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A NON-CONFORMING DUAL APPROACH FOR ADAPTIVE TRUST-REGION
REDUCED BASIS APPROXIMATION OF PDE-CONSTRAINED PARAMETER

OPTIMIZATION

Tim Keil1,*, Luca Mechelli2, Mario Ohlberger1, Felix Schindler1 and
Stefan Volkwein2

Abstract. In this contribution we propose and rigorously analyze new variants of adaptive Trust-
Region methods for parameter optimization with PDE constraints and bilateral parameter constraints.
The approach employs successively enriched Reduced Basis surrogate models that are constructed
during the outer optimization loop and used as model function for the Trust-Region method. Each
Trust-Region sub-problem is solved with the projected BFGS method. Moreover, we propose a non-
conforming dual (NCD) approach to improve the standard RB approximation of the optimality system.
Rigorous improved a posteriori error bounds are derived and used to prove convergence of the resulting
NCD-corrected adaptive Trust-Region Reduced Basis algorithm. Numerical experiments demonstrate
that this approach enables to reduce the computational demand for large scale or multi-scale PDE
constrained optimization problems significantly.
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1. Introduction

We are concerned with the development and rigorous analysis of novel efficient model order reduction meth-
ods for parameter optimization constrained by coercive variational state equations using the first optimize, then
discretize approach. The methods are based on successive enrichment of the underlying reduced order models
within the framework of Trust-Region optimization. Optimization problems constrained by partial differential
equations (PDEs) arise in many fields of application in engineering and across all sciences. Examples of such
problems include optimal (material) design or optimal control of processes and inverse problems, where parame-
ters of a PDE model are unknown and need to be estimated from measurements. The numerical solution of such
problems is very challenging as the underlying PDEs have to be solved repeatedly within outer optimization
algorithms and the dimension of the parameters that need to be optimized might be very high or even infinite
dimensional. PDE constrained optimization problems have been of interest for many decades. Classically, the
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underlying PDE (forward problem) is approximated by a high dimensional full order model (FOM) that results
from discretization, e.g., by the Finite Element or Finite Volume method. Hence, the complexity of the opti-
mization problem directly depends on the numbers of degrees of freedom (DOF) of the FOM. Mesh adaptivity
has been advised to minimize the number of DOFs; see, e.g., [3, 4, 15,33,42,54] and the references therein.

Model order reduction for PDE constrained optimization and optimal control

A more recent approach is the usage of model order reduction (MOR) methods in order to replace the FOM
by a surrogate reduced order model (ROM) of possibly very low dimension. MOR is a very active research
field that has seen tremendous development in recent years, both from a theoretical and application point of
view. For an introduction and overview we refer to the monographs and collections [5, 6, 30, 51]. A particular
promising model reduction approach for parameterized partial differential equations (pPDEs) is the Reduced
Basis (RB) method that relies on the approximation of the solution manifold of pPDEs by low dimensional
linear approximation spaces that are spanned from suitably selected particular solutions, called snapshots.
A posteriori error estimation for solutions of the ROM with respect to the FOM is the basis for efficient Greedy
algorithms to select the snapshots in a quasi-optimal way [9, 26]. Alternatively, construction of reduced bases
using proper orthogonal decomposition (POD) may be used [25]. The construction of a reduced basis and the
respective projected ROM is generally called the offline phase, whereas evaluating the ROM is called online
phase.

There exists a large amount of literature using such reduced order surrogate models for optimization meth-
ods. A posteriori error estimates for reduced approximation of linear-quadratic optimization problems and
parametrized optimal control problems with control constraints were studied, e.g., in [17,24,37,44,49]. In [18],
an RB approach is proposed which also enables an estimation on the actual error on the control variable and
not only on the gradient of the output functional. Certified Reduced Basis methods for parametrized elliptic
optimal control problems with distributed controls were studied in [38]. With the help of an a posteriori error
estimator, ROMs can be constructed with respect to a desired accuracy but also with respect to a local area in
the parameter set [20, 28]. For very high dimensional parameter sets, simultaneous parameter and state reduc-
tion has been advised [31,32,41]. However, constructing a reduced order surrogate for a prohibitively expensive
forward problem can also take a significant amount of computational resources. To remedy this, it is beneficial
to use optimization methods that optimize on a local level of the control variable, assuming the surrogate only
to be accurate enough in the respective parameter region. Hence, we require an approach which goes beyond the
classical offline/online decomposition. Recently, RB methods have been advised with a progressive construction
of ROMs [8, 21, 58]. Also localized RB methods that are based on efficient localized a posteriori error control
and online enrichment [11,46] overcome traditional offline/online splitting and are thus particularly well suited
for applications in optimization or inverse problems [47,48].

Trust-Region reduced order models for second-order methods

Trust-Region (TR) approaches are a class of optimization methods that are advantageous for the usage of
locally accurate surrogate models. The main idea is to solve optimization sub-problems only in a local area of
the parameter set which resolves the burden of constructing a global RB space. The problem that might occur
is the fact that during this minimization one usually moves away from the original parameters on which the
reduced order model was built, and the quality of the reduced model cannot be guaranteed anymore. For that
reason, a priori and a posteriori error analysis are required to ensure accurate reduced order approximations
for the optimization problem; cf. [25, 34, 37]. In [1, 56], a TR approach was proposed to control the quality of
the (POD) reduced order model, referred to as TR-POD, a meanwhile well-established method in applications;
cf. [7, 14].

TR methods ensure global convergence for locally convergent methods. In each iteration of the TR algorithm
the nonlinear objective is replaced by a model function which can be optimized with much less effort; cf. [16,45].
One suitable choice for the model is a reduced order discretization of the objective (e.g., by utilizing a second-
order Taylor approximation). To ensure convergence to stationary points the accuracy of the model function and
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of its gradient have to be monitored. In [53], a posteriori error bounds are utilized to monitor the approximation
quality of the gradient. We also refer to [23], where the authors utilize basis update strategies to improve the
reduced order approximation scheme with respect to the optimization goal. The TR strategy can be combined
with second-order methods for nonlinear optimization: with the Newton method to solve the reduced problem
and with the SQP method for the all-at-once approach; cf. [29].

Constraints on the control and the metric for the Trust-Region radius can affect the convergence of the
method. For an error-aware TR method, the TR radius is directly characterized by the a posteriori error
estimator for the cost functional of the surrogate model. Thus, the offline phase of the RB method can completely
be omitted since the RB model can be adaptively enriched during the outer optimization loop. With this
procedure the surrogate model eventually will have a high accuracy around the optimum of the optimization
problem, ignoring the accuracy of the part which the outer (and inner) optimization loop does not approach
at all. Error aware TR-RB methods can be utilized in many different ways. One possible TR-RB approach
has been extensively studied in [50] for linear parametric elliptic equations, which ensures convergence of the
nonlocal TR-RB. Note that the experiments in [50] are for up to six dimensional parameter sets without
inequality constraints. In [57], the TR framework is combined with an efficient RB error bound for defining the
Trust-Region in the design optimization of vibrating structures using frequency domain formulations.

Main results

In this contribution we present several significant advances for adaptive Trust-Region Reduced Basis opti-
mization methods for parameterized partial differential equations:

– For the model function in the TR-RB approach, we follow a non-conforming dual (NCD) approach by
choosing as model function the Lagrangian associated to the optimization problem. This permits more
accurate results in terms of approximation of the optimal solution;

– we provide efficiently computable a posteriori error estimates for all reduced quantities for different choices
of the cost functional and its (approximate) gradient;

– we rigorously prove the convergence of the TR-RB method with bilateral inequality constraints on the
parameters;

– we devise several new adaptive enrichment strategies for the progressive construction of the Reduced Basis
spaces;

– we demonstrate in numerical experiments that our new TR-RB methods outperform existing model reduction
approaches for large scale optimization problems in well defined benchmark problems.

Organization of the article

In Section 2, we introduce the PDE constrained optimization problem and state first- and second-order
optimality conditions. These serve as a basis for the full order discretization derived in Section 3. Moreover, in
Section 3 we introduce different strategies of model order reduction for the full order model and derive rigorous
a posteriori error estimates for all equations, functionals, and gradient information. Section 4 is devoted to the
derivation of Trust-Region – Reduced Basis methods and the presentation of the convergence analysis of the
adaptive TR-RB algorithm. In addition, we discuss in detail several variants of new TR-RB algorithms that
differ in their respective reduced gradient information as well as in the enrichment strategies for the construction
of the corresponding reduced models. All variants are thoroughly analyzed numerically in Section 5, where we
consider three well defined benchmark problems. We also compare with selected state of the art optimization
methods from the literature.

2. Problem formulation

Given 𝜇a, 𝜇b ∈ R𝑃 with 𝑃 ∈ N we consider the compact and convex admissible parameter set

𝒫 :=
{︀
𝜇 ∈ R𝑃 |𝜇a ≤ 𝜇 ≤ 𝜇b

}︀
⊂ R𝑃 ,
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where ≤ is understood component-wise. Let 𝑉 be a real-valued Hilbert space with inner product (· , ·) and
induced norm ‖ · ‖. We are interested in efficiently approximating PDE-constrained parameter optimization
problems with the quadratic continuous cost functional

𝒥 : 𝑉 × 𝒫 → R, (𝑢, 𝜇) ↦→ 𝒥 (𝑢, 𝜇) = Θ(𝜇) + 𝑗𝜇(𝑢) + 𝑘𝜇(𝑢, 𝑢),

where Θ : 𝒫 → R denotes a parameter function and, for each 𝜇 ∈ 𝒫, 𝑗𝜇 ∈ 𝑉 ′ is a parameter-dependent
continuous linear functional and 𝑘𝜇 : 𝑉 × 𝑉 → R a continuous symmetric bilinear form. To be more precise, we
consider the following constrained minimization problem:

min
(𝑢,𝜇)∈𝑉×𝒫

𝒥 (𝑢, 𝜇), (P.a)

subject to (𝑢, 𝜇) satisfying the state – or primal – equation

𝑎𝜇(𝑢, 𝑣) = 𝑙𝜇(𝑣) for all 𝑣 ∈ 𝑉, (P.b)

where, for each 𝜇 ∈ 𝒫, 𝑎𝜇 : 𝑉 × 𝑉 → R denotes a continuous and coercive bilinear form and 𝑙𝜇 ∈ 𝑉 ′ denotes a
continuous linear functional. For given 𝑢 ∈ 𝑉 , 𝜇 ∈ 𝒫, we introduce the primal residual 𝑟pr

𝜇 (𝑢) ∈ 𝑉 ′ associated
with (P.b) by

𝑟pr
𝜇 (𝑢)[𝑣] := 𝑙𝜇(𝑣)− 𝑎𝜇(𝑢, 𝑣) for all 𝑣 ∈ 𝑉. (2.1)

The primal residual plays a crucial role for a posteriori error analysis and for sensitivities of solution maps.

Remark 2.1. The Lagrange functional for (P) is given by ℒ(𝑢, 𝜇, 𝑝) = 𝒥 (𝑢, 𝜇) + 𝑟pr
𝜇 (𝑢)[𝑝] for (𝑢, 𝜇) ∈ 𝑉 × 𝒫

and for 𝑝 ∈ 𝑉 .

To apply RB methods efficiently, we require the parametrization of the problem to be separable from 𝑉
throughout the work. This separability is a standard assumption for RB methods and can be circumvented by
using empirical interpolation techniques [2, 13,19].

Assumption 2.2 (Parameter-separability). We assume 𝑎𝜇, 𝑙𝜇, 𝑗𝜇, 𝑘𝜇 to be parameter separable with
Ξ𝑎, Ξ𝑙, Ξ𝑗 , Ξ𝑘 ∈ N non-parametric components 𝑎𝜉 : 𝑉 × 𝑉 → R for 1 ≤ 𝜉 ≤ Ξ𝑎, 𝑙𝜉 ∈ 𝑉 ′ for 1 ≤ 𝜉 ≤ Ξ𝑙, 𝑗𝜉 ∈ 𝑉 ′

for 1 ≤ 𝜉 ≤ Ξ𝑗 and 𝑘𝜉 : 𝑉 × 𝑉 → R for 1 ≤ 𝜉 ≤ Ξ𝑘, and respective parameter functions 𝜃𝑎
𝜉 , 𝜃𝑙

𝜉, 𝜃
𝑗
𝜉 , 𝜃

𝑘
𝜉 : 𝒫 → R,

such that

𝑎𝜇(𝑢, 𝑣) =
Ξ𝑎∑︁
𝑖=1

𝜃𝑎
𝑖 (𝜇) 𝑎𝑖(𝑢, 𝑣), 𝑙𝜇(𝑣) =

Ξ𝑙∑︁
𝑖=1

𝜃𝑙
𝑖(𝜇) 𝑙𝑖(𝑣),

and analogously for 𝑗𝜇 and 𝑘𝜇.

Due to Assumption 2.2, all quantities which linearly depend on 𝑎𝜇, 𝑙𝜇, 𝑗𝜇 and 𝑘𝜇 (such as 𝒥 or the pri-
mal residual) are also separable w.r.t. the parameter. Since we will use a Lagrangian ansatz for an explicit
computation of derivatives, we require some notation that we use throughout this paper.

2.1. A note on differentiability

If 𝒥 : 𝑉 × 𝒫 → R is Fréchet differentiable w.r.t. each 𝜇 ∈ 𝒫, for each 𝑢 ∈ 𝑉 and each 𝜇 ∈ 𝒫 there exists
a bounded linear functional 𝜕𝜇𝒥 (𝑢, 𝜇) ∈ R𝑃 , such that the Fréchet derivative of 𝒥 w.r.t. its second argument
in the direction of 𝜈 ∈ R𝑃 is given by 𝜕𝜇𝒥 (𝑢, 𝜇) · 𝜈 (noting that the dual space of R𝑃 is itself). We refer to
𝜕𝜇𝒥 (𝑢, 𝜇) as the derivative w.r.t. 𝜇. In addition, for 𝑢 ∈ 𝑉 , 𝜇 ∈ 𝒫 we denote the partial derivative of 𝒥 (𝑢, 𝜇)
w.r.t. the 𝑖th component of 𝜇 by 𝜕𝜇𝑖

𝒥 (𝑢, 𝜇) for 1 ≤ 𝑖 ≤ 𝑃 . Note that 𝜕𝜇𝑖
𝒥 (𝑢, 𝜇) = 𝜕𝜇𝒥 (𝑢, 𝜇) ·𝑒𝑖, where 𝑒𝑖 ∈ R𝑃

denotes the 𝑖th canonical unit vector. Furthermore, we denote the gradient w.r.t. its second argument – the
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vector of components 𝜕𝜇𝑖
𝒥 (𝑢, 𝜇) – by the operator ∇𝜇𝒥 : 𝑉 ×𝒫 → R𝑃 . Similarly, if 𝒥 is Fréchet differentiable

w.r.t. each 𝑢 ∈ 𝑉 , for each 𝑢 ∈ 𝑉 and each 𝜇 ∈ 𝒫 there exists a bounded linear functional 𝜕𝑢𝒥 (𝑢, 𝜇) ∈ 𝑉 ′, such
that the Fréchet derivative of 𝒥 w.r.t. its first argument in any direction 𝑣 ∈ 𝑉 is given by 𝜕𝑢𝒥 (𝑢, 𝜇)[𝑣]. We
refer to 𝜕𝑢𝒥 (𝑢, 𝜇) simply as the derivative w.r.t. 𝑢. If 𝒥 is twice Fréchet differentiable w.r.t. each 𝜇 ∈ 𝒫, we
denote its hessian w.r.t. its second argument by the operator ℋ𝜇𝒥 : 𝑉 × 𝒫 → R𝑃×𝑃 .

We treat 𝑎, 𝑙, 𝑗 and 𝑘 in a similar manner, although, for notational compactness, we indicate their parameter-
dependency differently. For instance, interpreting the bilinear form 𝑎 as a map 𝑎 : 𝑉 × 𝑉 ×𝒫 → R, (𝑢, 𝑣, 𝜇) ↦→
𝑎𝜇(𝑢, 𝑣), we denote the Fréchet derivatives of 𝑎 w.r.t. the first, second and third argument of said map in the
direction of 𝑤 ∈ 𝑉 , 𝜈 ∈ R𝑃 by 𝜕𝑢𝑎𝜇(𝑢, 𝑣)[𝑤] ∈ R, 𝜕𝑣𝑎𝜇(𝑢, 𝑣)[𝑤] ∈ R and 𝜕𝜇𝑎𝜇(𝑢, 𝑣)·𝜈 ∈ R, respectively. Similarly,
interpreting the linear functional 𝑙 as a map 𝑙 : 𝑉 × 𝒫 → R, (𝑣, 𝜇) ↦→ 𝑙𝜇(𝑣), we denote the Fréchet derivatives
of 𝑙 w.r.t. the first and second argument of said map in the direction of 𝑤 ∈ 𝑉 , 𝜈 ∈ R𝑃 by 𝜕𝑣𝑙𝜇(𝑣)[𝑤] ∈ R and
𝜕𝜇𝑙𝜇(𝑣) · 𝜈 ∈ R, respectively. We omit the word Fréchet when referring to the derivatives of 𝒥 , 𝑎, 𝑙, 𝑗 and 𝑘, in
order to simplify the notation, unless it is strictly necessary to specify it.

We apply this notation for Fréchet and partial derivatives for functionals and bilinear forms throughout this
manuscript. Note that we denote the derivatives w.r.t. the symbol of the argument in the original definition
of the functional or bilinear form, not w.r.t. the symbol of the actual argument, i.e., we use 𝜕𝑢𝒥 (𝑢𝜇, 𝜇) for
the derivative w.r.t. the first argument, not 𝜕𝑢𝜇𝒥 (𝑢𝜇, 𝜇) or 𝜕𝑣𝑎𝜇(𝑢, 𝑝) for the derivative w.r.t. the second
argument, not 𝜕𝑝𝑎𝜇(𝑢, 𝑝). In case 𝑢 is also dependent on 𝜇, we denote the total derivative w.r.t. 𝜇𝑖 by 𝑑𝜇𝑖

, i.e.,
𝑑𝜇𝑖𝒥 (𝑢𝜇, 𝜇) = 𝜕𝜇𝑖𝒥 (𝑢𝜇, 𝜇) + 𝜕𝑢𝒥 (𝑢𝜇, 𝜇)[𝑑𝜇𝑖𝑢𝜇]. Note also that, due to Assumption 2.2, we can exchange the
order of differentiation w.r.t. 𝑉 and R𝑃 , i.e., 𝜕𝑢

(︀
𝜕𝜇𝒥 (𝑢, 𝜇) · 𝜈

)︀
[𝑤] = 𝜕𝜇

(︀
𝜕𝑢𝒥 (𝑢, 𝜇)[𝑤]

)︀
· 𝜈.

