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ANALYSIS OF A CONTACT PROBLEM FOR A VISCOELASTIC BRESSE
SYSTEM

MARIA INES M. CoPETTI'*, ToUFIC EL ARWADI?, JOSE R. FERNANDEZ?,
MARIA GRAZIA NASO* AND WAEL YOUSSEF®

Abstract. In this paper, we consider a contact problem between a viscoelastic Bresse beam and a
deformable obstacle. The well-known normal compliance contact condition is used to model the con-
tact. The existence of a unique solution to the continuous problem is proved using the Faedo-Galerkin
method. An exponential decay property is also obtained defining an adequate Liapunov function. Then,
using the finite element method and the implicit Euler scheme, a finite element approximation is in-
troduced. A discrete stability property and a priori error estimates are proved. Finally, some numer-
ical experiments are performed to demonstrate the decay of the discrete energy and the numerical
convergence.
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1. INTRODUCTION

The last decades have witnessed a rapid development in high technologies using beams and a growing attention
has been paid to the mathematical theory of contact mechanics (see, e.g., [4,20,26]). This has prompted great
interest and several results have been published. In the wide literature on this field, most of papers deal with
Euler-Bernoulli models, some of them analyze Timoshenko systems, and only few of them are devoted to Bresse
ones.

It was proved in [7,32] that the beam (plate) model of Timoshenko type has a wider range of applicability than
Euler-Bernoulli model. In particular, the Timoshenko beam theory is widely used to describe the dynamics of a
beam when the transverse shear strain is significant. Furthermore, if the longitudinal displacement is considered,
the model becomes the Bresse system [14]. Conversely, the Euler—Bernoulli theory does not take into account
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such effects: the limitations of the Kirchhoff and Euler—Bernoulli theories are well known, even if rotary inertia
is included, and beam models involving improved theories need to be considered.

This paper focuses on phenomena related to contacts in materials of Bresse type. When the obstacles are
rigid, the contact assumption can be modeled by the classical Signorini non-penetration condition (see, e.g.,
[21,29]), which also contributes a strong non-linearity to the problem.

In particular, here we consider a circular beam with radius of curvature R whose reference configuration is
the arc with length L. Let € [0, L] denote the length along the undeformed beam. The equations governing
the motion of the beam are given by a Bresse system of this following type

prpee — k(ps + 1w +9)s — (2 + 1w + ¥)ar — kol(we — ) — {l(ws — lp)e =0 in (0, L) x (0, 00),
Pt — bbee — (oot + k(pz + 9 + lw) 4+ (0 +lw +10); =0 in (0,L) x (0,00), »(1.1)
pP1Wit — kO(W:ﬁ - Z‘P)z - C(wm - Z‘P)Ibt =+ kl((pr + w + lw) + Cl((pr + w + lw)t =0 in (Oa L) X (07 OO),

where ¢ and w are the transverse and longitudinal displacements, respectively, and v is the rotation angle of the
filament. Here p1, p2, k, kg and b are positive constants characterizing physical properties, { > 0 is a viscosity
coefficient and [ = 1/R.

We suppose that the beam is clamped at its left end z = 0 and free to move at the end x = L, only in the
transverse direction, where two flexible obstacles are located at distances g; > 0 and g3 > 0 with gap g = g1 +¢2
possibly asymmetrical as in Figure 1. Thus, the boundary conditions are

@(O’t) = ¢(07t) = w(()?t) =0,
b"/}z(Lat) + Cdjzt(L?t) =0,
w(L,t) =0, (1.2)

o(L1) = = ([p(L0) ~ ], — [~ o(L.1) ~ ], ).

where o(z,t) = k(pz + 1w+ ) + (¢ + lw + Py, [f]
obstacles.
The equations are also supplemented by initial conditions:

w(-,O) = Wwo, wt('>0) = W1, 90("0) = Yo on (O’L)7}

L= max{ f,0}, and 1/ > 0 represents the rigidity of the

(1.3)
@t('ao) = ¥1, ¢(a0) = ¢07 wt(ao) = 1111 on (OvL)

According to the last boundary condition, it may occur that ¢(L,t) > g2 or ¢(L,t) < —g1. When ¢ — 0 the
obstacles become rigid and —g; < ¢(L,t) < go modeling a part of the Signorini contact condition. Assuming
(1.2)4 we are considering a normal compliance condition (see, e.g., [31]) as a regularization of the Signorini
contact condition. Actually, we relax the non-penetration condition by supposing for instance that the stops at
the right end of the system are flexible.

The energy of the system (1.1)—(1.3) is given by

1 L
&ﬂzi/(m@ﬁ+mWﬁ+mWﬁ+me+H%+¢+wF
0

+ k0|ww - l§0|2 + % ([@(Lvt) - 92}3_ + [_ g1 — @(Lat)}j_)> dzx

and we note that this energy is decreasing, that is,

d

L
ag(t) = —/ (¢l + ¥ +1w)e|* 4 Clthat|* + Clwar — lge]*) dz < 0. (1.4)
0
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F1GURE 1. The circular arch and the joint with clearance g = g1 + g».

There is a large literature on the modeling, well-posedness and longtime behavior of systems in contact (see,
e.g., [22,27] and references therein). Applications of unilateral multibody dynamics have been analyzed in,
e.g., [36,38]. A contact problem for a nonlinear thermoviscoelastic Timoshenko beam model was investigated
theoretically and numerically by Bernardi and Copetti [8].

A first approach of research in such a context is the mathematical formulation of the contact models leading to
PDE systems that are worth analyzing also regarding the existence, uniqueness, and regularity of the solutions
(see, e.g., [3,30,31]), or their numerical analysis (see, e.g., [5,6,10,15,17-19]).

Another way of interest concerns the study of the longtime behavior of the solutions related to contact
problems involving only a single displacement and/or a single variation of temperature (see, e.g., [11,35]), or
referring the dynamic contact between two bodies (see, e.g., [9,12,13,34]).

The longtime behavior of Bresse systems, with different dissipative mechanism, has been considered in recent
years.

The stability of the Bresse system (1.1) with Dirichlet boundary conditions was studied by El Arwadi and
Youssef [23] where exponential decay was obtained without any condition on the physical constants.

In [1] the Bresse system has been investigated with frictional dissipation, present only in the equation of
angular displacement. In that work, the equalities

p_k and k = ko, (1.5)

p2 b

were observed as necessary and sufficient conditions for exponential decay of the system, and, in the general
case, the system is polynomially stable. We remark that condition (1.5) is only mathematically sound and it is
not given from physics.

