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SYMMETRY AND SCALING LIMITS FOR MATCHING OF IMPLICIT
SURFACES BASED ON THIN SHELL ENERGIES

José A. Iglesias

Abstract. In a recent paper by Iglesias et al. [Found. Comput. Math. 18 (2018) 891–927] a variational
model for deformations matching a pair of shapes given as level set functions was proposed. Its main
feature is the presence of anisotropic energies active only in a narrow band around the hypersurfaces
that resemble the behavior of elastic shells. In this work we consider some extensions and further
analysis of that model. First, we present a symmetric energy functional such that given two particular
shapes, it assigns the same energy to any given deformation as to its inverse when the roles of the
shapes are interchanged, and introduce the adequate parameter scaling to recover a surface problem
when the width of the narrow band vanishes. Then, we obtain existence of minimizing deformations for
the symmetric energy in classes of bi-Sobolev homeomorphisms for small enough widths, and prove a
Γ-convergence result for the corresponding non-symmetric energies as the width tends to zero. Finally,
numerical results on realistic shape matching applications demonstrating the effect of the symmetric
energy are presented.
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1. Introduction

We are interested in variational methods for the matching of implicit shapes, in which an energy for deforma-
tions defined in a computational domain containing both shapes is minimized. More specifically, we are given
two embedded 𝐶2 diffeomorphic hypersurfaces ℳ1,ℳ2 ⊂ Ω ⊂ R𝑑, where Ω is an open bounded domain with
Lipschitz boundary, and we work with models formulated through the signed distance functions d𝑖 to ℳ𝑖. The
matching is then accomplished through a deformation 𝜑 : Ω → Ω such that 𝜑(ℳ1) ≈ℳ2 and with the aim that
perceptually similar regions of ℳ1 and ℳ2 correspond to each other. The particular notion of similarity we use
is derived from variational integrals penalizing distortion along the tangent spaces of the ℳ𝑖, and mismatch of
their curvatures in a tensorial fashion through their shape operators.

In this context, we say that an energy is symmetric if it assigns the same value to a deformation for matching
two shapes and to the inverse of the deformation when matching the shapes in the opposite order. This kind
of consistence is not at all guaranteed when formulating such a model, yet it is often desirable. Besides basic
conceptual reasons, many applications of statistical analysis like Fréchet means or PCA on spaces of shapes
are based on similarity measures. One possible choice (see the overview [48]) are those based on deformation
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energies, in which case symmetry is clearly advantageous. Another particular situation where such symmetry
would be desirable is the time-discrete geodesic calculus for shapes [49,50], a framework in which a deformation
energy can be used to induce a Riemannian distance. In that case one expects the continuous geodesics being
approximated to be invariant with respect to time reversal, and a symmetric energy ensures this reversibility
already on the discrete level.

We introduce in Section 2.1 a new symmetric energy consisting of a matching penalization term for the
constraint 𝜑(ℳ1) = ℳ2, a membrane term that penalizes tangential distortion, a bending-like term that
induces curvature matching of the initial and target hypersurfaces, and an additional regularization based on an
hyperelastic bulk energy. This structure was also used in the less refined energies already proposed in [33, 34].
Each term of the new energy is symmetric with respect to switching the hypersurfaces with each other and
the deformation for its inverse. Moreover, the first three energy contributions arise only from narrow bands
𝒩𝜎ℳ𝑖 = {𝑥 ∈ Ω | − 𝜎 < d𝑖(𝑥) < 𝜎}, as an approximation of their influence only on the hypersurfaces to be
matched.

These membrane and bending-like energies are centered around the projected tangential derivative construc-
tion introduced in [34], which is specific to level set matching. By considering the deformed area only along the
tangent spaces of the offsets to the target surface, it allows for relaxing the constraint 𝜑(ℳ1) = ℳ2 while avoid-
ing oscillations that would arise when attempting to keep the deformations fully isometric ([34], Sect. 4.1). This
derivative is composed with explicit bounded, coercive, frame-invariant and isotropic stored energy functions
which attain their global minimum at a single energy well in SO(𝑑), a fact proved in Lemma 2.1. The membrane
energy measures distortion of the projected tangential derivative through this stored energy function directly,
while the bending-like term additionally uses anisotropy and non-identity resting configurations to penalize
mismatch of curvatures of the ℳ𝑖 through 𝜑. This notion of projected tangential derivative is not just weakly
continuous ([34], Lem. 4.1) but in fact gives rise to polyconvex energy densities, as we show in Lemma 2.3. Com-
bined with an a priori estimate given in Lemma 3.1 for the maximum mismatch of the shapes in terms of the
strength of the matching penalization, these lower semicontinuity properties are used in Theorem 3.3 to prove
existence of minimizers in classes appropriate to the symmetry with respect to inversion, that is, bi-Sobolev
deformations.

An obvious price that is paid to work in the level set framework is the increase of dimension of the domain, and
this is equally true for the nonlinear, thin-shell based matching energies used in [33,34] and for the current work.
We aim to offer further theoretical justification for this family of matching energies by studying in Theorem 4.3
the membrane limits of a non-symmetric version of the energy as the thickness of the narrow bands tends
to zero and the matching penalization becomes exact, so that the resulting energy has terms defined purely
on the hypersurfaces. In this situation, the projected tangential derivative trivializes the quasiconvexification
usually appearing in this kind of limit (the membrane energy of [40]), so the structure of the energies used is
preserved. A limitation is that we are only able to perform this asymptotic analysis for energies that do not
enforce injectivity of the deformations, with the consequence that the new symmetric energy is not covered. The
development of the tools that would be needed to naturally derive this kind of results with injective Sobolev
deformations is a major problem in the theory of nonlinear elasticity, with partial solutions available only in
two dimensions (see the end of Sect. 4 for some discussion).

On the numerical level, the increase of dimension is mitigated by the use of multiscale descent schemes on
adaptive meshes which are subdivided only around the input surfaces or curves. We present in Section 5 numer-
ical examples computed with such a method for the new symmetric energies, showing a marked improvement
in symmetry with respect to a non-symmetric version of the energy. These computations are based on a linear
finite element discretization on octree grids where each cube is divided into tetrahedra. Such grids allow for fast
indexing of degrees of freedom, indispensable for the use of coefficients depending on the deformed configuration,
which is pervasive in our definition of the energy.
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1.1. Related work

Our main focus is the formulation of symmetric energies, as defined above. The use of such energies for image
registration for medical image registration was proposed already in [13]. More recently, distances based on
symmetrized hyperelastic volume energies (without tangential terms) were used for the analysis of cell shapes
extracted from fluorescence microscope images in [38]. Outside imaging applications, the use of symmetric
energies for modelling of nonlinear elasticity is advocated in [35].

Our formulations have some common points with the modelling of thin shells through signed distance functions
in [22]. Thin structures and dimension reduction are a foundational topic in mathematical elasticity, treated
by a vast number of works. On a general level, we mention only the book [17] for a thorough introduction to
the modelling and analysis of shell problems, and [29] as a starting point for the literature on nonlinear scaling
limits obtained by Γ-convergence. The main techniques we use for our dimension reduction result arise from the
membrane problem [40,41] and problems of thin inclusions or “welding” [1, 10].

A number of works deal with shape analysis tasks using formulations based in linearized elasticity, like [30].
Shape matching using nonlinear thin shell energies has been tackled for parametric domains in [42] and for
triangulated surfaces in [26, 52]. Some precedents for shape analysis based on signed distance functions are
[14,21].

Another prominent body of work in mathematical shape analysis is that dealing with shape spaces from an
intrinsic Riemannian perspective [7]. This point of view has recently [8,9] been combined with varifold similarity
metrics for shape matching without needing to estimate reparametrizations.

Our models are based on polyconvex energy functions, and there are also a number of works applying these
for shape averaging [47], image registration [12,25], or as part of joint registration/segmentation models [20].

1.2. Notation

– The euclidean inner product of two vectors 𝑣, 𝑤 ∈ R𝑑 is denoted by 𝑣 ·𝑤, and the Frobenius inner product of
two square matrices 𝐴,𝐵 ∈ R𝑑×𝑑 by 𝐴 : 𝐵 = tr(𝐴𝑇𝐵). In both cases, |𝑣| or |𝐴| denotes the corresponding
norm induced by these inner products. We denote the tensor product of 𝑣, 𝑤 ∈ R𝑑 by 𝑣 ⊗𝑤 = 𝑣𝑤𝑇 ∈ R𝑑×𝑑.

– Ω ⊂ R𝑑 is a bounded domain, with strongly Lipschitz boundary (i.e. it can be locally expressed as the graph
of a Lipschitz function). For scalar functions 𝑢 : Ω → R we denote by ∇𝑢 their usual gradient and by 𝐷2𝑢
the Hessian matrix, while for vector fields 𝜑 : Ω → R we denote the Jacobian matrix by (𝐷𝜑)𝑖𝑗 = 𝜕𝑗𝜑

𝑖.
– The identity function is denoted by Id, whereas 1 ∈ R𝑑×𝑑 stands for the identity matrix.
– For 𝑖 = 1, 2, ℳ𝑖 ⊂ Ω are compact 𝐶2 hypersurfaces diffeomorphic to each other, and d𝑖 denote the signed

distance to them, with the convention that these are negative in the interior components induced by ℳ𝑖.
With n𝑖(𝑥) := ∇d𝑖(𝑥) we denote the outer normal vectors to the offset hypersurfaces {𝑦 |d𝑖(𝑦) = d𝑖(𝑥)} of
ℳ𝑖, and by 𝑃𝑖 := 1− n𝑖 ⊗ n𝑖 the orthogonal projections onto the corresponding tangent spaces.

– Noticing that the shape operators of the offset hypersurfaces to ℳ𝑖 can be read off 𝐷2d𝑖 (see [31],
Lem. 14.17), we use the notation 𝒮𝑖 := ℛ(𝐷2d𝑖 + n𝑖 ⊗ n𝑖) for uniformly positive definite matrices derived
from them, where ℛ is a regularized absolute value function for matrices discussed in Section 2.2.

– 𝒩𝑟ℳ𝑖 := {𝑥 ∈ R𝑑 | |d𝑖(𝑥)| ≤ 𝑟} denote tubular neighborhoods of width 𝑟 of ℳ𝑖.
– Occasionally we write 𝐷𝑡𝜑 := 𝐷𝜑𝑃1 for the standard tangential derivative along the tangent spaces of the

offsets to ℳ1, while 𝐷𝑡𝑡𝜑 := (𝑃2 ∘𝜑)𝐷𝜑𝑃1+(n2∘𝜑)⊗n1 is the projected tangential derivative (see Sect. 2.2)
for measuring tangential distortion of a deformation 𝜑 attempting to match ℳ1 onto ℳ2.

– Λ[𝑀,𝑁,𝐴, 𝑣, 𝑤] := 𝑃2𝑁
1
2𝑃2𝐴𝑃1𝑀

− 1
2𝑃1 + 𝑤 ⊗ 𝑣 for 𝐴 ∈ 𝑅𝑑×𝑑 arbitrary, 𝑀,𝑁 ∈ R𝑑×𝑑 symmetric positive

definite, 𝑣, 𝑤 ∈ R𝑑 are classifier matrices for the purpose of curvature matching (when applied to 𝒮𝑖, 𝐷𝜑 and
n𝑖, see Sect. 2.2).

– For a given unit vector 𝑒 ∈ R𝑑 we denote by 𝑄(𝑒) ∈ SO(𝑑) any proper rotation such that 𝑄(𝑒)𝑒𝑑 = 𝑒, where
𝑒𝑑 denotes the 𝑑-th element of the canonical basis of R𝑑. This condition does not specify a unique 𝑄(𝑒), but
the properties above will be the only ones used for 𝑄.
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– Deformations considered as candidates for matching ℳ1 to ℳ2 are usually denoted by 𝜑 : Ω → Ω, while
“inverse” deformations that should match ℳ2 to ℳ1 are denoted by 𝜓.

– 𝐶 denotes an unspecified positive constant, which could be different in each appearance, even inside the
same line.

2. Symmetric level set matching energies

We aim to formulate a matching energy which is symmetric with respect to simultaneously swapping the
input shapes and taking the inverse of the deformation. To this end, we consider explicit penalization of the
inverse deformations in all of the energy terms. Our starting point is the observation that for regular enough
deformations, integral energies associated to the inverse deformation can be computed in the original domain
through a change of variables.

Let 𝑝 > 𝑑 and 𝜑 ∈ 𝑊 1,𝑝(Ω;R𝑑) be such that its continuous representative is an homeomorphism and 𝜑−1 ∈
𝑊 1,𝑝(Ω;R𝑑) (i.e. 𝜑 is 𝑝-bi-Sobolev). Since 𝑝 > 𝑑, 𝜑 has the Lusin N-property ([32], Thm. 4.2), that is, it
maps sets of zero measure to sets of zero measure. Therefore, we can use the change of variables formula ([32],
Thm. A.35), so that applying the chain rule and Cramer’s rule we end up with:∫︁

𝜑(Ω)

𝐹
(︀
𝑦, 𝜑−1(𝑦), 𝐷(𝜑−1)(𝑦)

)︀
d𝑦 =

∫︁
Ω

𝐹

(︂
𝜑(𝑥), 𝑥,

Cof 𝐷𝜑(𝑥)𝑇

det𝐷𝜑(𝑥)

)︂
|det𝐷𝜑(𝑥)|d𝑥, (2.1)

for any Carathéodory integrand 𝐹 : Ω× R𝑑 × R𝑑×𝑑 → R.

2.1. Symmetric energy functional

We now formulate the different terms of our energy. Let

𝜂 ∈ 𝐶1
0 (R;R), with

∫︁
R
𝜂 = 1 and supp 𝜂 = [−1, 1]

and define
𝜂𝜎(𝑠) :=

1
𝜎
𝜂
(︁ 𝑠
𝜎

)︁
, so that

∫︁
R
𝜂𝜎 = 1 for all 𝜎.

One option would be to choose 𝜂 ∈ 𝐶∞0 (R;R) as for standard mollifiers, but we only need one derivative for
our first-order numerical descent. Moreover, choosing 𝜂 of polynomial decay allows for more detailed estimates,
which are required for existence of minimizers with weights given as powers of 𝜎 in the constraint penalty term
in (2.3) and vanishing volume regularization (2.6) below.

