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CONSTRUCTION OF A LOW MACH FINITE VOLUME SCHEME FOR THE
ISENTROPIC EULER SYSTEM WITH POROSITY

Stéphane Dellacherie1, Jonathan Jung2 and Pascal Omnes3,4,*

Abstract. Classical finite volume schemes for the Euler system are not accurate at low Mach number
and some fixes have to be used and were developed in a vast literature over the last two decades. The
question we are interested in in this article is: What about if the porosity is no longer uniform? We first
show that this problem may be understood on the linear wave equation taking into account porosity.
We explain the influence of the cell geometry on the accuracy property at low Mach number. In the
triangular case, the stationary space of the Godunov scheme approaches well enough the continuous
space of constant pressure and divergence-free velocity, while this is not the case in the Cartesian case.
On Cartesian meshes, a fix is proposed and accuracy at low Mach number is proved to be recovered.
Based on the linear study, a numerical scheme and a low Mach fix for the non-linear system, with a
non-conservative source term due to the porosity variations, is proposed and tested.
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1. Introduction

In this paper, we are interested in low Mach compressible fluid flows in porous media. In industrial processes,
porous media are used to simulate the flow in a nuclear reactor core. The porosity appears because there are
section reductions in a nuclear reactor core. Moreover, if we want to simulate an accidental scenario, we some-
times need to take into account the compressibility effects. Another class of problems motivated by industrial
consideration is the simulation of a gas flow across a grid. Since the grid is in general too small to be meshed,
a homogenization process is used to model the interactions between the grid and the flow [41]. Then, we con-
sider the barotropic Euler equation. Since the porosity is not constant, a non-conservative term appears in the
equations during the homogenization process [4] and the equations write{︃

𝜕𝑡(𝛼𝜌) +∇x · (𝛼𝜌u) = 0,
𝜕𝑡(𝛼𝜌u) +∇x · (𝛼𝜌u⊗ u) +∇x(𝛼𝑝) = 𝑝∇x𝛼.

(1.1)
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In (1.1), 𝑡 ≥ 0 and x ∈ Ω are respectively time and space variables and 𝛼(x) is the porosity. We suppose here
that 𝛼(x) is known and does not depend on time. Unknowns 𝜌, u and 𝑝(𝜌) are respectively the density, the
velocity and the pressure of the fluid. The pressure law satisfies 𝑝′(𝜌) > 0. System (1.1) is a non conservative
hyperbolic system [27] with eigenvalues in direction n given by u · n− 𝑐, u · n and u · n + 𝑐. Studies of flows in
a variable cross section duct consider the same model and variations of the cross section are modeled through
(possibly discontinuous) changes in porosity.

The non-conservative term in (1.1) introduces mathematical and numerical difficulties. In [11], the authors
give a mathematical sense to the non-conservative product and introduce some schemes, named well-balanced
schemes, that solve correctly the non-conservative term [8, 20]. The treatment of the non-conservative term is
essential to preserve steady states solutions. In this paper, we propose a well-balanced scheme that exactly
preserves steady solutions over time in one space dimension [21,26]. The proposed scheme is based on a VFRoe
scheme, established in [18] for the shallow water equation with topography and derived for the Euler system
with porosity in [39, 40]. The VFRoe solver consists into a local linearization of a Riemann problem which
is simpler to handle since it only deals with linear problems and avoids the complex exact resolution of the
Riemann problem with porosity jump. This construction allows to easily build schemes that exactly preserve
one dimensional steady states. To our knowledge, no generalization for purely multidimensional problems exists
and the behavior of the numerical scheme with respect to multi-dimensional steady solutions must be studied
on a case-by-case basis. In this paper, we focus on the behavior of the scheme in the low Mach limit and, as we
will see, steady solutions of the numerical scheme will play a determining role.

Finite volume Godunov type schemes applied to the compressible Euler system with uniform porosity are
known to be inaccurate at low Mach number [13, 23]. Indeed, they do not allow to recover the incompressible
limit as the Mach number tends to zero. Over the two last decades, a large amount of work has been dedicated
to deriving fixes for the uniform porosity case: [5,7,12,13,16,23,24,28,29,33,37]. Some recent works have been
done on low Mach fix for non-conservative systems, we refer to [2,3,45] for the Euler equation with gravity or to
[34,35] for two-phases flows. In these last studies, flux preconditioning techniques, initially proposed by Turkel
[46], are applied and quadrangular meshes are considered. Here, we propose to also study the behavior of the
numerical scheme on triangular meshes. Indeed, it was shown that in the uniform porosity case, if the mesh is
composed of triangles in 2D or tetrahedra in 3D, the accuracy at low Mach number with the Roe scheme is
recovered [14,22,38]. To our knowledge, this is the first study on the behavior of classical schemes at low Mach
number on triangular meshes for non-conservative systems.

In this article, we study the accuracy, at low Mach number, on triangular and Cartesian meshes, of a numerical
scheme for the non conservative system (1.1). Since the accuracy problem appears also in the linear case, we
base our study on the linear wave equation with porosity. The low Mach accuracy problem is then understood
and fixed in the linear case for Cartesian meshes, and the reason for its correct behavior on triangular meshes
is underlined. In particular, preliminary results obtained in [15] based on a modified equation approach are
extended to the discrete Cartesian case. Based on the linear study, a well-balanced scheme accurate at low
Mach number for the non-linear system (1.1) is proposed and numerical tests are performed. They confirm
that both the non corrected and corrected schemes are able to recover the low Mach asymptotics on triangular
meshes, while this is the case only for the corrected scheme on Cartesian meshes.

2. Low Mach limit and wave equation with porosity

2.1. Low Mach limit

To study the behavior of system (1.1) at low Mach number, four characteristic scales are supposed to be
known: a time scale 𝑡0, a density scale 𝜌0, a velocity scale 𝑢0 and a porosity scale 𝛼0. Then, the following
dimensionless variables are defined

𝑡 =
𝑡

𝑡0
, 𝜌 =

𝜌

𝜌0
, ũ =

u
𝑢0
, 𝛼̃ =

𝛼

𝛼0
· (2.1)
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It is natural to scale the length by 𝐿0 = 𝑢0 × 𝑡0, the sound speed by 𝑐20 = 𝑝′(𝜌0) and the pressure by 𝑝0 = 𝜌0𝑐
2
0.

If the corresponding dimensionless variables are used, system (1.1) reads{︃
𝜕𝑡(𝛼̃𝜌) +∇x̃ · (𝛼̃𝜌ũ) = 0,
𝜕𝑡(𝛼̃𝜌ũ) +∇x̃ · (𝛼̃𝜌ũ⊗ ũ) + 𝛼̃

𝑀2∇x̃𝑝 = 0
(2.2)

with x̃ = x/𝐿0, 𝑝 = 𝑝/𝑝0, and where 𝑀 = 𝑢0/𝑐0 is the so-called Mach number.

2.2. Formal asymptotic expansion when the Mach number goes to 0

We are interested in the solutions of (2.2) when 𝑀 → 0. We recall formally the theoretical results of [25] in
order to take the porosity into account. All the variables of the system, 𝜙 ∈ {𝛼̃, 𝜌, ũ}, are developed as power
series of the Mach number 𝑀 :

𝜙(x̃, 𝑡,𝑀) =
𝑁∑︁
𝑛=0

𝑀𝑛𝜙(𝑛)(x̃, 𝑡) +𝒪
(︀
𝑀𝑁+1

)︀
. (2.3)

Assumption 2.1. Concerning 𝛼, we assume that 𝛼(x) is a function that takes its values in [𝛼min, 1], where
𝛼min > 0 is a constant independent of the Mach number 𝑀 . This implies that

𝛼̃(0) ̸= 0.

The case 𝛼̃(0) = 0 is out of the scope of this paper.

By injecting these quantities in (2.2), the momentum equation at order 𝑀−2 and 𝑀−1 gives

∇x̃𝑝
(0) = ∇x̃𝑝

(1) = 0 (2.4)

and then, since 𝑝 is a regular function of 𝜌, this leads to

𝜌(0)(x̃, 𝑡) = 𝜌(0)(𝑡) and 𝜌(1)(x̃, 𝑡) = 𝜌(1)(𝑡). (2.5)

At order 𝑀0, we get {︂
𝜕𝑡(𝛼̃𝜌)(0) +∇x̃ · (𝛼̃𝜌ũ)(0) = 0,
𝜕𝑡(𝛼̃𝜌ũ)(0) +∇x̃ ·

(︀
(𝛼̃𝜌ũ)(0) ⊗ ũ(0)

)︀
+ 𝛼̃(0)∇x̃𝑝

(2) = 0.

Then, if the initial and boundary conditions are well prepared in the sense that{︂
𝜌(𝑡 = 0, x̃,𝑀) = 𝜌0 +𝒪

(︀
𝑀2
)︀
, where 𝜌0(x̃) = 𝜌0 ∈ R+*

(𝛼̃ũ)(𝑡 = 0, x̃,𝑀) = (𝛼̃ũ)(0)0 +𝒪 (𝑀) , where ∇ · (𝛼̃ũ)(0)0 = 0

and if on the domain boundary 𝜌(0) (resp. 𝜌(1)) is uniformly and constantly equals to 𝜌0 (resp. 0) and if∫︀
𝜕Ω

(𝛼̃ũ)(0) · n = 0, the solution of (2.2) satisfies{︂
𝜌(𝑡, x̃,𝑀) = 𝜌0 +𝒪

(︀
𝑀2
)︀
,

(𝛼̃ũ)(𝑡, x̃,𝑀) = (𝛼̃ũ)(0)(𝑡, x̃) +𝒪 (𝑀)
(2.6)

where (𝜌(2), ũ(0)) satisfies {︂
∇ · (𝛼̃ũ)(0) = 0,
𝜕𝑡ũ

(0) +
(︀
ũ(0) · ∇x̃

)︀
ũ(0) +∇x̃𝜌

(2) = 0.
(2.7)

Note that in order to obtain the second equation in (2.7), we have chosen 𝜌0 = 1, which is always possible up
to a change of density scale from 𝜌0 to 𝜌0𝜌0. Equations (2.6) mean that at low Mach number, if the initial and
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boundary conditions are well prepared, the solution of the compressible Euler system with porosity (2.2) is close
to the solution of the incompressible Euler equation with porosity (2.7). Results (2.6) are formally proven here.
For a rigorous proof in the uniform porosity case, we refer to [30,42].

For classical finite volume schemes, relations (2.6) are not always satisfied at the discrete level: this is the
so-called accuracy problem at low Mach number, which expresses that a spurious component 𝜌(1) ̸= 0 could be
introduced at the discrete level [23] due to numerical approximations. In the current contribution, we consider
that a numerical scheme is accurate at low Mach number for system (1.1) if relations (2.6) are satisfied at the
discrete level.

2.3. Wave equation with porosity

To study the low Mach behavior, we change the variables to symmetrize the problem.

2.3.1. Model

For this purpose, we set the reference sound speed to 1/𝑀 and we define 𝑟(𝑡, x̃) such that

𝜌(𝑡, x̃) = 𝜌0

(︀
1 +𝑀𝑟(𝑡, x̃)

)︀
(2.8)

where formally 𝑀𝑟 ≪ 1. By injecting (2.8) in (2.2), we obtain the system⎧⎪⎪⎨⎪⎪⎩
𝜕𝑡(𝛼̃𝑟) +∇x̃ · (𝛼̃𝑟ũ) +

1
𝑀
∇x̃ · (𝛼̃ũ) = 0,

𝜕𝑡(𝛼̃ũ) + (ũ · ∇x̃)(𝛼̃ũ) +
𝛼̃

𝑀

𝑝′ (𝜌0 (1 +𝑀𝑟))
1 +𝑀𝑟

∇x̃𝑟 = 0.

Linearizing around (𝑟, ũ) = (0, 0), taking into account that 𝑝′ (𝜌0) = 1 when 𝜌0 = 1 as explained above and
simplifying the notation by removing all the ·̃, we obtain the linear wave equation with porosity

𝜕𝑡(𝛼𝑞) +
𝐿𝛼
𝑀

(𝑞) = 0 (2.9)

where

𝑞 =
(︂
𝑟
u

)︂
and 𝐿𝛼(𝑞) = 𝑎⋆

(︂
∇ · (𝛼u)
𝛼∇𝑟

)︂
and 𝑎⋆ = 1.

2.3.2. Weighted incompressible space ℰ𝛼 and acoustic space ℰ⊥𝛼
We are interested in the properties of System (2.9) solved on a torus T ⊂ R𝑑∈{1,2,3} with periodic boundary

conditions. For this, we assume that 𝛼 is a periodic function on T and we define the weighted Hilbert space

𝐿2
𝛼(T)1+𝑑 :=

{︂
𝑞 := (𝑟,u)𝑇

⃒⃒⃒ ∫︁
T
𝑟2𝛼dx +

∫︁
T
| u |2 𝛼dx < +∞

}︂
endowed with the scalar product

⟨𝑞1, 𝑞2⟩𝛼 =
∫︁

T
𝑟1𝑟2𝛼dx +

∫︁
T
u1 · u2𝛼dx. (2.10)

Of course, the space 𝐿2
𝛼 should not be mistaken for the acoustic operator 𝐿𝛼. We also define the spaces 𝐻1

𝛼(T)
and 𝐻2

𝛼(T) that are generalizations of 𝐻1(T) and 𝐻2(T) to weighted spaces. We note that since 𝛼(x) ∈ [𝛼min, 1]
with 𝛼min > 0, the functions 𝛼 and 1

𝛼 are in 𝐿∞(T), and we have 𝐿2
𝛼(T) = 𝐿2(T), 𝐻1

𝛼(T) = 𝐻1(T) and
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𝐻2
𝛼(T) = 𝐻2(T). Nevertheless, we keep the index 𝛼 to define these spaces to refer to the scalar product (2.10).

At last, we define the space

ℰ𝛼 :=
{︂
𝑞 = (𝑟,u)𝑇 ∈ 𝐿2

𝛼 (T)1+𝑑
⃒⃒⃒
∇𝑟 = 0 and ∇ · (𝛼u) = 0

}︂
= Ker 𝐿𝛼. (2.11)

When 𝛼 = 1, ℰ𝛼 is named the incompressible space (see [13]). We have the following result:

Lemma 2.2. We have

ℰ⊥𝛼 =
{︂
𝑞 = (𝑟,u)𝑇 ∈ 𝐿2

𝛼 (T)1+𝑑
⃒⃒⃒ ∫︁

T
𝑟𝛼dx = 0 and ∃𝜑 ∈ 𝐻1

𝛼 (T) , u = ∇𝜑
}︂
, (2.12)

ℰ𝛼 ⊕ ℰ⊥𝛼 = 𝐿2
𝛼 (T)1+𝑑 .

In other words, any 𝑞 = (𝑟,u)𝑇 ∈ 𝐿2
𝛼 (T)1+𝑑 can be decomposed into

𝑞 = 𝑞 + 𝑞⊥ (2.13)

where 𝑞 = (𝑟, û)𝑇 ∈ ℰ𝛼 and 𝑞⊥ = (𝑟⊥,u⊥)𝑇 ∈ ℰ⊥𝛼 and this decomposition is unique and orthogonal with respect
to the scalar product defined by (2.10).

We call ℰ⊥𝛼 the acoustic space. This is a generalization of the Hodge decomposition. Decomposition (2.13)
defines an orthogonal projection

P𝛼 : 𝐿2
𝛼 (T)1+𝑑 −→ ℰ𝛼 (2.14)

𝑞 ↦−→ P𝛼𝑞 := 𝑞.

2.3.3. Properties of the linear wave equation with porosity

We now detail some properties of the linear wave equation with porosity. These properties will not be always
satisfied in the discrete case.

Lemma 2.3. Let 𝑞(𝑡,x) be the solution of (2.9) on T ⊂ R𝑑∈{1,2,3} with initial condition 𝑞0. Then:

(1) 𝑞0 ∈ ℰ𝛼 =⇒ 𝑞(𝑡 ≥ 0) = 𝑞0 ∈ ℰ𝛼;
(2) 𝑞0 ∈ ℰ⊥𝛼 =⇒ 𝑞(𝑡 ≥ 0) ∈ ℰ⊥𝛼 .

For all 𝑞 ∈ 𝐿2
𝛼(T)1+𝑑, we now define the energy 𝐸𝛼 := ⟨𝑞, 𝑞⟩𝛼. The following lemma is an extension of the

energy conservation property of the classical linear wave equation:

Lemma 2.4. Let 𝑞(𝑡,x) be the solution of (2.9) on T ⊂ R𝑑∈{1,2,3}. Then, for all 𝑡 ≥ 0,

𝐸𝛼(𝑡 ≥ 0) = 𝐸𝛼(𝑡 = 0).

2.3.4. The low Mach asymptotics

With Lemma 2.3 and by linearity, we get that if 𝑞(𝑡,x) is the solution of (2.9) on T ⊂ R𝑑∈{1,2,3} with initial
condition 𝑞0, then

‖𝑞0 − P𝛼𝑞0‖ = 𝒪 (𝑀) =⇒ ∀𝑡 ≥ 0, ‖𝑞 − P𝛼𝑞‖(𝑡) = 𝒪 (𝑀) . (2.15)

We note that since P𝛼𝑞0 ∈ ℰ𝛼 is a stationary solution of (2.9), then P𝛼𝑞 = P𝛼𝑞0; hence (2.15) can be written as

‖𝑞0 − P𝛼𝑞0‖ = 𝒪 (𝑀) =⇒ ∀𝑡 ≥ 0, ‖𝑞 − P𝛼𝑞0‖(𝑡) = 𝒪 (𝑀) . (2.16)

In fact, (2.15) is a version of (2.6) for the linear case. Indeed, the left condition in (2.15) just means that the
initial condition is well-prepared. In the non-linear case, the projection P𝛼𝑞 in the incompressible space ℰ𝛼 is
replaced by the incompressible solution of (2.7).

In this article, we consider that a numerical scheme for the linear system (2.9) is accurate at low Mach number
if (2.16) is satisfied at the discrete level. We will study this property on Cartesian and triangular meshes.
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3. Godunov scheme for the linear wave equation with porosity and its
kernels

In [14,16], we explained the satisfactory behavior of the Godunov scheme at low Mach number on triangular
meshes and its wrong behavior on Cartesian rectangular meshes on the Euler system without porosity (𝛼
uniformly equal to 1) by studying the kernel of the discrete spatial operator associated to the Godunov scheme.
We also remarked that the accuracy of the Godunov scheme at low Mach number on Cartesian meshes can be
recovered by deleting the diffusion term on the velocity field in the Godunov scheme. In [15], we discussed the
case with porosity with the help of the modified equation approach; the limitations of this approach is that
it only gives hints (but does not provide with a complete proof) on what happens on Cartesian meshes, and
does not apply to triangular meshes. Our aim here is to analyse the behavior of the schemes on triangular and
rectangular Cartesian meshes by directly studying them rather than their modified equations.

We now recall the Godunov scheme for the linear wave equation with porosity, recall why the study of its
kernel is so important to study its low Mach accuracy and compute explicitly its kernels on triangular and
Cartesian rectangular meshes. In particular, we underline that the kernel is strongly linked to the numerical
dissipation of the Godunov scheme.

