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CONSTRUCTION OF A LOW MACH FINITE VOLUME SCHEME FOR THE
ISENTROPIC EULER SYSTEM WITH POROSITY

STEPHANE DELLACHERIE!, JONATHAN JUNG? AND PAScAL OMNES%*

Abstract. Classical finite volume schemes for the Euler system are not accurate at low Mach number
and some fixes have to be used and were developed in a vast literature over the last two decades. The
question we are interested in in this article is: What about if the porosity is no longer uniform? We first
show that this problem may be understood on the linear wave equation taking into account porosity.
We explain the influence of the cell geometry on the accuracy property at low Mach number. In the
triangular case, the stationary space of the Godunov scheme approaches well enough the continuous
space of constant pressure and divergence-free velocity, while this is not the case in the Cartesian case.
On Cartesian meshes, a fix is proposed and accuracy at low Mach number is proved to be recovered.
Based on the linear study, a numerical scheme and a low Mach fix for the non-linear system, with a
non-conservative source term due to the porosity variations, is proposed and tested.
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1. INTRODUCTION

In this paper, we are interested in low Mach compressible fluid flows in porous media. In industrial processes,
porous media are used to simulate the flow in a nuclear reactor core. The porosity appears because there are
section reductions in a nuclear reactor core. Moreover, if we want to simulate an accidental scenario, we some-
times need to take into account the compressibility effects. Another class of problems motivated by industrial
consideration is the simulation of a gas flow across a grid. Since the grid is in general too small to be meshed,
a homogenization process is used to model the interactions between the grid and the flow [41]. Then, we con-
sider the barotropic Euler equation. Since the porosity is not constant, a non-conservative term appears in the
equations during the homogenization process [4] and the equations write

9 (ap) + Vx - (apu) =0,

Ot(apu) + Vx - (apu @ u) + Vx(ap) = pVxa. (L.1)
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In (1.1), t > 0 and x € Q are respectively time and space variables and a(x) is the porosity. We suppose here
that a(x) is known and does not depend on time. Unknowns p, u and p(p) are respectively the density, the
velocity and the pressure of the fluid. The pressure law satisfies p’(p) > 0. System (1.1) is a non conservative
hyperbolic system [27] with eigenvalues in direction n given by u-n — ¢, u-n and u-n+ ¢. Studies of flows in
a variable cross section duct consider the same model and variations of the cross section are modeled through
(possibly discontinuous) changes in porosity.

The non-conservative term in (1.1) introduces mathematical and numerical difficulties. In [11], the authors
give a mathematical sense to the non-conservative product and introduce some schemes, named well-balanced
schemes, that solve correctly the non-conservative term [8,20]. The treatment of the non-conservative term is
essential to preserve steady states solutions. In this paper, we propose a well-balanced scheme that exactly
preserves steady solutions over time in one space dimension [21,26]. The proposed scheme is based on a VFRoe
scheme, established in [18] for the shallow water equation with topography and derived for the Euler system
with porosity in [39,40]. The VFRoe solver consists into a local linearization of a Riemann problem which
is simpler to handle since it only deals with linear problems and avoids the complex exact resolution of the
Riemann problem with porosity jump. This construction allows to easily build schemes that exactly preserve
one dimensional steady states. To our knowledge, no generalization for purely multidimensional problems exists
and the behavior of the numerical scheme with respect to multi-dimensional steady solutions must be studied
on a case-by-case basis. In this paper, we focus on the behavior of the scheme in the low Mach limit and, as we
will see, steady solutions of the numerical scheme will play a determining role.

Finite volume Godunov type schemes applied to the compressible Euler system with uniform porosity are
known to be inaccurate at low Mach number [13,23]. Indeed, they do not allow to recover the incompressible
limit as the Mach number tends to zero. Over the two last decades, a large amount of work has been dedicated
to deriving fixes for the uniform porosity case: [5,7,12,13,16,23,24,28,29,33,37]. Some recent works have been
done on low Mach fix for non-conservative systems, we refer to [2,3,45] for the Euler equation with gravity or to
[34,35] for two-phases flows. In these last studies, flux preconditioning techniques, initially proposed by Turkel
[46], are applied and quadrangular meshes are considered. Here, we propose to also study the behavior of the
numerical scheme on triangular meshes. Indeed, it was shown that in the uniform porosity case, if the mesh is
composed of triangles in 2D or tetrahedra in 3D, the accuracy at low Mach number with the Roe scheme is
recovered [14,22,38]. To our knowledge, this is the first study on the behavior of classical schemes at low Mach
number on triangular meshes for non-conservative systems.

In this article, we study the accuracy, at low Mach number, on triangular and Cartesian meshes, of a numerical
scheme for the non conservative system (1.1). Since the accuracy problem appears also in the linear case, we
base our study on the linear wave equation with porosity. The low Mach accuracy problem is then understood
and fixed in the linear case for Cartesian meshes, and the reason for its correct behavior on triangular meshes
is underlined. In particular, preliminary results obtained in [15] based on a modified equation approach are
extended to the discrete Cartesian case. Based on the linear study, a well-balanced scheme accurate at low
Mach number for the non-linear system (1.1) is proposed and numerical tests are performed. They confirm
that both the non corrected and corrected schemes are able to recover the low Mach asymptotics on triangular
meshes, while this is the case only for the corrected scheme on Cartesian meshes.

2. Low MACH LIMIT AND WAVE EQUATION WITH POROSITY

2.1. Low Mach limit

To study the behavior of system (1.1) at low Mach number, four characteristic scales are supposed to be
known: a time scale tg, a density scale pg, a velocity scale ug and a porosity scale ag. Then, the following
dimensionless variables are defined

t=—, p=-—, =—, a=— (2.1)
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It is natural to scale the length by Lo = ug X tg, the sound speed by ¢ = p’(pg) and the pressure by py = poc3.
If the corresponding dimensionless variables are used, system (1.1) reads

di(ap) + Vx - (apu) = 0, ] (2.2)
(i) + Vs - (a1 @ 1) + 25 Vsp = 0 '

with X = x/Lg, p = p/po, and where M = ug/cy is the so-called Mach number.

2.2. Formal asymptotic expansion when the Mach number goes to 0

We are interested in the solutions of (2.2) when M — 0. We recall formally the theoretical results of [25] in
order to take the porosity into account. All the variables of the system, ¢ € {&, p,u}, are developed as power
series of the Mach number M:

G(x, 4, M) =Y M@ (%, 1)+ 0 (MNT). (2.3)
n=0

Assumption 2.1. Concerning a, we assume that a(x) is a function that takes its values in [min, 1], where
Qmin > 0 is a constant independent of the Mach number M. This implies that

a® £0.
The case &9 = 0 is out of the scope of this paper.
By injecting these quantities in (2.2), the momentum equation at order M =2 and M ! gives
Vsp® = Vzp) =0 (2.4)
and then, since p is a regular function of p, this leads to
PO 8 =p(F) and M (x,8) =5 (D).

At order M°, we get

03(@p)® + Vx - (apn)© =0,

I;(apn)® + Vi - ((apn) @ @ a) + aOvgp® = 0.

Then, if the initial and boundary conditions are well prepared in the sense that

p(t=0,%,M) = py+ O (M?), where (%) = po € R
(@n)(f=0,% M) = (aG0)" + O(M), where V- (an){” =0

and if on the domain boundary 5(® (resp. ") is uniformly and constantly equals to o (resp. 0) and if
Joa (a)(® - n = 0, the solution of (2.2) satisfies

{ﬁ( x, M) ﬁO‘EO(M?’ (2.6)

where (5, () satisfies

{v (an)® =0, (2.7)

0@ + (a® - vz) al® + vz = 0.

Note that in order to obtain the second equation in (2.7), we have chosen py = 1, which is always possible up
to a change of density scale from pgy to popg. Equations (2.6) mean that at low Mach number, if the initial and
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boundary conditions are well prepared, the solution of the compressible Euler system with porosity (2.2) is close
to the solution of the incompressible Euler equation with porosity (2.7). Results (2.6) are formally proven here.
For a rigorous proof in the uniform porosity case, we refer to [30,42].

For classical finite volume schemes, relations (2.6) are not always satisfied at the discrete level: this is the
so-called accuracy problem at low Mach number, which expresses that a spurious component ") # 0 could be
introduced at the discrete level [23] due to numerical approximations. In the current contribution, we consider
that a numerical scheme is accurate at low Mach number for system (1.1) if relations (2.6) are satisfied at the
discrete level.

2.3. Wave equation with porosity
To study the low Mach behavior, we change the variables to symmetrize the problem.

2.3.1. Model

For this purpose, we set the reference sound speed to 1/M and we define r(£,X) such that
PER) = po (1+ Mr(i,%)) (2.8)

where formally Mr < 1. By injecting (2.8) in (2.2), we obtain the system

1

Vs (@) =0,

& p' (po (1+ Mr)) =0
M 1+ Mr x '

Oz(ar) + Vg - (ara) +
dp(am) + (@ - Vi) (@) +

Linearizing around (r,u) = (0,0), taking into account that p' (sp) = 1 when gy = 1 as explained above and
simplifying the notation by removing all the ~, we obtain the linear wave equation with porosity

9 (aq) + %(Q) =0 (2.9)
o q= ( ;) and  La(q) = ax (Vo;(viu)>
and a, = 1.

2.5.2. Weighted incompressible space &, and acoustic space £

We are interested in the properties of System (2.9) solved on a torus T C R€{1:2:3} with periodic boundary
conditions. For this, we assume that « is a periodic function on T and we define the weighted Hilbert space

L2 (T)H .= {q = (r, u)T‘ / r?adx +/ |u|? adx < —|—oo}
T T

endowed with the scalar product

<q17q2>a = /T‘17"20(dX + / up - LlQO(dX. (210)
T T

Of course, the space L2 should not be mistaken for the acoustic operator L,. We also define the spaces H}(T)
and H2(T) that are generalizations of H'(T) and H?(T) to weighted spaces. We note that since a(x) € [amin, 1]
with omin > 0, the functions o and 1 are in L*°(T), and we have L2(T) = L*(T), HX(T) = H'(T) and



CONSTRUCTION OF A LOW MACH FINITE VOLUME SCHEME 1203

H2(T) = H*(T). Nevertheless, we keep the index « to define these spaces to refer to the scalar product (2.10).
At last, we define the space

Eo = {q = (r,u)” € L2 (T)" ‘ Vr=0 and V-(au)= O} = Ker L,. (2.11)

When a =1, &, is named the incompressible space (see [13]). We have the following result:

Lemma 2.2. We have
Er = {q = (r,u)” e L2 (T)" "¢ ‘ / rade=0 and 3o H.(T), u= w}, (2.12)
T

Eu @ EF =12 (T) .

1+d

In other words, any q = (r,u)’ € L2 (T) can be decomposed into

g=q4+q" (2.13)
where ¢ = (7,0)T € &, and ¢+ = (r+,ut)T € & and this decomposition is unique and orthogonal with respect
to the scalar product defined by (2.10).

We call £& the acoustic space. This is a generalization of the Hodge decomposition. Decomposition (2.13)
defines an orthogonal projection

P, : L2 (T)'™ — &, (2.14)
q+— Pag:=4q.
2.8.3. Properties of the linear wave equation with porosity

We now detail some properties of the linear wave equation with porosity. These properties will not be always
satisfied in the discrete case.

