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SYMMETRY AND SCALING LIMITS FOR MATCHING OF IMPLICIT
SURFACES BASED ON THIN SHELL ENERGIES

JOoSE A. IGLESIAS

Abstract. In a recent paper by Iglesias et al. [Found. Comput. Math. 18 (2018) 891-927] a variational
model for deformations matching a pair of shapes given as level set functions was proposed. Its main
feature is the presence of anisotropic energies active only in a narrow band around the hypersurfaces
that resemble the behavior of elastic shells. In this work we consider some extensions and further
analysis of that model. First, we present a symmetric energy functional such that given two particular
shapes, it assigns the same energy to any given deformation as to its inverse when the roles of the
shapes are interchanged, and introduce the adequate parameter scaling to recover a surface problem
when the width of the narrow band vanishes. Then, we obtain existence of minimizing deformations for
the symmetric energy in classes of bi-Sobolev homeomorphisms for small enough widths, and prove a
I'-convergence result for the corresponding non-symmetric energies as the width tends to zero. Finally,
numerical results on realistic shape matching applications demonstrating the effect of the symmetric
energy are presented.
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1. INTRODUCTION

We are interested in variational methods for the matching of implicit shapes, in which an energy for deforma-
tions defined in a computational domain containing both shapes is minimized. More specifically, we are given
two embedded C? diffeomorphic hypersurfaces M, Mo C © C R, where 2 is an open bounded domain with
Lipschitz boundary, and we work with models formulated through the signed distance functions d; to M;. The
matching is then accomplished through a deformation ¢ : Q@ — € such that $(M;) = My and with the aim that
perceptually similar regions of M; and M5 correspond to each other. The particular notion of similarity we use
is derived from variational integrals penalizing distortion along the tangent spaces of the M;, and mismatch of
their curvatures in a tensorial fashion through their shape operators.

In this context, we say that an energy is symmetric if it assigns the same value to a deformation for matching
two shapes and to the inverse of the deformation when matching the shapes in the opposite order. This kind
of consistence is not at all guaranteed when formulating such a model, yet it is often desirable. Besides basic
conceptual reasons, many applications of statistical analysis like Fréchet means or PCA on spaces of shapes
are based on similarity measures. One possible choice (see the overview [48]) are those based on deformation
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energies, in which case symmetry is clearly advantageous. Another particular situation where such symmetry
would be desirable is the time-discrete geodesic calculus for shapes [49,50], a framework in which a deformation
energy can be used to induce a Riemannian distance. In that case one expects the continuous geodesics being
approximated to be invariant with respect to time reversal, and a symmetric energy ensures this reversibility
already on the discrete level.

We introduce in Section 2.1 a new symmetric energy consisting of a matching penalization term for the
constraint ¢(M;) = Mo, a membrane term that penalizes tangential distortion, a bending-like term that
induces curvature matching of the initial and target hypersurfaces, and an additional regularization based on an
hyperelastic bulk energy. This structure was also used in the less refined energies already proposed in [33,34].
Each term of the new energy is symmetric with respect to switching the hypersurfaces with each other and
the deformation for its inverse. Moreover, the first three energy contributions arise only from narrow bands
NoeM; ={z € Q| — 0 < d;(z) < g}, as an approximation of their influence only on the hypersurfaces to be
matched.

These membrane and bending-like energies are centered around the projected tangential derivative construc-
tion introduced in [34], which is specific to level set matching. By considering the deformed area only along the
tangent spaces of the offsets to the target surface, it allows for relaxing the constraint ¢(M;) = My while avoid-
ing oscillations that would arise when attempting to keep the deformations fully isometric ([34], Sect. 4.1). This
derivative is composed with explicit bounded, coercive, frame-invariant and isotropic stored energy functions
which attain their global minimum at a single energy well in SO(d), a fact proved in Lemma 2.1. The membrane
energy measures distortion of the projected tangential derivative through this stored energy function directly,
while the bending-like term additionally uses anisotropy and non-identity resting configurations to penalize
mismatch of curvatures of the M; through ¢. This notion of projected tangential derivative is not just weakly
continuous ([34], Lem. 4.1) but in fact gives rise to polyconvex energy densities, as we show in Lemma 2.3. Com-
bined with an a priori estimate given in Lemma 3.1 for the maximum mismatch of the shapes in terms of the
strength of the matching penalization, these lower semicontinuity properties are used in Theorem 3.3 to prove
existence of minimizers in classes appropriate to the symmetry with respect to inversion, that is, bi-Sobolev
deformations.

An obvious price that is paid to work in the level set framework is the increase of dimension of the domain, and
this is equally true for the nonlinear, thin-shell based matching energies used in [33,34] and for the current work.
We aim to offer further theoretical justification for this family of matching energies by studying in Theorem 4.3
the membrane limits of a non-symmetric version of the energy as the thickness of the narrow bands tends
to zero and the matching penalization becomes exact, so that the resulting energy has terms defined purely
on the hypersurfaces. In this situation, the projected tangential derivative trivializes the quasiconvexification
usually appearing in this kind of limit (the membrane energy of [40]), so the structure of the energies used is
preserved. A limitation is that we are only able to perform this asymptotic analysis for energies that do not
enforce injectivity of the deformations, with the consequence that the new symmetric energy is not covered. The
development of the tools that would be needed to naturally derive this kind of results with injective Sobolev
deformations is a major problem in the theory of nonlinear elasticity, with partial solutions available only in
two dimensions (see the end of Sect. 4 for some discussion).

On the numerical level, the increase of dimension is mitigated by the use of multiscale descent schemes on
adaptive meshes which are subdivided only around the input surfaces or curves. We present in Section 5 numer-
ical examples computed with such a method for the new symmetric energies, showing a marked improvement
in symmetry with respect to a non-symmetric version of the energy. These computations are based on a linear
finite element discretization on octree grids where each cube is divided into tetrahedra. Such grids allow for fast
indexing of degrees of freedom, indispensable for the use of coefficients depending on the deformed configuration,
which is pervasive in our definition of the energy.
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1.1. Related work

Our main focus is the formulation of symmetric energies, as defined above. The use of such energies for image
registration for medical image registration was proposed already in [13]. More recently, distances based on
symmetrized hyperelastic volume energies (without tangential terms) were used for the analysis of cell shapes
extracted from fluorescence microscope images in [38]. Outside imaging applications, the use of symmetric
energies for modelling of nonlinear elasticity is advocated in [35].

Our formulations have some common points with the modelling of thin shells through signed distance functions
n [22]. Thin structures and dimension reduction are a foundational topic in mathematical elasticity, treated
by a vast number of works. On a general level, we mention only the book [17] for a thorough introduction to
the modelling and analysis of shell problems, and [29] as a starting point for the literature on nonlinear scaling
limits obtained by I'-convergence. The main techniques we use for our dimension reduction result arise from the
membrane problem [40,41] and problems of thin inclusions or “welding” [1,10].

A number of works deal with shape analysis tasks using formulations based in linearized elasticity, like [30].
Shape matching using nonlinear thin shell energies has been tackled for parametric domains in [42] and for
triangulated surfaces in [26, 52]. Some precedents for shape analysis based on signed distance functions are
[14,21].

Another prominent body of work in mathematical shape analysis is that dealing with shape spaces from an
intrinsic Riemannian perspective [7]. This point of view has recently [8,9] been combined with varifold similarity
metrics for shape matching without needing to estimate reparametrizations.

Our models are based on polyconvex energy functions, and there are also a number of works applying these
for shape averaging [47], image registration [12,25], or as part of joint registration/segmentation models [20].

1.2. Notation

— The euclidean inner product of two vectors v, w € R? is denoted by v - w, and the Frobenius inner product of
two square matrices A, B € R¥*? by A : B = tr(AT B). In both cases, |v| or |A| denotes the corresponding
norm induced by these inner products. We denote the tensor product of v,w € R? by v ® w = vw™ € R¥*<,

~ Q C R?is a bounded domain, with strongly Lipschitz boundary (i.e. it can be locally expressed as the graph
of a Lipschitz function). For scalar functions u : 2 — R we denote by Vu their usual gradient and by D?u
the Hessian matrix, while for vector fields ¢ : & — R we denote the Jacobian matrix by (D¢);; = 9;¢".

— The identity function is denoted by Id, whereas 1 € R?*? stands for the identity matrix.

~ For i = 1,2, M; C Q are compact C? hypersurfaces diffeomorphic to each other, and d; denote the signed
distance to them, with the convention that these are negative in the interior components induced by M;.
With n;(z) := Vd;(x) we denote the outer normal vectors to the offset hypersurfaces {y|d;(y) = d;(z)} of
M;, and by P; := 1 — n; ® n; the orthogonal projections onto the corresponding tangent spaces.

— Noticing that the shape operators of the offset hypersurfaces to M; can be read off D?d; (see [31],
Lem. 14.17), we use the notation S; := R(D?d; + n; ® n;) for uniformly positive definite matrices derived
from them, where R is a regularized absolute value function for matrices discussed in Section 2.2.

~ NeM,; = {z € R? | |d;(z)| < r} denote tubular neighborhoods of width r of M.

— Occasionally we write D;¢ := D¢ Py for the standard tangential derivative along the tangent spaces of the
offsets to My, while Dy := (P 0¢) D¢ P14+ (nz0¢)®mn;y is the projected tangential derivative (see Sect. 2.2)
for measuring tangential distortion of a deformation ¢ attempting to match M; onto M.

— A[M,N,A,v,w] := P,N:PyAP,M~ %P, + w®v for A € Rixd arbitrary, M, N € R¥*? symmetric positive
definite, v, w € R? are classifier matrices for the purpose of curvature matching (when applied to S;, D¢ and
n;, see Sect. 2.2).

