Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1199-1237

Classical finite volume schemes for the Euler system are not accurate at low Mach number and some fixes have to be used and were developed in a vast literature over the last two decades. The question we are interested in in this article is: What about if the porosity is no longer uniform? We first show that this problem may be understood on the linear wave equation taking into account porosity. We explain the influence of the cell geometry on the accuracy property at low Mach number. In the triangular case, the stationary space of the Godunov scheme approaches well enough the continuous space of constant pressure and divergence-free velocity, while this is not the case in the Cartesian case. On Cartesian meshes, a fix is proposed and accuracy at low Mach number is proved to be recovered. Based on the linear study, a numerical scheme and a low Mach fix for the non-linear system, with a non-conservative source term due to the porosity variations, is proposed and tested.

DOI : 10.1051/m2an/2021016
Classification : 35L45, 65M08, 76M12, 76N15
Keywords: low Mach limit, finite volume schemes, porosity, Euler equations, numerical diffusion
@article{M2AN_2021__55_3_1199_0,
     author = {Dellacherie, St\'ephane and Jung, Jonathan and Omnes, Pascal},
     title = {Construction of a low {Mach} finite volume scheme for the isentropic {Euler} system with porosity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1199--1237},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021016},
     mrnumber = {4269467},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021016/}
}
TY  - JOUR
AU  - Dellacherie, Stéphane
AU  - Jung, Jonathan
AU  - Omnes, Pascal
TI  - Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1199
EP  - 1237
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021016/
DO  - 10.1051/m2an/2021016
LA  - en
ID  - M2AN_2021__55_3_1199_0
ER  - 
%0 Journal Article
%A Dellacherie, Stéphane
%A Jung, Jonathan
%A Omnes, Pascal
%T Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1199-1237
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021016/
%R 10.1051/m2an/2021016
%G en
%F M2AN_2021__55_3_1199_0
Dellacherie, Stéphane; Jung, Jonathan; Omnes, Pascal. Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1199-1237. doi: 10.1051/m2an/2021016

[1] D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276–1290. | MR | Zbl | DOI

[2] W. Barsukow, P. V. F. Edelmann, C. Klingenberg, F. Miczek and F. K. Röpke, A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamics. J. Sci. Comput. 72 (2017) 623–646. | MR | DOI

[3] W. Barsukow, P. V. F. Edelmann, C. Klingenberg and F. K. Röpke, A low Mach Roe-type solver for the Euler equations allowing for gravity source terms. ESAIM: Proc. Surv. 58 (2017) 27–39. | MR | DOI

[4] J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media. Springer Science & Business Media 4 (2012). | Zbl

[5] P. Bruel, S. Delmas, J. Jung and V. Perrier, A low Mach correction able to deal with low Mach acoustics. J. Comput. Phys. 378 (2019) 723–759. | MR | DOI

[6] T. Buffard, T. Gallouët and J.-M. Hérard, A sequel to a rough Godunov scheme: application to real gases. Comput. Fluids 29 (2000) 813–847. | MR | Zbl | DOI

[7] C. Chalons, M. Girardin and S. Kokh, An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes. Commun. Comput. Phys. 20 (2016) 188–233. | MR | DOI

[8] S. Clain and D. Rochette, First-and second-order finite volume methods for the one-dimensional nonconservative Euler system. J. Comput. Phys. 228 (2009) 8214–8248. | MR | Zbl | DOI

[9] P. Colella and K. Pao, A projection method for low speed flows. J. Comput. Phys. 149 (1999) 245–269. | MR | Zbl | DOI

[10] D. H. Cuong and M. D. Thanh, A Godunov-type scheme for the isentropic model of a fluid flow in a nozzle with variable cross-section. Appl. Math. Comput. 256 (2015) 602–629. | MR

[11] G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. Journal de mathématiques pures et appliquées 74 (1995) 483–548. | MR | Zbl

[12] P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10 (2011) 1–31. | MR | DOI

[13] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 4 (2010) 978–1016. | MR | Zbl | DOI

[14] S. Dellacherie, P. Omnes and F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation. J. Comput. Phys. 229 (2010) 5315–5338. | MR | Zbl | DOI

[15] S. Dellacherie, J. Jung and P. Omnes, Preliminary results for the study of the Godunov scheme applied to the linear wave equation with porosity at low Mach number. ESAIM: Proc. Surv. 52 (2015) 105–126. | MR | DOI

[16] S. Dellacherie, J. Jung, P. Omnes and P.-A. Raviart, Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system. Math. Models Methods Appl. Sci. 26 (2016) 2525–2615. | MR | DOI