Lemma 2.3. Let q(t,x) be the solution of (2.9) on T C RU1L23} with initial condition ¢°. Then:

(1) ¢® €& = q(t > 0) =¢° € &
(2) "€ = qt>0)e&L.

For all ¢ € L2(T)'*¢, we now define the energy E, := (q,q)o. The following lemma is an extension of the
energy conservation property of the classical linear wave equation:

Lemma 2.4. Let q(t, ) be the solution of (2.9) on T C R*€{123} Then, for all t > 0,
Eo(t >0) = E,(t=0).

2.8.4. The low Mach asymptotics
With Lemma 2.3 and by linearity, we get that if ¢(t,x) is the solution of (2.9) on T C R¥{12:3} with initial
condition ¢°, then

[¢° —Pud®| =0 (M) = Vt>0, |g—Pag|l(t)=0(M). (2.15)

We note that since P,q" € &, is a stationary solution of (2.9), then P,q = P,q°; hence (2.15) can be written as

lg” =Pag’| =0 (M) = Vt=0, [q—Pag’|(t) =0 (M). (2.16)

In fact, (2.15) is a version of (2.6) for the linear case. Indeed, the left condition in (2.15) just means that the
initial condition is well-prepared. In the non-linear case, the projection P,¢ in the incompressible space &, is
replaced by the incompressible solution of (2.7).

In this article, we consider that a numerical scheme for the linear system (2.9) is accurate at low Mach number
if (2.16) is satisfied at the discrete level. We will study this property on Cartesian and triangular meshes.
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3. GODUNOV SCHEME FOR THE LINEAR WAVE EQUATION WITH POROSITY AND ITS
KERNELS

In [14,16], we explained the satisfactory behavior of the Godunov scheme at low Mach number on triangular
meshes and its wrong behavior on Cartesian rectangular meshes on the Euler system without porosity («
uniformly equal to 1) by studying the kernel of the discrete spatial operator associated to the Godunov scheme.
We also remarked that the accuracy of the Godunov scheme at low Mach number on Cartesian meshes can be
recovered by deleting the diffusion term on the velocity field in the Godunov scheme. In [15], we discussed the
case with porosity with the help of the modified equation approach; the limitations of this approach is that
it only gives hints (but does not provide with a complete proof) on what happens on Cartesian meshes, and
does not apply to triangular meshes. Our aim here is to analyse the behavior of the schemes on triangular and
rectangular Cartesian meshes by directly studying them rather than their modified equations.

We now recall the Godunov scheme for the linear wave equation with porosity, recall why the study of its
kernel is so important to study its low Mach accuracy and compute explicitly its kernels on triangular and
Cartesian rectangular meshes. In particular, we underline that the kernel is strongly linked to the numerical
dissipation of the Godunov scheme.

3.1. Godunov scheme

Let us suppose that the domain T C R? is discretized by N cells ;. Let I';; be the common edge of the two
neighboring cells £2; and €2; and n;; the unit vector normal to I';; pointing from €2; to 2;. We assume that the
data a, and the unknowns r and u are defined on the cells €2; in the following way

o ol o
o = —— oadx, 1~ — rdx, w~-— udx,
%] Jo, €| Jo, €] Jo,

and then set (ar); = a;r; and (au); = a;u;.

The semi-discrete Godunov scheme applied to the resolution of the linear wave equation is obtained by
integrating (2.9) over each cell €; and then solving a Riemann problem on each I';; to express interface fluxes
as functions of cell-centered values. Details are provided in [15]. This results in

d L 1
qelor)i + 357 oA Zrijcaﬂi

Ly {((au)i + (aw);) - nij + agi(r; — Tj)] =0,
(3.1)

il [7% +7j+ 2= ((ou); — (au);) 'nij] n;; =0

d * i
gr(aw)i + 557165 2or,, con, j

with k = 1 and where «a;; is a mean-value of o on I';; which depends on (o, @) (e.g. arithmetic or harmonic
mean). The numerical flux in (3.2) is non-conservative because of the term «; that multiplies the flux on the
momentum equation. Moreover, it is easy to prove the following properties:

Remark 3.1. The numerical scheme (3.1) is well-balanced in the sense that it preserves exactly the one-
dimensional steady states (r = cte, au = cte).

Remark 3.2. The numerical scheme (3.1) can also be viewed as the VFRoe scheme [6,17] obtained with the
variables (o, r, au) for system (2.9) where the linearized Riemann problem is solved considering that « satisfies
atOl =0.

Scheme (3.1) can be written in compact form

h
d

L
3 (aqn) + =57~ (an) =0, .

a M with ¢, = (Z;Z) (3.2)
an(t =0) = qp, '/ 1sisN

where the subscript -5, recalls that (3.2) comes from a spatial discretization of (2.9).
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3.2. The low Mach problem

We want to study whether the Godunov scheme is accurate at low Mach number in the sense that it satisfies
a version of (2.16) at the discrete level. Then, discrete incompressible spaces £ and (Eg)l and a discrete
orthogonal projection P have to be defined on triangular or Cartesian meshes. Moreover, the key points to
obtain (2.16) at the continuous level are that &, = Ker L,, and that (2.9) conserves energy (see Lem. 2.4). Then,
the relationship between the discrete incompressible space £" and the kernel of the Godunov scheme Ker L?
have to be studied. The following theorem explains why this study is so important:

Theorem 3.3. Suppose that system (3.2) is well-posed in such a way that |gn(t)| < C|lgb|| for any t > 0,
where C is a positive constant independent of the Mach number M and suppose moreover that E! C Ker L!.

Then, we have
lgp —Poapll =0 (M) = Vt20, |an—Phapll=O(M).

For a proof, we refer to [13,16]. In Theorem 3.3, system (3.2) is assumed to be well-posed. In particular, stability
will be studied in more details in Section 4. In the current section, we focus on the kernel of the Godunov scheme
on Cartesian and triangular meshes.

3.3. Kernels of the Godunov scheme

We first study the discrete kernel of the Godunov scheme (k = 1 in (3.1)) on different types of meshes and of
its low-Mach modification (k = 0) on Cartesian rectangular meshes. The kernel Ker Lﬁ,a of the discrete acoustic
operator L.” _ is defined by

K,q

Ker L} , = { qn = <$> € RSN‘ Vi, Z T4 {((au)i + (au);) - nij + ag;(ri — V”j)] =0
? Fijcaﬂi

. K
and Vi, Z L] [n— +rj+—
Ty COQ

((au)i - (au)]) ~nl-j] n;; =0p. (3.3)

)

On any type of mesh we have the following result, whose proof is postponed to Appendix A:

Lemma 3.4.

u; J

Ker ILZ>0,04 = {Qh = (7‘1 ) € R?’N‘Hc eR,Yi,r; =c and (ou), n; = (au), - nij} (3.4)
and

Kerlﬁ:oﬂ = {Qh = (;Z) € RSN‘HC eR,Vi,r; =c¢ and Z T ((ozu)i + (ozu)j) ‘N = 0}. (3.5)
i I';;CoQ;

Moreover, we have
h h
Ker L C KerlL_g,-

k>0,a0 =
3.3.1. Kernel on a triangular mesh

We now study some particular properties of the behavior of the Godunov scheme on a triangular mesh.
Especially, we study the relation between the kernel of the Godunov scheme on a triangular mesh and a discrete
version of the space &, defined by (2.11).

Construction of Eg’A and (S Z’A)L. We construct an accurate discrete version of the well-prepared subspace
Es defined by (2.11). Let us suppose that all ; are triangles arranged so that the computational domain is
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periodic. Moreover, let us denote by Vj, the standard P! (first-order polynomial functions) Lagrange finite
element space associated with this triangular mesh

Vi, := {¢n € C°(T), ¥y, periodic on T such that V€ : (¢n)j0, € P (%)} . (3.6)

Let us also denote by W}, the nonconforming Crouzeix-Raviart P finite element space associated with this
triangular mesh

Wy, == {¢n € L*(T), ¢, periodic on T such that V€ : (¢5)0, € P (%)

and ¢y, is continuous at the edge midpoints}.

Note that since the functions in V}, (resp. W},) are P! on each cell, their curls (resp. their gradients) are constant
vectors on each cell. Let us also define the discrete vector subspace

3

EMS = {qh = (S) € R3N‘3(a,b7c,wh) ER3 XV, Vi € [I,N], r; = c

a

and (au), = <b> +(V x wh),ﬂi}. (3.7)

Then, we define the space of constant piecewise functions
12(T)? := {qh = <7") € RSN’ D107 + [wif*)ai < —|—oo}
u; i .

endowed with the scalar product (2.10) which may be written for (q;); and (qz)2 in [2(T)? as

((gn)1, (Gn)2) o = Z 0] [(r1)i(r2)i + (1) - (ug)i] a. (3.8)

Adapting the proof of Theorem 4.1 in [1] (see also [32]) to the case of periodic elements in V}, and W), and
weighted spaces, we may prove the following lemma:

.....

holes. For any (r,u)T € R3N | there exist unique (a,b) € R?, a unique v, € Vi, and a unique ¢, € Wy, with
Jpn(z)de = [ ¢p(x)dax =0, such that on any Q;, we have

r; _ r T —-T
(2)= (1) deonn )+ (0)

with T = g5 - Moreover this decomposition is orthogonal for the scalar product (3.8).

Proof. We firstly prove the orthogonality of decomposition (3.9). The orthogonality between 7 and r — 7 is
obvious because, by definition of 7 we have:

(For = Thop = > [QlaiF(r —7); =7 <Z |Qilovir; =7 |Qi|ai> =0.

Now, we prove the orthogonality for the decomposition of u. For any (a,b)’ € R? and ¢;, € W}, (then V¢, is a
constant vector on each cell €2;), we have:

<; <b) ,v¢h>ah - <b) DI, = (b> -;/Q}Vm)n,-dx

)
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= (Z) Z oo ¢pndo = (Z) FZ:/FQ [Pn)ijnijdo

where [@p,];; denotes the jump of ¢, through the edge I';;. To obtain the last equality, we used the fact that each
interface I';; contributes twice in the sum over the cell boundaries. Since ¢y, is a P! function, its integral on the
edge T';; is equal to the length |I';;| multiplied by the value of ¢, at its midpoint. Thus, since ¢y, is continuous
at the edge midpoints, we have frij [¢n]ijnijdo = 0 on any edge, which proves the orthogonality between the

field é(a, b)T and the gradient of any element in W},. Moreover, for any 1, € Vj, and ¢, € W}, (then V x v,
and V¢, are constant vectors on each cell €2;), it holds that

1
<aV X Y, V¢h> = ; 1[(V X ¥n)j0, - (Von)a, = ;/ﬂi(v X Yn)iq, - (Von)q,dx

a,h

= Z/ag-((bh)m (V x ¢h)|Qi -ndo — Z/Q,(qsh)lﬂ"'v (V x ¢h)\ﬂidx~

Since V - (Vx) = 0, the second sum vanishes. Moreover, denoting by t a unit vector such that (n,t) is a direct
orthonormal system, the equality (V X ¢p,) -n = (Vib,) - t and the fact that Vi, - t is continuous along any
interface I';; (since ¢y, € V}, is a P! nodal Lagrange function) imply that

1
<aV X ¢h7V¢h>a,h = ;/FJ Vb, - tij [@n]i; do.