Assumption 2.3 (Differentiability of 𝑎, 𝑙 and 𝒥 ). We assume 𝑎𝜇, 𝑙𝜇 and 𝒥 to be twice Fréchet differentiable
w.r.t. 𝜇. This obviously requires that all parameter-dependent coefficient functions in Assumption 2.2 are twice
differentiable as well.

Remark 2.4 (Derivatives w.r.t. 𝑉 ). Due to the (bi-)linearity of 𝑎, 𝑙, 𝑗 and 𝑘, we can immediately compute
their derivatives w.r.t. arguments in 𝑉 . For 𝑢, 𝑣 ∈ 𝑉 , 𝜇 ∈ 𝒫, the derivatives of 𝑎, 𝑙 and 𝒥 w.r.t. arguments in
𝑉 in the direction of 𝑤 ∈ 𝑉 are given, respectively, by

𝜕𝑢𝑎𝜇(𝑢, 𝑣)[𝑤] = 𝑎𝜇(𝑤, 𝑣), 𝜕𝑣𝑎𝜇(𝑢, 𝑣)[𝑤] = 𝑎𝜇(𝑢, 𝑤), 𝜕𝑣𝑙𝜇(𝑣)[𝑤] = 𝑙𝜇(𝑤), 𝜕𝑢𝒥 (𝑢, 𝜇)[𝑤] = 𝑗𝜇(𝑤)+2𝑘𝜇(𝑤, 𝑢).

We compute the partial derivatives of 𝑎 and 𝑙 w.r.t. the parameter by means of their separable decomposition.

Remark 2.5 (Derivatives w.r.t. 𝒫). For 𝜇 ∈ 𝒫, 𝑢, 𝑣,∈ 𝑉 the derivatives of 𝑎 and 𝑙 w.r.t. 𝜇 in the direction of
𝜈 ∈ R𝑃 are given by

𝜕𝜇𝑎𝜇(𝑢, 𝑣) · 𝜈 =
Ξ𝑎∑︁
𝜉=1

(︀
𝜕𝜇𝜃𝑎

𝜉 (𝜇) · 𝜈
)︀
𝑎𝜉(𝑢, 𝑣) and 𝜕𝜇𝑙𝜇(𝑣) · 𝜈 =

Ξ𝑙∑︁
𝜉=1

(︀
𝜕𝜇𝜃𝑙

𝜉(𝜇) · 𝜈
)︀
𝑙𝜉(𝑣),

respectively, if 𝑢, 𝑣 do not depend on 𝜇. We also introduce the following shorthand notation for the derivative
of functionals and bilinear forms w.r.t. the parameter in the direction of 𝜈 ∈ R𝑃 , e.g., for 𝜇 ∈ 𝒫 we introduce

𝜕𝜇𝑙𝜇 · 𝜈 ∈ 𝑉 ′ 𝑣 ↦→
(︀
𝜕𝜇𝑙𝜇 · 𝜈

)︀
(𝑣) := 𝜕𝜇𝑙𝜇(𝑣) · 𝜈 and

𝜕𝜇𝑎𝜇 · 𝜈 ∈ 𝑉 × 𝑉 → R 𝑢, 𝑣 ↦→
(︀
𝜕𝜇𝑎𝜇 · 𝜈

)︀
(𝑢, 𝑣) := 𝜕𝜇𝑎𝜇(𝑢, 𝑣) · 𝜈,

and note that 𝜕𝜇𝑙𝜇 and 𝜕𝜇𝑎𝜇 are continuous and separable w.r.t. the parameter, owing to Assumption 2.2.

The bilinear form 𝑎𝜇(·, ·) is continuous and coercive for all 𝜇 ∈ 𝒫. Thus we can define the bounded solution
map 𝒮 : 𝒫 → 𝑉 , 𝜇 ↦→ 𝑢𝜇 := 𝒮(𝜇), where 𝑢𝜇 is the unique solution to (P.b) for a given 𝜇. The Fréchet derivatives
of 𝒮 are a common tool for RB methods and optimization, e.g., for constructing Taylor RB spaces that consist
of the primal solution as well as their sensitivities (see [27]) or for deriving optimality conditions for (P) (see
[35]).
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Proposition 2.6 (Fréchet derivative of the solution map). Considering the solution map 𝒮 : 𝒫 → 𝑉 , 𝜇 ↦→ 𝑢𝜇,
its Fréchet derivative 𝑑𝜈𝑢𝜇 ∈ 𝑉 w.r.t. a direction 𝜈 ∈ R𝑃 is the unique solution of

𝑎𝜇(𝑑𝜈𝑢𝜇, 𝑣) = 𝜕𝜇𝑟pr
𝜇 (𝑢𝜇)[𝑣] · 𝜈 for all 𝑣 ∈ 𝑉. (2.2)

Proof. We refer to [35] for the proof of this result. �

2.2. Optimal solution and optimality conditions

In this section, we discuss the existence of an optimal solution for problem (P). Then, we characterize a
locally optimal solution through first- and second-order optimality conditions. Throughout the paper, a bar
indicates optimality.

Theorem 2.7 (Existence of an optimal solution). Problem (P) admits an optimal solution pair (𝑢̄, 𝜇̄) ∈ 𝑉 ×𝒫,
where 𝑢̄ := 𝑢𝜇̄ is the solution of (P.b) for the parameter 𝜇̄.

Proof. Note that the quantities involved in problem (P) satisfies Assumption 1.44 in [35]. Thus the existence
follows from Theorem 1.45 of [35]. �

Let us introduce the reduced cost functional 𝒥 : 𝒫 ↦→ R, 𝜇 ↦→ 𝒥 (𝜇) := 𝒥 (𝑢𝜇, 𝜇) = 𝒥 (𝒮(𝜇), 𝜇). Then problem
(P) is equivalent to the so-called reduced problem

min
𝜇∈𝒫

𝒥 (𝜇). (P̂)

Remark 2.8. (1) Since 𝑟pr
𝜇 (𝑢𝜇)[𝑝] = 0 for any 𝑝 ∈ 𝑉 , it follows that 𝒥 (𝜇) = ℒ(𝑢𝜇, 𝜇, 𝑝) for any 𝑝 ∈ 𝑉 .

(2) The cost functional 𝒥 is in general non-convex, thus the existence of a unique minimum for 𝒥 (and thus
of 𝒥 ) can not be guaranteed.

(3) Let (𝑢̄, 𝜇̄) ∈ 𝑉 ×𝒫 be a local optimal solution to (P) with 𝑢̄ := 𝑢𝜇̄ the solution of the primal equation (P.b)
for the parameter 𝜇̄. Then the following constraint qualification holds true: For any 𝑓 ∈ 𝑉 ′ there exists a
pair (𝑢, 𝜇) ∈ 𝑉 × R𝑃 solving

𝑎𝜇̄(𝑢, 𝑣)− 𝜕𝜇𝑟pr
𝜇̄ (𝑢̄)[𝑣] · 𝜇 = 𝑓(𝑣) for all 𝑣 ∈ 𝑉.

(4) Theorem 2.7 does not provide any solution method.

One can derive first-order necessary optimality conditions in order to compute candidates for a local optimal
solution of (P). We refer to Corollary 1.3 of [35] for a proof of the following result:

Proposition 2.9 (First-order necessary optimality conditions for (P)). Let (𝑢̄, 𝜇̄) ∈ 𝑉 × 𝒫 be a local optimal
solution to (P). Moreover, let Assumption 2.3 hold true. Then there exists a unique Lagrange multiplier 𝑝 ∈ 𝑉
such that the following first-order necessary optimality conditions hold:

𝑟pr
𝜇̄ (𝑢̄)[𝑣] = 0 for all 𝑣 ∈ 𝑉, (2.3a)

𝜕𝑢𝒥 (𝑢̄, 𝜇̄)[𝑣]− 𝑎𝜇̄(𝑣, 𝑝) = 0 for all 𝑣 ∈ 𝑉, (2.3b)
(∇𝜇𝒥 (𝑢̄, 𝜇̄) +∇𝜇𝑟pr

𝜇̄ (𝑢̄)[𝑝]) · (𝜈 − 𝜇̄) ≥ 0 for all 𝜈 ∈ 𝒫. (2.3c)

Note that (2.3a) resembles the state equation (P.b). From (2.3b) we deduce the adjoint – or dual – equation
with unique solution 𝑝𝜇 ∈ 𝑉 for a fixed 𝜇 ∈ 𝒫, i.e.,

𝑎𝜇(𝑣, 𝑝𝜇) = 𝜕𝑢𝒥 (𝑢𝜇, 𝜇)[𝑣] = 𝑗𝜇(𝑣) + 2𝑘𝜇(𝑣, 𝑢𝜇) for all 𝑣 ∈ 𝑉, (2.4)

given the solution 𝑢𝜇 ∈ 𝑉 to the state equation (P.b). From (2.3b) we observe that the variable 𝑝 of the optimal
triple solves the dual equation (2.4) for 𝜇̄. Similarly to the primal solution, we can consider the dual solution
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map 𝒜 : 𝒫 → 𝑉 , 𝜇 ↦→ 𝒜(𝜇) := 𝑝𝜇, where 𝑝𝜇 is the solution of (2.4) for the parameter 𝜇. In particular, 𝑝 = 𝑝𝜇̄.
For given 𝑢, 𝑝 ∈ 𝑉 , we also introduce the dual residual 𝑟du

𝜇 (𝑢, 𝑝) ∈ 𝑉 ′ associated with (2.4) by

𝑟du
𝜇 (𝑢, 𝑝)[𝑣] := 𝑗𝜇(𝑣) + 2𝑘𝜇(𝑣, 𝑢)− 𝑎𝜇(𝑣, 𝑝) for all 𝑣 ∈ 𝑉. (2.5)

In addition, from the dual equation (2.4), we obtain the following formulation for the dual sensitivities.

Proposition 2.10 (Fréchet derivative of the dual solution map). Considering the dual solution map 𝒜 : 𝒫 → 𝑉 ,
𝜇 ↦→ 𝑝𝜇, its directional derivative 𝑑𝜂𝑝𝜇 ∈ 𝑉 w.r.t. a direction 𝜂 ∈ 𝒫 is the solution of

𝑎𝜇(𝑞, 𝑑𝜂𝑝𝜇) = −𝜕𝜇𝑎𝜇(𝑞, 𝑝𝜇) · 𝜂 + 𝑑𝜇𝜕𝑢𝒥 (𝑢𝜇, 𝜇)[𝑞] · 𝜂 = 𝜕𝜇𝑟du
𝜇 (𝑢𝜇, 𝑝𝜇)[𝑞] · 𝜂 + 2𝑘𝜇(𝑞, 𝑑𝜂𝑢𝜇) (2.6)

for all 𝑞 ∈ 𝑉 , where the latter equality holds for quadratic 𝒥 as in (P.a).

Proof. Note that 𝒜 is well defined because the bilinear form 𝑎𝜇(· , ·) is continuous and coercive. For a proof of
the other claims we refer to [35], for instance. �

Furthermore, we can compute first-order derivatives of 𝒥 .

Proposition 2.11 (Gradient of 𝒥 ). For given 𝜇 ∈ 𝒫, the gradient of 𝒥 , ∇𝜇𝒥 : 𝒫 → R𝑃 , is given by

∇𝜇𝒥 (𝜇) = ∇𝜇𝒥 (𝑢𝜇, 𝜇) +∇𝜇𝑟pr
𝜇 (𝑢𝜇)[𝑝𝜇] = ∇𝜇Θ(𝜇) +∇𝜇𝑗𝜇(𝑢𝜇) +∇𝜇𝑘𝜇(𝑢𝜇, 𝑢𝜇) +∇𝜇𝑙𝜇(𝑝𝜇)−∇𝜇𝑎𝜇(𝑢𝜇, 𝑝𝜇).

Proof. This follows from (2.1), (2.2), (2.4) and (P.a), cf. [35]. �

Remark 2.12. The proof of Proposition 2.11 relies on the fact that both 𝑢𝜇 and 𝑝𝜇 belong to the same space
𝑉 ; cf. [35]. In particular, for any 𝜇 ∈ 𝒫, we have ∇𝜇𝒥 (𝜇) = ∇𝜇ℒ(𝑢𝜇, 𝜇, 𝑝𝜇).

For 𝜇̄ satisfying the first-order necessary optimality conditions, we have that 𝜇̄ is a stationary point of the cost
functional 𝒥 . Thus, 𝜇̄ can be either a local minimum, a saddle point or a local maximum of the cost functional
𝒥 (and obviously the same relationship occurs between (𝑢̄, 𝜇̄) and 𝒥 ). We thus consider second-order sufficient
optimality conditions in order to characterize local minima of the functional 𝒥 , requiring its hessian.

Proposition 2.13 (Hessian of 𝒥 ). The hessian of 𝒥 , ℋ̂𝜇 := ℋ𝜇𝒥 : 𝒫 → R𝑃×𝑃 , is determined by its application
to a direction 𝜈 ∈ R𝑃 , given by

ℋ̂𝜇(𝜇) · 𝜈 = ∇𝜇

(︁
𝜕𝑢𝒥 (𝑢𝜇, 𝜇)[𝑑𝜈𝑢𝜇] + 𝑙𝜇(𝑑𝜈𝑝𝜇)− 𝑎𝜇(𝑑𝜈𝑢𝜇, 𝑝𝜇)− 𝑎𝜇(𝑢𝜇, 𝑑𝜈𝑝𝜇)

+
(︀
𝜕𝜇𝒥 (𝑢𝜇, 𝜇) + 𝜕𝜇𝑙𝜇(𝑝𝜇)− 𝜕𝜇𝑎𝜇(𝑢𝜇, 𝑝𝜇)

)︀
· 𝜈

)︁
,

where 𝑢𝜇, 𝑝𝜇 ∈ 𝑉 denote the primal and dual solutions, respectively. For a quadratic 𝒥 as in (P.a) the above
formula simplifies to

ℋ̂𝜇(𝜇) · 𝜈 = ∇𝜇

(︁
𝑗𝜇(𝑑𝜈𝑢𝜇) + 2𝑘𝜇(𝑑𝜈𝑢𝜇, 𝑢𝜇) + 𝑙𝜇(𝑑𝜈𝑝𝜇)− 𝑎𝜇(𝑑𝜈𝑢𝜇, 𝑝𝜇)− 𝑎𝜇(𝑢𝜇, 𝑑𝜈𝑝𝜇)

+
(︀
𝜕𝜇𝒥 (𝑢𝜇, 𝜇) + 𝜕𝜇𝑙𝜇(𝑝𝜇)− 𝜕𝜇𝑎𝜇(𝑢𝜇, 𝑝𝜇)

)︀
· 𝜈

)︁
.

Proof. See, e.g., [35] for the first part. The second one follows from Remark 2.4. �

Proposition 2.14 (Second-order sufficient optimality conditions). Let Assumption 2.3 hold true. Suppose that
𝜇̄ ∈ 𝒫 satisfies the first-order necessary optimality conditions (2.3). If ℋ̂𝜇(𝜇̄) is positive definite on the critical
cone 𝒞(𝜇̄) at 𝜇̄ ∈ 𝒫, i.e., if 𝜈 · (ℋ̂𝜇(𝜇̄) · 𝜈) > 0 for all 𝜈 ∈ 𝒞(𝜇̄) ∖ {0}, with

𝒞(𝜇̄) :=
{︀
𝜈 ∈ R𝑃

⃒⃒
∃𝜇 ∈ 𝒫, 𝑐1 > 0 : 𝜈 = 𝑐1(𝜇− 𝜇̄), ∇𝜇𝒥 (𝜇̄) · 𝜈 = 0

}︀
,

then 𝜇̄ is a strict local minimum of (P̂).

Proof. For this result we refer to [12,45], for instance. �
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3. High dimensional discretization and model order reduction

We first discretize the optimization problem (P) as well as the corresponding optimality conditions using
the classical Ritz–Galerkin projection onto a possibly high dimensional approximation space 𝑉ℎ ⊂ 𝑉 , such as
conforming Finite Elements. Note that we restrict ourselves to a conforming approximation for simplicity and
that we do not further specify the choice of 𝑉ℎ, as neither impacts the analysis below. Based on this idea,
we then derive different ways for the ROM using the Reduced Basis method with possibly different reduced
primal and dual state spaces. Thus, the resulting ROM optimality system will in general not be equivalent to
a Ritz–Galerkin projection of the FOM one onto a reduced space 𝑉𝑟 ⊂ 𝑉ℎ. For this reason, we will introduce a
non-conforming dual-corrected (NCD-corrected) approach; cf. Section 3.3.