In [2] the Bresse model for circular beams by adding two frictional dissipation in the system has been
analyzed. The exponential stability was found if and only if & = kg, with polynomial decay in the general case.
The problem of optimality polynomial decay rate was also studied.

In [39] the stability of Bresse system has been explored. In that case, the two wave equations about the rotation
angle and the longitudinal displacement are damped by two locally distributed feedbacks at the neighborhood
of the boundary.

In [37] the exponential decay of a dissipative Bresse system has been showed by techniques developed in [33]
and gave numerical simulations to support their results.
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When thermal effects are considered, the asymptotic behavior of the Bresse system may become more compli-
cated because of the coupling between the elasticity and heat conduction. At present, there are some theoretical
and numerical results on the asymptotic behavior of thermoelastic Bresse systems [24, 25, 33].

To our knowledge, this is the first paper where contact in the Bresse system has been performed. Moreover,
exponential rate of decay is achieved without any restrictions on the parameters.

The first goal of the present paper is to obtain a global in time existence result for problem (1.1)—(1.3) by
means of a Faedo-Galerkin scheme and suitable a priori estimates.

Secondly, we find the exponential stability by introducing a suitable Lyapunov functional and by using the
multiplier method.

Next, fully discrete approximations are introduced by using a finite element method for the spatial approxi-
mation and the backward Euler scheme for the discretization of the time derivatives. Discrete stability results
and a priori error estimates are obtained, from which the linear convergence is deduced under suitable regularity
assumptions.

Finally, some numerical examples are shown to demonstrate the accuracy of the algorithm and the behavior
of the solution.

2. WELL-POSEDNESS
Let I := (0, L). We introduce the following space
Hy(I) == {f € H'(I); f(0) = 0}

and denote by || - || and (-,-) the norm and the scalar product in L?(I), respectively. Before stating the main
result of the existence and uniqueness of the solution of (1.1)—(1.3), we recall an inequality that will play a
crucial role in all our calculation later.

Lemma 2.1. There exists C > 0 such that, for all

(p.h,w) € (H5(D))? x HA(I),

we have
e 2+ 15l + Nl < C(llpw + 0 + 1ol + b2 + o — Lol (2.1)

Proof. For the proof see Youssef [40]. O
Now, we enunciate our main theorem in this section.
Theorem 2.2. Assume that
wo € Hyp(I) N H?(I),01,v%0,%1,wo, w1 € Hy(I) N H*(I),—g1 < ¢o(L) < g2,

and
@Ox:‘Plx:¢Ox:¢1x:w0x:wlx:0 for = =1L.

For each T > 0, there exists a unique solution to contact problem (1.1)—~(1.3) with the regularity:

s i, € L(0,T5 Hy (1) N H(I)), pu € L?(0,T5 Hp(I)) N L>(0,T; L*(I)),
w,wy € L>(0,T; Hy (1) N H*(I)), Vi, wy € L2(0,T; Hy(I)) N L>(0,T; L*(I)),
o€ L>(0,T; L*(1)), o, € L*(0,T; L*(1)).

Proof. For the proof, the Faedo-Galerkin method will be used. Indeed, several steps are required.
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Step 1. Applying integration by parts and using boundary conditions (1.2), the weak form associated to the
continuous problem, obtained by multiplying equations (1.1) by test functions n, x € Hg(I) and £ € H} (1),
is the following:

P1 (@tta 77) + k(@w + w + lw, 779:) + C(‘pzt + wt + lwta 7790) - kol(ww - l@a 77) - Cl(wwt - Z(Pt; 77)

(ot — ool — [~ 01— 9(L0)], )nlL) =0,
p2('(/)tt7 X) + b(wauXm) + C("/’wtaXﬂc) + k(‘Pw + ¢ + lwa X) + C(@wt + 'L/)t + lwta X) = 0,

(2.2)

For convenience, we look for approximate solutions of a modified version of (2.2) in which the initial data is
zero. Let

P=¢—po—tor, h=1—o—t, B=w—wy—tw,
and choose {m}zl c C>=(I) and {ul} C C°°(I) bases for H5(I) and H{ (I), respectively. We introduce

=S atm@), v =Y dlme), o= et
=0 =0 =0

satisfying, Vn,x € V™ = span{ni}zl and V&€ € W™ = span{u,;}:il, the variational equations
P1(PEE M) + k(@h + ™ + lw™ + oz + tp1z + Yo + 11 + lwo + ltwr, 0z)

(L0 + 9o(D) — ga], — [~ 1~ 9™ (L1) = ol D)] ) n(E)

— lko(wy* + wor + twie — o™ — lpo — ltp1,m)

+ ezt + U7 + lw™ + 1o + Y1+ lwr, )

— (Wit 4+ w1y — Lo — lp1,m) =0,
p2(Vi X) + b(¥F" + Yoz + thie, Xa)

F k(@ + ™ + 1w + pog + to1e + Yo + 1P + lw + ltwr, X)

+ (W3t + Y12, Xa) + Cloft U7 +lwi™ + p10 + 91+ lwi, x) =0,
pr(wit, &) + ko(wy' — lo™ + wop + twiz — lpg — tlpr, &)

+EL(@ + 9™ + 1™ + o0 + Yo + lwo + to1e + 1 + twy, §)

+ C(wgt — o + wiz — lp1a, &)

+ ez + i + U + 1o + lwr +41,§) =0,

(2.3)

and the initial conditions ™ (-,0) = ¢™(-,0) = w™(-,0) = 0.
Substituting n by ¢, x by ¥i", £ by w* and adding the resulting variational equations, (2.3) gives

kd

2 2

5 dtllw 12+ 5 5 dtll e
+ k(poz + to12 + Yox + th1e + lwoe + ltwie, @y + 97 + 1w)")
ko d

+5&” o lQDmHQ-Fko(wOI-FtwlI—Z@Q—ltgﬂl, —l(pt )

Hw 1>+ 2 @™ + ™ + lw™ ||

th
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b

+ Cllez: + 1/)? +lw™|1* + C(@m + 1+ lwr, o 7 + lw{”)

+ IR + ¢ (e, ) + Cllwy = 10717 + C(wie — lon, oy — Ug}")
1d
+ ?g([wm(L,t) +@o(L) = g2 + [~ g1 — ™ (L, 1) — wo(L)]i) =0.