~ For a given unit vector e € R? we denote by Q(e) € SO(d) any proper rotation such that Q(e)es = e, where
eq denotes the d-th element of the canonical basis of R?. This condition does not specify a unique Q(e), but
the properties above will be the only ones used for Q.
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— Deformations considered as candidates for matching M; to My are usually denoted by ¢ : Q — Q, while
“inverse” deformations that should match My to M; are denoted by .

— C denotes an unspecified positive constant, which could be different in each appearance, even inside the
same line.

2. SYMMETRIC LEVEL SET MATCHING ENERGIES

We aim to formulate a matching energy which is symmetric with respect to simultaneously swapping the
input shapes and taking the inverse of the deformation. To this end, we consider explicit penalization of the
inverse deformations in all of the energy terms. Our starting point is the observation that for regular enough
deformations, integral energies associated to the inverse deformation can be computed in the original domain
through a change of variables.

Let p > d and ¢ € W1P(Q2;R?) be such that its continuous representative is an homeomorphism and ¢~! €
WhP(Q;R?) (i.e. ¢ is p-bi-Sobolev). Since p > d, ¢ has the Lusin N-property ([32], Thm. 4.2), that is, it
maps sets of zero measure to sets of zero measure. Therefore, we can use the change of variables formula ([32],
Thm. A.35), so that applying the chain rule and Cramer’s rule we end up with:

Cof D¢(z)T

-t -1 = T), X, e )| dx .
[ P00 ) ay = [ P (o), T ) et Do) )

Q
for any Carathéodory integrand F : 2 x R% x R¥*? — R.

2.1. Symmetric energy functional

We now formulate the different terms of our energy. Let

n € C3(R;R), with /n =1 and suppn = [-1,1]
R

and define )

Ne(8) :=—n (f) , so that /770 =1 for all o.
g g R

One option would be to choose n € C§°(R;R) as for standard mollifiers, but we only need one derivative for
our first-order numerical descent. Moreover, choosing 7 of polynomial decay allows for more detailed estimates,
which are required for existence of minimizers with weights given as powers of ¢ in the constraint penalty term
in (2.3) and vanishing volume regularization (2.6) below.

Choosing our main parameter for scaling to be the size o of the narrow band, we introduce two scaling
exponents. The first is denoted by g and controls how intensely the matching penalty is enforced. The second,
denoted by 6 € {0,1}, controls the behaviour of the volume term. Our complete energy, taking into account
contributions of the inverse map for each term through (2.1) reads

E° [¢] = Eglatch [(M + Eg]cm [¢] + Egcnd [¢] + \(/fol [(b]v where (22)
Brwanlél = o5 [ (no(d) 715 0.0) | det Do) o 0 6 — i P (23)

B onld] = /Q 1o ()W (P 0 6)D Py + (ng 0 6) @ )

(Pyo¢)+n; ® (ngo ¢)) | det Dg|, (2.4)

Cof DgT
+ m(dz o ¢)W<P1detD¢
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Elgend[(b] ::Anﬂ(dl)W(A[81782O¢7D¢7n17n20¢])

+ 1o (d2 0 @)W (A [S2 0 ¢, 81, Cof D¢™ / det D¢, nz 0 ¢,11]) | det D¢, (2.5)
Cof D¢T
o 19 = o /Q W (Do) + W ((feuj;) |det D). 26)

Here, W : R¥? — R is a p-coercive and polyconvex (i.e. it can be written as a jointly convex function of the
matrix argument and determinants of its minors of any order [18], Def. 5.1(iii)) stored energy function minimized
at SO(d), whose specific form is discussed in Section 2.3. The form of the first terms in EZ,, and EZ, 4 follows
the constructions introduced in [34]. We have postponed the definition of A and S; to Section 2.2 below, where
we also recall the motivation for these formulas.

In case # = 0 the volume term is equally strong as ¢ — 0, interfering with the surface terms. In Section 4 we
consider the I'-limit as ¢ — 0 of a non-symmetric version (without the inverse terms) of the functional in this
regime. In contrast if & = 1 the volume term does not interfere in the limit, but uniform W bounds on the
corresponding minimizers are lost, complicating the ensuing analysis.

For practical applications each term can be multiplied by a positive constant cmatch; Cmems Cbend, Cvol tO
balance the relative strength of each effect; we will do so for our numerical examples in Section 5, but skip these
in the rest of the presentation to not further complicate the notation.

Notice that since in the volume energy we are using the energy on both the deformation and its inverse
via W(D¢) + W (Cof D¢T / det D@)| det D¢/, no injectivity penalization is needed in W itself, that is W (A) can
remain bounded as det A — 0. Nevertheless, it only makes sense to consider this energy when det D¢ > 0 almost
everywhere. This property is satisfied by deformations belonging to the class that we consider in Section 3, see
(3.1).

2.2. Projected tangential derivatives and curvature classifiers

One of the main novelties of [34] is measuring tangential distortion through the first term of (2.4), using
the projected tangential derivative (P o ¢)D¢ Py + (ny o ¢) ® ny. This can be seen as a relaxation of physical
models of tangential distortion energies, which is specific to shape matching of hypersurfaces given as level sets.
This is because it utilizes the projection P, = 1 — Vda ® Vds to the tangent space to the target hypersurface,
evaluated at the point ¢(x) which may not necessarily lie exactly on My, so the signed distance function is
needed to obtain a surrogate of the geometry from it. In any case, if we had ¢(M;) = Ma, the second projection
would be superfluous and this construction would measure tangential distortion exactly. Here we use the same
construction, with the addition of the symmetrized term which accounts for tangential distortion, in the same
projected sense, but for the inverse of the deformation that should match My onto M. Further details and
explanations, along with comparison with constructions based on the plain tangential derivative are given in
Sections 2.1, 3.1, and 4.1 of [34].

We remark that it is possible for a point x € ) to simultaneously satisfy

det Dg(z) > 0 and det (Pa(¢(z))Dd(z) Pi(z) 4+ na(¢(z)) @ ni(z)) <0,

depending on the relative positions of ¢(M;) and M. As a simple example, consider ¢ to be the identity map
in Q = (=3,3)% with M; = S! + (1,0) and My = S! — (1,0), for S! the unit circle. In this case, the projected
tangential derivative at the origin turns out to be —e; ® e; + e2 ® es, where e; are the standard cartesian unit
vectors. This matrix is orientation reversing, the reason being that the tangent spaces are mapped to each other
in reverse orientation. Of course, when mapping though a homeomorphism which nearly matches M; to My
this situation would seldom happen, and when exactly mapping M; to My it cannot happen at all, but this
cannot be enforced for all the iterates computed in a numerical descent. Therefore, it is paramount that the



1138 J.A. IGLESIAS

energy density used in W is defined and finite on all of R?*? regardless of orientation, while being minimized at
least locally at SO(d). The specific density (2.12) we use for numerical computations satisfies these conditions
along with additional continuity properties.

Turning our attention to the bending-like energy EY_ , in (2.5), we first define

Si(z) == ’R(DQdi +1n,(z) ® ni(l‘)>7

where R : R¥¥4 — R4*4 ig a regularization operator defined below, and D?d; + n;(z) ® n;(z) is a nonsingular
matrix that reflects the shape operator to the offset hypersurface of M; at the point z (i.e. {y|d;(y) = d;(x)})
when restricted to its tangent space, and with the normal direction n;(x) as an eigenvector with unit eigenvalue.
These are used in the classifier matrix introduced in [34] and given for symmetric matrix fields M, N and
arbitrary square matrix fields A by

A[M,N, A ny,n,] := P,N?PyAP,M 3P, + n, @ n,. (2.7)

It can be seen through a relatively straightforward computation (see [34], Lem. 3.1) that whenever A € R4*4
satisfies AP, = P,A and M, N € R?? are symmetric positive definite matrices for which

M:P1MP1+1’11®1’11 andN:PgNPg—i—ng@ng,
then the following two conditions are equivalent:

ATP,NP,A = P,MP;, and
A[M,N,A,n;,n5] = P,N2 Py AP, M 2P| + ny ®ny € O(n). (2.8)

In the above (for the case A = D¢) we recognize the first equation as the transformation rule for second-order
tensors defined at the tangent spaces Vdf, such as the shape operators of the hypersurfaces M;. The second
conditions implies W (A[M, N, A, ny, ny)) is pointwise minimized, since we assume it has an energy well at SO(d).
Therefore, the integrands of E7, 4 in (2.5) can be seen as multiplicatively measuring the failure of Sy to be
pulled back to &;. This can also be seen as a relaxed matching condition that would resemble a true bending
energy whenever ¢(M;) = Ma, but that doesn’t take into account the curvature of ¢(M;) directly and uses
the one of M instead.

A limitation is that the equivalence of (2.8) is only valid whenever M, N are positive definite. For this purpose
use a regularized absolute value function for the eigenvalues of symmetric matrices. Fixing ¢ = 1 for concreteness
and assuming the matrix D?d; (r)+n;(z)®n; () can be diagonalized as Q(z)T diag(\1 (), ..., Aq¢(2))Q(x) where
Q(x) € SO(d) for each z € Q, we define

Si(2) = R(Ddi(z) + nu(2) ® mi(2)) = Qa) ding (max(|\s (2)], 7). ... max(Aa (@), 7)) Q) (29)

where 7 > 0 is a small positive parameter. This means that although sensitive to curvature directions and
magnitudes, our matching conditions must be agnostic to the signs of the curvatures. Although this limits the
capacity of A[S1,S20¢, Dp, ny1,nyod] to enforce correct curvature matching since it might identify saddle points
with elliptical ones, this term still helps to align the hypersurfaces through its tensorial character. For further
information about this method of first-order curvature matching we refer again to Sections 2.2 and 3.2 of [34].

