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ON THE MULTI-SPECIES BOLTZMANN EQUATION WITH UNCERTAINTY
AND ITS STOCHASTIC GALERKIN APPROXIMATION ⋆

Esther S. Daus1 Shi Jin2,* and Liu Liu3

Abstract. In this paper the nonlinear multi-species Boltzmann equation with random uncertainty
coming from the initial data and collision kernel is studied. Well-posedness and long-time behavior –
exponential decay to the global equilibrium – of the analytical solution, and spectral gap estimate
for the corresponding linearized gPC-based stochastic Galerkin system are obtained, by using and
extending the analytical tools provided in [M. Briant and E.S. Daus, Arch. Ration. Mech. Anal. 3
(2016) 1367–1443] for the deterministic problem in the perturbative regime, and in [E.S. Daus, S. Jin
and L. Liu, Kinet. Relat. Models 12 (2019) 909–922] for the single-species problem with uncertainty.
The well-posedness result of the sensitivity system presented here has not been obtained so far neither
in the single species case nor in the multi-species case.
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1. Introduction

We consider the multi-species Boltzmann equation describing the evolution of a multi-species mono-atomic
nonreactive gaseous mixture with additional uncertainty coming from the initial data and collision kernel,
which was studied analytically in the deterministic setting in [1, 2, 4–6, 8, 12]. Compared to the single-species
deterministic analysis of the Boltzmann equation, dealing with different conserved quantities due to different
thermodynamic properties of mixtures (see the multi-species H-theorem in [14,18]) provided the main difficulty
in the analysis for the multi-species deterministic problem. For more details see Section 2.2.

In this paper, we deal with the multi-species Boltzmann equation with an additional random parameter
described by the random variable 𝑧, which lies in the random space 𝐼𝑧 with a probability measure 𝜋(𝑧)d𝑧. Thus,
the solution 𝑓 = 𝑓(𝑡, 𝑥, 𝑣, 𝑧) depends also on the random parameter 𝑧 ∈ 𝐼𝑧. We will conduct the sensitivity
analysis, which aims to study how the random inputs in the system propagate in time and how they influence
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the solution in the long time [31]. To our knowledge, uncertainty quantification (UQ) for any nonlinear multi-
species kinetic model has not been studied so far, while general single-species linear and non-linear collisional
kinetic problems with multiple scales and uncertainty were studied in [27].

Research on uncertainty quantification for kinetic equations has not started until recently, and the reason
for the growing interest in these problems is the following. Kinetic equations, derived from 𝑁 -body Newton’s
equations via the mean-field limit [3], typically contain an integral operator modeling interactions between
particles. Since calculating the collision kernel from first principles is impossible for complex particle systems,
only empirical formulas are used for general particles [9]. Consequently, this inevitably brings modeling errors,
so the collision kernel contains some uncertainty. Other sources of uncertainties may come from inaccurate
measurements of the initial or boundary data, forcing or source terms. We refer to the book [24] and the recent
articles and reviews [13,15,21–23,25–28] for more detailed studies in this direction.

The main goal of this paper is to study the well-posedness and long-time behavior of the nonlinear multi-
species Boltzmann equation under the impact of random uncertainty and its stochastic Galerkin approximation
in the perturbative regime. The first part of our paper (Sect. 3) studies the well-posedness and exponential decay
of the solution with random initial data and collision kernel in suitable Sobolev spaces in the perturbative setting,
in which the initial data is assumed to be close to the global equilibrium. Our proof is based on the analysis of
the Cauchy theory of the multi-species Boltzmann equation with uncertainty in the weighted Lebesgue space
𝐿1

𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘)𝐿∞𝑧 (see (3.7) for the precise definitions) with a polynomial weight of order 𝑘 > 𝑘0 (where 𝑘0 is

the threshold derived in Section 6 of [8], which recovers in the particular case of a multi-species hard spheres
mixture (with equal molar masses) the optimal threshold of finite energy 𝑘0 = 2 obtained in the single-species
setting in [19]).

The additional difficulty in our framework with uncertainty compared to the deterministic setting is to han-
dle the extra high-order derivatives in the random parameter 𝑧, which naturally appear from the fact that
we introduce uncertainty into the model. We refer to the equations obtained by taking the 𝑧-derivatives of
the 𝑖th component of the density functions governed by the multispecies Boltzmann equation as the sensitiv-
ity equations. We manage to control these new terms containing high-order 𝑧-derivatives by designing a new
decomposition built upon the factorization of Gualdani et al. in [19], with a mathematical induction in the order
of 𝑧-derivatives. This factorization technique was established by Gualdani et al. in [19], later adapted to the
nonlinear perturbative setting in [7], and generalized to the multi-species deterministic framework with different
molar masses in [8]. For more details on the factorization method see Section 3.1. We want to emphasize that
there has not been established any rigorous existence analysis for uncertain kinetic equations in any previous
work [10,11,23,26,27] yet, even not for the single-species case.

Concerning the task of numerically solving kinetic equations with uncertainties, one of the standard and
efficient numerical methods is the generalized polynomial chaos approach in the stochastic Galerkin (referred
to as gPC-SG) framework [17, 20, 32]. Compared to the classical Monte Carlo method, the gPC-SG approach
enjoys a spectral accuracy in the random space–if the solution is sufficiently smooth–while the Monte Carlo
method converges with the rate of 𝑂(1/

√
𝑁), where 𝑁 is the number of simulations. Note that the smoothness

of the solution in the random space is one motivation for us to use the SG method. However, other types
of non-intrusive methods, such as the stochastic collocation method, could also work well especially for high-
dimensional problems, but for us it seemed to be mathematically more interesting to study the sensitiveness of
the Galerkin system and its convergence.

The second part of our paper (Sect. 4) obtains the spectral gap estimate for the linearized gPC-Galerkin
system. Compared to [11] on the single-species gPC-SG Boltzmann system, the generalization to the multi-
species case here can be done by adapting techniques from the proof for the multi-species H-theorem, see for
instance [12,14]. Establishing this spectral estimate is essential in order to understanding the long-time behavior
of the gPC-SG approximation.
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We remark that our work relies on several existing literature on UQ for general kinetic models [24], sensitivity
analysis [27], spectral convergence of the gPC-Galerkin method [11] and multi-species Boltzmann equations [8].
Readers may refer to those work for a more detailed overview.

The paper is organized as the following. In Section 2, we introduce the multispecies Boltzmann equation
with uncertainty and present the assumptions for the two main results of this paper. In Section 3, we show the
existence and uniqueness of the sensitivity equations in the perturbative setting and establish the exponential
decay of each order 𝑧-derivative of the solution. In Section 4, we extend the previous work [11, 27] to the
multi-species setting and obtain the spectral gap for the linearized gPC-SG system. Finally, we formulate our
conclusions in Section 5.

2. The multispecies Boltzmann equations with uncertainty

The evolution of a dilute ideal gas composed of 𝑁 ≥ 2 different species of chemically non-interacting mono-
atomic particles with same molar particle masses can be modeled by the following system of Boltzmann equations
(see [6,8,12] for the deterministic case), with some uncertainty characterized by a random variable 𝑧 ∈ 𝐼𝑧, coming
from both the initial data and the collision kernels,

𝜕𝑡𝐹𝑖 + 𝑣 · ∇𝑥𝐹𝑖 = 𝑄𝑖(𝐹 ), 𝑡 > 0,
𝐹𝑖(0, 𝑥, 𝑣, 𝑧) = 𝐹𝐼,𝑖(𝑥, 𝑣, 𝑧), 1 ≤ 𝑖 ≤ 𝑁, (𝑥, 𝑣) ∈ T3 × R3, 𝑧 ∈ 𝐼𝑧, (2.1)

where F = (𝐹1, · · · , 𝐹𝑁 ) is the distribution function of the system, with 𝐹𝑖 (1 ≤ 𝑖 ≤ 𝑁) describing the
distribution function of the 𝑖th species. The spatial domain T3 is the three-dimensional torus. For the sake
of simplicity of the presentation, compared to [8], we set all the molar masses to be equal, e.g., 𝑚𝑖 = 1, for
𝑖 = 1, · · · , 𝑁 . The right-hand side of the kinetic Equation (2.1) is the 𝑖th component of the nonlinear collision
operator Q(F) = (𝑄1(F), · · · , 𝑄𝑁 (F)), and is defined by

𝑄𝑖(F) =
𝑁∑︁

𝑗=1

𝑄𝑖𝑗(𝐹𝑖, 𝐹𝑗), 1 ≤ 𝑖 ≤ 𝑁, (2.2)

where 𝑄𝑖𝑗 models interactions between particles of species 𝑖 and 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁),

𝑄𝑖𝑗(𝐹𝑖, 𝐹𝑗)(𝑣, 𝑧) =
∫︁

R3×S2
𝐵𝑖𝑗(|𝑣 − 𝑣*|, cos 𝜃, 𝑧)(𝐹 ′𝑖𝐹

′*
𝑗 − 𝐹𝑖𝐹

*
𝑗 ) d𝑣*d𝜎, (2.3)

where we used the shorthands 𝐹 ′𝑖 = 𝐹𝑖 (𝑣′), 𝐹𝑖 = 𝐹𝑖(𝑣), 𝐹 *𝑗 = 𝐹𝑗 (𝑣′*) and 𝐹 *𝑗 = 𝐹𝑗 (𝑣*). The velocities before
and after the collisions are described by the following relation:

𝑣′ =
𝑣 + 𝑣*

2
+
|𝑣 − 𝑣*|

2
𝜎, 𝑣′* =

𝑣 + 𝑣*

2
− |𝑣 − 𝑣*|

2
𝜎,

which follows from the fact that we assume the collisions to be elastic, i.e., the momentum and kinetic energy
are conserved on the microscopic level:

𝑣′ + 𝑣′* = 𝑣 + 𝑣*,
1
2
|𝑣′|2 +

1
2
|𝑣′*|2 =

1
2
|𝑣|2 +

1
2
|𝑣*|2.

Here the collision kernel 𝐵 depends on the relative velocity |𝑣 − 𝑣*|, the cosine of the deviation angle 𝜃, and
the random variable 𝑧 ∈ 𝐼𝑧 ⊆ R. For simplicity, we consider a one-dimensional random space, but our analysis
can be easily extended to higher dimensional cases as well.

The global equilibrium, which is the unique stationary solution to (2.1), is given by 𝑀∞ = (𝑀∞
1 , · · · ,𝑀∞

𝑁 ),
with

𝑀∞
𝑖 (𝑣) = 𝑐∞,𝑖

(︂
1

2𝜋𝑘𝐵𝜃∞

)︂3/2

exp
(︂
−|𝑣 − 𝑢∞|2

2𝑘𝐵𝜃∞

)︂
,
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where for 1 ≤ 𝑖 ≤ 𝑁 ,

𝑐∞,𝑖 =
∫︁

T3×R3
𝑀∞

𝑖 d𝑥d𝑣, 𝜌∞ =
𝑁∑︁

𝑖=1

𝑐∞,𝑖,

𝑢∞ =
1
𝜌∞

𝑁∑︁
𝑖=1

∫︁
T3×R3

𝑣𝑀∞
𝑖 d𝑥d𝑣, 𝜃∞ =

1
3𝜌∞

𝑁∑︁
𝑖=1

∫︁
T3×R3

|𝑣 − 𝑢∞|2𝑀∞
𝑖 d𝑥d𝑣.

By translating and scaling the coordinate system, one can assume 𝑢∞ = 0 and 𝑘B𝜃∞ = 1, and then the global
equilibrium becomes

M = (𝑀𝑖)1≤𝑖≤𝑁 , 𝑀𝑖(𝑣) = 𝑐∞,𝑖

(︂
1

2𝜋

)︂3/2

e−
|𝑣|2
2 .

2.1. Main assumptions on the random collision kernel

We summarize here the assumptions on the random collision kernel that are needed throughout the whole
paper:

(H1) The following symmetry holds for each 𝑧 ∈ 𝐼𝑧 ⊆ R:

𝐵𝑖𝑗(|𝑣 − 𝑣*|, cos 𝜃, 𝑧) = 𝐵𝑗𝑖(|𝑣 − 𝑣*|, cos 𝜃, 𝑧) for 1 ≤ 𝑖, 𝑗 ≤ 𝑁. (2.4)

(H2) The collision kernels for each 𝑧 ∈ 𝐼𝑧 ⊆ R are decomposed into the product

𝐵𝑖𝑗(|𝑣 − 𝑣*|, cos 𝜃, 𝑧) = Φ𝑖𝑗(|𝑣 − 𝑣*|) 𝑏𝑖𝑗(cos 𝜃, 𝑧), 1 ≤ 𝑖, 𝑗 ≤ 𝑁, (2.5)

where the functions Φ𝑖𝑗 ≥ 0 are called the kinetic part and the angular part 𝑏𝑖𝑗(cos 𝜃, 𝑧) > 0 is assumed
to be uncertain.