Thus,

d
&(mﬂs@?lp + p2|[7 1P + prllwi? 1P + kllof + 9™+ 1™ P + kollwt — L™ |12 + bl |2

2 ([ (L) + olD) — o]+ [~ g0 — (L 1) — ol(D)]))

+Cllis + o+ lwl? + R + Cllwz — lpp (2.4)
= — k(poz + t@12 + Yoo + 14 + lwog + ltwig, 1% + Y7 + lwi™)

— ko (woz + twiz — lpo — ltpr,wT — Lpi™) — b(vYou + th1a, ¥T)

— 1z + U1+ lwr, @ + 97" +1wf") = (Y12, Vi) — C(wie — L1, Wiy — 1p}").

DN =

Using Young’s inequality, for all non-negative constants e1,¢€9, €3, €4,€5 and €¢, we obtain from (2.4)

1d
S (mnsot 12+ pall 12 + pallwi™ |2 + Kll@™ + ™ + lw™ | + kollw™ — L™ |2 + b2
1 2 2
= ([em @)+ 9o(L) = g} + [— 1 — 9" (L,0) — wol(D)]}))
FCllem + e+ w2 + Cllml? + Cllwm — Loy 2 (2:5)

< O+ gallehn + 9 + | + Srezlwr; —MAP+€ﬂwH2
+ Ceallfs + 97+ lw|1? + Cesllviill? + Cesllwiy — Loy 1%,

where C' is a positive constant that depends on @;, iz, ¥y, Wiz, Wi, Wiz, for i =0, 1.

¢

Choosing ¢, = %, €g = o’ €3 = b

) E4=65=¢6= (2.5) leads to

(plllso 12+ p2ll® 11 + prllwi™? + Kl + 9™ + 1™ + kollwi — L™ [1* + blly |12

CL‘Q_,

1
2
([ 1)+ o) — gals + [~ g1 — 9™ (L1) — o(D)]2))
+ Sl + w2 + Sl 4+ Sl — el < C.
Thereby,
oo (DI + o2l (TP + prll (TP 4+ Rl () 47 T) 1™ (TP + oll ()
1™ (D4 T+ ([ (8 T) 4 o(E) — 92t [~ 1= 9™ (L, T) — (D))

¢ [ m m
g [ (b e+ P+ I + s = o) de < €. (2.6)
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Step 2. Differentiating (2.3) with respect to ¢ and substituting n by ¢}, x by ¥}, and £ by wj}, we get

1 d m m m m m m m m m
i&(mllwtt\lﬂpzllwttH2+p1||wtt|\2+ku%+wt w2 + Kollw™ — Ly |\2+b||¢m\|2)
+ Cllmy + i + Wi |1? + (vl + Cllwi, — L]
1d/ N -
= —g&(w (L) +@o(L) = g2] L = [~ 91— wo(L) — ¢ (L,t)]+><ptt (L,t)

- k(@lz + ¢1 + lwi, @Et + 1/};? + lwtrg) - b(wlwawﬁt) — ko (wlw - l‘)"l?w;’%t - l‘p?tl)'

Next, using Young’s inequality, we obtain

1d
5 (PR IZ + pall 12+ pr |12 + Rll + 07 + Bt 12 + Rollors — LI + bl 17
€l + i + L + gl + i, — o2

< ?(th (L,t)) + 7(<ptt (L7t)) + kdallphy, + Uiy + lwi ||2 + b53||1/’xtt||2 + kodal|wiy — lof H2 +Ch,

851
(2.7)
where C7 depends on 99,83, 04, k, 0,1, 01, 014, U1, w1, W1z, and P1,.
On the other hand, we have
m 2 m m m m m m
(7 (L,8)" < Lllpml® < el + i + Lo |2 + 677 + i) (2:8)
and
m 2 m m m m m m
(‘Ptt (L7t)) < Lllghill* < C(”‘Pztt + i+ i |1 4 IR + (lwi ||2) (2.9)
Therefore, inserting (2.8) and (2.9) into (2.7) it leads to
1d
2= (it + pall 2+ pullf2 + Kl + 037 + 1|2 + Rolls — LI + bl )
+ ¢l + Ui+ 1w 12 + g l® + Cllwgt, — lef |12 210)
051 m m m m m c m m m m m '
< T (e g o 12 2 4 g 12) + o (et + 0 o 2 + g2+ o )
+ k2l 9T+ f L 17+ b3l + Kodalwzhe — et |I” + .
However, the terms ||¢7"|| and ||w}™|| are bounded due to (2.6). Thus, (2.10) implies
1d
= (ol + pall 2+ pr 12+ Ml + 5" + L |2 4 Rolllh — L2 + bl 1)
+Clleh + i + 1w |1? + CllEl? + Cllw — Lo |12
(2.11)

C C
< (5 + K0 ) ot + i + T |2 + bl 31 + — iz
1 €dy

c co1
+ Ellwlﬁllz + ?”8021 + " + 1w |17 + kodallwit, — 1o |1* + Cs.

Then, using (2.6) and selecting d1, d2, d3, and d4 such that

c ¢ ¢ ¢!
g_(£+k62)>§, ¢ —bd3>5 and (l—Fkods>
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estimate (2.11) gives

1d
5&(1)1”@@”2+P2||¢ZLH2+P1||Wf?|\2+k\\¢ﬁ+¢§n+lw?”2+k0“w$*180?1|\2+b||¢ﬂ\|2>
+ S+ 9 + LI + SR + S, - 1o
9 Pt tt tt o 1Vatt o Wzt Pt

c c
< — il + ——lwitll? + Cs.
=6 ]l + =0 Jwiz I* + Cs

Now, integrating over [0, T], we obtain

P1 m P2 m P1 m k m m m
5“901&75 ('aT)”Q + ?”%t ('7T)||2 + ?”th ('aT)”Q + §||9%t('aT) + 1y (-,T) + lwt ('7T)||2

ko b ¢ [T
+ S B T) =l (DI + Sl G DI + 5/0 e + i + lop||*at
[ gm 2de o m lom|?dt 2.12
+ 9 o |t + D) . lwpie — Lot |l (2.12)
T
P1 P2 P1 C
< 2O + 2 (o + 2B (0l + 5 [ vl
2 2 2 81 Jo
C T 2
= ™24t + TCs.
+ 01 J, ||th I + 3