2.3. Stored energy functions

The integrands F for our energy are constructed from a polyconvex stored energy function W : R4¥¢ — R,
such that W > 0, W(A) =0 if A € SO(d) such that W(A) > C|A? for some p > d. When introducing specific
examples below we take p = d + 1, for simplicity in the formulas. Let us also reiterate that W is required
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to be defined on all of R%*?, and not only for A with det A > 0. A particularly compact such function with
appropriate coercivity, inspired by the ones used in [34], is given in any dimension d > 2 by

1 - 1 -
WO(A) = m|A|d+1 + d%elidetA — md% — d%

In particular, for d = 3,
1
W,(A) = Z|A|4 4 3el—detA _ o1,
It can be checked that the above function attains a local minimum at SO(d) by rewriting it in terms of singular
values, which is possible ([18], Prop. 5.31) because they are frame-invariant and isotropic.
A disadvantage of the above stored energy is that even though it is coercive in W14+1(Q; R?), due to the

exponential term it does not satisfy bounds of the type W,(A) < C(1 + |A|¢*1), which will be required in the
analysis of Section 4. Through the following lemma we can easily produce more suitable stored energy functions:

Lemma 2.1. Letd > 2 and W : (RTU{0}) xR — R be convez, increasing in its first argument, with W(& —t) >
W (s,t) for any s,t > 0 and such that the function t — W (d%?t,t) attains its minimum at t = 1. Then, the
stored energy function W : R4 — R+ U {0} defined by

W (A) := W (JA%, det A) (2.10)
attains its global minimum at SO(d). Moreover, W is polyconvex and frame-indifferent.
Proof. Let A € R™4 be arbitrary. Since /W(s, —t) > W(s,t) while
det (diag(—l, 1,...,1) A) = —det 4, and |diag(—1, ol 1)A|d = |Alq,

we may assume det A > 0 when looking for a minimum point, so that det A = [], s;, where (s1,...,s,) are the
singular values of A. Using the arithmetic mean-geometric mean inequality on these singular values we obtain

d
2

d

d 1
d a
|A|* = tr (AT A) L (Zs ) > d(Hsf) = %H ;= d? det A. (2.11)
i=1

Combining (2.11), the monotonicity on the first argument, and the minimality property, we get
W (A) = W(|A|%,det A) > W (d? det A, det A) > W (d?,1) = W(1),

where 1 € R¥*? is the identity matrix. Polyconvexity follows since W is convex and increasing in its first
argument, so the composition with | - | is still convex. Frame invariance is immediate since the singular values
of A and QA with @ € SO(d) are equal. ]

Remark 2.2. Since d > 2 we have that in the definition (2.10), W is differentiable whenever W is, which is
clearly advantageous when choosing a numerical implementation.

A particular example which satisfies the hypothesis of Lemma 2.1, coercive in WP with p = d + 1, non-
negative, vanishing at 1, satisfying a bound of the type W(A) < C(1 + |A|P) and with continuous derivatives
is

1 d+1 d—1
d+1 7 2 _ - g9 &2 .
W(A) = d+1|A| +V2d T \/1+ (det A — 2) et 2d7 , with
— 1 141 —1 1 [—1
W(s,t) = s +V2d T T+ (- 2)2 — —ddi 2d7 . (2.12)

d+1 d+
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In the analysis that follows we will use all of these properties, but not the specific form of W. For the numerical
computations presented in Section 5, the specific formula (2.12) is used.

In light of (2.1) one might wonder about the behaviour of the energy associated to the inverse deformation,
expressed through (2.1). In fact, we have that if W is polyconvex, W > 0 and W(A) = 0 whenever A € SO(d),
then the function defined for A with det A > 0 by

W(A) := W(A™")|det A| = W(Cof A"/ det A)| det A|

is also polyconvex, W > 0 and W(A) = 0 if A € SO(d). Polyconvexity is proved in Theorem 2.6 of [4] and
Proposition 1.1, Section 2.5 of [35]. The minimality property follows from the assumption det A > 0 and the
fact that SO(d) is a group, so A € SO(d) if and only if A=! € SO(d).

2.4. Properties of the energy

In Lemma 4.1 of [34] it is proved that the determinant of the projected tangential derivative det ((P; o
@)D Py + (n20¢) ® nl) is weakly continuous with respect to weak convergence in W1?(Q; R?). The following
algebraic lemma provides an easier route to lower semicontinuity:

Lemma 2.3. The infinitesimal projected area distortion induced by the derivative of the inverse deformation
can be computed as the quotient of the stretching along normals and the determinant of the Jacobian. In symbols,
for A € R™? arbitrary and P; = 1 —n; ® n; we have

det (PLA™'P, + n; ® np) = det <P1 C(fftil: P+n; ® n2> = ngele' (2.13)
Similarly, for the determinant of the projected tangential derivative we have
det (P,AP; + 1y ®n;) =nl Cof An;. (2.14)
In consequence, both the integrands Fem, Fmem : © X R x {A € R¥?| det A > 0} — R defined by
Funem(z, v, A) 1= W(PQ(U)A Pi(z) + ns(v) ® nl(x)) and (2.15)
Fmem (T,v, A) 1= W(Pl(x)%%(v) +1n;(z) @ ng(v )!det Al (2.16)

are polyconver in their last argument.
Furthermore, noticing that the S; are positive definite by the regularization R applied to the shape operators
n (2.9), one can define the reqularized Gaussian curvatures K; € RT by

n’Sm;\ "
K;:=n] Cof S;n; =det [ —— | ,
n; CofS;n e <det8i>
for which we have
1 1 11
det (PaS3 Py APLS] PPy +mp @y ) = K P K5 mf Cof Ay (2.17)
and analogously
Cof AT 1 11 nlAn
det ( P, SE P, P,S, 2 P =KK, > 2. 2.18
e(1 YdetA T2 2+n1®n2> 172 det A (2.18)

Thereby the energy densities for EY ., defined by (cf. (2.5) and (2.7))

Foena(, v, A) ;zw(Pz(v)sf( )Pa(v)A Py(2)S] 2 ()P (x )—l—ng(v)@nl(x)) and (2.19)
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T 1
CAA b 0)S5F (o) Pa(v) + m(2) @ na(v) )| det A

Foend (2,0, A) = W(Pl(x)sﬁ () P (2) , (2.20)

are also polyconver in A whenever det A > 0.

Proof. To prove (2.13), we first use Cramer’s rule for A, yielding

Cof (A=1)" T
A=AHt1= "2 2 —Cof (A7} A.
(A™h) ot Ao Cof (A1) det
Taking transposes, multiplying by Q(ns) (as defined in Sect. 1.2) on the right and by Q(n;)” on the left, and
dividing by det A,

Q(n1)TATQ(ny)
det A

= Q(n1)" Cof (A7) Q(n2)
= Cof (Q(n1)") Cof (A7) Cof (Q(n2))
= Cof (Q(n1)"A7'Q(n2)) , (2.21)

where we have used that Q(n;) € SO(d). Now, as also noticed in equation (2.3) of [34], for any square matrix
B we have

det(P,BPs + n; @ ny) = det (Q(nl)T(PlBPQ 0 ® nz)Q(nQ)) - [Cof (Q(nl)TBQ(ng)ﬂ y

where []4q denotes the last diagonal element. With B = A~! = Cof AT/ det A, taking into account (2.21) and
since Q(v)eq = v we get

Cof AT [Qn1)TATQ(n2)],,, €T Q(n1)TATQ(ny)eq
det (PldetAP2 tm ®“2) - det 4 - det 4
nfTATn, nlAn,

det A~ detA’

which is (2.13).
Next, interchanging the roles of A and A~! and of n; and n,, and again using Cramer’s rule we obtain

njA "n;  nlCofAn;
det A=1  det A~ldetA

det(P2oAP; +ny ®ny) = n2T Cof An;

which proves (2.14).
From (2.14), polyconvexity of Fiem is clear. Since Finem is the transformation of Fi,enm corresponding to the
inverse deformation, the results of [4,35] again imply its polyconvexity.
Finally, for proving (2.17) one can write
-4

1 1 1
P2822P2AP181 2P +n,®ny = (P2822P2 +1’12®1’12)(P2AP1 + ny ®n1)(P181 P +ny ®1’11),

take determinants on both sides, and use (2.14) for each factor. Similarly, (2.18) follows from (2.13). The
corresponding polyconvexity statements are then clear. O

3. EXISTENCE OF MINIMIZERS FOR SYMMETRIC MATCHING ENERGIES
Consider the set of orientation-preserving bi-Sobolev homeomorphisms mapping € to itself:

B:={¢ € WH(Q;R?) | $() = Q homeomorphically, ¢~' € W'P(Q;R?), det Dp > 0 a.e.},
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and its subset with fixed identity Dirichlet (pure displacement) boundary conditions
By := BN (ngP(Q; RY) + Id) . (3.1)

The discussion in the previous section suggests the latter as a natural space for posing our minimization problem.

As in [34], we prove distance estimates ensuring that the image of a neighborhood of M can be forced to be
uniformly close to Mo through the matching term, and vice versa. These guarantee that the deformed narrow
band around M; where the tangential terms are active remains in the part of the domain where dy is C?, so
that all the terms of the energy are well defined. However, compared to the situation in [34] we need to keep
a closer eye on the dependence on the parameters in the estimates. Whereas in that case ¢ was fixed and one
could choose a multiplicative parameter for Fy,.¢cn freely, here we couple these parameters with the prospect
of considering the limit ¢ — 0. A further difference is the case # = 1 which makes the volume term providing
coercivity in W1?(Q; R?) vanish as ¢ — 0, which in turn affects how strongly the matching penalization must
be enforced, as can be seen in condition (3.4).

Lemma 3.1. Define

. 1 1
7 1= min R R
! <pM [D2d, ()] Sup,ear, |D2d2<z>|)

and notice that r; > 0 since the M; are C2. Then there is Co = Co(My, Mo, Q) > 0 such that for all o € (0,77)
we have that

inf E7[¢] < Cy. 3.2
jnf E7(6] < Ci (32)
Moreover, assume that either
f=0and ¢>0, or (3.3)
. . 1 d
0 =1, nis a spline of order n, and ¢ >n max | —— — 1,0 | + —— — 1. (3.4)
p—d p—d

Then for each € > 0 there is some 0. = 0.(M1, M3,9Q,0,q) > 0 such that for all 0 < o0 < 0. and all ¢ with
E°[¢] < Cy we have
¢ (Nng) C NeMsy, and (2571 (Ng./\/lg) C NoMy, (3.5)

where for § > 0 and i = 1,2 we denote by NsM,; the tubular neighborhood {x € | —§ < d;(z) < 6}.