3.1. Godunov scheme

Let us suppose that the domain T ⊂ R2 is discretized by 𝑁 cells Ω𝑖. Let Γ𝑖𝑗 be the common edge of the two
neighboring cells Ω𝑖 and Ω𝑗 and n𝑖𝑗 the unit vector normal to Γ𝑖𝑗 pointing from Ω𝑖 to Ω𝑗 . We assume that the
data 𝛼, and the unknowns 𝑟 and u are defined on the cells Ω𝑖 in the following way

𝛼𝑖 =
1
|Ω𝑖|

∫︁
Ω𝑖

𝛼dx, 𝑟𝑖 ≈
1
|Ω𝑖|

∫︁
Ω𝑖

𝑟dx, u𝑖 ≈
1
|Ω𝑖|

∫︁
Ω𝑖

udx,

and then set (𝛼𝑟)𝑖 = 𝛼𝑖𝑟𝑖 and (𝛼u)𝑖 = 𝛼𝑖u𝑖.
The semi-discrete Godunov scheme applied to the resolution of the linear wave equation is obtained by

integrating (2.9) over each cell Ω𝑖 and then solving a Riemann problem on each Γ𝑖𝑗 to express interface fluxes
as functions of cell-centered values. Details are provided in [15]. This results in⎧⎪⎪⎨⎪⎪⎩

d
d𝑡 (𝛼𝑟)𝑖 + 𝑎⋆

2𝑀
1
|Ω𝑖|

∑︀
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
[︁(︀

(𝛼u)𝑖 + (𝛼u)𝑗
)︀
· n𝑖𝑗 + 𝛼𝑖𝑗(𝑟𝑖 − 𝑟𝑗)

]︁
= 0,

d
d𝑡 (𝛼u)𝑖 + 𝑎⋆

2𝑀
𝛼𝑖

|Ω𝑖|
∑︀

Γ𝑖𝑗⊂𝜕Ω𝑖
|Γ𝑖𝑗 |

[︁
𝑟𝑖 + 𝑟𝑗 + 𝜅

𝛼𝑖𝑗

(︀
(𝛼u)𝑖 − (𝛼u)𝑗

)︀
· n𝑖𝑗

]︁
n𝑖𝑗 = 0

(3.1)

with 𝜅 = 1 and where 𝛼𝑖𝑗 is a mean-value of 𝛼 on Γ𝑖𝑗 which depends on (𝛼𝑖, 𝛼𝑗) (e.g. arithmetic or harmonic
mean). The numerical flux in (3.2) is non-conservative because of the term 𝛼𝑖 that multiplies the flux on the
momentum equation. Moreover, it is easy to prove the following properties:

Remark 3.1. The numerical scheme (3.1) is well-balanced in the sense that it preserves exactly the one-
dimensional steady states (𝑟 = cte, 𝛼u = cte).

Remark 3.2. The numerical scheme (3.1) can also be viewed as the VFRoe scheme [6, 17] obtained with the
variables (𝛼, 𝑟, 𝛼u) for system (2.9) where the linearized Riemann problem is solved considering that 𝛼 satisfies
𝜕𝑡𝛼 = 0.

Scheme (3.1) can be written in compact form⎧⎨⎩
d
d𝑡 (𝛼𝑞ℎ) + Lℎ

𝜅,𝛼

𝑀 (𝑞ℎ) = 0,

𝑞ℎ(𝑡 = 0) = 𝑞0ℎ,

with 𝑞ℎ :=
(︂
𝑟𝑖
u𝑖

)︂
1≤𝑖≤𝑁

(3.2)

where the subscript ·ℎ recalls that (3.2) comes from a spatial discretization of (2.9).
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3.2. The low Mach problem

We want to study whether the Godunov scheme is accurate at low Mach number in the sense that it satisfies
a version of (2.16) at the discrete level. Then, discrete incompressible spaces ℰℎ𝛼 and

(︀
ℰℎ𝛼
)︀⊥ and a discrete

orthogonal projection Pℎ𝛼 have to be defined on triangular or Cartesian meshes. Moreover, the key points to
obtain (2.16) at the continuous level are that ℰ𝛼 = Ker𝐿𝛼 and that (2.9) conserves energy (see Lem. 2.4). Then,
the relationship between the discrete incompressible space ℰℎ𝛼 and the kernel of the Godunov scheme Ker Lℎ𝛼
have to be studied. The following theorem explains why this study is so important:

Theorem 3.3. Suppose that system (3.2) is well-posed in such a way that ‖𝑞ℎ(𝑡)‖ ≤ 𝐶‖𝑞0ℎ‖ for any 𝑡 ≥ 0,
where 𝐶 is a positive constant independent of the Mach number 𝑀 and suppose moreover that ℰℎ𝛼 ⊆ Ker Lℎ𝛼.
Then, we have

‖𝑞0ℎ − Pℎ𝛼𝑞0ℎ‖ = 𝒪 (𝑀) =⇒ ∀𝑡 ≥ 0, ‖𝑞ℎ − Pℎ𝛼𝑞0ℎ‖ = 𝒪 (𝑀) .

For a proof, we refer to [13,16]. In Theorem 3.3, system (3.2) is assumed to be well-posed. In particular, stability
will be studied in more details in Section 4. In the current section, we focus on the kernel of the Godunov scheme
on Cartesian and triangular meshes.

3.3. Kernels of the Godunov scheme

We first study the discrete kernel of the Godunov scheme (𝜅 = 1 in (3.1)) on different types of meshes and of
its low-Mach modification (𝜅 = 0) on Cartesian rectangular meshes. The kernel KerLℎ𝜅,𝛼 of the discrete acoustic
operator Lℎ𝜅,𝛼 is defined by

Ker Lℎ𝜅,𝛼 =

⎧⎨⎩𝑞ℎ :=
(︂
𝑟𝑖
u𝑖

)︂
𝑖

∈ R3𝑁

⃒⃒⃒⃒
∀𝑖,

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
[︁(︀

(𝛼u)𝑖 + (𝛼u)𝑗
)︀
· n𝑖𝑗 + 𝛼𝑖𝑗(𝑟𝑖 − 𝑟𝑗)

]︁
= 0

and ∀𝑖,
∑︁

Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
[︂
𝑟𝑖 + 𝑟𝑗 +

𝜅

𝛼𝑖𝑗

(︁
(𝛼u)𝑖 − (𝛼u)𝑗

)︁
· n𝑖𝑗

]︂
n𝑖𝑗 = 0

⎫⎬⎭ . (3.3)

On any type of mesh we have the following result, whose proof is postponed to Appendix A:

Lemma 3.4.

Ker Lℎ𝜅>0,𝛼 =
{︂
𝑞ℎ :=

(︂
𝑟𝑖
u𝑖

)︂
𝑖

∈ R3𝑁
⃒⃒⃒
∃𝑐 ∈ R,∀𝑖, 𝑟𝑖 = 𝑐 and (𝛼u)𝑖 · n𝑖𝑗 = (𝛼u)𝑗 · n𝑖𝑗

}︂
(3.4)

and

KerLℎ𝜅=0,𝛼 =
{︂
𝑞ℎ :=

(︂
𝑟𝑖
u𝑖

)︂
𝑖

∈ R3𝑁
⃒⃒⃒
∃𝑐 ∈ R,∀𝑖, 𝑟𝑖 = 𝑐 and

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︁

(𝛼u)𝑖 + (𝛼u)𝑗
)︁
·n𝑖𝑗 = 0

}︂
. (3.5)

Moreover, we have
Ker Lℎ𝜅>0,𝛼 ( Ker Lℎ𝜅=0,𝛼.

3.3.1. Kernel on a triangular mesh

We now study some particular properties of the behavior of the Godunov scheme on a triangular mesh.
Especially, we study the relation between the kernel of the Godunov scheme on a triangular mesh and a discrete
version of the space ℰ𝛼 defined by (2.11).

Construction of ℰℎ,△
𝛼 and

(︀
ℰℎ,△

𝛼

)︀⊥
. We construct an accurate discrete version of the well-prepared subspace

ℰ𝛼 defined by (2.11). Let us suppose that all Ω𝑖 are triangles arranged so that the computational domain is



1206 S. DELLACHERIE ET AL.

periodic. Moreover, let us denote by 𝑉ℎ the standard 𝑃 1 (first-order polynomial functions) Lagrange finite
element space associated with this triangular mesh

𝑉ℎ :=
{︀
𝜓ℎ ∈ 𝐶0(T), 𝜓ℎ periodic on T such that ∀Ω𝑖 : (𝜓ℎ)|Ω𝑖

∈ 𝑃 1(Ω𝑖)
}︀
. (3.6)

Let us also denote by 𝑊ℎ the nonconforming Crouzeix-Raviart 𝑃 1 finite element space associated with this
triangular mesh

𝑊ℎ := {𝜑ℎ ∈ 𝐿2(T), 𝜑ℎ periodic on T such that ∀Ω𝑖 : (𝜑ℎ)|Ω𝑖
∈ 𝑃 1(Ω𝑖)

and 𝜑ℎ is continuous at the edge midpoints}.

Note that since the functions in 𝑉ℎ (resp. 𝑊ℎ) are 𝑃 1 on each cell, their curls (resp. their gradients) are constant
vectors on each cell. Let us also define the discrete vector subspace

ℰℎ,△𝛼 =
{︂
𝑞ℎ :=

(︂
𝑟𝑖
u𝑖

)︂
𝑖

∈ R3𝑁
⃒⃒⃒
∃(𝑎, 𝑏, 𝑐, 𝜓ℎ) ∈ R3 × 𝑉ℎ, ∀𝑖 ∈ J1, 𝑁K, 𝑟𝑖 = 𝑐

and (𝛼u)𝑖 =
(︂
𝑎
𝑏

)︂
+ (∇× 𝜓ℎ)|Ω𝑖

}︂
. (3.7)

Then, we define the space of constant piecewise functions

𝑙2𝛼(T)3 :=
{︂
𝑞ℎ :=

(︂
𝑟𝑖
u𝑖

)︂
𝑖

∈ R3𝑁
⃒⃒⃒∑︁

𝑖

|Ω𝑖|(𝑟2𝑖 + |u𝑖|2)𝛼𝑖 < +∞
}︂

endowed with the scalar product (2.10) which may be written for (𝑞ℎ)1 and (𝑞ℎ)2 in 𝑙2𝛼(T)3 as

⟨(𝑞ℎ)1, (𝑞ℎ)2⟩𝛼,ℎ =
∑︁
𝑖

|Ω𝑖|
[︀
(𝑟1)𝑖(𝑟2)𝑖 + (u1)𝑖 · (u2)𝑖

]︀
𝛼𝑖. (3.8)

Adapting the proof of Theorem 4.1 in [1] (see also [32]) to the case of periodic elements in 𝑉ℎ and 𝑊ℎ and
weighted spaces, we may prove the following lemma:

Lemma 3.5. Assume that (Ω𝑖)𝑖=1,...,𝑁 is a triangular periodic mesh of a rectangular domain with no internal
holes. For any (𝑟,u)𝑇 ∈ R3𝑁 , there exist unique (𝑎, 𝑏) ∈ R2, a unique 𝜓ℎ ∈ 𝑉ℎ and a unique 𝜑ℎ ∈ 𝑊ℎ with∫︀

T 𝜓ℎ(x)dx =
∫︀

T 𝜑ℎ(x)dx = 0, such that on any Ω𝑖, we have

(︂
𝑟𝑖
u𝑖

)︂
=

⎛⎝ 𝑟

1
𝛼𝑖

(︂
𝑎
𝑏

)︂
+ 1

𝛼𝑖
(∇× 𝜓ℎ)|Ω𝑖

⎞⎠+
(︂

𝑟𝑖 − 𝑟
(∇𝜑ℎ)|Ω𝑖

)︂
(3.9)

with 𝑟 =
∑︀

𝑖 |Ω𝑖|𝛼𝑖𝑟𝑖∑︀
𝑖 |Ω𝑖|𝛼𝑖

. Moreover this decomposition is orthogonal for the scalar product (3.8).

Proof. We firstly prove the orthogonality of decomposition (3.9). The orthogonality between 𝑟 and 𝑟 − 𝑟 is
obvious because, by definition of 𝑟 we have:

⟨𝑟, 𝑟 − 𝑟⟩𝛼,ℎ =
∑︁
𝑖

|Ω𝑖|𝛼𝑖𝑟(𝑟 − 𝑟)𝑖 = 𝑟

(︃∑︁
𝑖

|Ω𝑖|𝛼𝑖𝑟𝑖 − 𝑟
∑︁
𝑖

|Ω𝑖|𝛼𝑖

)︃
= 0.

Now, we prove the orthogonality for the decomposition of u. For any (𝑎, 𝑏)𝑇 ∈ R2 and 𝜑ℎ ∈𝑊ℎ (then ∇𝜑ℎ is a
constant vector on each cell Ω𝑖), we have:⟨

1
𝛼

(︂
𝑎
𝑏

)︂
,∇𝜑ℎ

⟩
𝛼,ℎ

=
(︂
𝑎
𝑏

)︂
·
∑︁
𝑖

|Ω𝑖|(∇𝜑ℎ)|Ω𝑖
=
(︂
𝑎
𝑏

)︂
·
∑︁
𝑖

∫︁
Ω𝑖

(∇𝜑ℎ)|Ω𝑖
dx
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=
(︂
𝑎
𝑏

)︂
·
∑︁
𝑖

∫︁
𝜕Ω𝑖

𝜑ℎnd𝜎 =
(︂
𝑎
𝑏

)︂
·
∑︁
Γ𝑖𝑗

∫︁
Γ𝑖𝑗

[𝜑ℎ]𝑖𝑗n𝑖𝑗d𝜎

where [𝜑ℎ]𝑖𝑗 denotes the jump of 𝜑ℎ through the edge Γ𝑖𝑗 . To obtain the last equality, we used the fact that each
interface Γ𝑖𝑗 contributes twice in the sum over the cell boundaries. Since 𝜑ℎ is a 𝑃 1 function, its integral on the
edge Γ𝑖𝑗 is equal to the length |Γ𝑖𝑗 | multiplied by the value of 𝜑ℎ at its midpoint. Thus, since 𝜑ℎ is continuous
at the edge midpoints, we have

∫︀
Γ𝑖𝑗

[𝜑ℎ]𝑖𝑗n𝑖𝑗d𝜎 = 0 on any edge, which proves the orthogonality between the
field 1

𝛼 (𝑎, 𝑏)𝑇 and the gradient of any element in 𝑊ℎ. Moreover, for any 𝜓ℎ ∈ 𝑉ℎ and 𝜑ℎ ∈ 𝑊ℎ (then ∇ × 𝜓ℎ
and ∇𝜑ℎ are constant vectors on each cell Ω𝑖), it holds that⟨

1
𝛼
∇× 𝜓ℎ,∇𝜑ℎ

⟩
𝛼,ℎ

=
∑︁
𝑖

|Ω𝑖|(∇× 𝜓ℎ)|Ω𝑖
· (∇𝜑ℎ)|Ω𝑖

=
∑︁
𝑖

∫︁
Ω𝑖

(∇× 𝜓ℎ)|Ω𝑖
· (∇𝜑ℎ)|Ω𝑖

dx

=
∑︁
𝑖

∫︁
𝜕Ω𝑖

(𝜑ℎ)|Ω𝑖
(∇× 𝜓ℎ)|Ω𝑖

· nd𝜎 −
∑︁
𝑖

∫︁
Ω𝑖

(𝜑ℎ)|Ω𝑖
∇ · (∇× 𝜓ℎ)|Ω𝑖

dx.

Since ∇ · (∇×) = 0, the second sum vanishes. Moreover, denoting by t a unit vector such that (n, t) is a direct
orthonormal system, the equality (∇ × 𝜓ℎ) · n = (∇𝜓ℎ) · t and the fact that ∇𝜓ℎ · t is continuous along any
interface Γ𝑖𝑗 (since 𝜓ℎ ∈ 𝑉ℎ is a 𝑃 1 nodal Lagrange function) imply that⟨

1
𝛼
∇× 𝜓ℎ,∇𝜑ℎ

⟩
𝛼,ℎ

=
∑︁
Γ𝑖𝑗

∫︁
Γ𝑖𝑗

∇𝜓ℎ · t𝑖𝑗 [𝜑ℎ]𝑖𝑗 d𝜎.

But on Γ𝑖𝑗 , the product ∇𝜓ℎ · t𝑖𝑗 [𝜑ℎ]𝑖𝑗 is a 𝑃 1 function, and its integral over Γ𝑖𝑗 is equal to the length |Γ𝑖𝑗 |
multiplied by the value of this function at its midpoint. Thus, since 𝜑ℎ is continuous at the midpoint, then∫︀
Γ𝑖𝑗
∇𝜓ℎ · t𝑖𝑗 [𝜑ℎ]𝑖𝑗 d𝜎 = 0 on any edge, which proves orthogonality between 1

𝛼∇ × 𝜓ℎ and ∇𝜑ℎ. Then, the
orthogonality of the decomposition is proved.

We secondly prove the existence and the uniqueness of decomposition (3.9). For 𝑟 there is no difficulty. Thus,
we only consider the decomposition for u. We have to prove that the function 𝐿 defined by

𝐿 : R2 × 𝑉 0
ℎ ×𝑊 0

ℎ → R2𝑁 (3.10)(︂(︂
𝑎
𝑏

)︂
, 𝜓ℎ, 𝜑ℎ

)︂
↦→ 1

𝛼

(︂
𝑎
𝑏

)︂
+

1
𝛼
∇× 𝜓ℎ +∇𝜑ℎ

is bijective, where 𝑉 0
ℎ =

{︀
𝜓ℎ ∈ 𝑉ℎ|

∫︀
T 𝜓ℎdx = 0

}︀
and 𝑊 0

ℎ =
{︀
𝜑ℎ ∈𝑊ℎ|

∫︀
T 𝜑ℎdx = 0

}︀
. Firstly, we prove injec-

tivity. As 𝐿 is a linear function, we just have to prove that

𝐿

(︂(︂
𝑎
𝑏

)︂
, 𝜓ℎ, 𝜑ℎ

)︂
= 0 =⇒

(︂(︂
𝑎
𝑏

)︂
, 𝜓ℎ, 𝜑ℎ

)︂
= 0.

Assume that for all 𝑖 ∈ J1, 𝑁K, 1
𝛼𝑖

(︂
𝑎
𝑏

)︂
+ 1

𝛼𝑖
(∇× 𝜓ℎ)|Ω𝑖

+ (∇𝜑ℎ)|Ω𝑖
= 0. By the orthogonality that we proved

above, this implies

∀𝑖 ∈ J1, 𝑁K :

⎧⎪⎨⎪⎩
1
𝛼𝑖

(︃
𝑎

𝑏

)︃
+ 1

𝛼𝑖
(∇× 𝜓ℎ)|Ω𝑖

= 0,

(∇𝜑ℎ)|Ω𝑖
= 0,

which implies that

∀𝑖 ∈ J1, 𝑁K : ∃𝛾𝑖 ∈ R, ∃𝛽𝑖 ∈ R, ∀(𝑥, 𝑦) ∈ Ω𝑖,

⎧⎨⎩(𝜓ℎ)|Ω𝑖
(𝑥, 𝑦) = 𝑏𝑥− 𝑎𝑦 + 𝛽𝑖,

(𝜑ℎ)|Ω𝑖
(𝑥, 𝑦) = 𝛾𝑖.
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Since 𝜑ℎ is continuous at the edge midpoints and since 𝜓ℎ is continuous on T, (𝛾𝑖)𝑖=1,...,𝑁 and (𝛽𝑖)𝑖=1,...,𝑁 do
not depend on 𝑖. Then, we have

∃(𝛽, 𝛾) ∈ R2, ∀𝑖 ∈ J1, 𝑁K, ∀(𝑥, 𝑦) ∈ T :

⎧⎨⎩𝜓ℎ(𝑥, 𝑦) = 𝑏𝑥− 𝑎𝑦 + 𝛽,

𝜑ℎ(𝑥, 𝑦) = 𝛾.