[17] T. Gallouet and J. M. Masella, Un schéma de Godunov approché. Comptes rendus de l’Academie des sciences Paris Serie 1 323 (1996) 77–84. | MR | Zbl

[18] T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479–513. | MR | Zbl | DOI

[19] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. | MR | Zbl | DOI

[20] L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339–365. | MR | Zbl | DOI

[21] J. M. Greenberg and A.-Y. Le Roux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. | MR | Zbl | DOI

[22] H. Guillard, On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells. Comput. Fluids 38 (2009) 1969–1972. | MR | Zbl | DOI

[23] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. | MR | Zbl | DOI

[24] D. Iampietro, F. Daude, P. Galon and J.-M. Hérard, A Mach-sensitive splitting approach for Euler-like systems. ESAIM: M2AN 52 (2018) 207–253. | MR | Numdam | DOI

[25] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | MR | Zbl | DOI

[26] D. Kröner and M. D. Thanh, Numerical solutions to compressible flows in a nozzle with variable cross-section. SIAM J. Numer. Anal. 43 (2005) 796–824. | MR | Zbl | DOI

[27] P. G. Lefloch and M. D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Commun. Math. Sci. 1 (2003) 763–797. | MR | Zbl | DOI

[28] X.-S. Li and C.-W. Gu, An all-speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour. J. Comput. Phys. 227 (2008) 5144–5159. | MR | Zbl | DOI

[29] X.-S. Li, C.-W. Gu and J.-Z. Xu, Development of Roe-type scheme for all-speed flows based on preconditioning method. Comput. Fluids 38 (2009) 810–817. | MR | Zbl | DOI

[30] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer Science & Business Media 53 (2012). | MR | Zbl

[31] R. A. Nicolaides, Analysis and convergence of the MAC scheme. I: The linear problem. SIAM J. Numer. Anal. 29 (1992) 1579–1591. | MR | Zbl | DOI

[32] R. A. Nicolaides, Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29 (1992) 32–56. | MR | Zbl | DOI

[33] K. Oßwald, A. Siegmund, P. Birken, V. Hannemann and A. Meister, L 2 Roe: a low dissipation version of Roe’s approximate Riemann solver for low Mach numbers. Int. J. Numer. Methods Fluids 81 (2016) 71–86. | MR | DOI

[34] M. Pelanti, Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model. Appl. Math. Comput. 310 (2017) 112–133. | MR

[35] M. Pelanti and K.-M. Shyue, A Roe-type scheme with low Mach number preconditioning for a two-phase compressible flow model with pressure relaxation. Bull. Braz. Math. Soc. New Ser. 47 (2016) 655–669. | MR | DOI

[36] F. Rieper, On the dissipation mechanism of upwind-schemes in the low Mach number regime: a comparison between Roe and HLL. J. Comput. Phys. 229 (2010) 221–232. | MR | Zbl | DOI

[37] F. Rieper, A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 230 (2011) 5263–5287. | MR | Zbl | DOI

[38] F. Rieper and G. Bader, The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime. J. Comput. Phys. 228 (2009) 2918–2933. | MR | Zbl | DOI

[39] D. Rochette and S. Clain, Two-dimensional computation of gas flow in a porous bed characterized by a porosity jump. J. Comput. Phys. 219 (2006) 104–119. | MR | Zbl | DOI

[40] D. Rochette, S. Clain and T. Buffard, Numerical scheme to complete a compressible gas flow in variable porosity media. Int. J. Comput. Fluid Dyn. 19 (2005) 299–309. | MR | Zbl | DOI

[41] D. Rochette, S. Clain and F. Gentils, Numerical investigations on the pressure wave absorption and the gas cooling interacting in a porous filter, during an internal arc fault in a medium-voltage cell. IEEE Trans. Power Delivery 23 (2007) 203–212. | DOI

[42] S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114 (1994) 476–512. | MR | Zbl | DOI

[43] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer (1998) 325–432. | MR | Zbl | DOI

[44] S. C. Spiegel, H. T. Huynh and J. R. Debonis, A survey of the isentropic Euler vortex problem using high-order methods. In: 22nd AIAA Computational Fluid Dynamics Conference. AIAA paper 2015-2444 (2015). | DOI

[45] A. Thomann, G. Puppo and C. Klingenberg, An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity. J. Comput. Phys. 420 (2020) 109723. | MR | DOI

[46] E. Turkel, Preconditioning techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 31 (1999) 385–416. | MR | DOI

Cité par Sources :