But on I';;, the product Vo, - t;; [¢n]ij is a P! function, and its integral over I';; is equal to the length |I';j]
multiplied by the value of this function at its midpoint. Thus, since ¢ is continuous at the midpoint, then
frij Vb, - tij [¢n]ij do = 0 on any edge, which proves orthogonality between éV x 1 and V¢p. Then, the
orthogonality of the decomposition is proved.

We secondly prove the existence and the uniqueness of decomposition (3.9). For r there is no difficulty. Thus,
we only consider the decomposition for u. We have to prove that the function L defined by

L:R2x V2 x WP — RN (3.10)

((5) wmen) =5 (5) + 29 x v+ von
« «

is bijective, where V}! = {4y, € V3| [ ndx =0} and W = {¢) € Wy| [ ¢rdx = 0}. Firstly, we prove injec-
tivity. As L is a linear function, we just have to prove that

L ((Z) 7wh,¢>h> —0— ((Z) ,%%) .

Assume that for all i € [1, N], a% (Z) + a%(v X n)q, + (Vén) |, = 0. By the orthogonality that we proved

above, this implies

a (e 1 —
vie[L,N]: @ <b> + 5 (VX ¥, =0,
(Von)ia, =0,
which implies that
(Q/Jh)lﬂl (:C,y) =bx — ay + /B’iv
Vie [1,N]: 3y € R, 35, € R, ¥(z,y) € O,
(én)10, (z,y) = 7i-
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Since ¢y, is continuous at the edge midpoints and since 9y, is continuous on T, (7;)i=1,...~ and (5;)i=1,... n do
not depend on i. Then, we have

’Lph(xay) =bxr — a/y—i_ﬁ,
3(8,7) € R?, Vi € [1,N], ¥(x,y) € T:

on(z,y) =1
Since fT ¢rdx = 0, we obtain ¢, = 0. Since 9, (x,y) = bx — ay + [ is periodic on T, we have a = b = 0 which

implies that v, = (. And since fT Ppdx = 0, we obtain 1, = 0. The conclusion is that <<Z) ,wh,d)h) =0

and the function L in injective.

To prove surjectivity, we prove that dim (R? x V x W?) = dim (R*") = 2N. Any function 1, € Vj, is
completely and uniquely determined by its values at the V' independent nodes of the mesh, which implies that
dim V;, = V. Moreover the vanishing mean-value of ¢} implies a constraint that links the values on the various
nodes. Thus, we have dim V) = V — 1. On the other hand, any ¢5 € W}, is completely and uniquely determined
by its values at the F independent edge midpoints of the mesh, then dim W, = E. Moreover, the vanishing
mean-value of ¢, implies a constraint that links the values on the various edges. Thus, we have dim W) = E—1.
To summarize, we have

dim (R* x V;) x Wp) =2+ dim(V})) + dim(W})) =24+ (V - 1)+ (E—1) =V + E.

Now, in a triangular periodic mesh of a rectangular domain with no internal holes, it is well known that
E +V = 2N (proof by recurrence on the number of cells using the Descartes-Euler formula for a periodic
domain), which proves the bijectivity of the function L. O

Corollary 3.6. We have

(SZ’A)l = {Qh = (Tl> € RBN‘ Z 1Qi|ars =0 and  3ép € Wi, Vi € [1, N],u; = (Vfbh)m}-

u;

Let us underline that Lemma 3.5 with Corollary 3.6 is the discrete version of Lemma 2.2 on a triangular
mesh.

A first explanation of the satisfying behavior of the Godunov scheme on triangular meshes. Here,
we prove that, on triangular meshes, the kernel of the Godunov scheme corresponds exactly to the discretized
space 2. This property shows that the discrete stationary space discretizes well the continuous one. This gives
a (partial) explanation of the satisfactory behavior of the Godunov scheme on a triangular mesh.

Proposition 3.7. Assume that (£;), 1N s a triangular periodic mesh of a rectangular domain with no

internal holes. We have -
Ker L4 = 52’A.

k=1,

Proof. We firstly prove that £M4 C Ker LZ:LQ. Let gn, € EM. There exists (a,b,¢) € R and 9y, € V}, such
that (see (3.7))

Vi€ [1,N] (au); = (Z) + (VX 4n) g,

that is to say

Vi € [[].,N]] : (au)i ;= <Z> sy, +(V X wh)‘gl ‘N = (Z) R +(V’L/)h)‘91 t”
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where t;; is a unit vector such that (n;;,t;;) is a direct orthonormal system. As already explained in the proof
of Lemma 3.5, the fact that 1, is a P' Lagrange function implies that (Vz/)h)m by = (th)lgj -t;; and as a

by using (3.4).

there exists ¢ € R such

consequence the continuity of (cu) - n through the cell edgeb This means that g, € Ker L
Now, we prove that Ker L4 C EMA. Let g € Ker ]L,,i 1 Lb4a

k=1, k=1,a

that for all 4, r; = ¢. With Lemma 3.5, we have

(2 5) e o) o

for some (a, b, ¥n, ¢n) € R? x Vj, x W}, this decomposition being orthogonal. Thus, we just have to prove that
V¢, = 0. By orthogonality, we have

Z €2 |a;

Rl(){

Since g;, € Ker

St

AP = (, (Von)) o
_ Z'Q (o), - (V)0 = Z(au)i-/‘(V(bh)midx

because au and V¢, are constant on each triangle ;. Then, we can write

Z |Qz‘al ? = Z(Oéll)i /6 (¢h 19 nzjdg - Z/ ¢h |92 nz]da

i

— Fz:/F] [(#n)10, (@) - ni; + (¢n), (an); - ny;] do.

Since g, € Ker L™ we have (au); - n;; = (au); - n;; and we denote by (o, );; this common value. Thus

> lula P =Yt [ (onlisao

Ty Lij

K= 1a7

where [¢p];; denotes the jump of ¢;, through the edge I';;. As already explained in the proof of Lemma 3.5, the

fact that ¢, is a P! function, which is continuous at the edge midpoints implies that frﬂ[th]ijda = 0 on any
ij

edge, which proves

K3 2:0

D 1€ ||(

%

that is to say for all i € [1,N], (Vén) o, = 0. This proves that g, € 4. O

3.3.2. Kernel on a Cartesian mesh

We now study some particular properties of the behavior of the Godunov scheme on a rectangular uniform
Cartesian mesh. Especially, we study the relation between the kernels of the standard Godunov scheme (k = 1)
and of its modification (k = 0) on a uniform Cartesian mesh and a discrete version of the space &, defined by
(2.11).

Construction of € Z’D and (SQ’D)J_. We construct an accurate discrete version of the well-prepared subspace
&, defined by (2.11). Suppose that the computational domain is a rectangle and that the mesh is made up of
N, x Ny rectangles of constant size Az x Ay where IV, and N, are the numbers of cells in the  and y directions.
In what follows, we shall suppose that both IV, and N, are odd. Indeed, if this is not the case, the situation is
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a little more involved due to even/odd decoupling which may produce checkerboard modes. We introduce the
following operators, which are accurate approximations of their continuous counterparts:

9 Vij+1—Pij—1
rotoy, : RN=Nv — (RY>Mv)" with (rotony); ; := wmzf_ywifl E
P e uE SV B Sk SV N - 2

. N2 Yit1,j—=%i-1,5
grady;, : R i (RY™)" with (grady, )i = | voui20,, |-
2Ay

In these definitions, it is implicitly meant that (1; ;) € R=Nv is periodic, that is to say

{Vi € [1,N:],  %io=vin, and YiN,+1 = Vi, (3.11)

Vi€ LN, voj=%n,; and  Pn,p15 =Y

Let us now define the following subspace, which is an accurate discrete version of &, defined by (2.11).

£x = {qn = (u) e R™NNr|3 (a,b,c, (1)) € R® x RN, (i, ) € [1N,] x [, N, ],

rij ==¢C and (Oéll)i,j = <z> —+ (I'Otgh’(/J)iJ}. (312)
We shall also need the following weighted discrete scalar product:

((@n)1s (r)2)ap = D1 jlai j[(r1)ij (r2)i g + (Wa)is - (w2)i 5] (3.13)
Z’J
We introduce in the following lemma a discrete Hodge decomposition for a collocated Cartesian mesh with
periodic boundary conditions. The orthogonality is to be understood with respect to the discrete scalar product
defined by (3.13). Nicolaides [31] also proved some kind of similar result but did not consider periodic boundary
conditions, weighted spaces and collocated meshes (he did the proof for a staggered mesh). The proof presented
here does not use the same techniques as Nicolaides’.

Lemma 3.8. For any (r,u)T € R3N«Nv_ there exists unique (a,b, (1 ;), (¢:;))) € R? x RNeNu x RNeNy - pith
> 1Qigig =320 Q6 ldi; =0, such that for all (i, j) € [1, No] x [1, N,],

7 _
rig) _ Tig =T 3.14
<ui,j) oj,j (z) * ﬁ,j(mt%w)i,j " <(grad2h¢)w’) 10

—Zif ! lg’;vlé‘(:_é” . Moreover this decomposition is orthogonal for the scalar product (3.13).
iyg 138,510, 5

with 7 =

Proof. Let us first prove orthogonality. The orthogonality between 7 and r — 7 is obvious. Now we prove the
orthogonality for the decomposition of u. We have, for any (a,b)? € R? and periodic sequence (0ij)ij € RN=Ny
in the sense of (3.11)

((3) ,<grad2h¢>>a h

)

1 a
> Qi jloi; — (b) - (grady,®)i,;
i,j J

1 <a> ' <Ay i (Piry — ¢i—1,j)>
2\ b Az, (bij+1 — Pij—1)

Il
7 N
> Q
~~_
7N
oo
~~
I
o
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because of (3.11).
Moreover, for any t; ; € RN+Nv and ¢; ; € RN+Nv periodic in the sense of (3.11),

1 1
<ar0t2h¢7grad2h¢> =1 D Wit = vij-1) (Gir1y — $im15) = Wiy — $im1,5) (Gijr1 — bij—1) =0
2%

a,h

because of the periodicity of (¢; ;) and (v;;). Then, orthogonality of the decomposition is proved.
We shall now prove existence and uniqueness of decomposition (3.14). For r there is no problem, so we only
consider the equation in u. We have to prove that the function L defined by

L: R2x RY*™M x R — (R2)N=Ny (3.15)
((Z) (i), (¢i,j)> = <; <Z> + é(rotzfﬂ/)) + (grad2h¢)>.

%

is bijective, where Rév’Ny = {(1/1”-) € RN=Ny

function, we just have to prove that

> Qi = O}. Firstly, we prove injectivity. As L is a linear

a

e [
L ((b) (W), ((bi’j)) = V(Zj) € [1, Vo] x [1, Ny ], 4 = ¢i5 = 0.

Assume that for all (4, 7) € [1, Ny x [1, N,],

(1 <Z> + é(rotgh@[;) + (grad2h¢)> =0.

