In this paper, we consider a contact problem between a viscoelastic Bresse beam and a deformable obstacle. The well-known normal compliance contact condition is used to model the contact. The existence of a unique solution to the continuous problem is proved using the Faedo-Galerkin method. An exponential decay property is also obtained defining an adequate Liapunov function. Then, using the finite element method and the implicit Euler scheme, a finite element approximation is introduced. A discrete stability property and a priori error estimates are proved. Finally, some numerical experiments are performed to demonstrate the decay of the discrete energy and the numerical convergence.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021015
Keywords: Contact problem, Bresse beam, exponential decay, finite element discretization
@article{M2AN_2021__55_3_887_0,
author = {Copetti, Maria In\^es M. and EL Arwadi, Toufic and Fern\'andez, Jose R. and Naso, Maria Grazia and Youssef, Wael},
title = {Analysis of a contact problem for a viscoelastic {Bresse} system},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {887--911},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {3},
doi = {10.1051/m2an/2021015},
mrnumber = {4253165},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021015/}
}
TY - JOUR AU - Copetti, Maria Inês M. AU - EL Arwadi, Toufic AU - Fernández, Jose R. AU - Naso, Maria Grazia AU - Youssef, Wael TI - Analysis of a contact problem for a viscoelastic Bresse system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 887 EP - 911 VL - 55 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021015/ DO - 10.1051/m2an/2021015 LA - en ID - M2AN_2021__55_3_887_0 ER -
%0 Journal Article %A Copetti, Maria Inês M. %A EL Arwadi, Toufic %A Fernández, Jose R. %A Naso, Maria Grazia %A Youssef, Wael %T Analysis of a contact problem for a viscoelastic Bresse system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 887-911 %V 55 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021015/ %R 10.1051/m2an/2021015 %G en %F M2AN_2021__55_3_887_0
Copetti, Maria Inês M.; EL Arwadi, Toufic; Fernández, Jose R.; Naso, Maria Grazia; Youssef, Wael. Analysis of a contact problem for a viscoelastic Bresse system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 887-911. doi: 10.1051/m2an/2021015
[1] , and , Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 374 (2011) 481–498. | MR | Zbl | DOI
[2] , , and , Stability and optimality of decay rate for a weakly dissipative Bresse system. Math. Methods Appl. Sci. 38 (2015) 898–908. | MR | DOI
[3] , and , On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle. J. Elasticity 42 (1996) 1–30. | MR | Zbl | DOI
[4] and , The boundary integral approach to static and dynamic contact problems. In: Vol. 108 of International Series of Numerical Mathematics. Equality and inequality methods. Birkhäuser Verlag, Basel (1992). | MR | Zbl
[5] and , Analytical and numerical results for a dynamic contact problem with two stops in thermoelastic diffusion theory. ZAMM Z. Angew. Math. Mech. 96 (2016) 361–384. | MR | DOI
[6] , and , A contact problem in thermoviscoelastic diffusion theory with second sound. ESAIM: M2AN 51 (2017) 759–796. | MR | Zbl | Numdam | DOI
[7] , and , On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elasticity 67 (2002) 171–185. | MR | Zbl | DOI
[8] and , Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. ZAMM Z. Angew. Math. Mech. 97 (2017) 532–549. | MR | DOI
[9] and , Unilateral dynamic contact of two viscoelastic beams. Q. Appl. Math. 69 (2011) 477–507. | MR | Zbl | DOI
[10] , , and , A dynamic thermoviscoelastic contact problem with the second sound effect. J. Math. Anal. Appl. 421 (2015) 1163–1195. | MR | Zbl | DOI
[11] , and , A contact problem for a thermoelastic Timoshenko beam. Z. Angew. Math. Phys. 66 (2015) 1969–1986. | MR | DOI
[12] , and , Global existence and exponential stability for a contact problem between two thermoelastic beams. J. Math. Anal. Appl. 345 (2008) 186–202. | MR | Zbl | DOI
[13] , , and , On the energy decay for a thermoelastic contact problem involving heat transfer. J. Thermal Stresses 33 (2010) 1049–1065. | DOI
[14] , Cours de mécanique appliquée, professé a l’École des ponts et chaussées, par M. Bresse. Gauthier-Villars, Paris (1865–1868).
[15] , and , Dynamic vibrations of a damageable viscoelastic beam in contact with two stops. Numer. Methods Part. Differ. Equ. 29 (2013) 647–666. | MR | Zbl | DOI
[16] , Basic error estimates for elliptic problems. In: Vol. II of Handbook of numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl | DOI
[17] , Finite element approximation to a quasi-static thermoelastic problem to the contact of two rods. Appl. Numer. Math. 44 (2003) 31–47. | MR | Zbl | DOI
[18] , Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle. M2AN. Math. Model. Numer. Anal. 38 (2004) 691–706. | MR | Zbl | Numdam | DOI
[19] and , Numerical approximation and error control for a thermoelastic contact problem. Appl. Numer. Math. 55 (2005) 439–457. | MR | Zbl | DOI
[20] and , The Mechanics of the Contact Between Deformable Bodies. Delft University Press, Delft (1975). | MR | Zbl
[21] and , Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). | MR | Zbl | DOI
[22] , and , Unilateral contact problems. In: Vol. 270 of Pure and Applied Mathematics (Boca Raton). Variational Methods and Existence Theorems. Chapman & Hall/CRC, Boca Raton, FL (2005). | MR | Zbl
[23] and , On the stabilization of the Bresse beam with Kelvin–Voigt damping. To appear in: Appl. Math. Opt. (2019). | DOI | MR
[24] , and , On the theoretical and numerical stability of the thermoviscoelastic Bresse system. ZAMM Z. Angew. Math. Mech. 99 (2019). | MR | DOI
[25] and , Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 75 (2010) 881–904. | MR | Zbl | DOI
[26] , Contact with adhesion. Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988) 157–185. | MR | Zbl
[27] , Non-Smooth Thermomechanics. Springer-Verlag, Berlin (2002). | MR | Zbl | DOI
[28] , and , Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137 (2001) 377–398. | MR | Zbl | DOI
[29] and , Contact problems in elasticity: a study of variational inequalities and finite element methods. In: Vol. 8 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). | MR | Zbl
[30] , A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Methods Appl. Sci. 13 (1990) 55–79. | MR | Zbl | DOI
[31] and , Vibrations of a beam between two stops. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 8 (2001) 93–110. | MR | Zbl
[32] , and , Comparison of linear beam theories. Math. Comput. Modelling 49 (2009) 20–30. | MR | Zbl | DOI
[33] and , Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60 (2009) 54–69. | MR | Zbl | DOI
[34] and , The thermoelastic and viscoelastic contact of two rods. J. Math. Anal. Appl. 217 (1998) 423–458. | MR | Zbl | DOI
[35] and , The contact poblem in thermoviscoelastic materials. J. Math. Anal. Appl. 264 (2001) 522–545. | MR | Zbl | DOI
[36] , Applications of unilateral multibody dynamics. Phil. Trans. R. Soc. Lond. A 359 (2001) 2609–2628. | MR | Zbl | DOI
[37] and , Numerical exponential decay to dissipative Bresse system. J. Appl. Math. (2010). | MR | Zbl
[38] and , Unilateral contact applications using fem software. Int. J. Appl. Math. Comput. Sci. 12 (2002) 115–125. | MR | Zbl
[39] and , Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks. J. Math. Phys. 51 (2010). | MR | DOI
[40] , Contrôle et stabilisation de systèmes élastiques couplés, Thesis (2009).
Cité par Sources :