(H3) We consider the case of hard potentials 𝛾 ∈ (0, 1] or Maxwellian molecules (𝛾 = 0), and thus the kinetic
part takes the form:

Φ𝑖𝑗(|𝑣 − 𝑣*|) = 𝐶Φ
𝑖𝑗 |𝑣 − 𝑣*|𝛾 , 𝐶Φ

𝑖𝑗 > 0, 𝛾 ∈ [0, 1], ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑁.

(H4) For the angular part, for each 𝑧 ∈ 𝐼𝑧 ⊆ R we assume a strong form of Grad’s angular cutoff, i.e., ∃ 𝐶𝑏,
𝐶𝑏1 > 0 such that for all 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and 𝜃 ∈ [0, 𝜋],

0 < 𝑏𝑖𝑗(cos 𝜃, 𝑧) ≤ 𝐶𝑏 | sin 𝜃| | cos 𝜃| ≤ 𝐶𝑏, 𝜕𝜃𝑏𝑖𝑗(cos 𝜃, 𝑧) ≤ 𝐶𝑏1 . (2.6)

Furthermore,

min
1≤𝑖≤𝑁

inf
𝜎1,𝜎2∈ S2

∫︁
S2

min
{︀
𝑏𝑖𝑖(𝜎1 · 𝜎3, 𝑧), 𝑏𝑖𝑖(𝜎2 · 𝜎3, 𝑧)

}︀
𝑑𝜎3 > 0.

(H5) In addition, we assume the following condition on |𝜕𝑘
𝑧 𝑏𝑖𝑗 | for all 𝑧:

|𝜕𝑘
𝑧 𝑏𝑖𝑗(cos 𝜃, 𝑧)| ≤ 𝐶𝑏, ∀ 0 ≤ 𝑘 ≤ 𝑟, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, (2.7)

where 𝑟 ∈ N is determined by the regularity of the random initial data, and 𝐶𝑏 is the same upper bound
as in (2.6).

In (H1)–(H4), for each fixed 𝑧 the same conditions are assumed as in the deterministic problem [8]. The new
assumption appears in (H5). We mention that our analysis in this work also applies to the case when the kinetic
part Φ𝑖𝑗 of the collision kernel is assumed uncertain, i.e., 𝐵𝑖𝑗 takes the form:

𝐵𝑖𝑗(|𝑣 − 𝑣*|, cos 𝜃, 𝑧) = Φ𝑖𝑗(|𝑣 − 𝑣*|, 𝑧) 𝑏𝑖𝑗(cos 𝜃).
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2.2. State of the art on the multi-species deterministic Boltzmann equation

As already mentioned above, the main difficulty of the deterministic multi-species Boltzmann equation com-
pared to the single-species Boltzmann equation lies in the different conserved quantities: namely, the mass of
each species is conserved, while for the momentum and kinetic energy only the sum of all the species is con-
served, see [14,18]. Because of this, the proof of an explicit spectral-gap estimate of the linearized single-species
operator [30] had to be changed significantly in the multi-species framework in [12] by carefully exploiting
these new collision invariants. The stability of this spectral-gap estimate around non-equilibrium Maxwellian
distributions was studied in [2]. The full Cauchy theory for the inhomogeneous Boltzmann equation for mix-
tures in the perturbative regime was formulated without going to any higher order Sobolev regularity [8], by
using the factorization method of [19]. Besides this, in [8] a new multi-species Carleman’s representation and
a new Povzner-type inequality was proved, due to the loss of symmetry arisen from different masses. In [4, 5],
compactness of one part of the linearized multi-species operator was studied, moreover, in [3] it was shown that
in the diffusive limit, the multi-species Boltzmann equation converges to the Maxwell-Stefan system. In [1], the
Chapman-Enskog asymptotics for a mixture of gases was presented.

Finally, we also want to mention the very recent work [16] on the homogeneous multi-species Boltzmann
system, for which it seems to be rather hard to conduct the sensitivity analysis and study the long-time behavior
in the UQ setting, since the logarithmic entropy functional cannot be evaluated for the 𝑧-derivatives of the
distribution function, due to their lack of positivity.

3. Existence and exponential decay of the solution to the sensitivity system

This section will discuss the existence of a solution and the exponential decay to global equilibrium of the
multi-species Boltzmann equation in the perturbative setting with random initial data and collision kernel. In
the following, we will introduce the same notation and we will use similar techniques as in [8], where the Cauchy
theory for the (deterministic) multi-species Boltzmann system was studied. Using the ansatz

𝐹𝑖(𝑡, 𝑥, 𝑣, 𝑧) = 𝑀𝑖(𝑣) + 𝑓𝑖(𝑡, 𝑥, 𝑣, 𝑧), (3.1)

the equation for f = (𝑓1, · · · , 𝑓𝑁 ) satisfying the perturbed multi-species Boltzmann equation reads as

𝜕𝑡f + 𝑣 · ∇𝑥f = L(f) + Q(f), f(0, 𝑥, 𝑣, 𝑧) = f0(𝑥, 𝑣, 𝑧), (3.2)

where L = (𝐿1, · · · , 𝐿𝑁 ) is the linearized Boltzmann collision operator with its 𝑖th (1 ≤ 𝑖 ≤ 𝑁) component
given by

𝐿𝑖(f) =
𝑁∑︁

𝑗=1

𝐿𝑖𝑗(𝑓𝑖, 𝑓𝑗), 𝐿𝑖𝑗(𝑓𝑖, 𝑓𝑗) = 𝑄𝑖𝑗(𝑀𝑖, 𝑓𝑗) +𝑄𝑖𝑗(𝑓𝑖,𝑀𝑗),

with 𝑄𝑖𝑗(·, ·) defined in (2.3), and the nonlinear Boltzmann collision operator Q = (𝑄1, · · · , 𝑄𝑁 ) is defined in
(2.2) and (2.3).

3.1. Presentation and discussion of the main result

The proof of the main result of Section 3 uses techniques of Section 6 from [8] which rely on the idea of a
nonlinear version of the factorization method of [19] presented in [7].

We first briefly recall some propositions in [8] to prepare us for the analysis. Define the truncation function
𝛩𝛿(𝑣, 𝑣*, 𝜎) ∈ 𝐶∞(R3 × R3) bounded by 1 on the set{︀

|𝑣| ≤ 𝛿−1 and 2𝛿 ≤ |𝑣 − 𝑣*| ≤ 𝛿−1 and | cos 𝜃| ≤ 1− 2𝛿
}︀
,

and its support included in the set{︀
|𝑣| ≤ 2𝛿−1 and 𝛿 ≤ |𝑣 − 𝑣*| ≤ 2𝛿−1 and | cos 𝜃| ≤ 1− 𝛿

}︀
,
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where 𝛿 ∈ (0, 1) is to be chosen. Define the splitting of the linear operator G = (𝐺1, · · · , 𝐺𝑖, · · · , 𝐺𝑁 ) as

G = L− 𝑣 · ∇𝑥 = A(𝛿) + B(𝛿) − 𝜈 − 𝑣 · ∇𝑥, (3.3)

where 𝜈 = (𝜈1, · · · , 𝜈𝑁 ) is a multiplicative operator called collision frequency, which also depends on the random
variable 𝑧:

𝜈𝑖(𝑣, 𝑧) =
𝑁∑︁

𝑗=1

𝜈𝑖𝑗(𝑣, 𝑧), 𝜈𝑖𝑗(𝑣, 𝑧) = 𝐶Φ
𝑖𝑗

∫︁
R3×S2

𝑏𝑖𝑗(cos 𝜃, 𝑧)|𝑣 − 𝑣*|𝛾𝑀𝑖(𝑣*) d𝜎d𝑣*,

and the operators A(𝛿) =
(︀
𝐴𝛿

𝑖

)︀
1≤𝑖≤𝑁

and B(𝛿) =
(︀
𝐵𝛿

𝑖

)︀
1≤𝑖≤𝑁

are defined by

𝐴
(𝛿)
𝑖 (f(𝑣, 𝑧)) =

𝑁∑︁
𝑗=1

𝐶Φ
𝑖𝑗

∫︁
R3×S2

𝛩𝛿(𝑀 ′*
𝑗 𝑓

′
𝑖 +𝑀 ′

𝑖𝑓
′*
𝑗 −𝑀𝑖𝑓

*
𝑗 )𝑏𝑖𝑗(cos 𝜃, 𝑧)|𝑣 − 𝑣*|𝛾d𝜎d𝑣*,

𝐵
(𝛿)
𝑖 (f(𝑣, 𝑧)) =

𝑁∑︁
𝑗=1

𝐶Φ
𝑖𝑗

∫︁
R3×S2

(1−𝛩𝛿)(𝑀 ′*
𝑗 𝑓

′
𝑖 +𝑀 ′

𝑖𝑓
′*
𝑗 −𝑀𝑖𝑓

*
𝑗 )𝑏𝑖𝑗(cos 𝜃, 𝑧)|𝑣 − 𝑣*|𝛾d𝜎d𝑣*. (3.4)

The results in [8] have shown that A(𝛿) has some regularizing effects and that

G1
(𝛿) := B(𝛿) − 𝜈 − 𝑣 · ∇𝑥, with G1

(𝛿) = (𝐺(𝛿)
1,1, · · · , 𝐺

(𝛿)
1,𝑖 , · · · , 𝐺

(𝛿)
1,𝑁 ) (3.5)

is hypodissipative. Notice that

G = A(𝛿) + G1
(𝛿). (3.6)

The notation ΠG is the orthogonal projection onto Ker(G) in 𝐿2
𝑥,𝑣(M−1/2).

Recall the shorthand notation
⟨𝑣⟩ =

√︀
1 + |𝑣|2 ,

and the function spaces that we will use:

‖f‖𝐿∞𝑥,𝑣(W) =
𝑁∑︁

𝑖=1

‖𝑓𝑖‖𝐿∞𝑥,𝑣(𝑊𝑖)
, ‖𝑓𝑖‖𝐿∞𝑥,𝑣(𝑊𝑖)

= sup
(𝑥,𝑣)∈T3×R3

(|𝑓𝑖(𝑥, 𝑣)|𝑊𝑖(𝑣)) , (3.7)

‖f‖𝐿1
𝑣𝐿∞𝑥 (W) =

𝑁∑︁
𝑖=1

‖𝑓𝑖‖𝐿1
𝑣𝐿∞𝑥 (𝑊𝑖)

, ‖𝑓𝑖‖𝐿1
𝑣𝐿∞𝑥 (𝑊𝑖)

=
⃦⃦⃦⃦

sup
𝑥∈T3

|𝑓𝑖(𝑥, 𝑣)|𝑊𝑖(𝑣)
⃦⃦⃦⃦

𝐿1
𝑣

,

where W = (𝑊1, . . . ,𝑊𝑁 ) : R3 → R+ is a strictly positive measurable function in 𝑣.
Denote 𝜕𝑛𝑓 := 𝜕𝑛

𝑧 𝑓 . The following theorem, which is our main result of Section 3, gives the existence, Sobolev
regularity and long-time behavior of the solution in the random space.

Theorem 3.1. Under the assumptions (H1)–(H5), ∃ 𝜂𝑘, 𝐶𝑘 and 𝜆𝑘 > 0 such that for any 𝜕𝑛f0 ∈ 𝐿1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘)

satisfying ΠG(𝜕𝑛f0) = 0 for all 𝑧, that is, for 0 ≤ 𝑛 ≤ 𝑟,

||𝜕𝑛f0||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝜂𝑘,

then there exists 𝜕𝑛f ∈ 𝐿1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) satisfying ΠG(𝜕𝑛f) = 0 for all 𝑧, which is a solution to the sensitivity

system
𝜕𝑡(𝜕𝑛𝑓𝑖) = 𝜕𝑛𝐺𝑖(f) + 𝜕𝑛𝑄𝑖(f), 𝜕𝑛f(𝑡 = 0) = 𝜕𝑛f0 , (3.8)
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such that for all 𝑧,
||𝜕𝑛f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝐶𝑘 𝑒
−𝜆𝑘𝑡.

As a consequence, 𝜕𝑛f satisfies for all 𝑧,

||𝜕𝑛f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)𝐿∞𝑧

≤ 𝐶𝑘 𝑒
−𝜆𝑘𝑡,

where the constant 𝐶𝑘 depends on the initial data of 𝜕𝑙f0 for 𝑙 = 0, · · · , 𝑛.

Since we need the following Lemmas given in [8] in the proof for the main Theorem 3.1, we paraphrase them
below. For each fixed 𝑧 ∈ 𝐼𝑧, Lemmas 3.2, 3.3 and Lemma 3.4 are the same as Lemma 6.2, 6.3 and 6.6 of [8],
respectively.