Since
∫︀

T 𝜑ℎdx = 0, we obtain 𝜑ℎ = 0. Since 𝜓ℎ(𝑥, 𝑦) = 𝑏𝑥 − 𝑎𝑦 + 𝛽 is periodic on T, we have 𝑎 = 𝑏 = 0 which

implies that 𝜓ℎ = 𝛽. And since
∫︀

T 𝜓ℎdx = 0, we obtain 𝜓ℎ = 0. The conclusion is that
(︂(︂

𝑎
𝑏

)︂
, 𝜓ℎ, 𝜑ℎ

)︂
= 0

and the function 𝐿 in injective.
To prove surjectivity, we prove that dim

(︀
R2 × 𝑉 0

ℎ ×𝑊 0
ℎ

)︀
= dim

(︀
R2𝑁

)︀
= 2𝑁 . Any function 𝜓ℎ ∈ 𝑉ℎ is

completely and uniquely determined by its values at the 𝑉 independent nodes of the mesh, which implies that
dim𝑉ℎ = 𝑉 . Moreover the vanishing mean-value of 𝜓ℎ implies a constraint that links the values on the various
nodes. Thus, we have dim𝑉 0

ℎ = 𝑉 − 1. On the other hand, any 𝜑ℎ ∈𝑊ℎ is completely and uniquely determined
by its values at the 𝐸 independent edge midpoints of the mesh, then dim𝑊ℎ = 𝐸. Moreover, the vanishing
mean-value of 𝜑ℎ implies a constraint that links the values on the various edges. Thus, we have dim𝑊 0

ℎ = 𝐸−1.
To summarize, we have

dim
(︀
R2 × 𝑉 0

ℎ ×𝑊 0
ℎ

)︀
= 2 + dim(𝑉 0

ℎ ) + dim(𝑊 0
ℎ ) = 2 + (𝑉 − 1) + (𝐸 − 1) = 𝑉 + 𝐸.

Now, in a triangular periodic mesh of a rectangular domain with no internal holes, it is well known that
𝐸 + 𝑉 = 2𝑁 (proof by recurrence on the number of cells using the Descartes-Euler formula for a periodic
domain), which proves the bijectivity of the function 𝐿. �

Corollary 3.6. We have

(︀
ℰℎ,△𝛼

)︀⊥
=
{︂
𝑞ℎ :=

(︂
𝑟𝑖
u𝑖

)︂
𝑖

∈ R3𝑁

⃒⃒⃒⃒∑︁
𝑖

|Ω𝑖|𝛼𝑖𝑟𝑖 = 0 and ∃𝜑ℎ ∈𝑊ℎ,∀𝑖 ∈ J1, 𝑁K,u𝑖 = (∇𝜑ℎ)|Ω𝑖

}︂
.

Let us underline that Lemma 3.5 with Corollary 3.6 is the discrete version of Lemma 2.2 on a triangular
mesh.
A first explanation of the satisfying behavior of the Godunov scheme on triangular meshes. Here,
we prove that, on triangular meshes, the kernel of the Godunov scheme corresponds exactly to the discretized
space ℰ△𝛼 . This property shows that the discrete stationary space discretizes well the continuous one. This gives
a (partial) explanation of the satisfactory behavior of the Godunov scheme on a triangular mesh.

Proposition 3.7. Assume that (Ω𝑖)𝑖=1,...,𝑁 is a triangular periodic mesh of a rectangular domain with no
internal holes. We have

Ker Lℎ,△𝜅=1,𝛼 = ℰℎ,△𝛼 .

Proof. We firstly prove that ℰℎ,△𝛼 ⊂ Ker Lℎ𝜅=1,𝛼. Let 𝑞ℎ ∈ ℰℎ,△𝛼 . There exists (𝑎, 𝑏, 𝑐) ∈ R3 and 𝜓ℎ ∈ 𝑉ℎ such
that (see (3.7))

∀𝑖 ∈ J1, 𝑁K :

⎧⎪⎨⎪⎩
𝑟𝑖 = 𝑐,

(𝛼u)𝑖 =

(︃
𝑎

𝑏

)︃
+ (∇× 𝜓ℎ)|Ω𝑖

that is to say

∀𝑖 ∈ J1, 𝑁K : (𝛼u)𝑖 · n𝑖𝑗 =
(︂
𝑎
𝑏

)︂
· n𝑖𝑗 + (∇× 𝜓ℎ)|Ω𝑖

· n𝑖𝑗 =
(︂
𝑎
𝑏

)︂
· n𝑖𝑗 + (∇𝜓ℎ)|Ω𝑖

· t𝑖𝑗
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where t𝑖𝑗 is a unit vector such that (n𝑖𝑗 , t𝑖𝑗) is a direct orthonormal system. As already explained in the proof
of Lemma 3.5, the fact that 𝜓ℎ is a 𝑃 1 Lagrange function implies that (∇𝜓ℎ)|Ω𝑖

· t𝑖𝑗 = (∇𝜓ℎ)|Ω𝑗
· t𝑖𝑗 and as a

consequence the continuity of (𝛼u) · n through the cell edges. This means that 𝑞ℎ ∈ Ker Lℎ,△𝜅=1,𝛼 by using (3.4).
Now, we prove that Ker Lℎ,△𝜅=1,𝛼 ⊂ ℰℎ,△𝛼 . Let 𝑞ℎ ∈ Ker Lℎ,△𝜅=1,𝛼. Since 𝑞ℎ ∈ Ker Lℎ,△𝜅=1,𝛼, there exists 𝑐 ∈ R such
that for all 𝑖, 𝑟𝑖 = 𝑐. With Lemma 3.5, we have

u𝑖 =
(︂

1
𝛼𝑖

(︂
𝑎
𝑏

)︂
+

1
𝛼𝑖

(∇× 𝜓ℎ)|Ω𝑖

)︂
+ (∇𝜑ℎ)|Ω𝑖

for some (𝑎, 𝑏, 𝜓ℎ, 𝜑ℎ) ∈ R2 × 𝑉ℎ ×𝑊ℎ, this decomposition being orthogonal. Thus, we just have to prove that
∇𝜑ℎ = 0. By orthogonality, we have∑︁

𝑖

|Ω𝑖|𝛼𝑖
⃦⃦

(∇𝜑ℎ)|Ω𝑖

⃦⃦2 = ⟨u, (∇𝜑ℎ)⟩𝛼,ℎ

=
∑︁
𝑖

|Ω𝑖|(𝛼u)𝑖 · (∇𝜑ℎ)|Ω𝑖
=
∑︁
𝑖

(𝛼u)𝑖 ·
∫︁

Ω𝑖

(∇𝜑ℎ)|Ω𝑖
dx

because 𝛼u and ∇𝜑ℎ are constant on each triangle Ω𝑖. Then, we can write∑︁
𝑖

|Ω𝑖|𝛼𝑖
⃦⃦

(∇𝜑ℎ)|Ω𝑖

⃦⃦2 =
∑︁
𝑖

(𝛼u)𝑖 ·
∫︁
𝜕Ω𝑖

(𝜑ℎ)|Ω𝑖
n𝑖𝑗d𝜎 =

∑︁
𝑖

∫︁
𝜕Ω𝑖

(𝛼u)𝑖 · (𝜑ℎ)|Ω𝑖
n𝑖𝑗d𝜎

=
∑︁
Γ𝑖𝑗

∫︁
Γ𝑖𝑗

[︀
(𝜑ℎ)|Ω𝑖

(𝛼u)𝑖 · n𝑖𝑗 + (𝜑ℎ)|Ω𝑗
(𝛼u)𝑗 · n𝑗𝑖

]︀
d𝜎.

Since 𝑞ℎ ∈ Ker Lℎ,△𝜅=1,𝛼, we have (𝛼u)𝑖 · n𝑖𝑗 = (𝛼u)𝑗 · n𝑖𝑗 and we denote by (𝛼𝑢𝑛)𝑖𝑗 this common value. Thus

∑︁
𝑖

|Ω𝑖|𝛼𝑖
⃦⃦

(∇𝜑ℎ)|Ω𝑖

⃦⃦2 =
∑︁
Γ𝑖𝑗

(𝛼𝑢𝑛)𝑖𝑗 ·
∫︁

Γ𝑖𝑗

[𝜑ℎ]𝑖𝑗d𝜎,

where [𝜑ℎ]𝑖𝑗 denotes the jump of 𝜑ℎ through the edge Γ𝑖𝑗 . As already explained in the proof of Lemma 3.5, the
fact that 𝜑ℎ is a 𝑃 1 function, which is continuous at the edge midpoints implies that

∫︀
Γ𝑖𝑗

[𝜑ℎ]𝑖𝑗d𝜎 = 0 on any
edge, which proves ∑︁

𝑖

|Ω𝑖|𝛼𝑖
⃦⃦

(∇𝜑ℎ)|Ω𝑖

⃦⃦2 = 0

that is to say for all 𝑖 ∈ J1, 𝑁K, (∇𝜑ℎ)|Ω𝑖
= 0. This proves that 𝑞ℎ ∈ ℰℎ,△𝛼 . �

3.3.2. Kernel on a Cartesian mesh

We now study some particular properties of the behavior of the Godunov scheme on a rectangular uniform
Cartesian mesh. Especially, we study the relation between the kernels of the standard Godunov scheme (𝜅 = 1)
and of its modification (𝜅 = 0) on a uniform Cartesian mesh and a discrete version of the space ℰ𝛼 defined by
(2.11).

Construction of ℰℎ,�
𝛼 and

(︀
ℰℎ,�

𝛼

)︀⊥
. We construct an accurate discrete version of the well-prepared subspace

ℰ𝛼 defined by (2.11). Suppose that the computational domain is a rectangle and that the mesh is made up of
𝑁𝑥×𝑁𝑦 rectangles of constant size ∆𝑥×∆𝑦 where 𝑁𝑥 and 𝑁𝑦 are the numbers of cells in the 𝑥 and 𝑦 directions.
In what follows, we shall suppose that both 𝑁𝑥 and 𝑁𝑦 are odd. Indeed, if this is not the case, the situation is



1210 S. DELLACHERIE ET AL.

a little more involved due to even/odd decoupling which may produce checkerboard modes. We introduce the
following operators, which are accurate approximations of their continuous counterparts:

rot2ℎ : R𝑁𝑥𝑁𝑦 ↦→
(︀
R𝑁𝑥𝑁𝑦

)︀2
with (rot2ℎ𝜓)𝑖,𝑗 :=

(︃
𝜓𝑖,𝑗+1−𝜓𝑖,𝑗−1

2Δ𝑦

−𝜓𝑖+1,𝑗−𝜓𝑖−1,𝑗

2Δ𝑥

)︃
,

grad2ℎ : R𝑁𝑥𝑁𝑦 ↦→
(︀
R𝑁𝑥𝑁𝑦

)︀2
with (grad2ℎ𝜓)𝑖,𝑗 :=

(︃
𝜓𝑖+1,𝑗−𝜓𝑖−1,𝑗

2Δ𝑥
𝜓𝑖,𝑗+1−𝜓𝑖,𝑗−1

2Δ𝑦

)︃
·

In these definitions, it is implicitly meant that (𝜓𝑖,𝑗) ∈ R𝑁𝑥𝑁𝑦 is periodic, that is to say{︃
∀𝑖 ∈ J1, 𝑁𝑥K, 𝜓𝑖,0 = 𝜓𝑖,𝑁𝑦

and 𝜓𝑖,𝑁𝑦+1 = 𝜓𝑖,1,

∀𝑗 ∈ J1, 𝑁𝑦K, 𝜓0,𝑗 = 𝜓𝑁𝑥,𝑗 and 𝜓𝑁𝑥+1,𝑗 = 𝜓1,𝑗 .
(3.11)

Let us now define the following subspace, which is an accurate discrete version of ℰ𝛼 defined by (2.11).

ℰℎ,�𝛼 =

{︃
𝑞ℎ :=

(︂
𝑟𝑖,𝑗
u𝑖,𝑗

)︂
∈ R3𝑁𝑥𝑁𝑦

⃒⃒⃒
∃ (𝑎, 𝑏, 𝑐, (𝜓𝑖,𝑗)) ∈ R3 × R𝑁𝑥𝑁𝑦 , ∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,

𝑟𝑖,𝑗 = 𝑐 and (𝛼u)𝑖,𝑗 =
(︂
𝑎
𝑏

)︂
+ (rot2ℎ𝜓)𝑖,𝑗

}︃
. (3.12)

We shall also need the following weighted discrete scalar product:

⟨(𝑞ℎ)1, (𝑞ℎ)2⟩𝛼,ℎ =
∑︁
𝑖,𝑗

|Ω𝑖,𝑗 |𝛼𝑖,𝑗
[︀
(𝑟1)𝑖,𝑗(𝑟2)𝑖,𝑗 + (u1)𝑖,𝑗 · (u2)𝑖,𝑗

]︀
. (3.13)

We introduce in the following lemma a discrete Hodge decomposition for a collocated Cartesian mesh with
periodic boundary conditions. The orthogonality is to be understood with respect to the discrete scalar product
defined by (3.13). Nicolaides [31] also proved some kind of similar result but did not consider periodic boundary
conditions, weighted spaces and collocated meshes (he did the proof for a staggered mesh). The proof presented
here does not use the same techniques as Nicolaides’.

Lemma 3.8. For any (𝑟,u)𝑇 ∈ R3𝑁𝑥𝑁𝑦 , there exists unique (𝑎, 𝑏, (𝜓𝑖,𝑗), (𝜑𝑖,𝑗))) ∈ R2 × R𝑁𝑥𝑁𝑦 × R𝑁𝑥𝑁𝑦 , with∑︀
𝑖,𝑗 |Ω𝑖,𝑗 |𝜓𝑖,𝑗 =

∑︀
𝑖,𝑗 |Ω𝑖,𝑗 |𝜑𝑖,𝑗 = 0, such that for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,

(︂
𝑟𝑖,𝑗
u𝑖,𝑗

)︂
=

⎛⎝ 𝑟

1
𝛼𝑖,𝑗

(︂
𝑎
𝑏

)︂
+ 1

𝛼𝑖,𝑗
(rot2ℎ𝜓)𝑖,𝑗

⎞⎠+
(︂

𝑟𝑖,𝑗 − 𝑟
(grad2ℎ𝜑)𝑖,𝑗

)︂
(3.14)

with 𝑟 =
∑︀

𝑖,𝑗 |Ω𝑖,𝑗 |𝛼𝑖,𝑗𝑟𝑖,𝑗∑︀
𝑖,𝑗 |Ω𝑖,𝑗 |𝛼𝑖,𝑗

. Moreover this decomposition is orthogonal for the scalar product (3.13).

Proof. Let us first prove orthogonality. The orthogonality between 𝑟 and 𝑟 − 𝑟 is obvious. Now we prove the
orthogonality for the decomposition of u. We have, for any (𝑎, 𝑏)𝑇 ∈ R2 and periodic sequence (𝜑𝑖,𝑗)𝑖,𝑗 ∈ R𝑁𝑥𝑁𝑦

in the sense of (3.11)⟨
1
𝛼

(︂
𝑎
𝑏

)︂
, (grad2ℎ𝜑)

⟩
𝛼,ℎ

=
∑︁
𝑖,𝑗

|Ω𝑖,𝑗 |𝛼𝑖,𝑗
1
𝛼𝑖,𝑗

(︂
𝑎
𝑏

)︂
· (grad2ℎ𝜑)𝑖,𝑗

=
1
2

(︂
𝑎
𝑏

)︂
·
(︂

∆𝑦
∑︀
𝑖,𝑗 (𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗)

∆𝑥
∑︀
𝑖,𝑗 (𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1)

)︂
=
(︂
𝑎
𝑏

)︂
·
(︂

0
0

)︂
= 0
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because of (3.11).
Moreover, for any 𝜓𝑖,𝑗 ∈ R𝑁𝑥𝑁𝑦 and 𝜑𝑖,𝑗 ∈ R𝑁𝑥𝑁𝑦 periodic in the sense of (3.11),⟨
1
𝛼
rot2ℎ𝜓,grad2ℎ𝜑

⟩
𝛼,ℎ

=
1
4

∑︁
𝑖,𝑗

(𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1) (𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗)− (𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗) (𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1) = 0

because of the periodicity of (𝜑𝑖,𝑗) and (𝜓𝑖𝑗). Then, orthogonality of the decomposition is proved.
We shall now prove existence and uniqueness of decomposition (3.14). For 𝑟 there is no problem, so we only

consider the equation in u. We have to prove that the function 𝐿 defined by

𝐿 : R2 × R𝑁𝑥𝑁𝑦

0 × R𝑁𝑥𝑁𝑦

0 → (R2)𝑁𝑥𝑁𝑦 (3.15)(︂(︂
𝑎
𝑏

)︂
, (𝜓𝑖,𝑗), (𝜑𝑖,𝑗)

)︂
↦→
(︂

1
𝛼

(︂
𝑎
𝑏

)︂
+

1
𝛼

(rot2ℎ𝜓) + (grad2ℎ𝜑)
)︂
𝑖,𝑗

is bijective, where R𝑁𝑥𝑁𝑦

0 =
{︁

(𝜓𝑖𝑗) ∈ R𝑁𝑥𝑁𝑦

⃒⃒⃒ ∑︀
𝑖,𝑗 |Ω𝑖,𝑗 |𝜓𝑖,𝑗 = 0

}︁
. Firstly, we prove injectivity. As 𝐿 is a linear

function, we just have to prove that

𝐿

(︂(︂
𝑎
𝑏

)︂
, (𝜓𝑖,𝑗), (𝜑𝑖,𝑗)

)︂
= 0 =⇒

⎧⎪⎨⎪⎩
(︃
𝑎

𝑏

)︃
= 0,

∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K, 𝜓𝑖,𝑗 = 𝜑𝑖,𝑗 = 0.

Assume that for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,(︂
1
𝛼

(︂
𝑎
𝑏

)︂
+

1
𝛼

(rot2ℎ𝜓) + (grad2ℎ𝜑)
)︂
𝑖,𝑗

= 0.

By the orthogonality property proved above, this implies

∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,
(︂
𝑎
𝑏

)︂
+ (rot2ℎ𝜓)𝑖,𝑗 = 0 and (grad2ℎ𝜑)𝑖,𝑗 = 0

=⇒ ∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜓𝑖,𝑗+1 − 𝜓𝑖,𝑗−1 = −2𝑎∆𝑦,
𝜓𝑖+1,𝑗 − 𝜓𝑖−1,𝑗 = 2𝑏∆𝑥,
𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗 = 0,
𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1 = 0.

Then, for all 𝑖 ∈ J1, 𝑁𝑥K, (𝜓𝑖,𝑗)2𝑗 is an arithmetic sequence of step −2𝑎∆𝑦. By periodicity, we deduce that 𝑎 = 0.
We obtain that 𝜓𝑖,𝑗+1 = 𝜓𝑖,𝑗−1 for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K. Then, because 𝑁𝑦 is odd, this implies that

∀𝑖 ∈ J1, 𝑁𝑥K, ∃𝛽𝑖 ∈ R, ∀𝑗 ∈ J1, 𝑁𝑦K, 𝜓𝑖,𝑗 = 𝛽𝑖.

Note that if 𝑁𝑦 were not odd, there would be an even/odd decoupling here (there would exist constants 𝛽odd
𝑖

and 𝛽even
𝑖 such that 𝜓𝑖,2𝑗 = 𝛽even

𝑖 and 𝜓𝑖,2𝑗+1 = 𝛽odd
𝑖 ).