3.1. FOM for the optimality system

For the discretization of the optimization problem we assume that a finite-dimensional subspace 𝑉ℎ ⊂ 𝑉 is
given and obtain the FOM for the optimality system of (P) by Ritz–Galerkin projection of equations (2.3) onto
𝑉ℎ. In particular, we have for each 𝜇 ∈ 𝒫 the solution 𝑢ℎ,𝜇 ∈ 𝑉ℎ of the discrete primal equation

𝑎𝜇(𝑢ℎ,𝜇, 𝑣ℎ) = 𝑙𝜇(𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ, (3.1)

and hence 𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑣ℎ] = 0 for all 𝑣ℎ ∈ 𝑉ℎ, 𝜇 ∈ 𝒫. We also have for each 𝜇 ∈ 𝒫 the solution 𝑝ℎ,𝜇 ∈ 𝑉ℎ of the

discrete dual equation

𝑎𝜇(𝑣ℎ, 𝑝ℎ,𝜇) = 𝜕𝑢𝒥 (𝑢ℎ,𝜇, 𝜇)[𝑣ℎ] = 𝑗𝜇(𝑣ℎ) + 2𝑘𝜇(𝑣ℎ, 𝑢ℎ,𝜇) for all 𝑣ℎ ∈ 𝑉ℎ, (3.2)

and hence 𝑟du
𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇) [𝑣ℎ] = 0 for all 𝑣ℎ ∈ 𝑉ℎ, 𝜇 ∈ 𝒫. Similarly, the discrete primal sensitivity equations for

solving for 𝑑𝜈𝑢ℎ,𝜇 ∈ 𝑉ℎ as well as discrete dual sensitivity equations for solving for 𝑑𝜈𝑝ℎ,𝜇 ∈ 𝑉ℎ at any direction
𝜈 ∈ R𝑃 follow analogously to Propositions 2.6 and 2.10. Furthermore, 𝒥 is approximated by the discrete reduced
functional

𝒥ℎ(𝜇) := 𝒥 (𝑢ℎ,𝜇, 𝜇) = ℒ(𝑢ℎ,𝜇, 𝜇, 𝑝ℎ) for all 𝑝ℎ ∈ 𝑉ℎ, (3.3)

where 𝑢ℎ,𝜇 ∈ 𝑉ℎ is the solution of (3.1) and we formulate the discrete optimization problem

min
𝜇∈𝒫

𝒥ℎ(𝜇). (P̂ℎ)

Further, 𝜇̄ℎ denotes a locally optimal solution to (P̂ℎ) satisfying the first- and second-order optimality conditions.

Remark 3.1. Since 𝑢ℎ,𝜇 and 𝑝ℎ,𝜇 belong to the same space 𝑉ℎ, Propositions 2.9–2.11, 2.13, 2.14 from Section 3.1
hold for the FOM as well, with all quantities replaced by their discrete counterparts.

As usual in the context of RB methods, we eliminate the issue of “truth” by assuming that the high dimen-
sional space 𝑉ℎ is accurate enough to approximate the true solution.

Assumption 3.2 (This is the “truth”). We assume that the primal discretization error ‖𝑢𝜇 − 𝑢ℎ,𝜇‖, the dual
error ‖𝑝𝜇−𝑝ℎ,𝜇‖, the primal sensitivity errors ‖𝑑𝜇𝑖

𝑢𝜇−𝑑𝜇𝑖
𝑢ℎ,𝜇‖ and the dual sensitivity errors ‖𝑑𝜇𝑖

𝑝𝜇−𝑑𝜇𝑖
𝑝ℎ,𝜇‖

are negligible for all 𝜇 ∈ 𝒫, 1 ≤ 𝑖 ≤ 𝑃 .

To define suitable ROMs, in what follows, we assume we are given problem adapted RB spaces 𝑉 pr
𝑟 , 𝑉 du

𝑟 ⊂ 𝑉ℎ,
the construction of which is detailed in Section 4.3. We stress here that 𝑉 pr

𝑟 and 𝑉 du
𝑟 might not coincide, which

will imply further discussions of the RB approximation of the optimality system (2.3).
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3.2. ROM for the optimality system – Standard approach

Given a RB space 𝑉 pr
𝑟 ⊂ 𝑉ℎ of low dimension 𝑛 := dim 𝑉 pr

𝑟 and dual RB space 𝑉 du
𝑟 ⊂ 𝑉ℎ of low dimension

𝑚 := dim 𝑉 du
𝑟 , we obtain the RB approximation of state and adjoint equations as follows:

– RB approximation for (2.3a): For each 𝜇 ∈ 𝒫 the primal variable 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 of the RB approximate primal

equation is defined through

𝑎𝜇(𝑢𝑟,𝜇, 𝑣𝑟) = 𝑙𝜇(𝑣𝑟) for all 𝑣𝑟 ∈ 𝑉 pr
𝑟 . (3.4a)

– RB approximation for (2.3b): For each 𝜇 ∈ 𝒫, 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 the dual/adjoint variable 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 satisfies the
RB approximate dual equation through

𝑎𝜇(𝑞𝑟, 𝑝𝑟,𝜇) = 𝜕𝑢𝒥 (𝑢𝑟,𝜇, 𝜇)[𝑞𝑟] = 𝑗𝜇(𝑞𝑟) + 2𝑘𝜇(𝑞𝑟, 𝑢𝑟,𝜇) for all 𝑞𝑟 ∈ 𝑉 du
𝑟 . (3.4b)

Analogously to Proposition 2.6, we define the RB solution map 𝒮𝑟 : 𝒫 → 𝑉 pr
𝑟 by 𝜇 ↦→ 𝑢𝑟,𝜇 and analogously to

Proposition 2.10 the RB dual solution map 𝒜𝑟 : 𝒫 → 𝑉 du
𝑟 by 𝜇 ↦→ 𝑝𝑟,𝜇, where 𝑢𝑟,𝜇 and 𝑝𝑟,𝜇 denote the primal

and dual reduced solutions of (3.4a) and (3.4b), respectively.
To approximate (P̂ℎ), we introduce the RB reduced functional by

𝐽𝑟(𝜇) := 𝒥 (𝑢𝑟,𝜇, 𝜇) = 𝒥 (𝒮𝑟(𝜇), 𝜇), where 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 is the solution of (3.4a) (3.5)

instead of 𝒥ℎ and the problem of finding a locally optimal solution 𝜇̄𝑟 of

min
𝜇∈𝒫

𝐽𝑟(𝜇). (3.6)

Now, a solution to the optimality system (2.3) is approximated by the RB triple (𝑢𝑟,𝜇̄𝑟 , 𝜇̄𝑟, 𝑝𝑟,𝜇̄𝑟 ).
As proposed in [50], for computing an approximation of the gradient of 𝐽𝑟, the gradient from Proposition 2.11

can be utilized by replacing 𝑢𝜇 and 𝑝𝜇 with their RB counterparts. However, it can not be guaranteed in general
that the computed gradient is the actual gradient of 𝐽𝑟, if 𝑉 pr

𝑟 and 𝑉 du
𝑟 are chosen to be different. To see this,

we consider first the Lagrangian and note that, for 1 ≤ 𝑖 ≤ 𝑃 and all 𝑝 ∈ 𝑉 pr
𝑟 , it holds

𝐽𝑟(𝜇) = ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝),
(︀
∇𝜇𝐽𝑟(𝜇)

)︀
𝑖

= 𝜕𝑢ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝)[𝑑𝜇𝑖𝑢𝑟,𝜇] + 𝑑𝜇𝑖ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝). (3.7)

Now, following [50], we define the inexact gradient ̃︀∇𝜇𝐽𝑟 : 𝒫 → R𝑃 by(︀̃︀∇𝜇𝐽𝑟(𝜇)
)︀
𝑖

:= 𝜕𝜇𝑖𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖𝑟
pr
𝜇 (𝑢𝑟,𝜇)[𝑝𝑟,𝜇] = 𝜕𝜇𝑖ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝𝑟,𝜇) (3.8)

for all 1 ≤ 𝑖 ≤ 𝑃 and 𝜇 ∈ 𝒫, where 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 and 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 denote the primal and approximate dual reduced
solutions of (3.4a) and (3.4b), respectively. With the superscript ∼ we stress that ̃︀∇𝜇𝐽𝑟(𝜇) is not the actual
gradient of 𝐽𝑟, but its approximation. Choosing in contrast 𝑝 = 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 in (3.7) and considering (3.8) lead
to (︀

∇𝜇𝐽𝑟(𝜇)
)︀
𝑖

= 𝜕𝑢ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝𝑟,𝜇)[𝑑𝜇𝑖𝑢𝑟,𝜇] +
(︀̃︀∇𝜇𝐽𝑟(𝜇)

)︀
𝑖
.

Note that, in general, it does not hold that 𝜕𝑢ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝𝑟,𝜇) = 0, since (3.4b) is not the dual equation with
respect to the optimization problem (3.6), cf. Section 1.6.4 of [35], which would only be true if 𝑉 du

𝑟 ⊆ 𝑉 pr
𝑟 . Thus,

(3.8) defines only an approximation of the true gradient of 𝐽𝑟 with the choice made in [50]. This introduces
an additional approximation error in reconstructing the solution of the optimality system (2.3), which is well
visible in our numerical experiments (see Sect. 5.3): the standard RB approach leads to a significant lack in
accuracy, requiring additional steps to enrich the RB space and cover this gap. We therefore propose to add a
correction term to 𝐽𝑟 based on the previous remarks.
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3.3. ROM for the optimality system – NCD-corrected approach

Following the primal-dual RB approach for linear output functionals ([27], Sect. 2.4), it is more suitable to
add a correction term to the output functional for which improved error estimates are available. We seek to
minimize the Lagrangian corresponding to problem (P). A similar approach, in the context of adaptive finite
elements, can be found in [3, 52]. We utilize (3.4b) to extend the primal-dual RB approach of Section 2.4 from
[27] to quadratic output functionals and define the NCD-corrected RB reduced functional

𝒥𝑟(𝜇) := ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝𝑟,𝜇) = 𝐽𝑟(𝜇) + 𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] (3.9)

with 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 and 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 the solutions of (3.4a) and (3.4b), respectively. Note that 𝒥𝑟 coincides with the
functional 𝐽𝑟 in (3.5) if 𝑉 du

𝑟 = 𝑉 pr
𝑟 . We then consider the RB reduced optimization problem of finding a locally

optimal solution 𝜇̄𝑟 of

min
𝜇∈𝒫

𝒥𝑟(𝜇). (P̂𝑟)

Computing the actual gradient of 𝒥𝑟 results in the next proposition, proved following ([35], Sect. 1.6.2).

Proposition 3.3 (Gradient of the NCD-corrected RB reduced functional). The 𝑖th component of the true
gradient of 𝒥𝑟 is given by(︀

∇𝜇𝒥𝑟(𝜇)
)︀
𝑖

= 𝜕𝜇𝑖𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖𝑟
pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇 + 𝑤𝑟,𝜇]− 𝜕𝜇𝑖𝑟

du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑧𝑟,𝜇]

where 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 and 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 denote the RB approximate primal and dual solutions of (3.4a) and (3.4b),
𝑧𝑟,𝜇 ∈ 𝑉 du

𝑟 solves
𝑎𝜇(𝑧𝑟,𝜇, 𝑞) = −𝑟pr

𝜇 (𝑢𝑟,𝜇) [𝑞] ∀𝑞 ∈ 𝑉 du
𝑟 (3.10)

and 𝑤𝑟,𝜇 ∈ 𝑉 pr
𝑟 solves

𝑎𝜇(𝑣, 𝑤𝑟,𝜇) = 𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑣]− 2𝑘𝜇(𝑧𝑟,𝜇, 𝑣), ∀𝑣 ∈ 𝑉 pr

𝑟 . (3.11)

3.4. A posteriori error analysis

A posteriori error estimates are required for controlling the accuracy of the reduced order model. In addition,
we also use them for the error aware TR method (which is explained in Sect. 4.1). We derive a posteriori error
estimates for all reduced terms that we need for the TR method. Moreover, we suggest further advances for
the reduction of sensitivities and gradients. From a model reduction perspective, these error estimates need to
be computed efficiently such that the time for the evaluation for many parameters can be neglected. Note that
Assumption 2.2 is crucial for this, since it allows to precompute most of the required terms. For any functional
𝑙 ∈ 𝑉 ′

ℎ or bilinear form 𝑎 : 𝑉ℎ × 𝑉ℎ → R, we denote their dual or operator norms ‖𝑙‖ and ‖𝑎‖ by the continuity
constants 𝛾𝑙 and 𝛾𝑎, respectively. We also use this notation for the continuity constants of all appearing (bi-
)linear forms 𝑘𝜇, 𝜕𝜇𝑖

𝑘𝜇, 𝜕𝜇𝑖
𝑗𝜇 and 𝜕𝜇𝑖

𝑎𝜇. The same consideration applies for the norm ‖·‖ in 𝑉 ′
ℎ of the residuals.

For 𝜇 ∈ 𝒫, we denote the coercivity constant of 𝑎𝜇 w.r.t. the 𝑉ℎ-norm by 𝑎𝜇 > 0.

3.4.1. Standard RB estimates for the optimality system

We start with the residual based a posteriori error estimation for the primal variable, which is a standard
result from RB theory and has extensively been used in the literature. For a proof, we refer to [55].

Proposition 3.4 (Upper bound on the primal model reduction error). For 𝜇 ∈ 𝒫 let 𝑢ℎ,𝜇 ∈ 𝑉ℎ be the solution
of (3.1) and 𝑢𝑟,𝜇 ∈ 𝑉 pr

𝑟 the solution of (3.4a). Then it holds

‖𝑢ℎ,𝜇 − 𝑢𝑟,𝜇‖ ≤ ∆pr(𝜇) := 𝑎𝜇
−1 ‖𝑟pr

𝜇 (𝑢𝑟,𝜇)‖.
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For the reduced dual problem, a similar idea can be used to derive the following estimation, accounting for the
fact that 𝑝𝑟,𝜇 is not a Galerkin projection of 𝑝ℎ,𝜇. For a proof, we refer to Lemma 3 from [50].

Proposition 3.5 (Upper bound on the dual model reduction error). For 𝜇 ∈ 𝒫, let 𝑝ℎ,𝜇 ∈ 𝑉ℎ be the solution
of (3.2) and 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 the solution of (3.4b). Then it holds

‖𝑝ℎ,𝜇 − 𝑝𝑟,𝜇‖ ≤ ∆du(𝜇) := 𝑎𝜇
−1

(︁
2𝛾𝑘𝜇 ∆pr(𝜇) + ‖𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)‖
)︁
.

In the next proposition we state the result of the standard approach from Theorem 4 of [50]. Furthermore
we show an improved version by using, in contrast to [50], the NCD-corrected reduced functional, which results
in an optimal higher order a posteriori upper bound without lower order terms.

Proposition 3.6 (Upper bound on the model reduction error of the reduced output).

(i) With the notation from above, we have for the standard RB reduced cost functional

|𝒥ℎ(𝜇)−𝐽𝑟(𝜇)| ≤ ∆𝐽𝑟
(𝜇) := ∆pr(𝜇)‖𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)‖+ ∆pr(𝜇)2𝛾𝑘𝜇
+

⃒⃒
𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇]

⃒⃒
.

(ii) Furthermore, we have for the NCD-corrected RB reduced cost functional (or equivalently for the Lagrangian
for any 𝑝 ∈ 𝑉ℎ)

|𝒥ℎ(𝜇)−𝒥𝑟(𝜇)| = |ℒ(𝑢ℎ,𝜇, 𝜇, 𝑝)− ℒ(𝑢𝑟,𝜇, 𝜇, 𝑝)| ≤ ∆𝒥𝑟
(𝜇) := ∆pr(𝜇)‖𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)‖+ ∆pr(𝜇)2𝛾𝑘𝜇 .

Proof. We refer to Theorem 4 of [50] for a proof of (i). Regarding (ii), using the shorthand 𝑒pr
ℎ,𝜇 := 𝑢ℎ,𝜇 − 𝑢𝑟,𝜇

and 𝑎𝜇(𝑒pr
ℎ,𝜇, 𝑝𝑟,𝜇) = 𝑟pr

𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] lead us to

|𝒥ℎ(𝜇)− 𝒥𝑟(𝜇)| = |𝑗ℎ,𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
+ 𝑘𝜇(𝑢ℎ,𝜇, 𝑢ℎ,𝜇)− 𝑘𝜇(𝑢𝑟,𝜇, 𝑢𝑟,𝜇)− 𝑎𝜇(𝑒pr

ℎ,𝜇, 𝑝𝑟,𝜇)|

= |𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
− 2𝑘𝜇(𝑢𝑟,𝜇, 𝑒pr

ℎ,𝜇) + 𝑘𝜇(𝑢ℎ,𝜇, 𝑢ℎ,𝜇)− 𝑘𝜇(𝑢𝑟,𝜇, 𝑢𝑟,𝜇)|

≤ ‖𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)‖ ‖𝑒pr

ℎ,𝜇‖+ 𝛾𝑘𝜇 ‖𝑒
pr
ℎ,𝜇‖

2,

where we used the definition of the dual residual in the second equality and Cauchy–Schwarz for the inequality.
The assertion follows by using Proposition 3.4. �

Remark 3.7. The estimator ∆𝒥𝑟
(𝜇) is continuous w.r.t. 𝜇, since the Riesz-representative of the residual is

continuous.

For the inexact and NCD-corrected gradient, we derive the following a posteriori estimators.

Proposition 3.8 (Upper bound on the model reduction error of the gradient of reduced output).

(i) For the inexact gradient ̃︀∇𝜇𝐽𝑟(𝜇) from the standard-RB approach (3.8), we have⃦⃦
∇𝜇𝒥ℎ(𝜇)− ̃︀∇𝜇𝐽𝑟(𝜇)

⃦⃦
2
≤ ∆̃︀∇𝐽𝑟

(𝜇) =
⃦⃦

∆̃︀∇𝐽𝑟
(𝜇)

⃦⃦
2

with(︀
∆̃︀∇𝐽𝑟

(𝜇)
)︀
𝑖

:= 2∆pr(𝜇)‖𝑢𝑟,𝜇‖ 𝛾𝜕𝜇𝑖
𝑘𝜇

+ ∆pr(𝜇)
(︀
𝛾𝜕𝜇𝑖

𝑗𝜇
+ 𝛾𝜕𝜇𝑖

𝑎𝜇
‖𝑝𝑟,𝜇‖

)︀
+ ∆du(𝜇)

(︀
𝛾𝜕𝜇𝑖

𝑙𝜇 + 𝛾𝜕𝜇𝑖
𝑎𝜇
‖𝑢𝑟,𝜇‖

)︀
+ ∆pr(𝜇) ∆du(𝜇) 𝛾𝜕𝜇𝑖

𝑎𝜇
+ (∆pr)2(𝜇) 𝛾𝜕𝜇𝑖

𝑘𝜇
.