Lemma 3.2. For any 𝑘 in N, 𝛽 > 0 and 𝛿 ∈ (0, 1), ∃𝐶𝐴 > 0 such that for all f in 𝐿1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘),

||A(𝛿)(f)||𝐿∞𝑥,𝑣(⟨𝑣⟩𝛽𝑀−1/2) ≤ 𝐶𝐴 ||f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘).

Lemma 3.3. There exists 𝑘0 ∈ N such that for 𝑘 ≥ 𝑘0, one can choose 𝛿𝑘 > 0 such that 0 < 𝐶𝐵(𝑘, 𝛿𝑘) < 1 and
for all f ∈ 𝐿1

𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘𝜈),

||B(𝛿)(f)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝐶𝐵 ||f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈). (3.9)

Lemma 3.4. Define ̃︀Q(f ,g) by

∀1 ≤ 𝑖 ≤ 𝑁, ̃︀𝑄𝑖(f ,g) =
1
2

𝑁∑︁
𝑗=1

(𝑄𝑖𝑗(𝑓𝑖, 𝑔𝑗) +𝑄𝑖𝑗(𝑔𝑖, 𝑓𝑗)) .

Then for all f ,g such that ̃︀𝑄𝑖(f ,g) is well-defined, the latter belongs to [Ker(L)]⊥, and ∃𝐶𝑄 > 0 such that
∀1 ≤ 𝑖 ≤ 𝑁 and each f and g,

|| ̃︀𝑄𝑖(f ,g)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝐶𝑄

[︀
||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)

+||𝑓𝑖||𝐿1
𝑣𝐿∞𝑥 (𝜈𝑖⟨𝑣⟩𝑘)||g||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
. (3.10)

The strategy of the proof is to introduce a new adaptation of the factorization method of Gualdani et al. [19]
to our probabilistic setting studied in this paper. The core idea is to decompose the full linear operator G
(defined in (3.3)) into the hypodissipative operator A(𝛿) (see (3.6)) and the regularizing operator G1

(𝛿) (see
(3.6)), and to decompose the sensitivity system (3.8) into a system of equations, such that the hypodissipative
and regularizing effects of the operators can be used to obtain the result of Theorem 3.1.

The additional challenge here in our framework with uncertainty compared to the deterministic results in
[7,8,19] is to find a way of handling the extra high-order derivatives in the random parameter 𝑧, which naturally
appear from the fact that we introduce uncertainty into the model. Thus, the main difference and new challenge
in our work compared to all the previous works on the deterministic problem is that a new decomposition,
denoted by g = g1 + g2, for each order 𝑧-derivative of the distribution function has to be introduced. One
needs to carefully design this new decomposition into the coupled system for g1, g2 (see Eqs. (3.15)–(3.16))
such that the hypodissipative and regularising properties for the new operators (see the definitions for 𝐴(𝛿)

𝑏𝑘 and
𝐵

(𝛿)

𝑏𝑘 in Eq. (3.11)) can be proved and used in a similar way as in the deterministic problems. Finally, a suitable
induction in the order of 𝑧-derivatives needs to be applied.

Compared to the previous work on the sensitivity analysis for a class of (single-species) collisional kinetic
equations with multiple scales and random inputs [27], we want to highlight the following differences in this
work: First, here we conduct the sensitivity analysis for the multi-species Boltzmann system, while [27] studied
a class of single-species kinetic equations, including the Boltzmann equation with random initial data and
collision kernel. Second, here we rigorously prove the existence of solutions to the sensitivity equations, and its
exponential decay to the equilibrium in the norm || · ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)𝐿∞𝑧
.
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3.2. The proof of Theorem 3.1

We shall prove Theorem 3.1 by induction. The deterministic case of 𝑛 = 0 is shown in [8]. Now assume that
Proposition 3.1 holds for all 0 ≤ 𝑚 ≤ 𝑛− 1 with 𝑛 ≥ 1, we shall prove that the result holds for 𝑚 = 𝑛.

First, one needs to calculate 𝜕𝑛𝐺𝑖(f) and 𝜕𝑛𝑄𝑖(f). Denote

𝐴
(𝛿)

𝑏𝑘,𝑖
(𝜕𝑙f) =

𝑁∑︁
𝑗=1

∫︁
R3×S2

𝛩𝛿(𝑀 ′*
𝑗 𝜕

𝑙𝑓 ′𝑖 +𝑀 ′
𝑖𝜕

𝑙𝑓 ′*𝑗 −𝑀𝑖𝜕
𝑙𝑓*𝑗 )𝐶Φ

𝑖𝑗 |𝑣 − 𝑣*|𝛾 𝜕𝑘𝑏𝑖𝑗(cos 𝜃, 𝑧) d𝜎d𝑣*,

𝐵
(𝛿)

𝑏𝑘,𝑖
(𝜕𝑙f) =

𝑁∑︁
𝑗=1

∫︁
R3×S2

(1−𝛩𝛿)(𝑀 ′*
𝑗 𝜕

𝑙𝑓 ′𝑖 +𝑀 ′
𝑖𝜕

𝑙𝑓 ′*𝑗 −𝑀𝑖𝜕
𝑙𝑓*𝑗 )𝐶Φ

𝑖𝑗 |𝑣 − 𝑣*|𝛾 𝜕𝑘𝑏𝑖𝑗(cos 𝜃, 𝑧) d𝜎d𝑣*. (3.11)

Compared with 𝐴(𝛿), 𝐵(𝛿) shown in (3.4), the only difference in 𝐴(𝛿)

𝑏𝑘 , 𝐵(𝛿)

𝑏𝑘 is that one replaces the angular part
of the kernel to be 𝜕𝑘𝑏𝑖𝑗 here instead of 𝑏𝑖𝑗 . The 𝑛-order 𝑧-derivative of the G operator is given by

𝜕𝑛𝐺𝑖(f) = 𝜕𝑛𝐴
(𝛿)
𝑖 (f) + 𝜕𝑛𝐵

(𝛿)
𝑖 (f)− 𝜕𝑛(𝜈𝑖𝑓𝑖)− 𝑣 · ∇𝑥(𝜕𝑛𝑓𝑖)

= 𝐴
(𝛿)
𝑖 (𝜕𝑛f) +𝐵

(𝛿)
𝑖 (𝜕𝑛f)− 𝜈𝑖 𝜕

𝑛𝑓𝑖 − 𝑣 · ∇𝑥(𝜕𝑛𝑓𝑖)

+
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂ [︁
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f) +𝐵

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f)− 𝜕𝑘𝜈𝑖 𝜕

𝑛−𝑘𝑓𝑖

]︁
= 𝐴

(𝛿)
𝑖 (𝜕𝑛f) +𝐺

(𝛿)
1,𝑖 (𝜕𝑛f) +

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂ [︁
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f) +𝐵

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f)− 𝜕𝑘𝜈𝑖 𝜕

𝑛−𝑘𝑓𝑖

]︁
. (3.12)

Denote

𝑄𝑏𝑘

𝑖𝑗 (𝑓𝑖, 𝑓𝑗) =
∫︁

R3×S2
𝐶Φ

𝑖𝑗 |𝑣 − 𝑣*|𝛾 𝜕𝑘𝑏𝑖𝑗(cos 𝜃, 𝑧) (𝑓 ′𝑖𝑓
′*
𝑗 − 𝑓𝑖𝑓

*
𝑗 )d𝜎d𝑣*.

Then the 𝑛-order 𝑧-derivative of the collision operator 𝑄𝑖𝑗 is

𝜕𝑛𝑄𝑖𝑗(𝑓𝑖, 𝑓𝑗) =
𝑛∑︁

𝑙=0

(︂
𝑛

𝑙

)︂ ∫︁
R3×S2

𝜕𝑛−𝑙𝐵𝑖𝑗

𝑙∑︁
𝑚=0

(︂
𝑙

𝑚

)︂ (︀
𝜕𝑚𝑓 ′𝑖 𝜕

𝑙−𝑚𝑓 ′*𝑗 − 𝜕𝑚𝑓𝑖 𝜕
𝑙−𝑚𝑓*𝑗

)︀
d𝜎d𝑣*

=
𝑛∑︁

𝑙=0

𝑙∑︁
𝑚=0

(︂
𝑛

𝑙

)︂(︂
𝑙

𝑚

)︂
𝑄𝑏𝑛−𝑙

𝑖𝑗 (𝜕𝑚𝑓𝑖, 𝜕
𝑙−𝑚𝑓𝑗)

=
𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=0

(︂
𝑛

𝑙

)︂(︂
𝑙

𝑚

)︂
𝑄𝑏𝑛−𝑙

𝑖𝑗 (𝜕𝑚𝑓𝑖, 𝜕
𝑙−𝑚𝑓𝑗) +

𝑛−1∑︁
𝑚=1

(︂
𝑛

𝑚

)︂
𝑄𝑖𝑗(𝜕𝑚𝑓𝑖, 𝜕

𝑛−𝑚𝑓𝑗)

+𝑄𝑖𝑗(𝑓𝑖, 𝜕
𝑛𝑓𝑗) +𝑄𝑖𝑗(𝜕𝑛𝑓𝑖, 𝑓𝑗),

thus

𝜕𝑛𝑄𝑖(𝑓𝑖, 𝑓𝑗) =
𝑁∑︁

𝑗=1

𝜕𝑛𝑄𝑖𝑗(𝑓𝑖, 𝑓𝑗)

=
𝑁∑︁

𝑗=1

𝑛−1∑︁
𝑙=0

𝑙∑︁
𝑚=0

(︂
𝑛

𝑙

)︂(︂
𝑙

𝑚

)︂
𝑄𝑏𝑛−𝑙

𝑖𝑗 (𝜕𝑚𝑓𝑖, 𝜕
𝑙−𝑚𝑓𝑗) +

𝑁∑︁
𝑗=1

𝑛−1∑︁
𝑚=1

(︂
𝑛

𝑚

)︂
𝑄𝑖𝑗(𝜕𝑚𝑓𝑖, 𝜕

𝑛−𝑚𝑓𝑗)⏟  ⏞  
Term○⋆

+2 ̃︀𝑄𝑖(𝜕𝑛f , f). (3.13)
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Combine (3.8), (3.12) and (3.13), then g := 𝜕𝑛f satisfies for each 𝑧 the equation

𝜕𝑡𝑔𝑖 = 𝐺𝑖(g) +
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂ [︁
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f) +𝐵

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f)− 𝜕𝑘𝜈𝑖 𝜕

𝑛−𝑘𝑓𝑖

]︁
+ 2 ̃︀𝑄𝑖(g, f) + Term○⋆ , g(0, 𝑥, 𝑣, 𝑧) = g0(𝑥, 𝑣, 𝑧) = 𝜕𝑛f0(𝑥, 𝑣, 𝑧). (3.14)

Decomposition: In the form of g = g1 + g2 with g1 ∈ 𝐿1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) and g2 ∈ 𝐿∞𝑥,𝑣(⟨𝑣⟩𝛽𝜇−1/2), then (g1,g2)

satisfy the following system of equations

𝜕𝑡𝑔1,𝑖 = 𝐺
(𝛿)
1,𝑖 (g1) +

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂ [︁
𝐵

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f)− 𝜕𝑘𝜈𝑖 𝜕

𝑛−𝑘𝑓𝑖

]︁
(3.15)

+ 2 ̃︀𝑄𝑖(g1 + g2, f) + Term○⋆ , g1(0, 𝑥, 𝑣, 𝑧) = g0(𝑥, 𝑣, 𝑧),

𝜕𝑡𝑔2,𝑖 = 𝐺𝑖(g2) +𝐴
(𝛿)
𝑖 (g1) +

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f), g2(0, 𝑥, 𝑣, 𝑧) = 0. (3.16)

The above decomposition of the solution g = g1 + g2 follows [8], which also adopted the idea in [19] for the
single-species Boltzmann equation. Compared to the deterministic case studied in [8], the differences here are
the last three terms on the right-hand-side of (3.15), which appear due to the uncertainty dependence, and the
last term on the right-hand-side of (3.16). They need to be grouped properly in the equation for g1 or g2.