Due to (2.6), (2.12) implies that

Pl m P2\ 1m Pl m ki om m m
Plor (D)2 4+ S (DI + B (DI + 5 I T) 4+ 47 () + Lo (L P

ko, b ¢ "
+ P ~ P DI+ AT + 5 [ e + 05 + 1oy ot
C r m (|2 gl r m mi|2
+ 5 . [t |7t + b . llwpie — Lo [|~dt (2.13)
T
P1 P2 P1 c
< i GO+ S lef (O + S llwiz (-5 0)]1% + */ [REAA TR
2 2 2 €d1 Jo
T
c 9 2C
— Edt + — +TC5.
+ A [zt [I7dt + ¢ +1C3

:=Cy

Now, let us prove that || (-, 0)]], [|[¥5 (-, 0)|l, and ||wi (-, 0)|| are bounded. Taking ¢t = 0 in (2.3), substituting
n by ¢ (-,0) and integrating by parts, we obtain

pulleli (L 0)I* < Kllpoze + vox + lwos|lllefi (- 0)I + Cllraa + ¥1o + lwra|l @7 (-, O
+ thollwoz — lpollllpi (-, O)I + CHllwie — loulllpz (-, 0)]]- (2.14)

Next, using the following Young inequality
ab < Cya® ++b%, ¥y >0, (2.15)
we get, for v1, 72, 73, and 4 small enough,

pllets (5 0)1 < kCy ll@oze + Yo + lwoell + CCo @100 + W1z + lwrs|
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+ ko Cs [[wor — Lol + CLC, [[wie = Lpn |- (2.16)

Therefore, ||©7?(-,0)| is bounded because g, @1, %0, V1, wo,ws € H?(I). By repeating the same arguments,
we deduce that ||¢77(-,0)| and ||wiZ (-, 0)|| are bounded.
Consequently, applying Gronwall’s inequality to (2.13) it results that

Pl m P2 m Pl m koo m m

P it T2 + 22 g ) + L ( T+ S I T) 4 67 () + Lo ()
ko m 2 b m 2 C r m m m| 2

||W ( ) — Ly} <7T)|| + §||¢wt('aT>H + 5 o H@ztt + Y + lwyy || dt

C d ! ™o o™ 12dE <
ertt” tJF ||Wztt* e ||7dt < Cs.

From the above estimates and using (2.1), there exist subsequences denoted also by {¢™}, {¢™}, and {w™}
such that:

e A G, e By, Wt BT, in L(0,T; HE(D)),
By, Y=y, WG, in L2(0,T; Hi(I)),

e AG, Y A W™ ARG in L%(0,T; Hi(1)),

Of S B, UE S, wi SO in L%(0,T5L3(D)),
PTGy, UGy, Wi =Dy i L2(0,T; HL (D)),

§[<Pm([/vt) +@o(L) = g2] = =[B(L,t) +@o(L) —g2] in  L>®(0,7),

™ | =

“[— 91— ¢™(Lt) = po(L)] =

€ [— g1 = @(L,t) —wo(L)] in  L>(0,T).

™ | =

Moreover, the fact that {¢™(L,t)} and {¢}"(L,t)} are bounded implies that
©™(L,t) — @(L,t) in HY0,T).
Therefore, the compactness of H(0,T) C L?(0,T) leads to
"(L,t) —  @(L,t) in L*0,T).

Next, we have

| [0+ eo(L) = ga], = [B(L8) +00(L) — 92] | 2L2(0,T)

< ||<pm(L7t) - @(Lvt)HL%O,T) :
Consequently,
[¢™(L,t) + ¢o(L) — 92]+ — [B(L,t) + @o(L) — 92]+ in  L*(0,7).
Similarly, we show that
[— g1 =™ (L, t) —po(L)], — [— g1 = B(L,t) —o(L)] in L*(0, 7).

Taking the limit in (2.3) as m — 400 and reversing the change of variables, we deduce that ¢, and w
satisfy variational problem (2.2). By standard arguments, the existence result follows.

Step 3. In this step, we shall prove the uniqueness of the solution. So, let us suppose that (¢1,%1,w1) and
(2,12, ws) are two solutions to equations (1.1) and let

P=p1—p2, Y=Y -2, w=w;—ws.
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Thus, from the weak formulation (2.2) we get

1d
535 (Pl + pallgell® + pallwell? + Kllpa + v + Lwll® + kollws — Ll + bllva 1)
+ Cllpat + e + lwel® + Cllwze = lpell* + Cllvbael®
) (2.17)
+ ([ + 0o = ], = [~ 91— @1(L) = po(D)], ) r(Ls1)
1
- g([cpz(ht) +o(L) = g2] . + [ — 91— p2(L,t) — wo(L)]+>s0t(L,t) =0.
Next, let us estimate the two last term Iy — I in (2.17). First, note that
L L
p1(L,t) = / v1z(t,x)de and oL, t) = / Yoz (t, x)dz.
0 0
Applying the Young inequality, for all § > 0, we get
1
g([w(L,t) +wo(L) = g2], — [~ 91 —pa(L,t) — WO(L)]+><Pt(L7t)
1
— = ([rL.t) +20(L) = 2], + [~ 91— e2(L,t) = ¢o(L)], ) or(Li1)
)
< gl L) (2.18)
1
+ 2T{_:([tpl(L,t) +9o(L) = g2, — [ 91— p1(Lt) — wo(L)]
2
— [ea(L,t) + 9o(D) = g2] . + [~ o1 = ¢2(Lt) = po(L)], ) -
On the other hand, we have
‘[Wl(L’t) + @o(L) — 92}+ — [p2(L,t) + ¢o(L) — 92]+‘ < |e1(L,t) — a(L, 1) (2.19)
and
| = [~ = e1(L,t) = (D)), + [ 91 = p2(LH) = wo(L)] | < [e1(L,8) = pa(L, 1) (2.20)
Hence, using (2.19) and (2.20) in (2.18), we obtain
1
g([@l(L»t) +wo(L) —g2] L — [~ g1 — (L) — SDO(L)L)@t(Lat)
1
— = ([eaLst) +20(L) = 2], + [~ 91— e2(L,8) = ¢0(L)], ) er(Ly1) (2:21)

oL 2L
< — 24 = 2
< ol + g
Therefore, using (2.21) and (2.1), (2.17) leads to

1d
23 (plllsat||2 + pal[tel? + prllwell? + Ellz + ¢ + 1|2 + kollws — ]2 + b||1/)z\|2)
+C||‘Pzt + Y + lwt||2 + Cwat - Z‘PtH2 + <H¢xt||2