Choosing our main parameter for scaling to be the size 𝜎 of the narrow band, we introduce two scaling
exponents. The first is denoted by 𝑞 and controls how intensely the matching penalty is enforced. The second,
denoted by 𝜃 ∈ {0, 1}, controls the behaviour of the volume term. Our complete energy, taking into account
contributions of the inverse map for each term through (2.1) reads

𝐸𝜎[𝜑] := 𝐸𝜎
match[𝜑] + 𝐸𝜎

mem[𝜑] + 𝐸𝜎
bend[𝜑] + 𝐸𝜎

vol[𝜑], where (2.2)

𝐸𝜎
match[𝜑] :=

1
𝜎𝑞

∫︁
Ω

(︁
𝜂𝜎(d1) + 𝜂𝜎(d2 ∘ 𝜑)

⃒⃒
det𝐷𝜑

⃒⃒)︁
|d2 ∘ 𝜑− d1|2, (2.3)

𝐸𝜎
mem[𝜑] :=

∫︁
Ω

𝜂𝜎(d1)𝑊
(︀
(𝑃2 ∘ 𝜑)𝐷𝜑𝑃1 + (n2 ∘ 𝜑)⊗ n1

)︀
+ 𝜂𝜎(d2 ∘ 𝜑)𝑊

(︂
𝑃1

Cof 𝐷𝜑𝑇

det𝐷𝜑
(𝑃2 ∘ 𝜑) + n1 ⊗ (n2 ∘ 𝜑)

)︂ ⃒⃒
det𝐷𝜑

⃒⃒
, (2.4)
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𝐸𝜎
bend[𝜑] :=

∫︁
Ω

𝜂𝜎(d1)𝑊
(︀
Λ[𝒮1,𝒮2 ∘ 𝜑,𝐷𝜑,n1,n2 ∘ 𝜑]

)︀
+ 𝜂𝜎(d2 ∘ 𝜑)𝑊

(︀
Λ
[︀
𝒮2 ∘ 𝜑,𝒮1,Cof 𝐷𝜑𝑇 / det𝐷𝜑,n2 ∘ 𝜑,n1

]︀)︀ ⃒⃒
det𝐷𝜑

⃒⃒
, (2.5)

𝐸𝜎
vol[𝜑] := 𝜎𝜃

∫︁
Ω

𝑊 (𝐷𝜑) +𝑊

(︂
Cof 𝐷𝜑𝑇

det𝐷𝜑

)︂ ⃒⃒
det𝐷𝜑

⃒⃒
. (2.6)

Here, 𝑊 : R𝑑×𝑑 → R is a 𝑝-coercive and polyconvex (i.e. it can be written as a jointly convex function of the
matrix argument and determinants of its minors of any order [18], Def. 5.1(iii)) stored energy function minimized
at SO(𝑑), whose specific form is discussed in Section 2.3. The form of the first terms in 𝐸𝜎

mem and 𝐸𝜎
bend follows

the constructions introduced in [34]. We have postponed the definition of Λ and 𝒮𝑖 to Section 2.2 below, where
we also recall the motivation for these formulas.

In case 𝜃 = 0 the volume term is equally strong as 𝜎 → 0, interfering with the surface terms. In Section 4 we
consider the Γ-limit as 𝜎 → 0 of a non-symmetric version (without the inverse terms) of the functional in this
regime. In contrast if 𝜃 = 1 the volume term does not interfere in the limit, but uniform 𝑊 1,𝑝 bounds on the
corresponding minimizers are lost, complicating the ensuing analysis.

For practical applications each term can be multiplied by a positive constant 𝑐match, 𝑐mem, 𝑐bend, 𝑐vol to
balance the relative strength of each effect; we will do so for our numerical examples in Section 5, but skip these
in the rest of the presentation to not further complicate the notation.

Notice that since in the volume energy we are using the energy on both the deformation and its inverse
via 𝑊 (𝐷𝜑) +𝑊 (Cof 𝐷𝜑𝑇 /det𝐷𝜑)|det𝐷𝜑|, no injectivity penalization is needed in 𝑊 itself, that is 𝑊 (𝐴) can
remain bounded as det𝐴→ 0. Nevertheless, it only makes sense to consider this energy when det𝐷𝜑 > 0 almost
everywhere. This property is satisfied by deformations belonging to the class that we consider in Section 3, see
(3.1).

2.2. Projected tangential derivatives and curvature classifiers

One of the main novelties of [34] is measuring tangential distortion through the first term of (2.4), using
the projected tangential derivative (𝑃2 ∘ 𝜑)𝐷𝜑𝑃1 + (n2 ∘ 𝜑)⊗ n1. This can be seen as a relaxation of physical
models of tangential distortion energies, which is specific to shape matching of hypersurfaces given as level sets.
This is because it utilizes the projection 𝑃2 = 1−∇d2 ⊗∇d2 to the tangent space to the target hypersurface,
evaluated at the point 𝜑(𝑥) which may not necessarily lie exactly on ℳ2, so the signed distance function is
needed to obtain a surrogate of the geometry from it. In any case, if we had 𝜑(ℳ1) = ℳ2, the second projection
would be superfluous and this construction would measure tangential distortion exactly. Here we use the same
construction, with the addition of the symmetrized term which accounts for tangential distortion, in the same
projected sense, but for the inverse of the deformation that should match ℳ2 onto ℳ1. Further details and
explanations, along with comparison with constructions based on the plain tangential derivative are given in
Sections 2.1, 3.1, and 4.1 of [34].

We remark that it is possible for a point 𝑥 ∈ Ω to simultaneously satisfy

det𝐷𝜑(𝑥) > 0 and det
(︀
𝑃2(𝜑(𝑥))𝐷𝜑(𝑥)𝑃1(𝑥) + n2(𝜑(𝑥))⊗ n1(𝑥)

)︀
< 0,

depending on the relative positions of 𝜑(ℳ1) and ℳ2. As a simple example, consider 𝜑 to be the identity map
in Ω = (−3, 3)2 with ℳ1 = S1 + (1, 0) and ℳ2 = S1 − (1, 0), for S1 the unit circle. In this case, the projected
tangential derivative at the origin turns out to be −𝑒1 ⊗ 𝑒1 + 𝑒2 ⊗ 𝑒2, where 𝑒𝑖 are the standard cartesian unit
vectors. This matrix is orientation reversing, the reason being that the tangent spaces are mapped to each other
in reverse orientation. Of course, when mapping though a homeomorphism which nearly matches ℳ1 to ℳ2

this situation would seldom happen, and when exactly mapping ℳ1 to ℳ2 it cannot happen at all, but this
cannot be enforced for all the iterates computed in a numerical descent. Therefore, it is paramount that the
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energy density used in 𝑊 is defined and finite on all of R𝑑×𝑑 regardless of orientation, while being minimized at
least locally at SO(𝑑). The specific density (2.12) we use for numerical computations satisfies these conditions
along with additional continuity properties.

Turning our attention to the bending-like energy 𝐸𝜎
bend in (2.5), we first define

𝒮𝑖(𝑥) := ℛ
(︀
𝐷2d𝑖 + n𝑖(𝑥)⊗ n𝑖(𝑥)

)︀
,

where ℛ : R𝑑×𝑑 → R𝑑×𝑑 is a regularization operator defined below, and 𝐷2d𝑖 + n𝑖(𝑥)⊗ n𝑖(𝑥) is a nonsingular
matrix that reflects the shape operator to the offset hypersurface of ℳ𝑖 at the point 𝑥 (i.e. {𝑦 |d𝑖(𝑦) = d𝑖(𝑥)})
when restricted to its tangent space, and with the normal direction n𝑖(𝑥) as an eigenvector with unit eigenvalue.
These are used in the classifier matrix introduced in [34] and given for symmetric matrix fields 𝑀,𝑁 and
arbitrary square matrix fields 𝐴 by

Λ[𝑀,𝑁,𝐴,n1,n2] := 𝑃2𝑁
1
2𝑃2𝐴𝑃1𝑀

− 1
2𝑃1 + n2 ⊗ n1. (2.7)

It can be seen through a relatively straightforward computation (see [34], Lem. 3.1) that whenever 𝐴 ∈ R𝑑×𝑑

satisfies 𝐴𝑃1 = 𝑃2𝐴 and 𝑀,𝑁 ∈ R𝑑×𝑑 are symmetric positive definite matrices for which

𝑀 = 𝑃1𝑀𝑃1 + n1 ⊗ n1 and 𝑁 = 𝑃2𝑁𝑃2 + n2 ⊗ n2,

then the following two conditions are equivalent:

𝐴𝑇𝑃2𝑁𝑃2𝐴 = 𝑃1𝑀𝑃1, and

Λ[𝑀,𝑁,𝐴,n1,n2] = 𝑃2𝑁
1
2𝑃2𝐴𝑃1𝑀

− 1
2𝑃1 + n2 ⊗ n1 ∈ 𝑂(𝑛). (2.8)

In the above (for the case 𝐴 = 𝐷𝜑) we recognize the first equation as the transformation rule for second-order
tensors defined at the tangent spaces ∇d⊥𝑖 , such as the shape operators of the hypersurfaces ℳ𝑖. The second
conditions implies 𝑊 (Λ[𝑀,𝑁,𝐴,n1,n2]) is pointwise minimized, since we assume it has an energy well at SO(𝑑).
Therefore, the integrands of 𝐸𝜎

bend in (2.5) can be seen as multiplicatively measuring the failure of 𝒮2 to be
pulled back to 𝒮1. This can also be seen as a relaxed matching condition that would resemble a true bending
energy whenever 𝜑(ℳ1) = ℳ2, but that doesn’t take into account the curvature of 𝜑(ℳ1) directly and uses
the one of ℳ2 instead.

A limitation is that the equivalence of (2.8) is only valid whenever 𝑀,𝑁 are positive definite. For this purpose
use a regularized absolute value function for the eigenvalues of symmetric matrices. Fixing 𝑖 = 1 for concreteness
and assuming the matrix𝐷2d1(𝑥)+n1(𝑥)⊗n1(𝑥) can be diagonalized as𝑄(𝑥)𝑇 diag(𝜆1(𝑥), . . . , 𝜆𝑑(𝑥))𝑄(𝑥) where
𝑄(𝑥) ∈ SO(𝑑) for each 𝑥 ∈ Ω, we define

𝒮1(𝑥) := ℛ
(︀
𝐷2d1(𝑥) + n1(𝑥)⊗ n1(𝑥)

)︀
:= 𝑄(𝑥)𝑇 diag

(︀
max(|𝜆1(𝑥)|, 𝜏), . . . ,max(|𝜆𝑛(𝑥)|, 𝜏)

)︀
𝑄(𝑥) (2.9)

where 𝜏 > 0 is a small positive parameter. This means that although sensitive to curvature directions and
magnitudes, our matching conditions must be agnostic to the signs of the curvatures. Although this limits the
capacity of Λ[𝒮1,𝒮2∘𝜑,𝐷𝜑,n1,n2∘𝜑] to enforce correct curvature matching since it might identify saddle points
with elliptical ones, this term still helps to align the hypersurfaces through its tensorial character. For further
information about this method of first-order curvature matching we refer again to Sections 2.2 and 3.2 of [34].

2.3. Stored energy functions

The integrands 𝐹 for our energy are constructed from a polyconvex stored energy function 𝑊 : R𝑑×𝑑 → R,
such that 𝑊 > 0, 𝑊 (𝐴) = 0 if 𝐴 ∈ SO(𝑑) such that 𝑊 (𝐴) > 𝐶|𝐴|𝑝 for some 𝑝 > 𝑑. When introducing specific
examples below we take 𝑝 = 𝑑 + 1, for simplicity in the formulas. Let us also reiterate that 𝑊 is required
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to be defined on all of R𝑑×𝑑, and not only for 𝐴 with det𝐴 > 0. A particularly compact such function with
appropriate coercivity, inspired by the ones used in [34], is given in any dimension 𝑑 > 2 by

𝑊𝑜(𝐴) :=
1

𝑑+ 1
|𝐴|𝑑+1 + 𝑑

𝑑−1
2 𝑒1−det 𝐴 − 1

𝑑+ 1
𝑑

𝑑+1
2 − 𝑑

𝑑−1
2 .

In particular, for 𝑑 = 3,

𝑊𝑜(𝐴) =
1
4
|𝐴|4 + 3𝑒1−det 𝐴 − 21.

It can be checked that the above function attains a local minimum at SO(𝑑) by rewriting it in terms of singular
values, which is possible ([18], Prop. 5.31) because they are frame-invariant and isotropic.

A disadvantage of the above stored energy is that even though it is coercive in 𝑊 1,𝑑+1(Ω;R𝑑), due to the
exponential term it does not satisfy bounds of the type 𝑊𝑜(𝐴) 6 𝐶(1 + |𝐴|𝑑+1), which will be required in the
analysis of Section 4. Through the following lemma we can easily produce more suitable stored energy functions:

Lemma 2.1. Let 𝑑 > 2 and ̂︁𝑊 : (R+∪{0})×R→ R be convex, increasing in its first argument, with ̂︁𝑊 (𝑠,−𝑡) >̂︁𝑊 (𝑠, 𝑡) for any 𝑠, 𝑡 > 0 and such that the function 𝑡 ↦→ ̂︁𝑊 (𝑑𝑑/2𝑡, 𝑡) attains its minimum at 𝑡 = 1. Then, the
stored energy function 𝑊 : R𝑑×𝑑 → R+ ∪ {0} defined by

𝑊 (𝐴) := ̂︁𝑊 (︀
|𝐴|𝑑,det𝐴

)︀
(2.10)

attains its global minimum at SO(𝑑). Moreover, 𝑊 is polyconvex and frame-indifferent.

Proof. Let 𝐴 ∈ R𝑑×𝑑 be arbitrary. Since ̂︁𝑊 (𝑠,−𝑡) > ̂︁𝑊 (𝑠, 𝑡) while

det
(︀
diag(−1, 1, . . . , 1)𝐴

)︀
= −det𝐴, and

⃒⃒
diag(−1, . . . , 1)𝐴

⃒⃒
𝑑

= |𝐴|𝑑,

we may assume det𝐴 > 0 when looking for a minimum point, so that det𝐴 =
∏︀

𝑖 𝑠𝑖, where (𝑠1, . . . , 𝑠𝑛) are the
singular values of 𝐴. Using the arithmetic mean-geometric mean inequality on these singular values we obtain

|𝐴|𝑑 = tr
(︀
𝐴𝑇𝐴

)︀ 𝑑
2 =

(︃
𝑑∑︁

𝑖=1

𝑠2𝑖

)︃ 𝑑
2

>

⎛⎝𝑑(︃ 𝑑∏︁
𝑖=1

𝑠2𝑖

)︃ 1
𝑑

⎞⎠
𝑑
2

= 𝑑
𝑑
2

𝑑∏︁
𝑖=1

𝑠𝑖 = 𝑑
𝑑
2 det𝐴. (2.11)

Combining (2.11), the monotonicity on the first argument, and the minimality property, we get

𝑊 (𝐴) = ̂︁𝑊 (︀|𝐴|𝑑,det𝐴
)︀
> ̂︁𝑊 (︀𝑑 𝑑

2 det𝐴,det𝐴
)︀
> ̂︁𝑊 (︀𝑑 𝑑

2 , 1
)︀

= 𝑊 (1),

where 1 ∈ R𝑑×𝑑 is the identity matrix. Polyconvexity follows since ̂︁𝑊 is convex and increasing in its first
argument, so the composition with | · |𝑑 is still convex. Frame invariance is immediate since the singular values
of 𝐴 and 𝑄𝐴 with 𝑄 ∈ SO(𝑑) are equal. �

Remark 2.2. Since 𝑑 > 2 we have that in the definition (2.10), 𝑊 is differentiable whenever ̂︁𝑊 is, which is
clearly advantageous when choosing a numerical implementation.

A particular example which satisfies the hypothesis of Lemma 2.1, coercive in 𝑊 1,𝑝 with 𝑝 = 𝑑 + 1, non-
negative, vanishing at 1, satisfying a bound of the type 𝑊 (𝐴) 6 𝐶(1 + |𝐴|𝑝) and with continuous derivatives
is

𝑊 (𝐴) =
1

𝑑+ 1
|𝐴|𝑑+1 +

√
2 𝑑

𝑑−1
2
√︀

1 + (det𝐴− 2)2 − 1
𝑑+ 1

𝑑
𝑑+1
2 − 2 𝑑

𝑑−1
2 , with

̂︁𝑊 (𝑠, 𝑡) =
1

𝑑+ 1
𝑠

𝑑+1
𝑑 +

√
2 𝑑

𝑑−1
2
√︀

1 + (𝑡− 2)2 − 1
𝑑+ 1

𝑑
𝑑+1
2 − 2 𝑑

𝑑−1
2 . (2.12)
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In the analysis that follows we will use all of these properties, but not the specific form of 𝑊 . For the numerical
computations presented in Section 5, the specific formula (2.12) is used.