First, we show a simple Lemma:

Lemma 3.5. Denote

𝜒𝑛 =
{︂

1, 𝑛 is even
0, 𝑛 is odd

One can write

𝑁∑︁
𝑗=1

𝑛−1∑︁
𝑚=1

(︂
𝑛

𝑚

)︂
𝑄𝑖𝑗(𝜕𝑚𝑓𝑖, 𝜕

𝑛−𝑚𝑓𝑗) = 2
⌊𝑛−1

2 ⌋∑︁
𝑘=1

(︂
𝑛

𝑚

)︂ ̃︀𝑄𝑖(𝜕𝑚f , 𝜕𝑛−𝑚f) + 𝜒𝑛

(︂
𝑛
𝑛
2

)︂ ̃︀𝑄𝑖(𝜕
𝑛
2 f , 𝜕

𝑛
2 f). (3.17)

Also, we have the estimate for 0 ≤ ℓ ≤ 𝑛,

𝑁∑︁
𝑗=1

||𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ ̃︀𝐶𝑄

[︀
||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (𝜈𝑖⟨𝑣⟩𝑘)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
. (3.18)

The proof is given in Appendix A. By Lemma 3.4, (3.17) implies that⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑛−1∑︁
𝑚=1

(︂
𝑛

𝑚

)︂
𝑄𝑖𝑗(𝜕𝑚𝑓𝑖, 𝜕

𝑛−𝑚𝑓𝑗)

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

≤ 2𝐶𝑄

⌊𝑛−1
2 ⌋∑︁

𝑘=1

(︂
𝑛

𝑚

)︂ [︀
||𝜕𝑚𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||𝜕𝑛−𝑚f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||𝜕𝑚𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (𝜈𝑖⟨𝑣⟩𝑘)||𝜕𝑛−𝑚f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
+ 𝜒𝑛

(︂
𝑛
𝑛
2

)︂
𝐶𝑄

[︀
||𝜕 𝑛

2 𝑓𝑖||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||𝜕

𝑛
2 f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||𝜕 𝑛
2 𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (𝜈𝑖⟨𝑣⟩𝑘)||𝜕
𝑛
2 f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
. (3.19)
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In “Term ○⋆”, the second term is exactly the left-hand-side of (3.17). By using the assumption (2.7) and
Lemma 3.5, the first term is estimated by

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒

𝑁∑︁

𝑗=1

𝑛−1∑︁

𝑙=0

𝑙∑︁

𝑚=0

(︃
𝑛

𝑙

)︃(︃
𝑙

𝑚

)︃

𝑄𝑏𝑛−𝑙

𝑖𝑗 (𝜕𝑚𝑓𝑖, 𝜕
𝑙−𝑚𝑓𝑗)

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

≤
𝑛−1∑︁

𝑙=0

(︃
𝑛

𝑙

)︃⎧⎨

⎩

𝑁∑︁

𝑗=1

𝑙−1∑︁

𝑚=1

(︃
𝑙

𝑚

)︃ ⃒⃒
⃒
⃒⃒
⃒𝑄𝑏𝑛−𝑙

𝑖𝑗 (𝜕𝑚𝑓𝑖, 𝜕
𝑙−𝑚𝑓𝑗)

⃒⃒
⃒
⃒⃒
⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)
+

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒

𝑁∑︁

𝑗=1

(︁
𝑄𝑖𝑗(𝑓𝑖, 𝜕

𝑙𝑓𝑗) +𝑄𝑖𝑗(𝜕
𝑙𝑓𝑖, 𝑓𝑗)

)︁⃒⃒⃒⃒
⃒

⃒⃒
⃒⃒
⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

⎫
⎬

⎭

≤
𝑛−1∑︁

𝑙=0

(︃
𝑛

𝑙

)︃{︃
𝑙−1∑︁

𝑚=1

(︃
𝑙

𝑚

)︃
̃︀𝐶𝑄

[︁
||𝜕𝑚𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||𝜕
𝑙−𝑚f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||𝜕𝑚𝑓𝑖||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈𝑖)

||𝜕𝑙−𝑚f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︁

+ 2|| ̃︀𝑄𝑖(f , 𝜕
𝑙f)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

}︃

.

Thus “Term ○⋆” can be bounded by

||Term ○⋆ ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

≤
𝑛−1∑︁
𝑙=0

(︂
𝑛

𝑙

)︂{︃
𝑙−1∑︁
𝑚=1

(︂
𝑙

𝑚

)︂ ̃︀𝐶𝑄

[︀
||𝜕𝑚𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||𝜕𝑙−𝑚f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||𝜕𝑚𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈𝑖)||𝜕
𝑙−𝑚f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
+ 2|| ̃︀𝑄𝑖(f , 𝜕𝑙f)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

}︃

+ 2
⌊𝑛−1

2 ⌋∑︁
𝑚=1

(︂
𝑛

𝑚

)︂
|| ̃︀𝑄𝑖(𝜕𝑚f , 𝜕𝑛−𝑚f)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) + 𝜒𝑛

(︂
𝑛
𝑛
2

)︂
|| ̃︀𝑄𝑖(𝜕

𝑛
2 f , 𝜕

𝑛
2 f)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘). (3.20)

Another thing we would like to mention before starting the main steps of the proof: Proposition 6.1 and
at the end of Section 6.1.2 from ref. [8] shows that the solution f is small in the following sense, and one can
assume that ∫︁ 𝑡

0

||f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)𝑑𝑠 ≤ 𝜏1, ||f ||𝐿∞𝑡 𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝜏2, (3.21)

where 𝜏1, 𝜏2 are constants depending on the initial data ||f0||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) and an exponential decay factor 𝑒−𝜆𝑘𝑡.

3.2.1. Step 1: discussion for g1

In a similar spirit as Proposition 6.7 from [8], we will show that

Proposition 3.6. Let 𝑘 > 𝑘0, and for all 𝑧, let g0 ∈ 𝐿1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) satisfy ΠG(g0) = 0 and h = h(𝑡, 𝑥, 𝑣, 𝑧) ∈

𝐿∞𝑡 𝐿
1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘𝜈). Moreover, let 𝜏1, 𝜏2 in (3.21) be small enough such that

max{4𝐶𝑄𝜏1, 2(𝐶𝐵 + 2𝐶𝑄𝜏2)} < 1. (3.22)

Then there exists 𝜂1, 𝜆1 such that for all 𝑧, if

||g0||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝜂1, and ∃𝐶, 𝜆 such that ||h(𝑡, 𝑧)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) ≤ 𝐶 ||g0||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) 𝑒

−𝜆𝑡,

then there exists a function g1 in 𝐿∞𝑡 𝐿
1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) such that for 1 ≤ 𝑖 ≤ 𝑁 ,

𝜕𝑡𝑔1,𝑖 = 𝐺
(𝛿)
1,𝑖 (g1) +

𝑛∑︁
ℓ=1

(︂
𝑛

ℓ

)︂ [︁
𝐵

(𝛿)

𝑏ℓ,𝑖
(𝜕𝑛−ℓf)− 𝜕ℓ𝜈𝑖 𝜕

𝑛−ℓ𝑓𝑖

]︁
+ 2 ̃︀𝑄𝑖(g1 + h, f) + Term○⋆ , g1(0, 𝑥, 𝑣, 𝑧) = g0(𝑥, 𝑣, 𝑧). (3.23)
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In addition, for all 𝑧, solution g1 satisfies for all 𝑡 ≥ 0

||g1(𝑡, 𝑧)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝐶1 𝑒

−𝜆1𝑡.

The constants 𝐶1, 𝜂1 and 𝜆1 depend on 𝑛, 𝑘 and the collision kernel. 𝐶1 also depends on the initial data g0

and 𝜕𝑘f0 for 1 ≤ 𝑘 ≤ 𝑛. The constants 𝐶𝐵, 𝐶𝑄, 𝜏1, 𝜏2 are shown in (3.9), (3.10) and (3.21), respectively.

Proof. Step (i): a priori exponential decay. This part follows the main structure of Proof of Proposition 6.7,
page 1430 from [8] thus we omit some details. Using that the transport part gives null contribution and multi-
plicative part gives a negative contribution, similar to inequality (6.13) from [8], one gets

d
d𝑡
||𝑔1,𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ −||𝑔1,𝑖||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈𝑖) +

𝑛∑︁
ℓ=1

(︂
𝑛

ℓ

)︂
||𝜕𝑛−ℓ𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈𝑖) + ||B(𝛿)
𝑖 (g1)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

+
𝑛∑︁

ℓ=1

(︂
𝑛

ℓ

)︂
||𝐵(𝛿)

𝑏ℓ,𝑖
(𝜕𝑛−ℓf)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) + 2|| ̃︀𝑄𝑖(g1 + h, f)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) + ||Term ○⋆ ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘).

In analogy to Lemma 3.3, due to our assumption |𝜕ℓ
𝑧𝑏𝑖𝑗 | ≤ 𝐶𝑏 in (2.7), then

||𝐵(𝛿)

𝑏ℓ,𝑖
(𝜕𝑛−ℓf)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝐶𝐵 ||𝜕𝑛−ℓf ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈), (3.24)

where the same 𝐶𝐵 is generated as in the deterministic case satisfying 0 < 𝐶𝐵 < 1. This is due to our assumptions
(2.6) and (2.7) that 𝑏𝑖𝑗 and |𝜕𝑘

𝑧 𝑏𝑖𝑗 | share the same upper bound 𝐶𝑏, which determines 𝐶𝐵 in Lemma 3.9. We
use Lemma 3.3 to control B(𝛿), (3.24) to control B(𝛿)

𝑏ℓ and Lemma 3.4 to control ̃︀𝑄𝑖. Using estimate (3.19), one
has

d
d𝑡
||g1||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

≤ −
[︀
1− 𝐶𝐵 − 2𝐶𝑄||f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
||g1||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) +
𝑛∑︁

ℓ=1

(︂
𝑛

ℓ

)︂
||𝜕𝑛−ℓ𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈𝑖)

+
𝑛∑︁

ℓ=1

(︂
𝑛

ℓ

)︂
𝐶𝐵 ||𝜕𝑛−ℓf ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + 2𝐶𝑄

[︀
||g1||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)

+ ||h||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||h||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)||f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
+ “RHS of (3.20)”,

where the last term “RHS of (3.20)” is bounded by products of lower-order (up to (𝑛−1)th) partial 𝑧-derivatives
of f , according to Lemma 3.4, Lemma 3.5 and (3.19). Since 𝐶𝐵 < 1, ||g0||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) is sufficiently small,
due to the exponential decay of ||h(𝑡)||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈), smallness of f shown in [8] and smallness conditions for
all ||𝜕𝑚f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) (1 ≤ 𝑚 ≤ 𝑛 − 1) assumed by induction, the Grönwall’s lemma yields the exponential
decay of ||g1||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘). Note that 𝜈𝑖 is equivalent to ⟨𝑣⟩𝛾 , thus ||𝜕𝑚f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) (1 ≤ 𝑚 ≤ 𝑛−1) is also small.

Step (ii): existence. Let g1
(0) = 0 and consider the following iteration on equation (3.23) with 𝑝 ∈ N:

𝜕𝑡𝑔
(𝑝+1)
1,𝑖 + 𝑣 · ∇𝑥𝑔

(𝑝+1)
1,𝑖 =− 𝜈𝑖(𝑣)(𝑔(𝑝+1)

1,𝑖 ) +𝐵𝑖(g1
(𝑝)) + 2 ̃︀𝑄𝑖(g1

(𝑝) + h, f)

+
𝑛∑︁

ℓ=1

(︂
𝑛

ℓ

)︂ [︀
𝐵𝑏ℓ,𝑖(𝜕

𝑛−ℓf)− 𝜕ℓ𝜈𝑖 𝜕
𝑛−ℓ𝑓𝑖

]︀
+ Term ○⋆ , (3.25)

with the initial data g1
(𝑝+1)(0, 𝑥, 𝑣, 𝑧) = g0. We omit including the superscript 𝛿 in B(𝛿) here. Note that in

(3.25), the last two terms on the right-hand-side do not involve the time iteration index 𝑝 of the scheme. Our
goal is to show that

(︀
g1

(𝑝)
)︀
𝑝∈N is a Cauchy sequence in 𝐿∞𝑡 𝐿

1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘).
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By the Duhamel formula along the characteristics for all 𝑖,

𝑔
(𝑝+1)
1,𝑖 (𝑡, 𝑥, 𝑣, 𝑧) = e−𝜈𝑖(𝑣)𝑡𝑔0,𝑖 +

∫︁ 𝑡

0

e−𝜈𝑖(𝑣)(𝑡−𝑠)
{︁
𝐵𝑖(g1

(𝑝)) + 2 ̃︀𝑄𝑖(g1
(𝑝) + h, f)

+
𝑛∑︁

ℓ=1

(︂
𝑛

ℓ

)︂ [︀
𝐵𝑏ℓ,𝑖(𝜕

𝑛−ℓf)− 𝜕ℓ𝜈𝑖 𝜕
𝑛−ℓ𝑓𝑖

]︀
+ Term ○⋆

}︁
(𝑥− 𝑠𝑣, 𝑣) d𝑠, (3.26)

where 𝑔0,𝑖(𝑥, 𝑣, 𝑧) is the 𝑖th component of the initial data g0. Similarly we write