Proof. Since the hypersurfaces M; and My are assumed to be diffeomorphic, let ¢ : My — My be such a
diffeomorphism. Now, the Frobenius norm |D?d;(z)| is an upper bound for the principal curvatures of M;
at x, so that (see e.g. [44], Lem. 6.3) we may write each point z € N, M; as x = y + tn;(y) with y € M;
being the Euclidean projection of 2 onto M, and [t| < r;. Using this notation we can extend ¢ to a map
Oyt Ny My — N, My defined by ¢, (y,t) = p(y) + tna(y) which is still a diffeomorphism. We then use the
values of ¢,, at My £ rn; as Dirichlet boundary conditions for minimizers of a rescaled volume energy on the
inside Q, and outside Qout = Q \ (Qn UN,., M1) parts of the domain with respect to N;., M1, that is

Cof D™

inf W(D¢) +W [ ——— ) |det D
¢ev$ahm A;m (D9) ((ktD¢)| etbo

¢=¢+rrn; on Mi+ryn;
¢=Id on 902

; (3.6)

and similarly for €;, with boundary condition ¢ — ryn; on M; — ryn; on 9€;,. Piecing these three maps
together, we obtain ¢r : Q@ — Q for which EJ , . [¢7] = 0 for all o € (0,77). Since the other terms (2.4)—(2.6) of
E°[¢r] decrease as o \ 0, as soon as ¢y € By we obtain the bound (3.2) with

Co = Eptew|61] + Eytoalor] + EJL[61).
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That det D¢y > 0 almost everywhere follows directly by its definition, since |ON;., M1| =0, ¢,, is a diffeomor-
phism, and the energy density in (3.6) is unbounded as det D¢ — 0. By its definition in (3.6) ¢; belongs to
VVO1 P(Q; IRd) + Id. Moreover, since @, is a C? diffeomorphism and the definition of ¢; in Qi and Qou: we also
have

Cof D¢™

Q det D QS

which combined with W (A) > C|A? and p > d, allows us to apply Ball’s global invertibility theorem ([5],
Thm. 2) to obtain that ¢; is a homeomorphism and gbl_l € Whp(Q; RY).

Now we turn our attention to estimates for ||z o ¢|| L (n, r1,) (and for ||dy 0 ¢~ e (v, Mm,), by symmetry)
that allow us to conclude (3.5). This is the same type of estimate proved in equations (4.15)—(4.23) of [34], and
its proof follows essentially the same steps, but since at present the strength of the matching and volume terms
and the width of the narrow band are not independent of each other, we will have to be more precise. The
strategy is to use the matching penalization term, which contains |ds o ¢ — d;|?. However this function appears
multiplied by the narrow band function 7, o di, which decays to zero as d; " ¢. To treat this difficulty, we
introduce a cutoff width & € (0,0) to split the narrow band in two parts to be estimated separately. First we
notice that ¢ € C%(Q2) with a := 1—d/p, by the Morrey inequality ([31], Thm. 7.17). Since the signed distance
functions d; are 1-Lipschitz, we have that

W(D¢) +W ( ) | det Dop| < 400,

[d2 0 @l ({jas|<ot) S 0+ [[d2 0@ — dif[L~(fjasi<0))
<o+ |ld2o¢ —dilze(fjdi|<o—s}) + |20 ¢ — di|coa(o—sg|d|<o}) T
<o

+ |ld2 0 ¢ — di|| Lo (fjdy|<o—6}) + (LH|Plcoe(os<]dr|<oh)) T (3.7)

where | - |co.« denotes the Holder seminorm (d.e. || - [[co.a(a) = | - |co.a(a)y +sup4 | - |) and we have used that
every point taken into account in the last term is at a distance less than & from a point appearing in the second
term. Moreover, we have assumed that ¢ < 1 to bring up the Lipschitz constant of d;. Now, for the last term
of (3.7) we have, again by the Morrey inequality and using (3.2), that

(1+]¢love((o—s<iai<on)) % < (1+CD Lo oy) 6°

<C(1+(e™ 301[@)%) 57 < C (1%20&) 5, (3.8)

for which if # = 1 the right hand side can be made arbitrarily small by choosing 6 = o” with r > (ap)~! =
1/(p — d). Moreover, since we need to have 0" < o, also r > 1 is required. In the case § = 0 any choice of § < o
suffices.

For the second term of (3.7) we apply the Gagliardo—Nirenberg interpolation inequality ([2], Thm. 5.8 and
[45], Thm. 1) for a bounded domain ¥ and u € WP(X)

4 1—4
[ullLoem) < C {1Vl owyllull Lo sy + lullees) ) 5 (3.9)
=) (=)

to u =dg o ¢ —dy on the open set ¥ = {|d;| < 0 — 6}. For the last term, using the monotonicity of 7,, that
supg |d;| < diam Q and ¢ :  — Q we can estimate as 0 — 0

p=2 2
[d2o¢ — leLP(E) <|dzo¢— d1||L§o(z)||d2 °0¢— dluzz(z)

p—2 P
P

<dzo¢—dill % 5 ([770(0— &)]_1/2(770 ody)|dyo¢—dyf dl‘)

< o)’ (e -] "ol
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< Cot B7(g]7 [no(0 — )] 7

< CotCP (o — )] 7. (3.10)

For the derivative factor we get, using again that ds is 1-Lipschitz combined with the chain rule for Lipschitz
and Sobolev functions ([53], Thm. 2.1.11) that

IV(d2 06— di)llLecs) = [[(Vd2 0 9)" Do — Vdi |, )

< (ID8lzogey +1917) < € (0~ B (])? +1)
<C (ofic(;l’ + 1) <C (a’% + 1) <Co 5. (3.11)

Combining (3.10) and (3.11) into (3.9), and noticing that since 8 € {0,1} the second term of its right hand side
is dominated by the first as ¢ — 0, we get that

_déo q =1 1-4
[d2 0 ¢ — dif[poe(s) < Co »? (05 [10(0 — )] ”) . (3.12)
Now, if = 0 we could just choose for example 6 = /2, so that 7,(c/2) = 0~ 1n(1/2) and (3.12) becomes
a0 ¢ —di sy < Col5)075),

and since this exponent is positive in particular for any for any ¢ > 0, we obtain the desired estimate.

In the case 0 = 1, the decay of 1 needs to be taken into account, since we saw that to control the right hand
side of (3.8) the cutoff width 6 needs to be closer and closer to 0. With & = ¢" as discussed above, and 7 a
spline of order n we have 1, (0 —0”) = o~ 'n(1 —¢"~1) > Co™""D~1 Gathering exponents in (3.12) this leads

to the condition
d d -1 -1
_dy (1_) <Q_"<T>> >0, or
p p p p
d

—1) 4 ———1
q>n(r )er—d :

which for r > max(1/(p — d), 1) is precisely (3.4). O
Remark 3.2. We notice that if p = d + 1 as chosen for the density W in (2.12), any exponent r > 1 can be
chosen in the proof, and in turn condition (3.4) is independent of n and simplifies to ¢ > d — 1. However, for the

above argument to remain valid o should still have polynomial decay and not faster, since otherwise we would
have to replace the factor =9 by a function increasing faster as well.

Theorem 3.3. Assume either (3.3) or (3.4) and
o € (0,min (r7,0,,)), (3.13)

where rr and o,, are defined as in the statement of Lemma 3.1. Then there exists at least one minimizer of E°
m Bo.

Proof. Let {¢r}r be a minimizing sequence. Using the boundary conditions and Poincaré inequality ([31],
Eq. (7.44)) the term E,, provides coercivity in W1P(€;R?), and by the Banach-Alaoglu theorem we can
assume that this sequence weakly converges to some ¢ in W1 (£2; R?). We denote 9, = (qbk)*l the corresponding
inverses, whose existence is guaranteed by ¢ € By. Possibly by taking another subsequence we can also assume
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that there is ¢ for which ¢y, — ¢ weakly in WP (Q; R?), since Evol[¢r] = || D 10 () as well. Now, on the one
hand we can apply Ball’s global invertibility theorem ([5], Thm. 2) and weak lower semicontinuity of Eye to
obtain that ¢ is a homeomorphism from €2 to Q and ¢~! € W1P(Q;R?), that is ¢ € By. On the other, since p > d
the functions are uniformly continuous with modulus of continuity uniform in k, by coercivity in W1?(; RY)
and the Morrey inequality. Therefore by the Arzela—Ascoli theorem, possibly by taking another subsequence we
have that the convergence is also uniform, which allows us to conclude that the limit of inverses is the inverse
of the limit, that is, 1 = ¢~ 1.