(67

i,J

By the orthogonality property proved above, this implies

V(Z,]) S [[LNxH X [[LNy]], <z> + (r0t2h¢)i,j =0 and (grad2h¢)i7j =0

Vi1 — Yij—1 = —2aly,
1y — i1 = 2bA
() € [1 VL] X [L,N,], 4 Vitnd T Ving = 2647,
Git1,5 — Pi-1,5 =0,
bij+1 — Pij—1 = 0.

Then, for all ¢ € [1, N,], (¢;,;)2; is an arithmetic sequence of step —2aAy. By periodicity, we deduce that a = 0.
We obtain that 1; j11 = ; ;1 for all (¢, ) € [1, Ng] x [1, Ny]. Then, because N, is odd, this implies that

Vi € H]-er]]a Elﬂl € Rv V] € [[LNyﬂv 'l/)i,j = 51

Note that if N, were not odd, there would be an even/odd decoupling here (there would exist constants 5944
and (8¥" such that ¥; o5 = 85V and ;2511 = B9).
In the same way, it holds that b = 0 and that

V] S [[I,Ny]], H’YJ S R, Vi € ﬂl,NwH, wiJ =j-

Both equalities on 1; ; can happen simultaneously only if the values do not depend on 7 and j, and thus v; ; is
constant. Since »_, ; AzAyi; j = 0 we obtain

V(’L,j) € [[17Nwﬂ X [[17Ny]]a wz,j =0.
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Similarly, we obtain for all (7, j) € [1, N;] x[1, Ny], ¢;,; = 0 and the function L is injective. Moreover, injectivity
and the following space dimension equality ensure bijectivity:

dim (R2 x R RéV“Ny> =2+ 2dim (R{)VwNy) =2+ 2(N,N, — 1) = 2N, N,,.
O

A first explanation of the wrong behavior of the Godunov scheme on a Cartesian mesh. In this
section, we show that the kernel of the standard (k = 1) Godunov scheme is not an accurate approximation of
the kernel of the continuous wave equation. On the other hand, we show that the kernel of the modified (x = 0)
Godunov scheme does approximate correctly the kernel of the continuous wave equation.

Proposition 3.9. Assume that (Qi7j>i=1~~-NT J=1eN, is a Cartesian periodic mesh of a rectangular domain with
no internal holes. We have
Ker LZEO,& cet

=

with

KerL!5 , = {qh = (;) € R¥=Nv13 (¢, (a4), (b;)) € R x RNy x RN,

V(i,5) € [1,Nx] x [1,N,], ri;=c and (au);,; = (ZZ) } (3.16)

On the other hand, we have
KerLMY = 52"3.

r=0,c

Proof. Starting from (3.4), equality (3.16) is readily obtained. Indeed, considering vertical edges of the Cartesian
rectangular mesh, (3.4) implies that (au,); ; is constant along the z-direction; then this quantity depends only

on j. In the same way, considering horizontal edges, it follows that (cu,); ; is constant along the y-direction, and
thus depends only on i. We clearly see that Ker ILZ’EO@ is a very poor approximation of its discrete counterpart,
since it contains only velocity fields whose horizontal (resp. vertical) component depends only (up to the factor

«) on the vertical (resp. horizontal) coordinate.
RO gh,[l
«

Concerning the inclusion Ker LZ’EOA ¢ &MB it will be a consequence of the proof that Ker L. 204

=

since Lemma 3.4 implies that Ker LY ¢ Ker LMD

k>0, = rk=0,a"
Let us now turn to the case x = 0. We first prove that Y C Ker L
(a,b,c) € R® and (¢; ;) € RN=Nv such that

h,0

rk=0,a"

Let ¢, € &MY, There exist

V(i,j) € [LNo] X [1,Ny], rij=c and (om);; = (Z) + (rotant)i;-

Denoting by €2 ¢ one of the four neighbors of €2; ; and n(; ;)¢ the corresponding unit exterior normal vector
on their interface, we have for all (4, j) € [1, Nz x [1, Ny,

>, [Fapwol ((au)i,j + (O‘u)k,é> TG, ) (k )
Uiy (k.0 O

= Ay ((ou);; + (au)ip1;) - ((1)) + Ay ((aw)i; + (aw)ir,j) - <_01>
+Az ((aw);j + (om); j41) - ((1)) + Az () ; + (au)i ;1) - (—01>
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— Ay ((a)is1 — (aw)iiry) - (é) + Az ((om); j+1 — (o)1) - ((1))

Yit1,j41 ;1/)z‘+1,j71 - (aAy n Yi1,541 ;1/}1'1,3‘1)

+ <be ~ Yig1+1 — ¢i1,j+1> 7 <be R 1/1i1,j1>
2 2

=aAy+

=0

and then g5, € Ker }LZ’EO,Q.
Lh"D ]Lh’D

Now, we prove that Ker L, 5, , C SQ*D. Let g, € Ker L, . This first implies that there exists ¢ € R such
that for all (¢,7) € [1, N;] x [1, Ny], ri; = ¢. Next, using Lemma 3.8, we can write

L (rotonth)s; + (grady, ), (3.17)

Q5

1
Vi) e ILNDX LN L = ()4

2%

for some (a,b, (¢;;), (¢ij)) € R? x (RNxNy)Q and this decomposition is orthogonal. We need to prove that
(grad,;,¢);,; = 0 for all (7,7). By orthogonality in (3.17), we have

Pit1,i—Pi—1,5
2
> AzAyai; |(grady,d)i,|” = (u grady,d), , = > ArAyaju;; - (@,jﬁéﬁwl ) :
iJ i,J 24y

Expanding the dot product and rearranging the sum through changes of indexes in order to factorize by ¢; j,
we obtain, using periodicity to handle the boundary terms and the fact that, for any given cell €2; ; we have

20y 09 L k0BG 5 (k0 = 0

(grady, )2 ), = %Z (Ay [(aug)i-1,; — (aug)ip1,5] + Az [(auy)ij-1 — (Quy)ij1] ) dij
i

1
52 % D [Papmal @), n6 e
i,J

T,y (k) COQ 5

1
=52 %5 > [Fapwol <(au)i,j + (au)k,é) "G00 = 0,
%] a5y (k,0)CO% 5

because g, € Ker L™ . This means that for all (i,5) € [1, N,] x [1,N,], (grady,¢);; = 0 and then (3.17)

k=0,

gives us for all (4,7) € [1, N, x [1, Ny],

1 1
u; ;= — (Z) + ——(rotan); ;.

Qi j Qi j
h,0
Then, we have g, € . O

On Cartesian meshes, this proves that deleting the diffusion term on the velocity field (k = 0) allows to
recover a kernel that is an accurate approximation of its continuous counterpart.

4. RIGHT OR WRONG BEHAVIOR OF THE GODUNOV SCHEME IN THE LINEAR DISCRETE
CASE

We now study the low Mach accuracy of the Godunov scheme in the sense that the numerical solution (3.2)
satisfies a discrete version of (2.16). As explained in Section 3.2, the two key points to prove this kind of property



1214 S. DELLACHERIE ET AL.

is that the kernel of the scheme satisfies £" C Ker L! and that system (3.2) is well-posed (see Thm. 3.3). The
study of the kernel was performed in Section 3, x > 0 and x = 0 define discrete operators L, o whose kernels
are very different. We now prove the well-posed property (I2-stability) and then study the low Mach accuracy
of the Godunov scheme on Cartesian rectangular and on triangular meshes.

4.1. li-stability of the Godunov scheme

We now prove stability of the semi-discrete scheme both when x = 0 and when x > 0. This property is
essential in the sequel. Let us define the energy

Ep = ||Qh||zzg = Z |Qilai (77 + [wil?) - (4.1)

?

Theorem 4.1. Let (r;,u;) be the solution of the semi-discrete scheme (3.1). We have

d d 9 O 9 K
= gyl = =g Il (ot =+

((aw); = (aw),) - ny

2) . (4.2)

Then, for k > 0 the Godunov scheme is dissipative since

d

d
—F, = — 2 <0.
de h dt”qh”lg_o

Proof. We multiply the first equation of (3.1) with 2|Q;|r; and sum with respect to i. Since a; does not depend
on time, we obtain

d
T Z || cir?

~ 33 0l (0w, + (), ) e+ sy = 7))

7 FHC(‘)Qi
a
=32 2 It ((O‘“)j'“iﬂ‘ri*a“(”_r-”)”)’
i Ti;CO0;

a
== > Tyl ((au)j ‘i + (o), - myirg + aig(ri — 1)+ agi(ry — Tz‘)Tj) ;
a
=37 2Tl ((Tz' (au); —r; (Oﬂl)i) e TjIQ) :
Fij

Taking the scalar product of the second equation of (3.1) with 2|Q2;|u; and summing with respect to i, we obtain

d *
E ; |Ql|az\ul\2 —GM Z Z |].—‘Zj|041 (’I"i + Tj + Oéi” ((Oéll)i — (au)j) . nij) u; - Ny,

i Fijcaﬂi
Ay K
== > Iyl (s + = ((aw), - (aw), ) ny; ) (aw)i -y,
i T;;Co0 Y

a
= -3 FZ. |Fij|(7‘j(04u)i ‘m; +ri(au); 'nji)
—2 3 Iyl ( ((0w), = (aw); ) 0y (aw); -0y
e~ ay ' i) !

+ ((au)j - (au)i> ‘nj;(au); 'nji>,
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a
=~ > ITy] (Tj(au)i - m(au)j) -0
Fr’,j

s K 2
~57 2Tl - [((aw), - (aw), ) - ny;
Ty

By summing & > |Q|a;r? and & 37 [Q]a;]u;?, we obtain (4.2). O

4.2. The triangular mesh case

In Section 2.3.4, we saw that in the continuous setting and for low values of the Mach number, the solution of
the continuous system remains close to an incompressible state for any ¢ > 0, if this was the case at the initial
time t = 0. This section will show that this is also the case at the discrete level for the numerical solution of
the Godunov scheme applied to the linear wave equation with porosity on triangular meshes. This explains the
satisfactory behavior of this scheme on this type of meshes.

We saw that the Godunov scheme (k = 1) preserves an incompressible state ¢} € EQ*A. We want to study the

impact of a perturbation of order M in (é’gvﬁ‘)L on the initial condition. With the orthogonal decomposition
proved in Lemma 3.5 and with definition (3.7), we can define an orthogonal projection

PhA s 12(T) — M2,

The theorem that follows expresses the fact that any perturbation of order M in the orthogonal space at the
initial time will not affect the solution over time more than its original size:

Theorem 4.2. Let qn(t) be an approxzimate solution of (2.9) given by the Godunov scheme (3.2) with the initial
condition ¢Y). On triangular meshes with k = 1, for all ¢) € 12(T)?, we have

vCy >0, <||q2 _PZ"AQQLng = 01M> == (Vt >0, |an —PZ’Angzg (t) < 01M> . (4.3)

RO

rne1.q- the solution g, of scheme (3.2) with initial condition ¢? can be written as

Proof. By linearity of L

qn = qn,1 + qhn,2

where gy, 1 is the solution of (3.2) with initial condition g, 1(t = 0,x) = (¢ —P"*¢?)(x) and gy, » is the solution
of (3.2) with initial condition g5 2(t = 0,x) = P2¢(x). We have

VE>0, |lgn— ]P’Z’Angli () = |lans + an2 — IPZA‘II%H@ (t) < ||Qh,1||l§ )+ ||an,2 — PZ’Aqioszg (t).