< OLC
- 2

2LC
(et + e+ twnll? + lwar = Lol + Intoell?) + 2= (e + 9 + W12 + e = Ul + Il 2)-

(2.22)
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2
Now, selecting § = LLCC’ (2.22) gives
1d 2 2 2 2 2 2
5 < (palloul® 4 ol + prllwel + Kl 4 + 1?4 Rollws — Lol + bl 2
(2.23)
< Cu(prllel® + o2l + el + Kl + 9+ 12 + hollws — Lol]2 + bl |2).
Thus, by the Gronwall inequality, we get
pilled® + p2llvell? + prllwel? + Ell s + 9 + 1wl + Kollws — lo]|* + bl|vz]|* = 0
x 0 T ® T .
Thereby, due to (2.1), we have
lezl? = llwall* = [¢]* = 0
and so
Hence, the uniqueness is established. O

3. EXPONENTIAL STABILITY
The exponential stability result is summarized in the following theorem.

Theorem 3.1. There exist two positive constants Cy and 1 such that the energy of the solution of (1.1)—(1.3)
satisfies
E(t) < C1E(0)e™™ Vit >0.

Proof. Let

L
L :/ (Pl¢t<ﬂ+92¢t¢+p1wtw)dx’
0
¢ ¢ ¢
Iy = S llpa + e + lwrl|? + Sllws — o]® + 5 e

and consider the functional £ := BE(t) + I, + I, for a suitable choice of 3.
First, using the Poincaré inequality and the estimate (2.1), we get

L] < Ki&(t), Vt>0,
where K7 is a positive constant that depends on p1, p2, p1,(, C. So, for § sufficiently large, we have
KE(t) < Z(t) < K3&E(t), (3.1)
where Ky and K3 are positive constants. Moreover, using the three equations of (1.1) we have

d
11 = pilleel* + pallvel® + prllwell? = Kllos + ¢ + lw]|* = kollwe — lol* = bl

dt
52 (e Ll — ot — Tl — Ial) = 2 ([9(E,0) — 2], — [~ 91— 0(L, )], )L ).

2 dt
(3.2)
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Now, let us estimate the last term in (3.2). In fact, we have

ottt -], [ 1 pt0], et
< ‘% [o(L,1) = go]  (#(L,t) = g2) + é[ — 91 = (L] (91 + (L, 1)) (3:3)
< —é([(p(L,t) - gz]j_ + -0 - ‘P(Lat)ﬁ.)'

Therefore, using (3.3) in (3.2) we obtain

d
— 11 < pallel® + pallvel® + pallwell® = Klls + 0+ 1w]|* = Kollwe — Ip]|* = bllv|?

dt
d 1
o = U bl = s = 1 — 1) = L ([el2.) - ] + [ 01 - (L8]

d ¢ ¢ ¢
(4 s 0+ Wl + Sl = 1 + 21l?) < pallenl® + pallgall® + pallnl® — Bllpe + v + o]

1 2
kollw, — Lpl[® = bllwa I = < ([(L.1) — g2
2
+ [ 91— o(L,0)]}). (3.4)
Next, thanks to (1.4) and (3.4), we get
d
T2 < B(= Clivar + o+ larll* = Cllvae|” = Cllwne = lipe?)
+p1llgell® + p2llvell® + prllwel® = kllow + 9 + Wl = kollws — lp||?
1 2 2
—blval? = < ([p(Lt) = o]} + [— 1 —e(L,0)]7).
Now, due to (2.1) and the Poincaré inequality, we have
d
72 < B(= Celled” = Cellll* = Ceflwr]?)
+pillee? + p2llel® + prllwel” = Ellgs + 9 + lw]|* — kollwe — I
1 2 2
2
= bllval? = = ([t 1) = ga]} + [ 91 — et D)),
Thus,
d
7 Z® < (o1 = B lnl® + (p2 = B Inl* + (o1 — BEe)[lw]|?)
1 2 2
= kllpa + 1 + ]2 = kollws — il = bl1vll® = < ([p(L8) = 2] + [— 1 = 0(L,8)]7).

Hence, for g large enough, it follows that

d
— < - .
dt.i”(t) < —c&(t)
Thus, due to (3.1), this leads to
d c
- <
dti’(t) < st(t)

and the proof is completed. (Il
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4. NUMERICAL APPROXIMATION

In this section, we will provide the numerical analysis of the problem described and studied, from a mathe-
matical point of view, in the previous section.

For the spatial approximation of problem (2.2), we assume that the interval [0, L] is divided into M subinter-
valsag =0 < a1 <...<ap = L oflength h = a;y1 —a; = L/M. Then, in order to approximate the variational
spaces H5(I) and HE(I), we construct the finite dimensional spaces S% c HL(I) and S C H(I) given by

Sk ={n" e C(0,L)); nﬁawmm € Pi([ai,ai1]) i=0,...,M =1, 7"(0) =0}, (4.1)
Sy ={¢" e C([0, L)) ; fﬁ | € Pi(lai,ai11]) i=0,...,M —1, &"(0)=¢"(L) =0}, (4.2)

aq,ai41

where P ([a;, a;11]) represents the space of polynomials of degree less or equal to 1 in the subinterval [a;, a;y1];
i.e. both finite element spaces are composed of continuous and piecewise affine functions. Here, A > 0 denotes
the spatial discretization parameter. Moreover, we assume that the discrete initial conditions, denoted by ¢9,
4,52, 1/)2, 12}2, wg and &127 are given by

@2:Pg§007 ngpg‘gplv 1/’2:}%7//0’ QZ)?L:Pgﬂ}la L()?L:Péle, &?LZP(;lwl (43)

Here, P2 and P} are the classical finite element interpolation operators over S% and S¥, respectively (see [16]).
In order to provide the time discretization of problem (2.2), we consider a uniform partition of the time
interval [0, T], denoted by 0 =tg < t; < --- < ty = T, with constant step size At = T'/N and nodes ¢, = n At
for n=10,1,...,N. For a continuous function z(t), we use the notation 2" = z(t,,) and Z = z.
Therefore, using the backward Euler scheme in time, the fully discrete approximation of problem (2.2) is to
find @Z,Q/NJZ € Sg and Wy € Sk such that, for n =1,..., N and for all n,, x € Sg and &, € St

