Analysis of a contact problem for a viscoelastic Bresse system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 887-911

In this paper, we consider a contact problem between a viscoelastic Bresse beam and a deformable obstacle. The well-known normal compliance contact condition is used to model the contact. The existence of a unique solution to the continuous problem is proved using the Faedo-Galerkin method. An exponential decay property is also obtained defining an adequate Liapunov function. Then, using the finite element method and the implicit Euler scheme, a finite element approximation is introduced. A discrete stability property and a priori error estimates are proved. Finally, some numerical experiments are performed to demonstrate the decay of the discrete energy and the numerical convergence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021015
Classification : 65M15, 65M60, 74B05, 74K10
Keywords: Contact problem, Bresse beam, exponential decay, finite element discretization
@article{M2AN_2021__55_3_887_0,
     author = {Copetti, Maria In\^es M. and EL Arwadi, Toufic and Fern\'andez, Jose R. and Naso, Maria Grazia and Youssef, Wael},
     title = {Analysis of a contact problem for a viscoelastic {Bresse} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {887--911},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021015},
     mrnumber = {4253165},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021015/}
}
TY  - JOUR
AU  - Copetti, Maria Inês M.
AU  - EL Arwadi, Toufic
AU  - Fernández, Jose R.
AU  - Naso, Maria Grazia
AU  - Youssef, Wael
TI  - Analysis of a contact problem for a viscoelastic Bresse system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 887
EP  - 911
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021015/
DO  - 10.1051/m2an/2021015
LA  - en
ID  - M2AN_2021__55_3_887_0
ER  - 
%0 Journal Article
%A Copetti, Maria Inês M.
%A EL Arwadi, Toufic
%A Fernández, Jose R.
%A Naso, Maria Grazia
%A Youssef, Wael
%T Analysis of a contact problem for a viscoelastic Bresse system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 887-911
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021015/
%R 10.1051/m2an/2021015
%G en
%F M2AN_2021__55_3_887_0
Copetti, Maria Inês M.; EL Arwadi, Toufic; Fernández, Jose R.; Naso, Maria Grazia; Youssef, Wael. Analysis of a contact problem for a viscoelastic Bresse system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 887-911. doi: 10.1051/m2an/2021015

[1] F. Alabau Boussouira, J. E. Muñoz Rivera and D. Da S. Almeida Júnior, Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 374 (2011) 481–498. | MR | Zbl | DOI

[2] M. O. Alves, L. H. Fatori, M. A. Jorge Silva and R. N. Monteiro, Stability and optimality of decay rate for a weakly dissipative Bresse system. Math. Methods Appl. Sci. 38 (2015) 898–908. | MR | DOI

[3] K. T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle. J. Elasticity 42 (1996) 1–30. | MR | Zbl | DOI

[4] H. Antes and P. D. Panagiotopoulos, The boundary integral approach to static and dynamic contact problems. In: Vol. 108 of International Series of Numerical Mathematics. Equality and inequality methods. Birkhäuser Verlag, Basel (1992). | MR | Zbl

[5] M. Aouadi and M. I. M. Copetti, Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory. ZAMM Z. Angew. Math. Mech. 96 (2016) 361–384. | MR | DOI

[6] M. Aouadi, M. I. M. Copetti and J. R. Fernández, A contact problem in thermoviscoelastic diffusion theory with second sound. ESAIM: M2AN 51 (2017) 759–796. | MR | Zbl | Numdam | DOI

[7] D. N. Arnold, A. L. Madureira and S. Zhang, On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elasticity 67 (2002) 171–185. | MR | Zbl | DOI

[8] C. Bernardi and M. I. M. Copetti, Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. ZAMM Z. Angew. Math. Mech. 97 (2017) 532–549. | MR | DOI

[9] A. Berti and M. G. Naso, Unilateral dynamic contact of two viscoelastic beams. Q. Appl. Math. 69 (2011) 477–507. | MR | Zbl | DOI

[10] A. Berti, M. I. M. Copetti, J. R. Fernández and M. G. Naso, A dynamic thermoviscoelastic contact problem with the second sound effect. J. Math. Anal. Appl. 421 (2015) 1163–1195. | MR | Zbl | DOI

[11] A. Berti, J. E. Muñoz Rivera and M. G. Naso, A contact problem for a thermoelastic Timoshenko beam. Z. Angew. Math. Phys. 66 (2015) 1969–1986. | MR | DOI

[12] G. Bonfanti, J. E. Muñoz Rivera and M. G. Naso, Global existence and exponential stability for a contact problem between two thermoelastic beams. J. Math. Anal. Appl. 345 (2008) 186–202. | MR | Zbl | DOI

[13] G. Bonfanti, M. Fabrizio, J. E. Muñoz Rivera and M. G. Naso, On the energy decay for a thermoelastic contact problem involving heat transfer. J. Thermal Stresses 33 (2010) 1049–1065. | DOI

[14] J. E. C. Bresse, Cours de mécanique appliquée, professé a l’École des ponts et chaussées, par M. Bresse. Gauthier-Villars, Paris (1865–1868).