(ii) For the gradient ∇𝜇𝒥𝑟(𝜇) of the NCD-corrected reduced functional, computed with the adjoint approach
from Definition 3.3, we have⃦⃦
∇𝜇𝒥ℎ(𝜇)−∇𝜇𝒥𝑟(𝜇)

⃦⃦
2
≤ ∆*

∇𝒥𝑟
(𝜇) =

⃦⃦
∆*
∇𝒥𝑟

(𝜇)
⃦⃦

2
with
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∆*
∇𝒥𝑟

(𝜇)
)︀
𝑖

:= 2∆pr(𝜇)‖𝑢𝑟,𝜇‖ 𝛾𝜕𝜇𝑖
𝑘𝜇

+ ∆pr(𝜇)
(︀
𝛾𝜕𝜇𝑖

𝑗𝜇
+ 𝛾𝜕𝜇𝑖

𝑎𝜇
‖𝑝𝑟,𝜇‖

)︀
+ ∆du(𝜇)

(︀
𝛾𝜕𝜇𝑖

𝑙𝜇 + 𝛾𝜕𝜇𝑖
𝑎𝜇
‖𝑢𝑟,𝜇‖

)︀
+ ∆pr(𝜇) ∆du(𝜇) 𝛾𝜕𝜇𝑖

𝑎𝜇
+ (∆pr)2(𝜇) 𝛾𝜕𝜇𝑖

𝑘𝜇

+ (𝛾𝜕𝜇𝑖
𝑙𝜇 + 𝛾𝜕𝜇𝑖

𝑎𝜇
‖𝑢𝑟,𝜇‖)𝑎𝜇

−1
(︀
‖𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)‖+ 2𝛾𝑘𝜇
𝑎𝜇
−1‖𝑟pr

𝜇 (𝑢𝑟,𝜇) ‖
)︀

+ 𝑎𝜇
−1‖𝑟pr

𝜇 (𝑢𝑟,𝜇) ‖
(︀
𝛾𝜕𝜇𝑖

𝑗 + 2𝛾𝜕𝜇𝑖
𝑘‖𝑢𝑟,𝜇‖+ 𝛾𝜕𝜇𝑖

𝑎‖𝑝𝑟,𝜇‖
)︀
.

Proof. (i) For ∆̃︀∇𝐽𝑟
(𝜇), we have(︁

∇𝜇𝒥ℎ(𝜇)− ̃︀∇𝜇𝒥𝑟(𝜇)
)︁

𝑖
= 𝜕𝜇𝑖

𝒥 (𝑢ℎ,𝜇, 𝜇)− 𝜕𝜇𝑖
𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑝ℎ,𝜇]− 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] .

Regarding the first contribution, we obtain with ‖𝑢ℎ,𝜇‖ℎ ≤ ‖𝑒pr
ℎ,𝜇‖ℎ + ‖𝑢𝑟,𝜇‖ℎ

|𝜕𝜇𝑖
𝒥 (𝑢ℎ,𝜇, 𝜇)− 𝜕𝜇𝑖

𝒥 (𝑢𝑟,𝜇, 𝜇)| =
⃒⃒⃒
𝜕𝜇𝑖

𝑗ℎ,𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
+ 𝜕𝜇𝑖

𝑘𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑢𝑟,𝜇

)︁
+ 𝜕𝜇𝑖

𝑘𝜇

(︁
𝑢ℎ,𝜇, 𝑒pr

ℎ,𝜇

)︁⃒⃒⃒
≤ ∆pr(𝜇)

(︀
𝛾𝜕𝜇𝑖

𝑗𝜇
+ 𝛾𝜕𝜇𝑖

𝑘𝜇
(2‖𝑢𝑟,𝜇‖+ ∆pr(𝜇))

)︀
.

For the other contributions we refer to Theorem 5 of [50].
(ii) For the adjoint estimator ∆*

∇𝜇𝒥𝑟
, we have

(︁
∇𝜇𝒥ℎ(𝜇)−∇𝜇𝒥𝑟(𝜇)

)︁
𝑖

= 𝜕𝜇𝑖𝒥 (𝑢ℎ,𝜇, 𝜇)− 𝜕𝜇𝑖𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖𝑟
pr
𝜇 (𝑢ℎ,𝜇) [𝑝ℎ,𝜇]− 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇]

− 𝜕𝜇𝑖
𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑤𝑟,𝜇] + 𝜕𝜇𝑖

𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇) [𝑧𝑟,𝜇] .

The first line is equal to the estimator ∆̃︀∇𝐽𝑟
(𝜇), the first term of the second line can be estimated by

𝜕𝜇𝑖
𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑤𝑟,𝜇] ≤ 𝛾𝜕𝜇𝑖

𝑙𝜇‖𝑤𝑟,𝜇‖+ 𝛾𝜕𝜇𝑖
𝑎𝜇
‖𝑢𝑟,𝜇‖‖𝑤𝑟,𝜇‖.

The second term can analogously be estimated by

𝜕𝜇𝑖𝑟
du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑧𝑟,𝜇] ≤ 𝛾𝜕𝜇𝑖

𝑗‖𝑧𝑟,𝜇‖+ 2𝛾𝜕𝜇𝑖
𝑘‖𝑧𝑟,𝜇‖‖𝑢𝑟,𝜇‖+ 𝛾𝜕𝜇𝑖

𝑎‖𝑧𝑟,𝜇‖‖𝑝𝑟,𝜇‖.

We also have

𝑎𝜇‖𝑤𝑟,𝜇‖2 ≤ 𝑎𝜇(𝑤𝑟,𝜇, 𝑤𝑟,𝜇) = 𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑤𝑟,𝜇]− 2𝑘𝜇(𝑧𝑟,𝜇, 𝑤𝑟,𝜇)

≤ ‖𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)‖‖𝑤𝑟,𝜇‖+ 2𝛾𝑘𝜇‖𝑧𝑟,𝜇‖‖𝑤𝑟,𝜇‖

which gives
‖𝑤𝑟,𝜇‖ ≤ 𝑎𝜇

−1
(︀
‖𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇) ‖+ 2𝛾𝑘𝜇
‖𝑧𝑟,𝜇‖

)︀
.

For 𝑧𝜇 we estimate

𝑎𝜇‖𝑧𝑟,𝜇‖2 ≤ 𝑎𝜇(𝑧𝑟,𝜇, 𝑧𝑟,𝜇) = −𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑧𝜇] ≤ ‖𝑟pr

𝜇 (𝑢𝑟,𝜇) ‖‖𝑧𝑟,𝜇‖.

Summing all together gives the assertion.
�

In a view of Section 3.3, we emphasize that the estimator for the NCD-corrected gradient does not show a bet-
ter approximation of the FOM gradient since more terms are added to the standard estimate. Proposition 3.6(ii)
suggests that there exist an estimator of higher order which we derive in the following section.
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3.4.2. Sensitivity based approximation and estimation

We elaborate a better estimator for the NCD-corrected gradient by using sensitivities of the reduced primal
and dual solutions. In addition, approximated sensitivities that are computed from the FOM sensitivities suggest
an even better approximation of the FOM gradient.

We define the derivatives of the primal and dual solution maps associated with (3.4) in direction 𝜈 ∈ R𝑃 as
the solutions 𝑑𝜈𝑢𝑟,𝜇 ∈ 𝑉 pr

𝑟 and 𝑑𝜈𝑝𝑟,𝜇 ∈ 𝑉 du
𝑟 of

𝑎𝜇(𝑑𝜈𝑢𝑟,𝜇, 𝑣𝑟) = 𝜕𝜇𝑟pr
𝜇 (𝑢𝑟,𝜇)[𝑣𝑟] · 𝜈 for all 𝑣𝑟 ∈ 𝑉 pr

𝑟 and (3.12)
𝑎𝜇(𝑞𝑟, 𝑑𝜈𝑝𝑟,𝜇) = −𝜕𝜇𝑎𝜇(𝑞𝑟, 𝑝𝑟,𝜇) · 𝜈 + 𝑑𝜇𝜕𝑢𝒥 (𝑢𝑟,𝜇, 𝜇)[𝑞𝑟] · 𝜈

= 𝜕𝜇𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑞𝑟] · 𝜈 + 2𝑘𝜇(𝑞𝑟, 𝑑𝜈𝑢𝑟,𝜇) for all 𝑞𝑟 ∈ 𝑉 du

𝑟 , (3.13)

respectively, analogously to Propositions 2.6 and 2.10, where the last equality holds for quadratic functionals as
in (P.a). With these sensitivities we can compute the same gradient of the NCD-corrected RB reduced functional
from Proposition 3.3 in a different manner.

Proposition 3.9 (Gradient of the NCD-corrected RB reduced functional – Sensitivity approach). The 𝑖th
component of the true gradient of 𝒥𝑟, ∇𝜇𝒥𝑟 : 𝒫 → R𝑃 , is given by(︀

∇𝜇𝒥𝑟(𝜇)
)︀
𝑖

= 𝜕𝜇𝑖
𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢𝑟,𝜇)[𝑝𝑟,𝜇] + 𝑟pr

𝜇 (𝑢𝑟,𝜇)[𝑑𝜇𝑖
𝑝𝑟,𝜇] + 𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑑𝜇𝑖
𝑢𝑟,𝜇]

for all 1 ≤ 𝑖 ≤ 𝑃 and 𝜇 ∈ 𝒫, where 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 and 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 solve (3.4), 𝑑𝜇𝑖𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 and 𝑑𝜇𝑖𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟

denote the derivatives of RB primal and dual solution maps from (3.12) and (3.13).

Proof. It follows from the chain rule and Remark 2.4; see Section 1.6.1 of [35]. �

Note that the sensitivity based gradient is mathematically equivalent to the one in Proposition 3.3, but the
second only requires to solve (3.10) and (3.11) once, because they can be reused for every component 𝜇𝑖, whereas
the computation of the gradient in Proposition 3.9 requires to solve (3.12) and (3.13) for each 1 ≤ 𝑖 ≤ 𝑃 ; cf. [35].

In terms of numerical approximation w.r.t. the FOM functional, we note that, e.g., a solution 𝑑𝜇𝑖
𝑢𝑟,𝜇 ∈ 𝑉 pr

𝑟

of (3.12) does not necessarily need to be a good approximation of the FOM version 𝑑𝜇𝑖𝑢ℎ,𝜇 ∈ 𝑉ℎ even though
𝑢ℎ,𝜇 is contained in 𝑉 pr

𝑟 since the high dimensional sensitivities are not generally contained in the respective
reduced space (cf. Prop. 3.12).

To remedy this we could compute the FOM sensitivities for all canonical directions and either include them in
the respective primal and dual space (thus forming Taylor RB spaces) or distribute all directional sensitivities to
problem adapted RB spaces for the primal and dual sensitivities w.r.t. all canonical directions: 𝑉

pr,𝑑𝜇𝑖
𝑟 , 𝑉

du,𝑑𝜇𝑖
𝑟 ⊂

𝑉ℎ. Thus, we again commit a variational crime.

Definition 3.10 (Approximate partial derivatives of the RB primal and dual solution maps). Considering the
reduced primal and dual solution maps 𝒫 → 𝑉 pr

𝑟 , 𝜇 ↦→ 𝑢𝑟,𝜇 and 𝒫 → 𝑉 du
𝑟 , 𝜇 ↦→ 𝑝𝑟,𝜇, respectively, where 𝑢𝑟,𝜇

and 𝑝𝑟,𝜇 are the solutions of (3.4a) and (3.4b), we define their approximate partial derivatives w.r.t. the 𝑖th
component of 𝜇 by 𝑑𝜇𝑖

𝑢𝑟,𝜇 ∈ 𝑉
pr,𝑑𝜇𝑖
𝑟 and 𝑑𝜇𝑖

𝑝𝑟,𝜇 ∈ 𝑉
du,𝑑𝜇𝑖
𝑟 , respectively, as solutions of the sensitivity equations

𝑎𝜇(𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑣𝑟) = 𝜕𝜇𝑟pr
𝜇 (𝑢𝑟,𝜇)[𝑣𝑟] · 𝑒𝑖 for all 𝑣𝑟 ∈ 𝑉

pr,𝑑𝜇𝑖
𝑟 , (3.14)

𝑎𝜇(𝑞𝑟, 𝑑𝜇𝑖𝑝𝑟,𝜇) = 𝜕𝜇𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑞𝑟] · 𝑒𝑖 + 2𝑘𝜇(𝑞𝑟, 𝑑𝜇𝑖𝑢𝑟,𝜇) for all 𝑞𝑟 ∈ 𝑉

du,𝑑𝜇𝑖
𝑟 . (3.15)

Similarly, we denote the approximate partial derivatives in direction 𝜈 ∈ R𝑃 by 𝑑𝜈𝑢𝑟,𝜇 and 𝑑𝜈𝑝𝑟,𝜇, respectively,
defined by substituting 𝑒𝑖 with 𝜈 above.

Following Propositions 2.6 and 2.10 we would obtain 𝑑𝜇𝑖
𝑢𝑟,𝜇 = 𝑑𝜇𝑖

𝑢𝑟,𝜇, if 𝑉
pr,𝑑𝜇𝑖
𝑟 = 𝑉 pr

𝑟 and 𝑑𝜇𝑖
𝑝𝑟,𝜇 = 𝑑𝜇𝑖

𝑝𝑟,𝜇,
if 𝑉

du,𝑑𝜇𝑖
𝑟 = 𝑉 du

𝑟 . Moreover, the approximate partial derivatives depend on the choice of the corresponding
reduced approximation spaces.
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Definition 3.11 (Approximate gradient of the NCD-corrected RB reduced functional). We define the approx-
imate gradient ̃︀∇𝜇𝒥𝑟 : 𝒫 → R𝑃 of 𝒥𝑟 by(︀̃︀∇𝜇𝒥𝑟(𝜇)

)︀
𝑖

:= 𝜕𝜇𝑖
𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] + 𝑟pr

𝜇 (𝑢𝑟,𝜇)[𝑑𝜇𝑖
𝑝𝑟,𝜇] + 𝑟du

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)[𝑑𝜇𝑖
𝑢𝑟,𝜇], (3.16)

for 1 ≤ 𝑖 ≤ 𝑃 , where 𝑢𝑟,𝜇 ∈ 𝑉 pr
𝑟 , 𝑝𝑟,𝜇 ∈ 𝑉 du

𝑟 denote the reduced primal and dual solutions and 𝑑𝜇𝑖
𝑢𝑟,𝜇 ∈ 𝑉

pr,𝑑𝜇𝑖
𝑟

and 𝑑𝜇𝑖𝑝𝑟,𝜇 ∈ 𝑉
du,𝑑𝜇𝑖
𝑟 denote the solutions of (3.14) and (3.15).

Both gradients from Definition 3.9 and Proposition 3.11 yield higher order estimate. To show this, we first
derive error estimates for the reduction error of the reduced sensitivities from (3.12) and (3.13) as well as for
(3.14) and (3.15). For 𝑣ℎ ∈ 𝑉ℎ, the residuals of the equation in Propositions 2.6 and 2.10 for the canonical
directions are respectively given by

𝑟
pr,𝑑𝜇𝑖
𝜇 (𝑢ℎ,𝜇, 𝑑𝜇𝑖

𝑢ℎ,𝜇)[𝑣ℎ] := 𝜕𝜇𝑖
𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑣ℎ]− 𝑎𝜇(𝑑𝜇𝑖

𝑢ℎ,𝜇, 𝑣ℎ), (3.17)

𝑟
du,𝑑𝜇𝑖
𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇, 𝑑𝜇𝑖

𝑢ℎ,𝜇, 𝑑𝜇𝑖
𝑝ℎ,𝜇)[𝑣ℎ] := 𝜕𝜇𝑖

𝑟du
𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇) [𝑣ℎ] + 2𝑘𝜇(𝑣ℎ, 𝑑𝜇𝑖

𝑢ℎ,𝜇)− 𝑎𝜇(𝑣ℎ, 𝑑𝜇𝑖
𝑝ℎ,𝜇). (3.18)

Proposition 3.12 (Residual based upper bound on the model reduction error of the sensitivity of the primal
solution map). For 𝜇 ∈ 𝒫 and 1 ≤ 𝑖 ≤ 𝑃 , let 𝑑𝜇𝑖𝑢ℎ,𝜇 ∈ 𝑉ℎ be the solution of the discrete version of (2.2) and
𝑑𝜇𝑖

𝑢𝑟,𝜇 ∈ 𝑉
pr,𝑑𝜇𝑖
𝑟 be the solution of (3.12). We then have

‖𝑑𝜇𝑖
𝑢ℎ,𝜇 − 𝑑𝜇𝑖

𝑢𝑟,𝜇‖ ≤ ∆𝑑𝜇𝑖
pr(𝜇) := 𝑎𝜇

−1
(︁
𝛾𝜕𝜇𝑖

𝑎𝜇∆pr(𝜇) + ‖𝑟pr,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇)‖

)︁
.

Proof. Using the shorthand 𝑑𝜇𝑖
𝑒pr
ℎ,𝜇 := 𝑑𝜇𝑖

𝑢ℎ,𝜇 − 𝑑𝜇𝑖
𝑢𝑟,𝜇, we obtain

𝑎𝜇 ‖𝑑𝜇𝑖𝑒
pr
ℎ,𝜇‖

2 ≤ 𝑎𝜇

(︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇, 𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

)︁
= 𝑎𝜇

(︁
𝑑𝜇𝑖𝑢ℎ,𝜇, 𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

)︁
− 𝑎𝜇

(︁
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

)︁
= 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢ℎ,𝜇)

[︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

]︁
− 𝑎𝜇

(︁
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

)︁
= 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢ℎ,𝜇)

[︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

]︁
− 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢𝑟,𝜇)

[︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

]︁
+ 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢𝑟,𝜇)

[︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

]︁
− 𝑎𝜇

(︁
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

)︁
= −𝜕𝜇𝑖𝑎𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑑𝜇𝑖𝑒

pr
ℎ,𝜇

)︁
+ 𝑟

pr,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇)

[︀
𝑑𝜇𝑖𝑒

pr
𝑟,𝜇

]︀
≤ 𝛾𝜕𝜇𝑖

𝑎𝜇
‖𝑒pr

ℎ,𝜇‖ ‖𝑑𝜇𝑖
𝑒pr
ℎ,𝜇‖+ ‖𝑟pr,𝑑𝜇𝑖

𝜇 (𝑢𝑟,𝜇, 𝑑𝜇𝑖
𝑢𝑟,𝜇) ‖ ‖𝑑𝜇𝑖

𝑒pr
ℎ,𝜇‖

using the coercivity of 𝑎𝜇 in the first inequality, the definition 𝑑𝜇𝑖
𝑒pr
ℎ,𝜇 in the first equality, Proposition 2.6

applied to 𝑢ℎ,𝜇 in the second equality, the definition of the discrete sensitivity primal residual (3.17) in the third
equality and the continuity of 𝑑𝜇𝑖

𝑎𝜇 in the last inequality. �

We emphasize that the same result can be shown for 𝑑𝜇𝑖
𝑢𝑟,𝜇 by replacing 𝑑𝜇𝑖

𝑢𝑟,𝜇 and using the equation
(3.14) instead of (3.12). We call the resulting error estimator ∆𝑑𝜇𝑖

pr(𝜇).