PL / ~n ~n— n n n ~n n ~n n n
7(90h — Pp 1777h) + k((phw + wh + lwhanhw) + C(@hz + ’(/Jh + lwha th) - kol(whz - l‘Phﬂ?h)

At

i@, — 18 m) + ~ ([eh () — ], [~ o~ GR(LD], (D) =0,
R = Xn) + (Wi Xha) + Sy Xna) + k(P + Ui+ L], xn) + C(Bry + VR + 107, Xn) =0,
P (@ 0 8) + Ro(fy — I En) + C(@H — 187 Ene) + KLl + 0 + 1} 60)

QUG +Tp + 157, 60) = O,

(4.4)
Where n n—1 n n—1 n n—1
gr—Fh=Ph g Yh Y Wh —Wh (4.5)
At T At
are approximations to @" = p4(t,,), P =y (t,) and @™ = w; (tn), respectively.
The next result is a discrete version of the energy decay property (1.4) satisfied by the continuous solution.

Theorem 4.1. Let the discrete energy be given by

1 _ B ~
& =73 (p1(||90h||2 @RI + p2ll Rl + bllwial* + kllohs +p + Wi + kollwhy — loh]?

2
1
+2([hE0 - 922 + [~ 01 - R (L.0)%)):
Then, the decay property
e —gpt <0
At -

holds forn=1,2,..., N.
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Proof. Taking n, = @7, xn = ¥} and &, = OF, it results that

(e - I I - 1 )+ lh + R + LR, 1)
1 n n ~n
+ < ([er @) =g, — [ 91— i (L1)], ) BR(T) =0, (4.6)

o (Hwh IR IR = M) + R + i+ L, 97

g (10, = W 2+ IR = 19 0) + GO + C(BR + 07 + 135, 0) =0, (&)

and
o (1l = G + gl — o) + Rir + o3 + o G5
+ QUG + O3 + 1R OF) + Koy, — Lo, Bfty) + (@, — 187, @) = 0. (4.8)

Thus, summing equations (4.6)—(4.8) and observing that

B + U+ Ll @R + 07+ 105) > s (ke + 08+ IR 17 — lghs + 0+ ™)
and that
ko )
Folwity — ks @ity = 165) = o0 (e = 1R = i = ™)),
we find
2 || zn—12 2 _ y|~n—1 2 Tn—12 2 n—12
L (IGR12 = =12 + hopl® — &y~ 112) + 2At(nwhn 1977407) + e (Il = sz 17)
R+ g (I + 07+ R — g + 9+ ™)
ko n n — — ~n n ~n ~n ~
+ 5z (e = 60217 = s = Uon ™12 + B + 5 + LRI + CllGR, — LRI

(e 0, ~ [~ 01— ek (L.0)], ) Bh(D) <0
Now, we note that
L(ehz )~ o], — [ 01 — oL, 0], )BR(E)

- é([@Z(L,t) 9], —[-0n- wZ(L,t)]Jr) (soZ(L) Asf;; 1(L>)

= L ([0 - ] D + 92— 52— e (D)

_ i [— 91— (L)), (Ph(L) + 91— g1 — @Z‘l(L)))

= ([T — 0o, — [Gh(D) ~ 0a] (D)~ )

+$([791*¢Z(L,t)]j_*[*91*<,02(L)L_( — 1@)))
1

=N eAt (BOh(L t) - ] = [en(D) - 92]+ [¢271(L) - 92]+)
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1 SO ) .
* nggl —eh(L)], — [ —eh(D)], [ -9 — ¢ 1(L)]+>
1 n 2 n— 2
2 3R (M(L) —go], — [en ML) - 92]+)
1 N 9 o )
+25At([7gliwh(L)]+*[ — Ph 1(L)]+>,

which proves the result. O

Now, we obtain some a priori error estimates on the numerical errors @™ — @, Y™ — Y7, @™ —wy, "™ — ¢},
P —p and w" — w)'. We have the following.

Theorem 4.2. Let the assumptions of Theorem 2.2 hold. If we denote by (o™, @™, ™, ﬁ”,w”,@") the solution

to problem (2.2) at time t,, and by (@Z,@Z,’L/JZ,’LZ)Z7WZ,(DZ) the solution to problem (4.4), then we have the
following error estimates

~ ~n 2 7 2 ~ ~ 2 2 2 2
Jmax L6 — BRI+ 167 — BRI 16" - GRIP + 0™ = Rl o,z + 10" = R 0.y + 1o — R 0.0y }

N
R T O e 7T\ 2 g L (i i1 2
soaty (I¢l - (¢ - 7) P +16E - 55 (¥ =) P16 - 55 (=971
j=1
5 i |2 2 S _ |2 g =
& = m e 0,0) + 17 = x3 710,y + 1@ —§h||H1(0,L)+||<Pt—THHl(o,L)
Y B i it
i w — 2 i W — W 2 ~n n 2
+ ¥ = .0y +lley = THHl(O,L)) +00§H;3SXN||§0 —npl
c N-1
~j+1 1 77+1 1 j ~j+1 j+1 2
DN Ll G A | R A (A N e e e R AR T

j=1

n n2 ~n n2 ~012 7012 ~02
+Co£?§3v“w x|l +00§H;L82<Nllw Enll +C<Hs01 Srll” + 11 — Yall™ + llwr — @pll
0,2 02 02
+llwo — @Rl 0,0) + o — Al (0.0 + o — whllFrs o,z

for all np, = {nh}] 0y Xh = {Xh} —o C S B> and &, = {fh —o C So

Proof. Subtracting variational equations (2.2) at time ¢,, for discrete test functions n = n,, x = xn and £ =&,
and the corresponding discrete variational equations (4.4) we find, for all 5y, xn € Sk, &, € SB,

pu (= g (PR = B o)+ (02 =l 0" = R+ 10 = ) na) + € (48 - B+ 97— 0
+ L@ = @F) s 1ha) — kol Wy — why = L(@" = @5) 1) = CL (@ — Dpy — L(@" — B3) 1 7n)
+2 (")~ galy — [~ 91— o"(L0)], — [Gh(L1) — ga],, + [~ g — $R (L0, ) ma(L) =0,

pa (9 = 7 (98 = 927) oxn ) 4602 — U cna) + € (32 = T
k(= Pl 0" = B U™ = R, xn) + € (B = B + 9" = B L@ = ) ) = O,

o (81 = 2 (OR — 87 )+ ho o — e — (6" = 1) ) 4 € (B2 = B — 15" = 1) )