In light of (2.1) one might wonder about the behaviour of the energy associated to the inverse deformation,
expressed through (2.1). In fact, we have that if 𝑊 is polyconvex, 𝑊 > 0 and 𝑊 (𝐴) = 0 whenever 𝐴 ∈ SO(𝑑),
then the function defined for 𝐴 with det𝐴 > 0 by

𝒲(𝐴) := 𝑊 (𝐴−1)
⃒⃒
det𝐴

⃒⃒
= 𝑊 (Cof 𝐴𝑇 / det𝐴)

⃒⃒
det𝐴

⃒⃒
is also polyconvex, 𝒲 > 0 and 𝒲(𝐴) = 0 if 𝐴 ∈ SO(𝑑). Polyconvexity is proved in Theorem 2.6 of [4] and
Proposition 1.1, Section 2.5 of [35]. The minimality property follows from the assumption det𝐴 > 0 and the
fact that SO(𝑑) is a group, so 𝐴 ∈ SO(𝑑) if and only if 𝐴−1 ∈ SO(𝑑).

2.4. Properties of the energy

In Lemma 4.1 of [34] it is proved that the determinant of the projected tangential derivative det
(︀
(𝑃2 ∘

𝜑)𝐷𝜑𝑃1 + (n2 ∘ 𝜑)⊗ n1

)︀
is weakly continuous with respect to weak convergence in 𝑊 1,𝑝(Ω;R𝑑). The following

algebraic lemma provides an easier route to lower semicontinuity:

Lemma 2.3. The infinitesimal projected area distortion induced by the derivative of the inverse deformation
can be computed as the quotient of the stretching along normals and the determinant of the Jacobian. In symbols,
for 𝐴 ∈ 𝑅𝑑×𝑑 arbitrary and 𝑃𝑖 = 1− n𝑖 ⊗ n𝑖 we have

det
(︀
𝑃1𝐴

−1𝑃2 + n1 ⊗ n2

)︀
= det

(︂
𝑃1

Cof 𝐴𝑇

det𝐴
𝑃2 + n1 ⊗ n2

)︂
=

n𝑇
2 𝐴n1

det𝐴
· (2.13)

Similarly, for the determinant of the projected tangential derivative we have

det (𝑃2𝐴𝑃1 + n2 ⊗ n1) = n𝑇
2 Cof 𝐴n1. (2.14)

In consequence, both the integrands 𝐹mem,ℱmem : Ω× R𝑑 × {𝐴 ∈ R𝑑×𝑑 | det𝐴 > 0} → R defined by

𝐹mem(𝑥, 𝑣,𝐴) := 𝑊
(︁
𝑃2(𝑣)𝐴𝑃1(𝑥) + n2(𝑣)⊗ n1(𝑥)

)︁
and (2.15)

ℱmem(𝑥, 𝑣,𝐴) := 𝑊
(︁
𝑃1(𝑥)

Cof 𝐴𝑇

det𝐴
𝑃2(𝑣) + n1(𝑥)⊗ n2(𝑣)

)︁⃒⃒
det𝐴

⃒⃒
(2.16)

are polyconvex in their last argument.
Furthermore, noticing that the 𝒮𝑖 are positive definite by the regularization ℛ applied to the shape operators

in (2.9), one can define the regularized Gaussian curvatures 𝐾𝑖 ∈ R+ by

𝐾𝑖 := n𝑇
𝑖 Cof 𝒮𝑖 n𝑖 = det

(︂
n𝑇

𝑖 𝒮𝑖n𝑖

det𝒮𝑖

)︂−1

,

for which we have
det
(︁
𝑃2𝒮

1
2
2 𝑃2𝐴𝑃1𝒮

− 1
2

1 𝑃1 + n2 ⊗ n1

)︁
= 𝐾

− 1
2

1 𝐾
1
2
2 n𝑇

2 Cof 𝐴n1 (2.17)

and analogously

det
(︂
𝑃1𝒮

1
2
1 𝑃1

Cof 𝐴𝑇

det𝐴
𝑃2𝒮

− 1
2

2 𝑃2 + n1 ⊗ n2

)︂
= 𝐾

1
2
1 𝐾

− 1
2

2

n𝑇
2 𝐴n1

det𝐴
· (2.18)

Thereby the energy densities for 𝐸𝜎
bend, defined by (cf. (2.5) and (2.7))

𝐹bend(𝑥, 𝑣,𝐴) := 𝑊
(︁
𝑃2(𝑣)𝒮

1
2
2 (𝑣)𝑃2(𝑣)𝐴𝑃1(𝑥)𝒮−

1
2

1 (𝑥)𝑃1(𝑥) + n2(𝑣)⊗ n1(𝑥)
)︁

and (2.19)
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ℱbend(𝑥, 𝑣,𝐴) := 𝑊
(︁
𝑃1(𝑥)𝒮

1
2
1 (𝑥)𝑃1(𝑥)

Cof 𝐴𝑇

det𝐴
𝑃2(𝑣)𝒮−

1
2

2 (𝑣)𝑃2(𝑣) + n1(𝑥)⊗ n2(𝑣)
)︁⃒⃒

det𝐴
⃒⃒
, (2.20)

are also polyconvex in 𝐴 whenever det𝐴 > 0.

Proof. To prove (2.13), we first use Cramer’s rule for 𝐴, yielding

𝐴 = (𝐴−1)−1 =
Cof

(︀
𝐴−1

)︀𝑇
det𝐴−1

= Cof
(︀
𝐴−1

)︀𝑇
det𝐴.

Taking transposes, multiplying by 𝑄(n2) (as defined in Sect. 1.2) on the right and by 𝑄(n1)𝑇 on the left, and
dividing by det𝐴,

𝑄(n1)𝑇𝐴𝑇𝑄(n2)
det𝐴

= 𝑄(n1)𝑇 Cof
(︀
𝐴−1

)︀
𝑄(n2)

= Cof
(︀
𝑄(n1)𝑇

)︀
Cof

(︀
𝐴−1

)︀
Cof

(︀
𝑄(n2)

)︀
= Cof

(︀
𝑄(n1)𝑇𝐴−1𝑄(n2)

)︀
, (2.21)

where we have used that 𝑄(n𝑖) ∈ SO(𝑑). Now, as also noticed in equation (2.3) of [34], for any square matrix
𝐵 we have

det(𝑃1𝐵𝑃2 + n1 ⊗ n2) = det
(︁
𝑄(n1)𝑇

(︀
𝑃1𝐵𝑃2 + n1 ⊗ n2

)︀
𝑄(n2)

)︁
=
[︁

Cof
(︁
𝑄(n1)𝑇𝐵𝑄(n2)

)︁]︁
𝑑𝑑

where [·]𝑑𝑑 denotes the last diagonal element. With 𝐵 = 𝐴−1 = Cof 𝐴𝑇 / det𝐴, taking into account (2.21) and
since 𝑄(𝑣)𝑒𝑑 = 𝑣 we get

det
(︂
𝑃1

Cof 𝐴𝑇

det𝐴
𝑃2 + n1 ⊗ n2

)︂
=

[︀
𝑄(n1)𝑇𝐴𝑇𝑄(n2)

]︀
𝑑𝑑

det𝐴
=
𝑒𝑇
𝑑𝑄(n1)𝑇𝐴𝑇𝑄(n2)𝑒𝑑

det𝐴

=
n𝑇

1 𝐴
𝑇 n2

det𝐴
=

n𝑇
2 𝐴n1

det𝐴
,

which is (2.13).
Next, interchanging the roles of 𝐴 and 𝐴−1 and of n1 and n2, and again using Cramer’s rule we obtain

det(𝑃2𝐴𝑃1 + n2 ⊗ n1) =
n𝑇

2 𝐴
−𝑇 n1

det𝐴−1
=

n𝑇
2 Cof 𝐴n1

det𝐴−1 det𝐴
= n𝑇

2 Cof 𝐴n1

which proves (2.14).
From (2.14), polyconvexity of 𝐹mem is clear. Since ℱmem is the transformation of 𝐹mem corresponding to the

inverse deformation, the results of [4, 35] again imply its polyconvexity.
Finally, for proving (2.17) one can write

𝑃2𝒮
1
2
2 𝑃2𝐴𝑃1𝒮

− 1
2

1 𝑃1 + n2 ⊗ n1 =
(︀
𝑃2𝒮

1
2
2 𝑃2 + n2 ⊗ n2

)︀(︀
𝑃2𝐴𝑃1 + n2 ⊗ n1

)︀(︀
𝑃1𝒮

− 1
2

1 𝑃1 + n1 ⊗ n1

)︀
,

take determinants on both sides, and use (2.14) for each factor. Similarly, (2.18) follows from (2.13). The
corresponding polyconvexity statements are then clear. �

3. Existence of minimizers for symmetric matching energies

Consider the set of orientation-preserving bi-Sobolev homeomorphisms mapping Ω to itself:

ℬ :=
{︀
𝜑 ∈𝑊 1,𝑝(Ω;R𝑑) | 𝜑(Ω) = Ω homeomorphically, 𝜑−1 ∈𝑊 1,𝑝(Ω;R𝑑), det𝐷𝜑 > 0 𝑎.𝑒.

}︀
,
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and its subset with fixed identity Dirichlet (pure displacement) boundary conditions

ℬ0 := ℬ ∩
(︁
𝑊 1,𝑝

0 (Ω;R𝑑) + Id
)︁
. (3.1)

The discussion in the previous section suggests the latter as a natural space for posing our minimization problem.
As in [34], we prove distance estimates ensuring that the image of a neighborhood of ℳ1 can be forced to be

uniformly close to ℳ2 through the matching term, and vice versa. These guarantee that the deformed narrow
band around ℳ1 where the tangential terms are active remains in the part of the domain where d2 is 𝐶2, so
that all the terms of the energy are well defined. However, compared to the situation in [34] we need to keep
a closer eye on the dependence on the parameters in the estimates. Whereas in that case 𝜎 was fixed and one
could choose a multiplicative parameter for 𝐸match freely, here we couple these parameters with the prospect
of considering the limit 𝜎 → 0. A further difference is the case 𝜃 = 1 which makes the volume term providing
coercivity in 𝑊 1,𝑝(Ω;R𝑑) vanish as 𝜎 → 0, which in turn affects how strongly the matching penalization must
be enforced, as can be seen in condition (3.4).

Lemma 3.1. Define

𝑟𝐼 := min
(︂

1
sup𝑥∈ℳ1

|𝐷2d1(𝑥)|
,

1
sup𝑥∈ℳ2

|𝐷2d2(𝑥)|

)︂
,

and notice that 𝑟𝐼 > 0 since the ℳ𝑖 are 𝐶2. Then there is 𝐶0 = 𝐶0(ℳ1,ℳ2,Ω) > 0 such that for all 𝜎 ∈ (0, 𝑟𝐼)
we have that

inf
𝜑∈ℬ0

𝐸𝜎[𝜑] 6 𝐶0. (3.2)

Moreover, assume that either
𝜃 = 0 and 𝑞 > 0, or (3.3)

𝜃 = 1, 𝜂 is a spline of order 𝑛, and 𝑞 > 𝑛 max
(︂

1
𝑝− 𝑑

− 1, 0
)︂

+
𝑑

𝑝− 𝑑
− 1. (3.4)

Then for each 𝜀 > 0 there is some 𝜎𝜀 = 𝜎𝜀(ℳ1,ℳ2,Ω, 𝜃, 𝑞) > 0 such that for all 0 < 𝜎 < 𝜎𝜀 and all 𝜑 with
𝐸𝜎[𝜑] 6 𝐶0 we have

𝜑 (𝒩𝜎ℳ1) ⊂ 𝒩𝜀ℳ2, and 𝜑−1 (𝒩𝜎ℳ2) ⊂ 𝒩𝜀ℳ1, (3.5)

where for 𝛿 > 0 and 𝑖 = 1, 2 we denote by 𝒩𝛿ℳ𝑖 the tubular neighborhood {𝑥 ∈ Ω | − 𝛿 < d𝑖(𝑥) < 𝛿}.

Proof. Since the hypersurfaces ℳ1 and ℳ2 are assumed to be diffeomorphic, let 𝜙 : ℳ1 → ℳ2 be such a
diffeomorphism. Now, the Frobenius norm |𝐷2d𝑖(𝑥)| is an upper bound for the principal curvatures of ℳ𝑖

at 𝑥, so that (see e.g. [44], Lem. 6.3) we may write each point 𝑥 ∈ 𝒩𝑟𝐼
ℳ𝑖 as 𝑥 = 𝑦 + 𝑡n𝑖(𝑦) with 𝑦 ∈ ℳ𝑖

being the Euclidean projection of 𝑥 onto ℳ𝑖 and |𝑡| < 𝑟𝐼 . Using this notation we can extend 𝜙 to a map
𝜙𝑟𝐼

: 𝒩𝑟𝐼
ℳ1 → 𝒩𝑟𝐼

ℳ2 defined by 𝜙𝑟𝐼
(𝑦, 𝑡) = 𝜙(𝑦) + 𝑡n2(𝑦) which is still a diffeomorphism. We then use the

values of 𝜙𝑟𝐼
at ℳ1 ± 𝑟𝐼n1 as Dirichlet boundary conditions for minimizers of a rescaled volume energy on the

inside Ωin and outside Ωout = Ω ∖ (Ωin ∪𝒩𝑟𝐼
ℳ1) parts of the domain with respect to 𝒩𝑟𝐼

ℳ1, that is

inf
𝜑∈𝑊 1,𝑝(Ωout)

𝜑=𝜙+𝑟𝐼n1 on ℳ1+𝑟𝐼n1
𝜑=Id on 𝜕Ω

∫︁
Ωout

𝑊 (𝐷𝜑) +𝑊

(︂
Cof 𝐷𝜑𝑇

det𝐷𝜑

)︂ ⃒⃒
det𝐷𝜑

⃒⃒
, (3.6)

and similarly for Ωin with boundary condition 𝜙 − 𝑟𝐼n1 on ℳ1 − 𝑟𝐼n1 on 𝜕Ωin. Piecing these three maps
together, we obtain 𝜑𝐼 : Ω → Ω for which 𝐸𝜎

match[𝜑𝐼 ] = 0 for all 𝜎 ∈ (0, 𝑟𝐼). Since the other terms (2.4)–(2.6) of
𝐸𝜎[𝜑𝐼 ] decrease as 𝜎 ↘ 0, as soon as 𝜑𝐼 ∈ ℬ0 we obtain the bound (3.2) with

𝐶0 := 𝐸𝑟𝐼
mem[𝜑𝐼 ] + 𝐸𝑟𝐼

bend[𝜑𝐼 ] + 𝐸𝑟𝐼

vol[𝜑𝐼 ].



