Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1103-1131

In this paper, we apply two fully-discrete local discontinuous Galerkin (LDG) methods to the compressible wormhole propagation. We will prove the stability and error estimates of the schemes. Traditional LDG methods use the diffusion term to control of convection term to obtain the stability for some linear equations. However, the variables in wormhole propagation are coupled together and the whole system is highly nonlinear. Therefore, it is extremely difficult to obtain the stability for fully-discrete LDG methods. To fix this gap, we introduce a new auxiliary variable including both the convection and diffusion terms. Moreover, we also construct a special time integration for the porosity, leading to physically relevant numerical approximations and controllable growth rate of the porosity. With a reasonable growth rate, it is possible to handle the time level mismatch in the first-order fully discrete scheme and obtain the stability of the scheme. For the whole system, we will prove that under weak temporal-spatial conditions, the optimal error estimates for the pressure, velocity, porosity and concentration under different norms can be obtained. Numerical experiments are also given to verify the theoretical results.

DOI : 10.1051/m2an/2021020
Classification : 65M15, 65M60
Keywords: Local discontinuous Galerkin method, implicit-explicit time-marching scheme, stability; error estimate, compressible wormhole propagation
@article{M2AN_2021__55_3_1103_0,
     author = {Guo, Hui and Jia, Rui and Tian, Lulu and Yang, Yang},
     title = {Stability and error estimates of local discontinuous {Galerkin} method with implicit-explicit time marching for simulating wormhole propagation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1103--1131},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021020},
     mrnumber = {4269466},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021020/}
}
TY  - JOUR
AU  - Guo, Hui
AU  - Jia, Rui
AU  - Tian, Lulu
AU  - Yang, Yang
TI  - Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1103
EP  - 1131
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021020/
DO  - 10.1051/m2an/2021020
LA  - en
ID  - M2AN_2021__55_3_1103_0
ER  - 
%0 Journal Article
%A Guo, Hui
%A Jia, Rui
%A Tian, Lulu
%A Yang, Yang
%T Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1103-1131
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021020/
%R 10.1051/m2an/2021020
%G en
%F M2AN_2021__55_3_1103_0
Guo, Hui; Jia, Rui; Tian, Lulu; Yang, Yang. Stability and error estimates of local discontinuous Galerkin method with implicit-explicit time marching for simulating wormhole propagation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1103-1131. doi: 10.1051/m2an/2021020

[1] O. Akanni, H. Nasr-El-Din and D. Gusain, A computational Navier-Stokes fluid-dynamics-simulation study of wormhole propagation in carbonate-matrix acidizing and analysis of factors influencing the dissolution process. SPE J. 22 (2017) 187962. | DOI

[2] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267–279. | MR | Zbl | DOI

[3] P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39 (2001) 264–285. | MR | Zbl | DOI

[4] P. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland (1975). | Zbl | MR

[5] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | MR | Zbl | DOI

[6] C. Fredd and H. Fogler, Influence of transport and reaction on wormhole formation in porous media. Fluid Mech. Transp. Phenom. 44 (1998) 1933–1949.

[7] F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux and M. Quintard, On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457 (2002) 213–254. | Zbl | DOI

[8] T. H. Gronwall, Note on the derivative with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919) 292–296. | MR | JFM | DOI

[9] H. Guo, F. Yu and Y. Yang, Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J. Sci. Comput. 71 (2017) 615–633. | MR | DOI

[10] H. Guo, L. Tian, Z. Xu, Y. Yang and N. Qi, High-order local discontinuous Galerkin method for simulating wormhole propagation. J. Comput. Appl. Math. 350 (2019) 247–261. | MR | DOI

[11] J. Kou, S. Sun and Y. Wu, Mixed finite element-based fully conservative methods for simulating wormhole propagation. Comput. Methods Appl. Mech. Eng. 298 (2016) 279–302. | MR | DOI

[12] X. Li and H. Rui, Characteristic block-centered finite difference method for simulating incompressible wormhole propagation. Comput. Math. App. 73 (2017) 2171–2190. | MR

[13] X. Li and H. Rui, Block-centered finite difference method for simulating compressible wormhole propagation. J. Sci. Comput. 74 (2017) 1115–1145. | MR | DOI