𝑔
(𝑝)
1𝑖 (𝑡, 𝑥, 𝑣, 𝑧) = e−𝜈𝑖(𝑣)𝑡𝑔0,𝑖 +

∫︁ 𝑡

0

e−𝜈𝑖(𝑣)(𝑡−𝑠)
{︁
𝐵𝑖(g1

(𝑝−1)) + 2 ̃︀𝑄𝑖(g1
(𝑝−1) + h, f)

+
𝑛∑︁

ℓ=1

(︂
𝑛

ℓ

)︂ [︀
𝐵𝑏ℓ,𝑖(𝜕

𝑛−ℓf)− 𝜕ℓ𝜈𝑖 𝜕
𝑛−ℓ𝑓𝑖

]︀
+ Term ○⋆

}︁
(𝑥− 𝑠𝑣, 𝑣) d𝑠. (3.27)

Since we are in the case of hard potentials and Maxwellian molecules, we know that 𝜈𝑖(𝑣) ≥ 𝜈0> 0. Subtract
(3.27) from (3.26), take the 𝐿1

𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘)-norm of (g1

(𝑝+1) − g1
(𝑝)) and sum over 𝑖, by using the relation

̃︀Q(g1
(𝑝) + h, f)− ̃︀Q(g1

(𝑝−1) + h, f) = ̃︀Q(g1
(𝑝) − g1

(𝑝−1), f),

one gets for each 𝑧,⃒⃒⃒⃒⃒⃒
g1

(𝑝+1)(𝑡)− g1
(𝑝)(𝑡)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

≤
∫︁ 𝑡

0

𝑒−𝜈0(𝑡−𝑠)
⃒⃒⃒⃒⃒⃒
B(g1

(𝑝) − g1
(𝑝−1)) + 2 ̃︀Q(g1

(𝑝) − g1
(𝑝−1), f)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)
d𝑠

≤
[︀
𝐶𝐵 + 2𝐶𝑄||f ||𝐿∞𝑡 𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀ ∫︁ 𝑡

0

𝑒−𝜈0(𝑡−𝑠)
⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑠)− g1
(𝑝−1)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)
d𝑠

+ 2𝐶𝑄

∫︁ 𝑡

0

||f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)d𝑠 · sup

𝑠∈[0,𝑡]

⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑠)− g1
(𝑝−1)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)
, (3.28)

where Lemma 3.3 and Lemma 3.4 on estimates of the operator B and ̃︀Q are used.
On the other hand,∫︁ 𝑡

0

⃒⃒⃒⃒⃒⃒
g1

(𝑝+1)(𝑠)− g1
(𝑝)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)
d𝑠

≤
∑︁

𝑖

∫︁ 𝑡

0

∫︁ 𝑠

0

∫︁
R3

e−𝜈𝑖(𝑣)(𝑠−𝑠1)𝜈𝑖(𝑣)⟨𝑣⟩𝑘

·
⃒⃒⃒⃒⃒⃒
B(g1

(𝑝) − g1
(𝑝−1)) + 2 ̃︀Q(g1

(𝑝) − g1
(𝑝−1), f)

⃒⃒⃒⃒⃒⃒
𝐿∞𝑥

(𝑠1)d𝑠1d𝑠

=
∑︁

𝑖

∫︁ 𝑡

0

∫︁
R3

(︂∫︁ 𝑡

𝑠1

e−𝜈𝑖(𝑣)(𝑠−𝑠1)𝜈𝑖(𝑣)d𝑠
)︂
⟨𝑣⟩𝑘

·
⃒⃒⃒⃒⃒⃒
B(g1

(𝑝) − g1
(𝑝−1)) + 2 ̃︀Q(g1

(𝑝) − g1
(𝑝−1), f)

⃒⃒⃒⃒⃒⃒
𝐿∞𝑥

(𝑠1)d𝑠1

≤
[︀
𝐶𝐵 + 2𝐶𝑄 ||f ||𝐿∞𝑡 𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀ ∫︁ 𝑡

0

⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑠1)− g1
(𝑝−1)(𝑠1)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)
d𝑠1

+ 2𝐶𝑄

∫︁ 𝑡

0

||f ||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)d𝑠1 · sup

𝑠∈[0,𝑡]

⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑠)− g1
(𝑝−1)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)
, (3.29)
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where we used the fact that the integral in 𝑠 is bounded by 1; exchanged the integration domains in 𝑠 and 𝑠1,
and used Lemma 3.3 and Lemma 3.4 again.

Adding up (3.28) and (3.29), by using (3.21), one has⃒⃒⃒⃒⃒⃒
g1

(𝑝+1)(𝑡)− g1
(𝑝)(𝑡)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)
+

∫︁ 𝑡

0

⃒⃒⃒⃒⃒⃒
g1

(𝑝+1)(𝑠)− g1
(𝑝)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)
d𝑠

≤4𝐶𝑄𝜏1 · sup
𝑠∈[0,𝑡]

⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑠)− g1
(𝑝−1)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

+ 2(𝐶𝐵 + 2𝐶𝑄𝜏2)
∫︁ 𝑡

0

⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑠)− g1
(𝑝−1)(𝑠)

⃒⃒⃒⃒⃒⃒
𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈)
d𝑠.

Assumption (3.22) indicates that
(︀
g1

(𝑝)
)︀
𝑝∈N is a Cauchy sequence in 𝐿∞𝑡 𝐿

1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘). Thus

(︀
g1

(𝑝)
)︀
𝑝∈N converges

to a function g1 in 𝐿∞𝑡 𝐿
1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘). �

3.2.2. Step 2: discussion for g2

As for g2, it satisfies the linear Equation (3.16), which is in a similar form as Equation (6.3) from [8] except
for the last term involving lower order 𝑧-derivatives of f . We thereby mimic Proposition 6.8 from [8] and get
the following:

Proposition 3.7. Let h = h(𝑡, 𝑥, 𝑣, 𝑧) be in 𝐿∞𝑡 𝐿
1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘), if ΠG(g2 + h) = 0 and for all 𝑧,

||h(𝑡, 𝑧)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝜂ℎ 𝑒

−𝜆ℎ𝑡, then there exists a unique function g2 ∈ 𝐿∞𝑡 𝐿∞𝑥,𝑣(⟨𝑣⟩𝛽M−1/2) to

𝜕𝑡𝑔2,𝑖 = 𝐺𝑖(g2) +𝐴
(𝛿)
𝑖 (h) +

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f), g2(0, 𝑥, 𝑣, 𝑧) = 0. (3.30)

Moreover, ∃ some constants 𝐶2 > 0, 𝜆2 > 0 such that for all 𝑧,

||g2(𝑡, 𝑧)||𝐿∞𝑥,𝑣(⟨𝑣⟩𝛽M−1/2) ≤ 𝐶2 𝜂ℎ e−𝜆2𝑡,

where 𝐶2 depends on the initial data of 𝜕𝑘f0 for 1 ≤ 𝑘 ≤ 𝑛.

The proof is similar to [8], so we omit most details. Theorem 5.4 of [8] implies that there is a unique solution
g2 to the differential system (3.30), given by

g2 =
∫︁ 𝑡

0

𝑆G(𝑡− 𝑠)

[︃
A(𝛿)(h)(𝑠) +

𝑛∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
Abk

(𝛿)(𝜕𝑛−𝑘f)(𝑠)

]︃
d𝑠,

where 𝑆G(𝑡) is the semigroup generated by G in 𝐿∞𝑥,𝑣(⟨𝑣⟩𝛽M−1/2); A(𝛿) and Abk
(𝛿) are vector operators with

the 𝑖th component 𝐴(𝛿)
𝑖 and 𝐴

(𝛿)

𝑏𝑘,𝑖
(1 ≤ 𝑖 ≤ 𝑁). We use the regularising property of A(𝛿) operator given in

Lemma 3.2, and similarly for Abk
(𝛿) due to that 𝜕𝑘

𝑧 𝑏𝑖𝑗 follows the same assumption as 𝑏𝑖𝑗 . The exponential
decay of h and all the lower order 𝑧-derivatives of f , i.e., ||𝜕𝑘f |𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) (0 ≤ 𝑘 ≤ 𝑛 − 1) is used, by the
assumption for h in this proposition and by induction.

3.2.3. Step 3: discussion for g and final result

We prove the existence of the solution g by an iterative scheme. We start with g1
(0) = g2

(0) = 0 and
approximate the system of Equations (3.15)–(3.16) as follows (1 ≤ 𝑖 ≤ 𝑁):
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𝜕𝑡𝑔
(𝑝+1)
1,𝑖 = 𝐺

(𝛿)
1,𝑖 (g1

(𝑝+1)) + 2 ̃︀𝑄𝑖(g1
(𝑝+1) + g2

(𝑝), f)

+
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂ [︁
𝐵

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f)− 𝜕𝑘𝜈𝑖 𝜕

𝑛−𝑘𝑓𝑖

]︁
+ Term○⋆ ,

𝜕𝑡𝑔
(𝑝+1)
2,𝑖 = 𝐺𝑖(g2

(𝑝+1)) +𝐴
(𝛿)
𝑖 (g1

(𝑝+1)) +
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f),

with the initial data
g1

(𝑝+1)(0, 𝑥, 𝑣, 𝑧) = g0(𝑥, 𝑣, 𝑧), g2
(𝑝+1)(0, 𝑥, 𝑣, 𝑧) = 0,

where g0 ∈ 𝐿1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) satisfies ΠG(g0) = 0 for all 𝑧. Recall that f0 ∈ 𝐿1

𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) with ΠG(f0) = 0, since

g = 𝜕𝑛
𝑧 f , the initial condition for g0 holds automatically.

By Proposition 3.6 and Proposition 3.7,
(︀
g1

(𝑝)
)︀
𝑝∈N and

(︀
g2

(𝑝)
)︀
𝑝∈N are well-defined sequences. By induction,

we claim that for all 𝑝 ∈ N and all 𝑡 ≥ 0 and each 𝑧 ∈ 𝐼𝑧,⃒⃒⃒⃒⃒⃒
g1

(𝑝)(𝑡, 𝑧)
⃒⃒⃒⃒⃒⃒

𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

≤ ̃︀𝐶1 e−𝜆1𝑡, (3.31)⃒⃒⃒⃒⃒⃒
g2

(𝑝)(𝑡, 𝑧)
⃒⃒⃒⃒⃒⃒

𝐿∞𝑥,𝑣(⟨𝑣⟩𝛽𝜇−1/2)
≤ ̃︀𝐶2 e−𝜆2𝑡. (3.32)

If we construct g1
(𝑝) and g2

(𝑝) satisfying the exponential decay above, then we can obtain g1
(𝑝+1) from Propo-

sition 3.6 by letting h = g2
(𝑝) in Equation (3.23) and then construct g2

(𝑝+1) with Proposition 3.7 by letting
h = g1

(𝑝+1) in Equation (3.30). Finally, we have the equality for 1 ≤ 𝑖 ≤ 𝑁 ,

𝜕𝑡

(︁
𝑔
(𝑝+1)
1,𝑖 + 𝑔

(𝑝+1)
2,𝑖

)︁
=𝐺𝑖

(︁
g1

(𝑝+1) + g2
(𝑝+1)

)︁
+ 2 ̃︀𝑄𝑖(g1

(𝑝+1) + g2
(𝑝), f)

+
𝑛∑︁

𝑘=1

(︂
𝑛

𝑘

)︂ [︁
𝐴

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f) +𝐵

(𝛿)

𝑏𝑘,𝑖
(𝜕𝑛−𝑘f)− 𝜕𝑘𝜈𝑖 𝜕

𝑛−𝑘𝑓𝑖

]︁
+ Term ○⋆ .

In conclusion, for each 𝑧,
(︀
g1

(𝑝)
)︀
𝑝∈N is a Cauchy sequence in 𝐿∞𝑡 𝐿

1
𝑣𝐿
∞
𝑥 (⟨𝑣⟩𝑘) and converges strongly towards a

function g1. By (3.32), the sequence
(︀
g2

(𝑝)
)︀
𝑝∈N is bounded and weakly-* converges, up to a subsequence, towards

g2 in 𝐿∞𝑡 𝐿
∞
𝑥,𝑣(⟨𝑣⟩𝛽𝜇−1/2). This implies that (g1,g2) is solution to the system (3.15)–(3.16) and g = g1 + g2

is a solution to equation (3.14) satisfying ΠG(g) = 0. Moreover, taking the limit inside the exponential decays
(3.31) and (3.32), one concludes that for all 𝑧,

||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ 𝐶e−𝜆𝑡 ||g0||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘).

Recall the notation g = 𝜕𝑛
𝑧 f . We now conclude that

||𝜕𝑛
𝑧 f ||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)𝐿∞𝑧
≤ 𝐶 e−𝜆𝑡 ||𝜕𝑛

𝑧 f0||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)𝐿∞𝑧

,

where 𝐶, 𝜆 are generic constants that depend on 𝑁 , 𝑘, collision kernels, initial data of f and 𝜕𝑘
𝑧 f (1 ≤ 𝑘 ≤ 𝑛).