Proposition 3.13 (Residual based upper bound on the model reduction error of the sensitivity of the dual
solution map). For 𝜇 ∈ 𝒫 and 1 ≤ 𝑖 ≤ 𝑃 , let 𝑑𝜇𝑖

𝑝ℎ,𝜇 ∈ 𝑉ℎ be the solution of the discrete version of (2.6) and
𝑑𝜇𝑖

𝑝𝑟,𝜇 ∈ 𝑉
pr,𝑑𝜇𝑖
𝑟 be the solution of (3.13). We then obtain

‖𝑑𝜇𝑖
𝑝ℎ,𝜇 − 𝑑𝜇𝑖

𝑝𝑟,𝜇‖ ≤ ∆𝑑𝜇𝑖
du(𝜇) with

∆𝑑𝜇𝑖
du(𝜇) := 𝑎𝜇

−1
(︁

2𝛾𝜕𝜇𝑖
𝑘𝜇

∆pr(𝜇) + 𝛾𝜕𝜇𝑖
𝑎𝜇

∆du(𝜇) + 2𝛾𝑘𝜇
∆𝑑𝜇𝑖

𝑝𝑟(𝜇)

+ ‖𝑟du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖

𝑢𝑟,𝜇, 𝑑𝜇𝑖
𝑝𝑟,𝜇) ‖

)︁
.
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Proof. Using the shorthand 𝑑𝜇𝑖
𝑒du
ℎ,𝜇 := 𝑑𝜇𝑖

𝑝ℎ,𝜇 − 𝑑𝜇𝑖
𝑝𝑟,𝜇 and 𝑒du

ℎ,𝜇 := 𝑝ℎ,𝜇 − 𝑝𝑟,𝜇, we obtain

𝑎𝜇 ‖𝑑𝜇𝑖𝑒
du
ℎ,𝜇‖2 ≤ 𝑎𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑒

du
ℎ,𝜇

)︀
= 𝑎𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑝ℎ,𝜇

)︀⏟  ⏞  
=𝜕𝜇𝑖

𝑟du
𝜇 (𝑢ℎ,𝜇,𝑝ℎ,𝜇)[𝑑𝜇𝑖

𝑒du
ℎ,𝜇]+2𝑘𝜇(𝑑𝜇𝑖

𝑒du
ℎ,𝜇,𝑑𝜇𝑖

𝑢ℎ,𝜇)

−𝑎𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇

)︀
= 𝜕𝜇𝑖

𝑟du
𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇)

[︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇

]︀
+ 2𝑘𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑑𝜇𝑖

𝑢ℎ,𝜇

)︀
− 𝜕𝜇𝑖

𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇

]︀
− 2𝑘𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇

)︀
+ 𝜕𝜇𝑖𝑟

du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇

]︀
+ 2𝑘𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇

)︀
− 𝑎𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇

)︀
= 𝜕𝜇𝑖

𝑗𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇

)︀
+ 2𝜕𝜇𝑖

𝑘𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑢ℎ,𝜇

)︀
− 𝜕𝜇𝑖

𝑎𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑝ℎ

)︀
− 𝜕𝜇𝑖

𝑗𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇

)︀
+ 2𝜕𝜇𝑖

𝑘𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑢𝑟,𝜇

)︀
− 𝜕𝜇𝑖𝑎𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑝𝑟

)︀
+2𝑘𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖𝑢ℎ,𝜇

)︀
−2𝑘𝜇

(︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇, 𝑑𝜇𝑖

𝑢𝑟,𝜇

)︀
+ 𝑟

du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)

[︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇

]︀
= 2𝜕𝜇𝑖

𝑘𝜇

(︁
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑒pr

ℎ,𝜇

)︁
− 𝜕𝜇𝑖

𝑎𝜇

(︀
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑒du

ℎ,𝜇

)︀
+ 2𝑘𝜇

(︁
𝑑𝜇𝑖

𝑒du
ℎ,𝜇, 𝑑𝜇𝑖

𝑒pr
ℎ,𝜇

)︁
+ 𝑟

du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)

[︀
𝑑𝜇𝑖𝑒

du
ℎ,𝜇

]︀
≤

(︁
2𝛾𝜕𝜇𝑖

𝑘𝜇
‖𝑒pr

ℎ,𝜇‖+ 𝛾𝜕𝜇𝑖
𝑎𝜇
‖𝑒du

ℎ,𝜇‖
)︁
‖𝑑𝜇𝑖

𝑒du
ℎ,𝜇‖

+ 2𝛾𝑘𝜇 ‖𝑑𝜇𝑖𝑒
pr
ℎ,𝜇‖ ‖𝑑𝜇𝑖𝑒

du
ℎ,𝜇‖+ ‖𝑟du,𝑑𝜇𝑖

𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇) ‖ ‖𝑑𝜇𝑖𝑒
du
ℎ,𝜇‖

using the coercivity of 𝑎𝜇 in the first inequality, the definition of 𝑑𝜇𝑖𝑒
du
ℎ,𝜇 in the first equality, Proposition 2.10

applied to 𝑝ℎ,𝜇 in the second equality, the definition of the dual residual in (2.5) in the third equality and
continuity of all parts in the last inequality. �

Again, the same result holds for 𝑑𝜇𝑖𝑝𝑟,𝜇 if we replace 𝑑𝜇𝑖𝑝𝑟,𝜇 and use (3.15) instead of (3.13). The resulting
error estimator is then called ∆𝑑𝜇𝑖

du(𝜇).
Using the residual based a posteriori error estimates for the primal sensitivities, we are able to state two a

posteriori error bounds on the model reduction error of the true gradient and the approximated gradient of the
NCD-corrected functional.

Proposition 3.14 (Upper bound on the model reduction error of the gradient of the reduced output – sensitivity
approach).

(i) For the gradient ∇𝜇𝒥𝑟(𝜇) of the NCD-corrected RB reduced functional, computed with sensitivities according
to Proposition 3.9, we have⃦⃦

∇𝜇𝒥ℎ(𝜇)−∇𝜇𝒥𝑟(𝜇)
⃦⃦

2
≤ ∆∇𝒥𝑟

(𝜇) =
⃦⃦

∆∇𝒥𝑟
(𝜇)

⃦⃦
2

with(︀
∆∇𝒥𝑟

(𝜇)
)︀
𝑖

:= 𝛾𝜕𝜇𝑖
𝑘𝜇

(∆pr(𝜇))2 + 𝛾𝑎𝜇
∆𝑑𝜇𝑖

𝑝𝑟(𝜇) ∆du(𝜇)

+ ‖𝑟du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)‖∆pr(𝜇).

(ii) Furthermore, we have for the approximate gradient from Definition 3.11⃦⃦
∇𝜇𝒥ℎ(𝜇)− ̃︀∇𝜇𝒥𝑟(𝜇)

⃦⃦
2
≤ ∆̃︀∇𝒥𝑟

(𝜇) =
⃦⃦

∆̃︀∇𝒥𝑟
(𝜇)

⃦⃦
2

with(︀
∆̃︀∇𝒥𝑟

(𝜇)
)︀
𝑖

:= 𝛾𝜕𝜇𝑖
𝑘𝜇 (∆pr(𝜇))2 + 𝛾𝑎𝜇 ∆𝑑𝜇𝑖

pr(𝜇) ∆du(𝜇)

+ ‖𝑟du,𝑑𝜇𝑖
𝜇

(︁
𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇

)︁
‖∆pr(𝜇).

Proof. (i) To prove the first assertion, we use 𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑑𝜇𝑖

𝑝𝑟,𝜇] = 0 and 𝑟du
𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇) [𝑑𝜇𝑖

𝑢𝑟,𝜇] = 0 to obtain(︀
∇𝜇𝒥ℎ(𝜇)−∇𝜇𝒥𝑟(𝜇)

)︀
𝑖

= 𝜕𝜇𝑖
𝒥 (𝑢ℎ,𝜇, 𝜇)− 𝜕𝜇𝑖

𝒥 (𝑢𝑟,𝜇, 𝜇) + 𝜕𝜇𝑖
𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑝ℎ,𝜇]− 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇]
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− 𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑑𝜇𝑖

𝑝𝑟,𝜇]− 𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇) [𝑑𝜇𝑖

𝑢𝑟,𝜇]

= 𝜕𝜇𝑖
𝑗𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
+ 𝜕𝜇𝑖

𝑘𝜇(𝑢ℎ,𝜇, 𝑢ℎ,𝜇)− 𝜕𝜇𝑖
𝑘𝜇(𝑢𝑟,𝜇, 𝑢𝑟,𝜇) + 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑝ℎ,𝜇]

− 𝜕𝜇𝑖
𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] + 𝑟pr

𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
[𝑑𝜇𝑖

𝑝𝑟,𝜇]⏟  ⏞  
=(*)

+ 𝑟du
𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑒du

ℎ,𝜇

)︁
[𝑑𝜇𝑖

𝑢𝑟,𝜇]⏟  ⏞  
=(**)

.

For the last two residual terms we have

(*) = 𝑙𝜇 (𝑑𝜇𝑖𝑝𝑟,𝜇)− 𝑙𝜇 (𝑑𝜇𝑖𝑝𝑟,𝜇)− 𝑎𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇

)︁
= − 𝑎𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇

)︁
+ 𝜕𝜇𝑖𝑟

du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
+ 2𝑘𝜇

(︁
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑒pr

ℎ,𝜇

)︁
− 𝜕𝜇𝑖𝑟

du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
− 2𝑘𝜇

(︁
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑒pr

ℎ,𝜇

)︁
= 𝑟

du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
− 𝜕𝜇𝑖𝑟

du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
− 2𝑘𝜇

(︁
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑒pr

ℎ,𝜇

)︁
and

(**) = 𝑗𝜇 (𝑑𝜇𝑖
𝑢𝑟,𝜇)− 𝑗𝜇 (𝑑𝜇𝑖

𝑢𝑟,𝜇) + 2𝑘𝜇

(︁
𝑑𝜇𝑖

𝑢𝑟,𝜇, 𝑒pr
ℎ,𝜇

)︁
− 𝑎𝜇

(︀
𝑑𝜇𝑖

𝑢𝑟,𝜇, 𝑒du
ℎ,𝜇

)︀
.

Thus, by summing both terms we have

(*) + (**) = 𝑟
du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖

𝑢𝑟,𝜇, 𝑑𝜇𝑖
𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
− 𝜕𝜇𝑖

𝑟du
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
⏟  ⏞  

=(***)

− 𝑎𝜇

(︀
𝑑𝜇𝑖

𝑢𝑟,𝜇, 𝑒du
ℎ,𝜇

)︀

and for (* * *) it holds

(* * *) = 𝜕𝜇𝑖
𝑗𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
+ 2𝜕𝜇𝑖

𝑘𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑢𝑟,𝜇

)︁
− 𝜕𝜇𝑖

𝑎𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑝𝑟,𝜇

)︁
.

Combining (*), (**) and (* * *) with the previous result, we have(︁
∇𝜇𝒥ℎ(𝜇)−∇𝜇𝒥𝑟(𝜇)

)︁
𝑖

= 𝜕𝜇𝑖𝑗𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
+ 𝜕𝜇𝑖𝑘𝜇(𝑢ℎ,𝜇, 𝑢ℎ,𝜇)− 𝜕𝜇𝑖𝑘𝜇(𝑢𝑟,𝜇, 𝑢𝑟,𝜇)

− 𝜕𝜇𝑖𝑗𝜇

(︁
𝑒pr
ℎ,𝜇

)︁
− 2𝜕𝜇𝑖𝑘𝜇(𝑒pr

ℎ,𝜇, 𝑢𝑟,𝜇) + 𝜕𝜇𝑖𝑎𝜇(𝑒pr
ℎ,𝜇, 𝑝𝑟,𝜇) + 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢ℎ,𝜇)[𝑝ℎ,𝜇]

− 𝜕𝜇𝑖𝑟
pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇]+ 𝑟

du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
− 𝑎𝜇

(︀
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑒du

ℎ,𝜇

)︀
= 𝜕𝜇𝑖𝑘𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑒pr

ℎ,𝜇

)︁
+ 𝑟

du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
+ 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢ℎ,𝜇) [𝑝ℎ,𝜇]− 𝜕𝜇𝑖𝑟

pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] + 𝜕𝜇𝑖𝑎𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑝𝑟,𝜇

)︁
− 𝑎𝜇

(︀
𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑒du

ℎ,𝜇

)︀
⏟  ⏞  

=(****)

.

Further, we have

𝜕𝜇𝑖
𝑟pr
𝜇 (𝑢ℎ,𝜇) [𝑝ℎ,𝜇]− 𝜕𝜇𝑖

𝑟pr
𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] = 𝜕𝜇𝑖

𝑙𝜇
(︀
𝑒du
ℎ,𝜇

)︀
− 𝜕𝜇𝑖

𝑎𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇) + 𝜕𝜇𝑖
𝑎𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇)

= 𝑎𝜇

(︀
𝑑𝜇𝑖

𝑢ℎ, 𝑒du
ℎ,𝜇

)︀
+ 𝜕𝜇𝑖

𝑎𝜇

(︀
𝑢ℎ, 𝑒du

ℎ,𝜇

)︀
− 𝜕𝜇𝑖

𝑎𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇) + 𝜕𝜇𝑖
𝑎𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇) ,

where we used the discretized version of (2.2) in the second equality. Inserting this into (*) gives

(* * * *) = 𝑎𝜇

(︀
𝑑𝜇𝑖

𝑢ℎ, 𝑒du
ℎ,𝜇

)︀
− 𝑎𝜇

(︀
𝑑𝜇𝑖

𝑢𝑟,𝜇, 𝑒du
ℎ,𝜇

)︀
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+ 𝜕𝜇𝑖𝑎𝜇

(︀
𝑢ℎ, 𝑒du

ℎ,𝜇

)︀
− 𝜕𝜇𝑖𝑎𝜇 (𝑢ℎ,𝜇, 𝑝ℎ,𝜇) + 𝜕𝜇𝑖𝑎𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇) + 𝜕𝜇𝑖𝑎𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑝𝑟,𝜇

)︁
⏟  ⏞  

=0

= 𝑎𝜇

(︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇, 𝑒du

ℎ,𝜇

)︁
.

In total, we have (︁
∇𝜇𝒥ℎ(𝜇)−∇𝜇𝒥𝑟(𝜇)

)︁
𝑖

= 𝜕𝜇𝑖𝑘𝜇

(︁
𝑒pr
ℎ,𝜇, 𝑒pr

ℎ,𝜇

)︁
+ 𝑎𝜇

(︁
𝑑𝜇𝑖𝑒

pr
ℎ,𝜇, 𝑒du

ℎ,𝜇

)︁
+ 𝑟

du,𝑑𝜇𝑖
𝜇 (𝑢𝑟,𝜇, 𝑝𝑟,𝜇, 𝑑𝜇𝑖𝑢𝑟,𝜇, 𝑑𝜇𝑖𝑝𝑟,𝜇)

[︁
𝑒pr
ℎ,𝜇

]︁
which proofs the assertion.

(ii) The estimate follows analogously to (i), by replacing 𝑑𝜇𝑖𝑢𝑟,𝜇 and 𝑑𝜇𝑖𝑝𝑟,𝜇 with 𝑑𝜇𝑖𝑢𝑟,𝜇 and 𝑑𝜇𝑖𝑝𝑟,𝜇, respec-
tively.

�

To conclude, ∆̃︀∇𝒥𝑟
(𝜇) and ∆∇𝒥𝑟

(𝜇) both decay with second order (cf. Sect. 5.3.1). We also point out, that
∆̃︀∇𝒥𝑟

(𝜇) is an improved estimator which can be used to replace the poor estimator ∆𝑟,*
∇𝜇𝒥𝑟

(𝜇). However both

higher order estimators ∆̃︀∇𝒥𝑟
(𝜇) and ∆∇𝒥𝑟

(𝜇) come with the price of computing the dual norm of the sensitivity
residuals in (3.17) and (3.18) for each direction which aggravates the computational complexity.

4. The Trust-Region Method and adaptive enrichment strategies

To solve problem (P) we apply the TR method, which iteratively computes a first-order critical point of (P). At
each iteration 𝑘 ≥ 0, we consider a so-called model function 𝑚(𝑘), which is a cheaply computable approximation
of the quadratic cost functional 𝒥 in a neighborhood of the parameter 𝜇(𝑘), i.e., the Trust-Region. Therefore,
for 𝑘 ≥ 0, given a TR radius 𝛿(𝑘), we consider the TR minimization sub-problem

min
𝑠∈R𝑃

𝑚(𝑘)(𝑠) subject to ‖𝑠‖2 ≤ 𝛿(𝑘), ̃︀𝜇 := 𝜇(𝑘) + 𝑠 ∈ 𝒫 and 𝑟pr
𝜇̃ (𝑢𝜇̃)[𝑣] = 0 for all 𝑣 ∈ 𝑉. (4.1)

Under suitable assumptions on 𝑚(𝑘), problem (4.1) admits a unique solution 𝑠(𝑘), which is used to compute the
next iterate 𝜇(𝑘+1) = 𝜇(𝑘) + 𝑠(𝑘).

