Symmetry and scaling limits for matching of implicit surfaces based on thin shell energies
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1133-1161

In a recent paper by Iglesias et al. [Found. Comput. Math. 18 (2018) 891–927] a variational model for deformations matching a pair of shapes given as level set functions was proposed. Its main feature is the presence of anisotropic energies active only in a narrow band around the hypersurfaces that resemble the behavior of elastic shells. In this work we consider some extensions and further analysis of that model. First, we present a symmetric energy functional such that given two particular shapes, it assigns the same energy to any given deformation as to its inverse when the roles of the shapes are interchanged, and introduce the adequate parameter scaling to recover a surface problem when the width of the narrow band vanishes. Then, we obtain existence of minimizing deformations for the symmetric energy in classes of bi-Sobolev homeomorphisms for small enough widths, and prove a Γ -convergence result for the corresponding non-symmetric energies as the width tends to zero. Finally, numerical results on realistic shape matching applications demonstrating the effect of the symmetric energy are presented.

DOI : 10.1051/m2an/2021018
Classification : 49J45, 65D18, 74K25
Keywords: Variational shape matching, implicit surfaces, thin shells, invertibility, scaling limits
@article{M2AN_2021__55_3_1133_0,
     author = {Iglesias, Jos\'e A.},
     title = {Symmetry and scaling limits for matching of implicit surfaces based on thin shell energies},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1133--1161},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021018},
     mrnumber = {4269465},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021018/}
}
TY  - JOUR
AU  - Iglesias, José A.
TI  - Symmetry and scaling limits for matching of implicit surfaces based on thin shell energies
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1133
EP  - 1161
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021018/
DO  - 10.1051/m2an/2021018
LA  - en
ID  - M2AN_2021__55_3_1133_0
ER  - 
%0 Journal Article
%A Iglesias, José A.
%T Symmetry and scaling limits for matching of implicit surfaces based on thin shell energies
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1133-1161
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021018/
%R 10.1051/m2an/2021018
%G en
%F M2AN_2021__55_3_1133_0
Iglesias, José A. Symmetry and scaling limits for matching of implicit surfaces based on thin shell energies. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1133-1161. doi: 10.1051/m2an/2021018

[1] E. Acerbi, G. Buttazzo and D. Percivale, Thin inclusions in linear elasticity: a variational approach. J. Reine Angew. Math. 386 (1988) 99–115. | MR | Zbl

[2] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press (2003). | MR | Zbl

[3] O. Anza Hafsa and J.-P. Mandallena, Relaxation and 3D–2D passage theorems in hyperelasticity. J. Convex Anal. 19 (2012) 759–794. | MR | Zbl

[4] J. M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics. Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Vol. I. In: Vol. 17 of Research Notes in Math. Pitman (1977) 187–241. | MR | Zbl

[5] J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 315–328. | MR | Zbl | DOI

[6] J. M. Ball, Progress and puzzles in nonlinear elasticity, edited by J. Schröder and P. Neff. In: Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. Springer (2010) 1–15.

[7] M. Bauer, M. Bruveris and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vision 50 (2014) 60–97. | MR | Zbl | DOI

[8] M. Bauer, M. Bruveris, N. Charon and J. Møller-Andersen, A relaxed approach for curve matching with elastic metrics. ESAIM COCV 25 (2019) 72. | MR | Numdam | DOI

[9] M. Bauer, N. Charon, P. Harms and H.-W. Hsieh, A numerical framework for elastic surface matching, comparison, and interpolation. Preprint arXiv:2006.11652 [cs.CV] (2020).

[10] A. L. Bessoud, F. Krasucki and G. Michaille, Multi-materials with strong interface: variational modelings. Asymptot. Anal. 61 (2009) 1–19. | MR | Zbl

[11] A. Braides, Γ -Convergence for Beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2002). | MR | Zbl

[12] M. Burger, J. Modersitzki and L. Ruthotto, A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35 (2013) B132–B148. | MR | Zbl | DOI

[13] P. Cachier and D. Rey, Symmetrization of the non-rigid registration problem using inversion-invariant energies: application to multiple sclerosis. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000. Springer (2000) 472–481.

[14] G. Charpiat, O. Faugeras and R. Keriven, Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. 5 (2004) 1–58. | MR | Zbl | DOI

[15] I. Chavel, Riemannian Geometry, 2nd edition. In: Vol. 98 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (2006). | MR | Zbl

[16] Z. Chen and Z. Huan, On the continuity of the m -th root of a continuous nonnegative definite matrix-valued function. J. Math. Anal. Appl. 209 (1997) 60–66. | MR | Zbl | DOI

[17] P. G. Ciarlet, Mathematical Elasticity, Volume III: Theory of Shells. North-Holland (2000). | MR | Zbl

[18] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edition. In: Vol. 78 ofApplied Mathematical Sciences. Springer (2008). | MR | Zbl

[19] S. Daneri and A. Pratelli, Smooth approximation of bi-Lipschitz orientation-preserving homeomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014) 567–589. | MR | Zbl | Numdam | DOI

[20] N. Debroux, J. Aston, F. Bonardi, A. Forbes, C. Le Guyader, M. Romanchikova and C.-B. Schönlieb, A variational model dedicated to joint segmentation, registration, and atlas generation for shape analysis. SIAM J. Imaging Sci. 13 (2020) 351–380. | MR | DOI