Because the Godunov scheme (3.2) is dissipative when x > 0 (see Thm. 4.1), we have ||gn,1||,2 (t) < |lgn,1]l;2 (0).
Moreover, since Ph2¢) € EM4 = Ker ILZ’:ALQ, the initial condition for g o is in the kernel of ILZ’:ALO(, and

therefore gy, o is stationary: for all t > 0 we have gy, 2(t) = PZ’Aqg. We obtain
V>0, |lgne —Pa2¢’|,, (1) =0

and (4.4) becomes
V20, [lon = Pe2ah]] () < lanallz (0) = C1M

if ||g) — PRA2gplliz = C1M. 0
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4.3. The Cartesian mesh case

We saw that the Godunov scheme (k = 1) on Cartesian meshes does not preserve an incompressible state
q2 € Sah’D, but it preserves it if we delete the numerical diffusion on the velocity by setting x = 0. From
Lemma 3.8, we can define an orthogonal projection

PR 2(T)? — gD

We want to study the evolution over time of the initial condition when it consists in the sum of an element in
the discrete incompressible space (SQ’D) and of a perturbation of order M in (SQ’D)L

This will give an explanation of the wrong behavior of the standard (k = 1) Godunov scheme on a Cartesian
mesh and of the satisfactory behavior of the modified (k = 0) scheme. Moreover, since completely deleting the
numerical diffusion by setting x = 0 was shown in [16] to present stability issues in the non-linear case, we shall
also study the intermediate case kK = M.

4.3.1. Ezplanation of the wrong behavior of the Godunov scheme on a Cartesian mesh

The next theorem shows that for the standard Godunov scheme (k = 1) on Cartesian meshes, starting
from a perturbation of an incompressible field, the numerical solution will substantially deviate from the initial
condition after a short time that scales like O(M), when the space discretization parameters (Az, Ay) are larger
than the Mach number.

Theorem 4.3. Let gj,(t) be the solution of the Godunov scheme (3.2) with initial condition ¢) on a Cartesian
mesh with discretization parameters (Ax, Ay). Then, when k = 1, there exists Cy > 0, depending only on «, ay
and on T such that for almost all ¢ € 12(T)? and for all Cy > 0, there exists Cs depending only on (C1,q))
such that for any M < g—i’ min(Az, Ay) we have

Hq2 - Pr0 OH phO OH ) > Csmin(Az, Ay). (4.4)
Proof. By linearity of ]LZ Dl .o the solution gj, of the Godunov scheme (3.2) with initial condition q? can be

written as
qn = qn,1 T qn,2

where gp,,; is the solution of
h,0

L =1,
Or(agn1) + =57 (qn1) =0, (4.5)
gn1(t = 0) = g — P )
and gy, 2 is the solution of
8,;(Oéqh,2) + (q ) 0, (4.6)
qh’g(t = 0) ]P” 0
We have
vt >0, th —Pean), (8) = ||an1 +an2 —PeTah || (1)
> [ =204t © = lanally 0
= qh2 — PZ’ qg 2 (t) - Hq}hl”lg (O)
> |lqn2 — PP D(Ih (t) — HQh Pl th (4.7)
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PZ’DQO

hHZQ = C1 M, then (4.7) shows

because scheme (3.2) is dissipative when £ > 0 (see Theorem 4.1). If ||¢) —
that we need to find a lower bound for the function

PO (2

@

t— HQh,Q -

where g, 2 is the solution of (4.6). Before proceeding to the detailed proof of this proposition, let us briefly

n0
mention the ideas behind it: the initial condition of (4.6) will be diffused by the operator 5% onto its
orthogonal projection in the kernel Ker(LZ 1.o) (this orthogonal projection is denoted by IP’N 1,0 in the sequel)

I[DhD

w1 (PhHg Hg?) exponentially fast with a convergence

and we shall prove that the solution of (4.6) will tend to
rate that depends on %. As a consequence, after a time that scales like O(M), the solution of (4.6)
will be close enough to its projection, and thus far enough from the initial condition. To prove this in detail, we

shall follow the lines below:

(1) we write
h,O0
an2 —PhOG) = qnp — PR PROg) + PG PRDg) — PO,
(2) we verify that g := qn2 — IP’Z Dl aPZ Hgf is solution of (3.2) and that G, (t) € Ker }P’K 1.0 forall £ >0,
(3) we use an energy estimate for solutions of (3.2) and a discrete Poincaré—Wirtinger mequahty for gy that is
satisfied on Ker IP’K 1.0 10 estimate how fast g, tends to 0,
(4) we obtain (4.4) by considering times of order M.

In order to obtain these results, we first prove a series of Lemmas. We start by some considerations on the
orthogonal projection onto Ker L:’:l o

Lemma 4.4. The operator

P 2(T)H - Ker LMD (4.8)
_ AzA
Za“AIAy%THO&H ray
1 Ne )
o _ Ug )i s AT
qn = <£”) = e, Y A k:1( ! (4.9)
0, j —1 k.

Ny
i Y ()i Ay

2%

s

1,0+ Moreover, if qn is a solution of (3.2) on T with initial

is the orthogonal projection ]P)Zfl,a on Ker
condition q,ol, then:

(4.10)

NN

qy € Ker PIT) = qi(t > 0) € Ker P15

Proof. Recalling that Ker ]L,,C 1o is characterized by (3.16), it is first straightforward to see that P(gn) €
Ker ]LZ Dl Next, lengthy but easy algebra leads to ((qn — Pqn), sn), = 0 for all s, € Ker LZ):Dl,a' These two
properties exactly prove that IP’ P

nla

Moreover, when ¢} € Ker P then (4.9) implies that s(0) = s,,;(0) = s,,;(0) = 0 for all (4, j) where

mlou

2
=

() =3 reelDarAedy, 5.5 =3 (ks (OAT, s,5(t) =3 ()i (DA,
k.0 1 1

i
~
Il
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Then it suffices to prove that 45(¢) = dfﬁ’j t) = d‘zlyt’i (t) = 0 for all time and all (¢,7) to obtain (4.10). As far

as s is concerned, this is a direct consequence of the conservativity of fluxes in the first equation of (3.1). As
far as s, ; is concerned, extracting the & component of (3.1) and specializing to a Cartesian mesh, we get

d(ug)i,; ay
i T arag Firrg — Fiim1) =0
with Fiipy = (rig + rivg) + 57 (@0(We)iy — airrj(Ue)ivey) and Fiirg = (rig + rieig) —
i+3.
%%%J(ai7j(u$)i7j — a;—1,j(ug)i-1,5), where we recall that a; 1 ; is the value of the porosity at the inter-

face between cells Q,_; ; and €; ;. Multiplying the equality above with (Az), summing over ¢ and noting that
Fi_1,; = F; -1, we obtain with periodic boundary conditions that dsa, —52(t) = 0 for all > 0 and all j. The
same kind of proof applies for the vertical component s, ;. O

I[DhD

We now write a discrete Poincaré-Wirtinger inequality for a function ¢, € Ker P, .

Lemma 4.5. There exists a constant K,(T) > 0 depending on T and o such that for any qn := (r,uz, uy)t €
Ker IE”H 1,

[0

K, (T
lanllz < == (T) Yo Azag o rig—rigal Y Ayey_y i —rioa )
i

min(Az, Ay) -
1
+ ZAy [(oug)iy; — (oug)i- 1]| + ZA‘T‘ oy ) (auy)i7j—1|2 . (4.11)
i,5 —3. ij B2

Proof. Let qn, = (r,uz, uy)L € Ker]P’H 1,o- This implies that >, - AzAya; jr; ; = 0. Using the discrete weighted

,ot

Poincaré-Wirtinger inequality (see Prop. B.2) on r with (“H’/Lz—aw“m—f) = (ai7j,ai_%,j,ai,j_%), we

obtain
2 2 2
1 L +L
E ArAya; jr? . <2lla|% || =] ——e—— E Az j_a|ri;—rij 1 +§ Ayo 1 jlrij =i i
o 27" 1,7 [e'e] a ooHllIl(Al’,Ay — i, 1, ] — v 7 N2 1—1,7

(4.12)

As far as u, is concerned since for all j € [1, N,], 0 = Zgil(ugg)k,jAw = Zgil(auz) —— Az, by applying the

vj OL)C

1D discrete Poincaré inequality (see Prop. B.1) to the sequence k — (auy)y,; with the weights (uk,uk_%) =

( 1 L ,>7 we obtain for all j € [1, N,]

LTI

[N

Ak Ap L 1| 12 & 1
> vt < ol ] 58D awelny (e
By multiplying by Ay and by summing over j, we have
ZA.’L‘Ayai,j(Uw)?j < llelleo HlH Li ZAy l(auy)ij — (atg)i1 4| ! (4.13)
’ e Az o,

irj o irj =3
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The same analysis holds for u, such that for all i € [1, N,], 0 = ST (uy)seAy = S0 ()i g Ay7 and we
finally obtain

| L s 1
X aragors ) < ol 3] 525 A (e~ (@misal? (419
1,] ] >
With (4.12)—(4.14), the result follows. O

To prove inequality (4.4), we first prove the following lemma which shows that g > tends exponentially fast

to the projection of its initial condition on Ker L/ (Items 2. and 3. above):

nloz

Lemma 4.6. There exists a constant K, (T) > 0 depending on T and « such that

in(Az, A
)OPZ’D‘J%HP exp <_a*mm(x’y)t) _ (4.15)

20, [anz ~PiS A
= qh,2 dp 9MK,(T)

k=l,a" a

t) < H(l _phD

1
12 k=1,

Proof. Let us define ¢, = qn 2 —IE”Z Dl QPZ th = (7,0 )T The idea is to apply the energy estimate of Theorem 4.1
to ¢n and then the Poincaré mequahty of Lemma 4.5. For this, we first remark that g, satisfies (3.2). Indeed,

qn,2 satisfies (4.6), and pE prO ) does not depend on time and is in the kernel of Lh_l .o Then, g, is solution

kr=l,a"
2>

of (3.2) and with Theorem 4.1, we have
1d
2M ZAM 1 |fig =il +ZAy%ﬁj|ﬂ,f—ﬂ—Lj|Q
i

24dt

ldnllzz (2)

((ad); - (01, ) 0y

il <0fijfz' — 7+
4,7

+ Y Ayl(ady)i; — (ody)i- 1,g| +ZA$\ aity)i g — (adty)i g |

i, —3d i w2

(4.16)

]Pyhlj ]P)hl:’ Ph.0,0

nlaa

Thus, applying (4.10)
of Lemma 4.4, it follows that ¢, (t) belongs to Ker Pn;l,a for all ¢t > 0 and we can apply Lemma 4.5 to estimate
the right-hand side of (4.16). This leads to

Moreover, the initial condition of ¢, is g;,,» which belongs to KerP™

/{la

1d a, min(Az, Ay)
—_—— t).
Then Applying Gronwall’s lemma, we obtain (4.15) because ¢9 = (1 — P a a)o PrUgd. O