4.1. The Trust-Region Reduced Basis method

Slightly different from [1, 50], we choose as model function the NCD-corrected RB reduced functional 𝒥 (𝑘)
𝑟

defined in (3.9), i.e., 𝑚(𝑘)(·) = 𝒥 (𝑘)
𝑟 (𝜇(𝑘) + ·) for 𝑘 ≥ 0, where the super-index (𝑘) indicates that we use different

RB spaces 𝑉
*,(𝑘)
𝑟 in each iteration. As indicated in Proposition 3.6 and shown in our numerical experiments

below, 𝒥 (𝑘)
𝑟 converges to 𝒥 with higher order in comparison to the standard RB reduced functional from

(3.5), which has been considered in [50]. We initialize the RB spaces using the initial guess 𝜇(0), i.e., setting
𝑉 pr,0

𝑟 =
{︀
𝑢ℎ,𝜇(0)

}︀
and 𝑉 du,0

𝑟 =
{︀
𝑝ℎ,𝜇(0)

}︀
. At every iteration 𝑘 we may – depending on the a posteriori estimates

– enrich the obtained space using the computed parameter 𝜇(𝑘+1); for further details see Section 4.3. Possible
sufficient and necessary conditions for convergence, dependent on the approximate generalized Cauchy point
(AGC) 𝜇

(𝑘)
AGC (see Definition 4.1), are given in [50]. In contrast to [50], we consider additional bilateral parameter

constraints in (4.1). In particular, the presence of these inequality constraints requires a review of the proof of
convergence for the TR-RB algorithm. In [50], the convergence is based on the results contained in [57], where
the authors consider an equality-constrained optimization problem. We state first how our method differs from
the one in [50], then we prove the convergence of this modified algorithm. According to [50], the inexact RB
version of problem (4.1) is

min
̃︀𝜇∈𝒫

𝒥 (𝑘)
𝑟 (̃︀𝜇) s.t.

∆𝒥𝑟
(̃︀𝜇)

𝒥 (𝑘)
𝑟 (̃︀𝜇)

≤ 𝛿(𝑘), (4.2)
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where ̃︀𝜇 := 𝜇(𝑘) + 𝑠, the equality constraint 𝑟pr
𝜇̃ (𝑢𝜇̃)[𝑣] = 0 is hidden in the definition of 𝒥𝑟 and the inequality

ones are concealed in the request ̃︀𝜇 ∈ 𝒫. As also remarked in [50], the projected BFGS method [40], which we use
in order to solve (4.2), computes the AGC point 𝜇

(𝑘)
AGC in the first iterate and generates a sequence {𝜇(𝑘,ℓ)}𝐿

ℓ=1

where 𝐿 is the last BFGS iteration. In what follows, 𝜇(𝑘,1) := 𝜇
(𝑘)
AGC and the TR iterate 𝜇(𝑘+1) := 𝜇(𝑘,𝐿).

Throughout the paper the index 𝑘 refers to the current outer TR iteration, ℓ refers instead to the inner BFGS
iteration. Note that 𝐿 may be different for each iteration 𝑘, but we will indicate it only when strictly necessary
in order to simplify the notation. To describe the projected BFGS method in details, we define

𝜇(𝑘,ℓ)(𝑗) := P𝒫(𝜇(𝑘,ℓ) + 𝜅𝑗𝑑(𝑘,ℓ)) ∈ 𝒫 for 𝑗 ≥ 0, (4.3)

where 𝜅 ∈ (0, 1), 𝑑(𝑘,ℓ) ∈ R𝑃 is the chosen descent direction at the iteration (𝑘, ℓ) and the projection operator
P𝒫 : R𝑃 → 𝒫 is defined as

(P𝒫(𝜇))𝑖 :=

⎧⎨⎩ (𝜇a)𝑖 if (𝜇)𝑖 ≤ (𝜇a)𝑖,
(𝜇b)𝑖 if (𝜇)𝑖 ≥ (𝜇b)𝑖,
(𝜇)𝑖 otherwise,

for 𝑖 = 1, . . . , 𝑃.

Note that the operator P𝒫 is Lipschitz continuous with constant one; cf. [40]. For computing the descent
direction 𝑑(𝑘,ℓ) we follow the projected BFGS algorithm reported in Section 5.5.3 of [40]. Furthermore, we
enforce respectively an Armijo-type condition and the additional TR constraint on 𝒥 (𝑘)

𝑟

𝒥 (𝑘)
𝑟 (𝜇(𝑘,ℓ)(𝑗))− 𝒥 (𝑘)

𝑟 (𝜇(𝑘,ℓ)) ≤ −𝜅arm

𝜅𝑗

⃦⃦
𝜇(𝑘,ℓ)(𝑗)− 𝜇(𝑘,ℓ)

⃦⃦2

2
, (4.4)

∆𝒥𝑟
(𝜇(𝑘,ℓ)(𝑗))

𝒥 (𝑘)
𝑟 (𝜇(𝑘,ℓ)(𝑗))

≤ 𝛿(𝑘), (4.5)

by selecting 𝜇(𝑘,ℓ+1) = 𝜇(𝑘,ℓ)(𝑗(𝑘,ℓ)) for ℓ ≥ 1, where 𝑗(𝑘,ℓ) < ∞ is the smallest index for which the conditions
(4.4) and (4.5) hold for some 𝜅arm ∈ (0, 1

2 ), generally 𝜅arm = 10−4; cf. [50]. Moreover, we use as termination
criteria for the optimization sub-problem

⃦⃦
𝜇(𝑘,ℓ) − P𝒫(𝜇(𝑘,ℓ) −∇𝜇𝒥 (𝑘)

𝑟 (𝜇(𝑘,ℓ)))
⃦⃦

2
≤ 𝜏sub (4.6a) or 𝛽2𝛿

(𝑘) ≤
∆𝒥 (𝑘)

𝑟
(𝜇)

𝒥 (𝑘)
𝑟 (𝜇)

≤ 𝛿(𝑘), (4.6b)

where 𝜏sub ∈ (0, 1) is a predefined tolerance and 𝛽2 ∈ (0, 1), generally close to one. Condition (4.6b) is used to
prevent that the optimizer spends much time close to the boundary of the Trust-Region, where the model is
poor in approximation; cf. [50]. Note that, without the projection operator P𝒫 , conditions (4.4)–(4.6) coincide
with the ones in [50], apart from using the NCD-corrected RB reduced functional. Furthermore, in addition to
[50], we consider a condition which allows enlarging the TR radius. A drawback of the TR algorithm proposed
in [50] is that the TR radius may be significantly shrunk at the beginning, i.e., when the TR model is poor in
approximation. Afterwards, even if the RB space is enriched, i.e., the approximation of the TR model function
is improved, the TR radius is kept small. Thus, one misses the local second-order rate of convergence of the
BFGS method. More precisely, if 𝜇(𝑘,ℓ) is close to the locally optimal solution 𝜇̄(𝑘) of the TR sub-problem, we
want to make full BFGS steps, which gives us faster convergence. The possibility to enlarge the TR radius at
each iteration will also decrease the number of outer iterations needed to converge. As a condition for enlarging
the radius we check whether the sufficient reduction predicted by the model function 𝒥 (𝑘)

𝑟 is realized by the
objective function, i.e., we check if

𝜚(𝑘) :=
𝒥ℎ

(︀
𝜇(𝑘)

)︀
− 𝒥ℎ

(︀
𝜇(𝑘+1)

)︀
𝒥 (𝑘)

𝑟

(︀
𝜇(𝑘)

)︀
− 𝒥 (𝑘)

𝑟

(︀
𝜇(𝑘+1)

)︀ ≥ 𝜂𝜚 (4.7)
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for a tolerance 𝜂𝜚 ∈ [3/4, 1). Condition (4.7) seems costly because of the evaluation of the FOM cost functional
𝒥ℎ, but, after the enrichment of the RB space, the quantities in the numerator of (4.7) are cheaply accessible,
since one has already solved the FOM to generate the new snapshots for the RB space enrichment. Note that
this also implies that we can cheaply evaluate the FOM gradient ∇𝜇𝒥ℎ(𝜇𝑘+1) in case of an enrichment. This
knowledge will be used for the stopping criterium in the outer loop of the algorithm. Finally, let us define the
AGC point for our constrained case.

Definition 4.1 (AGC point for simple bounds). At iteration 𝑘, we define the AGC point as

𝜇
(𝑘)
AGC := 𝜇(𝑘,0)

(︁
𝑗(𝑘)
𝑐

)︁
= P𝒫

(︁
𝜇(𝑘,0) + 𝜅𝑗(𝑘)

𝑐 𝑑(𝑘,0)
)︁

,

where 𝜇(𝑘,0) := 𝜇(𝑘), 𝑑(𝑘,0) := −∇𝜇𝒥 (𝑘)
𝑟

(︀
𝜇(𝑘,0)

)︀
and 𝑗

(𝑘)
𝑐 is the smallest non-negative integer 𝑗 for which 𝜇(𝑘,0)(𝑗)

satisfies (4.4) and (4.5) for ℓ = 0.

We refer to Algorithm 1 for the proposed TR-RB algorithm.

4.2. Convergence analysis

In order to guarantee the well-posedness (because of (4.5)) and the convergence of the method, we make the
following assumption

Assumption 4.2. The cost functional 𝒥 (𝑢, 𝜇) is strictly positive for all 𝑢 ∈ 𝑉 and all parameters 𝜇 ∈ 𝒫.

Note that this assumption is not too restrictive, since the boundedness from below is a standard assumption in
optimization to guarantee the existence of a solution for the minimization problem. If a global lower bound for
the cost functional is also known, one can add a sufficiently large constant, without changing the position of its
local minima and maxima. Another important request, pointed out in [50, 57], is that an error-aware sufficient
decrease condition

𝒥 (𝑘+1)
𝑟

(︁
𝜇(𝑘+1)

)︁
≤ 𝒥 (𝑘)

𝑟 (𝜇(𝑘)
AGC) for all 𝑘 ∈ N (4.8)

is fulfilled at each iteration 𝑘 of the TR-RB algorithm. As in [50,57], we consider cheaply computable sufficient
and necessary conditions for (4.8) in Algorithm 1 (Steps 4 and 11, respectively). The TR-RB algorithm rejects,
then, any computed point which does not satisfy (4.8). One may be concerned of the fact that Algorithm 1 may
be trapped in an infinite loop where every computed point is rejected and the TR radius is shrunk all time. We
point out that this never happened in our numerical tests. Anyway, we consider a safety termination criteria,
which is triggered when the TR radius is smaller than the double machine precision. To prove convergence of
Algorithm 1, in what follows, we then assume that this situation can not occur.

Assumption 4.3. For each 𝑘 ≥ 0, there exists a radius ̃︀𝛿(𝑘) > 𝜏mac for which a solution of (4.2) is such that
(4.8) is verified, where 𝜏mac = 2.22× 10−16 is the double machine precision.

Lemma 4.4. Let Assumptions 2.2–4.3 hold true. The search of the AGC point defined in Definition 4.1 takes
finitely many iterations at each step 𝑘 of the TR-RB Algorithm.

Proof. We want to prove that there exists an index 𝑗
(𝑘)
𝑐 < ∞ for each 𝑘 ≥ 0, for which 𝜇

(𝑘)
AGC = 𝜇(𝑘,0)

(︁
𝑗
(𝑘)
𝑐

)︁
satisfies (4.4) and (4.5) for ℓ = 0. From Theorem 5.4.5 of [40] (and the subsequent discussion) we conclude
that for all 𝑘 ∈ N there exists a strictly positive index 𝑗

(𝑘)
1 ∈ N such that 𝜇(𝑘,0)(𝑗) satisfies (4.4) for 𝑗 ≥ 𝑗

(𝑘)
1

and ℓ = 0. If 𝑘 = 0, by construction we have that ∆𝒥 (0)
𝑟

(𝜇(0)) = 0. Therefore, there exists a sufficiently large

(but finite) index 𝑗
(0)
2 ∈ N such that 𝜇(0,0)(𝑗) satisfies (4.5) for all 𝑗 ≥ 𝑗

(0)
2 and ℓ = 0. The reason relies on

the continuity w.r.t. 𝜇 of the error estimator ∆𝒥 (𝑘)
𝑟

(𝜇) (cf. Rem. 3.7) and of the cost functional 𝒥 (𝑘)
𝑟 (𝜇) for all
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Algorithm 1: TR-RB algorithm.
Data: Initial TR radius 𝛿(0), TR shrinking factor 𝛽1 ∈ (0, 1), tolerance for enlarging the TR radius 𝜂𝜚 ∈ [ 3

4
, 1),

initial parameter 𝜇(0), stopping tolerance for the sub-problem 𝜏sub ≪ 1, stopping tolerance for the first-order
critical condition 𝜏FOC with 𝜏sub ≤ 𝜏FOC ≪ 1, safeguard for TR boundary 𝛽2 ∈ (0, 1).

1 Set 𝑘 = 0 and Loop flag=True;
2 while Loop flag do

3 Compute 𝜇(𝑘+1) as solution of (4.2) with termination criteria (4.6);

4 if 𝒥 (𝑘)
𝑟

(︁
𝜇(𝑘+1)

)︁
+ Δ𝒥 (𝑘)

𝑟

(︁
𝜇(𝑘+1)

)︁
< 𝒥 (𝑘)

𝑟

(︁
𝜇

(𝑘)
AGC

)︁
then

5 Accept 𝜇(𝑘+1), update the RB model at 𝜇(𝑘+1) and compute 𝜚(𝑘) from (4.7);

6 if 𝜚(𝑘) ≥ 𝜂𝜚 then

7 Enlarge the TR radius 𝛿(𝑘+1) = 𝛽−1
1 𝛿(𝑘);

8 else

9 Set 𝛿(𝑘+1) = 𝛿(𝑘);
10 end

11 else if 𝒥 (𝑘)
𝑟

(︁
𝜇(𝑘+1)

)︁
−Δ𝒥 (𝑘)

𝑟

(︁
𝜇(𝑘+1)

)︁
> 𝒥 (𝑘)

𝑟

(︁
𝜇

(𝑘)
AGC

)︁
then

12 Reject 𝜇(𝑘+1), shrink the TR radius 𝛿(𝑘+1) = 𝛽1𝛿
(𝑘) and go to 3;

13 else

14 Update the RB model at 𝜇(𝑘+1) and compute 𝜚(𝑘) from (4.7);

15 if 𝒥 (𝑘+1)
𝑟

(︁
𝜇(𝑘+1)

)︁
≤ 𝒥 (𝑘)

𝑟

(︁
𝜇

(𝑘)
AGC

)︁
then

16 Accept 𝜇(𝑘+1);

17 if 𝜚(𝑘) ≥ 𝜂𝜚 then

18 Enlarge the TR radius 𝛿(𝑘+1) = 𝛽−1
1 𝛿(𝑘);

19 else

20 Set 𝛿(𝑘+1) = 𝛿(𝑘);
21 end

22 else

23 Reject 𝜇(𝑘+1), shrink the TR radius 𝛿(𝑘+1) = 𝛽1𝛿
(𝑘) and go to 3;

24 end

25 end

26 if
⃦⃦
⃦𝜇(𝑘+1) − P𝒫

(︁
𝜇(𝑘+1) −∇𝜇𝒥ℎ

(︁
𝜇(𝑘+1)

)︁)︁⃦⃦
⃦

2
≤ 𝜏FOC then

27 Set Loop flag=False;
28 end
29 Set 𝑘 = 𝑘 + 1;

30 end

𝑘 ∈ N. Hence there exists 𝑗
(0)
𝑐 = max(𝑗(0)

1 , 𝑗
(0)
2 ) < ∞, for which 𝜇(0,0)(𝑗) satisfies (4.4) and (4.5) for ℓ = 0. If

𝑘 ≥ 1, since the model has been enriched, i.e., ∆𝒥 (𝑘)
𝑟

(𝜇(𝑘)) = 0, we can show the claim arguing as we did for
𝑘 = 0. Note, in fact, that we increase the iteration counter only when 𝜇(𝑘) is accepted at iteration 𝑘 − 1 and,
thus, when the RB model is enriched at this parameter. �

Theorem 4.5. Let the hypotheses of Lemma 4.4 be verified. Then every accumulation point 𝜇̄ of the sequence
{𝜇(𝑘)}𝑘∈N ⊂ 𝒫 generated by the TR-RB algorithm is an approximate first-order critical point for 𝒥ℎ (up to the
chosen tolerance 𝜏sub), i.e., it holds

‖𝜇̄− P𝒫(𝜇̄−∇𝜇𝒥ℎ(𝜇̄))‖2 ≤ 𝜏sub. (4.9)

Proof. The set 𝒫 ⊂ R𝑃 is compact. Therefore there exists a sequence of indices {𝑘𝑖}𝑖∈N such that the sub-
sequence {𝜇(𝑘𝑖)}𝑖∈N converges to a point 𝜇̄ ∈ 𝒫. It remains to show that 𝜇̄ is an approximate first-order critical
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point. At first, note that once the RB space is enriched at a point 𝜇(𝑘), we have ∆𝒥 (𝑘)
𝑟

(𝜇(𝑘)) = 0. Hence, also
𝑞(𝑘)(𝜇(𝑘)) = 0 holds, where

𝑞(𝑘)(𝜇) :=
∆𝒥 (𝑘)

𝑟
(𝜇)

𝒥 (𝑘)
𝑟 (𝜇)

for all 𝑘 ∈ N, 𝜇 ∈ 𝒫.