In the same way, it holds that 𝑏 = 0 and that

∀𝑗 ∈ J1, 𝑁𝑦K, ∃𝛾𝑗 ∈ R, ∀𝑖 ∈ J1, 𝑁𝑥K, 𝜓𝑖,𝑗 = 𝛾𝑗 .

Both equalities on 𝜓𝑖,𝑗 can happen simultaneously only if the values do not depend on 𝑖 and 𝑗, and thus 𝜓𝑖,𝑗 is
constant. Since

∑︀
𝑖,𝑗 ∆𝑥∆𝑦𝜓𝑖,𝑗 = 0 we obtain

∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K, 𝜓𝑖,𝑗 = 0.
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Similarly, we obtain for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K×J1, 𝑁𝑦K, 𝜑𝑖,𝑗 = 0 and the function 𝐿 is injective. Moreover, injectivity
and the following space dimension equality ensure bijectivity:

dim
(︁
R2 × R𝑁𝑥𝑁𝑦

0 × R𝑁𝑥𝑁𝑦

0

)︁
= 2 + 2 dim

(︁
R𝑁𝑥𝑁𝑦

0

)︁
= 2 + 2(𝑁𝑥𝑁𝑦 − 1) = 2𝑁𝑥𝑁𝑦.

�

A first explanation of the wrong behavior of the Godunov scheme on a Cartesian mesh. In this
section, we show that the kernel of the standard (𝜅 = 1) Godunov scheme is not an accurate approximation of
the kernel of the continuous wave equation. On the other hand, we show that the kernel of the modified (𝜅 = 0)
Godunov scheme does approximate correctly the kernel of the continuous wave equation.

Proposition 3.9. Assume that (Ω𝑖,𝑗)𝑖=1···𝑁𝑥, 𝑗=1···𝑁𝑦
is a Cartesian periodic mesh of a rectangular domain with

no internal holes. We have
Ker Lℎ,�𝜅>0,𝛼 ( ℰℎ,�𝛼

with

Ker Lℎ,�𝜅>0,𝛼 =

{︃
𝑞ℎ :=

(︂
𝑟𝑖
u𝑖

)︂
∈ R3𝑁𝑥𝑁𝑦

⃒⃒⃒
∃ (𝑐, (𝑎𝑗), (𝑏𝑖)) ∈ R× R𝑁𝑦 × R𝑁𝑥 ,

∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K, 𝑟𝑖,𝑗 = 𝑐 and (𝛼u)𝑖,𝑗 =
(︂
𝑎𝑗
𝑏𝑖

)︂}︃
. (3.16)

On the other hand, we have
Ker Lℎ,�𝜅=0,𝛼 = ℰℎ,�𝛼 .

Proof. Starting from (3.4), equality (3.16) is readily obtained. Indeed, considering vertical edges of the Cartesian
rectangular mesh, (3.4) implies that (𝛼𝑢𝑥)𝑖,𝑗 is constant along the 𝑥-direction; then this quantity depends only
on 𝑗. In the same way, considering horizontal edges, it follows that (𝛼𝑢𝑦)𝑖,𝑗 is constant along the 𝑦-direction, and
thus depends only on 𝑖. We clearly see that Ker Lℎ,�𝜅>0,𝛼 is a very poor approximation of its discrete counterpart,
since it contains only velocity fields whose horizontal (resp. vertical) component depends only (up to the factor
𝛼) on the vertical (resp. horizontal) coordinate.

Concerning the inclusion Ker Lℎ,�𝜅>0,𝛼 ( ℰℎ,�𝛼 , it will be a consequence of the proof that Ker Lℎ,�𝜅=0,𝛼 = ℰℎ,�𝛼

since Lemma 3.4 implies that Ker Lℎ,�𝜅>0,𝛼 ( Ker Lℎ,�𝜅=0,𝛼.
Let us now turn to the case 𝜅 = 0. We first prove that ℰℎ,�𝛼 ⊂ Ker Lℎ,�𝜅=0,𝛼. Let 𝑞ℎ ∈ ℰℎ,�𝛼 . There exist

(𝑎, 𝑏, 𝑐) ∈ R3 and (𝜓𝑖,𝑗) ∈ R𝑁𝑥𝑁𝑦 such that

∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K, 𝑟𝑖,𝑗 = 𝑐 and (𝛼u)𝑖,𝑗 =
(︂
𝑎
𝑏

)︂
+ (rot2ℎ𝜓)𝑖,𝑗 .

Denoting by Ω(𝑘,ℓ) one of the four neighbors of Ω𝑖,𝑗 and n(𝑖,𝑗)(𝑘,ℓ) the corresponding unit exterior normal vector
on their interface, we have for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,∑︁

Γ(𝑖,𝑗)(𝑘,ℓ)⊂𝜕Ω𝑖,𝑗

|Γ(𝑖,𝑗)(𝑘,ℓ)|
(︁

(𝛼u)𝑖,𝑗 + (𝛼u)𝑘,ℓ
)︁
· n(𝑖,𝑗)(𝑘,ℓ)

= ∆𝑦 ((𝛼u)𝑖,𝑗 + (𝛼u)𝑖+1,𝑗) ·
(︂

1
0

)︂
+ ∆𝑦 ((𝛼u)𝑖,𝑗 + (𝛼u)𝑖−1,𝑗) ·

(︂
−1
0

)︂
+∆𝑥 ((𝛼u)𝑖,𝑗 + (𝛼u)𝑖,𝑗+1) ·

(︂
0
1

)︂
+ ∆𝑥 ((𝛼u)𝑖,𝑗 + (𝛼u)𝑖,𝑗−1) ·

(︂
0
−1

)︂
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= ∆𝑦 ((𝛼u)𝑖+1,𝑗 − (𝛼u)𝑖−1,𝑗) ·
(︂

1
0

)︂
+ ∆𝑥 ((𝛼u)𝑖,𝑗+1 − (𝛼u)𝑖,𝑗−1) ·

(︂
0
1

)︂
= 𝑎∆𝑦 +

𝜓𝑖+1,𝑗+1 − 𝜓𝑖+1,𝑗−1

2
−
(︂
𝑎∆𝑦 +

𝜓𝑖−1,𝑗+1 − 𝜓𝑖−1,𝑗−1

2

)︂
+
(︂
𝑏∆𝑥− 𝜓𝑖+1,𝑗+1 − 𝜓𝑖−1,𝑗+1

2

)︂
−
(︂
𝑏∆𝑥− 𝜓𝑖+1,𝑗−1 − 𝜓𝑖−1,𝑗−1

2

)︂
= 0

and then 𝑞ℎ ∈ Ker Lℎ,�𝜅=0,𝛼.
Now, we prove that Ker Lℎ,�𝜅=0,𝛼 ⊂ ℰℎ,�𝛼 . Let 𝑞ℎ ∈ Ker Lℎ,�𝜅=0,𝛼. This first implies that there exists 𝑐 ∈ R such

that for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K, 𝑟𝑖,𝑗 = 𝑐. Next, using Lemma 3.8, we can write

∀(𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K , u𝑖,𝑗 =
1
𝛼𝑖,𝑗

(︂
𝑎
𝑏

)︂
+

1
𝛼𝑖,𝑗

(rot2ℎ𝜓)𝑖,𝑗 + (grad2ℎ𝜑)𝑖,𝑗 (3.17)

for some (𝑎, 𝑏, (𝜓𝑖,𝑗), (𝜑𝑖,𝑗)) ∈ R2 ×
(︀
R𝑁𝑥𝑁𝑦

)︀2 and this decomposition is orthogonal. We need to prove that
(grad2ℎ𝜑)𝑖,𝑗 = 0 for all (𝑖, 𝑗). By orthogonality in (3.17), we have

∑︁
𝑖,𝑗

∆𝑥∆𝑦𝛼𝑖,𝑗 |(grad2ℎ𝜑)𝑖,𝑗 |2 = ⟨u,grad2ℎ𝜑⟩𝛼,ℎ =
∑︁
𝑖,𝑗

∆𝑥∆𝑦𝛼𝑖,𝑗u𝑖,𝑗 ·

(︃
𝜑𝑖+1,𝑗−𝜑𝑖−1,𝑗

2Δ𝑥
𝜑𝑖,𝑗+1−𝜑𝑖,𝑗−1

2Δ𝑦

)︃
.

Expanding the dot product and rearranging the sum through changes of indexes in order to factorize by 𝜑𝑖,𝑗 ,
we obtain, using periodicity to handle the boundary terms and the fact that, for any given cell Ω𝑖,𝑗 we have∑︀

Γ(𝑖,𝑗)(𝑘,ℓ)⊂𝜕Ω𝑖,𝑗
|Γ(𝑖,𝑗)(𝑘,ℓ)|n(𝑖,𝑗)(𝑘,ℓ) = 0:

‖(grad2ℎ𝜑)‖2𝛼,ℎ =
1
2

∑︁
𝑖,𝑗

(︀
∆𝑦 [(𝛼𝑢𝑥)𝑖−1,𝑗 − (𝛼𝑢𝑥)𝑖+1,𝑗 ] + ∆𝑥 [(𝛼𝑢𝑦)𝑖,𝑗−1 − (𝛼𝑢𝑦)𝑖,𝑗+1]

)︀
𝜑𝑖,𝑗

=
1
2

∑︁
𝑖,𝑗

𝜑𝑖,𝑗
∑︁

Γ(𝑖,𝑗)(𝑘,ℓ)⊂𝜕Ω𝑖,𝑗

|Γ(𝑖,𝑗)(𝑘,ℓ)| (𝛼u)𝑘,ℓ · n(𝑖,𝑗)(𝑘,ℓ)

=
1
2

∑︁
𝑖,𝑗

𝜑𝑖,𝑗
∑︁

Γ(𝑖,𝑗)(𝑘,ℓ)⊂𝜕Ω𝑖,𝑗

|Γ(𝑖,𝑗)(𝑘,ℓ)|
(︁

(𝛼u)𝑖,𝑗 + (𝛼u)𝑘,ℓ
)︁
· n(𝑖,𝑗)(𝑘,ℓ) = 0,

because 𝑞ℎ ∈ Ker Lℎ,�𝜅=0,𝛼. This means that for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K × J1, 𝑁𝑦K, (grad2ℎ𝜑)𝑖,𝑗 = 0 and then (3.17)
gives us for all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K,

u𝑖,𝑗 =
1
𝛼𝑖,𝑗

(︂
𝑎
𝑏

)︂
+

1
𝛼𝑖,𝑗

(rot2ℎ𝜓)𝑖,𝑗 .

Then, we have 𝑞ℎ ∈ ℰℎ,�𝛼 . �

On Cartesian meshes, this proves that deleting the diffusion term on the velocity field (𝜅 = 0) allows to
recover a kernel that is an accurate approximation of its continuous counterpart.

4. Right or wrong behavior of the Godunov scheme in the linear discrete
case

We now study the low Mach accuracy of the Godunov scheme in the sense that the numerical solution (3.2)
satisfies a discrete version of (2.16). As explained in Section 3.2, the two key points to prove this kind of property
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is that the kernel of the scheme satisfies ℰℎ𝛼 ⊂ Ker Lℎ𝛼 and that system (3.2) is well-posed (see Thm. 3.3). The
study of the kernel was performed in Section 3, 𝜅 > 0 and 𝜅 = 0 define discrete operators L𝜅,𝛼 whose kernels
are very different. We now prove the well-posed property (𝑙2𝛼-stability) and then study the low Mach accuracy
of the Godunov scheme on Cartesian rectangular and on triangular meshes.

4.1. 𝑙2𝛼-stability of the Godunov scheme

We now prove stability of the semi-discrete scheme both when 𝜅 = 0 and when 𝜅 > 0. This property is
essential in the sequel. Let us define the energy

𝐸ℎ := ‖𝑞ℎ‖2𝑙2𝛼 =
∑︁
𝑖

|Ω𝑖|𝛼𝑖
(︀
𝑟2𝑖 + |u𝑖|2

)︀
. (4.1)

Theorem 4.1. Let (𝑟𝑖,u𝑖) be the solution of the semi-discrete scheme (3.1). We have

d
d𝑡
𝐸ℎ =

d
d𝑡
‖𝑞ℎ‖2𝑙2𝛼 = − 𝑎⋆

𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
(︂
𝛼𝑖𝑗 |𝑟𝑖 − 𝑟𝑗 |2 +

𝜅

𝛼𝑖𝑗

⃒⃒⃒(︁
(𝛼u)𝑖 − (𝛼u)𝑗

)︁
· n𝑖𝑗

⃒⃒⃒2)︂
. (4.2)

Then, for 𝜅 ≥ 0 the Godunov scheme is dissipative since

d
d𝑡
𝐸ℎ =

d
d𝑡
‖𝑞ℎ‖2𝑙2𝛼 ≤ 0.

Proof. We multiply the first equation of (3.1) with 2|Ω𝑖|𝑟𝑖 and sum with respect to 𝑖. Since 𝛼𝑖 does not depend
on time, we obtain

d
d𝑡

∑︁
𝑖

|Ω𝑖|𝛼𝑖𝑟2𝑖 = − 𝑎⋆
𝑀

∑︁
𝑖

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︁(︁

(𝛼u)𝑖 + (𝛼u)𝑗
)︁
· n𝑖𝑗𝑟𝑖 + 𝛼𝑖𝑗(𝑟𝑖 − 𝑟𝑗)𝑟𝑖

)︁
,

= − 𝑎⋆
𝑀

∑︁
𝑖

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︁

(𝛼u)𝑗 · n𝑖𝑗𝑟𝑖 + 𝛼𝑖𝑗(𝑟𝑖 − 𝑟𝑗)𝑟𝑖
)︁
,

= − 𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
(︁

(𝛼u)𝑗 · n𝑖𝑗𝑟𝑖 + (𝛼u)𝑖 · n𝑗𝑖𝑟𝑗 + 𝛼𝑖𝑗(𝑟𝑖 − 𝑟𝑗)𝑟𝑖 + 𝛼𝑗𝑖(𝑟𝑗 − 𝑟𝑖)𝑟𝑗
)︁
,

= − 𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
(︁(︁
𝑟𝑖 (𝛼u)𝑗 − 𝑟𝑗 (𝛼u)𝑖

)︁
· n𝑖𝑗 + 𝛼𝑖𝑗 |𝑟𝑖 − 𝑟𝑗 |2

)︁
.

Taking the scalar product of the second equation of (3.1) with 2|Ω𝑖|u𝑖 and summing with respect to 𝑖, we obtain

d
d𝑡

∑︁
𝑖

|Ω𝑖|𝛼𝑖|u𝑖|2 = − 𝑎⋆
𝑀

∑︁
𝑖

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |𝛼𝑖
(︂
𝑟𝑖 + 𝑟𝑗 +

𝜅

𝛼𝑖𝑗

(︁
(𝛼u)𝑖 − (𝛼u)𝑗

)︁
· n𝑖𝑗

)︂
u𝑖 · n𝑖𝑗 ,

= − 𝑎⋆
𝑀

∑︁
𝑖

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︂
𝑟𝑗 +

𝜅

𝛼𝑖𝑗

(︁
(𝛼u)𝑖 − (𝛼u)𝑗

)︁
· n𝑖𝑗

)︂
(𝛼u)𝑖 · n𝑖𝑗 ,

= − 𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
(︁
𝑟𝑗(𝛼u)𝑖 · n𝑖𝑗 + 𝑟𝑖(𝛼u)𝑗 · n𝑗𝑖

)︁
− 𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
𝜅

𝛼𝑖𝑗

(︂(︁
(𝛼u)𝑖 − (𝛼u)𝑗

)︁
· n𝑖𝑗(𝛼u)𝑖 · n𝑖𝑗

+
(︁

(𝛼u)𝑗 − (𝛼u)𝑖
)︁
· n𝑗𝑖(𝛼u)𝑗 · n𝑗𝑖

)︂
,
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= − 𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
(︁
𝑟𝑗(𝛼u)𝑖 − 𝑟𝑖(𝛼u)𝑗

)︁
· n𝑖𝑗

− 𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
𝜅

𝛼𝑖𝑗

⃒⃒⃒(︁
(𝛼u)𝑖 − (𝛼u)𝑗

)︁
· n𝑖𝑗

⃒⃒⃒2
.

By summing d
d𝑡

∑︀
𝑖 |Ω𝑖|𝛼𝑖𝑟2𝑖 and d

d𝑡

∑︀
𝑖 |Ω𝑖|𝛼𝑖|u𝑖|2, we obtain (4.2). �

4.2. The triangular mesh case

In Section 2.3.4, we saw that in the continuous setting and for low values of the Mach number, the solution of
the continuous system remains close to an incompressible state for any 𝑡 > 0, if this was the case at the initial
time 𝑡 = 0. This section will show that this is also the case at the discrete level for the numerical solution of
the Godunov scheme applied to the linear wave equation with porosity on triangular meshes. This explains the
satisfactory behavior of this scheme on this type of meshes.

We saw that the Godunov scheme (𝜅 = 1) preserves an incompressible state 𝑞0ℎ ∈ ℰℎ,△𝛼 . We want to study the
impact of a perturbation of order 𝑀 in

(︀
ℰℎ,△𝛼

)︀⊥ on the initial condition. With the orthogonal decomposition
proved in Lemma 3.5 and with definition (3.7), we can define an orthogonal projection

Pℎ,△𝛼 : 𝑙2𝛼(T)3 → ℰℎ,△𝛼 .

The theorem that follows expresses the fact that any perturbation of order 𝑀 in the orthogonal space at the
initial time will not affect the solution over time more than its original size:

Theorem 4.2. Let 𝑞ℎ(𝑡) be an approximate solution of (2.9) given by the Godunov scheme (3.2) with the initial
condition 𝑞0ℎ. On triangular meshes with 𝜅 = 1, for all 𝑞0ℎ ∈ 𝑙2𝛼(T)3, we have

∀𝐶1 > 0,
(︁⃦⃦
𝑞0ℎ − Pℎ,△𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

= 𝐶1𝑀
)︁

=⇒
(︁
∀𝑡 ≥ 0,

⃦⃦
𝑞ℎ − Pℎ,△𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

(𝑡) ≤ 𝐶1𝑀
)︁
. (4.3)

Proof. By linearity of Lℎ,△𝜅=1,𝛼, the solution 𝑞ℎ of scheme (3.2) with initial condition 𝑞0ℎ can be written as

𝑞ℎ = 𝑞ℎ,1 + 𝑞ℎ,2

where 𝑞ℎ,1 is the solution of (3.2) with initial condition 𝑞ℎ,1(𝑡 = 0,x) = (𝑞0ℎ−Pℎ,△𝛼 𝑞0ℎ)(x) and 𝑞ℎ,2 is the solution
of (3.2) with initial condition 𝑞ℎ,2(𝑡 = 0,x) = Pℎ,△𝛼 𝑞0ℎ(x). We have

∀𝑡 ≥ 0,
⃦⃦
𝑞ℎ − Pℎ,△𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

(𝑡) =
⃦⃦
𝑞ℎ,1 + 𝑞ℎ,2 − Pℎ,△𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

(𝑡) ≤ ‖𝑞ℎ,1‖𝑙2𝛼 (𝑡) +
⃦⃦
𝑞ℎ,2 − Pℎ,△𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

(𝑡).

Because the Godunov scheme (3.2) is dissipative when 𝜅 ≥ 0 (see Thm. 4.1), we have ‖𝑞ℎ,1‖𝑙2𝛼 (𝑡) ≤ ‖𝑞ℎ,1‖𝑙2𝛼 (0).