Now, we are able to prove Theorem 4.3 (Item 4. above). By applying Lemma 4.6, we have for all t > 0

HCIh,z—PZ’Dqg‘ o HPhD IP’ZDM]P’ZD% (t) - H(Im PZEQPZD% ( )
in(Az, Ay)
> @ -ptE ) oPhPl| (1 - —wt . 417
= H( K= 1(1) a Yn exXp QMKQ(T) ( )
Since the right-hand side of (4.17) is a growing function of time, we can obtain a lower bound by evaluating
it at any time; we set C' = H (Id — ]P’}; Dl ) © ]P’}(;’Dq?lH and choose tg = CoM with Cy = KZ—ET) and we obtain:

Vt > Cy3M it holds that

th,z - PZ’DQSH% (t)>C (1 —exp (—Hm(A;’Ay))) : (4.18)
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Using that 1 — exp (—z/2) > /3 for = € [0;1], Eq. (4.18) implies that for min(Az, Ay) <1

vt > CoM, thg —PRERN (1) > %min(Am, Ay). (4.19)

12

In the sequel, we assume that C is strictly positive, which is the case for almost all functions ¢y € 12(T)3. Let
us now suppose that

C1M < Csmin(Az,Ay) with Cj3 = %’

then we obtain from (4.7) and (4.19) that

vt > CoM, th - IF’Z’Dq?Lle (t) > C3min(Az, Ay)

for any M < %f min(Ax, Ay). O

Theorem 4.3 tells us that the wrong behavior of the standard Godunov scheme is due at the same time to a

wrong kernel (the image of (Id — IP’};’:DL o) o P s "t00 large”) and to a fast diffusion rate, at least proportional
to %. There are thus two options to propose a correction to this scheme, namely restoring a correct
kernel by setting x = 0 or drastically diminishing the diffusion rate by setting x = M. If none of these solutions
is used, then a possible (but expensive) solution is to choose (Ax, Ay) of the size of M. These three possibilities

are studied in the next subsections.

4.3.2. Correction of the Godunov scheme on a Cartesian mesh

Theorem 4.7. Let qx(t) be a solution of scheme (3.2) with initial condition q.
(1) With k=0, for all ¢ € 12(T)3, and all C; > 0 we have

Hqg - PgﬂnglZ — O\M =Vt >0, ||gn — Pgﬂqgulz (t) < C1 M. (4.20)

(2) When k= M, for all ¢ € I2(T)? and all C1,Cy > 0, there exists C3(Cy, Ca,q)) > 0 such that
a6 =290, = conr = v e [o:CaM), g — B0 | () < Cobt (4.21)

where C3 does not depend on M.

Proof. By linearity of LZ:E the solution g, of (2.9) given by scheme (3.2) with initial condition ¢ can be
written as

qn = qh,1 T qn2

where gp,,1 is the solution of

01aan) + S5 (an.) = 0

agn,1) + 7 (qn,1) = 0,

' M (4.22)
ana1(t=0) = g —PLq)

and gy, 2 is the solution of

]Lh,,D

F(aqn,2) + =7-(an,2) = 0, (4.23)
an2(t = 0) = PL5g;.

We have

vt 20, g Pl

(t) = ”qh,l +qn2 — PhHgd

L

LS
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(t)

< llanally ) + |lanz — PhTaR
< Nanlyy © + |an — P05, ©

12

(t) (4.24)

iz

< Hq2 — P

O
12 + th’2 B PZ, q2

because scheme (3.2) is dissipative when £ > 0 (see Thm. 4.1). If ||¢f, — P2P¢qP||,, = C1M, then (4.24) shows
that we need to find an upper bound for the function -

o ()

h,O
tHHQh,z—Pa 7|,

where gy, 2 is the solution of (4.23).
Assume that & = 0. Since P:U¢) € £MF = Ker L5, we have L") | (PP¢0) = 0 and gy, 2(t) = P27¢)) for

k=0, k=0,

all t > 0 is the solution of (4.23). Then of course ||gn 2 — IP”O"L/':'qOHl2 (t) =0 and (4.24) reduces to
w20, o —Pi|, ) <M

if Hqg — ]P’Z’Dqgnli = C1 M. The first point is proved.
Assume now that £ > 0. We have PUg) € £hD O Ker ]LZ:D and we can have LQ:E (PZ’Dqg) # 0. Since

(e

PhHg) € £MF = Ker L"5 . we have L5 (PhBg)) = 0 and thus

~r=0,a ~k=0,a
L0 L0 — ]thl()
o (b)) + 7 (Bh0ah) = = (PL%4))

Combining this with (4.23), setting g} := gn 2 — Pg"qu and using linearity, we deduce that

h,O h,0 n,0
Ln a L - ]Lre a

g = =t (PR, (4.25)

Taking the weighted scalar product of (4.25) with %, we obtain

* h,O * ]Lh’D _ }Lh,D *
N Lia . a5 k=0, ko (RO 0) 9n
O (aqp) > + qn, — =\ = (Pa’ Qh) y . (4.26)
< @ /on M « ah M « ah

It follows from the proof of Theorem 4.1 that

L ar a K
: h * 2
<;[aq,§,a> h—— i 2 (aij|r;‘—rj*| —|—07j‘((au*)i—(ozu*)j) 1y
a,

ij

Thus, from (4.26) and using the Cauchy-Schwarz inequality, we obtain

h,0 _ Lh,l:l

1d %112 LN:O’Q K,Q ), *
Mﬂmwwsuﬂm@gﬁ)|mmw

which leads to W0
145, - 148

k=0, , (]P;Z,Dqg)

Ve (4.27)

d *
= Nl () <




1222 S. DELLACHERIE ET AL.

For any ¢, a direct calculation shows that (]LZ’:DO’Q — ]LZ:QD)q is proportional to x and does not depend on M.

So (4.27) and the fact that g (t = 0) = 0 show that 3Cs(a, ¢, Az, Ay, a,) such that
. K
lailliz () < Ca 7t VE=0. (4.28)

Then from (4.24) and (4.28) when x = M, we obtain (4.21) with C3 = C} + C5Cj. O

Remark 4.8. It is important to stress that the constant C3 in item 2 of Theorem 4.7 depends on a con-
cept of discrete smoothness for q2 detailed in the next subsection and that, in the worst case, it may behave
proportionally to m.

4.8.8. The case of a very fine mesh

We observe that if the right-hand side of (4.27) can be bounded by Ck max(Az, Ay) with C not depending
on (k, M, Az, Ay), then we shall also have a bound of the type (4.21) if K = 1 (uncorrected Godunov scheme)
and max(Ax, Ay) < CoM. For this, we introduce the definition of discrete regularity:

Definition 4.9. Let g, := (74, Un o, Uny) be a family of discrete fields parameterized by (Az, Ay); then we
define H2(T)? to be the set of families of discrete fields such that

1
gox [ Zgs= .
(a (oup, ))

with the following definitions for the centered and staggered finite differences in the horizontal and vertical
directions

< +oo
12.(T)

qn||H2(T) ‘= sup
ol (M Az>0,Ay>0

"

C 1 S
oY <5 ’y(auhw))

(67

12,(T)

(v-+;’-—v-,;’-) (Z,_H,,Z, )
(5c,rv)i7j — T3 JAx 1—3,] , (5S,mz)i+%,j — i ,gAx 1,] ,

(w»- ;—wu_;) .. oy
(0% w); ; = w+2Ay S (0%Y2); jy1 = Gig = i)

Ay

This concept allows us to prove that with discrete regular initial conditions, refining the mesh is also a
possibility to obtain acceptable results on an O(M) time scale when using the standard Godunov scheme.
Indeed, the following theorem holds:

Theorem 4.10. Let g (t) be a solution of scheme (3.2) with initial condition ¢Y). When r = 1, for all ¢} such
that PZ’Dqg € H2(T)3, and all Cy,Cy,Cy > 0, there exists Cs (CO7Cl,Cg,q,0L) > 0 that does not depend on M,
Ax and Ay such that

Ax < C()M,
Ay < CoM, =Vt € [0; CoM], ||qn — PPl . (t) < C3M. (4.29)
I = B2, = Cuas a
Proof. For any qn := (Th, Un,e, Un,y); i A direct calculation shows that
(]Lh’lj —Lh’D) cx [1 som
k=00 ~ MR . _ Uk Az (0% [Lo* (auhx)])i’j (4.30)
Ma 2M ' '
Ay (0 [16%9 o)),
Therefore, if P"Ug) € H2(T)3, then (4.27) and the fact that g (¢t = 0) = 0 show that
Gk
il () < 2M||E”Z’DCI2HH3(T) max(Az, Ay)t Vi > 0. (4.31)

Then from (4.24) and (4.31) when £ = 1 and max(Az,Ay) < CoM, we obtain (4.29) with C3 = Cy +
% CoCallPL ) 112 ny- )
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5. NUMERICAL RESULTS ON THE WAVE EQUATION

In this section, we perform some numerical simulations on the linear wave equation with porosity (2.9) using
the Godunov scheme (3.1). The aim is to illustrate all the theoretical results of the article. A 2D periodic domain
T = [0, 1[x]0, 1] is considered. All simulations were run with an Euler explicit time stepping with a CFL number
of 0.4. The parameters a, and M are set to a, = 1 and M = 10~%. We consider a regular Cartesian mesh
containing 1 600 cells (Az = Ay = 0.025) and an unstructured triangular mesh containing 2 326 cells generated
by GMSH [19].

5.1. A stationary case

We firstly illustrate the influence of the mesh type (triangular or Cartesian) on the kernel of the Godunov
scheme. The initial condition ¢° = (r°, u®)? is chosen such that ¢° € &,. We take

r(z,y) = 1,
w(ey) = Y () Y
where
a(z,y) = % + %eXp <— Iz v) 6.;%'5’0'5”'2) ; (5.2)
Y(z,y) = %sinQ(mc) sin?(7y). (5.3)

This expression of 1 corresponds to the “vortex in a box” test case of [9]. We note that 1 is very important
from a numerical point of view because it allows to define ¢}) such that ¢)) € &MY on Cartesian meshes and such
that ¢) € EQ’A on triangular meshes. Since ¢° € &,, the field ¢ defined by

VtE>0,V(z,y) €T, qlt,z,y)=q¢"(x,y) (5.4)

is solution of the linear wave equation with porosity (2.9). We study if (5.4) is or is not satisfied at the discrete
level when we solve system (2.9) with Godunov’s scheme (3.1) on a Cartesian or a triangular mesh with k = 0
or K = 1.

In Figure 1, we plot the norm of au obtained after 1000 iterations on Cartesian and triangular meshes with
k = 1 and k = 0. The solution is preserved over time on triangular meshes with x = 1 and x = 0 but is also
preserved over time on Cartesian meshes with x = 0. This result illustrates Propositions 3.7 and 3.9.