We then note that the d; are C? in A,., M;. To see this, since M is assumed to be C? we can apply ([31],
Lem. 14.16) or the results of [27] for the unsigned distance function on N,, M; \ M;, and notice that the signed
distance function d; also inherits this regularity ([23], Thm. 7.8.2(iii)) in a neighborhood of each point of M,
which is compact. We can then apply (3.13) and Lemma 3.1 to obtain that for k large enough we have

or Ny My) C Ny Ma, and ¢t (N, Ma) C Ny My,

which implies that at values attained by ¢, the integrands (2.15) and (2.16) are continuous in their last two
arguments. The same conclusion holds true for (2.19) and (2.20) after using a continuity result for square
roots of nonnegative definite matrix-valued functions ([16], Thm. 1.1) to account for the presence of R in ;.
Lower semicontinuity of E7., E7. 4 along ¢ then follows by Lemma 2.3 and a lower semicontinuity theorem
for integral functionals with Carathéodory energy densities which are polyconvex in their derivative argument
([18], Thm. 8.16). We conclude that ¢ is the desired minimizer. O

4. SCALING LIMITS FOR NON-SYMMETRIC ENERGIES

We now turn our attention to the limit of level set matching energies as the parameter o controlling the
size of the narrow band goes to zero. When the symmetric energies E? of (2.2) are used, one should work in
classes of invertible functions, which strongly limit the types of analysis possible (see Rem. 4.7). Therefore, in
this section, we only penalize the direct transformation and limit ourselves to the “non-symmetric” family of
functionals £7 : W *(; R?) + Id — RT U {0}

&7 = 51’[::1&(:Ch + gtgnem + 5gelld + \(/701’ (41)

in which the contributions of the inverse deformation are not considered, so that

o4

7 ] = — [ (@l 00— di e,
£7 0] = / 1o (d))W (P 0 §)Dé Pr + (ny 0 6) @ my) da,

Epenal®] = /Qﬁo(dl)W(A[Shsz o ¢, D¢,n1,ny 0 ¢]) dz, and

el i=o” [ W(Do)da. (42)
We assume that W € C1(R%*?) is such that for all A, B € RI*4
1
W(A) > C|AP — rol and (4.3)
W(A) < C(|AP +1). (4.4)

These conditions are in particular satisfied by the density (2.12). The bound (4.4) combined with quasiconvexity
implies (see [43], p. 6 or [39], Lem. 6.6) the continuity property

[W(A) = W(B)| < C|A—B|(1+ AP~ +|B[P71). (4.5)
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Alternatively, one can also check (4.5) for (2.12) directly. For that, just recall ([28], Thm. 4.7) the inequality
|det A — det B| < C|A — B|max(|A|,|B|)?~! and notice that the function ¢ + /1 + (¢t —2)2 has bounded
derivative.

Since 7, has constant integral, the energy scaling of £Z, is the one of the classical membrane limit [40,41],

whose results we apply directly. The structure of the proof is based on the methods delineated in [1,10], where
problems for thin inclusions or “welding” are considered. In particular, we will use the following lemma for
integration by parts of non-intrinsic products on a hypersurface, analogous to Proposition I1.2 of [1].

Lemma 4.1. Let N € WhP(Q; R¥*?) and v € WHP(Q; RY). Then for the traces of v and N on M the following
are well defined and equal:

N : Dy dH = Z del (INP];) o' dHeE, (4.6)
My

where Dyv := DvP; is the tangential derivative of v on My, [N Py]; is the i-th row of NPy, v® the i-th component
of v, and div g, ([N P1];) is the Riemannian divergence on My applied to the tangential vector field [N Py);.

Proof. We first assume that N € C'(My;R4*9) and v € C'(M7;R?) to check (4.6). Since P is symmetric,
P2 = P, and since the matrix trace is invariant under cyclic permutations, we have

N :Dw = tr (N"DvPy) = tr (PLNTDv) = tr (PENT Dv)
=tr (PANTDvPy) = tr (NP1)" DvP)) = NPy : Dyw.

Finally, since the metric on M; is induced by its immersion into R? and, being compact, it has no boundary,
using the divergence theorem on M (see e.g. [15], Sect. II1.7) we get

N :Dw = NP : Dtv_Z/ [NP,]; - Dy’ = Z/ divag, ([NP1];) o',
My M

as claimed. Now, if v € WIP(Q;RY), M € W1P(Q;R?*9) the traces of v and N on M; are Proposition 3.31

of [24] in Wlf%’p(./\/ll; RY) and Wlf%’p(./\/ll; R¥*d)_ respectively. Since Py € C1(My;R*?) and M, is C2, the

formula (4.6) will also hold if both sides are well defined. This follows by the embedding (see [24], Thm. 3.54

for the dual space)

W™FP (M) C (Wl‘%’p(/\/ll)) Wy (M),
which holds because 1/p’ — 1 = —1/p and since p > d > 2 we have p’ < p, while M; is compact. a

We are now ready to state and prove our convergence result. For convenience we denote for x € Q the
tangential-projected derivative as

Du(x) = Pa(¢(2)) Do(x) Py (x) + na(6(x)) ® m (), so that
€0 mld] = / 1o (A1) W (D).

Our main point is that this definition allows us to recover a surface functional with the same structure in
the limit (compare the integrands in (4.7) and (4.2)), which is typically not the case in dimension reduction
problems. For the membrane problem in [40,41] a quasiconvex envelope appears in the limit problem, which
turns out to be trivial in our case.
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Remark 4.2. Since LP(Q; R?) is a metric space, I'-convergence can be characterized ([11], Def. 1.5) in terms of
the lim inf and lim sup inequalities. To simplify the notation we will continue to write the continuous parameter
o — 0 while speaking of sequences. Strictly, what is implied is I'-convergence of £%7 for any sequence {o;};en
with o; — 0. Likewise, when we speak of subsequences of ¢, which are not relabelled, we mean sequences ¢
for some sequence {o,};.

Theorem 4.3. Let W be polyconvex and satisfy (4.3)—(4.5). Define the set
1, := {¢ € Wy P (4 RY) +Id‘ Dtt¢’M1 € LP(My; R¥), ¢(My) = My } :

Then assuming 0 = 0 and q > 0, the family £° T-converges in the LP(2; R?) topology as ¢ — 0 to the functional
& defined for ¢ € T, by

&%= | w«Dn¢>+vV@wD¢N&Jszo¢ﬂn,n2o@)dﬁw*—FL;WKD¢)¢E (4.7)

and E°[¢] = +oo if ¢ ¢ T,. Moreover E° possesses at least one minimizer in Wy'* (€;RY) + Id.

Proof. Throughout the proof, to simplify notation we will not consider the bending-like term &7, 4. Since it
consists on a pre- and post-stretched modification of £, where curvature-dependent coeflicients are introduced,
the proof for £7..., (which already contains varying coefficients depending on the deformed configuration) applies

with completely straightforward modifications.
Step 1. Energy bounds on a sequence imply tangential regularity of its limit.

Let ¢, — ¢ in LP(Q;R?) and assume that the sequence {£7[¢,]}o is bounded as ¢ — 0. Since 6 = 0, taking
into account (4.3) and that we work in W,**(€; R%) + Id, using the Poincaré inequality we have H(;SUH?,VL,,(Q) <
C(&%[¢,] + 1) < C, so that upon taking a subsequence we have ¢, — ¢ weakly in WP(Q;R?) and also
converging uniformly.

At first glance, the trace of ¢ on M is only in Wlf%’p(/\/ll; R?). However, as in Lemma IIL.1 of [1] bounded-
ness of the energies along the sequence ¢, implies additional regularity for the trace and Dtt¢| M, € LP(Mq; RY).
For this, we would like to exploit the bound

%@m=4%@wwma«1 (4.8)

Our first step is to notice that an estimate for ||dz o ¢o ||z (a7, A1,) analogous to that of Lemma 3.1 also holds
here. The main difference is that our proof of Lemma 3.1 assumed that the deformations under consideration
map 2 to €2, but now this is not guaranteed since £J,, contains no injectivity penalization. This difficulty can

be overcome by modifying (3.10) with the estimate, obtained using gba‘aﬂ = Id and that dy, ds are 1-Lipschitz,

||d2 0Py — dl”Loo(Z) < (dg o qbg)(l‘) + |¢J‘CO,Q(Q) (dlam Q)a + diam

sup
€N
< |¢a |CO,w(Q) (dlam Q)a + 2 diam €2,

on which again one can use the Morrey inequality and energy bounds. This modification affects the exponents
appearing in (3.12), but only by terms proportional to 6, which in this case is zero. Therefore, for some o small
enough and since £7[¢,] < C, we have that

d; € C*(N;My),ds € C? (¢(N,M;1)) and ds € C? (¢ (Vo M,)) for all o € (0,00). (4.9)

To simplify the computations that follow, we first replace the coefficients appearing in 2, [¢,] that depend on
¢, by those corresponding to the limiting function ¢. Using (4.9) so that P;, P>, nj, ns are uniformly continuous
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where they are evaluated, and the continuity hypothesis (4.5) for the matrix fields A, = (P20 ¢,) D¢, Py + (na o
¢o) @ny and A := (P 0 ¢)Dd,P; + (nz 0 ) @ n; we obtain

W (4,) = W(A)| < C(1Dy] + Digs — 6l (1+ DS~ + D,
Integrating and using the Holder inequality, we see that the error we commit in the energy can be bounded by
Cligs = Bl (1 + 1000l o@ 1PNl + 1065 110, ) - (4.10)
which clearly tends to zero as o — 0. With these fixed coefficients we denote
D¢y := (P20 ¢)D¢s P + (nz 0 ¢) @ 1.

