A non-conforming dual approach for adaptive Trust-Region reduced basis approximation of PDE-constrained parameter optimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1239-1269

In this contribution we propose and rigorously analyze new variants of adaptive Trust-Region methods for parameter optimization with PDE constraints and bilateral parameter constraints. The approach employs successively enriched Reduced Basis surrogate models that are constructed during the outer optimization loop and used as model function for the Trust-Region method. Each Trust-Region sub-problem is solved with the projected BFGS method. Moreover, we propose a non-conforming dual (NCD) approach to improve the standard RB approximation of the optimality system. Rigorous improved a posteriori error bounds are derived and used to prove convergence of the resulting NCD-corrected adaptive Trust-Region Reduced Basis algorithm. Numerical experiments demonstrate that this approach enables to reduce the computational demand for large scale or multi-scale PDE constrained optimization problems significantly.

DOI : 10.1051/m2an/2021019
Classification : 49M20, 49K20, 35J20, 65N30, 90C06
Keywords: PDE constrained optimization, Trust-Region method, error analysis, Reduced Basis method, model order reduction, parametrized systems, large scale problems
@article{M2AN_2021__55_3_1239_0,
     author = {Keil, Tim and Mechelli, Luca and Ohlberger, Mario and Schindler, Felix and Volkwein, Stefan},
     title = {A non-conforming dual approach for adaptive {Trust-Region} reduced basis approximation of {PDE-constrained} parameter optimization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1239--1269},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021019},
     mrnumber = {4269464},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021019/}
}
TY  - JOUR
AU  - Keil, Tim
AU  - Mechelli, Luca
AU  - Ohlberger, Mario
AU  - Schindler, Felix
AU  - Volkwein, Stefan
TI  - A non-conforming dual approach for adaptive Trust-Region reduced basis approximation of PDE-constrained parameter optimization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1239
EP  - 1269
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021019/
DO  - 10.1051/m2an/2021019
LA  - en
ID  - M2AN_2021__55_3_1239_0
ER  - 
%0 Journal Article
%A Keil, Tim
%A Mechelli, Luca
%A Ohlberger, Mario
%A Schindler, Felix
%A Volkwein, Stefan
%T A non-conforming dual approach for adaptive Trust-Region reduced basis approximation of PDE-constrained parameter optimization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1239-1269
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021019/
%R 10.1051/m2an/2021019
%G en
%F M2AN_2021__55_3_1239_0
Keil, Tim; Mechelli, Luca; Ohlberger, Mario; Schindler, Felix; Volkwein, Stefan. A non-conforming dual approach for adaptive Trust-Region reduced basis approximation of PDE-constrained parameter optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1239-1269. doi: 10.1051/m2an/2021019

[1] E. Arian, M. Fahl and E. W. Sachs, Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000). http://www.dtic.mil/docs/citations/ADA377382.

[2] M. Barrault, Y. Maday, N. C. Nguyen and A. T. Patera, An “empirical interpolation’’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. | MR | Zbl | DOI

[3] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J. Control Optim. 39 (2000) 113–132. | MR | Zbl | DOI

[4] O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44 (2009) 3–25. | MR | Zbl | DOI

[5] P. Benner, A. Cohen, M. Ohlberger and K. Willcox, editors. Model Reduction and Approximation. In: Vol. 15 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2017). Theory and algorithms. | Zbl

[6] P. Benner, M. Ohlberger, A. Patera, G. Rozza and K. Urban, editors. Model Reduction of Parametrized Systems. In: Vol. 17 of Modeling, Simulation and Applications. Springer-Verlag GmbH (2017). | MR

[7] M. Bergmann and L. Cordier, Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227 (2008) 7813–7840. | MR | Zbl | DOI

[8] M. Bernreuther, G. Müller and S. Volkwein, Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: To Appear in New Trends in PDE Constrained Optimization (2020). | MR

[9] P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. | MR | Zbl | DOI

[10] A. Buhr, C. Engwer, M. Ohlberger and S. Rave, A numerically stable a posteriori error estimator for reduced basis approximations of elliptic equations. In: 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014 (2014) 4094–4102.