Moreover, since Pℎ,△𝛼 𝑞0ℎ ∈ ℰℎ,△𝛼 = Ker Lℎ,△𝜅=1,𝛼, the initial condition for 𝑞ℎ,2 is in the kernel of Lℎ,△𝜅=1,𝛼, and
therefore 𝑞ℎ,2 is stationary: for all 𝑡 > 0 we have 𝑞ℎ,2(𝑡) = Pℎ,△𝛼 𝑞0ℎ. We obtain

∀𝑡 ≥ 0,
⃦⃦
𝑞ℎ,2 − Pℎ,△𝛼 𝑞0

⃦⃦
𝑙2𝛼

(𝑡) = 0

and (4.4) becomes
∀𝑡 ≥ 0,

⃦⃦
𝑞ℎ − Pℎ,△𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

(𝑡) ≤ ‖𝑞ℎ,1‖𝑙2𝛼 (0) = 𝐶1𝑀

if ‖𝑞0ℎ − Pℎ,△𝛼 𝑞0ℎ‖𝑙2𝛼 = 𝐶1𝑀 . �
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4.3. The Cartesian mesh case

We saw that the Godunov scheme (𝜅 = 1) on Cartesian meshes does not preserve an incompressible state
𝑞0ℎ ∈ ℰℎ,�𝛼 , but it preserves it if we delete the numerical diffusion on the velocity by setting 𝜅 = 0. From
Lemma 3.8, we can define an orthogonal projection

Pℎ,�𝛼 : 𝑙2𝛼(T)3 → ℰℎ,�𝛼 .

We want to study the evolution over time of the initial condition when it consists in the sum of an element in
the discrete incompressible space

(︀
ℰℎ,�𝛼

)︀
and of a perturbation of order 𝑀 in

(︀
ℰℎ,�𝛼

)︀⊥
.

This will give an explanation of the wrong behavior of the standard (𝜅 = 1) Godunov scheme on a Cartesian
mesh and of the satisfactory behavior of the modified (𝜅 = 0) scheme. Moreover, since completely deleting the
numerical diffusion by setting 𝜅 = 0 was shown in [16] to present stability issues in the non-linear case, we shall
also study the intermediate case 𝜅 = 𝑀 .

4.3.1. Explanation of the wrong behavior of the Godunov scheme on a Cartesian mesh

The next theorem shows that for the standard Godunov scheme (𝜅 = 1) on Cartesian meshes, starting
from a perturbation of an incompressible field, the numerical solution will substantially deviate from the initial
condition after a short time that scales like 𝒪(𝑀), when the space discretization parameters (∆𝑥,∆𝑦) are larger
than the Mach number.

Theorem 4.3. Let 𝑞ℎ(𝑡) be the solution of the Godunov scheme (3.2) with initial condition 𝑞0ℎ on a Cartesian
mesh with discretization parameters (∆𝑥,∆𝑦). Then, when 𝜅 = 1, there exists 𝐶2 > 0, depending only on 𝛼, 𝑎⋆
and on T such that for almost all 𝑞0ℎ ∈ 𝑙2𝛼(T)3 and for all 𝐶1 > 0, there exists 𝐶3 depending only on (𝐶1, 𝑞

0
ℎ)

such that for any 𝑀 ≤ 𝐶3
𝐶1

min(∆𝑥,∆𝑦) we have⃦⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

= 𝐶1𝑀 =⇒ ∀𝑡 ≥ 𝐶2𝑀,
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≥ 𝐶3 min(∆𝑥,∆𝑦). (4.4)

Proof. By linearity of Lℎ,�𝜅=1,𝛼, the solution 𝑞ℎ of the Godunov scheme (3.2) with initial condition 𝑞0ℎ can be
written as

𝑞ℎ = 𝑞ℎ,1 + 𝑞ℎ,2

where 𝑞ℎ,1 is the solution of ⎧⎨⎩𝜕𝑡(𝛼𝑞ℎ,1) +
Lℎ,�

𝜅=1,𝛼

𝑀 (𝑞ℎ,1) = 0,

𝑞ℎ,1(𝑡 = 0) = 𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

(4.5)

and 𝑞ℎ,2 is the solution of {︃
𝜕𝑡(𝛼𝑞ℎ,2) +

Lℎ,�
𝜅=1,𝛼

𝑀 (𝑞ℎ,2) = 0,
𝑞ℎ,2(𝑡 = 0) = Pℎ,�𝛼 𝑞0ℎ.

(4.6)

We have

∀𝑡 ≥ 0,
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) =
⃦⃦⃦
𝑞ℎ,1 + 𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)

≥
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)− ‖𝑞ℎ,1‖𝑙2𝛼 (𝑡)

≥
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)− ‖𝑞ℎ,1‖𝑙2𝛼 (0)

≥
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)−
⃦⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(4.7)
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because scheme (3.2) is dissipative when 𝜅 ≥ 0 (see Theorem 4.1). If
⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

= 𝐶1𝑀, then (4.7) shows
that we need to find a lower bound for the function

𝑡 ↦→
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0

⃦⃦⃦
𝑙2𝛼

(𝑡)

where 𝑞ℎ,2 is the solution of (4.6). Before proceeding to the detailed proof of this proposition, let us briefly

mention the ideas behind it: the initial condition of (4.6) will be diffused by the operator
Lℎ,�

𝜅=1,𝛼

𝑀 onto its
orthogonal projection in the kernel Ker(Lℎ,�𝜅=1,𝛼) (this orthogonal projection is denoted by Pℎ,�𝜅=1,𝛼 in the sequel)
and we shall prove that the solution of (4.6) will tend to Pℎ,�𝜅=1,𝛼(Pℎ,�𝛼 𝑞0ℎ) exponentially fast with a convergence
rate that depends on min(Δ𝑥,Δ𝑦)

𝑀 . As a consequence, after a time that scales like 𝒪(𝑀), the solution of (4.6)
will be close enough to its projection, and thus far enough from the initial condition. To prove this in detail, we
shall follow the lines below:

(1) we write
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ = 𝑞ℎ,2 − Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ + Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ,

(2) we verify that 𝑞ℎ := 𝑞ℎ,2 − Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ is solution of (3.2) and that 𝑞ℎ(𝑡) ∈ Ker Pℎ,�𝜅=1,𝛼, for all 𝑡 ≥ 0,
(3) we use an energy estimate for solutions of (3.2) and a discrete Poincaré–Wirtinger inequality for 𝑞ℎ that is

satisfied on Ker Pℎ,�𝜅=1,𝛼, to estimate how fast 𝑞ℎ tends to 0,
(4) we obtain (4.4) by considering times of order 𝑀 .

In order to obtain these results, we first prove a series of Lemmas. We start by some considerations on the
orthogonal projection onto Ker Lℎ,�𝜅=1,𝛼:

Lemma 4.4. The operator

P : 𝑙2𝛼(T)1+𝑑 → Ker Lℎ,�𝜅=1,𝛼 (4.8)

𝑞ℎ =
(︂
𝑟𝑖,𝑗
u𝑖,𝑗

)︂
𝑖,𝑗

↦→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1∑︀
𝑘,ℓ

𝛼𝑘,ℓΔ𝑥Δ𝑦

∑︀
𝑘,ℓ

𝑟𝑘,ℓ𝛼𝑘,ℓ∆𝑥∆𝑦

1

𝛼𝑖,𝑗

𝑁𝑥∑︀
𝑘=1

1
𝛼𝑘,𝑗

Δ𝑥

𝑁𝑥∑︀
𝑘=1

(𝑢𝑥)𝑘,𝑗∆𝑥

1

𝛼𝑖,𝑗

𝑁𝑦∑︀
ℓ=1

1
𝛼𝑖,ℓ

Δ𝑦

𝑁𝑦∑︀
ℓ=1

(𝑢𝑦)𝑖,ℓ∆𝑦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑖,𝑗

(4.9)

is the orthogonal projection Pℎ,�𝜅=1,𝛼 on Ker Lℎ,�𝜅=1,𝛼. Moreover, if 𝑞ℎ is a solution of (3.2) on T with initial
condition 𝑞0ℎ, then:

𝑞0ℎ ∈ Ker Pℎ,�𝜅=1,𝛼 =⇒ 𝑞ℎ(𝑡 ≥ 0) ∈ Ker Pℎ,�𝜅=1,𝛼. (4.10)

Proof. Recalling that Ker Lℎ,�𝜅=1,𝛼 is characterized by (3.16), it is first straightforward to see that P(𝑞ℎ) ∈
Ker Lℎ,�𝜅=1,𝛼. Next, lengthy but easy algebra leads to ⟨(𝑞ℎ − P𝑞ℎ), 𝑠ℎ⟩𝛼,ℎ = 0 for all 𝑠ℎ ∈ Ker Lℎ,�𝜅=1,𝛼. These two

properties exactly prove that P = Pℎ,�𝜅=1,𝛼.

Moreover, when 𝑞0ℎ ∈ Ker Pℎ,�𝜅=1,𝛼, then (4.9) implies that 𝑠(0) = 𝑠𝑥,𝑗(0) = 𝑠𝑦,𝑖(0) = 0 for all (𝑖, 𝑗) where

𝑠(𝑡) :=
∑︁
𝑘,ℓ

𝑟𝑘,ℓ(𝑡)𝛼𝑘,ℓ∆𝑥∆𝑦, 𝑠𝑥,𝑗(𝑡) :=
𝑁𝑥∑︁
𝑘=1

(𝑢𝑥)𝑘,𝑗(𝑡)∆𝑥, 𝑠𝑦,𝑖(𝑡) :=
𝑁𝑦∑︁
ℓ=1

(𝑢𝑦)𝑖,ℓ(𝑡)∆𝑦.
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Then it suffices to prove that d𝑠
d𝑡 (𝑡) = d𝑠𝑥,𝑗

d𝑡 (𝑡) = d𝑠𝑦,𝑖

d𝑡 (𝑡) = 0 for all time and all (𝑖, 𝑗) to obtain (4.10). As far
as 𝑠 is concerned, this is a direct consequence of the conservativity of fluxes in the first equation of (3.1). As
far as 𝑠𝑥,𝑗 is concerned, extracting the 𝑥 component of (3.1) and specializing to a Cartesian mesh, we get

d(𝑢𝑥)𝑖,𝑗
d𝑡

+
𝑎⋆

2𝑀∆𝑥
(𝐹𝑖,𝑖+1,𝑗 − 𝐹𝑖,𝑖−1,𝑗) = 0

with 𝐹𝑖,𝑖+1,𝑗 = (𝑟𝑖,𝑗 + 𝑟𝑖+1,𝑗) + 1
𝛼

𝑖+ 1
2 ,𝑗

(𝛼𝑖,𝑗(𝑢𝑥)𝑖,𝑗 − 𝛼𝑖+1,𝑗(𝑢𝑥)𝑖+1,𝑗) and 𝐹𝑖,𝑖−1,𝑗 = (𝑟𝑖,𝑗 + 𝑟𝑖−1,𝑗) −
1

𝛼
𝑖− 1

2 ,𝑗
(𝛼𝑖,𝑗(𝑢𝑥)𝑖,𝑗 − 𝛼𝑖−1,𝑗(𝑢𝑥)𝑖−1,𝑗), where we recall that 𝛼𝑖− 1

2 ,𝑗
is the value of the porosity at the inter-

face between cells Ω𝑖−1,𝑗 and Ω𝑖,𝑗 . Multiplying the equality above with (∆𝑥), summing over 𝑖 and noting that
𝐹𝑖−1,𝑖,𝑗 = 𝐹𝑖,𝑖−1,𝑗 , we obtain with periodic boundary conditions that d𝑠𝑥,𝑗

d𝑡 (𝑡) = 0 for all 𝑡 ≥ 0 and all 𝑗. The
same kind of proof applies for the vertical component 𝑠𝑦,𝑖. �

We now write a discrete Poincaré–Wirtinger inequality for a function 𝑞ℎ ∈ Ker Pℎ,�𝜅=1,𝛼.

Lemma 4.5. There exists a constant 𝐾𝛼(T) > 0 depending on T and 𝛼 such that for any 𝑞ℎ := (𝑟, 𝑢𝑥, 𝑢𝑦)𝑇ℎ ∈
Ker Pℎ,�𝜅=1,𝛼

‖𝑞ℎ‖2𝑙2𝛼 ≤
𝐾𝛼(T)

min(∆𝑥,∆𝑦)

⎡⎣∑︁
𝑖,𝑗

∆𝑥𝛼𝑖,𝑗− 1
2
|𝑟𝑖,𝑗 − 𝑟𝑖,𝑗−1|2 +

∑︁
𝑖,𝑗

∆𝑦𝛼𝑖− 1
2 ,𝑗
|𝑟𝑖,𝑗 − 𝑟𝑖−1,𝑗 |2

+
∑︁
𝑖,𝑗

∆𝑦 |(𝛼𝑢𝑥)𝑖,𝑗 − (𝛼𝑢𝑥)𝑖−1,𝑗 |2
1

𝛼𝑖− 1
2 ,𝑗

+
∑︁
𝑖,𝑗

∆𝑥 |(𝛼𝑢𝑦)𝑖,𝑗 − (𝛼𝑢𝑦)𝑖,𝑗−1|2
1

𝛼𝑖,𝑗− 1
2

⎤⎦ · (4.11)

Proof. Let 𝑞ℎ = (𝑟, 𝑢𝑥, 𝑢𝑦)𝑇ℎ ∈ KerPℎ,�𝜅=1,𝛼. This implies that
∑︀
𝑖,𝑗 ∆𝑥∆𝑦𝛼𝑖,𝑗𝑟𝑖,𝑗 = 0. Using the discrete weighted

Poincaré–Wirtinger inequality (see Prop. B.2) on 𝑟 with
(︁
𝜇𝑖,𝑗 , 𝜇𝑖− 1

2 ,𝑗
, 𝜇𝑖,𝑗− 1

2

)︁
=
(︁
𝛼𝑖,𝑗 , 𝛼𝑖− 1

2 ,𝑗
, 𝛼𝑖,𝑗− 1

2

)︁
, we

obtain

∑︁
𝑖,𝑗

∆𝑥∆𝑦𝛼𝑖,𝑗𝑟2𝑖,𝑗 ≤ 2‖𝛼‖2∞
⃦⃦⃦⃦

1
𝛼

⃦⃦⃦⃦2

∞

𝐿2
𝑥 + 𝐿2

𝑦

min(∆𝑥,∆𝑦)

⎡⎣∑︁
𝑖,𝑗

∆𝑥𝛼𝑖,𝑗− 1
2
|𝑟𝑖,𝑗 − 𝑟𝑖,𝑗−1|2 +

∑︁
𝑖,𝑗

∆𝑦𝛼𝑖− 1
2 ,𝑗
|𝑟𝑖,𝑗 − 𝑟𝑖−1,𝑗 |2

⎤⎦ .
(4.12)

As far as 𝑢𝑥 is concerned since for all 𝑗 ∈ J1, 𝑁𝑦K, 0 =
∑︀𝑁𝑥

𝑘=1(𝑢𝑥)𝑘,𝑗∆𝑥 =
∑︀𝑁𝑥

𝑘=1(𝛼𝑢𝑥)𝑘,𝑗 1
𝛼𝑘,𝑗

∆𝑥, by applying the

1D discrete Poincaré inequality (see Prop. B.1) to the sequence 𝑘 ↦→ (𝛼𝑢𝑥)𝑘,𝑗 with the weights
(︁
𝜇𝑘, 𝜇𝑘− 1

2

)︁
=(︂

1
𝛼𝑘,𝑗

, 1
𝛼

𝑘− 1
2 ,𝑗

)︂
, we obtain for all 𝑗 ∈ J1, 𝑁𝑦K

𝑁𝑥∑︁
𝑘=1

∆𝑥
1
𝛼𝑘,𝑗

(𝛼𝑢𝑥)2𝑘,𝑗 ≤ ‖𝛼‖∞
⃦⃦⃦⃦

1
𝛼

⃦⃦⃦⃦
∞

𝐿2
𝑥

∆𝑥

𝑁𝑥∑︁
𝑘=1

|(𝛼𝑢𝑥)𝑘,𝑗 − (𝛼𝑢𝑥)𝑘−1,𝑗 |2
1

𝛼𝑘− 1
2 ,𝑗

·

By multiplying by ∆𝑦 and by summing over 𝑗, we have

∑︁
𝑖,𝑗

∆𝑥∆𝑦𝛼𝑖,𝑗(𝑢𝑥)2𝑖,𝑗 ≤ ‖𝛼‖∞
⃦⃦⃦⃦

1
𝛼

⃦⃦⃦⃦
∞

𝐿2
𝑥

∆𝑥

∑︁
𝑖,𝑗

∆𝑦 |(𝛼𝑢𝑥)𝑖,𝑗 − (𝛼𝑢𝑥)𝑖−1,𝑗 |2
1

𝛼𝑖− 1
2 ,𝑗

· (4.13)
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The same analysis holds for 𝑢𝑦 such that for all 𝑖 ∈ J1, 𝑁𝑥K, 0 =
∑︀𝑁𝑦

ℓ=1(𝑢𝑦)𝑖,ℓ∆𝑦 =
∑︀𝑁𝑦

ℓ=1(𝛼𝑢𝑦)𝑖,ℓ 1
𝛼𝑖,ℓ

∆𝑦, and we
finally obtain ∑︁

𝑖,𝑗

∆𝑥∆𝑦𝛼𝑖,𝑗(𝑢𝑦)2𝑖,𝑗 ≤ ‖𝛼‖∞
⃦⃦⃦⃦

1
𝛼

⃦⃦⃦⃦
∞

𝐿2
𝑦

∆𝑦

∑︁
𝑖,𝑗

∆𝑥 |(𝛼𝑢𝑦)𝑖,𝑗 − (𝛼𝑢𝑦)𝑖,𝑗−1|2
1

𝛼𝑖,𝑗− 1
2

· (4.14)

With (4.12)–(4.14), the result follows. �

To prove inequality (4.4), we first prove the following lemma which shows that 𝑞ℎ,2 tends exponentially fast
to the projection of its initial condition on Ker Lℎ,�𝜅=1,𝛼 (Items 2. and 3. above):

Lemma 4.6. There exists a constant 𝐾𝛼(T) > 0 depending on T and 𝛼 such that

∀𝑡 ≥ 0,
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≤
⃦⃦⃦

(1− Pℎ,�𝜅=1,𝛼) ∘ Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

exp
(︂
−𝑎⋆ min(∆𝑥,∆𝑦)

2𝑀𝐾𝛼(T)
𝑡

)︂
. (4.15)

Proof. Let us define 𝑞ℎ = 𝑞ℎ,2−Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ := (𝑟, û)𝑇ℎ . The idea is to apply the energy estimate of Theorem 4.1
to 𝑞ℎ and then the Poincaré inequality of Lemma 4.5. For this, we first remark that 𝑞ℎ satisfies (3.2). Indeed,
𝑞ℎ,2 satisfies (4.6), and Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ does not depend on time and is in the kernel of Lℎ,�𝜅=1,𝛼. Then, 𝑞ℎ is solution
of (3.2) and with Theorem 4.1, we have

1
2

d
d𝑡
‖𝑞ℎ‖2𝑙2𝛼 (𝑡) = − 𝑎⋆

2𝑀

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
(︂
𝛼𝑖𝑗 |𝑟𝑖 − 𝑟𝑗 |2 +

1
𝛼𝑖𝑗

⃒⃒⃒(︁
(𝛼û)𝑖 − (𝛼û)𝑗

)︁
· n𝑖𝑗

⃒⃒⃒2)︂

= − 𝑎⋆
2𝑀

⎡⎣∑︁
𝑖,𝑗

∆𝑥𝛼𝑖,𝑗− 1
2
|𝑟𝑖,𝑗 − 𝑟𝑖,𝑗−1|2 +

∑︁
𝑖,𝑗

∆𝑦𝛼𝑖− 1
2 ,𝑗
|𝑟𝑖,𝑗 − 𝑟𝑖−1,𝑗 |2

+
∑︁
𝑖,𝑗

∆𝑦 |(𝛼𝑢̂𝑥)𝑖,𝑗 − (𝛼𝑢̂𝑥)𝑖−1,𝑗 |2
1

𝛼𝑖− 1
2 ,𝑗

+
∑︁
𝑖,𝑗

∆𝑥 |(𝛼𝑢̂𝑦)𝑖,𝑗 − (𝛼𝑢̂𝑦)𝑖,𝑗−1|2
1

𝛼𝑖,𝑗− 1
2

⎤⎦ ·(4.16)

Moreover, the initial condition of 𝑞ℎ is Pℎ,�𝛼 𝑞0ℎ−Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ, which belongs to KerPℎ,�𝜅=1,𝛼. Thus, applying (4.10)
of Lemma 4.4, it follows that 𝑞ℎ(𝑡) belongs to Ker Pℎ,�𝜅=1,𝛼 for all 𝑡 ≥ 0 and we can apply Lemma 4.5 to estimate
the right-hand side of (4.16). This leads to

1
2

d
d𝑡
‖𝑞ℎ‖2𝑙2𝛼 (𝑡) ≤ −𝑎⋆ min(∆𝑥,∆𝑦)

2𝑀𝐾𝛼(T)
‖𝑞ℎ‖2𝑙2𝛼 (𝑡).