Using the boundedness of W in (4.4), the Tonelli theorem to slice along offset hypersurfaces, and the change of
variables y — y + tn; (y), the bounds (4.8) and (4.10) mean that

/m(dl)@%(m)wdx 3/ n(d )|Dn¢a( P da
Q supp 7o (d1)

:/ /M 1o (t) | Deedo (y + tny ( ))|p |det (1 +¢Dny(y))] dH 1 (y) dt

= /M /_ na(t) |D7tt¢o (y + tnl(y))‘p ‘det (1 + tDl'll(y>)‘ dt de—l(y) <C. (4.11)

Using (4.9) we have that
det (1 +tDn(y)) = det (1 +tD?d;(y)) > ¢ > 0 for all y € M; and [t < o,

which combined with (4.11) implies

/M /_a No(t) | Do (y + tma(y)) " dtdH* (y) < C. (4.12)

/_Zna(t)dtZ/_lln(t)dtzL

we can use Jensen’s inequality for the measure 7, (t) dt and (4.12) to obtain

1 / K (i) Dy + ) at| @~ y) = /Ml

//vn o) o
’ Dy n P d-1
< [ [ o0 Pt o+ ) arar =) <

On the other hand, observing that

/ " o (0D (5 + 01 (9) | 81 (y)

—0

Therefore, the sequence u, € LP(M;i;R¥*?) of tangential derivatives averaged along normals given by

Uay) = = /U U (;) Du¢o(y + tna(y)) dt

—0

can be assumed, upon possibly taking another subsequence, to converge weakly to some limit in LP(M; R*?).
To identify the limit, by density we may test this weak convergence with F' € C1(M;; R¥*?). Using (4.9), that
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¢ is uniformly continuous and that ¢, is bounded in W1?(€; R?), we obtain for some functions hy, hy with
hj(o) — 0 as 0 — 0 that

MIF(Q) : (Dtt {/:7 Ua(t)¢o( . +tn1(~)) dt} (y) — (n200)(y) @ny (y)) de_l(y)
= [ P Poa) D] [ nele)on (- (0) e 1) Pr) )
My o
- /M F(y) : /_ Mo (t) (P2 0 ) (y) [qug (y + tnl(y))Pl (y) +tDo, (y +tng (y))Dnl(y)} dt dH1(y)
— /M F(y) : /j N (t) (P2 0 @) (y +tn, (y))Dd)c, (y + tnl(y))Pl (y + tnl(y)) dt de*l(y) + (o)
B / Fl): (/0 Mo (1) Dido (y + tna(y)) dt = (n3 0 6)(y) © n1(y>> AR (y) + (o),
My —0
where the additional error ho — hq accounts for the difference in the last term

(n3 0 ¢)(y +tny(y)) @y (y + tny(y)) — (n2 0 $)(y) @ 0y (y).

Noticing that F : (ny ® n;) = nd Fn,, the above computation, [ ne =1, that P§ = P, and integrating by
parts on M; with Lemma 4.1 we get

/ F(y) : ue(y) dH* ™ (y) - / (n2 0¢)" () Fy) m(y) dH* ™' (y)
My M,
= [ P ([ no 0D, (04 m0) = (20 0)0) 90 0)) )
My —
- /MIF(y) : <Dtt UU Mo (£)bo (- +tn1(-)) dt] (y) — (n2 0 9)(y) ®n1(y)) AH () — ho(o)
= [ e mEw) e [ a0 (- ) ] ) 6 ) = (o)
My s

= i /M div.u, ([(Pz o </>)(y)F(y)P1(y)L) U_i 10 ()85 (y + tni (y)) dt} dH (y) — ha(o).

Now, using the weak convergence ¢, — ¢ in WP (Q; R?) combined with weak continuity ([24], example 3.2) of
the trace map from W1?(Q) onto Wlf%’p(Ml) we get that

| o006 (-m () dt — 61 i W),

so that using Lemma 4.1 again we end up with

d o
- /M diva, ([(P 0 0) (W) F(y) P )], ) [ [ Ne ()85 (y + i (y)) dt | dHE(y) — ha(0)

d

o—0

= [ (PeowF) : Dioty) 1)
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— / F(y) : (Dtt¢(y) - (n2 o ¢)) (y) ® ny (y)) de—l(y)
My

— [ P Dus) ar ) - [ (a0 0) () Fly) malw) aHE ),
My My
whence we identify the weak limit of u, and deduce that Dy ¢ € LP(M;), and therefore ¢ € 7,,.
Note that this step implies that the I-limit of £7 equals +0o whenever ¢ ¢ 7,: if we had Dy ¢ ¢ LP(My),
having any sequence ¢, with ¢, — ¢ in WP(Q; R?) and liminf, .o E7[¢s] < +oo would be a contradiction
with the above.

Step 2. liminf inequality.

We perform a localization procedure analogous to the one in Lemma 4.1 of [34], fixing the coefficients to
those corresponding to the limit deformation, and then taking into account that all the functions involved in
the coefficients are uniformly continuous. As remarked above, we do not take into account the bending-like
energy Epend, since the proof for it is completely analogous to that for the membrane energy Eyem.

Let ¢ € 7, and ¢, — ¢ in LP(2;RY). Possibly by taking a subsequence that does not alter lim inf £ [¢,]
we may assume that £7[¢,] < C, since otherwise there is nothing to prove. As in the previous step, using the
coercivity of £7 we may take another subsequence so that ¢, — ¢ weakly in W'?(Q;R?) and also uniformly.
By definition Ematen[ds] = 0, so clearly

0< hgn_}gf Ematch [¢U]'

For the volume term, it is enough to notice that W is polyconvex and ¢° — ¢ in WP (Q2;R?), so by a standard
lower semicontinuity theorem ([18], Thm. 8.16) we have

o b] = / W(D¢(x))dx < liminf [ W(D¢,(x))dx = liminf £, [¢o].
Q 0—0 Q o—0

For the membrane term, as in the previous step we may assume (4.9) and replace nyo¢,, Pyod, by ngop, Prog
with vanishing error (4.10) in the energy. Next, we need to take care of the spatial dependency of the coefficients.
To do this, we split A, M in small subdomains on each of which the coefficients will be replaced with fixed
ones. In this case we choose the subdomains to be of cylindrical shape (i.e. of constant height along a fixed
vector), to then apply the results of [40]. For this, given a small parameter § > 0, define a collection of Nj
subsets O C M, relatively open in M; with

Ns
o N O;? =0, diam(0?) < 4, and M \ U 0? of zero HY™! measure.

i=1

We then choose for each O a single point 27 € O such that O may be written as a graph in direction n; (x9):
since M; is C2, for small enough ¢ this is possible for all i = 1,..., Ns simultaneously. We denote by Kf’o the
neighborhood of width 2¢ in the direction n;(x?) associated to each of the O?, that is

Kf’g = {y+tn1(a:?)| ye O, te(—a,0)}, (4.13)

for which assuming o < §/2 we have diam(Kf’U) < 26. We aim then to replace Epem|[¢s] by the sum over
t=1,..., Ngs of the integrals

177 [60] = / o (t@)W (Po(6(a])) Dérg (2) Pr(a) + ma (0(a)) @ ma (a) ) da,
K

where t(z) is determined from (4.13). The total error we commit when doing this replacement can be bounded
by
C(w(0)P 4+ w(d) + o).
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Here, w(§) is a modulus of continuity valid on Ny M; for ny, D?d; and the compositions of all the ¢, with ny
and D?d,, which exists because these converge uniformly and we have assumed (4.9). The first term is derived
using (4.5) analogously to (4.10) and reflects the error in the coefficients of I f 7. The second arises from the use
of n,(t(x)) instead of n,(d;(z)), since w(d) is also a modulus of continuity for the curvature of Mj. The third
term accounts for the difference in the domains of integration and overlaps that arise because of the curvature
of 02, that is, the sets

UK‘“’OK“ and (NVy M) (UK“)
i#£]

whose total measure is bounded by Co?, with effect magnified by a factor o~ since 1, (-) = o~ 1n(-/o). For all
terms, (4.4) and the bound [|[D¢g||1r(0) < C have been used.

Now for each If’g, denoting by Q;(x) = Q(n;(z)), defined as in Section 1.2 so that Q;(z)eq = n;(z), and
P(eq) = 1 — eq ® eq we notice that for any A € R4*?, we have by the symmetries of W that

W (Py((2)) APi(af) + n2(¢(2))) @ ny(af))
=W (@a(6(a0)" [Pa(6(29)) A Pi(a2) + 12 (6(2)) @ ma ()| @1 (29) )
—W (P(ed) Ays Pleq) +eq® ed) , (4.14)

where A5 := Q2 (o(29))AQ1(2?)T. Since Q2(¢(2?)) and Q1 (2?)T are fixed matrices, they commute with differ-
entiation, so that we can absorb the coordinate change and equivalently consider the sequence of deformations
@ = Q2(6(2})) ¢o (Qu(a}) ).

After these transformations and since [ 7, = 1 for all o, we are in a position to apply the nonlinear membrane
limit for plates of Theorem 2 in [40]. Although 05 is not flat, after fixing the coefficients and working in the
cylindrical neighborhoods Kf 7 defined in (4.13), the constant vector nj(z¢) plays the role of the vertical
direction along which the rescaling of the membrane limit happens (see also the similar geometric situation
considered in Sect. 2 and Prop. 5 of [10]). In this situation, one rescales Ig "7 to the unit-height neighborhood

t
={y+tn(x ‘y c0f, te (-1, 1)} through K2 3y +itny(20) — y+ =y (), (4.15)
o

and notices that since || D¢, ||1r(0) < C, the corresponding rescalings of ¢ | ,.s,» satisfy

|Kf'
¢o € WP (K?;RY) and /A |D$g(:r) ny (zf)|" da = o’pﬂ/S |Dé,(z)ny(29)|” dz, so that
& o

Do, n; (z2) — 0 strongly in L? (K‘S) (4.16)

The resulting I'-limit has as integrand the transformation through (4.14) of the quasiconvex envelope ([18],
Sect. 6.1, Thm. 6.9) QWC”Q'S of the density W=i defined by
Wi (B) : = Jnf W (P(ea)[B'B?... B4~ | €] P(eq) + eq ® eq)
€
=W (P(ea)[B'B*... B 1 |0]P(eq) + a4 @ €q) = W (P(eq)B P(eq) + €q ® €q) (4.17)

applied at B = A, 5. Here, [3132 .Bd-1 ‘f ] denotes the matrix obtained by replacing the last column of
B with £, and the infimum is trivial since the rightmost projection P(eq) ensures that there is no dependence
on £. The rlght hand side of (4.17) is polyconvex by Lemma 2.3, hence also quasiconvex ([18], Thm. 5.3) and
therefore QW = W . In consequence, taking into account (4.14) and (4.17) we have

I?[¢] = /IACSW(Pg(gb(xf))Dgg(x)Pl(zf)+n2(¢( %) @ni(z )) dx<hm1nf[ 7¢g].
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Here, the left hand side contains the extension $ of ¢|O<ﬁ to IA(Z‘S defined by $(x) =¢(y) ifz € I/(\'f and y is as

in (4.15). Once again using (4.5) analogously to (4.10), using o < §/2, and since qAS is constant in the direction

n; (J:f), we can estimate

I7[0] - /K W (P2(0@) D) Py (y(x)) + 2 (6()) © m (y(x)) ) dar| <

where y(z) is the projection along nj(z?) onto O? as in the definition of I?f in (4.15). Moreover, again because

¢ is constant in the direction n;(x?) and since ¢ € 7, we also have that

/m W(P2 (6(2)) D (z) Py (y(z)) + n2(d()) @ n1(y(x))) dz = / W (Deeop(y)) dH ™ (y),

0
so that summing over i = 1,..., Ny and letting § — 0, we conclude.
Step 3. lim sup inequality.