SYMMETRY AND SCALING LIMITS FOR MATCHING 1143

That det𝐷𝜑𝐼 > 0 almost everywhere follows directly by its definition, since |𝜕𝒩𝑟𝐼
ℳ1| = 0, 𝜙𝑟𝐼

is a diffeomor-
phism, and the energy density in (3.6) is unbounded as det𝐷𝜑 → 0. By its definition in (3.6) 𝜑𝐼 belongs to
𝑊 1,𝑝

0 (Ω;R𝑑) + Id. Moreover, since 𝜙𝑟𝐼
is a 𝐶2 diffeomorphism and the definition of 𝜑𝐼 in Ωin and Ωout we also

have ∫︁
Ω

𝑊 (𝐷𝜑) +𝑊

(︂
Cof 𝐷𝜑𝑇

det𝐷𝜑

)︂ ⃒⃒
det𝐷𝜑

⃒⃒
< +∞,

which combined with 𝑊 (𝐴) > 𝐶|𝐴|𝑝 and 𝑝 > 𝑑, allows us to apply Ball’s global invertibility theorem ([5],
Thm. 2) to obtain that 𝜑𝐼 is a homeomorphism and 𝜑−1

𝐼 ∈𝑊 1,𝑝(Ω;R𝑑).
Now we turn our attention to estimates for ‖d2 ∘ 𝜑‖𝐿∞(𝑁𝜎ℳ1) (and for ‖d1 ∘ 𝜑−1‖𝐿∞(𝑁𝜎ℳ2), by symmetry)

that allow us to conclude (3.5). This is the same type of estimate proved in equations (4.15)–(4.23) of [34], and
its proof follows essentially the same steps, but since at present the strength of the matching and volume terms
and the width of the narrow band are not independent of each other, we will have to be more precise. The
strategy is to use the matching penalization term, which contains |d2 ∘ 𝜑−d1|2. However this function appears
multiplied by the narrow band function 𝜂𝜎 ∘ d1, which decays to zero as d1 ↗ 𝜎. To treat this difficulty, we
introduce a cutoff width 𝜎̂ ∈ (0, 𝜎) to split the narrow band in two parts to be estimated separately. First we
notice that 𝜑 ∈ 𝐶0,𝛼(Ω) with 𝛼 := 1−𝑑/𝑝, by the Morrey inequality ([31], Thm. 7.17). Since the signed distance
functions d𝑖 are 1-Lipschitz, we have that

‖d2 ∘ 𝜑‖𝐿∞({|d1|6𝜎}) 6 𝜎 + ‖d2 ∘ 𝜑− d1‖𝐿∞({|d1|6𝜎})

6 𝜎 + ‖d2 ∘ 𝜑− d1‖𝐿∞({|d1|<𝜎−𝜎̂}) + |d2 ∘ 𝜑− d1|𝐶0,𝛼({𝜎−𝜎̂6|d1|6𝜎}) 𝜎̂
𝛼

6 𝜎 + ‖d2 ∘ 𝜑− d1‖𝐿∞({|d1|<𝜎−𝜎̂}) +
(︀
1+|𝜑|𝐶0,𝛼({𝜎−𝜎̂6|d1|6𝜎})

)︀
𝜎̂𝛼, (3.7)

where | · |𝐶0,𝛼 denotes the Hölder seminorm (i.e. ‖ · ‖𝐶0,𝛼(𝐴) = | · |𝐶0,𝛼(𝐴) + sup𝐴 | · |) and we have used that
every point taken into account in the last term is at a distance less than 𝜎̂ from a point appearing in the second
term. Moreover, we have assumed that 𝜎 < 1 to bring up the Lipschitz constant of d1. Now, for the last term
of (3.7) we have, again by the Morrey inequality and using (3.2), that(︀

1+|𝜑|𝐶0,𝛼({𝜎−𝜎̂6|d1|6𝜎})
)︀
𝜎̂𝛼 6

(︀
1+𝐶‖𝐷𝜑‖𝐿𝑝(Ω)

)︀
𝜎̂𝛼

6 𝐶
(︁

1+
(︀
𝜎−𝜃𝐸𝜎

vol[𝜑]
)︀ 1

𝑝

)︁
𝜎̂𝛼 6 𝐶

(︂
1+𝜎−

𝜃
𝑝𝐶

1
𝑝

0

)︂
𝜎̂𝛼, (3.8)

for which if 𝜃 = 1 the right hand side can be made arbitrarily small by choosing 𝜎̂ = 𝜎𝑟 with 𝑟 > (𝛼𝑝)−1 =
1/(𝑝− 𝑑). Moreover, since we need to have 𝜎𝑟 < 𝜎, also 𝑟 > 1 is required. In the case 𝜃 = 0 any choice of 𝜎̂ < 𝜎
suffices.

For the second term of (3.7) we apply the Gagliardo–Nirenberg interpolation inequality ([2], Thm. 5.8 and
[45], Thm. 1) for a bounded domain Σ and 𝑢 ∈𝑊 1,𝑝(Σ)

‖𝑢‖𝐿∞(Σ) 6 𝐶

(︂
‖∇𝑢‖

𝑑
𝑝

𝐿𝑝(Σ)‖𝑢‖
1− 𝑑

𝑝

𝐿𝑝(Σ) + ‖𝑢‖𝐿𝑝(Σ)

)︂
, (3.9)

to 𝑢 = d2 ∘ 𝜑 − d1 on the open set Σ = {|d1| < 𝜎 − 𝜎̂}. For the last term, using the monotonicity of 𝜂𝜎, that
supΩ |d𝑖| 6 diam Ω and 𝜑 : Ω → Ω we can estimate as 𝜎 → 0

‖d2 ∘ 𝜑− d1‖𝐿𝑝(Σ) 6 ‖d2 ∘ 𝜑− d1‖
𝑝−2

𝑝

𝐿∞(Σ)‖d2 ∘ 𝜑− d1‖
2
𝑝

𝐿2(Σ)

6 ‖d2 ∘ 𝜑− d1‖
𝑝−2

𝑝

𝐿∞(Σ)

(︂[︀
𝜂𝜎(𝜎 − 𝜎̂)

]︀−1
∫︁

Σ

(𝜂𝜎 ∘ d1) |d2 ∘ 𝜑− d1|2 d𝑥
)︂ 1

𝑝

6
(︀
2 diam Ω

)︀ 𝑝−2
𝑝

(︁[︀
𝜂𝜎(𝜎 − 𝜎̂)

]︀−1
𝜎𝑞𝐸𝜎

match[𝜑]
)︁ 1

𝑝
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6 𝐶𝜎
𝑞
𝑝𝐸𝜎[𝜑]

1
𝑝
[︀
𝜂𝜎(𝜎 − 𝜎̂)

]︀− 1
𝑝

6 𝐶𝜎
𝑞
𝑝𝐶

1
𝑝

0

[︀
𝜂𝜎(𝜎 − 𝜎̂)

]︀− 1
𝑝 . (3.10)

For the derivative factor we get, using again that d2 is 1-Lipschitz combined with the chain rule for Lipschitz
and Sobolev functions ([53], Thm. 2.1.11) that

‖∇(d2 ∘ 𝜑− d1)‖𝐿𝑝(Σ) =
⃦⃦

(∇d2 ∘ 𝜑)𝑇𝐷𝜑−∇d1

⃦⃦
𝐿𝑝(Σ)

6
(︁
‖𝐷𝜑‖𝐿𝑝(Ω) + |Ω|

1
𝑝

)︁
6 𝐶

(︁
(𝜎−𝜃𝐸𝜎

vol[𝜑])
1
𝑝 + 1

)︁
6 𝐶

(︂
𝜎−

𝜃
𝑝𝐶

1
𝑝

0 + 1
)︂
6 𝐶

(︁
𝜎−

𝜃
𝑝 + 1

)︁
6 𝐶𝜎−

𝜃
𝑝 . (3.11)

Combining (3.10) and (3.11) into (3.9), and noticing that since 𝜃 ∈ {0, 1} the second term of its right hand side
is dominated by the first as 𝜎 → 0, we get that

‖d2 ∘ 𝜑− d1‖𝐿∞(Σ) 6 𝐶𝜎
− 𝑑𝜃

𝑝2
(︁
𝜎

𝑞
𝑝
[︀
𝜂𝜎(𝜎 − 𝜎̂)

]︀− 1
𝑝

)︁1− 𝑑
𝑝

. (3.12)

Now, if 𝜃 = 0 we could just choose for example 𝜎̂ = 𝜎/2, so that 𝜂𝜎(𝜎/2) = 𝜎−1𝜂(1/2) and (3.12) becomes

‖d2 ∘ 𝜑− d1‖𝐿∞(Σ) 6 𝐶𝜎
( 𝑞+1

𝑝 )(1− 𝑑
𝑝 ),

and since this exponent is positive in particular for any for any 𝑞 > 0, we obtain the desired estimate.
In the case 𝜃 = 1, the decay of 𝜂 needs to be taken into account, since we saw that to control the right hand

side of (3.8) the cutoff width 𝜎̂ needs to be closer and closer to 0. With 𝜎̂ = 𝜎𝑟 as discussed above, and 𝜂 a
spline of order 𝑛 we have 𝜂𝜎(𝜎− 𝜎𝑟) = 𝜎−1𝜂(1− 𝜎𝑟−1) > 𝐶𝜎𝑛(𝑟−1)−1. Gathering exponents in (3.12) this leads
to the condition

− 𝑑

𝑝2
+
(︂

1− 𝑑

𝑝

)︂(︂
𝑞

𝑝
− 𝑛(𝑟 − 1)− 1

𝑝

)︂
> 0, or

𝑞 > 𝑛(𝑟 − 1) +
𝑑

𝑝− 𝑑
− 1,

which for 𝑟 > max(1/(𝑝− 𝑑), 1) is precisely (3.4). �

Remark 3.2. We notice that if 𝑝 = 𝑑 + 1 as chosen for the density 𝑊 in (2.12), any exponent 𝑟 > 1 can be
chosen in the proof, and in turn condition (3.4) is independent of 𝑛 and simplifies to 𝑞 > 𝑑−1. However, for the
above argument to remain valid 𝜎 should still have polynomial decay and not faster, since otherwise we would
have to replace the factor 𝜎−𝑞 by a function increasing faster as well.

Theorem 3.3. Assume either (3.3) or (3.4) and

𝜎 ∈ (0,min
(︀
𝑟𝐼 , 𝜎𝑟𝐼

)
)︀
, (3.13)

where 𝑟𝐼 and 𝜎𝑟𝐼
are defined as in the statement of Lemma 3.1. Then there exists at least one minimizer of 𝐸𝜎

in ℬ0.

Proof. Let {𝜑𝑘}𝑘 be a minimizing sequence. Using the boundary conditions and Poincaré inequality ([31],
Eq. (7.44)) the term 𝐸vol provides coercivity in 𝑊 1,𝑝(Ω;R𝑑), and by the Banach–Alaoglu theorem we can
assume that this sequence weakly converges to some 𝜑 in 𝑊 1,𝑝(Ω;R𝑑). We denote 𝜓𝑘 = (𝜑𝑘)−1 the corresponding
inverses, whose existence is guaranteed by 𝜑𝑘 ∈ ℬ0. Possibly by taking another subsequence we can also assume
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that there is 𝜓 for which 𝜓𝑘 ⇀ 𝜓 weakly in 𝑊 1,𝑝(Ω;R𝑑), since 𝐸vol[𝜑𝑘] > ‖𝐷𝜓𝑘‖𝐿𝑝(Ω) as well. Now, on the one
hand we can apply Ball’s global invertibility theorem ([5], Thm. 2) and weak lower semicontinuity of 𝐸vol to
obtain that 𝜑 is a homeomorphism from Ω to Ω and 𝜑−1 ∈𝑊 1,𝑝(Ω;R𝑑), that is 𝜑 ∈ ℬ0. On the other, since 𝑝 > 𝑑
the functions are uniformly continuous with modulus of continuity uniform in 𝑘, by coercivity in 𝑊 1,𝑝(Ω;R𝑑)
and the Morrey inequality. Therefore by the Arzelà–Ascoli theorem, possibly by taking another subsequence we
have that the convergence is also uniform, which allows us to conclude that the limit of inverses is the inverse
of the limit, that is, 𝜓 = 𝜑−1.

We then note that the d𝑖 are 𝐶2 in 𝒩𝑟𝐼
ℳ𝑖. To see this, since ℳ1 is assumed to be 𝐶2 we can apply ([31],

Lem. 14.16) or the results of [27] for the unsigned distance function on 𝒩𝑟𝐼
ℳ𝑖 ∖ℳ𝑖, and notice that the signed

distance function d𝑖 also inherits this regularity ([23], Thm. 7.8.2(iii)) in a neighborhood of each point of ℳ𝑖,
which is compact. We can then apply (3.13) and Lemma 3.1 to obtain that for 𝑘 large enough we have

𝜑𝑘 (𝒩𝜎ℳ1) ⊂ 𝒩𝑟𝐼
ℳ2, and 𝜑−1

𝑘 (𝒩𝜎ℳ2) ⊂ 𝒩𝑟𝐼
ℳ1,

which implies that at values attained by 𝜑𝑘, the integrands (2.15) and (2.16) are continuous in their last two
arguments. The same conclusion holds true for (2.19) and (2.20) after using a continuity result for square
roots of nonnegative definite matrix-valued functions ([16], Thm. 1.1) to account for the presence of ℛ in 𝒮𝑖.
Lower semicontinuity of 𝐸𝜎

mem, 𝐸
𝜎
bend along 𝜑𝑘 then follows by Lemma 2.3 and a lower semicontinuity theorem

for integral functionals with Carathéodory energy densities which are polyconvex in their derivative argument
([18], Thm. 8.16). We conclude that 𝜑 is the desired minimizer. �

4. Scaling limits for non-symmetric energies

We now turn our attention to the limit of level set matching energies as the parameter 𝜎 controlling the
size of the narrow band goes to zero. When the symmetric energies 𝐸𝜎 of (2.2) are used, one should work in
classes of invertible functions, which strongly limit the types of analysis possible (see Rem. 4.7). Therefore, in
this section, we only penalize the direct transformation and limit ourselves to the “non-symmetric” family of
functionals ℰ𝜎 : 𝑊 1,𝑝

0 (Ω;R𝑑) + Id → R+ ∪ {0}

ℰ𝜎 = ℰ𝜎
match + ℰ𝜎

mem + ℰ𝜎
bend + ℰ𝜎

vol, (4.1)

in which the contributions of the inverse deformation are not considered, so that

ℰ𝜎
match[𝜑] :=

1
𝜎𝑞

∫︁
Ω

𝜂𝜎(d1)|d2 ∘ 𝜑− d1|2 d𝑥,

ℰ𝜎
mem[𝜑] :=

∫︁
Ω

𝜂𝜎(d1)𝑊
(︀
(𝑃2 ∘ 𝜑)𝐷𝜑𝑃1 + (n2 ∘ 𝜑)⊗ n1

)︀
d𝑥,

ℰ𝜎
bend[𝜑] :=

∫︁
Ω

𝜂𝜎(d1)𝑊
(︀
Λ[𝒮1,𝒮2 ∘ 𝜑,𝐷𝜑,n1,n2 ∘ 𝜑]

)︀
d𝑥, and

ℰ𝜎
vol[𝜑] := 𝜎𝜃

∫︁
Ω

𝑊 (𝐷𝜑) d𝑥. (4.2)

We assume that 𝑊 ∈ 𝐶1(R𝑑×𝑑) is such that for all 𝐴,𝐵 ∈ R𝑑×𝑑

𝑊 (𝐴) > 𝐶|𝐴|𝑝 − 1
𝐶
, and (4.3)

𝑊 (𝐴) 6 𝐶
(︀
|𝐴|𝑝 + 1

)︀
. (4.4)

These conditions are in particular satisfied by the density (2.12). The bound (4.4) combined with quasiconvexity
implies (see [43], p. 6 or [39], Lem. 6.6) the continuity property

|𝑊 (𝐴)−𝑊 (𝐵)| 6 𝐶|𝐴−𝐵|
(︀
1 + |𝐴|𝑝−1 + |𝐵|𝑝−1

)︀
. (4.5)
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Alternatively, one can also check (4.5) for (2.12) directly. For that, just recall ([28], Thm. 4.7) the inequality
|det𝐴 − det𝐵| 6 𝐶|𝐴 − 𝐵|max(|𝐴|, |𝐵|)𝑑−1 and notice that the function 𝑡 ↦→

√︀
1 + (𝑡− 2)2 has bounded

derivative.
Since 𝜂𝜎 has constant integral, the energy scaling of ℰ𝜎

mem is the one of the classical membrane limit [40,41],
whose results we apply directly. The structure of the proof is based on the methods delineated in [1,10], where
problems for thin inclusions or “welding” are considered. In particular, we will use the following lemma for
integration by parts of non-intrinsic products on a hypersurface, analogous to Proposition II.2 of [1].