Then Applying Grönwall’s lemma, we obtain (4.15) because 𝑞0ℎ = (1− Pℎ,�𝜅=1,𝛼) ∘ Pℎ,�𝛼 𝑞0ℎ. �

Now, we are able to prove Theorem 4.3 (Item 4. above). By applying Lemma 4.6, we have for all 𝑡 ≥ 0⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≥
⃦⃦⃦
Pℎ,�𝛼 𝑞0ℎ − Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)−
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝜅=1,𝛼Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡),

≥
⃦⃦⃦

(Id− Ph,�
𝜅=1,𝛼) ∘ Ph,�

𝛼 q0
h

⃦⃦⃦ (︂
1− exp

(︂
−𝑎⋆ min(∆𝑥,∆𝑦)

2𝑀𝐾𝛼(T)
𝑡

)︂)︂
. (4.17)

Since the right-hand side of (4.17) is a growing function of time, we can obtain a lower bound by evaluating
it at any time; we set 𝐶 =

⃦⃦⃦
(Id− Ph,�

𝜅=1,𝛼) ∘ Ph,�
𝛼 q0

h

⃦⃦⃦
and choose 𝑡0 = 𝐶2𝑀 with 𝐶2 = 𝐾𝛼(T)

𝑎⋆
and we obtain:

∀𝑡 ≥ 𝐶2𝑀 it holds that ⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≥ 𝐶

(︂
1− exp

(︂
−min(∆𝑥,∆𝑦)

2

)︂)︂
· (4.18)
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Using that 1− exp (−𝑥/2) ≥ 𝑥/3 for 𝑥 ∈ [0; 1], Eq. (4.18) implies that for min(∆𝑥,∆𝑦) ≤ 1

∀𝑡 ≥ 𝐶2𝑀,
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≥ 𝐶

3
min(∆𝑥,∆𝑦). (4.19)

In the sequel, we assume that 𝐶 is strictly positive, which is the case for almost all functions 𝑞0ℎ ∈ 𝑙2𝛼(T)3. Let
us now suppose that

𝐶1𝑀 ≤ 𝐶3 min(∆𝑥,∆𝑦) with 𝐶3 =
𝐶

6
,

then we obtain from (4.7) and (4.19) that

∀𝑡 ≥ 𝐶2𝑀,
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≥ 𝐶3 min(∆𝑥,∆𝑦)

for any 𝑀 ≤ 𝐶3
𝐶1

min(∆𝑥,∆𝑦). �

Theorem 4.3 tells us that the wrong behavior of the standard Godunov scheme is due at the same time to a
wrong kernel (the image of (Id−Ph,�

𝜅=1,𝛼) ∘Ph,�
𝛼 is ”too large”) and to a fast diffusion rate, at least proportional

to min(Δ𝑥,Δ𝑦)
𝑀 . There are thus two options to propose a correction to this scheme, namely restoring a correct

kernel by setting 𝜅 = 0 or drastically diminishing the diffusion rate by setting 𝜅 = 𝑀 . If none of these solutions
is used, then a possible (but expensive) solution is to choose (∆𝑥,∆𝑦) of the size of 𝑀 . These three possibilities
are studied in the next subsections.

4.3.2. Correction of the Godunov scheme on a Cartesian mesh

Theorem 4.7. Let 𝑞ℎ(𝑡) be a solution of scheme (3.2) with initial condition 𝑞0ℎ.

(1) With 𝜅 = 0, for all 𝑞0ℎ ∈ 𝑙2𝛼(T)3, and all 𝐶1 > 0 we have⃦⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

= 𝐶1𝑀 =⇒ ∀𝑡 ≥ 0,
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≤ 𝐶1𝑀. (4.20)

(2) When 𝜅 = 𝑀, for all 𝑞0ℎ ∈ 𝑙2𝛼(T)3 and all 𝐶1, 𝐶2 > 0, there exists 𝐶3(𝐶1, 𝐶2, 𝑞
0
ℎ) > 0 such that⃦⃦⃦

𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

= 𝐶1𝑀 =⇒ ∀𝑡 ∈ [0;𝐶2𝑀 ],
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≤ 𝐶3𝑀 (4.21)

where 𝐶3 does not depend on 𝑀 .

Proof. By linearity of Lℎ,�𝜅,𝛼 , the solution 𝑞ℎ of (2.9) given by scheme (3.2) with initial condition 𝑞0ℎ can be
written as

𝑞ℎ = 𝑞ℎ,1 + 𝑞ℎ,2

where 𝑞ℎ,1 is the solution of ⎧⎨⎩𝜕𝑡(𝛼𝑞ℎ,1) + Lℎ,�
𝜅,𝛼

𝑀 (𝑞ℎ,1) = 0,

𝑞ℎ,1(𝑡 = 0) = 𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

(4.22)

and 𝑞ℎ,2 is the solution of {︃
𝜕𝑡(𝛼𝑞ℎ,2) + Lℎ,�

𝜅,𝛼

𝑀 (𝑞ℎ,2) = 0,
𝑞ℎ,2(𝑡 = 0) = Pℎ,�𝛼 𝑞0ℎ.

(4.23)

We have

∀𝑡 ≥ 0,
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) =
⃦⃦⃦
𝑞ℎ,1 + 𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)
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≤ ‖𝑞ℎ,1‖𝑙2𝛼 (𝑡) +
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)

≤ ‖𝑞ℎ,1‖𝑙2𝛼 (0) +
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡)

≤
⃦⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

+
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) (4.24)

because scheme (3.2) is dissipative when 𝜅 ≥ 0 (see Thm. 4.1). If
⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

= 𝐶1𝑀, then (4.24) shows
that we need to find an upper bound for the function

𝑡 ↦→
⃦⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0

⃦⃦⃦
𝑙2𝛼

(𝑡)

where 𝑞ℎ,2 is the solution of (4.23).
Assume that 𝜅 = 0. Since Pℎ,�𝛼 𝑞0ℎ ∈ ℰℎ,�𝛼 = Ker Lℎ,�𝜅=0,𝛼 we have Lℎ,�𝜅=0,𝛼

(︀
Pℎ,�𝛼 𝑞0ℎ

)︀
= 0 and 𝑞ℎ,2(𝑡) = Pℎ,�𝛼 𝑞0ℎ for

all 𝑡 ≥ 0 is the solution of (4.23). Then of course
⃦⃦
𝑞ℎ,2 − Pℎ,�𝛼 𝑞0

⃦⃦
𝑙2𝛼

(𝑡) = 0 and (4.24) reduces to

∀𝑡 ≥ 0,
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≤ 𝐶1𝑀

if
⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

= 𝐶1𝑀 . The first point is proved.

Assume now that 𝜅 > 0. We have Pℎ,�𝛼 𝑞0ℎ ∈ ℰℎ,�𝛼 ) Ker Lℎ,�𝜅,𝛼 and we can have Lℎ,�𝜅,𝛼
(︀
Pℎ,�𝛼 𝑞0ℎ

)︀
̸= 0. Since

Pℎ,�𝛼 𝑞0ℎ ∈ ℰℎ,�𝛼 = Ker Lℎ,�𝜅=0,𝛼, we have Lℎ,�𝜅=0,𝛼

(︀
Pℎ,�𝛼 𝑞0ℎ

)︀
= 0 and thus

𝜕𝑡

(︁
𝛼Pℎ,�𝛼 𝑞0ℎ

)︁
+

Lℎ,�𝜅,𝛼
𝑀

(︁
Pℎ,�𝛼 𝑞0ℎ

)︁
=

Lℎ,�𝜅,𝛼 − Lℎ,�𝜅=0,𝛼

𝑀

(︁
Pℎ,�𝛼 𝑞0ℎ

)︁
.

Combining this with (4.23), setting 𝑞⋆ℎ := 𝑞ℎ,2 − Pℎ,�𝛼 𝑞0ℎ and using linearity, we deduce that

𝜕𝑡 (𝛼𝑞⋆ℎ) +
Lℎ,�𝜅,𝛼
𝑀

𝑞⋆ℎ =
Lℎ,�𝜅=0,𝛼 − Lℎ,�𝜅,𝛼

𝑀

(︁
Pℎ,�𝛼 𝑞0ℎ

)︁
. (4.25)

Taking the weighted scalar product of (4.25) with 𝑞⋆
ℎ

𝛼 , we obtain⟨
𝜕𝑡 (𝛼𝑞⋆ℎ) ,

𝑞⋆ℎ
𝛼

⟩
𝛼,ℎ

+

⟨
Lℎ,�𝜅,𝛼
𝑀

𝑞⋆ℎ,
𝑞⋆ℎ
𝛼

⟩
𝛼,ℎ

=

⟨
Lℎ,�𝜅=0,𝛼 − Lℎ,�𝜅,𝛼

𝑀

(︁
Pℎ,�𝛼 𝑞0ℎ

)︁
,
𝑞⋆ℎ
𝛼

⟩
𝛼,ℎ

. (4.26)

It follows from the proof of Theorem 4.1 that⟨
Lℎ𝜅,𝛼
𝑀

𝑞⋆ℎ,
𝑞⋆ℎ
𝛼

⟩
𝛼,ℎ

=
𝑎⋆
𝑀

∑︁
Γ𝑖𝑗

(︂
𝛼𝑖𝑗 |𝑟⋆𝑖 − 𝑟⋆𝑗 |2 +

𝜅

𝛼𝑖𝑗

⃒⃒⃒(︁
(𝛼u⋆)𝑖 − (𝛼u⋆)𝑗

)︁
· n𝑖𝑗

⃒⃒⃒2)︂
≥ 0.

Thus, from (4.26) and using the Cauchy-Schwarz inequality, we obtain

1
2

d
d𝑡
‖𝑞⋆ℎ‖

2
𝑙2𝛼

(𝑡) ≤

⃦⃦⃦⃦
⃦Lℎ,�𝜅=0,𝛼 − Lℎ,�𝜅,𝛼

𝑀𝛼

(︁
Pℎ,�𝛼 𝑞0ℎ

)︁⃦⃦⃦⃦⃦
𝑙2𝛼

‖𝑞⋆ℎ‖𝑙2𝛼 (𝑡)

which leads to
d
d𝑡
‖𝑞⋆ℎ‖𝑙2𝛼 (𝑡) ≤

⃦⃦⃦⃦
⃦Lℎ,�𝜅=0,𝛼 − Lℎ,�𝜅,𝛼

𝑀𝛼

(︁
Pℎ,�𝛼 𝑞0ℎ

)︁⃦⃦⃦⃦⃦
𝑙2𝛼

. (4.27)
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For any 𝑞, a direct calculation shows that (Lℎ,�𝜅=0,𝛼 − Lℎ,�𝜅,𝛼 )𝑞 is proportional to 𝜅 and does not depend on 𝑀 .
So (4.27) and the fact that 𝑞⋆ℎ(𝑡 = 0) = 0 show that ∃𝐶3(𝛼, 𝑞0ℎ,∆𝑥,∆𝑦, 𝑎⋆) such that

‖𝑞⋆ℎ‖𝑙2𝛼 (𝑡) ≤ 𝐶3
𝜅

𝑀
𝑡 ∀𝑡 ≥ 0. (4.28)

Then from (4.24) and (4.28) when 𝜅 = 𝑀 , we obtain (4.21) with 𝐶3 = 𝐶1 + 𝐶2𝐶3. �

Remark 4.8. It is important to stress that the constant 𝐶3 in item 2 of Theorem 4.7 depends on a con-
cept of discrete smoothness for 𝑞0ℎ detailed in the next subsection and that, in the worst case, it may behave
proportionally to 1

min(Δ𝑥,Δ𝑦) .

4.3.3. The case of a very fine mesh

We observe that if the right-hand side of (4.27) can be bounded by 𝐶𝜅max(∆𝑥,∆𝑦) with 𝐶 not depending
on (𝜅,𝑀,∆𝑥,∆𝑦), then we shall also have a bound of the type (4.21) if 𝜅 = 1 (uncorrected Godunov scheme)
and max(∆𝑥,∆𝑦) ≤ 𝐶0𝑀 . For this, we introduce the definition of discrete regularity:

Definition 4.9. Let 𝑞ℎ := (𝑟ℎ, 𝑢ℎ,𝑥, 𝑢ℎ,𝑦) be a family of discrete fields parameterized by (∆𝑥,∆𝑦); then we
define 𝐻2

𝛼(T)3 to be the set of families of discrete fields such that

‖𝑞ℎ‖𝐻2
𝛼(T) := sup

Δ𝑥>0,Δ𝑦>0

⃦⃦⃦⃦
𝛿𝑐,𝑥

(︂
1
𝛼
𝛿𝑠,𝑥(𝛼𝑢ℎ,𝑥)

)︂⃦⃦⃦⃦
𝑙2𝛼(T)

+
⃦⃦⃦⃦
𝛿𝑐,𝑦

(︂
1
𝛼
𝛿𝑠,𝑦(𝛼𝑢ℎ,𝑦)

)︂⃦⃦⃦⃦
𝑙2𝛼(T)

< +∞

with the following definitions for the centered and staggered finite differences in the horizontal and vertical
directions

(𝛿𝑐,𝑥𝑣)𝑖,𝑗 :=
(𝑣𝑖+ 1

2 ,𝑗
− 𝑣𝑖− 1

2 ,𝑗
)

∆𝑥
, (𝛿𝑠,𝑥𝑧)𝑖+ 1

2 ,𝑗
:=

(𝑧𝑖+1,𝑗 − 𝑧𝑖,𝑗)
∆𝑥

,

(𝛿𝑐,𝑦𝑤)𝑖,𝑗 :=
(𝑤𝑖,𝑗+ 1

2
− 𝑤𝑖,𝑗− 1

2
)

∆𝑦
, (𝛿𝑠,𝑦𝑧)𝑖,𝑗+ 1

2
:=

(𝑧𝑖,𝑗+1 − 𝑧𝑖,𝑗)
∆𝑦

·

This concept allows us to prove that with discrete regular initial conditions, refining the mesh is also a
possibility to obtain acceptable results on an 𝒪(𝑀) time scale when using the standard Godunov scheme.
Indeed, the following theorem holds:

Theorem 4.10. Let 𝑞ℎ(𝑡) be a solution of scheme (3.2) with initial condition 𝑞0ℎ. When 𝜅 = 1, for all 𝑞0ℎ such
that Pℎ,�𝛼 𝑞0ℎ ∈ 𝐻2

𝛼(T)3, and all 𝐶0, 𝐶1, 𝐶2 > 0, there exists 𝐶3

(︀
𝐶0, 𝐶1, 𝐶2, 𝑞

0
ℎ

)︀
> 0 that does not depend on 𝑀,

∆𝑥 and ∆𝑦 such that⎧⎪⎨⎪⎩
∆𝑥 ≤ 𝐶0𝑀,

∆𝑦 ≤ 𝐶0𝑀,⃦⃦
𝑞0ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦
𝑙2𝛼

= 𝐶1𝑀

=⇒ ∀𝑡 ∈ [0;𝐶2𝑀 ],
⃦⃦⃦
𝑞ℎ − Pℎ,�𝛼 𝑞0ℎ

⃦⃦⃦
𝑙2𝛼

(𝑡) ≤ 𝐶3𝑀. (4.29)

Proof. For any 𝑞ℎ := (𝑟ℎ, 𝑢ℎ,𝑥, 𝑢ℎ,𝑦)𝑖,𝑗 , a direct calculation shows that⎛⎝
(︁
Lℎ,�𝜅=0,𝛼 − Lℎ,�𝜅,𝛼

)︁
𝑀𝛼

𝑞

⎞⎠
𝑖,𝑗

=
𝑎⋆𝜅

2𝑀

⎛⎜⎜⎝
0

∆𝑥
(︀
𝛿𝑐,𝑥

[︀
1
𝛼𝛿

𝑠,𝑥 (𝛼𝑢ℎ,𝑥)
]︀)︀
𝑖,𝑗

∆𝑦
(︀
𝛿𝑐,𝑦

[︀
1
𝛼𝛿

𝑠,𝑦 (𝛼𝑢ℎ,𝑦)
]︀)︀
𝑖,𝑗

⎞⎟⎟⎠ . (4.30)

Therefore, if Pℎ,�𝛼 𝑞0ℎ ∈ 𝐻2
𝛼(T)3, then (4.27) and the fact that 𝑞⋆ℎ(𝑡 = 0) = 0 show that

‖𝑞⋆ℎ‖𝑙2𝛼 (𝑡) ≤ 𝑎⋆𝜅

2𝑀
‖Pℎ,�𝛼 𝑞0ℎ‖𝐻2

𝛼(T) max(∆𝑥,∆𝑦)𝑡 ∀𝑡 ≥ 0. (4.31)

Then from (4.24) and (4.31) when 𝜅 = 1 and max(∆𝑥,∆𝑦) ≤ 𝐶0𝑀 , we obtain (4.29) with 𝐶3 = 𝐶1 +
𝑎⋆

2 𝐶0𝐶2‖Pℎ,�𝛼 𝑞0ℎ‖𝐻2
𝛼(T). �
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5. Numerical results on the wave equation

In this section, we perform some numerical simulations on the linear wave equation with porosity (2.9) using
the Godunov scheme (3.1). The aim is to illustrate all the theoretical results of the article. A 2D periodic domain
T = [0, 1[×[0, 1[ is considered. All simulations were run with an Euler explicit time stepping with a CFL number
of 0.4. The parameters 𝑎⋆ and 𝑀 are set to 𝑎⋆ = 1 and 𝑀 = 10−4. We consider a regular Cartesian mesh
containing 1 600 cells (∆𝑥 = ∆𝑦 = 0.025) and an unstructured triangular mesh containing 2 326 cells generated
by GMSH [19].