() = e+ 0" =R 1" = i) €0) + L (B = i + 07—+ L@ —3F) ) = O,
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and therefore,

1
pr (= 3 (PR = B0 8" = 90) +E (62— pha 49" = +1(" — ) 82— G1)
+ (60 = Bre + 0" = B HL@" - BR) 62— P
— kol (W = ity = (9" = @) 8" — Bh) = (1 (@0 — DRty — (3" = B1) 6" — )
1
2 ([ @ =g, — [ = (L], = [ = 2], + [— 91— R (L0, ) (2" = #0) (1)
1
=p1(@<tn>—m(~” D B RIS ARCEE oS
¢ (B0 = B + 97 =GR+ L@ - AR, ("~ m), )
—ko( — Wiy — (" =), @™ — ) = (L (@ — @, —L(E" —&1), & — )
([ )= g2, — g1 =" (L)), — [ph(Lit) —g2] L + [~ 91— @Z(L,t)h)(@" —1n)(L),
o2 (w - = (w:; — ) o 1/?:;) b (0 = i, 02 — i) + € (= D, 0 — )
+k (o sohxw“ w2+l<w"—wz>,z/?"—zz?z)+<(¢;;—sbzﬁz/?“—z/?%l(ov—&zmzin—7;)
= p2 <1/~Jin A7 (% ) ¢"—Xh)+b(1/}§—¢ﬁm (@"—Xh)x)JrC(l/;g—ﬁm (W—Xh)i)
k(0 = e 0" = R LW =) B = xn) +C (B = B+ O — IR HL@ =000 )
1
o (88 = a7 @R = 8071) " =R ) + b — e — (6" = o). — 1)
G @ = Ry — (@™ = BR) @ — Gft) + RL(PE = R+ 0" = U+ L (" = wf) &7 — )
+<l( — G U — PR (@ - @F), n“*ﬁ)
1
o (88 = 7 (@R = G171).0" = )+ ho o — e — 16" = ). ("~ )2)
@ = Ry~ (P = F1) (@7 — €0),) + KL($% = @y + U7 — U + 10" — w}), 0" — &)
(0 = B+ 0" — U H L@~ BR) " 6 ).

Now, we observe that

(pr- @ -ar e = o) 2 (@ - 5, (0 =970 = 28 + o (19" = 1= 1" = 411,
n 1 n Tn—1 n n n 1 n Tn—1 n n 1 n n Tn—1 Tn—1
(9 - g (- dn) 0m= ) 2 (90— 5 (9= 90) o=t ) o+ (16— Gl - = ).
~n 1 ~n ~n—1 ~n ~n ~n 1 ~n ~n—1 ~n ~ 1 ~n—1 ~n—1
(o0 - g @ -ap .o —ap) 2 (o - 5 6" -an).0n =) + 5 (107 = 3 - 1o = a1)

n—1
(62 = har 82 = 9) 2 (9 = ot = B ) o (1 - Rl = ™ - B P),

~ ~ n _ ,n—1 1
(v = Ve, 02 = 1) 2 (w: — Ul U "”Aﬁf’) o (12 = il = ™ = 0 1),
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n n  ~n ~n n n n wziwgil 1 2
(wx — Whey Wy _wh:c) 2 Wy = Whas Wyt — At + 3 At (”w _wth _Hw _whm ” )
n n—1
n n o =n ~n n n n Y =@ n n|2 n—1 n—1)2
(" = ot = o) 2 (9" = ot = S ) 4 (e = P = ™ = 27 P),
n n Jn n n n o,n wn_,l/)nfl 1 n n n— n—
(o =i =0t 2 (07 - wioop = ) g (9" = R = o =)

(wn — W om — d«)n) > (W — Wl Wt — W' — W + i (”wn _ wn”? _ ”wnfl _ wn71H2)
h>» h) = hy%t At At h h )

1

(" @) =g, = [~ 91— " (L], — [Ph(EL,8) = g2] , + [ 91 = ¢h(L:D) )n<L>]

< C (¢ = el + Il o)
and summing up the previous three equations, using Young’s inequality (2.15) several times and Cauchy—Schwarz
inequality we find that, for all n;,, x5 € S%, &, € Sk,

1 ~n ~ ~n— ~n— 1 n n Tn— n
= (lg" = &hll - "™ - & 1||)+—(||w R el L)

+§(||w"—cvzu—||w” - ) + (||@;L—sozx||2—||so; - e 'I?)
o (e 0~ s — ||) (e = w2 — ™ )

- it (o™ = GBI — o™~ = o4 1P) + 5 (19" = R = ot =9 7?)
5 (

o = @R 2 = o~ = wp )
=n 1 =n ~n 1 2 1 n Tn—1 2
<ollgr— 5 @ =& IP+ 19 - 55 (¥ =9 ) |

~n 1 ~n ~n— ~n
+lef = 57 @ =" P+ 11" = mallEr o,

n n—1
n ~n n Pr — Pz
+ 19" = xnllFri 0,0y + 18" = Enllzro.ry + Ik — Ar s
e n Wi —wp!
+ [l — 11 + Jwp; — N 12
1 -1 sn—1\\ xn e T
(g @ - = - ) 9t ) et - £

1 n Tn—1 n ~n71)) n n ¢" - Wl_l 2
+(At (0 = o = (P =) 0" = xn ) + ey = |
1 ~n ~n— ~n ~n— ~n n Wt —wn Tt
—|—<At(w —o" = (op —@p )@ —£h>—|—||wt —At||2>.
Multiplying the above estimates by At and summing up to n, it follows that, for all n, = {nfl}?zo, Xh =
{xn}Yi=o € Sk» & ={&}=0 C S0
18" — @il + 19" = Dill + 0™ = @Rl + ™ = @hllFr o,y + 19" = Vil .0y + lw™ — Wil o,r)

n y 1 B 1 9 1 S5 Ti-1 2 ~j 1
gCAt;(“ot N (@7 — @)1+ 9] - t(wj P )H + |&f

(@ - &Y |2

At
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o o o R
+ g7 - 77%”%11(0,@ + v’ — Xi”%}l(o,L) + [|&” — fi”%{l(o,m + et = TH?P(O,L)

Coqpd — il ol — it 1 /.. . i i1 » .
e = S + el = o + (5 (P - = (#h-¢")) & -

1/~ o~ o Ny A 1 /. . i e
(g (09 () 0 )+ (g o @) o -a) )
+C (J6° = Gl + 10t = G+ llw® = GBI+ 62 = PRl + I8 = 0l + o = wh]?)