Lemma 4.1. Let 𝑁 ∈𝑊 1,𝑝(Ω;R𝑑×𝑑) and 𝑣 ∈𝑊 1,𝑝(Ω;R𝑑). Then for the traces of 𝑣 and 𝑁 on ℳ1 the following
are well defined and equal:

∫︁
ℳ1

𝑁 : 𝐷𝑡𝑣 dℋ𝑑−1 = −
𝑑∑︁

𝑖=1

∫︁
ℳ1

divℳ1

(︀
[𝑁𝑃1]𝑖

)︀
𝑣𝑖 dℋ𝑑−1, (4.6)

where 𝐷𝑡𝑣 := 𝐷𝑣𝑃1 is the tangential derivative of 𝑣 on ℳ1, [𝑁𝑃1]𝑖 is the 𝑖-th row of 𝑁𝑃1, 𝑣𝑖 the 𝑖-th component
of 𝑣, and divℳ1([𝑁𝑃1]𝑖) is the Riemannian divergence on ℳ1 applied to the tangential vector field [𝑁𝑃1]𝑖.

Proof. We first assume that 𝑁 ∈ 𝐶1(ℳ1;R𝑑×𝑑) and 𝑣 ∈ 𝐶1(ℳ1;R𝑑) to check (4.6). Since 𝑃1 is symmetric,
𝑃 2

1 = 𝑃1 and since the matrix trace is invariant under cyclic permutations, we have

𝑁 : 𝐷𝑡𝑣 = tr
(︀
𝑁𝑇𝐷𝑣𝑃1

)︀
= tr

(︀
𝑃1𝑁

𝑇𝐷𝑣
)︀

= tr
(︀
𝑃 2

1𝑁
𝑇𝐷𝑣

)︀
= tr

(︀
𝑃1𝑁

𝑇𝐷𝑣𝑃1

)︀
= tr

(︀
(𝑁𝑃1)𝑇𝐷𝑣𝑃1

)︀
= 𝑁𝑃1 : 𝐷𝑡𝑣.

Finally, since the metric on ℳ1 is induced by its immersion into R𝑑 and, being compact, it has no boundary,
using the divergence theorem on ℳ1 (see e.g. [15], Sect. III.7) we get

∫︁
ℳ1

𝑁 : 𝐷𝑡𝑣 =
∫︁
ℳ1

𝑁𝑃1 : 𝐷𝑡𝑣 =
𝑑∑︁

𝑖=1

∫︁
ℳ1

[𝑁𝑃1]𝑖 ·𝐷𝑡𝑣
𝑖 = −

𝑑∑︁
𝑖=1

∫︁
ℳ1

divℳ1

(︀
[𝑁𝑃1]𝑖

)︀
𝑣𝑖,

as claimed. Now, if 𝑣 ∈ 𝑊 1,𝑝(Ω;R𝑑),𝑀 ∈ 𝑊 1,𝑝(Ω;R𝑑×𝑑) the traces of 𝑣 and 𝑁 on ℳ1 are Proposition 3.31
of [24] in 𝑊 1− 1

𝑝 ,𝑝(ℳ1;R𝑑) and 𝑊 1− 1
𝑝 ,𝑝(ℳ1;R𝑑×𝑑), respectively. Since 𝑃1 ∈ 𝐶1(ℳ1;R𝑑×𝑑) and ℳ1 is 𝐶2, the

formula (4.6) will also hold if both sides are well defined. This follows by the embedding (see [24], Thm. 3.54
for the dual space)

𝑊− 1
𝑝 ,𝑝(ℳ1) ⊂

(︁
𝑊 1− 1

𝑝 ,𝑝(ℳ1)
)︁′

= 𝑊
1
𝑝′−1,𝑝′(ℳ1),

which holds because 1/𝑝′ − 1 = −1/𝑝 and since 𝑝 > 𝑑 > 2 we have 𝑝′ < 𝑝, while ℳ1 is compact. �

We are now ready to state and prove our convergence result. For convenience we denote for 𝑥 ∈ Ω the
tangential-projected derivative as

𝐷𝑡𝑡𝜑(𝑥) := 𝑃2(𝜑(𝑥))𝐷𝜑(𝑥)𝑃1(𝑥) + n2(𝜑(𝑥))⊗ n1(𝑥), so that

ℰ𝜎
mem[𝜑] :=

∫︁
Ω

𝜂𝜎(d1)𝑊 (𝐷𝑡𝑡𝜑).

Our main point is that this definition allows us to recover a surface functional with the same structure in
the limit (compare the integrands in (4.7) and (4.2)), which is typically not the case in dimension reduction
problems. For the membrane problem in [40, 41] a quasiconvex envelope appears in the limit problem, which
turns out to be trivial in our case.
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Remark 4.2. Since 𝐿𝑝(Ω;R𝑑) is a metric space, Γ-convergence can be characterized ([11], Def. 1.5) in terms of
the lim inf and lim sup inequalities. To simplify the notation we will continue to write the continuous parameter
𝜎 → 0 while speaking of sequences. Strictly, what is implied is Γ-convergence of ℰ𝜎𝑗 for any sequence {𝜎𝑗}𝑗∈N
with 𝜎𝑗 → 0. Likewise, when we speak of subsequences of 𝜑𝜎, which are not relabelled, we mean sequences 𝜑𝜎𝑗

for some sequence {𝜎𝑗}𝑗 .

Theorem 4.3. Let 𝑊 be polyconvex and satisfy (4.3)–(4.5). Define the set

𝒯𝑝 :=
{︁
𝜑 ∈𝑊 1,𝑝

0 (Ω;R𝑑) + Id
⃒⃒⃒
𝐷𝑡𝑡𝜑

⃒⃒
ℳ1

∈ 𝐿𝑝(ℳ1;R𝑑×𝑑), 𝜑(ℳ1) = ℳ2

}︁
.

Then assuming 𝜃 = 0 and 𝑞 > 0, the family ℰ𝜎 Γ-converges in the 𝐿𝑝(Ω;R𝑑) topology as 𝜎 → 0 to the functional
ℰ0 defined for 𝜑 ∈ 𝒯𝑝 by

ℰ0[𝜑] :=
∫︁
ℳ1

𝑊 (𝐷𝑡𝑡𝜑) +𝑊
(︀
Λ[𝐷𝜑,𝒮1,𝒮2 ∘ 𝜑,n1,n2 ∘ 𝜑]

)︀
dℋ𝑑−1 +

∫︁
Ω

𝑊 (𝐷𝜑) d𝑥 (4.7)

and ℰ0[𝜑] = +∞ if 𝜑 /∈ 𝒯𝑝. Moreover ℰ0 possesses at least one minimizer in 𝑊 1,𝑝
0 (Ω;R𝑑) + Id.

Proof. Throughout the proof, to simplify notation we will not consider the bending-like term ℰ𝜎
bend. Since it

consists on a pre- and post-stretched modification of ℰ𝜎
mem where curvature-dependent coefficients are introduced,

the proof for ℰ𝜎
mem (which already contains varying coefficients depending on the deformed configuration) applies

with completely straightforward modifications.

Step 1. Energy bounds on a sequence imply tangential regularity of its limit.

Let 𝜑𝜎 → 𝜑 in 𝐿𝑝(Ω;R𝑑) and assume that the sequence {ℰ𝜎[𝜑𝜎]}𝜎 is bounded as 𝜎 → 0. Since 𝜃 = 0, taking
into account (4.3) and that we work in 𝑊 1,𝑝

0 (Ω;R𝑑) + Id, using the Poincaré inequality we have ‖𝜑𝜎‖𝑝
𝑊 1,𝑝(Ω) 6

𝐶(ℰ𝜎[𝜑𝜎] + 1) 6 𝐶, so that upon taking a subsequence we have 𝜑𝜎 ⇀ 𝜑 weakly in 𝑊 1,𝑝(Ω;R𝑑) and also
converging uniformly.

At first glance, the trace of 𝜑 on ℳ1 is only in 𝑊 1− 1
𝑝 ,𝑝(ℳ1;R𝑑). However, as in Lemma III.1 of [1] bounded-

ness of the energies along the sequence 𝜑𝜎 implies additional regularity for the trace and 𝐷𝑡𝑡𝜑
⃒⃒
ℳ1

∈ 𝐿𝑝(ℳ1;R𝑑).
For this, we would like to exploit the bound

ℰ𝜎
mem[𝜑𝜎] =

∫︁
Ω

𝜂𝜎(d1)𝑊 (𝐷𝑡𝑡𝜑𝜎) 6 𝐶. (4.8)

Our first step is to notice that an estimate for ‖d2 ∘ 𝜑𝜎‖𝐿∞(𝒩𝜎ℳ1) analogous to that of Lemma 3.1 also holds
here. The main difference is that our proof of Lemma 3.1 assumed that the deformations under consideration
map Ω to Ω, but now this is not guaranteed since ℰ𝜎

vol contains no injectivity penalization. This difficulty can
be overcome by modifying (3.10) with the estimate, obtained using 𝜑𝜎

⃒⃒
𝜕Ω

= Id and that d1,d2 are 1-Lipschitz,

‖d2 ∘ 𝜑𝜎 − d1‖𝐿∞(Σ) 6 sup
𝑥∈𝜕Ω

(d2 ∘ 𝜑𝜎)(𝑥) + |𝜑𝜎|𝐶0,𝛼(Ω)(diam Ω)𝛼 + diam Ω

6 |𝜑𝜎|𝐶0,𝛼(Ω)(diam Ω)𝛼 + 2 diam Ω,

on which again one can use the Morrey inequality and energy bounds. This modification affects the exponents
appearing in (3.12), but only by terms proportional to 𝜃, which in this case is zero. Therefore, for some 𝜎0 small
enough and since ℰ𝜎[𝜑𝜎] 6 𝐶, we have that

d1 ∈ 𝐶2(𝒩𝜎ℳ1),d2 ∈ 𝐶2
(︀
𝜑
(︀
𝒩𝜎ℳ1

)︀)︀
and d2 ∈ 𝐶2

(︀
𝜑𝜎

(︀
𝒩𝜎ℳ1

)︀)︀
for all 𝜎 ∈ (0, 𝜎0). (4.9)

To simplify the computations that follow, we first replace the coefficients appearing in ℰ𝜎
mem[𝜑𝜎] that depend on

𝜑𝜎 by those corresponding to the limiting function 𝜑. Using (4.9) so that 𝑃1, 𝑃2,n1,n2 are uniformly continuous
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where they are evaluated, and the continuity hypothesis (4.5) for the matrix fields 𝐴𝜎 = (𝑃2 ∘𝜑𝜎)𝐷𝜑𝜎𝑃1 +(n2 ∘
𝜑𝜎)⊗ n1 and 𝐴 := (𝑃2 ∘ 𝜑)𝐷𝜑𝜎𝑃1 + (n2 ∘ 𝜑)⊗ n1 we obtain

|𝑊 (𝐴𝜎)−𝑊 (𝐴)| 6 𝐶(|𝐷𝜑𝜎|+ 1)|𝜑𝜎 − 𝜑|
(︀
1 + |𝐷𝜑|𝑝−1 + |𝐷𝜑𝜎|𝑝−1

)︀
.

Integrating and using the Hölder inequality, we see that the error we commit in the energy can be bounded by

𝐶‖𝜑𝜎 − 𝜑‖𝐿∞(Ω)

(︁
1 + ‖𝐷𝜑𝜎‖𝐿𝑝(Ω)‖𝐷𝜑‖𝑝−1

𝐿𝑝(Ω) + ‖𝐷𝜑𝜎‖𝑝
𝐿𝑝(Ω)

)︁
, (4.10)

which clearly tends to zero as 𝜎 → 0. With these fixed coefficients we denote

𝐷𝑡𝑡𝜑𝜎 := (𝑃2 ∘ 𝜑)𝐷𝜑𝜎 𝑃1 + (n2 ∘ 𝜑)⊗ n1.

Using the boundedness of 𝑊 in (4.4), the Tonelli theorem to slice along offset hypersurfaces, and the change of
variables 𝑦 → 𝑦 + 𝑡n1(𝑦), the bounds (4.8) and (4.10) mean that∫︁

Ω

𝜂𝜎(d1)|𝐷𝑡𝑡𝜑𝜎(𝑥)|𝑝 d𝑥 =
1
𝜎

∫︁
supp 𝜂𝜎(d1)

𝜂

(︂
d1

𝜎

)︂
|𝐷𝑡𝑡𝜑𝜎(𝑥)|𝑝 d𝑥

=
∫︁ 𝜎

−𝜎

∫︁
ℳ1

𝜂𝜎(𝑡)
⃒⃒
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀⃒⃒𝑝 ⃒⃒
det
(︀
1+ 𝑡𝐷n1(𝑦)

)︀⃒⃒
dℋ𝑑−1(𝑦) d𝑡

=
∫︁
ℳ1

∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)
⃒⃒
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀⃒⃒𝑝 ⃒⃒
det
(︀
1+ 𝑡𝐷n1(𝑦)

)︀⃒⃒
d𝑡dℋ𝑑−1(𝑦) 6 𝐶. (4.11)

Using (4.9) we have that

det
(︀
1+ 𝑡𝐷n1(𝑦)

)︀
= det

(︀
1+ 𝑡𝐷2d1(𝑦)

)︀
> 𝑐 > 0 for all 𝑦 ∈ℳ1 and |𝑡| < 𝜎,

which combined with (4.11) implies∫︁
ℳ1

∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)
⃒⃒
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀⃒⃒𝑝
d𝑡dℋ𝑑−1(𝑦) 6 𝐶. (4.12)

On the other hand, observing that ∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡) d𝑡 =
∫︁ 1

−1

𝜂(𝑡) d𝑡 = 1,

we can use Jensen’s inequality for the measure 𝜂𝜎(𝑡) d𝑡 and (4.12) to obtain∫︁
ℳ1

⃒⃒⃒⃒
1
𝜎

∫︁ 𝜎

−𝜎

𝜂

(︂
𝑡

𝜎

)︂
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡
⃒⃒⃒⃒𝑝

dℋ𝑑−1(𝑦) =
∫︁
ℳ1

⃒⃒⃒⃒∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡
⃒⃒⃒⃒𝑝

dℋ𝑑−1(𝑦)

6
∫︁
ℳ1

∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)
⃒⃒
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀⃒⃒𝑝
d𝑡dℋ𝑑−1(𝑦) 6 𝐶.

Therefore, the sequence 𝑢𝜎 ∈ 𝐿𝑝(ℳ1;R𝑑×𝑑) of tangential derivatives averaged along normals given by

𝑢𝜎(𝑦) :=
1
𝜎

∫︁ 𝜎

−𝜎

𝜂

(︂
𝑡

𝜎

)︂
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡

can be assumed, upon possibly taking another subsequence, to converge weakly to some limit in 𝐿𝑝(ℳ1;R𝑑×𝑑).
To identify the limit, by density we may test this weak convergence with 𝐹 ∈ 𝐶1(ℳ1;R𝑑×𝑑). Using (4.9), that
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𝜑 is uniformly continuous and that 𝜑𝜎 is bounded in 𝑊 1,𝑝(Ω;R𝑑), we obtain for some functions ℎ1, ℎ2 with
ℎ𝑗(𝜎) → 0 as 𝜎 → 0 that∫︁

ℳ1

𝐹 (𝑦) :
(︂
𝐷𝑡𝑡

[︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝜎

(︀
·+𝑡n1(·)

)︀
d𝑡
]︂
(𝑦)− (n2 ∘ 𝜑)(𝑦)⊗ n1(𝑦)

)︂
dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

𝐹 (𝑦) : (𝑃2 ∘ 𝜑)(𝑦)𝐷
[︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝜎

(︀
·+𝑡n1(·)

)︀
d𝑡
]︂
(𝑦)𝑃1(𝑦) dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

𝐹 (𝑦) :
∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)(𝑃2 ∘ 𝜑)(𝑦)
[︁
𝐷𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
𝑃1(𝑦) + 𝑡𝐷𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
𝐷n1(𝑦)

]︁
d𝑡dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

𝐹 (𝑦) :
∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)(𝑃2 ∘ 𝜑)
(︀
𝑦 + 𝑡n1(𝑦)

)︀
𝐷𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
𝑃1

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡dℋ𝑑−1(𝑦) + ℎ1(𝜎)

=
∫︁
ℳ1

𝐹 (𝑦) :
(︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡− (n2 ∘ 𝜑)(𝑦)⊗ n1(𝑦)

)︂
dℋ𝑑−1(𝑦) + ℎ2(𝜎),

where the additional error ℎ2 − ℎ1 accounts for the difference in the last term

(n2 ∘ 𝜑)
(︀
𝑦 + 𝑡n1(𝑦)

)︀
⊗ n1

(︀
𝑦 + 𝑡n1(𝑦)

)︀
− (n2 ∘ 𝜑)(𝑦)⊗ n1(𝑦).