5.1. A stationary case

We firstly illustrate the influence of the mesh type (triangular or Cartesian) on the kernel of the Godunov
scheme. The initial condition 𝑞0 = (𝑟0,u0)𝑇 is chosen such that 𝑞0 ∈ ℰ𝛼. We take⎧⎪⎨⎪⎩

𝑟0(𝑥, 𝑦) = 1,

u0(𝑥, 𝑦) =
∇× 𝜓

𝛼
(𝑥, 𝑦)

(5.1)

where

𝛼(𝑥, 𝑦) =
1
2

+
1
2

exp
(︂
−‖(𝑥, 𝑦)− (0.5, 0.5)‖2

0.252

)︂
, (5.2)

𝜓(𝑥, 𝑦) =
1
𝜋

sin2(𝜋𝑥) sin2(𝜋𝑦). (5.3)

This expression of 𝜓 corresponds to the “vortex in a box” test case of [9]. We note that 𝜓 is very important
from a numerical point of view because it allows to define 𝑞0ℎ such that 𝑞0ℎ ∈ ℰℎ,�𝛼 on Cartesian meshes and such
that 𝑞0ℎ ∈ ℰℎ,△𝛼 on triangular meshes. Since 𝑞0 ∈ ℰ𝛼, the field 𝑞 defined by

∀𝑡 ≥ 0, ∀(𝑥, 𝑦) ∈ T, 𝑞(𝑡, 𝑥, 𝑦) = 𝑞0(𝑥, 𝑦) (5.4)

is solution of the linear wave equation with porosity (2.9). We study if (5.4) is or is not satisfied at the discrete
level when we solve system (2.9) with Godunov’s scheme (3.1) on a Cartesian or a triangular mesh with 𝜅 = 0
or 𝜅 = 1.

In Figure 1, we plot the norm of 𝛼u obtained after 1000 iterations on Cartesian and triangular meshes with
𝜅 = 1 and 𝜅 = 0. The solution is preserved over time on triangular meshes with 𝜅 = 1 and 𝜅 = 0 but is also
preserved over time on Cartesian meshes with 𝜅 = 0. This result illustrates Propositions 3.7 and 3.9.

5.2. A well-prepared initial condition

We now consider a well-prepared initial condition. It means that the initial condition can be split into two
components, a component in the kernel ℰ𝛼 plus a component of order 𝑀 in the orthogonal set to the kernel, ℰ⊥𝛼 .
We illustrate the theoretical results Theorems 4.3 and 4.7 on the evolution with respect to time of the deviation⃦⃦
𝑞ℎ − Pℎ,△ or �

𝛼 𝑞0ℎ
⃦⃦
𝑙2𝛼

with the different schemes on triangular and Cartesian meshes. The initial condition 𝑞0ℎ is
given by

𝑞0ℎ = 𝑀𝑞0ℎ,1 + 𝑞0ℎ,2

where 𝑞0ℎ,2 ∈ ℰℎ,� or △
𝛼 is given by (5.1) and 𝑞0ℎ,1 ∈

(︀
ℰℎ,� or △
𝛼

)︀⊥
satisfying ‖𝑞0ℎ,1‖𝑙2𝛼 = 1. More precisely, we take

𝑞0ℎ,1 = 𝑞ℎ,1/ ‖𝑞ℎ,1‖𝑙2𝛼 with ⎧⎨⎩𝑟
0
ℎ,1(𝑥, 𝑦) =

(︁
sin(2𝜋𝑥) cos(2𝜋𝑦)

𝛼(𝑥,𝑦)

)︁
ℎ
,

ū0
ℎ,1 = ∇ℎ𝜑ℎ
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Figure 1. Norm of 𝛼u obtained after 1000 iterations with the Godunov scheme (3.1) with
𝜅 = 1 and 𝜅 = 0 on triangular and Cartesian meshes.
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Figure 2. Norm of the deviation ‖𝑞ℎ − Pℎ,△ or �
𝛼 𝑞0ℎ‖𝑙2𝛼(𝑡) obtained with the Godunov scheme

with 𝜅 = 1, 𝜅 = 𝑀 and 𝜅 = 0 on a Cartesian mesh and with 𝜅 = 1 on a triangular mesh for
times of order 𝑀 : 0 ≤ 𝑡/𝑀 ≤ 10 (top) and for long times: 0 ≤ 𝑡/𝑀 ≤ 10/𝑀 (bottom).

where

𝜑ℎ(𝑥, 𝑦) = (sin(2𝜋𝑥) cos(2𝜋𝑦))ℎ .

The discrete field 𝑟ℎ,1 is defined at the cell centers, and so is 𝜑ℎ on Cartesian meshes; but on a triangular mesh
𝜑ℎ ∈𝑊ℎ, then 𝜑ℎ is defined at the edge midpoints.

In Figure 2, we plot the evolution with respect to time of the deviation
⃦⃦
𝑞0ℎ − Pℎ,△ or �

𝛼 𝑞0ℎ
⃦⃦
𝑙2𝛼

with scheme
(3.1) with 𝜅 = 1, 𝜅 = 𝑀 and 𝜅 = 0 on Cartesian meshes and for 𝜅 = 1 on triangular meshes. The Godunov
scheme (𝜅 = 1) on a triangular mesh is accurate at low Mach number. Indeed, the deviation remains of order
𝑀 , even for long times (see Thm. 4.2). The Cartesian case is very different. The Godunov scheme (𝜅 = 1) on a
Cartesian mesh is not accurate at low Mach number, it introduces a deviation greater than ∆𝑥 = ∆𝑦 = 0.025,
even for a time of order 𝑀 (see the case 𝜅 = 1 on a Cartesian mesh in Thm. 4.3). The scheme has to be corrected
on a Cartesian mesh at low Mach number. With 𝜅 = 0, the deviation remains of order 𝑀 , even for long times
(see the case 𝜅 = 0 in Thm. 4.7). With 𝜅 = 𝑀 , the deviation remains of order 𝑀 for times of order 𝑀 (see the
case 𝜅 = 𝑀 in Thm. 4.7), but this is not the case for long times (times of order one).

6. The non linear case

6.1. Numerical schemes

Since 𝛼 is regular and does not depend on time, we can write system (1.1) as

𝜕𝑡W +∇ · f(W) = 𝑆(W)∇𝛼 (6.1)
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where W = (𝛼, 𝛼𝜌, 𝛼𝜌u)𝑇 and the flux f and the source term 𝑆(W) are given by

f(W) =

⎛⎝ 0
𝛼𝜌u

𝛼𝜌u⊗ u + 𝛼𝑝I

⎞⎠ 𝑆(W) =

⎛⎝ 0
0
𝑝

⎞⎠ .

The numerical scheme for system (6.1) is given by

W𝑛+1
𝑖 −W𝑛

𝑖

∆𝑡
+

1
|Ω𝑖|

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |𝐹−(W𝑛
𝑖 ,W

𝑛
𝑗 ,n𝑖𝑗) = 0 (6.2)

where W = (𝛼, 𝛼𝜌, 𝛼𝜌u)𝑇 and 𝐹− is the non conservative numerical flux. In this paper, we use two different
fluxes, a VFRoe flux and the well-balanced Lax–Friedrich scheme of [26].

6.2. Well-balanced Lax–Friedrich scheme of [26]

The well-balanced Lax–Friedrich scheme of [26] allows to maintain equilibrium states and is easy to implement.
The non-conservative numerical flux is given by

𝐹LF-WB
− (W𝐿,W𝑅,n) = 𝐹LF(W𝐿,W−

𝑅,n) (6.3)

where 𝐹LF corresponds to the standard Lax–Friedrich numerical flux

𝐹LF(W𝐿,W𝑅,n) =
f(W𝐿) + f(W𝑅)

2
· n−

max𝑖∈{𝐿,𝑅} (|u𝑖 · n|+ 𝑐𝑖)
2

(W𝑅 −W𝐿)

and the state W−
𝑅 = (𝛼, 𝛼𝜌, 𝛼𝜌u)−𝑅 is defined such that⎧⎪⎨⎪⎩

𝛼−𝑅 = 𝛼𝐿,
(𝛼𝜌u)−𝑅 = (𝛼𝜌u)𝑅,
‖u−𝑅‖2

2
+ ℎ(𝜌−𝑅) =

‖u𝑅‖2

2
+ ℎ(𝜌𝑅)

where ℎ(𝜌) = 𝜅𝛾𝜌𝛾−1/(𝛾 − 1). For the existence and uniqueness of 𝑊−
𝑅 , we refer to [26].

6.3. VFRoe scheme

We want to write a non-linear scheme that is consistent with the study we did in the linear case (see Sects. 3
and 4). We recall that in the linear case, Godunov’s scheme (3.1) can be interpreted as a VFRoe scheme [6,17]
in variables (𝛼, 𝑟, 𝛼u) (see Rem. 3.2). The VFRoe solver consists in a local linearization of a Riemann problem
which is simpler to handle since it only deals with linear problems and avoids the complex exact resolution of
the Riemann problem with porosity jump. Then, in the non-linear case, we write a VFRoe scheme in variables
Y = (𝛼, 𝜌, 𝛼𝜌u)𝑇 . Another advantage of this set of variables is that we get a scheme that is well-balanced in
the sense that it exactly preserves the one-dimensional steady states. For the VFRoe scheme (with another set
of variables) applied to system (6.1), we refer to [39,40]. The VFRoe numerical flux is given by

𝐹VFRoe
− (W𝐿,W𝑅,n) = f(𝑅(0−,Y𝐿,Y𝑅,n)) · n (6.4)

where 𝑅(0−,Y𝐿,Y𝑅,n) corresponds to the solution in 𝜉/𝑡 = 0− of the linearized Riemann problem that is
detailed in Appendix C.

The VFRoe solver considered does not allow to treat the resonant cases when eigenvalues 𝜆1 = u · n − 𝑐 or
𝜆2 = u ·n + 𝑐 vanish. The resonant cases are out the scope of this paper since we focus here on the accuracy at
low Mach number. For the resonant cases, we refer to [10].
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6.4. All-Mach VFRoe scheme

The flux in the all-Mach VFRoe scheme is given by

𝐹AM-VFRoe
− (W𝑖,W𝑗 ,n) = 𝐹VFRoe

− (W𝑖,W𝑗 ,n) + (𝜃𝑖𝑗 − 1)
𝛼𝑖𝑐𝑖𝑗
𝛼̂𝑖𝑗

(︂
0

[((𝛼𝜌u)𝑖 − (𝛼𝜌u)𝑗) · n] n

)︂
(6.5)

where 𝛼̂𝑖𝑗 and 𝑐𝑖𝑗 correspond to VFRoe average states (see (C.1)) and 𝜃𝑖𝑗 = min(1,max(𝑀𝑖,𝑀𝑗)) =
min(1,max(‖u𝑖‖/𝑐𝑖, ‖u𝑗‖/𝑐𝑗)). We remark that in (6.5), we recover the classical VFRoe scheme if 𝜃𝑖𝑗 = 1.
This means that we correct the numerical flux only if both states W𝑖 and W𝑗 are subsonic.

6.5. Numerical results

We perform a one dimensional test to check the robustness of the low Mach corrected scheme but also the
capability of the scheme to maintain equilibrium states across a discontinuous cross-section. Indeed, since the
low Mach correction reduces the numerical diffusion of the scheme, stability of this scheme for unsteady low
Mach flow has to be tested. Moreover, it is well-known that schemes which do not maintain the equilibrium
states may give unsatisfactory results when refining the mesh [26], so that the well-balanced property also has
to be tested. Then, we perform a two dimensional test to check the low Mach accuracy of the different schemes
on triangular and Cartesian meshes.

For all simulations, we use the following pressure law 𝑝(𝜌) = 𝜅𝜌𝛾 where 𝜅 = 1 and 𝛾 = 1.5 and CFL = 0.4.

6.5.1. A one dimensional unsteady subsonic flow

Let us denote U = (𝛼, 𝜌, 𝑢). The initial condition is a Riemann problem where the left state U𝐿 and the
right state U𝑅 are given by

U𝐿 = (1, 1, 0.001), U𝑅 = (0.75, 0.3, 0.005).

The domain is [0, 1] and the discontinuity in the initial condition is set to 𝑥 = 0.5. The exact solution is
1-rarefaction followed by a stationary contact, then followed by a 3-shock. For an exact solution, we refer to
[27]. The Mach number of the solution varies from 4 × 10−4 to 0.85 and then allows to test the robustness
of the all-Mach VFRoe scheme. Moreover, since 𝛼 is discontinuous between U𝐿 and U𝑅, we also test the
capability of the scheme to preserve the two invariants of the stationary contact 𝛼𝜌𝑢 and 𝑢2/2 + ℎ(𝜌) where
ℎ(𝜌) = 𝜅𝛾𝜌𝛾−1/(𝛾 − 1).

In Figure 3, we plot the porosity (or cross-section) 𝛼, the density 𝜌, the velocity 𝑢, the Mach number, 𝛼𝜌𝑢
and 𝑢2/2+ℎ(𝜌) at time 𝑡 = 0.25 obtained with the well-balanced Lax–Friedrich scheme [26], the VFRoe scheme
and the all-Mach VFRoe scheme. The all-Mach VFRoe scheme is stable. In fact, as for the constant porosity
case, numerical tests seem to show that the all-Mach scheme is stable under a degenerated CFL condition which
is exactly the half of the classical one (see [5, 13] for more details). This justifies why all numerical results are
obtained with CFL = 0.4. As expected, the all-Mach VFRoe scheme is the least diffusive scheme and the well-
balanced Lax–Friedrich scheme is the most diffusive one. Looking at the stationary contact in 𝑥 = 0.5, we remark
that the two invariants of the stationary contact 𝛼𝜌𝑢 and 𝑢2/2 + ℎ(𝜌) are preserved across the discontinuity of
𝛼. Then, the VFRoe and all-Mach VFRoe schemes are also well-balanced, like the well-balanced Lax–Friedrich
scheme.

6.5.2. Two-dimensional low Mach flow

We consider a two-dimensional low Mach vortex flow. Domain, meshes and boundary conditions are the
same as for the wave equation (see Sect. 5). The initial condition is an exact, steady and regular solution of the
incompressible system (2.7). Then, (2.6) tells us that the solution of (2.2) will remain close to the initial condition
since the latter solves (2.7) for all times. Note that in order to build an exact solution of the incompressible
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Figure 3. One dimensional unsteady subsonic flow: porosity (or cross section) 𝛼, density
𝜌, velocity 𝑢, Mach number, 𝛼𝜌𝑢 and 𝑢2/2 + ℎ(𝜌) obtained at time 𝑡 = 0.25 with the well-
balanced Lax–Friedrich scheme (referenced by LF-WB), the VFRoe scheme and the all-Mach
VFRoe scheme (referenced by AM-VFRoe). The mesh contains 200 cells.

system (2.7), we adapted the isentropic vortex solution of [43, 44] to the case of variable porosity fields. The
initial condition is given by

⎧⎪⎪⎨⎪⎪⎩
𝛼 = 𝛼0𝛼̃

(0)
0 = 𝛼0Ω𝑐1 ,

𝜌0 = 𝜌0

(︁
𝜌
(0)
0 +𝑀2𝜌

(2)
0

)︁
= 𝜌0

(︀
1 +𝑀2𝑐2Ω𝑐3

)︀
,

u0 = 𝑢0ũ
(0)
0 = 𝑢0

∇× 𝜓

𝛼
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Figure 4. Norm of 𝛼u obtained at final time 𝑡 = 2s with the well-balanced Lax–Friedrich
scheme (6.3), the VFRoe scheme (6.4) and the all-Mach VFRoe scheme (6.5) on Cartesian
meshes with an initial Mach number 𝑀 = 10−4.

where Ω = exp
(︂
− (𝑥− 0.5)2 + (𝑦 − 0.5)2

2×𝑅2

)︂
, 𝑅 = 0.15, 𝛼0 = 1, 𝜌0 = 1, 𝑢0 = 𝑀 × 𝑐(𝜌0), 𝑐1 = 0.25, 𝑐3 =

2× (1− 𝑐1), 𝑐2 = −1/(𝛼2
0𝑐3) and 𝜓 = 𝑅Ω. We can easily check that (𝜌(2)

0 , ũ(0)
0 ) is regular and satisfies{︃

∇ · (𝛼̃ũ)(0)0 = 0,(︁
ũ(0)

0 · ∇x̃

)︁
ũ(0)

0 +∇x̃𝜌
(2)
0 = 0.

We firstly study from a numerical point of view if the background (order 0 in the asymptotic expansion)
steady incompressible solution is preserved over time and secondly if the different schemes are accurate at low
Mach number in the sense that the amplitude of the perturbation with respect to the background incompressible
solution satisfies (2.6) at the discrete level.
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Figure 5. Norm of 𝛼u obtained at final time 𝑡 = 2s with the well-balanced Lax–Friedrich
scheme (6.3), the VFRoe scheme (6.4) and the all-Mach VFRoe scheme (6.5) on triangular
meshes with an initial Mach number 𝑀 = 10−4.

In Figures 4 and 5, we plot the norm of 𝛼u obtained at time 𝑡 = 2 s with 𝑀 = 10−4 on Cartesian and
triangular meshes with the well-balanced Lax–Friedrich, the VFRoe and the all-Mach VFRoe schemes. The
incompressible steady velocity seems to be preserved over time with the all-Mach VFRoe scheme on triangular
and Cartesian meshes and with the VFRoe scheme on triangular meshes. With the other schemes, the solution
is extremely diffused. Note that the accuracy problem of the Lax–Friedrich scheme at low Mach number on
triangular mesh was already illustrated in [36] for the uniform porosity case.

In Figure 6, we study the low Mach accuracy of the different numerical schemes in the sense that we check
whether (2.6) is or is not satisfied at the discrete level. For that, we study the amplitude of the deviation of
the numerical solution from the incompressible solution (which is the initial condition) with respect to the
Mach number. We plot the norm of the deviation for the dimensionless density 𝜌 and the dimensionless field
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Figure 6. Norm of the deviation from the incompressible solution for the dimensionless density
and dimensionless field 𝛼̃ũ at final time 𝑡 = 2s for Mach numbers 𝑀 ranging from 10−1 to 10−7

with the well-balanced Lax–Friedrich scheme (6.3), the VFRoe scheme (6.4) and the all-Mach
VFRoe scheme (6.5) on Cartesian and triangular meshes.