[14] X. Li and H. Rui, A fully conservative finite difference method for simulating Darcy-Forchheimer compressible wormhole propagation. Numer. Algorithms (2018). | MR

[15] X. Li, C.-W. Shu and Y. Yang, Local discontinuous Galerkin method for the Keller-Segel chemotaxis model. J. Sci. Comput. 73 (2017) 943–967. | MR | DOI

[16] M. Liu, S. Zhang, J. Mou and F. Zhou, Wormhole propagation behavior under reservoir condition in carbonate acidizing. Transp. Porous Media 96 (2013) 203–220. | DOI

[17] P. Maheshwari and V. Balakotaiah, 3D Simulation of Carbonate Acidization with HCl: Comparison with Experiments. Society of Petroleum Engineers (2013).

[18] S. Mauran, L. Rigaud and O. Coudevylle, Application of the carman-kozeny correlation to a highporosity and anisotropic consolidated medium: The compressed expanded natural graphite. Transp. Porous Media 43 (2001) 355–376. | DOI

[19] M. Panga and M. Ziauddin, Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 51 (2005) 3231–3248. | DOI

[20] A. Smirnov, K. Fedorov and A. Shevelev, Modeling the acidizing of a carbonate formation. Fluid Dyn. 45 (2010) 779–786. | Zbl | DOI

[21] P. Szymczak and A. Ladd, Wormhole formation in dissolving fractures. J. Gophys. Res. 114 (2009) B06203. | DOI

[22] L. Tian, H. Guo, R. Jia and Y. Yang, An h -adaptive local discontinuous galerkin method for simulating wormhole propagation with Darcy-Forcheiner model. J. Sci. Comput. 82 (2020) 43. | MR | DOI

[23] H. Wang, C.-W. Shu and Q. Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53 (2015) 206–227. | MR | DOI

[24] H. Wang, C.-W. Shu and Q. Zhang, Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272 (2016) 237–258. | MR

[25] H. Wang, S. Wang, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with implicit-explicit time marching for multi-dimensional convectiondiffusion problems. ESAIM: M2AN 50 (2016) 1083–1105. | MR | Numdam | DOI

[26] H. Wang, J. Zheng, F. Yu, H. Guo and Q. Zhang, Local Discontinuous Galerkin method with implicit-explicit time marching for incompressible miscible displacement problem in porous media. J. Sci. Comput. 78 (2018) 1–28. | MR | DOI

[27] H. Wang, Y. Liu, Q. Zhang and C.-W. Shu, Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow. Math. Comput. 88 (2019) 91–121. | MR | DOI

[28] H. Wang, Q. Zhang, S. Wang and C. W. Shu, Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Sci. China (Math.) 063 (2020) 183–204. | MR | DOI

[29] W. Wei, A. Varavei and K. Sepehrnoori, Modeling and analysis on the effect of two-phase flow on wormhole propagation in carbonate acidizing. SPE J. 22 (2017).

[30] Y. Wu, A. Salama and S. Sun, Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework. Comput. Geotech. 69 (2015) 564–577. | DOI

[31] Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205 (2005) 72–97. | MR | Zbl | DOI

[32] Y. Xu and C.-W. Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196 (2007) 3805–3822. | MR | Zbl | DOI

[33] Z. Xu, Y. Yang and H. Guo, High-Order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes. J. Comput. Phys. 390 (2019) 323–341. | MR | DOI

[34] J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17 (2002) 27–47. | MR | Zbl | DOI

[35] J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. | MR | Zbl | DOI

[36] F. Yu, H. Guo, N. Chuenjarern and Y. Yang, Conservative local discontinuous Galerkin method for compressible miscible displacements in porous media. J. Sci. Comput. 73 (2017) 1249–1275. | MR | DOI

[37] J. Zhang, X. Shen, H. Guo, H. Fu and H. Han, Characteristic splitting mixed finite element analysis of compressible wormhole propagation. Appl. Numer. Math. 147 (2020) 66–87. | MR | DOI

[38] C. Zhao, B. E. Hobbs, P. Hornb, A. Ord, S. Peng and L. Liu, Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int. J. Numer. Anal. Methods Geomech. 32 (2008) 1107–1130. | Zbl | DOI

Cité par Sources :