On the multi-species Boltzmann equation with uncertainty and its stochastic Galerkin approximation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1323-1345

In this paper the nonlinear multi-species Boltzmann equation with random uncertainty coming from the initial data and collision kernel is studied. Well-posedness and long-time behavior – exponential decay to the global equilibrium – of the analytical solution, and spectral gap estimate for the corresponding linearized gPC-based stochastic Galerkin system are obtained, by using and extending the analytical tools provided in [M. Briant and E.S. Daus, Arch. Ration. Mech. Anal. 3 (2016) 1367–1443] for the deterministic problem in the perturbative regime, and in [E.S. Daus, S. Jin and L. Liu, Kinet. Relat. Models 12 (2019) 909–922] for the single-species problem with uncertainty. The well-posedness result of the sensitivity system presented here has not been obtained so far neither in the single species case nor in the multi-species case.

DOI : 10.1051/m2an/2021022
Classification : 35Q20, 65M70
Keywords: Multi-species Boltzmann equation, uncertainty quantification, hypocoercivity, stochastic Galerkin
@article{M2AN_2021__55_4_1323_0,
     author = {Daus, Esther S. and Jin, Shi and Liu, Liu},
     title = {On the multi-species {Boltzmann} equation with uncertainty and its stochastic {Galerkin} approximation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1323--1345},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {4},
     doi = {10.1051/m2an/2021022},
     mrnumber = {4281735},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021022/}
}
TY  - JOUR
AU  - Daus, Esther S.
AU  - Jin, Shi
AU  - Liu, Liu
TI  - On the multi-species Boltzmann equation with uncertainty and its stochastic Galerkin approximation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1323
EP  - 1345
VL  - 55
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021022/
DO  - 10.1051/m2an/2021022
LA  - en
ID  - M2AN_2021__55_4_1323_0
ER  - 
%0 Journal Article
%A Daus, Esther S.
%A Jin, Shi
%A Liu, Liu
%T On the multi-species Boltzmann equation with uncertainty and its stochastic Galerkin approximation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1323-1345
%V 55
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021022/
%R 10.1051/m2an/2021022
%G en
%F M2AN_2021__55_4_1323_0
Daus, Esther S.; Jin, Shi; Liu, Liu. On the multi-species Boltzmann equation with uncertainty and its stochastic Galerkin approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 4, pp. 1323-1345. doi: 10.1051/m2an/2021022

[1] C. Baranger, M. Bisi, S. Brull and L. Desvillettes, On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases. Kinet. Relat. Models 11 (2018) 821–858. | MR | DOI

[2] A. Bondesan, L. Boudin, M. Briant and B. Grec, Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium Maxwell distribution. Preprint arxiv:1811.08350 (2019). | MR

[3] L. Boudin, B. Grec and V. Pavan, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections. Nonlinear Anal. 159 (2017) 40–61. | MR | DOI

[4] L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6 (2013) 137–157. | MR | Zbl | DOI

[5] L. Boudin and F. Salvarani, Compactness of linearized kinetic operators, in From particle systems to partial differential equations, III. In: Vol. 162 of Springer Proc. Math. Stat. Springer, Cham (2016) 73–97. | MR

[6] M. Briant, Stability of global equilibrium for the multi-species Boltzmann equation in L settings. Discrete Contin. Dyn. Syst. 36 (2016) 6669–6688. | MR | DOI

[7] M. Briant, Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinet. Relat. Models 10 (2017) 329–371. | MR | DOI

[8] M. Briant and E. S. Daus, The Boltzmann equation for a multi-species mixture close to global equilibrium. Arch. Ration. Mech. Anal. 222 (2016) 1367–1443. | MR | DOI

[9] C. Cercignani, Rarefied gas dynamics: From basic concepts to actual calculations. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2000) xviii+320. | MR | Zbl

[10] Z. Chen, L. Liu and L. Mu, DG-IMEX stochastic Galerkin schemes for linear transport equation with random inputs and diffusive scalings. J. Sci. Comput. 73 (2017) 566–592. | MR | DOI