[11] A. Buhr, C. Engwer, M. Ohlberger and S. Rave, ArbiLoMod, a simulation technique designed for arbitrary local modifications. SIAM J. Sci. Comput. 39 (2017) A1435–A1465. | MR | DOI

[12] E. Casas and F. Tröltzsch, Second order optimality conditions and their role in PDE control. Jahresber. Dtsch. Math. Ver. 117 (2015) 3–44. | MR | DOI

[13] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737–2764. | MR | Zbl | DOI

[14] X. Chen, S. Akella and I. M. Navon, A dual-weighted trust-region adaptive POD 4-D Var applied to a finite-volume shallow water equations model on the sphere. Int. J. Numer. Methods Fluids 68 (2012) 377–402. | MR | Zbl | DOI

[15] D. Clever, J. Lang, S. Ulbrich and C. Ziems, Generalized Multilevel SQP-methods for PDAE-constrained Optimization Based on Space-Time Adaptive PDAE Solvers. Springer Basel, Basel (2012) 51–74. | MR

[16] A. R. Conn, N. I. M. Gould and P. L. Toint, Trust Region Methods. MOS-SIAM Series on OptimizationSociety for Industrial and Applied Mathematics (2000). | MR | Zbl

[17] L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50 (2012) 287–305. | MR | Zbl | DOI

[18] M. A. Dihlmann and B. Haasdonk, Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput. Optim. App. 60 (2015) 753–787. | MR | DOI

[19] M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34 (2012) A937–A969. | MR | Zbl | DOI

[20] J. L. Eftang, A. T. Patera and E. M. Rønquist, An “ h p ” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. | MR | Zbl | DOI

[21] D. Garmatter, B. Haasdonk and B. Harrach, A reduced basis Landweber method for nonlinear inverse problems. Inverse Prob. 32 (2016) 035001. | MR | DOI

[22] C. Geuzaine and J.-F. Remacle, Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. | MR | Zbl | DOI

[23] C. Gräßle, M. Gubisch, S. Metzdorf, S. Rogg and S. Volkwein, POD basis updates for nonlinear PDE control. at – Automatisierungstechnik 65 (2017) 298–307. | DOI

[24] M. A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Math. Acad. Sci. Paris 349 (2011) 873–877. | MR | Zbl | DOI

[25] M. Gubisch and S. Volkwein, Proper orthogonal decomposition for linear-quadratic optimal control, edited by P. Benner, A. Cohen, M. Ohlberger and K. Willcox. In: Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA (2017) 3–63. | MR | DOI

[26] B. Haasdonk, Convergence rates of the POD-greedy method. ESAIM: M2AN 47 (2013) 859–873. | MR | Zbl | Numdam | DOI

[27] B. Haasdonk, Reduced basis methods for parametrized PDEs: a tutorial introduction for stationary and instationary problems. Model Reduction Approximation: Theory Algorithms 15 (2017) 65. | MR | DOI

[28] B. Haasdonk, M. Dihlmann and M. Ohlberger, A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17 (2011) 423–442. | MR | Zbl | DOI

[29] M. Heinkenschloss and L. N. Vicente, Analysis of inexact trust-region SQP algorithms. SIAM J. Optim. 12 (2002) 283–302. | MR | Zbl | DOI

[30] J. S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer International Publishing (2016). | MR | DOI

[31] C. Himpe and M. Ohlberger, Cross-gramian-based combined state and parameter reduction for large-scale control systems. Math. Probl. Eng. 13 (2014) 843869. | MR

[32] C. Himpe and M. Ohlberger, Data-driven combined state and parameter reduction for inverse problems. Adv. Comput. Math. 41 (2015) 1343–1364. | MR | DOI

[33] M. Hintermüller, M. Hinze and R. H. W. Hoppe, Weak-duality based adaptive finite element methods for PDE-constrained optimization with pointwise gradient state-constraints. J. Comput. Math. 30 (2012) 101–123. | MR | Zbl | DOI