We showed that Proposition 3.1 is true for 𝑚 = 𝑛 (1 ≤ 𝑛 ≤ 𝑟) by induction, one concludes that the result
in Proposition 3.1 holds for all 𝑛 = 0, · · ·, 𝑟, where 𝑟 is associated to the regularity of the initial data f0 in the
random space.

4. Spectral gap of the linearized gPC Galerkin system

In this part, we generalize the single-species gPC-SG system to the multi-species gPC-SG system by adapting
the idea from the proof of the multi-species H-theorem [14] and in particular for the Boltzmann model [12],
combined with the previous work considering the uncertainty [11, 27]. We consider in this Section the case of
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random initial data and random collision kernel, where the distribution of the one-dimensional random variable
𝑧 is given by 𝜋(𝑧).

The same notation and perturbative setting are followed as that in [11,12]. Denote

𝑀𝑖(𝑣) =
𝜌∞,𝑖

(2𝜋)3/2
e−

|𝑣|2
2 , 1 ≤ 𝑖 ≤ 𝑁.

Assume that the distribution function 𝐹𝑖 is close to the global equilibrium such that we can write

𝐹𝑖 = 𝑀𝑖 +𝑀
1/2
𝑖 𝑓𝑖, (4.1)

for some perturbation function 𝑓𝑖.
Plug in the ansatz (4.1) into (2.1), then 𝑓𝑖 satisfies the equation

𝜕𝑡𝑓𝑖 + 𝑣 · ∇𝑥𝑓𝑖 = 𝐿𝑖
::

(𝑓) +𝑄𝑖
::

(𝑓), (4.2)

where 𝐿𝑖
::

(𝑓) =
∑︀𝑁

𝑙=1 𝐿𝑖𝑙
::

(𝑓𝑖, 𝑓𝑙), with

𝐿𝑖𝑙
::

(𝑓𝑖, 𝑓𝑙) = 𝑀
−1/2
𝑖

(︁
𝑄𝑖𝑙(𝑀𝑖,𝑀

1/2
𝑙 𝑓𝑙) +𝑄𝑖𝑙(𝑀

1/2
𝑖 𝑓𝑖,𝑀𝑙)

)︁
=

∫︁
R3×S2

𝐵𝑖𝑙𝑀
1/2
𝑖 𝑀*

𝑙 (ℎ′𝑖 + ℎ′*𝑙 − ℎ𝑖 − ℎ*𝑙 ) d𝑣*d𝜎, ℎ𝑖 := 𝑀
−1/2
𝑖 𝑓𝑖, (4.3)

and

𝑄𝑖
::

(𝑓) =
𝑁∑︁

𝑙=1

𝑀
−1/2
𝑖 𝑄𝑖𝑙(𝑀

1/2
𝑖 𝑓𝑖,𝑀

1/2
𝑙 𝑓𝑙).

It has been shown in [12] that the linearized Boltzmann system (4.2) satisfies the H-theorem with the linearized
entropy 𝐻(𝑓) = 1

2

∑︀𝑁
𝑖=1

∫︀
R3 𝑓

2
𝑖 d𝑣, that is,

−d𝐻
d𝑡

= −
𝑁∑︁

𝑖=1

∫︁
R3
𝑓𝑖𝐿𝑖(𝑓) d𝑣 =: −(𝑓, 𝐿(𝑓))𝐿2

𝑣
≥ 0,

where (·, ·)𝐿2
𝑣

is the scalar product on 𝐿2
𝑣 = 𝐿2(R3; R𝑛).

Remark 4.1. Note that the linearization (4.1) is different from (3.1), with the extra factor 𝑀1/2
𝑖 . The reason

is that we will extend the spectral gap analysis from the single-species case studied in [11] to the multi-species
Boltzmann system, thus it is better to follow the same perturbative setting as in [11].

One can approximate the distribution for the 𝑖th species 𝑓𝑖 (or ℎ𝑖) by using the ansatz

𝑓𝑖(𝑡, 𝑥, 𝑣, 𝑧) ≈ 𝑓𝐾
𝑖 (𝑡, 𝑥, 𝑣, 𝑧) :=

∑︁
𝐾
𝑘=1 𝑓𝑖,𝑘(𝑡, 𝑥, 𝑣)𝜓𝑘(𝑧),

ℎ𝑖(𝑡, 𝑥, 𝑣, 𝑧) ≈ ℎ𝐾
𝑖 (𝑡, 𝑥, 𝑣, 𝑧) :=

∑︁
𝐾
𝑘=1 ℎ𝑖,𝑘(𝑡, 𝑥, 𝑣)𝜓𝑘(𝑧). (4.4)

By inserting the ansatz (4.4) into the linearized equation (the linear part of Eq. (4.2))

𝜕𝑡𝑓𝑖 + 𝑣 · ∇𝑥𝑓𝑖 = 𝐿𝑖(𝑓),

and conducting a standard Galerkin projection, one obtains the following gPC-SG system for 𝑓𝑖,𝑘 (with 1 ≤ 𝑖 ≤
𝑁 , 1 ≤ 𝑘 ≤ 𝐾):

𝜕𝑡𝑓𝑖,𝑘 + 𝑣 · ∇𝑥𝑓𝑖,𝑘 = ⟨𝐿𝑖(𝑓𝐾), 𝜓𝑘⟩𝐿2(𝜋(𝑧)). (4.5)

In this part of the study for the gPC-Galerkin system, besides (H1)–(H5), we need the following additional
assumptions (recall that 𝑏𝑖𝑙 is the angular part of the collision kernel 𝐵𝑖𝑙 in (2.5)):
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(B1) Assume that 𝑏𝑖𝑙 is linear in 𝑧,

𝑏𝑖𝑙(cos 𝜃, 𝑧) = 𝑏
(0)
𝑖𝑙 (cos 𝜃) + 𝑏

(1)
𝑖𝑙 (cos 𝜃)𝑧. (4.6)

This assumption is reasonable and a common practice, see the Karhunen–Loève expansion [29].
(B2) Assume the leading part 𝑏(0)𝑖𝑙 and the perturbative part 𝑏(1)𝑖𝑙 in (4.6) satisfy the condition

𝑏
(0)
𝑖𝑙 (cos 𝜃) ≥ (2𝑞 + 2) |𝑏(1)𝑖𝑙 (cos 𝜃)|𝐶𝑧 +𝐷𝑖𝑙(cos 𝜃), (4.7)

where 𝑞 is associated to the energy 𝐸𝐾 defined in [11].
(B3) The random variable 𝑧 has a compact support, that is,

|𝑧| ≤ 𝐶𝑧.

Remark 4.2. We want to mention that due to (B1), our global assumption (H5) has the particular form:

|𝑏(1)𝑖𝑙 | ≤ 𝐶.

The assumptions (B1)–(B3) are the same as that in [11] except now we are in the multi-species framework.

The main result of Section 4 is the following theorem:

Theorem 4.3. (Main result of the gPC-Galerkin system) Under the assumptions (H1)–(H5) and (B1)–
(B3), and additionally, assume that for all 1 ≤ 𝑖, 𝑙 ≤ 𝑁 , 𝐷𝑖𝑙(cos 𝜃) in (4.7) satisfy the same assumptions
as 𝑏(cos 𝜃) in the deterministic case in [8], then we obtain an explicit spectral gap estimate for the linearized
operator in the gPC stochastic Galerkin system, in a proper weighted norm,

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝑘2𝑞
⟨︀
⟨𝐿𝑖(𝑓𝐾), 𝜓𝑘⟩𝐿2(𝜋(𝑧)), 𝑓𝑖,𝑘

⟩︀
𝐿2

𝑣
≤ −𝐶

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

||𝑘2𝑞𝑓𝑖,𝑘||2Λ,

where 𝐶 is a positive constant independent of 𝐾, || · ||Λ is some weighted 𝐿2
𝑣 norm.

4.1. The proof of Theorem 4.3

We denote the right-hand-side of (4.5) by Term a○, then

Term a○ := ⟨𝐿𝑖(𝑓𝐾), 𝜓𝑘⟩𝐿2(𝜋(𝑧)) =

⟨
𝑁∑︁

𝑙=1

𝐿𝑖𝑙(𝑓𝐾
𝑖 , 𝑓𝐾

𝑙 ), 𝜓𝑘

⟩

=
𝑁∑︁

𝑙=1

𝐾∑︁
𝑗=1

∫︁
𝐵𝑖𝑙𝑀

1/2
𝑖 𝑀*

𝑙 𝜓𝑘𝜓𝑗𝛩𝑖𝑙[ℎ𝑗 ] d𝑣*d𝜎d𝑣𝜋(𝑧)d𝑧,

where the subscript in 𝐿𝑖
::

(𝑓) is omitted, and we use (4.3) and approximate ℎ𝑖 (and ℎ𝑙) by ℎ𝐾
𝑖 (and ℎ𝐾

𝑙 ) given

in (4.4); the term Θ𝑖𝑙[ℎ𝑗 ] above is denoted by

Θ𝑖𝑙[ℎ𝑗 ] := ℎ′𝑖,𝑗 + ℎ′*𝑙,𝑗 − ℎ𝑖,𝑗 − ℎ*𝑙,𝑗 .

For the readers’ convenience, we use indices (𝑖, 𝑙) to denote different species, while (𝑗, 𝑘) stand for the index of
the gPC coefficients.
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Take an inner product of Term a○ with 𝑓𝑖,𝑘 on 𝐿2(𝑣), multiply by 𝑘2𝑞 then sum up 𝑘 = 1, · · · ,𝐾 and
𝑖 = 1, · · · , 𝑁 , we have

Term I :=
𝑁∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑘2𝑞⟨Term a○, 𝑓𝑖,𝑘⟩𝐿2(𝑣) =
𝑁∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑘2𝑞⟨Term a○,𝑀
1/2
𝑖 ℎ𝑖,𝑘⟩𝐿2(𝑣)

=
𝑁∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑁∑︁
𝑙=1

𝐾∑︁
𝑗=1

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗𝛩𝑖𝑙[ℎ𝑗 ]ℎ𝑖,𝑘 dΩ

=
∑︁

𝑖,𝑙,𝑘,𝑗

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ′𝑖,𝑗 + ℎ′*𝑙,𝑗 − ℎ𝑖,𝑗 − ℎ*𝑙,𝑗

)︀
ℎ𝑖,𝑘 dΩ, (4.8)

where
∑︀

𝑖,𝑙,𝑘,𝑗 :=
∑︀𝑁

𝑖=1

∑︀𝑁
𝑙=1

∑︀𝐾
𝑘=1

∑︀𝐾
𝑗=1 and

dΩ := d𝑣*d𝜎d𝑣𝜋(𝑧)d𝑧

are defined for notational simplicity.
Step 1: Change (𝑣, 𝑣*) to (𝑣*, 𝑣) in (4.8), then exchange 𝑖 and 𝑙, one has

Term I =
∑︁

𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ′*𝑖,𝑗 + ℎ′𝑙,𝑗 − ℎ*𝑖,𝑗 − ℎ𝑙,𝑗

)︀
ℎ*𝑖,𝑘 dΩ

=
∑︁

𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ′𝑖,𝑗 + ℎ′*𝑙,𝑗 − ℎ𝑖,𝑗 − ℎ*𝑙,𝑗

)︀
ℎ*𝑙,𝑘 dΩ, (4.9)

where we used 𝑀𝑖𝑀
*
𝑙 = 𝑀*

𝑖 𝑀𝑙 followed by 𝑀*
𝑖 𝑀𝑙 = 𝑀*

𝑙 𝑀𝑖, and 𝐵𝑖𝑙 = 𝐵𝑙𝑖.
Step 2: Change (𝑣, 𝑣*) to (𝑣′, 𝑣′*) in (4.8), one gets

Term I =
∑︁

𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ𝑖,𝑗 + ℎ*𝑙,𝑗 − ℎ′𝑖,𝑗 − ℎ′*𝑙,𝑗

)︀
ℎ′𝑖,𝑘 dΩ

= −
∑︁

𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ′𝑖,𝑗 + ℎ′*𝑙,𝑗 − ℎ𝑖,𝑗 − ℎ*𝑙,𝑗

)︀
ℎ′𝑖,𝑘 dΩ, (4.10)

where we used 𝑀 ′
𝑖𝑀

′*
𝑙 = 𝑀𝑖𝑀

*
𝑙 .