Let ¢ € 7,. We show that there exists a recovery sequence ¢, for EY at ¢, such that in addition we have
/naod1|dgo¢{,fd1|2 =0. (4.18)
Q

Assume that 20 < (sup,c 0 |[D*di(z)]) 7!, so that as in the proof of Lemma 3.1 each = € N5, M; can be
written uniquely as © = y + tn; (y) with y € M1, and denote the projection of x onto M7 by maq, () :==y. We
then define the modified deformations ¢, by

b0y + 01 (y)) = 7(1) (0(y) + a2 (6y)) — 6y + tm W) ) + 6(y + tm ), (4.19)
whenever x € Moy M1 and ¢, (x) = ¢(x) otherwise. Here 7, : R — R is nonincreasing and such that
d7, 2
T, 2 0, 7,(t) = 1 for |t| < o, 7,(t) =0 for [t| > 20, and G < — (4.20)
o

Moreover, as done in the previous steps and using estimates analogous to those of Lemma 3.1, we consider only
o is small enough for which d; € C?(NasM;) and dy € C? ((/)(/\/’25]\/11)).
We aim then to show that ¢, is a recovery sequence, that is

limsup £7[¢,] < E%[¢].

o—0

First, notice that whenever t < o we have

bo(y +1m1(y)) = d(y) + tna (6(y)),

so (4.18) is satisfied. Moreover, this also implies that

S = [ WD) 40

To see this it suffices to notice, using the continuity hypothesis (4.5), (4.9) and ¢ € 7,,, that
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| 10 )W (Dt (@) o~ |

w (Dtt¢(y)) dH*! (y) ’
My

= ‘/_a 770—(15) /M w (Dtt(bg (y + tnl(y))) |det (]1 +tD2d1(y)) ’ de_l(y) dgt

-/ oL /M W (Did(y)) dHO (y)

—0

< sup 1— ‘ det (]l + tDle(z)) H (/(770 o dl)W(Dtt¢g($)) dx)
ZzEM,|t|<o Q

+ / 0 / W (Duda (y + mu(y))) = W (Duo(y)) | aH*~ (y)
—0 My

<Oad_1+/ na(t)/
—0o My

<Co® 40 t 1o (t) /M |Dee(nz 0 6)(y)| (1 + [Dug(y)[P~") AR (y) dt

—0

w (Dtt (¢ +ingo ¢)(y)) - W(Dtt¢(y)) ‘ de_l(y) de

_ 1 d—
< Co’ ! 4 Co? (1 + ||Dtt¢>||’£p(Ml)) <C(e 1 +0?) - 0.

When considering the volume term, the transition layer in 7, between o and 20 plays a role. We can estimate
using the definition of ¢, in (4.19), assumption (4.4), that ¢, € W'P(N, M;;R?) since in that subdomain it is
the constant extension along the normal n; of the trace ¢|M1 € Wl_%’p(./\/h; R9), and the properties of 7, in
(4.20) to obtain

Evol|[Ps] = W(Dos dr =
l[¢ ] /Q ( ? (x)) ! /{Id1|>20}+/{ld1|<0}+/{0<d1<2<7}
< Evald] + / Doy (@) do + / Dy ()P

{o<|d:|<20}

o 1

< Eollg] + Co + / D¢y (z)[P dx

{o<|d1|<20}

< Evald] + Co + C'/ | Do ()| da

{o<]|d1]|<20}
p

dx

+Co™P /{g<d1<26} dy(x)? ‘ ny <¢(7TM1 (x)))

P
+ Ca_p/ ‘
{o<|di|<20}

where for the last inequality the product rule for 7, and ¢ was used, and also that whenever x = maq, (z) +
tny (7, (2)), then t = ( — 7aq, (2)) - 01 (Taq, (2)) = di(2). This implies that the penultimate term of (4.21)
tends to zero, since

¢(mm, (7)) — d(x)| da, (4.21)

/{U<|d1|<20} dy(z)? ‘ ny (¢(7TM1 (x))) ‘1’ dz = / dy(z)P dz < CoPtl

{o<|d1]|<20}

For the last term of (4.21), noticing that the integrand vanishes at M; we use a Poincaré inequality for the
derivative in the normal direction n; on the sets {—20 < d; < 0} and {0 < d; < 20} (these sets have at least
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C11 boundaries since o was chosen small enough, see Thm. 7.7.1(i) of [23]) and with optimal constant Co? to

write
P
pr/ dz < pr/
{o<|d1|<20} {0<|d1|<20}

< C||Dé (ny o 7ar,
and finally obtain

p

dx

¢(mpm, (7)) — ¢(@)

¢(mm, (7)) — 6()

)Hip({o<\d1\<2a}) 0—0 0,

lim sup Evol[po] < Evor[@)-

o—0

As a remark, let us note that on the one hand the same computations above allow us to prove that
[Déolle@) — 1Dél e (o) — 0

while on the other hand ¢, differs from ¢ only on Mo, M1 while |[Noy; M| — 0. From this, up to possibly taking
a further subsequence, we conclude that ¢, converges to ¢ not just weakly but also strongly in W17 (Q; R?).

Step 4. Convergence of minimizers.

As above, since § = 0 and ¢ € Wol’p(Q; RY) + 1d, we have

£716)> € [ 100 > C (1ol —1).

with C' independent of o. Hence, by the Banach—Alaoglu theorem the £7 form an equicoercive family of I'-
converging functionals, which implies ([11], Thm. 1.21) that any sequence {¢? } of minimizers in Wol’p(Q; RY)+1Id
of £7 has a subsequence converging weakly in WP(£2; R?) to a minimizer of £°. Existence of such minimizers
for £7 can be proved by analogous methods as those used in Theorem 3.3, where Lemma 3.1 is modified as in
the first step. (Il

Remark 4.4 (Natural boundary conditions). In contrast to the situation in Theorem 3.3 where we use global
topological properties that are in general only true with fixed Dirichlet boundary, the restriction to WO1 P(Q; RY)+
Id in the definition of £7 and Theorem 4.3 is not essential. For the analogue with zero Neumann boundary
conditions, the only difference is that £ needs to be coercive in W1 (Q; R?) as well; this is proved in Corollary 4.3
of [34] using W (A) > C|AJP and the form of £,

match*

Remark 4.5 (The case 8 = 1). From a modelling perspective, the desired scaling for our model is one in which
the influence of the volume term vanishes, which is the case when 6 = 1, a regime in which we could also
prove existence of minimizers for all ¢ > 0 even for the symmetric energy. In that case, the volume energy still
determines the values of minimizers outside the narrow band, since it is the only active term there. The same
proof of Theorem 4.3 shows that in case § = 1, the functionals £ restricted to a set of bounded norm (e.g.
{p € WyP(Q;RY) +1d | | Dol 1r0) < C}) also T-converge with respect to either LP(2;R?) convergence or the
weak WHP(Q; R?) topology (which is metrizable on bounded sets) to the surface energy

W(Dtt¢) + W(A[D(ba Sla 82 o ¢7 n;,nso ¢]) de_l'
My
This constraint cannot be removed: without it (4.16) is not guaranteed, since W (Dy¢) is not coercive with
respect to derivatives in the normal direction.

Remark 4.6 (Other choices of membrane energy). Had we chosen to use for the surface deformation energy
(instead of the energies based on the projected derivative Dy¢p) a “hardened” but isotropic term depending on
the full derivative, of the type

/Q o (d1 ()W (Dé(2) da, (4.22)



SYMMETRY AND SCALING LIMITS FOR MATCHING 1155

we would obtain a I'-limit with an integral representation through a density that contains a nontrivial quasi-
convexification, and vanishes for matrices whose singular values are less than or equal to 1 ([40], Thm. 10). In
consequence, sequences of minimizers of the analogue of £7 with £Z,, replaced by (4.22) may develop oscilla-
tions as 0 — 0, and the limit functional would not penalize compression of Mj. In contrast, Theorem 4.3 (as
reflected in (4.17), in particular) shows that our projected tangential derivative construction is preserved in the
membrane limit, avoiding these drawbacks.

Furthermore, in Section 4.1 and Figure 5 of [34] it was demonstrated that using a tangential strain tensor

through
[ et @w ([Dota)Pr(a))” (Do) PA(@)] +m(e) 9 m()) da

is also not desirable, since this term is not lower semicontinuous and again encourages oscillations in minimizing
sequences, even at fixed o > 0.

Remark 4.7 (Symmetric energies). A series of papers by Anza Hafsa and Mandallena (see the overview [3] and
references therein) tackle the membrane limit with non-interpenetration and orientation preservation conditions.
It would be tempting to think of applying this kind of results to attempt to take the limit of the symmetric
energies. However in our framework, the surface energies should not enforce orientation preservation since
det(Dy¢) could be negative depending on the relative position of My and ¢ o M, as remarked in Section 2.2.