[11] E. S. Daus, S. Jin and L. Liu, Spectral convergence of the stochastic Galerkin approximation to the Boltzmann equation with multiple scales and large random perturbation in the collision kernel. Kinet. Relat. Models 12 (2019) 909–922. | MR | DOI

[12] E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system. SIAM J. Math. Anal. 48 (2016) 538–568. | MR | DOI

[13] B. Després and B. Perthame, Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws. SIAM/ASA J. Uncertain. Quantif. 4 (2016) 980–1013. | MR | DOI

[14] L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24 (2005) 219–236. | MR | Zbl | DOI

[15] G. Dimarco, L. Pareschi and M. Zanella, Uncertainty quantification for kinetic models in socio-economic and life sciences, in Uncertainty quantification for hyperbolic and kinetic equations. In: Vol. 14 of SEMA SIMAI Springer Series. Springer, Cham (2017) 151–191. | MR | DOI

[16] I. M. Gamba and M. Pavić-Čolić, On existence and uniqueness to homogeneous Boltzmann flows of monatomic gas mixtures. Arch. Ration. Mech. Anal. (2019). | MR

[17] R. G. Ghanem and P. D. Spanos, Stochastic finite elements: A spectral approach. Springer-Verlag, New York (1991) x+214. | MR | Zbl

[18] V. Giovangigli, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston Inc., Boston, MA (1999) xvi+321. | DOI

[19] M. P. Gualdani, S. Mischler and C. Mouhot, Factorization of non-symmetric operators and exponential H -theorem. Mém. Soc. Math. Fr. (NS) 153 (2017). | MR

[20] M. D. Gunzburger, C. G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23 (2014) 521–650. | MR | DOI

[21] J. Hu and S. Jin, Uncertainty quantification for kinetic equations, edited by S. Jin and L. Pareschi. In: SEMA-SIMAI Springer Series (2017) 193–229. | MR | DOI

[22] S. Jin, J.-G. Liu and Z. Ma, Uniform spectral convergence of the stochastic Galerkin method for the linear transport equations with random inputs in diffusive regime and a micro–macro decomposition-based asymptotic-preserving method. Res. Math. Sci. 4 (2017) 1–25. | MR

[23] S. Jin and L. Liu, An asymptotic-preserving stochastic Galerkin method for the semiconductor Boltzmann equation with random inputs and diffusive scalings. Multiscale Model. Simul. 15 (2017) 157–183. | MR | DOI

[24] S. Jin and L. Pareschi, eds., Uncertainty quantification for hyperbolic and kinetic equations. In: Vol. 14 of SEMA SIMAI Springer Series. Springer, Cham (2017). | DOI

[25] Q. Li and L. Wang, Uniform regularity for linear kinetic equations with random input based on hypocoercivity. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 1193–1219. | MR | DOI

[26] L. Liu, A stochastic asymptotic-preserving scheme for the bipolar semiconductor Boltzmann-Poisson system with random inputs and diffusive scalings. J. Comput. Phys. 376 (2019) 634–659. | MR | DOI

[27] L. Liu and S. Jin, Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs. Multiscale Model. Simul. 16 (2018) 1085–1114. | MR | DOI

[28] L. Liu and M. Pirner, Hypocoercivity for a BGK model for gas mixtures. J. Differential Equations 267 (2019) 119–149. | MR | DOI

[29] M. Loève, Probability Theory I. Springer-Verlag, New York (1977). | MR | Zbl

[30] C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Commun. Partial Differ. Equ. 31 (2006) 1321–1348. | MR | Zbl | DOI

[31] R. C. Smith, Uncertainty quantification: Theory, implementation, and applications 12 (2014) XVIII+382. | MR | Zbl

[32] D. Xiu, Numerical methods for stochastic computations: A spectral method approach. Princeton University Press, Princeton, New Jersey (2010). | MR | Zbl

Cité par Sources :

E.S. Daus acknowledges partial support from the Austrian Science Fund (FWF), grants P27352 and P30000, S. Jin is supported by NSFC grant No. 12031013, L. Liu is supported by the start-up fund from The Chinese University of Hong Kong.