Step 3: Change (𝑣, 𝑣*) to (𝑣*, 𝑣) on (4.10), then exchange 𝑖 and 𝑙, one has

Term I = −
∑︁

𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ′*𝑖,𝑗 + ℎ′𝑙,𝑗 − ℎ*𝑖,𝑗 − ℎ𝑙,𝑗

)︀
ℎ′*𝑖,𝑘 dΩ

= −
∑︁

𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗

(︀
ℎ′𝑖,𝑗 + ℎ′*𝑙,𝑗 − ℎ𝑖,𝑗 − ℎ*𝑙,𝑗

)︀
ℎ′*𝑙,𝑘 dΩ. (4.11)

where we used 𝑀𝑖𝑀
*
𝑙 = 𝑀*

𝑖 𝑀𝑙 followed by 𝑀*
𝑖 𝑀𝑙 = 𝑀*

𝑙 𝑀𝑖, and 𝐵𝑖𝑙 = 𝐵𝑙𝑖.
Adding up Equations (4.8), (4.10) and (4.11), one obtains

Term I = −1
4

∑︁
𝑖,𝑙,𝑘,𝑗

𝑘2𝑞

∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗Θ𝑖𝑙[ℎ𝑗 ]Θ𝑖𝑙[ℎ𝑘] dΩ

= −1
4

∑︁
𝑖,𝑙,𝑘,𝑗

(︂
𝑘

𝑗

)︂𝑞 ∫︁
𝐵𝑖𝑙𝑀𝑖𝑀

*
𝑙 𝜓𝑘𝜓𝑗 (𝑗𝑞Θ𝑖𝑙[ℎ𝑗 ]) (𝑘𝑞Θ𝑖𝑙[ℎ𝑘]) dΩ. (4.12)
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The each index pair (𝑖, 𝑙), the above formulation (4.12) is exactly the same as Equation (39) from [11] except
now we are in the multispecies setting. A similar analysis follows here, and we put it in Appendix B. Then in
analogous to Equation (44) from [11], one finally obtains that

Term I

≤ −1
4

𝑁∑︁
𝑖,𝑙=1

𝐾∑︁
𝑘=1

∫︁
𝑀𝑖𝑀

*
𝑙 Φ𝑖𝑙(|𝑣 − 𝑣*|)𝐷𝑖𝑙(cos 𝜃) (𝑘𝑞Θ𝑖𝑙[ℎ𝑘])2 d𝑣*d𝜎d𝑣

≤ −1
4

𝑁∑︁
𝑖,𝑙=1

𝐾∑︁
𝑘=1

𝑘2𝑞

∫︁
𝑀𝑖𝑀

*
𝑙 Φ𝑖𝑙(|𝑣 − 𝑣*|)𝐷𝑖𝑙(cos 𝜃) (Θ𝑖𝑙[ℎ𝑘])2 d𝑣*d𝜎d𝑣

=
𝑁∑︁

𝑖,𝑙=1

𝐾∑︁
𝑘=1

𝑘2𝑞

∫︁
𝑀𝑖𝑀

*
𝑙 Φ𝑖𝑙(|𝑣 − 𝑣*|)𝐷𝑖𝑙(cos 𝜃)Θ𝑖𝑙[ℎ𝑘]ℎ𝑖,𝑘 d𝑣*d𝜎d𝑣

=
𝑁∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑘2𝑞⟨𝐿 ̃︀𝐷𝑖 (𝑓𝑘), 𝑓𝑖,𝑘⟩, (4.13)

where we define ℎ𝑖 = 𝑀
−1/2
𝑖 𝑓𝑖 and

𝐿𝐷̃
𝑖 (𝑓𝑘) :=

𝑁∑︁
𝑙=1

∫︁ ̃︀𝐷𝑖𝑙(|𝑣 − 𝑣*|, cos 𝜃)𝑀1/2
𝑖 𝑀*

𝑙 (ℎ′𝑖,𝑘 + ℎ′*𝑙,𝑘 − ℎ𝑖,𝑘 − ℎ*𝑙,𝑘) d𝑣*d𝜎d𝑣,

̃︀𝐷𝑖𝑙(|𝑣 − 𝑣*|, cos 𝜃) := Φ𝑖𝑙(|𝑣 − 𝑣*|)𝐷𝑖𝑙(cos 𝜃), (4.14)

Integrating on 𝑥 of (4.13), we finally get

Term I ≤
𝑁∑︁

𝑖=1

𝐾∑︁
𝑘=1

𝑘2𝑞⟨𝐿 ̃︀𝐷𝑖 (𝑓𝑘), 𝑓𝑖,𝑘⟩𝐿2
𝑣
≤ −𝐶

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

||𝑘2𝑞𝑓𝑖,𝑘||2Λ.

The proof of Theorem 4.3 is done. We generalized the spectral gap proof for the linearized numerical collision
operator of the single-species Boltzmann equation studied in [11] to the multi-species setting, which will be
prepared for studying the long-time behavior and spectral convergence for the numerical solution (and numerical
error) for the gPC Galerkin system, as done for the analytical solution in Section 3. We mention that in [27],
hypocoercivity of the SG system and regularity of its solution in a weighted Sobolev norm, as well as spectral
accuracy and exponential decay in time of the numerical error of the gPC-SG method has been established.
In [12], the authors have studied the convergence to equilibrium in 𝐻1

𝑥,𝑣 space for the linearized multi-species
Boltzmann equations, nevertheless the study of convergence to equilibrium in higher Sobolev space 𝐻𝑠

𝑥,𝑣 for the
nonlinear deterministic equations is not yet developed, so a complete above-mentioned study in the uncertainty
framework for the gPC Galerkin system remains a future work.

5. Conclusion

In this paper, we consider the nonlinear multi-species Boltzmann equation with uncertainty coming from
both the initial data and collision kernels. Well-posedness and regularity in the random space of the solution
to the sensitivity system – the PDE obtained from taking derivatives in the random space, long-time behavior
(exponential decay to the global equilibrium) of the analytic solution, spectral gap of the linearized corresponding
gPC-based stochastic Galerkin system are established.
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Appendix A. Proof of Lemma 3.5

Proof. (3.17): If 𝑛 is odd, one has

𝑁∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕

𝑛−𝑘𝑓𝑗)

=

𝑛−1
2∑︁

𝑘=1

(︂
𝑛

𝑘

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕
𝑛−𝑘𝑓𝑗) +

𝑛∑︁
𝑘= 𝑛+1

2

(︂
𝑛

𝑘

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕
𝑛−𝑘𝑓𝑗)

=

𝑛−1
2∑︁

𝑘=1

(︂
𝑛

𝑘

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕
𝑛−𝑘𝑓𝑗) +

𝑛−1
2∑︁

𝑘′=1

(︂
𝑛

𝑛− 𝑘′

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕𝑛−𝑘′𝑓𝑖, 𝜕
𝑘′𝑓𝑗)

=

𝑛−1
2∑︁

𝑘=1

𝑁∑︁
𝑗=1

[︀
𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕

𝑛−𝑘𝑓𝑗) +𝑄𝑖𝑗(𝜕𝑛−𝑘𝑓𝑖, 𝜕
𝑘𝑓𝑗)

]︀

= 2

𝑛−1
2∑︁

𝑘=1

̃︀𝑄𝑖(𝜕𝑘f , 𝜕𝑛−𝑘f),

where we used the change of variable 𝑘′ = 𝑛− 𝑘 and
(︂
𝑛

𝑘

)︂
=

(︂
𝑛

𝑛− 𝑘

)︂
in the second and third equalities.

If 𝑛 is even, similarly one has

𝑁∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕

𝑛−𝑘𝑓𝑗)

=

𝑛
2−1∑︁
𝑘=1

(︂
𝑛

𝑘

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕
𝑛−𝑘𝑓𝑗) +

𝑛−1∑︁
𝑘= 𝑛

2 +1

(︂
𝑛

𝑘

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕
𝑛−𝑘𝑓𝑗) +

(︂
𝑛
𝑛
2

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕
𝑛
2 𝑓𝑖, 𝜕

𝑛
2 𝑓𝑗)

=

𝑛
2−1∑︁
𝑘=1

(︂
𝑛

𝑘

)︂ 𝑁∑︁
𝑗=1

[︀
𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕

𝑛−𝑘𝑓𝑗) +𝑄𝑖𝑗(𝜕𝑛−𝑘𝑓𝑖, 𝜕
𝑘𝑓𝑗)

]︀
+

(︂
𝑛
𝑛
2

)︂ 𝑁∑︁
𝑗=1

𝑄𝑖𝑗(𝜕
𝑛
2 𝑓𝑖, 𝜕

𝑛
2 𝑓𝑗)

= 2

𝑛
2−1∑︁
𝑘=1

(︂
𝑛

𝑘

)︂ ̃︀𝑄𝑖(𝜕𝑘𝑓𝑖, 𝜕
𝑛−𝑘𝑓𝑗) +

(︂
𝑛
𝑛
2

)︂ ̃︀𝑄𝑖(𝜕
𝑛
2 f , 𝜕

𝑛
2 f).

Combine the two cases, then

𝑁∑︁
𝑗=1

𝑛−1∑︁
𝑘=1

(︂
𝑛

𝑘

)︂
𝑄𝑖𝑗(𝜕𝑘𝑓𝑖, 𝜕

𝑛−𝑘𝑓𝑗) = 2
⌊𝑛−1

2 ⌋∑︁
𝑘=1

(︂
𝑛

𝑘

)︂ ̃︀𝑄𝑖(𝜕𝑘f , 𝜕𝑛−𝑘f) + 𝜒𝑛

(︂
𝑛
𝑛
2

)︂ ̃︀𝑄𝑖(𝜕
𝑛
2 f , 𝜕

𝑛
2 f).

(3.17) is proved. �

Proof. (3.18): We recall Proof of Lemma 6.6 from [8], the difference is that here 𝑄𝑏ℓ

𝑖𝑗 involves the 𝑧-derivatives
of the collision kernel 𝐵:

𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗) =
∫︁

R3×S2
𝜕ℓ

𝑧𝐵𝑖𝑗

(︀
𝑓 ′𝑖𝑔

′*
𝑗 − 𝑓𝑖𝑔

*
𝑗

)︀
d𝑣*d𝜎.
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By Minkowski’s integral inequality, for all 𝑞 ∈ [1,∞),∫︁
R3
⟨𝑣⟩𝑘

[︂∫︁
T3

⃒⃒⃒
𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)
⃒⃒⃒𝑞

d𝑥
]︂1/𝑞

d𝑣 6
∫︁
S2×R3×R3

⟨𝑣⟩𝑘
[︂∫︁

T3

⃒⃒
𝜕ℓ

𝑧𝐵𝑖𝑗 𝑓
′
𝑖𝑔
′*
𝑗

⃒⃒𝑞
d𝑥

]︂1/𝑞

d𝜎d𝑣*d𝑣

+
∫︁

𝑆2×R3×R3
⟨𝑣⟩𝑘

[︂∫︁
T3

⃒⃒
𝜕ℓ

𝑧𝐵𝑖𝑗 𝑓𝑖𝑔
*
𝑗

⃒⃒𝑞
d𝑥

]︂1/𝑞

d𝜎d𝑣*d𝑣.

We make the change of variables (𝑣, 𝑣*) → (𝑣′, 𝑣′*) in the first integral and obtain∫︁
R3
⟨𝑣⟩𝑘

[︂∫︁
T3

⃒⃒⃒
𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)
⃒⃒⃒𝑞

d𝑥
]︂1/𝑞

d𝑣

6
∫︁

S2×R3×R3

(︁
⟨𝑣′⟩𝑘 + ⟨𝑣⟩𝑘

)︁ [︂∫︁
T3

⃒⃒
𝜕ℓ

𝑧𝐵𝑖𝑗 𝑓𝑖𝑔
*
𝑗

⃒⃒𝑞
d𝑥

]︂1/𝑞

d𝜎d𝑣*d𝑣

6 𝐶𝑖𝑗

∫︁
S2×R3×R3

⟨𝑣⟩𝑘 ⟨𝑣*⟩𝑘 |𝑣 − 𝑣*|𝛾
[︂∫︁

T3

⃒⃒
𝑓𝑖𝑔

*
𝑗

⃒⃒𝑞 d𝑥
]︂1/𝑞

d𝜎d𝑣*d𝑣,

where the boundness of |𝜕ℓ
𝑧𝑏𝑖𝑗 | is used, and 𝐶𝑖𝑗 is a constant. Finally, by using |𝑣 − 𝑣*|𝛾 6 ⟨𝑣⟩𝛾 + ⟨𝑣*⟩𝛾 for

𝛾 ∈ [0, 1], one has ∫︁
R3
⟨𝑣⟩𝑘

[︂∫︁
T3

⃒⃒⃒
𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)
⃒⃒⃒𝑞

d𝑥
]︂1/𝑞

d𝑣

6 𝐶𝑖𝑗

∫︁
S2×R3×R3

(︁
⟨𝑣⟩𝑘+𝛾 ⟨𝑣*⟩𝑘 + ⟨𝑣⟩𝑘 ⟨𝑣*⟩𝑘+𝛾

)︁ [︂∫︁
T3

⃒⃒
𝑓𝑖𝑔

*
𝑗

⃒⃒𝑞 d𝑥
]︂1/𝑞

d𝜎d𝑣*d𝑣.