[15] M. Campo, M. I. M. Copetti and J. R. Fernández, Dynamic vibrations of a damageable viscoelastic beam in contact with two stops. Numer. Methods Part. Differ. Equ. 29 (2013) 647–666. | MR | Zbl | DOI

[16] P. G. Ciarlet, Basic error estimates for elliptic problems. In: Vol. II of Handbook of numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl | DOI

[17] M. I. M. Copetti, Finite element approximation to a quasi-static thermoelastic problem to the contact of two rods. Appl. Numer. Math. 44 (2003) 31–47. | MR | Zbl | DOI

[18] M. I. M. Copetti, Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle. M2AN. Math. Model. Numer. Anal. 38 (2004) 691–706. | MR | Zbl | Numdam | DOI

[19] M. I. M. Copetti and D. A. French, Numerical approximation and error control for a thermoelastic contact problem. Appl. Numer. Math. 55 (2005) 439–457. | MR | Zbl | DOI

[20] A. D. De Pater and J. J. Kalker, The Mechanics of the Contact Between Deformable Bodies. Delft University Press, Delft (1975). | MR | Zbl

[21] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). | MR | Zbl | DOI

[22] C. Eck, J. Jarušek and M. Krbec, Unilateral contact problems. In: Vol. 270 of Pure and Applied Mathematics (Boca Raton). Variational Methods and Existence Theorems. Chapman & Hall/CRC, Boca Raton, FL (2005). | MR | Zbl

[23] T. El Arwadi and W. Youssef, On the stabilization of the Bresse beam with Kelvin–Voigt damping. To appear in: Appl. Math. Opt. (2019). | DOI | MR

[24] T. El Arwadi, M. I. M. Copetti and W. Youssef, On the theoretical and numerical stability of the thermoviscoelastic Bresse system. ZAMM Z. Angew. Math. Mech. 99 (2019). | MR | DOI

[25] L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75 (2010) 881–904. | MR | Zbl | DOI

[26] M. Frémond, Contact with adhesion. Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988) 157–185. | MR | Zbl

[27] M. Frémond, Non-Smooth Thermomechanics. Springer-Verlag, Berlin (2002). | MR | Zbl | DOI

[28] W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137 (2001) 377–398. | MR | Zbl | DOI

[29] N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. In: Vol. 8 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). | MR | Zbl

[30] J. U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Methods Appl. Sci. 13 (1990) 55–79. | MR | Zbl | DOI

[31] K. L. Kuttler and M. Shillor, Vibrations of a beam between two stops. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 8 (2001) 93–110. | MR | Zbl

[32] A. Labuschagne, N. F. J. Van Rensburg and A. J. Van Der Merwe, Comparison of linear beam theories. Math. Comput. Modelling 49 (2009) 20–30. | MR | Zbl | DOI

[33] Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60 (2009) 54–69. | MR | Zbl | DOI

[34] J. E. Muñoz Rivera and S. Jiang, The thermoelastic and viscoelastic contact of two rods. J. Math. Anal. Appl. 217 (1998) 423–458. | MR | Zbl | DOI

[35] M. Nakao and J. E. Muñoz Rivera, The contact poblem in thermoviscoelastic materials. J. Math. Anal. Appl. 264 (2001) 522–545. | MR | Zbl | DOI

[36] F. G. Pfeiffer, Applications of unilateral multibody dynamics. Phil. Trans. R. Soc. Lond. A 359 (2001) 2609–2628. | MR | Zbl | DOI

[37] M. L. Santos and D. Da S. Almeida Júnior, Numerical exponential decay to dissipative Bresse system. J. Appl. Math. (2010). | MR | Zbl

[38] M. E. Stavroulaki and G. E. Stavroulakis, Unilateral contact applications using fem software. Int. J. Appl. Math. Comput. Sci. 12 (2002) 115–125. | MR | Zbl

[39] A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks. J. Math. Phys. 51 (2010). | MR | DOI

[40] W. Youssef, Contrôle et stabilisation de systèmes élastiques couplés, Thesis (2009).

Cité par Sources :