Note also that 𝑉ℎ is a finite dimensional space. This implies that at most after dim 𝑉ℎ ≤ 𝐼 < +∞ enrichment
steps the RB approximation error and the a posteriori error estimator are zero for each 𝜇 ∈ 𝒫. In particular
𝑞(𝑘𝑖)(𝜇) = 0 for all 𝜇 ∈ 𝒫 and 𝑖 ≥ 𝐼. For this reason, the stopping criterium (4.6b) is not triggered. Hence,
we have proved that each 𝜇(𝑘𝑖+1) is an approximate first-order critical point for 𝒥 (𝑘𝑖+1−1)

𝑟 (up to the chosen
tolerance 𝜏sub) for all 𝑖 ≥ 𝐼, which yields to⃦⃦⃦

𝜇(𝑘𝑖+1) − P𝒫
(︁
𝜇(𝑘𝑖+1)

)︁
−∇𝜇𝒥 (𝑘𝑖+1−1)

𝑟

(︁
𝜇(𝑘𝑖+1)

)︁⃦⃦⃦
2
≤ 𝜏sub, for all 𝑖 ≥ 𝐼.

Moreover, taking again into account the RB method properties and the fact that 𝑉ℎ is a finite dimensional
space, there exists a constant 𝐼∇ > 0 sufficiently large, such that ∇𝜇𝒥 (𝑘𝑖)

𝑟 (𝜇) = ∇𝜇𝒥ℎ(𝜇) + 𝜖(𝑘𝑖) for all 𝜇 in a
neighborhood of 𝜇̄ and for 𝑖 ≥ 𝐼∇, with 𝜖(𝑘𝑖) → 0 as 𝑖 → ∞. Thus, exploiting the continuity of the projection
operator and assuming 𝑖 ≥ max(𝐼, 𝐼∇), we have that

𝜏sub ≥
⃦⃦⃦
𝜇(𝑘𝑖+1) − P𝒫

(︁
𝜇(𝑘𝑖+1)

)︁
−∇𝜇𝒥 (𝑘𝑖+1−1)

𝑟

(︁
𝜇(𝑘𝑖+1)

)︁⃦⃦⃦
2

=
⃦⃦⃦
𝜇(𝑘𝑖+1) − P𝒫

(︁
𝜇(𝑘𝑖+1)

)︁
−∇𝜇𝒥ℎ

(︁
𝜇(𝑘𝑖+1)

)︁
+

(︁
𝜖(𝑘𝑖+1−1)

)︁⃦⃦⃦
2
→

⃦⃦⃦
𝜇̄− P𝒫

(︁
𝜇̄−∇𝜇𝒥ℎ(𝜇̄)

)︁⃦⃦⃦
2
.

Hence, the accumulation point 𝜇̄ is an approximate first-order critical point (up to the tolerance 𝜏sub). �

Remark 4.6. What remains to prove is that 𝜇̄ is a local minimum of 𝒥ℎ (or rather a sufficiently close approx-
imation of a local minimum). Exploiting the sufficient decrease condition, one can easily show by contradiction
that 𝜇̄ is not a maximum of 𝒥ℎ. It can still be a saddle point as well as a local minimum. In the numerical
experiments, to verify that the computed point 𝜇̄ is actually a local minimum, we employ the second-order
sufficient optimality conditions after the algorithm terminates.

Moreover, the proof of Theorem 4.5 relies on the fact that 𝑉ℎ is a finite-dimensional space and that at most
after dim 𝑉ℎ ≤ 𝐼 < +∞ iterations the RB space is exact. On a practical point of view, having a RB space of
the same dimension of the full-order model will not give any speed-up. Since the optimization sequence will fast
accumulate around 𝜇̄, we expect that the RB model will be accurate enough to not trigger (4.6b) thus implying
the TR method convergence in a much smaller number of iterations. The numerical tests in Section 5 confirms
this expectation.

4.3. Construction of RB spaces

In an enrichment step of the outer loop of the TR-algorithm 1 for 𝜇 ∈ 𝒫, we assume to have access to the
primal and dual solutions 𝑢ℎ,𝜇, 𝑝ℎ,𝜇 ∈ 𝑉ℎ and consider two strategies to enrich the RB spaces.

(a) Lagrangian RB spaces: we add each FOM solution to the RB space that is directly related to its respective
reduced formulation, i.e., for a given 𝜇 ∈ 𝒫, we enrich by 𝑉 pr,𝑘

𝑟 = 𝑉 pr,𝑘−1
𝑟 ∪{𝑢ℎ,𝜇}, 𝑉 du,𝑘

𝑟 = 𝑉 du,𝑘−1
𝑟 ∪{𝑝ℎ,𝜇}.

(b) Aggregated RB space: we add all available information into a single RB space, i.e., 𝑉 pr,𝑘
𝑟 = 𝑉 du,𝑘

𝑟 =
𝑉 pr,𝑘−1

𝑟 ∪{𝑢ℎ,𝜇, 𝑝ℎ,𝜇}. According to Section 3 this results in 𝒥𝑟(𝜇) being equal to the standard RB reduced
functional from (3.5).

These strategies for constructing RB spaces have a significant impact on the performance and accuracy of
the TR-RB method. Note that offline computations for the construction of RB models scale quadratically with
the number of basis functions in the RB space. Thus, Lagrange RB spaces in (a) are computationally beneficial
compared to (b) at a potential loss of accuracy of the corresponding RB models (since less information is added).
Moreover, different spaces as in (a) destroy the duality of state and adjoint equations, cf. Section 3.2.
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4.4. Trust-Region variants based on adaptive enrichment strategies

A major contribution of this article is to introduce and analyze variants of adaptive TR-RB methods with
projected BFGS as sub-problem solver for efficiently computing a solution of the optimization problem (P). In
terms of performance we need to account for all computational costs, including traditional offline and online
costs of the algorithms. The proposed methods mainly differ in terms of the model function and its gradient
information. Following Section 4.1, we propose a TR method which adaptively builds an RB space along the
path of optimization (see Algorithm 1). From a MOR perspective this diminishes the offline time of the ROM
significantly since no global RB space (with respect to the parameter domain) has to be built in advance. We
enrich the model after the sub-problem (4.2) of the TR method has been solved. We distinguish three different
approaches:

(1) Standard approach: following Section 3.2, the standard approach for the functional is to replace the FOM
quantities by their respective ROM counterpart, i.e., we consider the map 𝜇 ↦→ 𝐽𝑟(𝜇) from (3.5). Gradient
information can be computed by reducing the corresponding FOM gradient which results in ̃︀∇𝜇𝒥 (𝑢𝑟,𝜇, 𝜇)
from (3.8). Consequently this approach does not allow for using a higher order estimate but ∆𝐽𝑟

(𝜇).
(2) Semi NCD-corrected approach: a first correction strategy is to replace the functional by the NCD-corrected

RB reduced functional 𝒥𝑟 from (3.9) but stick with the inexact gradient of the standard approach. This
allows to use the higher order estimator for the functional, i.e., ∆𝒥𝑟

(𝜇).
(3) NCD-corrected approach: we propose to consider the NCD-corrected RB reduced functional 𝒥𝑟 from (3.9)

and its actual gradient according from Proposition 3.3. Note that we only need to solve two additional
equations, independently of the dimension 𝑃 of the parameter space.

For the basis construction, we may use variants (a) or (b) from Section 4.3. Note however, that by using
the basis enrichment (b), all approaches 1−3 are equivalent. Using variant (a) with BFGS is inspired from
[50]. However, our algorithms differ from the TR-RB approach in [50] since we are working with the NCD-
corrected reduced cost functional (in 2) and its actual gradient (in 2 and 3). Note that the presence of inequality
constraints, which are missing in [50], implies a projection-based optimization algorithm. In addition, we stress
that, differently from [50], we take advantage of the proposed condition for enlarging the TR radius and of a
stopping criterium independent from the RB a posteriori estimates, as presented in Section 4.1.

Remark 4.7. Note that we do not use the sensitivity based quantities from Section 3.4.2 although they suggest
the highest numerical accuracy w.r.t. the FOM optimality system. However, for the experiments in Section 5,
additional computational cost for computing FOM sensitivities will not pay off in the TR-RB algorithm, espe-
cially for high-dimensional parameter spaces.

5. Numerical experiments

We present numerical experiments to demonstrate the adaptive TR-RB variants from Section 4.4 with both
RB constructions from Section 4.3 for quadratic objective functionals with elliptic PDE constraints as in (P), and
compare them to state-of-the art algorithms from the literature. We also validate the higher-order a posteriori
error estimates from Section 3.4 numerically. We consider two setups: first, the elliptic thermal fin problem
from Section 5.1.1 of [50] (where the correction term of the proposed NCD-corrected approach vanishes) in
Section 5.2. Second, we consider a more challenging optimization problem in Section 5.3, including a detailed
analysis of the a posteriori error estimates from Section 3.4. All simulations have been performed with a
pure Python implementation based on the open source MOR library pyMOR [43], making use of pyMORs
builtin vectorized numpy/scipy-based discretizer for the FOM and generic MOR algorithms for projection and
orthonormalization (such as a stabilized Gram-Schmidt algorithm) to effortlessly obtain efficient ROMs. The
source code to reproduce all results (including detailed interactive jupyter-notebooks1) is available at [39]. All

1Available at https://github.com/TiKeil/NCD-corrected-TR-RB-approach-for-pde-opt.

https://github.com/TiKeil/NCD-corrected-TR-RB-approach-for-pde-opt
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experiments are based on the same implementation (including a reimplementation of [50]) and were performed
on the same machine multiple times to avoid caching or multi-query effects. Timings may thus be used to
compare and judge the computational efficiency of the different algorithms.

We consider stationary heat transfer in a bounded connected spatial domain Ω ⊂ R2 with polygonal boundary
𝜕Ω partitioned into a non-empty Robin boundary ΓR ⊂ 𝜕Ω and possibly empty distinct Neumann boundary
ΓN = 𝜕Ω∖ΓR, and unit outer normal 𝑛 : 𝜕Ω → R2. We consider the Hilbert space 𝑉 = 𝐻1(Ω) := {𝑣 ∈
𝐿2(Ω) | ∇𝑣 ∈ 𝐿2(Ω)} of weakly differentiable functions and, for an admissible parameter 𝜇 ∈ 𝒫, we seek the
temperature 𝑢𝜇 ∈ 𝑉 as the solution of

−∇ ·
(︀
𝜅𝜇∇𝑢𝜇

)︀
= 𝑓𝜇 in Ω, 𝜅𝜇∇𝑢𝜇 · 𝑛 = 𝑐𝜇(𝑢out − 𝑢𝜇) on ΓR, 𝜅𝜇∇𝑢𝜇 · 𝑛 = 𝑔N on ΓN (5.1)

in the weak sense, with the admissible parameter set, the spatial domain and its boundaries and the data
functions 𝜅𝜇 ∈ 𝐿∞(Ω), 𝑓𝜇 ∈ 𝐿2(Ω), 𝑐𝜇 ∈ 𝐿∞(ΓR) and 𝑢out ∈ 𝐿2(ΓR) defined in the respective experiment. The
bilinear form 𝑎 and linear functional 𝑙 in (P.b) are thus given for all 𝜇 ∈ 𝒫 and 𝑣, 𝑤 ∈ 𝑉 by

𝑎𝜇(𝑣, 𝑤) :=
∫︁

Ω

𝜅𝜇∇𝑣 · ∇𝑤 d𝑥 +
∫︁

ΓR

𝑐𝜇 𝑣𝑤 d𝑠 and 𝑙𝜇(𝑣) :=
∫︁

Ω

𝑓𝜇 𝑣 d𝑥 +
∫︁

ΓR

𝑐𝜇 𝑢out𝑣 d𝑠 +
∫︁

ΓN

𝑔N𝑣 d𝑠. (5.2)

For the FOM we fix a fine enough reference simplicial or cubic mesh and define 𝑉ℎ ⊂ 𝑉 as the respective space
of continuous piecewise (bi-)linear Finite Elements.

Since the inner product and norm have a big influence on the computational efficiency of the a posteriori
error estimates as well as their sharpness, we use the mesh-independent energy-product (𝑢, 𝑣) := 𝑎𝜇̌(𝑢, 𝑣) for
a fixed parameter 𝜇̌ ∈ 𝒫. Since the bilinear form 𝑎 in our experiments is symmetric, continuous and coercive,
this energy-product indeed is a product over 𝑉 . Owing to this choice of the product, we may use the min-
theta approach from Proposition 2.35 of [27] to obtain lower bounds on coercivity constants and the max-theta
approach from Example 5.12 of [27] to obtain upper bounds on continuity constants, each required for the a
posteriori error estimates. Compared to the more general Successive Constraint Method [36], this approach yields
quite sharp estimates and is computationally more efficient, both offline and online. Due to Assumption 2.2 and
the bi-linearity of the objective functional, we may carry out the preassembly of all high-dimensional quantities
after each enrichment, which is well-known for RB methods ([27], Sect. 2.5). We would like to point out that
while the more accurate and stable preassembly of the estimates from [10] is readily available in pyMOR, the
slightly cheaper standard preassembly of the estimates was sufficient for our experiments.

For all experiments, we use an initial TR radius of 𝛿0 = 0.1, a TR shrinking factor 𝛽1 = 0.5, an Armijo
step-length 𝜅 = 0.5, a truncation of the TR boundary of 𝛽2 = 0.95, a tolerance for enlarging the TR radius of
𝜂𝜚 = 0.75, a stopping tolerance for the TR sub-problems of 𝜏sub = 10−8, a maximum number of TR iteration
𝐾 = 40, a maximum number of sub-problem iteration 𝐾sub = 400 and a maximum number of Armijo iteration
of 50. We also point out that the stopping tolerance for the FOC condition 𝜏FOC is specified in each experiment.

5.1. State of the art optimization methods

We compare our proposed methods to the following ones from the literature:

Adaptive TR-RB with BFGS sub-problem solver and Lagrangian RBs [50]: we consider the same
method as in [50], where the authors used the standard functional and gradient from Section 3.2. Furthermore,
no enlarging strategy has been used for the TR-radius and no projection for parameter constraints has been
considered. Importantly, the authors did not take advantage of the fact, that the full order FOC condition in
line 23 of Algorithm 1 is cheaply available after an enrichment step. Instead they used the reduced FOC condition
plus the estimator for the gradient of the cost functional ‖̃︀∇𝜇𝐽𝑟

(︀
𝜇(𝑘+1)

)︀
)‖2 +∆̃︀∇𝜇𝐽𝑟

(𝜇) ≤ 𝜏FOC in line 23. Note
that this approach has multiple drawbacks. First, the evaluation is more costly due to the estimator. Second,
it is less accurate and third, it can prevent the TR-RB from converging in case the estimator is not able to be
small enough (for instance governed by large constants or numerical issues in the estimator).



1262 T. KEIL ET AL.

Figure 1. Problem definition of the thermal fin example from Section 5.2. Depicted is the
spatial domain Ω (with 𝐿 = 2.5 and 𝑡 = 0.25) with Neumann boundary at the bottom with
|ΓN| = 1 and Robin boundary ΓR := 𝜕Ω∖ΓN, as well as the values 𝑘0, . . . , 𝑘4 > 0 of the diffusion
𝑘𝜇, which is piecewise constant in the respective indicated part of the domain. The other data
functions in (5.1) are given by 𝑓𝜇 = 0, 𝑔N = −1, 𝑢out = 0 and 𝑐𝜇 = Bi ∈ R, the Biot number.
We allow to vary the six parameters (𝑘0, . . . , 𝑘4, Bi) and define the set of admissible parameters
as [0.1, 10]5× [0.01, 1] ⊂ R𝑃 with 𝑃 = 6. We choose 𝜇̌ = (1, 1, 1, 1, 1, 0.1) for the energy product.

FOM projected BFGS: we consider a standard projected BFGS method, which uses FOM evaluations of the
forward model for the reduced cost functional and its gradient. We restrict the number of iterations by 400.

5.2. Model problem 1: Elliptic thermal fin model problem

We consider the six-dimensional elliptic thermal fin example from Section 5.1.1 of [50] and refer to Figure 1 for
the problem definition. The purpose of this experiment is to show the applicability of the proposed algorithms
and to compare them to the one proposed in [50]. For all runs we prescribe the same desired parameter 𝜇d ∈ 𝒫
by randomly drawing 𝑘1, . . . , 𝑘4 strictly within 𝒫 and by setting 𝑘0 = 0.1 and Bi = 0.01, to artificially mimic
the situation where parameter constraints have to be tackled. Defining 𝑇 d := 𝑞(𝑢𝜇d) where 𝑢𝜇d ∈ 𝑉 is the
solution of (P.b) associated with the desired parameter and where 𝑞(𝑣) :=

∫︀
ΓN

𝑣 d𝑠 for 𝑣 ∈ 𝑉 denotes the mean
temperature at the root of the fin, we consider a cost functional 𝒥 (𝑢, 𝜇) = Θ(𝜇) + 𝑗𝜇(𝑢) + 𝑘𝜇(𝑢, 𝑢) as in (P.a)
with Θ(𝜇) := (‖𝜇d − 𝜇‖/‖𝜇d‖)2 + 𝑇 d2 + 1, 𝑗𝜇(𝑣) := −𝑇 d 𝑞(𝑣) and 𝑘𝜇(𝑣, 𝑤) := 1/2 𝑞(𝑣) 𝑞(𝑤). We would like to
point out that the authors in [50] dropped the 𝑇 d2 + 1 term from the definition of Θ, which we re-add to ensure
Assumption 4.2. This constant term does not change the position of local minima and the derivatives of the
cost functional. However, it makes the Trust-Region radius shrink especially at the beginning, slowing down
the TR-RB methods. This does not affect the comparison among the TR-RB methods, since all suffer from this
issue. Note that for this particular example, the proposed NCD-correction term vanishes, see Remark 5.1. For
the FOM, we generate an unstructured simplicial mesh using pyMORs gmsh (see [22]) bindings, resulting in
dim 𝑉ℎ = 77537.

Starting with ten different randomly drawn initial parameters 𝜇(0), we measure the total computational
runtime, the number of TR iterations 𝑘 and the error in the optimal parameter for all combinations of adaptive
TR algorithms from Section 4 and choice of RB spaces from Section 4.3, as well as for the state of the art
methods from the literature from Section 5.1.