Noticing that 𝐹 : (n2 ⊗ n1) = n𝑇
2 𝐹n1, the above computation,

∫︀
𝜂𝜎 = 1, that 𝑃𝑇

2 = 𝑃2, and integrating by
parts on ℳ1 with Lemma 4.1 we get∫︁

ℳ1

𝐹 (𝑦) : 𝑢𝜎(𝑦) dℋ𝑑−1(𝑦)−
∫︁
ℳ1

(n2 ∘ 𝜑)𝑇 (𝑦)𝐹 (𝑦) n1(𝑦) dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

𝐹 (𝑦) :
(︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡− (n2 ∘ 𝜑)(𝑦)⊗ n1(𝑦)

)︂
dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

𝐹 (𝑦) :
(︂
𝐷𝑡𝑡

[︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝜎

(︀
·+𝑡n1(·)

)︀
d𝑡
]︂
(𝑦)− (n2 ∘ 𝜑)(𝑦)⊗ n1(𝑦)

)︂
dℋ𝑑−1(𝑦)− ℎ2(𝜎)

=
∫︁
ℳ1

(𝑃2 ∘ 𝜑)(𝑦)𝐹 (𝑦) : 𝐷𝑡

[︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝜎

(︀
·+𝑡n1(·)

)︀
d𝑡
]︂
(𝑦) dℋ𝑑−1(𝑦)− ℎ2(𝜎)

= −
𝑑∑︁

𝑖=1

∫︁
ℳ1

divℳ1

(︁[︀
(𝑃2 ∘ 𝜑)(𝑦)𝐹 (𝑦)𝑃1(𝑦)

]︀
𝑖

)︁[︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝑖
𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡
]︂

dℋ𝑑−1(𝑦)− ℎ2(𝜎).

Now, using the weak convergence 𝜑𝜎 ⇀ 𝜑 in 𝑊 1,𝑝(Ω;R𝑑) combined with weak continuity ([24], example 3.2) of
the trace map from 𝑊 1,𝑝(Ω) onto 𝑊 1− 1

𝑝 ,𝑝(ℳ1) we get that∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝑖
𝜎

(︀
·+𝑡n1(·)

)︀
d𝑡 −−−⇀

𝜎→0
𝜑𝑖(·) in 𝑊 1− 1

𝑝 ,𝑝(ℳ1),

so that using Lemma 4.1 again we end up with

−
𝑑∑︁

𝑖=1

∫︁
ℳ1

divℳ1

(︁[︀
(𝑃2 ∘ 𝜑)(𝑦)𝐹 (𝑦)𝑃1(𝑦)

]︀
𝑖

)︁[︂∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)𝜑𝑖
𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
d𝑡
]︂

dℋ𝑑−1(𝑦)− ℎ2(𝜎)

−−−→
𝜎→0

−
𝑑∑︁

𝑖=1

∫︁
ℳ1

divℳ1

(︁[︀
(𝑃2 ∘ 𝜑)(𝑦)𝐹 (𝑦)𝑃1(𝑦)

]︀
𝑖

)︁
𝜑𝑖(𝑦) dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

(︁
𝑃2 ∘ 𝜑)(𝑦)𝐹 (𝑦)

)︁
: 𝐷𝑡𝜑(𝑦) dℋ𝑑−1(𝑦)
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=
∫︁
ℳ1

𝐹 (𝑦) :
(︁
𝐷𝑡𝑡𝜑(𝑦)− (n2 ∘ 𝜑)(𝑦)⊗ n1(𝑦)

)︁
dℋ𝑑−1(𝑦)

=
∫︁
ℳ1

𝐹 (𝑦) : 𝐷𝑡𝑡𝜑(𝑦) dℋ𝑑−1(𝑦)−
∫︁
ℳ1

(n2 ∘ 𝜑)𝑇 (𝑦)𝐹 (𝑦) n1(𝑦) dℋ𝑑−1(𝑦),

whence we identify the weak limit of 𝑢𝜎 and deduce that 𝐷𝑡𝑡𝜑 ∈ 𝐿𝑝(ℳ1), and therefore 𝜑 ∈ 𝒯𝑝.
Note that this step implies that the Γ-limit of ℰ𝜎 equals +∞ whenever 𝜑 /∈ 𝒯𝑝: if we had 𝐷𝑡𝑡𝜑 /∈ 𝐿𝑝(ℳ1),

having any sequence 𝜑𝜎 with 𝜑𝜎 ⇀ 𝜑 in 𝑊 1,𝑝(Ω;R𝑑) and lim inf𝜎→0 ℰ𝜎[𝜑𝜎] < +∞ would be a contradiction
with the above.

Step 2. lim inf inequality.

We perform a localization procedure analogous to the one in Lemma 4.1 of [34], fixing the coefficients to
those corresponding to the limit deformation, and then taking into account that all the functions involved in
the coefficients are uniformly continuous. As remarked above, we do not take into account the bending-like
energy ℰbend, since the proof for it is completely analogous to that for the membrane energy ℰmem.

Let 𝜑 ∈ 𝒯𝑝 and 𝜑𝜎 → 𝜑 in 𝐿𝑝(Ω;R𝑑). Possibly by taking a subsequence that does not alter lim inf ℰ𝜎[𝜑𝜎]
we may assume that ℰ𝜎[𝜑𝜎] 6 𝐶, since otherwise there is nothing to prove. As in the previous step, using the
coercivity of ℰ𝜎 we may take another subsequence so that 𝜑𝜎 ⇀ 𝜑 weakly in 𝑊 1,𝑝(Ω;R𝑑) and also uniformly.
By definition ℰmatch[𝜑𝜎] > 0, so clearly

0 6 lim inf
𝜎→0

ℰmatch[𝜑𝜎].

For the volume term, it is enough to notice that 𝑊 is polyconvex and 𝜑𝜎 ⇀ 𝜑 in 𝑊 1,𝑝(Ω;R𝑑), so by a standard
lower semicontinuity theorem ([18], Thm. 8.16) we have

ℰ𝜎
vol[𝜑] =

∫︁
Ω

𝑊 (𝐷𝜑(𝑥)) d𝑥 6 lim inf
𝜎→0

∫︁
Ω

𝑊 (𝐷𝜑𝜎(𝑥)) d𝑥 = lim inf
𝜎→0

ℰ𝜎
vol[𝜑𝜎].

For the membrane term, as in the previous step we may assume (4.9) and replace n2∘𝜑𝜎, 𝑃2∘𝜑𝜎 by n2∘𝜑, 𝑃2∘𝜑
with vanishing error (4.10) in the energy. Next, we need to take care of the spatial dependency of the coefficients.
To do this, we split 𝒩𝜎ℳ1 in small subdomains on each of which the coefficients will be replaced with fixed
ones. In this case we choose the subdomains to be of cylindrical shape (i.e. of constant height along a fixed
vector), to then apply the results of [40]. For this, given a small parameter 𝛿 > 0, define a collection of 𝑁𝛿

subsets 𝑂𝛿
𝑖 ⊂ℳ1, relatively open in ℳ1 with

𝑂𝛿
𝑖 ∩𝑂𝛿

𝑗 = ∅, diam(𝑂𝛿
𝑖 ) < 𝛿, and ℳ1

⧹︀ 𝑁𝛿⋃︁
𝑖=1

𝑂𝛿
𝑖 of zero ℋ𝑑−1 measure.

We then choose for each 𝑂𝛿
𝑖 a single point 𝑥𝛿

𝑖 ∈ 𝑂𝛿
𝑖 such that 𝑂𝛿

𝑖 may be written as a graph in direction n1(𝑥𝛿
𝑖 ):

since ℳ1 is 𝐶2, for small enough 𝛿 this is possible for all 𝑖 = 1, . . . , 𝑁𝛿 simultaneously. We denote by 𝐾𝛿,𝜎
𝑖 the

neighborhood of width 2𝜎 in the direction n1(𝑥𝛿
𝑖 ) associated to each of the 𝑂𝛿

𝑖 , that is

𝐾𝛿,𝜎
𝑖 :=

{︀
𝑦 + 𝑡n1(𝑥𝛿

𝑖 )
⃒⃒
𝑦 ∈ 𝑂𝛿

𝑖 , 𝑡 ∈ (−𝜎, 𝜎)
}︀
, (4.13)

for which assuming 𝜎 < 𝛿/2 we have diam(𝐾𝛿,𝜎
𝑖 ) 6 2𝛿. We aim then to replace ℰmem[𝜑𝜎] by the sum over

𝑖 = 1, . . . , 𝑁𝛿 of the integrals

𝐼𝛿,𝜎
𝑖 [𝜑𝜎] :=

∫︁
𝐾𝛿,𝜎

𝑖

𝜂𝜎

(︀
𝑡(𝑥)

)︀
𝑊
(︁
𝑃2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
𝐷𝜑𝜎(𝑥)𝑃1(𝑥𝛿

𝑖 ) + n2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
⊗ 𝑛1(𝑥𝛿

𝑖 )
)︁

d𝑥,

where 𝑡(𝑥) is determined from (4.13). The total error we commit when doing this replacement can be bounded
by

𝐶
(︀
𝜔(𝛿)𝑝 + 𝜔(𝛿) + 𝜎

)︀
.
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Here, 𝜔(𝛿) is a modulus of continuity valid on 𝒩𝜎ℳ1 for n1, 𝐷
2d1 and the compositions of all the 𝜑𝜎 with n2

and 𝐷2d2, which exists because these converge uniformly and we have assumed (4.9). The first term is derived
using (4.5) analogously to (4.10) and reflects the error in the coefficients of 𝐼𝛿,𝜎

𝑖 . The second arises from the use
of 𝜂𝜎(𝑡(𝑥)) instead of 𝜂𝜎(d1(𝑥)), since 𝜔(𝛿) is also a modulus of continuity for the curvature of ℳ1. The third
term accounts for the difference in the domains of integration and overlaps that arise because of the curvature
of 𝑂𝛿

𝑖 , that is, the sets ⋃︁
𝑖̸=𝑗

𝐾𝛿,𝜎
𝑖 ∩𝐾𝛿,𝜎

𝑗 and
(︀
𝒩𝜎ℳ1

)︀
𝛥

(︂⋃︁
𝑖

𝐾𝛿,𝜎
𝑖

)︂
whose total measure is bounded by 𝐶𝜎2, with effect magnified by a factor 𝜎−1 since 𝜂𝜎(·) = 𝜎−1𝜂(·/𝜎). For all
terms, (4.4) and the bound ‖𝐷𝜑𝜎‖𝐿𝑝(Ω) 6 𝐶 have been used.

Now for each 𝐼𝛿,𝜎
𝑖 , denoting by 𝑄𝑖(𝑥) = 𝑄(n𝑖(𝑥)), defined as in Section 1.2 so that 𝑄𝑖(𝑥)𝑒𝑑 = n𝑖(𝑥), and

𝑃 (𝑒𝑑) = 1− 𝑒𝑑 ⊗ 𝑒𝑑 we notice that for any 𝐴 ∈ R𝑑×𝑑, we have by the symmetries of 𝑊 that

𝑊
(︀
𝑃2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
𝐴𝑃1(𝑥𝛿

𝑖 ) + n2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
⊗ n1(𝑥𝛿

𝑖 )
)︀

= 𝑊
(︁
𝑄2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀𝑇 [︁

𝑃2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
𝐴𝑃1(𝑥𝛿

𝑖 ) + n2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
⊗ n1(𝑥𝛿

𝑖 )
]︁
𝑄1(𝑥𝛿

𝑖 )
)︁

= 𝑊
(︁
𝑃 (𝑒𝑑)𝐴𝑥𝛿

𝑖
𝑃 (𝑒𝑑) + 𝑒𝑑 ⊗ 𝑒𝑑

)︁
, (4.14)

where 𝐴𝑥𝛿
𝑖

:= 𝑄2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
𝐴𝑄1(𝑥𝛿

𝑖 )𝑇 . Since 𝑄2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀

and 𝑄1(𝑥𝛿
𝑖 )𝑇 are fixed matrices, they commute with differ-

entiation, so that we can absorb the coordinate change and equivalently consider the sequence of deformations
𝑥 ↦→ 𝑄2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
𝜑𝜎

(︀
𝑄1(𝑥𝛿

𝑖 )𝑇𝑥
)︀
.

After these transformations and since
∫︀
𝜂𝜎 = 1 for all 𝜎, we are in a position to apply the nonlinear membrane

limit for plates of Theorem 2 in [40]. Although 𝑂𝛿
𝑖 is not flat, after fixing the coefficients and working in the

cylindrical neighborhoods 𝐾𝛿,𝜎
𝑖 defined in (4.13), the constant vector n1(𝑥𝛿

𝑖 ) plays the role of the vertical
direction along which the rescaling of the membrane limit happens (see also the similar geometric situation
considered in Sect. 2 and Prop. 5 of [10]). In this situation, one rescales 𝐼𝛿,𝜎

𝑖 to the unit-height neighborhood

̂︀𝐾𝛿
𝑖 :=

{︀
𝑦 + 𝑡n1(𝑥𝛿

𝑖 )
⃒⃒
𝑦 ∈ 𝑂𝛿

𝑖 , 𝑡 ∈ (−1, 1)
}︀

through 𝐾𝛿,𝜎
𝑖 ∋ 𝑦 + 𝑡n1(𝑥𝛿

𝑖 ) ↦→ 𝑦 +
𝑡

𝜎
n1(𝑥𝛿

𝑖 ), (4.15)

and notices that since ‖𝐷𝜑𝜎‖𝐿𝑝(Ω) 6 𝐶, the corresponding rescalings of 𝜑𝜎

⃒⃒
𝐾𝛿,𝜎

𝑖

satisfy

̂︀𝜑𝜎 ∈𝑊 1,𝑝
(︀ ̂︀𝐾𝛿

𝑖 ;R𝑑
)︀

and
∫︁
̂︀𝐾𝛿

𝑖

⃒⃒
𝐷̂︀𝜑𝜎(𝑥) n1(𝑥𝛿

𝑖 )
⃒⃒𝑝 d𝑥 = 𝜎𝑝−1

∫︁
𝐾𝛿,𝜎

𝑖

⃒⃒
𝐷𝜑𝜎(𝑥) n1(𝑥𝛿

𝑖 )
⃒⃒𝑝 d𝑥, so that

𝐷̂︀𝜑𝜎 n1(𝑥𝛿
𝑖 ) → 0 strongly in 𝐿𝑝

(︀ ̂︀𝐾𝛿
𝑖

)︀
. (4.16)

The resulting Γ-limit has as integrand the transformation through (4.14) of the quasiconvex envelope ([18],
Sect. 6.1, Thm. 6.9) 𝑄𝑊 𝑥𝛿

𝑖 of the density 𝑊 𝑥𝛿
𝑖 defined by

𝑊 𝑥𝛿
𝑖 (𝐵) : = inf

𝜉∈R3
𝑊
(︀
𝑃 (𝑒𝑑)