Take the limit as 𝑞 tends to infinity, then⃦⃦⃦
𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)
⃦⃦⃦

𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

6 𝐶𝑖𝑗

[︁
‖𝑓𝑖‖𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ‖𝑔𝑗‖𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘+𝛾)

+ ‖𝑓𝑖‖𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘+𝛾) ‖𝑔𝑗‖𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︁
.

Summing over 𝑗, let ̃︀𝐶𝑄 be the maximum of all 𝐶𝑖𝑗 , one obtains
𝑁∑︁

𝑗=1

||𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ ̃︀𝐶𝑄

[︀
||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘+𝛾) + ||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘+𝛾)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
.

Consequently, since 𝜈𝑖 ∼ ⟨𝑣⟩𝛾 , then
𝑁∑︁

𝑗=1

||𝑄𝑏ℓ

𝑖𝑗 (𝑓𝑖, 𝑔𝑗)||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘) ≤ ̃︀𝐶𝑄

[︀
||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘𝜈) + ||𝑓𝑖||𝐿1

𝑣𝐿∞𝑥 (𝜈𝑖⟨𝑣⟩𝑘)||g||𝐿1
𝑣𝐿∞𝑥 (⟨𝑣⟩𝑘)

]︀
.

�

Appendix B. Derivation from (4.12) to (4.13)

This part is similar to [11] but in the multispecies setting. Define the integral

𝑆𝑖,𝑙,𝑘,𝑗 =
∫︁

𝐼𝑧

𝐵𝑖𝑙𝜓𝑘(𝑧)𝜓𝑗(𝑧)𝜋(𝑧)d𝑧, 1 ≤ 𝑖, 𝑙 ≤ 𝑁, 1 ≤ 𝑘, 𝑗 ≤ 𝐾.

Denote d𝜉 = d𝑣*d𝜎d𝑣, and ̃︀Θ𝑖𝑙[ℎ𝑗 ] = 𝑗𝑞 Θ𝑖𝑙[ℎ𝑗 ], 1 ≤ 𝑖, 𝑙 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝐾.
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Then from (4.12),

Term I = −1
4

∑︁
𝑖,𝑙,𝑘,𝑗

(︂
𝑘

𝑗

)︂𝑞 ∫︁
𝑀𝑖𝑀

*
𝑙 𝑆𝑖,𝑙,𝑘,𝑗

̃︀Θ𝑖𝑙[ℎ𝑗 ] ̃︀Θ𝑖𝑙[ℎ𝑘] d𝜉. (B.1)

Define ̃︀𝑆𝑖,𝑙,𝑘,𝑗 by 𝑆𝑖,𝑙,𝑘,𝑗 = Φ𝑖,𝑙
̃︀𝑆𝑖,𝑙,𝑘,𝑗 . By assumption (B1), we let 𝑏𝑖,𝑙 = 𝑏

(0)
𝑖,𝑙 + 𝑏

(1)
𝑖,𝑙 𝑧, then

̃︀𝑆𝑖,𝑙,𝑘,𝑗 = 𝑏
(0)
𝑖,𝑙 𝛿𝑘𝑗 + 𝑏

(1)
𝑖,𝑙

∫︁
𝐼𝑧

𝑧𝜓𝑘𝜓𝑗 d𝜋(𝑧). (B.2)

We focus on calculating the summation:

Term A :=
∑︁

𝑖,𝑙,𝑘,𝑗

(︂
𝑘

𝑗

)︂𝑞

𝑀𝑖𝑀
*
𝑙 𝑆𝑖,𝑙,𝑘,𝑗

̃︀Θ𝑖𝑙[ℎ𝑗 ] ̃︀Θ𝑖𝑙[ℎ𝑘].

Plug in the form (B.2), then

Term A =
∑︁
𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 𝑏

(0)
𝑖,𝑙

∑︁
𝑘,𝑗

(︂
𝑘

𝑗

)︂𝑞 ̃︀Θ𝑖,𝑙[ℎ𝑗 ] ̃︀Θ𝑖,𝑙[ℎ𝑘] 𝛿𝑘𝑗

+
∑︁
𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 𝑏

(1)
𝑖,𝑙

∑︁
𝑘,𝑗

(︂
𝑘

𝑗

)︂𝑞 ̃︀Θ𝑖,𝑙[ℎ𝑗 ] ̃︀Θ𝑖,𝑙[ℎ𝑘]
∫︁

𝐼𝑧

𝑧 𝜓𝑘𝜓𝑗 d𝜋(𝑧)

=
∑︁
𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 𝑏

(0)
𝑖,𝑙

∑︁
𝑘

̃︀Θ2
𝑖,𝑙[ℎ𝑘] + Term B.

Notice that Term B is non-zero only when 𝑗 = 𝑘 − 1, 𝑗 = 𝑘 or 𝑗 = 𝑘 + 1 due to the integral
∫︀

𝐼𝑧
𝑧 𝜓𝑘𝜓𝑗 d𝜋(𝑧).

Thus

|Term B| ≤
∑︁

𝑖,𝑙

𝑀𝑖𝑀
*
𝑙

{︃

|𝑏(1)𝑖,𝑙 |
𝐾∑︁

𝑘=2

⃒⃒
⃒⃒ ̃︀Θ𝑖,𝑙[ℎ𝑘] ̃︀Θ𝑖,𝑙[ℎ𝑘−1]

(︂
𝑘

𝑘 − 1

)︂𝑞 ∫︁

𝐼𝑧

𝑧 𝜓𝑘𝜓𝑘−1 d𝜋(𝑧)

⃒⃒
⃒⃒

+ |𝑏(1)𝑖,𝑙 |
𝐾−1∑︁

𝑘=1

⃒⃒
⃒⃒ ̃︀Θ𝑖,𝑙[ℎ𝑘] ̃︀Θ𝑖,𝑙[ℎ𝑘+1]

(︂
𝑘

𝑘 + 1

)︂𝑞 ∫︁

𝐼𝑧

𝑧 𝜓𝑘𝜓𝑘+1 d𝜋(𝑧)

⃒⃒
⃒⃒+ |𝑏(1)𝑖,𝑙 |

𝐾∑︁

𝑘=1

⃒⃒
⃒⃒ ̃︀Θ2

𝑖,𝑙[ℎ𝑘]

∫︁

𝐼𝑧

𝑧 𝜓2
𝑘 d𝜋(𝑧)

⃒⃒
⃒⃒
}︃

≤
∑︁

𝑖,𝑙

𝑀𝑖𝑀
*
𝑙

{︃

2𝑞 |𝑏(1)𝑖,𝑙 |
𝐾∑︁

𝑘=2

⃒⃒
⃒̃︀Θ𝑖,𝑙[ℎ𝑘] ̃︀Θ𝑖,𝑙[ℎ𝑘−1]

⃒⃒
⃒
⃒⃒
⃒⃒
∫︁

𝐼𝑧

𝑧 𝜓𝑘𝜓𝑘−1 d𝜋(𝑧)

⃒⃒
⃒⃒

+ |𝑏(1)𝑖,𝑙 |
𝐾−1∑︁

𝑘=1

⃒⃒
⃒̃︀Θ𝑖,𝑙[ℎ𝑘] ̃︀Θ𝑖,𝑙[ℎ𝑘+1]

⃒⃒
⃒
⃒⃒
⃒⃒
∫︁

𝐼𝑧

𝑧 𝜓𝑘𝜓𝑘+1 d𝜋(𝑧)

⃒⃒
⃒⃒+ |𝑏(1)𝑖,𝑙 |

𝐾∑︁

𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘]

⃒⃒
⃒⃒
∫︁

𝐼𝑧

𝑧 𝜓2
𝑘 d𝜋(𝑧)

⃒⃒
⃒⃒
}︃

≤
∑︁

𝑖,𝑙

𝑀𝑖𝑀
*
𝑙

{︃

2𝑞 |𝑏(1)𝑖,𝑙 |𝐶𝑧

𝐾∑︁

𝑘=2

⃒⃒
⃒̃︀Θ𝑖,𝑙[ℎ𝑘] ̃︀Θ𝑖,𝑙[ℎ𝑘−1]

⃒⃒
⃒+ |𝑏(1)𝑖,𝑙 |𝐶𝑧

𝐾−1∑︁

𝑘=1

⃒⃒
⃒̃︀Θ𝑖,𝑙[ℎ𝑘] ̃︀Θ𝑖,𝑙[ℎ𝑘+1]

⃒⃒
⃒+ |𝑏(1)𝑖,𝑙 |𝐶𝑧

𝐾∑︁

𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘]

}︃

≤
∑︁

𝑖,𝑙

𝑀𝑖𝑀
*
𝑙

{︃

2𝑞 |𝑏(1)𝑖,𝑙 |𝐶𝑧
1

2

(︃
𝐾∑︁

𝑘=2

̃︀Θ2
𝑖,𝑙[ℎ𝑘] + ̃︀Θ2

𝑖,𝑙[ℎ𝑘−1]

)︃

+ |𝑏(1)𝑖,𝑙 |𝐶𝑧
1

2

(︃
𝐾−1∑︁

𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘] +

𝐾−1∑︁

𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘+1]

)︃

+ |𝑏(1)𝑖,𝑙 |𝐶𝑧

𝐾∑︁

𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘]

}︃

≤
∑︁

𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 (2𝑞 + 2) |𝑏(1)𝑖,𝑙 |𝐶𝑧

𝐾∑︁

𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘] ,
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where we used that, due to assumption (B3),⃒⃒⃒⃒∫︁
𝐼𝑧

𝑧𝜓𝑘𝜓𝑘−1d𝜋(𝑧)
⃒⃒⃒⃒
≤ ‖𝑧‖𝐿∞

∫︁
𝐼𝑧

|𝜓𝑘𝜓𝑘−1|d𝜋(𝑧)

≤ 𝐶𝑧

(︂∫︁
𝐼𝑧

𝜓2
𝑘d𝜋(𝑧)

)︂1/2 (︂∫︁
𝐼𝑧

𝜓2
𝑘−1d𝜋(𝑧)

)︂1/2

= 𝐶𝑧.

Therefore,

Term A ≥
∑︁
𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 𝑏

(0)
𝑖,𝑙

𝐾∑︁
𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘]−

∑︁
𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 (2𝑞 + 2) |𝑏(1)𝑖,𝑙 |𝐶𝑧

𝐾∑︁
𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘]

=
(︁
𝑏
(0)
𝑖,𝑙 − (2𝑞 + 2) |𝑏(1)𝑖,𝑙 |𝐶𝑧

)︁ 𝐾∑︁
𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘] ≥

∑︁
𝑖,𝑙

𝑀𝑖𝑀
*
𝑙 𝐷𝑖𝑙(cos 𝜃)

𝐾∑︁
𝑘=1

̃︀Θ2
𝑖,𝑙[ℎ𝑘].

Note that the assumption (B2) is used in the last inequality.
By (B.1), one finally obtains that

Term I = −1
4

∑︁
𝑖,𝑙,𝑘,𝑗

(︂
𝑘

𝑗

)︂𝑞 ∫︁
𝑀𝑖𝑀

*
𝑙 Φ𝑖𝑙(|𝑣 − 𝑣*|) ̃︀𝑆𝑖,𝑙,𝑘,𝑗(cos 𝜃) ̃︀Θ𝑖𝑙[ℎ𝑗 ] ̃︀Θ𝑖𝑙[ℎ𝑘] d𝜉

≤ −1
4

∑︁
𝑖,𝑙

∫︁
𝑀𝑖𝑀

*
𝑙 Φ𝑖𝑙(|𝑣 − 𝑣*|)𝐷𝑖𝑙(cos 𝜃)

𝐾∑︁
𝑘=1

𝑘2𝑞 Θ2
𝑖𝑙[ℎ𝑘] d𝑣*d𝜎d𝑣.

We finish the derivation from (4.12) to (4.13).
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[12] E.S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system. SIAM J.
Math. Anal. 48 (2016) 538–568.

[13] B. Després and B. Perthame, Uncertainty propagation; intrusive kinetic formulations of scalar conservation laws. SIAM/ASA
J. Uncertain. Quantif. 4 (2016) 980–1013.

[14] L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the
presence of chemical reactions. Eur. J. Mech. B Fluids 24 (2005) 219–236.

[15] G. Dimarco, L. Pareschi and M. Zanella, Uncertainty quantification for kinetic models in socio-economic and life sciences, in
Uncertainty quantification for hyperbolic and kinetic equations. In: Vol. 14 of SEMA SIMAI Springer Series. Springer, Cham
(2017) 151–191.
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