5.2. A well-prepared initial condition

We now consider a well-prepared initial condition. It means that the initial condition can be split into two
components, a component in the kernel £, plus a component of order M in the orthogonal set to the kernel, £-.
We illustrate the theoretical results Theorems 4.3 and 4.7 on the evolution with respect to time of the deviation
th — IPZ’A or Dng ;2 with the different schemes on triangular and Cartesian meshes. The initial condition q9 is

given by
q = MQ2,1 + ‘12,2
1
where q2,2 € gMHor & g given by (5.1) and q2’1 € (EZ’D or A) satisfying ||q2,1Hl§ = 1. More precisely, we take
92,1 = qn,1/ H@z,lnzg with

=0 — ( sin(27z) cos(2my)
rh,l(aj’ y) - ( a(z,y) )h ’

) ; = Vion
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FIGURE 1. Norm of au obtained after 1000 iterations with the Godunov scheme (3.1) with
k=1 and k = 0 on triangular and Cartesian meshes.
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FIGURE 2. Norm of the deviation ||q, — P4 °r Dnglg (t) obtained with the Godunov scheme
with k =1, Kk = M and k = 0 on a Cartesian mesh and with x = 1 on a triangular mesh for
times of order M: 0 < t/M < 10 (top) and for long times: 0 < t/M < 10/M (bottom).

where

Pn(z,y) = (sin(2mz) cos(2my)),, -

The discrete field 7,1 is defined at the cell centers, and so is ¢, on Cartesian meshes; but on a triangular mesh
on € Wy, then ¢y, is defined at the edge midpoints.

In Figure 2, we plot the evolution with respect to time of the deviation Hqg — ph&or DngP with scheme
(3.1) with k = 1, Kk = M and k = 0 on Cartesian meshes and for k = 1 on triangular meshes. The Godunov
scheme (k = 1) on a triangular mesh is accurate at low Mach number. Indeed, the deviation remains of order
M, even for long times (see Thm. 4.2). The Cartesian case is very different. The Godunov scheme (k = 1) on a
Cartesian mesh is not accurate at low Mach number, it introduces a deviation greater than Az = Ay = 0.025,
even for a time of order M (see the case k = 1 on a Cartesian mesh in Thm. 4.3). The scheme has to be corrected
on a Cartesian mesh at low Mach number. With x = 0, the deviation remains of order M, even for long times
(see the case kK = 0 in Thm. 4.7). With k = M, the deviation remains of order M for times of order M (see the
case k = M in Thm. 4.7), but this is not the case for long times (times of order one).

6. THE NON LINEAR CASE

6.1. Numerical schemes
Since « is regular and does not depend on time, we can write system (1.1) as

W + V- f(W) = S(W)Va (6.1)
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where W = (a, ap, apu)? and the flux f and the source term S(W) are given by

0 0
f(W) = apu SW)=1{0
apu ®@ u + apl P

The numerical scheme for system (6.1) is given by

witt _wr N 1
At |€2]

Z ITij[F- (W}, W7, n;;) =0 (6.2)
Fi]' CcoN;
where W = (a, ap,apu)” and F_ is the non conservative numerical flux. In this paper, we use two different
fluxes, a VFRoe flux and the well-balanced Lax—Friedrich scheme of [26].

6.2. Well-balanced Lax—Friedrich scheme of [26]

The well-balanced Lax—Friedrich scheme of [26] allows to maintain equilibrium states and is easy to implement.
The non-conservative numerical flux is given by

FLEWB(W Wk n) = FF'F (W, W, n) (6.3)

where F'F corresponds to the standard Lax—Friedrich numerical flux

f(WL) + f(WR) n— maX;e{r,R} (|ui . n| + Ci)

FM (W1, Wg,n) = 5 5

(Wr - W)

and the state W5 = (a, ap, apu)y, is defined such that

ap = ag,

(opw), = (apu)r,

u, _ u

ey hgom) = 12 4 ho)

where h(p) = kyp?~1 /(v — 1). For the existence and uniqueness of W, we refer to [26].
6.3. VFRoe scheme

We want to write a non-linear scheme that is consistent with the study we did in the linear case (see Sects. 3
and 4). We recall that in the linear case, Godunov’s scheme (3.1) can be interpreted as a VFRoe scheme [6,17]
in variables (a,r, au) (see Rem. 3.2). The VFRoe solver consists in a local linearization of a Riemann problem
which is simpler to handle since it only deals with linear problems and avoids the complex exact resolution of
the Riemann problem with porosity jump. Then, in the non-linear case, we write a VFRoe scheme in variables
Y = (a,p,apu)’. Another advantage of this set of variables is that we get a scheme that is well-balanced in
the sense that it exactly preserves the one-dimensional steady states. For the VFRoe scheme (with another set
of variables) applied to system (6.1), we refer to [39,40]. The VFRoe numerical flux is given by

FVFRoe(W; Wgk.on)=f(R(07,Y,,Yg,n))-n (6.4)

where R(07,Y.,Yg,n) corresponds to the solution in £/t = 0~ of the linearized Riemann problem that is
detailed in Appendix C.

The VFRoe solver considered does not allow to treat the resonant cases when eigenvalues Ay = u-n — c or
A2 = u-n+ c vanish. The resonant cases are out the scope of this paper since we focus here on the accuracy at
low Mach number. For the resonant cases, we refer to [10].
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6.4. All-Mach VFRoe scheme
The flux in the all-Mach VFRoe scheme is given by

0
FAM—VFRoe Wi,W', _ FVFRoe WZ',W', + 91 1 Q;Cij ( ) 6.5
- ( j»1) — ( ) + (0 — 1) a;; \[((apu); — (apu);) -nn (6.5)
where &;; and ¢&; correspond to VFRoe average states (see (C.1)) and 6;; = min(l, max(M;, M;)) =
min(1, max(||w||/c;, ||ujl|/c;)). We remark that in (6.5), we recover the classical VFRoe scheme if 6,; = 1.

This means that we correct the numerical flux only if both states W; and W; are subsonic.

6.5. Numerical results

We perform a one dimensional test to check the robustness of the low Mach corrected scheme but also the
capability of the scheme to maintain equilibrium states across a discontinuous cross-section. Indeed, since the
low Mach correction reduces the numerical diffusion of the scheme, stability of this scheme for unsteady low
Mach flow has to be tested. Moreover, it is well-known that schemes which do not maintain the equilibrium
states may give unsatisfactory results when refining the mesh [26], so that the well-balanced property also has
to be tested. Then, we perform a two dimensional test to check the low Mach accuracy of the different schemes
on triangular and Cartesian meshes.

For all simulations, we use the following pressure law p(p) = kp? where k =1 and v = 1.5 and CFL = 0.4.

6.5.1. A one dimensional unsteady subsonic flow

Let us denote U = («, p,u). The initial condition is a Riemann problem where the left state U and the
right state Ug are given by

U. = (1,1,0.001),  Ug = (0.75,0.3,0.005).

The domain is [0,1] and the discontinuity in the initial condition is set to = 0.5. The exact solution is
1-rarefaction followed by a stationary contact, then followed by a 3-shock. For an exact solution, we refer to
[27]. The Mach number of the solution varies from 4 x 10™* to 0.85 and then allows to test the robustness
of the all-Mach VFRoe scheme. Moreover, since « is discontinuous between Uy and Ug, we also test the
capability of the scheme to preserve the two invariants of the stationary contact apu and u?/2 + h(p) where
h(p) = wyp? 1/ (y = 1).

In Figure 3, we plot the porosity (or cross-section) «, the density p, the velocity u, the Mach number, apu
and u?/2+ h(p) at time ¢t = 0.25 obtained with the well-balanced Lax—Friedrich scheme [26], the VFRoe scheme
and the all-Mach VFRoe scheme. The all-Mach VFRoe scheme is stable. In fact, as for the constant porosity
case, numerical tests seem to show that the all-Mach scheme is stable under a degenerated CFL condition which
is exactly the half of the classical one (see [5,13] for more details). This justifies why all numerical results are
obtained with CFL = 0.4. As expected, the all-Mach VFRoe scheme is the least diffusive scheme and the well-
balanced Lax—Friedrich scheme is the most diffusive one. Looking at the stationary contact in x = 0.5, we remark
that the two invariants of the stationary contact apu and u?/2 + h(p) are preserved across the discontinuity of
a. Then, the VFRoe and all-Mach VFRoe schemes are also well-balanced, like the well-balanced Lax—Friedrich

scheme.

6.5.2. Two-dimensional low Mach flow

We consider a two-dimensional low Mach vortex flow. Domain, meshes and boundary conditions are the
same as for the wave equation (see Sect. 5). The initial condition is an exact, steady and regular solution of the
incompressible system (2.7). Then, (2.6) tells us that the solution of (2.2) will remain close to the initial condition
since the latter solves (2.7) for all times. Note that in order to build an exact solution of the incompressible
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FIGURE 3. One dimensional unsteady subsonic flow: porosity (or cross section) «, density
p, velocity u, Mach number, apu and u?/2 + h(p) obtained at time ¢ = 0.25 with the well-
balanced Lax—Friedrich scheme (referenced by LF-WB), the VFRoe scheme and the all-Mach
VFRoe scheme (referenced by AM-VFRoe). The mesh contains 200 cells.

system (2.7), we adapted the isentropic vortex solution of [43,44] to the case of variable porosity fields. The
initial condition is given by

o= aoo?go) = a2,
P’ = po (/380) + Mzﬁ((f)) = po (1+ M?c2Q%),

- V x
0 = 0 = up T2
«
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FIGURE 4. Norm of au obtained at final time ¢t = 2s with the well-balanced Lax—Friedrich
scheme (6.3), the VFRoe scheme (6.4) and the all-Mach VFRoe scheme (6.5) on Cartesian
meshes with an initial Mach number M = 10~4%.

(x —0.5)% + (y — 0.5)*
2 x R?
2x (1 —c1), coa = —1/(cdc3) and ¥ = RQ. We can easily check that (,5[()2), ﬁ(()o)) is regular and satisfies

V- (@)l =0,
(867 V) af” + Vsl = 0.

where 0 = exp (— ), R =015 a0 =1, pg =1, up = M x ¢(pg), c1 = 0.25, ¢35 =

We firstly study from a numerical point of view if the background (order 0 in the asymptotic expansion)
steady incompressible solution is preserved over time and secondly if the different schemes are accurate at low
Mach number in the sense that the amplitude of the perturbation with respect to the background incompressible
solution satisfies (2.6) at the discrete level.
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FIGURE 5. Norm of au obtained at final time ¢t = 2s with the well-balanced Lax—Friedrich
scheme (6.3), the VFRoe scheme (6.4) and the all-Mach VFRoe scheme (6.5) on triangular
meshes with an initial Mach number M = 10~4.

In Figures 4 and 5, we plot the norm of au obtained at time t = 2s with M = 10~% on Cartesian and
triangular meshes with the well-balanced Lax—Friedrich, the VFRoe and the all-Mach VFRoe schemes. The
incompressible steady velocity seems to be preserved over time with the all-Mach VFRoe scheme on triangular
and Cartesian meshes and with the VFRoe scheme on triangular meshes. With the other schemes, the solution
is extremely diffused. Note that the accuracy problem of the Lax—Friedrich scheme at low Mach number on
triangular mesh was already illustrated in [36] for the uniform porosity case.