[︀
𝐵1𝐵2 . . . 𝐵𝑑−1

⃒⃒
𝜉
]︀
𝑃 (𝑒𝑑) + 𝑒𝑑 ⊗ 𝑒𝑑

)︀
= 𝑊

(︀
𝑃 (𝑒𝑑)

[︀
𝐵1𝐵2 . . . 𝐵𝑑−1

⃒⃒
0
]︀
𝑃 (𝑒𝑑) + 𝑒𝑑 ⊗ 𝑒𝑑

)︀
= 𝑊

(︀
𝑃 (𝑒𝑑)𝐵 𝑃 (𝑒𝑑) + 𝑒𝑑 ⊗ 𝑒𝑑

)︀
(4.17)

applied at 𝐵 = 𝐴𝑥𝛿
𝑖
. Here,

[︀
𝐵1𝐵2 . . . 𝐵𝑑−1

⃒⃒
𝜉
]︀

denotes the matrix obtained by replacing the last column of
𝐵 with 𝜉, and the infimum is trivial since the rightmost projection 𝑃 (𝑒𝑑) ensures that there is no dependence
on 𝜉. The right hand side of (4.17) is polyconvex by Lemma 2.3, hence also quasiconvex ([18], Thm. 5.3) and
therefore 𝑄𝑊 𝑥𝛿

𝑖 = 𝑊 𝑥𝛿
𝑖 . In consequence, taking into account (4.14) and (4.17) we have

̂︀𝐼𝛼
𝑖 [ ̂︀𝜑 ]︀ :=

∫︁
̂︀𝐾𝛿

𝑖

𝑊
(︁
𝑃2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
𝐷̂︀𝜑(𝑥)𝑃1(𝑥𝛿

𝑖 ) + n2

(︀
𝜑(𝑥𝛿

𝑖 )
)︀
⊗ n1(𝑥𝛿

𝑖 )
)︁

d𝑥 6 lim inf
𝜎→0

𝐼𝛿,𝜎
𝑖 [𝜑𝜎].
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Here, the left hand side contains the extension ̂︀𝜑 of 𝜑
⃒⃒
𝑂𝛿

𝑖

to ̂︀𝐾𝛿
𝑖 defined by ̂︀𝜑(𝑥) = 𝜑(𝑦) if 𝑥 ∈ ̂︀𝐾𝛿

𝑖 and 𝑦 is as

in (4.15). Once again using (4.5) analogously to (4.10), using 𝜎 < 𝛿/2, and since ̂︀𝜑 is constant in the direction
n1(𝑥𝛿

𝑖 ), we can estimate⃒⃒⃒⃒
⃒̂︀𝐼𝛼

𝑖

[︀ ̂︀𝜑 ]︀− ∫︁
̂︀𝐾𝛿

𝑖

𝑊
(︁
𝑃2

(︀̂︀𝜑(𝑥)
)︀
𝐷̂︀𝜑(𝑥)𝑃1

(︀
𝑦(𝑥)

)︀
+ n2

(︀̂︀𝜑(𝑥)
)︀
⊗ n1

(︀
𝑦(𝑥)

)︀)︁
d𝑥

⃒⃒⃒⃒
⃒ 6 𝐶𝜔(𝛿)𝑝ℋ𝑑−1(𝑂𝛿

𝑖 ),

where 𝑦(𝑥) is the projection along n1(𝑥𝛿
𝑖 ) onto 𝑂𝛿

𝑖 as in the definition of ̂︀𝐾𝛿
𝑖 in (4.15). Moreover, again becausê︀𝜑 is constant in the direction n1(𝑥𝛿

𝑖 ) and since 𝜑 ∈ 𝒯𝑝 we also have that∫︁
̂︀𝐾𝛿

𝑖

𝑊
(︁
𝑃2

(︀̂︀𝜑(𝑥)
)︀
𝐷̂︀𝜑(𝑥)𝑃1

(︀
𝑦(𝑥)

)︀
+ n2

(︀̂︀𝜑(𝑥)
)︀
⊗ n1

(︀
𝑦(𝑥)

)︀)︁
d𝑥 =

∫︁
𝑂𝛿

𝑖

𝑊
(︀
𝐷𝑡𝑡𝜑(𝑦)

)︀
dℋ𝑑−1(𝑦),

so that summing over 𝑖 = 1, . . . , 𝑁𝛿 and letting 𝛿 → 0, we conclude.

Step 3. lim sup inequality.

Let 𝜑 ∈ 𝒯𝑝. We show that there exists a recovery sequence 𝜑𝜎 for ℰ0 at 𝜑, such that in addition we have∫︁
Ω

𝜂𝜎 ∘ d1|d2 ∘ 𝜑𝜎 − d1|2 = 0. (4.18)

Assume that 2𝜎 < (sup𝑥∈ℳ1 |𝐷2d1(𝑥)|)−1, so that as in the proof of Lemma 3.1 each 𝑥 ∈ 𝒩2𝜎ℳ1 can be
written uniquely as 𝑥 = 𝑦 + 𝑡n1(𝑦) with 𝑦 ∈ℳ1, and denote the projection of x onto ℳ1 by 𝜋ℳ1(𝑥) := 𝑦. We
then define the modified deformations 𝜑𝜎 by

𝜑𝜎(𝑦 + 𝑡n1(𝑦)) = 𝜏𝜎(𝑡)
(︁
𝜑(𝑦) + 𝑡n2

(︀
𝜑(𝑦)

)︀
− 𝜑

(︀
𝑦 + 𝑡n1(𝑦)

)︀)︁
+ 𝜑

(︀
𝑦 + 𝑡n1(𝑦)

)︀
, (4.19)

whenever 𝑥 ∈ 𝒩2𝜎ℳ1 and 𝜑𝜎(𝑥) = 𝜑(𝑥) otherwise. Here 𝜏𝜎 : R→ R is nonincreasing and such that

𝜏𝜎 > 0, 𝜏𝜎(𝑡) = 1 for |𝑡| 6 𝜎, 𝜏𝜎(𝑡) = 0 for |𝑡| > 2𝜎, and
⃒⃒⃒⃒
d𝜏𝜎
d𝑡

⃒⃒⃒⃒
6

2
𝜎
· (4.20)

Moreover, as done in the previous steps and using estimates analogous to those of Lemma 3.1, we consider only
𝜎 is small enough for which d1 ∈ 𝐶2(𝒩2𝛿ℳ1) and d2 ∈ 𝐶2

(︀
𝜑(𝒩2𝛿ℳ1)

)︀
.

We aim then to show that 𝜑𝜎 is a recovery sequence, that is

lim sup
𝜎→0

ℰ𝜎[𝜑𝜎] 6 ℰ0[𝜑].

First, notice that whenever 𝑡 6 𝜎 we have

𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀
= 𝜑(𝑦) + 𝑡n2

(︀
𝜑(𝑦)

)︀
,

so (4.18) is satisfied. Moreover, this also implies that

lim
𝜎→0

ℰ𝜎
mem[𝜑𝜎] =

∫︁
ℳ1

𝑊
(︀
𝐷𝑡𝑡𝜑(𝑦)

)︀
dℋ𝑑−1(𝑦).

To see this it suffices to notice, using the continuity hypothesis (4.5), (4.9) and 𝜑 ∈ 𝒯𝑝, that
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⃒⃒⃒⃒∫︁
Ω

(𝜂𝜎 ∘ d1)𝑊
(︀
𝐷𝑡𝑡𝜑𝜎(𝑥)

)︀
d𝑥−

∫︁
ℳ1

𝑊
(︀
𝐷𝑡𝑡𝜑(𝑦)

)︀
dℋ𝑑−1(𝑦)

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒
∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)
∫︁
ℳ1

𝑊
(︀
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀)︀ ⃒⃒
det
(︀
1+ 𝑡𝐷2d1(𝑦)

)︀⃒⃒
dℋ𝑑−1(𝑦) d𝑡

−
∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡) d𝑡
∫︁
ℳ1

𝑊
(︀
𝐷𝑡𝑡𝜑(𝑦)

)︀
dℋ𝑑−1(𝑦)

⃒⃒⃒⃒
⃒

6 sup
𝑧∈ℳ1,|𝑡|6𝜎

⃒⃒⃒⃒
1−

⃒⃒⃒
det
(︀
1+ 𝑡𝐷2d1(𝑧)

)︀⃒⃒⃒⃒⃒⃒⃒ (︂ ∫︁
Ω

(𝜂𝜎 ∘ d1)𝑊
(︀
𝐷𝑡𝑡𝜑𝜎(𝑥)

)︀
d𝑥
)︂

+
∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)
∫︁
ℳ1

⃒⃒⃒
𝑊
(︀
𝐷𝑡𝑡𝜑𝜎

(︀
𝑦 + 𝑡n1(𝑦)

)︀)︀
−𝑊

(︀
𝐷𝑡𝑡𝜑(𝑦)

)︀⃒⃒⃒
dℋ𝑑−1(𝑦) d𝑡

6 𝐶𝜎𝑑−1 +
∫︁ 𝜎

−𝜎

𝜂𝜎(𝑡)
∫︁
ℳ1

⃒⃒⃒
𝑊
(︀
𝐷𝑡𝑡

(︀
𝜑+ 𝑡n2 ∘ 𝜑)(𝑦)

)︀
−𝑊

(︀
𝐷𝑡𝑡𝜑(𝑦)

)︀⃒⃒⃒
dℋ𝑑−1(𝑦) d𝑡

6 𝐶𝜎𝑑−1 + 𝐶

∫︁ 𝜎

−𝜎

𝑡 𝜂𝜎(𝑡)
∫︁
ℳ1

⃒⃒
𝐷𝑡𝑡(n2 ∘ 𝜑)(𝑦)

⃒⃒(︀
1 + |𝐷𝑡𝑡𝜑(𝑦)|𝑝−1

)︀
dℋ𝑑−1(𝑦) d𝑡

6 𝐶𝜎𝑑−1 + 𝐶𝜎2
(︁

1 + ‖𝐷𝑡𝑡𝜑‖𝑝−1
𝐿𝑝(ℳ1)

)︁
6 𝐶(𝜎𝑑−1 + 𝜎2) −−−→

𝜎→0
0.

When considering the volume term, the transition layer in 𝜏𝜎 between 𝜎 and 2𝜎 plays a role. We can estimate
using the definition of 𝜑𝜎 in (4.19), assumption (4.4), that 𝜑𝜎 ∈𝑊 1,𝑝(𝒩𝜎ℳ1;R𝑑) since in that subdomain it is
the constant extension along the normal n1 of the trace 𝜑

⃒⃒
ℳ1

∈ 𝑊 1− 1
𝑝 ,𝑝(ℳ1;R𝑑), and the properties of 𝜏𝜎 in

(4.20) to obtain

ℰvol[𝜑𝜎] =
∫︁

Ω

𝑊
(︀
𝐷𝜑𝜎(𝑥)

)︀
d𝑥 =

∫︁
{|d1|>2𝜎}

+
∫︁
{|d1|6𝜎}

+
∫︁
{𝜎<|d1|<2𝜎}

6 ℰvol[𝜑] +
∫︁
𝒩𝜎ℳ1

|𝐷𝜑𝜎(𝑥)|𝑝 d𝑥+
∫︁
{𝜎<|d1|<2𝜎}

|𝐷𝜑𝜎(𝑥)|𝑝 d𝑥

6 ℰvol[𝜑] + 𝐶𝜎 +
∫︁
{𝜎<|d1|<2𝜎}

|𝐷𝜑𝜎(𝑥)|𝑝 d𝑥

6 ℰvol[𝜑] + 𝐶𝜎 + 𝐶

∫︁
{𝜎<|d1|<2𝜎}

|𝐷𝜑(𝑥)|𝑝 d𝑥

+ 𝐶𝜎−𝑝

∫︁
{𝜎<|d1|<2𝜎}

d1(𝑥)𝑝
⃒⃒⃒
n2

(︁
𝜑
(︀
𝜋ℳ1(𝑥)

)︀)︁⃒⃒⃒𝑝
d𝑥

+ 𝐶𝜎−𝑝

∫︁
{𝜎<|d1|<2𝜎}

⃒⃒⃒
𝜑
(︀
𝜋ℳ1(𝑥)

)︀
− 𝜑(𝑥)

⃒⃒⃒𝑝
d𝑥, (4.21)

where for the last inequality the product rule for 𝜏𝜎 and 𝜑 was used, and also that whenever 𝑥 = 𝜋ℳ1(𝑥) +
𝑡n1(𝜋ℳ1(𝑥)), then 𝑡 =

(︀
𝑥 − 𝜋ℳ1(𝑥)

)︀
· n1

(︀
𝜋ℳ1(𝑥)

)︀
= d1(𝑥). This implies that the penultimate term of (4.21)

tends to zero, since∫︁
{𝜎<|d1|<2𝜎}

d1(𝑥)𝑝
⃒⃒⃒
n2

(︁
𝜑
(︀
𝜋ℳ1(𝑥)

)︀)︁⃒⃒⃒𝑝
d𝑥 =

∫︁
{𝜎<|d1|<2𝜎}

d1(𝑥)𝑝 d𝑥 6 𝐶𝜎𝑝+1.

For the last term of (4.21), noticing that the integrand vanishes at ℳ1 we use a Poincaré inequality for the
derivative in the normal direction n1 on the sets {−2𝜎 < d1 < 0} and {0 < d1 < 2𝜎} (these sets have at least
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𝐶1,1 boundaries since 𝜎 was chosen small enough, see Thm. 7.7.1(i) of [23]) and with optimal constant 𝐶𝜎𝑝 to
write

𝜎−𝑝

∫︁
{𝜎<|d1|<2𝜎}

⃒⃒⃒
𝜑
(︀
𝜋ℳ1(𝑥)

)︀
− 𝜑(𝑥)

⃒⃒⃒𝑝
d𝑥 6 𝜎−𝑝

∫︁
{0<|d1|<2𝜎}

⃒⃒⃒
𝜑
(︀
𝜋ℳ1(𝑥)

)︀
− 𝜑(𝑥)

⃒⃒⃒𝑝
d𝑥

6 𝐶
⃦⃦
𝐷𝜑

(︀
n1 ∘ 𝜋ℳ1

)︀⃦⃦𝑝

𝐿𝑝({0<|d1|<2𝜎}) −−−→𝜎→0
0,

and finally obtain
lim sup

𝜎→0
ℰvol[𝜑𝜎] 6 ℰvol[𝜑].

As a remark, let us note that on the one hand the same computations above allow us to prove that

‖𝐷𝜑𝜎‖𝐿𝑝(Ω) − ‖𝐷𝜑‖𝐿𝑝(Ω) −−−→
𝜎→0

0,

while on the other hand 𝜑𝜎 differs from 𝜑 only on 𝒩2𝜎ℳ1 while |𝒩2𝜎ℳ1| → 0. From this, up to possibly taking
a further subsequence, we conclude that 𝜑𝜎 converges to 𝜑 not just weakly but also strongly in 𝑊 1,𝑝(Ω;R𝑑).

Step 4. Convergence of minimizers.