[34] M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. App. 39 (2008) 319–345. | MR | Zbl | DOI

[35] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer, Netherlands (2009). | MR | Zbl

[36] D. B. P. Huynh, G. Rozza, S. Sen and A. T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants. C. R. Math. 345 (2007) 473–478. | MR | Zbl | DOI

[37] E. Kammann, F. Tröltzsch and S. Volkwein, A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. ESAIM: M2AN 47 (2013) 555–581. | MR | Zbl | Numdam | DOI

[38] M. Kärcher, Z. Tokoutsi, M. A. Grepl and K. Veroy, Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J. Sci. Comput. 75 (2018) 276–307. | MR | DOI

[39] T. Keil, L. Mechelli, M. Ohlberger, F. Schindler and S. Volkwein, Software for NCD corrected TR-RB approach for PDE constrained optimization. (2020). DOI: 10.5281/zenodo.3897230.

[40] C. T. Kelley, Iterative Methods for Optimization. Society for Industrial and Applied Mathematics (1999). | MR | Zbl | DOI

[41] C. Lieberman, K. Willcox and O. Ghattas, Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32 (2010) 2523–2542. | MR | Zbl | DOI

[42] W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math. 15 (2001) 285–309. | MR | Zbl | DOI

[43] R. Milk, S. Rave and F. Schindler, pyMOR – Generic Algorithms and Interfaces for Model Order Reduction. SIAM J. Sci. Comput. 38 (2016) S194–S216. | MR | DOI

[44] F. Negri, G. Rozza, A. Manzoni and A. Quateroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316–A2340. | MR | Zbl | DOI

[45] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). | MR | Zbl

[46] M. Ohlberger and F. Schindler, Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37 (2015) A2865–A2895. | MR | DOI

[47] M. Ohlberger and F. Schindler, Non-conforming localized model reduction with online enrichment: towards optimal complexity in PDE constrained optimization. In: Vol. 200 ofFinite Volumes for Complex Applications VIII– Hyperbolic, Elliptic and Parabolic Problems. Springer Proc. Math. Stat. Springer, Cham (2017) 357–365. | MR | DOI

[48] M. Ohlberger, M. Schaefer and F. Schindler, Localized model reduction in PDE constrained optimization. Int. Ser. Numer. Math. 169 (2018) 143–163. | MR | DOI

[49] I. B. Oliveira and A. T. Patera, Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Eng. 8 (2007) 43–65. | MR | Zbl | DOI

[50] E. Qian, M. Grepl, K. Veroy and K. Willcox, A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput. 39 (2017) S434–S460. | MR | Zbl | DOI

[51] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations, 1st edition. La Matematica per il 3+2. Springer International Publishing (2016). | MR | Zbl

[52] R. Rannacher, On the adaptive discretization of PDE-based optimization problems. In: PDE Constrained Optimization. Springer (2006).

[53] S. Rogg, S. Trenz and S. Volkwein, Trust-region POD using a-posteriori error estimation for semilinear parabolic optimal control problems. Konstanzer Schriften in Mathematik No. 359 (2017)http://nbn-resolving.de/urn:nbn:de:bsz:352-0-401106.

[54] A. Rösch and D. Wachsmuth, A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120 (2012) 733–762. | MR | Zbl | DOI

[55] G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2007) 1. | DOI

[56] E. W. Sachs and M. Schu, A-priori error estimates for reduced order models in finance. ESAIM: M2AN 47 (2013) 449–469. | MR | Numdam | DOI

[57] Y. Yue and K. Meerbergen, Accelerating optimization of parametric linear systems by model order reduction. SIAM J. Optim. 23 (2013) 1344–1370. | MR | Zbl | DOI

[58] M. J. Zahr and C. Farhat, Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Int. J. Numer. Methods Eng. 102 (2015) 1111–1135. | MR | Zbl | DOI

Cité par Sources :