In Figure 6, we study the low Mach accuracy of the different numerical schemes in the sense that we check
whether (2.6) is or is not satisfied at the discrete level. For that, we study the amplitude of the deviation of
the numerical solution from the incompressible solution (which is the initial condition) with respect to the
Mach number. We plot the norm of the deviation for the dimensionless density p and the dimensionless field
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au for Mach numbers M ranging from 10~! to 10~7. Recall that &, p and @ are defined by (2.1) where here
ag = po = 1 and ug = ¢(pg) x M. Note that it is very important to initialize the field cu and compute the
incompressible solution by using (3.7) for triangular meshes and (3.12) for Cartesian meshes, in which the
discrete values of 1) are interpolated from the analytical expression of 1, because otherwise (i.e. if the discrete
values of au are initialized directly from their analytical expression) an error of the order of the space step
will be introduced and will hide the deviation that scales like the Mach number. We observe that the VFRoe
scheme is accurate at low Mach number on triangles while the all-Mach VFRoe scheme is the only one which
is accurate on Cartesian and triangular meshes. Indeed, for these schemes, the density deviation is of order M?
and the velocity deviation is of order M, as expected. The well-balanced Lax—Friedrich scheme and the VFRoe
scheme on Cartesian meshes are not accurate at low Mach number because their velocity deviation is of order
M?°, and, moreover, the density deviation of the VFRoe scheme scales like M.
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7. CONCLUSION

In this article, we proposed a well-balanced compressible scheme accurate at low Mach number for the Euler
equations with porosity. The proposed scheme is based on the study that is performed on the linear wave
equation with porosity. Indeed, the low Mach accuracy problem of the Godunov scheme can be understood
and cured in the linear case. For this, we extended the discrete Hodge decomposition of [14] to a weighted L2
space in order to take into account the porosity, and we extended to the discrete level the properties that were
proven by studying the modified equation related to the Godunov scheme in [15]. We enlightened the influence
of the cell geometry on the accuracy of this scheme. In the triangular case, the stationary space of the Godunov
scheme approaches well enough the continuous space of constant pressures and divergence-free velocity fields
(up to the porosity factor), while this is not the case in the Cartesian case. On Cartesian meshes, we have to
delete the usual numerical diffusion on the velocity field to preserve constant pressure fields and divergence-free
velocity fields (up to the porosity factor). Moreover, as the aim was to design an all Mach regime scheme, the
correction that is introduced varies continuously with respect to the Mach number. As a result, on Cartesian
meshes, we propose to multiply the numerical diffusion on the velocity field by the Mach number M when M
is smaller then 1. We check with numerical tests that this corrected scheme is accurate at low Mach number.
Note that these conclusions are only valid when the boundary conditions are periodic: non-periodic boundary
conditions may require additional analysis that was not performed in the present work.

The proposed non-linear scheme is based on a VFRoe solver and is a non linear extension of the Godunov
scheme proposed for the linear case. The VFRoe solver avoids the exact resolution of a Rieamnn problem with
variable porosity and is easy to implement. Like in the linear case, the VFRoe scheme for the non linear system
is not accurate at low Mach number on Cartesian meshes but is accurate at low Mach number on triangular
meshes. Based on the linear study, a fix is proposed for Cartesian meshes. This fix is easy to implement, requires
only the modification of a few lines of code and allows to recover the accuracy at low Mach number on Cartesian
meshes.

Further research could be driven by the following issues: First, if the porosity « is discontinuous, then care
must be taken in the interpretation and the numerical treatment of System (1.1). Such questions are dealt with
for example in [27] and we note that, in the particular case of Section 6.5.1, the scheme proposed in the present
work computes a relevant numerical approximation. A second topic that needs to be studied is the extension of
the approach presented here to the full Euler system with energy balance.

APPENDIX A. KERNEL OF THE GODUNOV AND MODIFIED GODUNOV SCHEMES ON
GENERAL MESHES

We prove Lemma 3.4:

Proof. The proof uses the fact that for any ¢ € Ker L’;,a defined by (3.3), we have

> oIty {aij(?”z‘ —r5)* + ; (((Oﬂl)i — (au);) ‘%‘)1 =0. (A1)
Lij

ij

This equality is implied by the energy estimate (4.2) since any element in the kernel is stationary.
Since for all 7, j we have «;; > 0, (A.1) leads to the fact r; = r; for all neighboring cells (¢, j) and thus

deeR, Vie[l,N], ri=c. (A.2)
If K > 0, we also deduce from (A.1) that

Vi € [1, N], Vj € {neighboring cell of i}, (au);-n;; = (au); - n;j,
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which allows to write (3.4). If kK = 0, we can only deduce (A.2) from (A.1). Nevertheless, by injecting r; = ¢ in
the first relation of (3.3), we obtain

Vi € [1,N], Vj € {neighboring cell of i}, Z Ti5]((au); 4 (au);) -ny; =0,
Fi]-Cc’)Qi

which allows to write (3.5).
Let us prove that Ker ]LZ>0,a C Ker LZ:OQ. Let gn € Ker ]LZ>07Q. We have for all i € [1, N]

Y yl((aw)i + (au);) -ny; = > [Tyl((au); + (au);) - ny; = 2(an); - D> [Tyjlng =0

T;;Co%; ;;COQ; T;;Co%;
and then g € Ker L!_, . O

APPENDIX B. DISCRETE POINCARE-WIRTINGER INEQUALITIES WITH WEIGHTS

Proposition B.1 (One dimension). Let T =|ay,by[ be covered by a uniform rectangular mesh with N, cells of

size Az = bljgij‘” = NTD Let (p:)1<i<n, be a positive sequence. Let (:LLz——)1<’L<N be a strictly positive sequence.
Set ||ul o = sup; (1i) and H ’ = sup; ('“H—i)' Then, for any (¢:)1<i<n, (for which we set for the sake of
2

periodicity ¢o = ¢n, ), there holds

1

N 2 L2 Ny 9
Az (@i — < o = — Qp— _1
>~ a0 9)" < HMHOO A D0kl

B N,
where ¢ =

N
i with L, = Y Axp;.
j=1

Proof. For all i € [1, N,], we have
_ 1 | &=
|60 = 8 = 7 [D_ Aap; (61 — )
j=1

4 Ny
- gmw > (6 6u1) ;;

_J+1

|¢k*¢k 1|—Z|¢k*¢k 1

k=1

FMZ

and then, using the discrete Cauchy—Schwarz inequality, we get

1 <=
2
NH Dty ok — dral”

k=1

Nm
(¢ — )" < N, > ok —dral’ <
k=1

By multiplying by pu; Az and by summing over i, we have, since L, = N, Ax

Ny
ZAmﬂi (s — <Z_3) < H Zsz Z/J'k—f |61 — Gr_1]”
i=1

0 =1

1| 12 &
SN H e SR
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Proposition B.2 (Two-dimensions). Let T =lay,bi[x]az,ba[ be covered by a wuniform rectangular mesh

with cell sizes Az x Ay where Az = blA_T‘“ = J%[—: and Ay = 1’2];% = ]%7; Let (pi)i<i<n, 1<j<N,
(uz_f J)1<1<N 1<j<n, and (u”_,)1<z<N 1<j<nN, be three strictly positive sequences. Set ||pl| = sup; ; (14,5)

EH = sup, (UZ,, Py 17“1‘73‘)' Then, for any (¢i;)1<i<n,1<j<n, (for which we set for the sake of
o0
periodicity ¢o; = ON,,; and ¢;0 = Pi N, ), there holds

2
-2 1 L2
E AzAypi; (¢ig— ) < 2lul ’N ( ) E Azp; ;1 |¢ij — bij1|’
1,J o0 1,J

2
+ Y Aypiy iy — dierl
(2]

where ¢ = w = AxAypuy .
ke

Proof. For all (i,7) € [1, Ng] x [1, N,], we have

‘¢i7j - é' = ZAxAZUMIM (¢z77 ¢k,€)
Ay k.t
S ZAxAyMM(Wz,g Gi e + |Pie — Dr.el)
“ k.l
< — A ZA$AyNk€<Z|¢zn ¢zn 1‘+Z|¢m€ >
ok

We have to take into account that the sum over n does not depend on (k, ¢), while the sum over m depends on
£ but not on k. This provides:

- 1
(i = 0l < D 1bin = binal + T NeBzAylplloo Y Y 1bmt — Sl
n H L m

2
|5 — 9| < 2 (; |pin — ¢i,n—1|> +2 A, LN 2 AzAY | illoo Y |bme = dm—rel | - (B.1)

L,m

The first term in the right-hand side of (B.1) depends on i but not on j, while the second does not depend on
(,7). This implies, on the one hand

2 2
Z AzAyp; <Z |pin — ¢i,n—1|> < AzAy||plloo Ny Z (Z |Gin — ¢z’,n—1|>
(2% n % n

< AxAyHuHDONy2 Z |bin — ¢i,n—1|2

7,n

L
< 2| H] S Ayt bl (B2

OOzn

and, on the other hand

> AxAypi; | N AzAY[lpllse Y [dm.e = dm—1.c]

,J lm
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2

1
< A*LiAZP”NHgo Z |0 — P10
® Lm
L T (L3 VO F R S
LmLy L - 2 RY ([H] oo Nz iVy [ o yﬂm—§7£ m, 0 m—1,0
< Bz |2 S avmn gt = ool ®3)
= Azr Hllso L o L y,um—%,e 'm, L m—1,0] - .
The result follows from (B.1) to (B.3) and from the fact that ||u|| H%H > 1. O

APPENDIX C. VFROE SCHEME

We now detail how we obtain the solution R(07,Y,Yg,n) in £/t = 0 of the linearized Riemann prob-
lem that is used to compute the VFRoe flux (6.4). Since the variables used for the VFRoe scheme are
Y = (a, p,apu)’, we write system (6.1) as

Y+ Y Bi(Y)aY=0

i€{x,y,z}
where
0 0 0
Z Bz(Y)nz = 0 0 nT/a
ic{z,y,2} —puu-n —-ouu-n+oac’n u-nlzj+u®n

Then, R(0~,Y,Yg,n) corresponds to the solution in £/t = 0~ of the linearized Riemann problem

. , Y, ifé<o0,
%Y +(B(Y) n)dY =0 with Y(&,t=0)= {Y; ;lsgewhere

where B(Y) -n=3% ., . 1 Bi(Y)n; and Y is defined by

p:@, ﬁ:‘“T“R and ¢ = c(p). (C.1)

. ar+ag
o= ————,
2
Eigenvalues of B(Y) -nare \y =0, \1 =u-n—c¢, \a =u-n+c¢, A\3 = Ay = u-n and the associated left 1; and

right r; eigenvectors are

1
IO(Y) = m (1, 0,0,0) 5

L(¥) = oo (22 a(uen+ o).

u-n—c’

2ac
1 (p(u-n)? T
L(Y)=—— (="~ ‘n—c¢), —
2( ) 20¢ <U‘H+C7a(u n C)a n )

I3(Y) = (—pu -t —au - t%, (ta)T) ,
1,(Y) = (—pu- t°, —au - t°, (tb)T)
and
a(c* = (u-n)?) 0 0 00
[ro|ry|re|rs|ry] (Y) = p(u-n)? 1 1 00
apc?(u — (u-n)n) a(u — cn) a(u + cn) t t°
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The solution R(0~, Y, Yg,n) is given by

RO, YL, Yan) =Y.+ Y L(Y)(Yr—Y.)r;(Y).
A <0
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