As above, since 𝜃 = 0 and 𝜑 ∈𝑊 1,𝑝
0 (Ω;R𝑑) + Id, we have

ℰ𝜎[𝜑] > 𝐶
∫︁

Ω

|𝐷𝜑|𝑝 > 𝐶
(︁
‖𝜑𝜎‖𝑝

𝑊 1,𝑝(Ω) − 1
)︁
,

with 𝐶 independent of 𝜎. Hence, by the Banach–Alaoglu theorem the ℰ𝜎 form an equicoercive family of Γ-
converging functionals, which implies ([11], Thm. 1.21) that any sequence {𝜑𝜎} of minimizers in 𝑊 1,𝑝

0 (Ω;R𝑑)+Id
of ℰ𝜎 has a subsequence converging weakly in 𝑊 1,𝑝(Ω;R𝑑) to a minimizer of ℰ0. Existence of such minimizers
for ℰ𝜎 can be proved by analogous methods as those used in Theorem 3.3, where Lemma 3.1 is modified as in
the first step. �

Remark 4.4 (Natural boundary conditions). In contrast to the situation in Theorem 3.3 where we use global
topological properties that are in general only true with fixed Dirichlet boundary, the restriction to 𝑊 1,𝑝

0 (Ω;R𝑑)+
Id in the definition of ℰ𝜎 and Theorem 4.3 is not essential. For the analogue with zero Neumann boundary
conditions, the only difference is that ℰ𝜎 needs to be coercive in𝑊 1,𝑝(Ω;R𝑑) as well; this is proved in Corollary 4.3
of [34] using 𝑊 (𝐴) > 𝐶|𝐴|𝑝 and the form of ℰ𝜎

match.

Remark 4.5 (The case 𝜃 = 1). From a modelling perspective, the desired scaling for our model is one in which
the influence of the volume term vanishes, which is the case when 𝜃 = 1, a regime in which we could also
prove existence of minimizers for all 𝜎 > 0 even for the symmetric energy. In that case, the volume energy still
determines the values of minimizers outside the narrow band, since it is the only active term there. The same
proof of Theorem 4.3 shows that in case 𝜃 = 1, the functionals ℰ𝜎 restricted to a set of bounded norm (e.g.
{𝜑 ∈ 𝑊 1,𝑝

0 (Ω;R𝑑) + Id | ‖𝐷𝜑‖𝐿𝑝(Ω) 6 𝐶}) also Γ-converge with respect to either 𝐿𝑝(Ω;R𝑑) convergence or the
weak 𝑊 1,𝑝(Ω;R𝑑) topology (which is metrizable on bounded sets) to the surface energy∫︁

ℳ1

𝑊 (𝐷𝑡𝑡𝜑) +𝑊
(︀
Λ[𝐷𝜑,𝒮1,𝒮2 ∘ 𝜑,n1,n2 ∘ 𝜑]

)︀
dℋ𝑑−1.

This constraint cannot be removed: without it (4.16) is not guaranteed, since 𝑊 (𝐷𝑡𝑡𝜑) is not coercive with
respect to derivatives in the normal direction.

Remark 4.6 (Other choices of membrane energy). Had we chosen to use for the surface deformation energy
(instead of the energies based on the projected derivative 𝐷𝑡𝑡𝜑 ) a “hardened” but isotropic term depending on
the full derivative, of the type ∫︁

Ω

𝜂𝜎(d1(𝑥))𝑊
(︀
𝐷𝜑(𝑥)

)︀
d𝑥, (4.22)
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we would obtain a Γ-limit with an integral representation through a density that contains a nontrivial quasi-
convexification, and vanishes for matrices whose singular values are less than or equal to 1 ([40], Thm. 10). In
consequence, sequences of minimizers of the analogue of ℰ𝜎 with ℰ𝜎

mem replaced by (4.22) may develop oscilla-
tions as 𝜎 → 0, and the limit functional would not penalize compression of ℳ1. In contrast, Theorem 4.3 (as
reflected in (4.17), in particular) shows that our projected tangential derivative construction is preserved in the
membrane limit, avoiding these drawbacks.

Furthermore, in Section 4.1 and Figure 5 of [34] it was demonstrated that using a tangential strain tensor
through ∫︁

Ω

𝜂𝜎(d1(𝑥))𝑊
(︁[︀
𝐷𝜑(𝑥)𝑃1(𝑥)

]︀𝑇 [︀
𝐷𝜑(𝑥)𝑃1(𝑥)

]︀
+ n1(𝑥)⊗ n1(𝑥)

)︁
d𝑥

is also not desirable, since this term is not lower semicontinuous and again encourages oscillations in minimizing
sequences, even at fixed 𝜎 > 0.

Remark 4.7 (Symmetric energies). A series of papers by Anza Hafsa and Mandallena (see the overview [3] and
references therein) tackle the membrane limit with non-interpenetration and orientation preservation conditions.
It would be tempting to think of applying this kind of results to attempt to take the limit of the symmetric
energies. However in our framework, the surface energies should not enforce orientation preservation since
det(𝐷𝑡𝑡𝜑) could be negative depending on the relative position of ℳ2 and 𝜑 ∘ℳ1, as remarked in Section 2.2.

The obstruction for proving Theorem 4.3 for the symmetric energies 𝐸𝜎 is rather the blending argument
with the cutoff function 𝜏𝜎 used to construct a recovery sequence. What would be needed is a result on approx-
imation of Sobolev homeomorphisms by diffeomorphisms, done in such a way that the corresponding energies
converge. Notice that since the energy density is unbounded as the determinant vanishes, this property is not
guaranteed by strong convergence. Alternatively, a proof by density is also possible, and a sufficient condition
would be approximation by smoother functions with convergence in 𝐿𝑝 norm for the derivatives of the inverse
transformation, as obtained for planar bi-Lipschitz maps in [19]. At the time of writing, the existence of such
an approximation procedure seems to be an open problem both for planar maps in 𝑊 1,𝑝, 1 < 𝑝 < +∞, and for
all three-dimensional cases ([19], [32], Open problem 16, [36], Questions 3 and 4). As noted in [6], such a result
would have deep implications for the mathematical theory of elasticity.

5. Computational results for symmetric energies

5.1. Numerical setup

As in [34], we have used a “discretize, then optimize” strategy on adaptive hierarchichal quadtree or octree
grids defined on Ω = (0, 1)𝑑 with 𝑑 = 2, 3, coupled with a multiscale first order descent, implemented in the in
the Quocmesh library [46]. This means that the solution at one grid, computed through a conjugate gradient
method computed with a weighted 𝐻1 metric coupled with Armijo line search, is interpolated into the next
finer one and used as an initial condition to continue the descent on the new grid.

The grids are refined around the input shapes ℳ1 and ℳ2, to add detail to the main area of interest and
maintain accuracy in the coefficients depending on the initial and deformed configuration respectively. The
hierarchical structure of the grids allows to search them efficiently (further details are given in Sect. 5 of [34]),
which is crucial in our case since the coefficients strongly depend on the deformed configuration. Below, when
speaking about these grids, we refer to them as having level ℓ when the side of the finest elements present in
it is ℎℓ = 2−ℓ. Our implementation accepts input shapes given either as triangular meshes in 3D or polygonal
curves in 2D, and the distance functions d𝑖 are generated through a straightforward modification of the fast
marching method [51], taking advantage of the fact that the grids used are subgrids of a regular cartesian grid.

A straightforward choice of discretization would be to use multilinear finite elements on the squares or cubes
contained in the grid, which is the approach used in [33, 34]. However, this type of discretization has some
limitations for our application. The main concern is maintaining the deformations injective. On the one hand
the Jacobian determinants that appear numerically (i.e. on quadrature points) can be enforced to be positive



1156 J.A. IGLESIAS

along the descent by using infinite values of the energy and adequate line search for the descent. However,
when refining the grid and interpolating the deformation to the newly created elements, this property might
be lost: injectivity of a trilinear transformation on a hexahedral element is not even known to be checkable
through simple algebraic conditions [37]. This means that even if the Jacobian determinants are positive at
every quadrature point of the original grid, they might not necessarily be positive at all those of the refined
grid, a situation which prevents the multiscale descent from continuing after the refinement. This problem occurs
only for very small determinant values (“thin” deformed elements) and therefore it can often be avoided, but
without guarantees, by keeping the influence of 𝐸vol relatively high.

In fact, this problem can be completely avoided by splitting each square or cube of the grid in two regular
triangles or six tetrahedra respectively, and using linear finite elements on the resulting simplices instead. In this
way, the gradients are piecewise constant, and since the elements of the subdivided grid are always completely
contained in a coarse element, the Jacobian determinant is preserved when interpolating to the refined grid.
This has allowed us to eliminate the mentioned problem with negative determinants, and to emulate the regime
𝜃 = 1 by decreasing the influence of the volume term with each refinement. Indeed, in the numerical examples
presented we have chosen 𝜎 = 2ℎℓ and a coefficient for the volume energy proportional to 𝜎.

Another difference is that since we focus in symmetry and invertibility, Dirichlet conditions fixing the defor-
mations at the boundary to be the identity have been used. In consequence, the size of the shapes compared
with that of the domains should be relatively small so that the fixed boundary values do not affect the matching
too much through the volume regularization term. This drawback is mitigated by the use of adaptive grids,
since these are only refined around the shapes themselves.

Our implementation of the energy and its derivatives follows the formulas in Lemma 2.3 to minimize the
appearance of terms related to det(𝐷𝜑−1), which have the potential to introduce large numerical errors when
injectivity of the deformations is nearly lost.

5.2. Symmetry in the numerical results

We have computed several examples both with the novel symmetric energy 𝐸𝜎, and with a comparison energy
defined only on the direct transformation, but with a volume term that ensures injectivity. Indeed, invertibility
of the obtained deformations is required to perform the comparisons in the form proposed. The energy that we
compare against is closely related to ℰ𝜎 of Section 4 and the one formulated in [34]. It reads

ℰ𝜎
[𝜑] := ℰ𝜎

match[𝜑] + ℰ𝜎
mem[𝜑] + ℰ𝜎

bend[𝜑] + ℰ𝜎

vol[𝜑], where (5.1)

ℰ𝜎

vol[𝜑] := 𝜎𝜃

∫︁
Ω

𝑊vol(𝐷𝜑), with

{︃
𝑊vol(𝐴) = |𝐴|3 + |Cof 𝐴|3 + 3(det𝐴)−2 if 𝑑 = 3
𝑊vol(𝐴) = |𝐴|2 + (det𝐴)−2 if 𝑑 = 2,

where ℰ𝜎
match, ℰ𝜎

mem, ℰ𝜎
bend are the expressions in (4.1), and using the polyconvex density 𝑊 defined in (2.12).

It can be directly checked that the identity matrix 1 ∈ R𝑑×𝑑 is stationary for 𝑊vol by writing it in terms of
singular values.

The parameters used were identical for both energies and a given shape, as listed in Table 1, with the exception
of the different volume density in ℰvol, but with each volume energy multiplied with the same coefficient 𝑐vol.
The energy density 𝑊 used for all terms of 𝐸𝜎 that require it was the one introduced in (2.12), and we used
𝜃 = 1 and 𝑞 = 𝑝 = 𝑑+ 1 replicating the regime analyzed in Section 3.

It is important to notice that, although the energy is symmetric with respect to switching the shapes and
taking the inverse of the deformations, the gradient descent procedure is not. Therefore, in practice perfect
symmetry can not be expected in the numerical results, and the extent to which it appears depends on not
ending up in different local minima, and how closely these minima are approximated by the computation. In
any case our numerical experiments show a marked improvement towards symmetry.

Figure 1 shows a 2D example of a shape ℳ1 undergoing first the deformation 𝜑 computed using 𝐸𝜎 to match
ℳ1 to ℳ2, then also the one 𝜓 with switched inputs matching ℳ2 to ℳ1, and the corresponding deformed
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Table 1. Parameters used for the numerical examples, where 𝑐match, 𝑐vol, 𝑐mem and 𝑐bend are
multiplicative factors for the corresponding terms of (2.2) or (5.1).

𝑐match 𝑐vol 𝑐mem 𝑐bend 𝜎 𝑞 𝜃 ℓmin, ℓmax

Dolphin 4.096 0.8 1.0 0.2 2−ℓ+1 4 1 4,8
Starfish 4.096 0.8 1.0 0.2 2−ℓ+1 4 1 4,8
Jump 0.512 0.8 1.0 1.0 2−ℓ+1 3 1 4,9

Figure 1. Upper row left to right: jump shape template ℳ1 with visualization pattern and
targetℳ2, deformed shape 𝜑(ℳ1) after level 9 matching with the symmetric energy 𝐸𝜎 in (2.2),
deformed shape 𝜓 ∘ 𝜑(ℳ1) after subsequently applying level 9 of the matching with switched
data. Lower row: quadtree grid used with ℎmin = 2−9, after applying the direct matching 𝜑,
and after applying both matchings through 𝜓 ∘ 𝜑. Being able to perfectly numerically realize
the symmetry would result in identical leftmost and rightmost images. Although the first and
last colored shapes look quite similar, some differences can be seen. For example the red patch
on top of the head shifts slightly to the left, an error which can also be easily spotted in the
rightmost deformed grid.
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Figure 2. From left to right: Starfish shapes ℳ1 (orange) and ℳ2 (white), textured ℳ1,
deformed shape 𝜑(ℳ1) after level 8 matching with symmetric energy functional 𝐸𝜎, deformed
shape (𝜓 ∘ 𝜑)(ℳ1) after subsequently applying level 8 of the matching with switched data.

Figure 3. From left to right: Dolphin shapes ℳ1 (blue) and ℳ2 (white), textured ℳ1,
deformed shape 𝜑(ℳ1) after level 8 matching with symmetric energy functional 𝐸𝜎, deformed
shape (𝜓 ∘ 𝜑)(ℳ1) after subsequently applying level 8 of the matching with switched data.

grids. In Figures 2 and 3 analogous 3D examples are shown. In each of these cases, being able to exactly realize
the symmetry property numerically would result in identical shapes and grids before any deformation and after
applying both.

In Figure 4 and Table 2 we quantify the failure of symmetry in these examples by evaluating the distance
|𝜓 ∘ 𝜑− Id| between the identity and composition of the deformations matching the shapes in opposite orders,
when using the symmetric energy 𝐸𝜎 and the non-symmetric energy ℰ𝜎

as comparison. Averages on ℳ1 are
computed from evaluation of the finite element functions on the vertices of the triangular meshes or polygons
used as input and sub-grid initialization of the fast marching method to compute d𝑖, with equal weights for all
such points. This avoids having to integrate numerically discrete functions defined on Ω, for which the surface
meshing is not compatible. The input surfaces, which are fairly evenly triangulated, are only used for initializing
the computation of d𝑖 and not in the computation for 𝜑.
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Figure 4. Pointwise norm of the residual displacement |𝜓 ∘ 𝜑 − Id|, plotted as texture over
(𝜓∘𝜑)(ℳ1). Left shape for each case: result with energy ℰ𝜎

not taking into account the inverse,
corresponding to (dir) case in Table 2. Right shape: result with the symmetric energy 𝐸𝜎 (same
parameters and descent procedure), corresponding to (sym) case in Table 2. As expected,
only subtle differences appear in the shapes themselves. Most of the erroneous displacement
on the surface occurs tangentially and in zones where the largest bending takes place (cf.
Figs. 2 and 3).

Table 2. Average and maximum norm of the residual displacement |𝜓 ∘𝜑− Id| at last compu-
tation level for the dolphin (D), starfish (S) and jump (J) examples, computed with the energy
ℰ𝜎

that penalizes only the direct transformation (5.1), (dir) and with the new symmetric energy
𝐸𝜎 (2.2), (sym). On average larger errors are seen outside the shapes themselves, which is con-
sistent with the decreasing influence of the volume term over the refinements to recreate the
regime 𝜃 = 1.

Case ‖𝜓 ∘ 𝜑− Id‖𝐿2(Ω) ‖𝜓 ∘ 𝜑− Id‖𝐿∞(Ω) avg(|𝜓 ∘ 𝜑− Id|,ℳ1) ‖𝜓 ∘ 𝜑− Id‖𝐿∞(ℳ1)

D, dir 0.0299 0.0583 0.0108 0.0570
D, sym 0.0271 0.0561 0.00281 0.0114
S, dir 0.0637 0.136 0.0132 0.0546
S, sym 0.0473 0.115 0.00570 0.0240
J, dir 0.0715 0.141 0.0223 0.141
J, sym 0.0419 0.0982 0.00737 0.0982
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