All considered optimization methods converged (up to a tolerance), but we restrict the presentation to the
most informative ones (all results can be found in the accompanying code). As we observe from Table 1, the
ROM based adaptive TR-RB algorithms vastly outperform the FOM variant, noting that the computational
time of the ROM variants includes all offline and online computations. Figure 2 details the decay of the error
decay in the optimal parameter during the optimization for a selected random initial guess. We observe that the



A NON-CONFORMING DUAL APPROACH FOR ADAPTIVE TRUST-REGION REDUCED BASIS METHOD 1263

Table 1. Performance and accuracy of selected algorithms for the example from Section 5.2
for ten optimization runs with randomly initial guesses 𝜇(0): averaged, minimum and maximum
total computational time (column 2) and speed-up compared to the FOM variant (column 3);
average, minimum and maximum number of iterations 𝑘 required until convergence (column
4), average relative error in the parameter (column 5) and average FOC condition (column 6).

av. (min/max) runtime[s] Speed-up av. (min/max) iter. rel. error FOC cond.

FOM proj. BFGS 967.86 (176.69/3401.06) – 111.20 (25/400) 3.13× 10−3 1.19× 10−2

TR-RB from [50] 68.06 (43.28/88.21) 10.40 7.20 (8/13) 1.34× 10−6 4.31× 10−5

1(a) TR-RB with 𝑉 pr
𝑟 ̸= 𝑉 du

𝑟 44.56 (34.22/74.96) 21.72 8.80 (8/11) 3.08× 10−6 4.64× 10−5

1(b) TR-RB with 𝑉 pr
𝑟 = 𝑉 du

𝑟 43.86 (34.09/74.35) 22.07 8.70 (8/10) 3.37× 10−6 6.40× 10−5

Figure 2. Error decay and performance of selected algorithms for the example from Section 5.2
for a single optimization run with random initial guess 𝜇(0) for 𝜏FOC = 5 × 10−4: for each
algorithm each marker corresponds to one (outer) iteration of the optimization method and
indicates the absolute error in the current parameter, measured against the known desired
optimum 𝜇̄ = 𝜇d. In all except the FOM variant, the ROM is enriched in each iteration
corresponding to Algorithm 1, depending on the variant in question.

choice of the RB enrichment does not impact the performance of the algorithm for this example too much, see
Remark 5.1. Also methods 2(a) and 3(a) show a comparable computational speed (not shown). We also observe
that the method from [50] requires more time and more iterations on average, variants 1 are still faster due to
the enlarging of the TR radius and of the use of a termination criterium which does not depend on a posteriori
estimates, which may force additional TR iterations.

Remark 5.1 (Vanishing NCD-correction for the fin problem). It is important to notice that this model problem
is not suitable to fully demonstrate the capabilities of the NCD-corrected approach. The reason is that the
choice of the functional is a misfit on only the root edge of the thermal fin, plus a Tikhonov regularization
term. Since the root of the thermal fin is also the source of the primal problem, the dual solutions 𝑝𝑟,𝜇 of
the reduced dual equation (3.4b) are thus linearly dependent on the respective primal solutions 𝑢𝑟,𝜇 and the
correction term 𝑟pr

𝜇 (𝑢𝑟,𝜇) [𝑝𝑟,𝜇] for the NCD-corrected RB reduced functional from (3.9) vanishes. In general, for
quadratic objective functionals, this is not the case and all variants with correction terms thus waste unnecessary
computational time.

5.3. Model problem 2: stationary heat distribution in a building

For these experiments we consider as objective functional a weighted 𝐿2-misfit on a domain of interest
𝐷 ⊆ Ω and a weighted Tikhonov term comparable to design optimization, optimal control or inverse problems,
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Figure 3. Definition of Model problem 2: with Ω := [0, 2]×[0, 1] ⊂ R2. Numbers indicate affine
components, where 𝑖. is a window, i are doors, and 𝑖| are walls. The 𝑖th heater is located under
the 𝑖th window. With respect to (5.1), we consider ΓR := 𝜕Ω, where 𝑐𝜇 contains outside wall
10|, outside doors 8 and 9 and all windows. All other diffusion components enter the coefficient
𝜅𝜇, whereas the heaters enter into the source term 𝑓𝜇. Furthermore, we set 𝑢out = 5 and the
green region illustrates the domain of interest 𝐷.

i.e.,

𝒥 (𝑣, 𝜇) =
𝜎𝐷

2

∫︁
𝐷

(︀
𝑣 − 𝑢d

)︀2
+

1
2

𝑀∑︁
𝑖=1

𝜎𝑖

(︀
𝜇𝑖 − 𝜇d

𝑖

)︀2
+ 1, (5.3)

with given desired state 𝑢d ∈ 𝑉 and parameter 𝜇d ∈ 𝒫 and weights 𝜎𝐷, 𝜎𝑖 specified further below. With respect
to (P.a), we thus have Θ(𝜇) = 1

2

∑︀𝑀
𝑖=1 𝜎𝑖(𝜇𝑖 − 𝜇d

𝑖 )2 + 𝜎𝐷

2

∫︀
𝐷

𝑢d𝑢d + 1, 𝑗𝜇(𝑢) = −𝜎𝐷

∫︀
𝐷

𝑢d𝑢 and 𝑘𝜇(𝑢, 𝑣) =
𝜎𝐷

2

∫︀
𝐷

𝑢𝑣.
Motivated by ensuring a desired temperature in a single room of a building floor, we consider blueprints with

windows, heaters, doors and walls, yielding parameterized diffusion, forces and boundary values as sketched
in2 Figure 3. For simplicity we omit a realistic modeling of temperature and restrict ourselves to academic
numbers of the diffusion and heat source quantities. We seek to ensure a desired temperature 𝑢d = 18 and set
𝜇d

𝑖 = 0. For the FOM discretization we choose a cubic mesh which resolves all features of the data functions
derived from Figure 3, resulting in dim 𝑉ℎ = 80 601 degrees of freedom. We consider a ten-dimensional parameter
example with three wall sets {1|, 2|, 3|, 8|}, {4|, 5|, 6|, 7|} and {9|} and seven heater sets, {1, 2}, {3, 4} and {5},
{6}, {7}, {8} and {9, 10, 11, 12} (each set governed by a single parameter component). The set of admissible
parameters is given by 𝒫 = [0.025, 0.1]3×[0, 100]7 and we choose 𝜎𝐷 = 100 and (𝜎𝑖)1≤𝑖≤10 = (10𝜎𝑤, 5𝜎𝑤, 𝜎𝑤, 2𝜎ℎ,
2𝜎ℎ, 𝜎ℎ, 𝜎ℎ, 𝜎ℎ, 𝜎ℎ, 4𝜎ℎ) in (5.3), with 𝜎𝑤 = 0.05 and 𝜎ℎ = 0.001. The choice of 𝜎𝑖 is related to the measure
of the walls and how many heaters are considered in each group. The other components of the data functions
are fixed and thus not directly involved in the optimization process. Briefly, the diffusion coefficient of air and
inside doors is set to 0.5, of the outside wall to 0.001, of outside doors 8 and 9 to 0.01 and of windows to 0.025.
For the energy product, we choose 𝜇̌ = (0.05, 0.05, 0.05, 10, 10, 10, 10, 10, 10, 10).

We use this setup to inspect different TR-RB algorithms in Section 5.3.2, but also to study the a posteriori
error estimates from Section 3.4 in the following section.

2See https://github.com/TiKeil/NCD-corrected-TR-RB-approach-for-pde-opt for the definition of the data functions.

https://github.com/TiKeil/NCD-corrected-TR-RB-approach-for-pde-opt
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Figure 4. Evolution of the true and estimated model reduction error (top) in the reduced
functional and its approximations (A) and the gradient of the reduced functional and its
approximations (B), as well as error estimator efficiencies (bottom), during adaptive greedy
basis generation for the experiment from Section 5.3.1. Top: depicted is the 𝐿∞(𝒫val)-error
for a validation set 𝒫val ⊂ 𝒫 of 100 randomly selected parameters, i.e., |𝐽ℎ − 𝐽𝑟| corre-
sponds to max𝜇∈𝒫val |𝐽ℎ(𝜇) − 𝐽𝑟(𝜇)|, ∆𝒥𝑟

corresponds to max𝜇∈𝒫val ∆𝒥𝑟
(𝜇), ‖∇𝒥ℎ − ∇𝒥𝑟‖2

corresponds to max𝜇∈𝒫val ‖∇𝒥ℎ(𝜇) − ∇𝒥𝑟(𝜇)‖2, and so forth. Bottom: depicted is the worst
effectivity of the respective error estimate (lower: better), i.e., “∆𝐽𝑟

eff.” corresponds to
max𝜇∈𝒫val ∆𝐽𝑟

(𝜇)/|𝐽ℎ(𝜇)− 𝐽𝑟(𝜇)|, and so forth.

5.3.1. Numerical validation of the a posteriori error estimates

To study the performance of the a posteriori error estimates proposed in Section 3.4, we neglect the outer-
loop optimization and simply use a goal oriented adaptive greedy algorithm [28] with basis extension (a) from
Section 4.3 to generate a ROM which ensures that the worst relative estimated error for the reduced func-
tional and its gradient over the adaptively generated training set and a randomly chosen validation set is
below a prescribed tolerance of 𝜏FOC = 5 × 10−4. In particular we first ensure ∆𝐽𝑟

(𝜇)/𝐽𝑟(𝜇) < 𝜏FOC for ∆𝐽𝑟

from Proposition 3.6(i) and continue with ∆̃︀∇𝐽𝑟
(𝜇)/‖̃︀∇𝐽𝑟(𝜇)‖2 < 𝜏̃︀∇𝐽 for ∆̃︀∇𝐽𝑟

from Proposition 3.8(i), cf.
Algorithm 2 of [50]. Let us mention that the goal for ∆𝐽𝑟

is fulfilled after 24 basis enrichments and we have
∆̃︀∇𝐽𝑟

(𝜇)/‖̃︀∇𝐽𝑟(𝜇)‖ < 4.84 after 56 basis enrichments, where we artificially stop the algorithm since the asso-
ciated computational effort is already roughly 17 h, demonstrating the need for the proposed adaptive TR-RB
algorithm studied in the next section.

As we observe from Figure 4, the error of the NCD-corrected terms is of several orders of magnitude smaller
than the corresponding terms of the standard approach. It can also be seen that the (computationally more
costly) sensitivity bases quantities, i.e., ̃︀∇𝒥𝑟, show the best error. However, all estimators for the corrected and
sensitivity based quantities show a worse effectivity, hinting that there is still room for improvement.

5.3.2. Optimization results

Similar to Section 5.2, starting with ten different randomly drawn initial parameters 𝜇(0), we measure the
total computational runtime, the number of TR iterations 𝑘 and the error in the optimal parameter for all
combinations of adaptive TR algorithms from Section 4 and choice of RB spaces from Section 4.3, as well as
for the state of the art methods from the literature from Section 5.1.
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Table 2. Performance and accuracy of selected algorithms for two choices of 𝜏FOC for the exam-
ple from Section 5.3.2 for ten optimization runs with random initial guess, compare Table 1.

(A) Result for 𝜏FOC = 5× 10−4 av. (min/max) runtime[s] speed-up av. (min/max) iter. rel. error FOC cond.

FOM proj. BFGS 332.57 (196.51/591.85) – 44.30 (30/60) 1.40× 10−3 1.80× 10−4

TR-RB from [50] 117.87 (70.29/166.31) 2.82 10.10 (6/14) 5.46× 10−4 1.41× 10−4

1(a) TR-RB with 𝑉 pr
𝑟 ̸= 𝑉 du

𝑟 91.50 (47.07/230.29) 3.63 8.30 (5/10) 2.01× 10−3 2.04× 10−4

1(b) TR-RB with 𝑉 pr
𝑟 = 𝑉 du

𝑟 78.65 (54.69/114.36) 4.23 6.90 (5/9) 2.53× 10−4 8.23× 10−5

2(a) TR-RB semi NCD-corrected 79.47 (63.38/94.28) 4.18 8.50 (7/10) 5.98× 10−5 1.02× 10−4

3(a) TR-RB NCD-corrected 71.84 (50.38/87.16) 4.63 7.40 (5/9) 1.09× 10−3 6.12× 10−5

(B) Result for 𝜏FOC = 10−6 av. (min/max) runtime[s] speed-up av. (min/max) iter. rel. error FOC cond.

FOM proj. BFGS 409.28 (317.25/637.55) – 57.00 (49/71) 2.82× 10−6 3.35× 10−7

TR-RB from [50] 614.81 (566.66/671.97) 0.66 40.00 (40/40) 8.46× 10−7 8.44× 10−8

1(a) TR-RB with 𝑉 pr
𝑟 ̸= 𝑉 du

𝑟 165.48 (92.26/417.24) 2.47 15.30 (10/40) 3.29× 10−6 5.43× 10−7

1(b) TR-RB with 𝑉 pr
𝑟 = 𝑉 du

𝑟 86.39 (62.68/124.43) 4.74 7.80 (6/10) 3.52× 10−6 3.03× 10−7

2(a) TR-RB semi NCD-corrected 90.37 (80.97/102.60) 4.53 9.80 (9/11) 8.12× 10−7 2.26× 10−7

3(a) TR-RB NCD-corrected 88.24 (58.18/108.90) 4.64 8.90 (6/10) 2.65× 10−6 2.73× 10−7

All algorithms converged (up to a tolerance) to the same point 𝜇̄ and it was verified a posteriori that this
point is a local minimum of 𝒥 , i.e., it satisfies the second-order sufficient optimality conditions. The value of 𝜇̄ in
order to compute the relative error was calculated with the FOM projected Newton method for a FOC condition
tolerance of 10−12 and, thanks to the choice of the cost functional weights, the target 𝑢d is approximate by
𝑢̄ with a relative error of 1.7 × 10−6 in 𝐷. We consider the same setup for two different stopping tolerances
𝜏FOC = 5×10−4 and 𝜏FOC = 10−6 to demonstrate that the performance (both in terms of time and convergence)
of the methods vastly depends on the choice of 𝜏FOC.

From Table 2, we observe that all proposed TR-RB methods speed up the FOM projected BFGS method
with the NCD-corrected approach outperforming the others, since the gradient used is the true one of the model
function 𝒥𝑟. Moreover, independently of the model function, the algorithm from [50] is much slower, demon-
strating the positive impact of the suggested improvements on enlarging the TR radius and on the termination
criterium based on cheaply available FOM information (instead of relying on an a posteriori estimate), also
visible in the number of outer TR iterations. Comparing our proposed TR variants in terms of iterations, it is
more beneficial to consider an aggregated RB space, i.e., 𝑉 pr

𝑟 = 𝑉 du
𝑟 . While enrichment (a) is more costly and

the time-to-ROM-solution is slightly larger, the richer space seems to allow for better approximations of 𝒥ℎ.
All methods approximate the optimal parameter 𝜇̄ with a small relative error and reach the desired tolerance

for the FOC condition. However, in view of the resulting relative error in Table 2 and Figure 5, we observe
that the choice 𝜏FOC = 5 × 10−4 is not sufficiently small for this model problem. In fact, we observe for most
of the variants, that this choice for the tolerance 𝜏FOC does not guarantee an adequately low relative error
in approximating 𝜇̄ and affects the timings by stopping the method too early. We conclude that the choice
𝜏FOC = 10−6 instead results in a valid optimum of all variants (up to a tolerance of 10−6). Importantly, for
this choice of 𝜏FOC, we point out that the variant from [50] only stopped because we restricted the maximum
number of iterations to 40, although the FOC condition dropped under the depicted tolerance of 10−6. This is
caused by the fact that in [50] the a posteriori estimate, which is summed to the FOC condition, cannot get
numerically small enough, showing the limit of the proposed stopping criterium in [50].

From Figure 5B we conclude that the NCD-corrected approaches 2(a) and 3(a) outperform the standard ROM
variant 1(a), which also reached the maximum number of iterations for one of the ten samples. Consequently, the
NCD-correction entirely resolves the issue of the variational crime (introduced by splitting the reduced spaces),
since it shows roughly the same performance as variant 1(b). However, looking at the minimum and maximum
number of computational time in Table 2, variant 3(a) shows a less volatile and more robust behavior.
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Figure 5. Error decay and performance of selected algorithms for two choices of 𝜏FOC for the
example from Section 5.3.2 for a single optimization run with random initial guess, compare
Figure 2. (A) Result for 𝜏FOC = 5 · 10−4. (B) Result for 𝜏FOC = 10−6.

6. Conclusion

In this work we proposed and analyzed several variants of new adaptive Trust-Region Reduced Basis methods
for parameterized partial differential equations. First, we proved convergence of the modified algorithm in
case of additional bilateral constraints on the parameter set, making this method more appealing for real-
world applications. Second, the use of a NCD-corrected RB reduced functional improves the RB approximation
compared to the standard approach, and enables the possibility of using an exact gradient in the case of separate
RB spaces (each variant accompanied by rigorous a posteriori error estimates). This approach turns out to be
the most reliable in terms of computational time and accuracy, outperforming the existing TR-RB method.
Furthermore, the proposed cheaply-computable criteria for enlarging the TR radius and for terminating the
iterations ensure a faster convergence. In future works we are interested in considering the projected Newton
method to replace the projected BFGS method used in this contribution. This leads to additional effort on
developing a posteriori estimates for the RB approximation of the hessian and of the optimal parameter. In
addition, we are interested in combining the proposed TR-RB algorithm with localized RB methods for large-
scale applications.
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[17] L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints.
J. Sci. Comput. 50 (2012) 287–305.

[18] M.A. Dihlmann and B. Haasdonk, Certified PDE-constrained parameter optimization using reduced basis surrogate models
for evolution problems. Comput. Optim. App. 60 (2015) 753–787.

[19] M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations
based on empirical operator interpolation. SIAM J. Sci. Comput. 34 (2012) A937–A969.

[20] J.L. Eftang, A.T. Patera and E.M. Rønquist, An “ℎ𝑝” certified reduced basis method for parametrized elliptic partial differential
equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200.

[21] D. Garmatter, B. Haasdonk and B. Harrach, A reduced basis Landweber method for nonlinear inverse problems. Inverse Prob.
32 (2016) 035001.

[22] C. Geuzaine and J.-F. Remacle, Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int.
J. Numer. Methods Eng. 79 (2009) 1309–1331.
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