The obstruction for proving Theorem 4.3 for the symmetric energies E? is rather the blending argument
with the cutoff function 7, used to construct a recovery sequence. What would be needed is a result on approx-
imation of Sobolev homeomorphisms by diffeomorphisms, done in such a way that the corresponding energies
converge. Notice that since the energy density is unbounded as the determinant vanishes, this property is not
guaranteed by strong convergence. Alternatively, a proof by density is also possible, and a sufficient condition
would be approximation by smoother functions with convergence in LP norm for the derivatives of the inverse
transformation, as obtained for planar bi-Lipschitz maps in [19]. At the time of writing, the existence of such
an approximation procedure seems to be an open problem both for planar maps in WP, 1 < p < 400, and for
all three-dimensional cases ([19], [32], Open problem 16, [36], Questions 3 and 4). As noted in [6], such a result
would have deep implications for the mathematical theory of elasticity.

5. COMPUTATIONAL RESULTS FOR SYMMETRIC ENERGIES

5.1. Numerical setup

As in [34], we have used a “discretize, then optimize” strategy on adaptive hierarchichal quadtree or octree
grids defined on © = (0,1)¢ with d = 2,3, coupled with a multiscale first order descent, implemented in the in
the Quocmesh library [46]. This means that the solution at one grid, computed through a conjugate gradient
method computed with a weighted H'! metric coupled with Armijo line search, is interpolated into the next
finer one and used as an initial condition to continue the descent on the new grid.

The grids are refined around the input shapes M; and Ms, to add detail to the main area of interest and
maintain accuracy in the coefficients depending on the initial and deformed configuration respectively. The
hierarchical structure of the grids allows to search them efficiently (further details are given in Sect. 5 of [34]),
which is crucial in our case since the coefficients strongly depend on the deformed configuration. Below, when
speaking about these grids, we refer to them as having level £ when the side of the finest elements present in
it is hy = 27¢. Our implementation accepts input shapes given either as triangular meshes in 3D or polygonal
curves in 2D, and the distance functions d; are generated through a straightforward modification of the fast
marching method [51], taking advantage of the fact that the grids used are subgrids of a regular cartesian grid.

A straightforward choice of discretization would be to use multilinear finite elements on the squares or cubes
contained in the grid, which is the approach used in [33, 34]. However, this type of discretization has some
limitations for our application. The main concern is maintaining the deformations injective. On the one hand
the Jacobian determinants that appear numerically (i.e. on quadrature points) can be enforced to be positive
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along the descent by using infinite values of the energy and adequate line search for the descent. However,
when refining the grid and interpolating the deformation to the newly created elements, this property might
be lost: injectivity of a trilinear transformation on a hexahedral element is not even known to be checkable
through simple algebraic conditions [37]. This means that even if the Jacobian determinants are positive at
every quadrature point of the original grid, they might not necessarily be positive at all those of the refined
grid, a situation which prevents the multiscale descent from continuing after the refinement. This problem occurs
only for very small determinant values (“thin” deformed elements) and therefore it can often be avoided, but
without guarantees, by keeping the influence of F relatively high.

In fact, this problem can be completely avoided by splitting each square or cube of the grid in two regular
triangles or six tetrahedra respectively, and using linear finite elements on the resulting simplices instead. In this
way, the gradients are piecewise constant, and since the elements of the subdivided grid are always completely
contained in a coarse element, the Jacobian determinant is preserved when interpolating to the refined grid.
This has allowed us to eliminate the mentioned problem with negative determinants, and to emulate the regime
0 = 1 by decreasing the influence of the volume term with each refinement. Indeed, in the numerical examples
presented we have chosen o = 2hy and a coefficient for the volume energy proportional to o.

Another difference is that since we focus in symmetry and invertibility, Dirichlet conditions fixing the defor-
mations at the boundary to be the identity have been used. In consequence, the size of the shapes compared
with that of the domains should be relatively small so that the fixed boundary values do not affect the matching
too much through the volume regularization term. This drawback is mitigated by the use of adaptive grids,
since these are only refined around the shapes themselves.

Our implementation of the energy and its derivatives follows the formulas in Lemma 2.3 to minimize the
appearance of terms related to det(D¢~!), which have the potential to introduce large numerical errors when
injectivity of the deformations is nearly lost.

5.2. Symmetry in the numerical results

We have computed several examples both with the novel symmetric energy £, and with a comparison energy
defined only on the direct transformation, but with a volume term that ensures injectivity. Indeed, invertibility
of the obtained deformations is required to perform the comparisons in the form proposed. The energy that we
compare against is closely related to £7 of Section 4 and the one formulated in [34]. It reads

?U [¢] = gglatch [‘ﬂ + gr{‘rflem [(b] + ggend [‘ﬂ + Efrol [(b]? where (51)
- [ War(A) = |A]? + | Cof AP +3(det A)~2 if d =3
F3 =% | Wy (Do), with
wildl =0 /Q (D), wi {Wvol(A) — A2 + (det A)~2 it d=2,
where €7 . 1, €T em» Eong are the expressions in (4.1), and using the polyconvex density W defined in (2.12).

It can be directly checked that the identity matrix 1 € R?*? is stationary for Wy, by writing it in terms of
singular values.

The parameters used were identical for both energies and a given shape, as listed in Table 1, with the exception
of the different volume density in E,j, but with each volume energy multiplied with the same coefficient cy.
The energy density W used for all terms of E? that require it was the one introduced in (2.12), and we used
0 =1 and ¢ = p = d + 1 replicating the regime analyzed in Section 3.

It is important to notice that, although the energy is symmetric with respect to switching the shapes and
taking the inverse of the deformations, the gradient descent procedure is not. Therefore, in practice perfect
symmetry can not be expected in the numerical results, and the extent to which it appears depends on not
ending up in different local minima, and how closely these minima are approximated by the computation. In
any case our numerical experiments show a marked improvement towards symmetry.

Figure 1 shows a 2D example of a shape M; undergoing first the deformation ¢ computed using £ to match
M to Ms, then also the one @ with switched inputs matching Ms to My, and the corresponding deformed
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TABLE 1. Parameters used for the numerical examples, where ¢match, Cvol, Cmem and Cpend are
multiplicative factors for the corresponding terms of (2.2) or (5.1).

Cmatch Cvol Cmem Cbend o q 0 émin, Crmax
Dolphin  4.096 08 1.0 02 271 4 1 48
Starfish  4.096 0.8 1.0 0.2 2791 4 1 48
Jump 0512 08 10 10 274 3 1 49
P
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FIGURE 1. Upper row left to right: jump shape template M; with visualization pattern and
target Mo, deformed shape ¢(M;) after level 9 matching with the symmetric energy E7 in (2.2),
deformed shape 1) o (M) after subsequently applying level 9 of the matching with switched
data. Lower row: quadtree grid used with hpi, = 279, after applying the direct matching ¢,
and after applying both matchings through v o ¢. Being able to perfectly numerically realize
the symmetry would result in identical leftmost and rightmost images. Although the first and
last colored shapes look quite similar, some differences can be seen. For example the red patch
on top of the head shifts slightly to the left, an error which can also be easily spotted in the

rightmost deformed grid.
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FIGURE 2. From left to right: Starfish shapes M; (orange) and My (white), textured My,
deformed shape ¢(M;) after level 8 matching with symmetric energy functional E7, deformed
shape (¢ o ¢)(M;) after subsequently applying level 8 of the matching with switched data.

FIGURE 3. From left to right: Dolphin shapes M; (blue) and My (white), textured My,
deformed shape ¢(M;) after level 8 matching with symmetric energy functional E?, deformed
shape (¢ o ¢)(M;) after subsequently applying level 8 of the matching with switched data.

grids. In Figures 2 and 3 analogous 3D examples are shown. In each of these cases, being able to exactly realize
the symmetry property numerically would result in identical shapes and grids before any deformation and after
applying both.

In Figure 4 and Table 2 we quantify the failure of symmetry in these examples by evaluating the distance
|t) o ¢ — Id| between the identity and composition of the deformations matching the shapes in opposite orders,
when using the symmetric energy E° and the non-symmetric energy £ as comparison. Averages on M are
computed from evaluation of the finite element functions on the vertices of the triangular meshes or polygons
used as input and sub-grid initialization of the fast marching method to compute d;, with equal weights for all
such points. This avoids having to integrate numerically discrete functions defined on €2, for which the surface
meshing is not compatible. The input surfaces, which are fairly evenly triangulated, are only used for initializing
the computation of d; and not in the computation for ¢.
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I 0.027 I 0.055

0.000 0.000

FIGURE 4. Pointwise norm of the residual displacement |1j} ¢ — Id|, plotted as texture over
(1o ¢)(My). Left shape for each case: result with energy £ not taking into account the inverse,
corresponding to (dir) case in Table 2. Right shape: result with the symmetric energy E (same
parameters and descent procedure), corresponding to (sym) case in Table 2. As expected,
only subtle differences appear in the shapes themselves. Most of the erroneous displacement
on the surface occurs tangentially and in zones where the largest bending takes place (cf.
Figs. 2 and 3).

TABLE 2. Average and maximum norm of the residual displacement |¢) o ¢ —Id| at last compu-
tation level for the dolphin (D), starfish (S) and jump (J) examples, computed with the energy
&7 that penalizes only the direct transformation (5.1), (dir) and with the new symmetric energy
E° (2.2), (sym). On average larger errors are seen outside the shapes themselves, which is con-
sistent with the decreasing influence of the volume term over the refinements to recreate the
regime 0 = 1.

Case oo —TId|lp2 llYod—TIdlre) avg(lpogp—Id,Mi) |l¢po¢—1Id|roemy)
D, dir 0.0299 0.0583 0.0108 0.0570

D, sym 0.0271 0.0561 0.00281 0.0114

S, dir 0.0637 0.136 0.0132 0.0546

S, sym  0.0473 0.115 0.00570 0.0240

J, dir 0.0715 0.141 0.0223 0.141

J, sym 0.0419 0.0982 0.00737 0.0982
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