𝛼̃ũ for Mach numbers 𝑀 ranging from 10−1 to 10−7. Recall that 𝛼̃, 𝜌 and ũ are defined by (2.1) where here
𝛼0 = 𝜌0 = 1 and 𝑢0 = 𝑐(𝜌0) ×𝑀. Note that it is very important to initialize the field 𝛼u and compute the
incompressible solution by using (3.7) for triangular meshes and (3.12) for Cartesian meshes, in which the
discrete values of 𝜓 are interpolated from the analytical expression of 𝜓, because otherwise (i.e. if the discrete
values of 𝛼u are initialized directly from their analytical expression) an error of the order of the space step
will be introduced and will hide the deviation that scales like the Mach number. We observe that the VFRoe
scheme is accurate at low Mach number on triangles while the all-Mach VFRoe scheme is the only one which
is accurate on Cartesian and triangular meshes. Indeed, for these schemes, the density deviation is of order 𝑀2

and the velocity deviation is of order 𝑀 , as expected. The well-balanced Lax–Friedrich scheme and the VFRoe
scheme on Cartesian meshes are not accurate at low Mach number because their velocity deviation is of order
𝑀0, and, moreover, the density deviation of the VFRoe scheme scales like 𝑀 .
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7. Conclusion

In this article, we proposed a well-balanced compressible scheme accurate at low Mach number for the Euler
equations with porosity. The proposed scheme is based on the study that is performed on the linear wave
equation with porosity. Indeed, the low Mach accuracy problem of the Godunov scheme can be understood
and cured in the linear case. For this, we extended the discrete Hodge decomposition of [14] to a weighted 𝐿2

space in order to take into account the porosity, and we extended to the discrete level the properties that were
proven by studying the modified equation related to the Godunov scheme in [15]. We enlightened the influence
of the cell geometry on the accuracy of this scheme. In the triangular case, the stationary space of the Godunov
scheme approaches well enough the continuous space of constant pressures and divergence-free velocity fields
(up to the porosity factor), while this is not the case in the Cartesian case. On Cartesian meshes, we have to
delete the usual numerical diffusion on the velocity field to preserve constant pressure fields and divergence-free
velocity fields (up to the porosity factor). Moreover, as the aim was to design an all Mach regime scheme, the
correction that is introduced varies continuously with respect to the Mach number. As a result, on Cartesian
meshes, we propose to multiply the numerical diffusion on the velocity field by the Mach number 𝑀 when 𝑀
is smaller then 1. We check with numerical tests that this corrected scheme is accurate at low Mach number.
Note that these conclusions are only valid when the boundary conditions are periodic: non-periodic boundary
conditions may require additional analysis that was not performed in the present work.

The proposed non-linear scheme is based on a VFRoe solver and is a non linear extension of the Godunov
scheme proposed for the linear case. The VFRoe solver avoids the exact resolution of a Rieamnn problem with
variable porosity and is easy to implement. Like in the linear case, the VFRoe scheme for the non linear system
is not accurate at low Mach number on Cartesian meshes but is accurate at low Mach number on triangular
meshes. Based on the linear study, a fix is proposed for Cartesian meshes. This fix is easy to implement, requires
only the modification of a few lines of code and allows to recover the accuracy at low Mach number on Cartesian
meshes.

Further research could be driven by the following issues: First, if the porosity 𝛼 is discontinuous, then care
must be taken in the interpretation and the numerical treatment of System (1.1). Such questions are dealt with
for example in [27] and we note that, in the particular case of Section 6.5.1, the scheme proposed in the present
work computes a relevant numerical approximation. A second topic that needs to be studied is the extension of
the approach presented here to the full Euler system with energy balance.

Appendix A. Kernel of the Godunov and modified Godunov schemes on
general meshes

We prove Lemma 3.4:

Proof. The proof uses the fact that for any 𝑞ℎ ∈ Ker Lℎ𝜅,𝛼 defined by (3.3), we have

∑︁
Γ𝑖𝑗

|Γ𝑖𝑗 |
[︂
𝛼𝑖𝑗(𝑟𝑖 − 𝑟𝑗)2 +

𝜅

𝛼𝑖𝑗

(︁(︀
(𝛼u)𝑖 − (𝛼u)𝑗

)︀
· n𝑖𝑗

)︁2
]︂

= 0. (A.1)

This equality is implied by the energy estimate (4.2) since any element in the kernel is stationary.
Since for all 𝑖, 𝑗 we have 𝛼𝑖𝑗 > 0, (A.1) leads to the fact 𝑟𝑖 = 𝑟𝑗 for all neighboring cells (𝑖, 𝑗) and thus

∃𝑐 ∈ R, ∀𝑖 ∈ J1, 𝑁K, 𝑟𝑖 = 𝑐. (A.2)

If 𝜅 > 0, we also deduce from (A.1) that

∀𝑖 ∈ J1, 𝑁K, ∀𝑗 ∈ {neighboring cell of 𝑖}, (𝛼u)𝑖 · n𝑖𝑗 = (𝛼u)𝑗 · n𝑖𝑗 ,
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which allows to write (3.4). If 𝜅 = 0, we can only deduce (A.2) from (A.1). Nevertheless, by injecting 𝑟𝑖 = 𝑐 in
the first relation of (3.3), we obtain

∀𝑖 ∈ J1, 𝑁K, ∀𝑗 ∈ {neighboring cell of 𝑖},
∑︁

Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︀
(𝛼u)𝑖 + (𝛼u)𝑗

)︀
· n𝑖𝑗 = 0,

which allows to write (3.5).
Let us prove that Ker Lℎ𝜅>0,𝛼 ( Ker Lℎ𝜅=0,𝛼. Let 𝑞ℎ ∈ Ker Lℎ𝜅>0,𝛼. We have for all 𝑖 ∈ J1, 𝑁K∑︁

Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︀
(𝛼u)𝑖 + (𝛼u)𝑗

)︀
· n𝑖𝑗 =

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |
(︀
(𝛼u)𝑖 + (𝛼u)𝑖

)︀
· n𝑖𝑗 = 2(𝛼u)𝑖 ·

∑︁
Γ𝑖𝑗⊂𝜕Ω𝑖

|Γ𝑖𝑗 |n𝑖𝑗 = 0

and then 𝑞ℎ ∈ Ker Lℎ𝜅=0,𝛼. �

Appendix B. Discrete Poincaré-Wirtinger inequalities with weights

Proposition B.1 (One-dimension). Let T =]𝑎1, 𝑏1[ be covered by a uniform rectangular mesh with 𝑁𝑥 cells of
size ∆𝑥 := 𝑏1−𝑎1

𝑁𝑥
= 𝐿𝑥

𝑁𝑥
. Let (𝜇𝑖)1≤𝑖≤𝑁𝑥 be a positive sequence. Let (𝜇𝑖− 1

2
)1≤𝑖≤𝑁𝑥 be a strictly positive sequence.

Set ‖𝜇‖∞ = sup𝑖 (𝜇𝑖) and
⃦⃦⃦

1
𝜇

⃦⃦⃦
∞

= sup𝑖
(︁
𝜇−1
𝑖+ 1

2

)︁
. Then, for any (𝜑𝑖)1≤𝑖≤𝑁𝑥

(for which we set for the sake of

periodicity 𝜑0 = 𝜑𝑁𝑥), there holds

𝑁𝑥∑︁
𝑖=1

∆𝑥𝜇𝑖
(︀
𝜑𝑖 − 𝜑

)︀2 ≤ ‖𝜇‖∞ ⃦⃦⃦⃦ 1
𝜇

⃦⃦⃦⃦
∞

𝐿2
𝑥

∆𝑥

𝑁𝑥∑︁
𝑘=1

|𝜑𝑘 − 𝜑𝑘−1|2 𝜇𝑘− 1
2

where 𝜑 = 1
𝐿𝜇

𝑁𝑥∑︀
𝑗=1

∆𝑥𝜇𝑗𝜑𝑗 with 𝐿𝜇 =
𝑁𝑥∑︀
𝑗=1

∆𝑥𝜇𝑗.

Proof. For all 𝑖 ∈ J1, 𝑁𝑥K, we have

⃒⃒
𝜑𝑖 − 𝜑

⃒⃒
=

1
𝐿𝜇

⃒⃒⃒⃒
⃒⃒𝑁𝑥∑︁
𝑗=1

∆𝑥𝜇𝑗 (𝜑𝑖 − 𝜑𝑗)

⃒⃒⃒⃒
⃒⃒

=
1
𝐿𝜇

⃒⃒⃒⃒
⃒⃒𝑁𝑥∑︁
𝑗=1

∆𝑥𝜇𝑗
𝑖∑︁

𝑘=𝑗+1

(𝜑𝑘 − 𝜑𝑘−1)

⃒⃒⃒⃒
⃒⃒ ≤ 1

𝐿𝜇

𝑁𝑥∑︁
𝑗=1

∆𝑥𝜇𝑗
𝑁𝑥∑︁
𝑘=1

|𝜑𝑘 − 𝜑𝑘−1| =
𝑁𝑥∑︁
𝑘=1

|𝜑𝑘 − 𝜑𝑘−1|

and then, using the discrete Cauchy–Schwarz inequality, we get

(︀
𝜑𝑖 − 𝜑

)︀2 ≤ 𝑁𝑥

𝑁𝑥∑︁
𝑘=1

|𝜑𝑘 − 𝜑𝑘−1|2 ≤ 𝑁𝑥

⃦⃦⃦⃦
1
𝜇

⃦⃦⃦⃦
∞

𝑁𝑥∑︁
𝑘=1

𝜇𝑘− 1
2
|𝜑𝑘 − 𝜑𝑘−1|2 .

By multiplying by 𝜇𝑖∆𝑥 and by summing over 𝑖, we have, since 𝐿𝑥 = 𝑁𝑥∆𝑥

𝑁𝑥∑︁
𝑖=1

∆𝑥𝜇𝑖
(︀
𝜑𝑖 − 𝜑

)︀2 ≤ 𝑁𝑥

⃦⃦⃦⃦
1
𝜇

⃦⃦⃦⃦
∞

𝑁𝑥∑︁
𝑖=1

∆𝑥𝜇𝑖
𝑁𝑥∑︁
𝑘=1

𝜇𝑘− 1
2
|𝜑𝑘 − 𝜑𝑘−1|2

≤ ‖𝜇‖∞
⃦⃦⃦⃦

1
𝜇

⃦⃦⃦⃦
∞

𝐿2
𝑥

∆𝑥

𝑁𝑥∑︁
𝑘=1

𝜇𝑘− 1
2
|𝜑𝑘 − 𝜑𝑘−1|2 .

�
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Proposition B.2 (Two-dimensions). Let T =]𝑎1, 𝑏1[×]𝑎2, 𝑏2[ be covered by a uniform rectangular mesh
with cell sizes ∆𝑥 × ∆𝑦 where ∆𝑥 = 𝑏1−𝑎1

𝑁𝑥
= 𝐿𝑥

𝑁𝑥
and ∆𝑦 = 𝑏2−𝑎2

𝑁𝑦
= 𝐿𝑦

𝑁𝑦
. Let (𝜇𝑖)1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦

,
(𝜇𝑖− 1

2 ,𝑗
)1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦 and (𝜇𝑖,𝑗− 1

2
)1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦 be three strictly positive sequences. Set ‖𝜇‖∞ = sup𝑖,𝑗 (𝜇𝑖,𝑗)

and
⃦⃦⃦

1
𝜇

⃦⃦⃦
∞

= sup𝑖,𝑗
(︁
𝜇−1
𝑖− 1

2 ,𝑗
, 𝜇−1
𝑖,𝑗− 1

2
, 𝜇−1
𝑖,𝑗

)︁
. Then, for any (𝜑𝑖,𝑗)1≤𝑖≤𝑁𝑥,1≤𝑗≤𝑁𝑦

(for which we set for the sake of

periodicity 𝜑0,𝑗 = 𝜑𝑁𝑥,𝑗 and 𝜑𝑖,0 = 𝜑𝑖,𝑁𝑦), there holds

∑︁
𝑖,𝑗

∆𝑥∆𝑦𝜇𝑖,𝑗
(︀
𝜑𝑖,𝑗 − 𝜑

)︀2 ≤ 2‖𝜇‖2∞
⃦⃦⃦⃦

1
𝜇

⃦⃦⃦⃦2

∞

(︃
𝐿2
𝑥

∆𝑥
+
𝐿2
𝑦

∆𝑦

)︃⎡⎣∑︁
𝑖,𝑗

∆𝑥𝜇𝑖,𝑗− 1
2
|𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1|2

+
∑︁
𝑖,𝑗

∆𝑦𝜇𝑖− 1
2 ,𝑗
|𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗 |2

⎤⎦
where 𝜑 = 1

𝐴𝜇

∑︀
𝑘,ℓ

∆𝑥∆𝑦𝜇𝑘,ℓ𝜑𝑘,ℓ with 𝐴𝜇 =
∑︀
𝑘,ℓ

∆𝑥∆𝑦𝜇𝑘,ℓ.

Proof. For all (𝑖, 𝑗) ∈ J1, 𝑁𝑥K× J1, 𝑁𝑦K, we have

|𝜑𝑖,𝑗 − 𝜑| =

⃒⃒⃒⃒
⃒⃒ 1
𝐴𝜇

∑︁
𝑘,ℓ

∆𝑥∆𝑦𝜇𝑘,ℓ (𝜑𝑖,𝑗 − 𝜑𝑘,ℓ)

⃒⃒⃒⃒
⃒⃒

≤ 1
𝐴𝜇

∑︁
𝑘,ℓ

∆𝑥∆𝑦𝜇𝑘,ℓ (|𝜑𝑖,𝑗 − 𝜑𝑖,ℓ|+ |𝜑𝑖,ℓ − 𝜑𝑘,ℓ|)

≤ 1
𝐴𝜇

∑︁
𝑘,ℓ

∆𝑥∆𝑦𝜇𝑘,ℓ

(︃∑︁
𝑛

|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|+
∑︁
𝑚

|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|

)︃
.

We have to take into account that the sum over 𝑛 does not depend on (𝑘, ℓ), while the sum over 𝑚 depends on
ℓ but not on 𝑘. This provides:

|𝜑𝑖,𝑗 − 𝜑| ≤
∑︁
𝑛

|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|+
1
𝐴𝜇

𝑁𝑥∆𝑥∆𝑦‖𝜇‖∞
∑︁
ℓ

∑︁
𝑚

|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|

|𝜑𝑖,𝑗 − 𝜑|2 ≤ 2

(︃∑︁
𝑛

|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|

)︃2

+ 2

⎛⎝ 1
𝐴𝜇

𝑁𝑥∆𝑥∆𝑦‖𝜇‖∞
∑︁
ℓ,𝑚

|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|

⎞⎠2

. (B.1)

The first term in the right-hand side of (B.1) depends on 𝑖 but not on 𝑗, while the second does not depend on
(𝑖, 𝑗). This implies, on the one hand

∑︁
𝑖,𝑗

∆𝑥∆𝑦𝜇𝑖,𝑗

(︃∑︁
𝑛

|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|

)︃2

≤ ∆𝑥∆𝑦‖𝜇‖∞𝑁𝑦
∑︁
𝑖

(︃∑︁
𝑛

|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|

)︃2

≤ ∆𝑥∆𝑦‖𝜇‖∞𝑁2
𝑦

∑︁
𝑖,𝑛

|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|2

≤
𝐿2
𝑦

∆𝑦
‖𝜇‖∞

⃦⃦⃦⃦
1
𝜇

⃦⃦⃦⃦
∞

∑︁
𝑖,𝑛

∆𝑥𝜇𝑖,𝑛− 1
2
|𝜑𝑖,𝑛 − 𝜑𝑖,𝑛−1|2 (B.2)

and, on the other hand

∑︁
𝑖,𝑗

∆𝑥∆𝑦𝜇𝑖,𝑗

⎛⎝ 1
𝐴𝜇

𝑁𝑥∆𝑥∆𝑦‖𝜇‖∞
∑︁
ℓ,𝑚

|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|

⎞⎠2
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≤ 1
𝐴𝜇

𝐿2
𝑥∆𝑦2‖𝜇‖2∞

⎛⎝∑︁
ℓ,𝑚

|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|

⎞⎠2

≤ 1
𝐿𝑥𝐿𝑦

⃦⃦⃦⃦
1
𝜇

⃦⃦⃦⃦
∞
𝐿2
𝑥∆𝑦 ‖𝜇‖2∞𝑁𝑥𝑁𝑦

⃦⃦⃦⃦
1
𝜇

⃦⃦⃦⃦
∞

∑︁
𝑚,𝑙

∆𝑦𝜇𝑚− 1
2 ,ℓ
|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|2

≤ 𝐿2
𝑥

∆𝑥
‖𝜇‖2∞

⃦⃦⃦⃦
1
𝜇

⃦⃦⃦⃦2

∞

∑︁
𝑚,𝑙

∆𝑦𝜇𝑚− 1
2 ,ℓ
|𝜑𝑚,ℓ − 𝜑𝑚−1,ℓ|2 . (B.3)

The result follows from (B.1) to (B.3) and from the fact that ‖𝜇‖∞
⃦⃦⃦

1
𝜇

⃦⃦⃦
∞
≥ 1. �

Appendix C. VFRoe scheme

We now detail how we obtain the solution 𝑅(0−,Y𝐿,Y𝑅,n) in 𝜉/𝑡 = 0− of the linearized Riemann prob-
lem that is used to compute the VFRoe flux (6.4). Since the variables used for the VFRoe scheme are
Y = (𝛼, 𝜌, 𝛼𝜌u)𝑇 , we write system (6.1) as

𝜕𝑡Y +
∑︁

𝑖∈{𝑥,𝑦,𝑧}

𝐵𝑖(Y)𝜕𝑖Y = 0

where ∑︁
𝑖∈{𝑥,𝑦,𝑧}

𝐵𝑖(Y)n𝑖 =

⎡⎣ 0 0 0
0 0 n𝑇 /𝛼

−𝜌uu · n −𝛼uu · n + 𝛼𝑐2n u · n𝐼𝑑 + u⊗ n

⎤⎦ .
Then, 𝑅(0−,Y𝐿,Y𝑅,n) corresponds to the solution in 𝜉/𝑡 = 0− of the linearized Riemann problem

𝜕𝑡Y + (𝐵(Ŷ) · n)𝜕𝜉Y = 0 with Y(𝜉, 𝑡 = 0) =
{︂

Y𝐿 if 𝜉 < 0,
Y𝑅 elsewhere

where 𝐵(Y) · n =
∑︀
𝑖∈{𝑥,𝑦,𝑧}𝐵𝑖(Y)n𝑖 and Ŷ is defined by

𝛼̂ =
𝛼𝐿 + 𝛼𝑅

2
, 𝜌 =

𝜌𝐿 + 𝜌𝑅
2

, û =
u𝐿 + u𝑅

2
and 𝑐 = 𝑐(𝜌). (C.1)

Eigenvalues of 𝐵(Y) ·n are 𝜆0 = 0, 𝜆1 = u ·n− 𝑐, 𝜆2 = u ·n + 𝑐, 𝜆3 = 𝜆4 = u ·n and the associated left l𝑖 and
right r𝑖 eigenvectors are

l0(Y) =
1

𝛼 (𝑐2 − (u · n)2)
(1, 0, 0, 0) ,

l1(Y) =
1

2𝛼𝑐

(︂
𝜌(u · n)2

u · n− 𝑐
, 𝛼(u · n + 𝑐),−n𝑇

)︂
,

l2(Y) = − 1
2𝛼𝑐

(︂
𝜌(u · n)2

u · n + 𝑐
, 𝛼(u · n− 𝑐),−n𝑇

)︂
,

l3(Y) =
(︀
−𝜌u · t𝑎,−𝛼u · t𝑎, (t𝑎)𝑇

)︀
,

l4(Y) =
(︀
−𝜌u · t𝑏,−𝛼u · t𝑏, (t𝑏)𝑇

)︀
and

[r0|r1|r2|r3|r4] (Y) =

⎡⎣ 𝛼
(︀
𝑐2 − (u · n)2

)︀
0 0 0 0

𝜌(u · n)2 1 1 0 0
𝛼𝜌𝑐2(u− (u · n)n) 𝛼(u− 𝑐n) 𝛼(u + 𝑐n) t𝑎 t𝑏

⎤⎦ .
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The solution 𝑅(0−,Y𝐿,Y𝑅,n) is given by

𝑅(0−,Y𝐿,Y𝑅,n) = Y𝐿 +
∑︁
𝜆𝑖<0

l𝑖(Ŷ)(Y𝑅 −Y𝐿)r𝑖(Ŷ).

Acknowledgements. Experiments presented in this article were carried out using the PlaFRIM experimental testbed,
supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine
(see https://www.plafrim.fr/).
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