain
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Figure 6. Relative 𝐻1-error ‖𝑢𝑁
ref − 𝑢𝑁

lod,𝑘‖𝐻1/‖𝑢𝑁
ref‖𝐻1 between the reference solution

and the approximate solution computed with the proposed method (without reduced basis
computations).

Figure 7. Relative 𝐻1-error ‖𝑢𝑁
lod,𝑘 − 𝑢𝑁,rb

lod,𝑘‖𝐻1/‖𝑢𝑁
lod,𝑘‖𝐻1 between the solution with and

without the reduced basis approach, plotted against the number of pre-computed solutions.

to [0, 1], discretized with time step 𝜏 = 0.02. As source function we use the Ricker wavelet defined as

𝑓 (𝑥, 𝑦, 𝑡) = 𝜒𝑃 (𝑥, 𝑦)
(︁

1− 2𝜋2𝜈2 (𝑡− 𝑡′)2
)︁

𝑒−𝜋2𝜈2(𝑡−𝑡′)2

where 𝜈 denotes the frequency, 𝑡′ is the center of the wavelet and 𝜒𝑃 (𝑥, 𝑦) is the indicator function equal to 1 on
𝑃 ⊂ Ω and 0 elsewhere. For our example we let 𝜈 = 3, 𝑡′ = 0.5 and 𝑃 = [0.5−2ℎ, 0.5 + 2ℎ]× [0.5−2ℎ, 0.5 + 2ℎ].
The temporal behaviour of the wavelet can be seen in Figure 8b. The solution is computed for coarse mesh sizes
𝐻 = 2−1, 2−2, . . . , 2−6, with localization parameter 𝑘 = log2 (1/𝐻), and for the construction of each reduced
basis space 𝑉 RB

𝑀,𝑘,𝑥 we pre-compute 15 vectors, i.e. 𝑀 = 15. The error is computed with respect to a reference
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Figure 8. Left: Marmousi data used to create the coefficients 𝐴 (𝑥, 𝑦) and 𝐵 (𝑥, 𝑦). Right: how
the Ricker wavelet 𝑓 (𝑡) varies over time. (A) Marmousi data. (B) Ricker wavelet 𝑓(𝑡).

Figure 9. Relative 𝐻1-error ‖𝑢𝑁
ref −𝑢𝑁,rb

lod,𝑘‖𝐻1/‖𝑢𝑁
ref‖𝐻1 between the full method with reduced

basis approach and the reference solution for the practical example using Marmousi data.

solution evaluated on the fine grid, and is displayed in Figure 9. It seen here how the full method converges
faster than linearly.
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[15] P. Henning and A. Målqvist, Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci.
Comput. 36 (2014) A1609–A1634.
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