[21] M. C. Delfour and J.-P. Zolésio, Shape analysis via oriented distance functions. J. Funct. Anal. 123 (1994) 129–201. | MR | Zbl | DOI

[22] M. C. Delfour and J.-P. Zolésio, A boundary differential equation for thin shells. J. Differ. Equ. 119 (1995) 426–449. | MR | Zbl | DOI

[23] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries, 2nd edition. In: Vol. 22 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM) (2011). | MR | Zbl

[24] F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer/EDP Sciences (2012). | MR | Zbl | DOI

[25] M. Droske and M. Rumpf, A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64 (2003/04) 668–687. | MR | Zbl | DOI

[26] D. Ezuz, B. Heeren, O. Azencot, M. Rumpf and M. Ben-Chen, Elastic correspondence between triangle meshes. Comput. Graph. Forum 38 (2019) 121–134. | DOI

[27] R. L. Foote, Regularity of the distance function. Proc. Am. Math. Soc. 92 (1984) 153–155. | MR | Zbl

[28] S. Friedland, Variation of tensor powers and spectra. Linear Multilinear Algebra 12 (1982/83) 81–98. | MR | Zbl | DOI

[29] G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183–236. | MR | Zbl | DOI

[30] M. Fuchs, B. Jüttler, O. Scherzer and H. Yang, Shape metrics based on elastic deformations. J. Math. Imaging Vision 35 (2009) 86–102. | MR | DOI

[31] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. In: Classics in Mathematics. Springer-Verlag (2001). Reprint of the 1998 edition. | MR | Zbl

[32] S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion. In: Vol. 2096 of Lecture Notes in Mathematics. Springer(2014). | MR | Zbl

[33] J. A. Iglesias, B. Berkels, M. Rumpf and O. Scherzer, A thin shell approach to the registration of implicit surfaces. In: Proceedings of the Vision, Modeling, and Visualization Workshop 2013. Eurographics Association (2013) 89–96.

[34] J. A. Iglesias, M. Rumpf and O. Scherzer, Shape-aware matching of implicit surfaces based on thin shell energies. Found. Comput. Math. 18 (2018) 891–927. | MR | DOI

[35] T. Iwaniec and J. Onninen, Hyperelastic deformations of smallest total energy. Arch. Ration. Mech. Anal. 194 (2009) 927–986. | MR | Zbl | DOI

[36] T. Iwaniec, L. V. Kovalev and J. Onninen, Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Ration. Mech. Anal. 201 (2011) 1047–1067. | MR | Zbl | DOI

[37] P. Knabner, S. Korotov and G. Summ, Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements. Finite Elem. Anal. Des. 40 (2003) 159–172. | MR | DOI

[38] S. Kolouri, D. Slepčev and G. K. Rohde, A symmetric deformation-based similarity measure for shape analysis. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE (2015) 314–318. | DOI

[39] H. Le Dret, Nonlinear Elliptic Partial Differential Equations. Universitext. Springer (2018). | MR

[40] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. | MR | Zbl

[41] H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6 (1996) 59–84. | MR | Zbl | DOI

[42] N. Litke, M. Droske, M. Rumpf and P. Schröder, An image processing approach to surface matching. In: Symposium on Geometry Processing, edited by M. Desbrun and H. Pottmann (2005) 207–216.

[43] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1–28. | MR | Zbl | DOI

[44] J. Milnor, Morse Theory. In: Annals of Mathematics Studies, No. 51. Princeton University Press (1963). | MR | Zbl

[45] L. Nirenberg, An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 (1966) 733–737. | MR | Zbl | Numdam

[46] Quocmesh library, AG rumpf, Institute for Numerical Simulation, Universität Bonn. http://numod.ins.uni-bonn.de/software/quocmesh/index.html.

[47] M. Rumpf and B. Wirth, A nonlinear elastic shape averaging approach. SIAM J. Imaging Sci. 2 (2009) 800–833. | MR | Zbl | DOI

[48] M. Rumpf and B. Wirth, Variational methods in shape analysis. In: Handbook of Mathematical Methods in Imaging, edited by O. Scherzer. Springer (2011) 1363–1401. | Zbl | DOI

[49] M. Rumpf and B. Wirth, Discrete geodesic calculus in shape space and applications in the space of viscous fluidic objects. SIAM J. Imaging Sci. 6 (2013) 2581–2602. | MR | Zbl | DOI

[50] M. Rumpf and B. Wirth, Variational time discretization of geodesic calculus. IMA J. Numer. Anal. 35 (2015) 1011–1046. | MR | Zbl | DOI

[51] J. A. Sethian, Level Set Methods and Fast Marching Methods, 2nd edition. Cambridge University Press (1999). | MR | Zbl

[52] T. Windheuser, U. Schlickewei, F. R. Schmidt and D. Cremers, Geometrically consistent elastic matching of 3D shapes: a linear programming solution. In: International Conference on Computer Vision (2011) 2134–2141.

[53] W. P. Ziemer, Weakly Differentiable Functions. In: Vol. 120 of Graduate Texts in Mathematics. Springer-Verlag (1989). | MR | Zbl | DOI

Cité par Sources :