Taking into account that

n n

1 . L w i i . s w e i iy .

At (At (¢ - ¢ - (¢ - 1)),90]—772): (¢ -d - (#-d"). ¢ —nf)
j=1 =

Jj=1

n—1

= (3" =B )+ (P = en gt =) + 20 (& - Ehd — = (P )

j=1
where we omit the similar estimates in 1) and @ for the sake of simplicity in the writing, using a discrete version

of Gronwall’s inequality, the result follows. |

The error estimates provided in the above theorem can be used to obtain the convergence order of the approx-
imations introduced in problem (4.4). For instance, under suitable regularity conditions, the linear convergence
is deduced and summarized in the following.

Corollary 4.3. If we assume the following additional regularity conditions:
. ¥, w € CH0, T HA(1)) 0 HP(0,T; L*(1)) N H*(0,T5 H' (1),

then there exists a positive constant C > 0, independent of discretization parameters h and At, such that

n = no_In ~n _ ~n n__.n
ohax, {H‘P Enll + 119" = il + 0™ — opll + le™ = hlla(o,L)

Hm = 6plm o, + 1w = Rl } < Ch+ At).

The proof of the above corollary is shown using classical results on the approximation by finite elements (see
[16]) and the estimates like (see [28]),

N-1

C L .

A7 Z 1@7 =, — (@ = HIIP < Oh2||‘ﬂ||2HZ(0,T;H1(o,L))~
=1

5. NUMERICAL EXPERIMENTS

In this section we present the procedure used to find the numerical solution and the results of some numerical
simulations.

To solve the nonlinear problem (4.4) we use the iterative process:

P2 1;”;] _ gn—1 + b n,j + T, + k n,j—1 + n,j +l n,j—1

At \Vn oo Ui s ha ) + C{Un3 s ha Pre T URT IR
(B O E ) =0,

%It (‘D;Ll’] - wzilv £h> + kO (wirz;cj - l‘pz’jilv ghm) + Yo (LDZ;CJ - l@Z’j;l? ghx> + kl ((nggil + wZ,J + lwz, fh)
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ol (G O 10 ) =0,
B (7 =) k(T + 1 G ) o (B3 T + 10 )
— kol (wZ;j —lgp?, Ch) — Yol (@Z’zj — 1P, Ch) +g (cpZ’j_l, cp”’j) (L) =0,

where
- L) = g2) it @ L) 2 g,
9 (wZ’vaZ’j) (L)=190 ‘ it — g1 <P (1) < ga,
Hor+ep? (L) if @p? H(L) < —gn,

and, for j =1,2,...,
vl =T A Wi = wp T A, o = T+ At

Hence, three uncoupled linear systems of algebraic equations, which have a unique solution, are solved. First,

we compute &Z’j, then @Z’j and finally @;,".

. . . ~“n.0 ~ ~n.0 o — - — .
The iterations are started with ¢, = ¢} L ot =y gm0 = & ! and a tolerance of 1077 is used

to stop the process. In all the simulations, we choose a circular beam with radius of curvature R = 1 with
g1 =0.01, g0 =0.02, e =0.001, py =1, p2o =2, k=1, kg=2,b=1and ( =0.1.

5.1. Experiment 1: long time evolution

In this experiment, the length of the beam is L = 0.57 and the discretization parameters are h = 0.57/100
and At = 10~%. The initial conditions are

vo(x) = q1 ((256/77)2 - 433/71'), 1(x) = 20z(x — 0.5m)2,
Yo =11 =wy =0, w =a>—0.5rz?

and we note that, at initial time, the beam is in contact with the lower obstacle.

The long time evolution of ¥ and ¢ at contact point & = L is presented in Figure 2. An oscillatory behavior
is observed with the beam getting in contact with both stops during some time interval. As the system evolves,
contact is lost. The spatial position of the beam, obtained taking into account the longitudinal and transverse
displacements, is shown in Figure 3 where we see that, at time ¢ = 80, the configuration is close to the reference
configuration, that is, a quarter circle. The results at point x = 0.5L are displayed in Figure 4.

In Figure 5 the discrete energy is seen and exponential decay rate seems to be achieved after time ¢ = 10.

5.2. Experiment 2: numerical convergence

Next, we examine numerically the error estimate for a beam with length L = 1 considering the academic
problem:

P10 — k(e + 1w+ V) s — ((@z 4+ lw + )2y — kol(we — lp) — Cl(wy — 1)y = f1,
p2st — bbew — (oot + k(pz + 9 + lw) + (0o + lw + ) = fo,

prwe — ko(we —19)e — C(wa — 1)zt + kl(@z + ¢ + lw) + (e + 1 + lw)e = f3,
o =k(ps +lw+ ) + ((pe +lw+ ) + fa,

with exact solution:

‘P(mvt) = _92('752 - 233)752/\/57
(z,t) = 0.5t%(0.52% — ),
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FI1GURE 3. The beam’s configuration when time increases. The traced line represents the ref-
erence configuration.
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FIGURE 4. The evolution in time of ¢, 1) and w at x = 0.5L = 0.257.
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TABLE 1. Computed errors when ¢, = 1.5.

M At Error

40 2.50 x 1073 4.922 x 1072
80 1.25 x 1073 2.498 x 1072
160  6.25 x 107% 1.262 x 1072
320 3.125x107*  6.349 x 1073
640  1.5625 x 107* 3.185 x 1073
1280 7.8125 x 107°  1.595 x 1073

w(z,t) = txz(x — 1)2,

o(a,1) = —loa(/V3) ~ 1],

and functions f1, fa, f3, fa calculated from the given solution. Note that, when ¢t > /2, the beam is in contact
with the upper obstacle.
The computed errors given by

16" = @nll + 119" —dpll + o™ =@l +lle™ = ehllaro.n) + 19" = hllaro.L) + W —willao,r)-

at t, = 1.5 are displayed in Table 1. We observe that the errors decrease by a factor of approximately 2 when

the

discretization parameters are halved.
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