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ANALYSIS OF A CONTACT PROBLEM FOR A VISCOELASTIC BRESSE
SYSTEM

Maria Inês M. Copetti1,*, Toufic EL Arwadi2, Jose R. Fernández3,
Maria Grazia Naso4 and Wael Youssef5

Abstract. In this paper, we consider a contact problem between a viscoelastic Bresse beam and a
deformable obstacle. The well-known normal compliance contact condition is used to model the con-
tact. The existence of a unique solution to the continuous problem is proved using the Faedo-Galerkin
method. An exponential decay property is also obtained defining an adequate Liapunov function. Then,
using the finite element method and the implicit Euler scheme, a finite element approximation is in-
troduced. A discrete stability property and a priori error estimates are proved. Finally, some numer-
ical experiments are performed to demonstrate the decay of the discrete energy and the numerical
convergence.
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1. Introduction

The last decades have witnessed a rapid development in high technologies using beams and a growing attention
has been paid to the mathematical theory of contact mechanics (see, e.g., [4, 20, 26]). This has prompted great
interest and several results have been published. In the wide literature on this field, most of papers deal with
Euler–Bernoulli models, some of them analyze Timoshenko systems, and only few of them are devoted to Bresse
ones.

It was proved in [7,32] that the beam (plate) model of Timoshenko type has a wider range of applicability than
Euler–Bernoulli model. In particular, the Timoshenko beam theory is widely used to describe the dynamics of a
beam when the transverse shear strain is significant. Furthermore, if the longitudinal displacement is considered,
the model becomes the Bresse system [14]. Conversely, the Euler–Bernoulli theory does not take into account
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such effects: the limitations of the Kirchhoff and Euler–Bernoulli theories are well known, even if rotary inertia
is included, and beam models involving improved theories need to be considered.

This paper focuses on phenomena related to contacts in materials of Bresse type. When the obstacles are
rigid, the contact assumption can be modeled by the classical Signorini non-penetration condition (see, e.g.,
[21, 29]), which also contributes a strong non-linearity to the problem.

In particular, here we consider a circular beam with radius of curvature 𝑅 whose reference configuration is
the arc with length 𝐿. Let 𝑥 ∈ [0, 𝐿] denote the length along the undeformed beam. The equations governing
the motion of the beam are given by a Bresse system of this following type

𝜌1𝜙𝑡𝑡 − 𝑘(𝜙𝑥 + 𝑙𝜔 + 𝜓)𝑥 − 𝜁(𝜙𝑥 + 𝑙𝜔 + 𝜓)𝑥𝑡 − 𝑘0𝑙(𝜔𝑥 − 𝑙𝜙)− 𝜁𝑙(𝜔𝑥 − 𝑙𝜙)𝑡 = 0 in (0, 𝐿)× (0,∞),

𝜌2𝜓𝑡𝑡 − 𝑏𝜓𝑥𝑥 − 𝜁𝜓𝑥𝑥𝑡 + 𝑘(𝜙𝑥 + 𝜓 + 𝑙𝜔) + 𝜁(𝜙𝑥 + 𝑙𝜔 + 𝜓)𝑡 = 0 in (0, 𝐿)× (0,∞),

𝜌1𝜔𝑡𝑡 − 𝑘0(𝜔𝑥 − 𝑙𝜙)𝑥 − 𝜁(𝜔𝑥 − 𝑙𝜙)𝑥𝑡 + 𝑘𝑙(𝜙𝑥 + 𝜓 + 𝑙𝜔) + 𝜁𝑙(𝜙𝑥 + 𝜓 + 𝑙𝜔)𝑡 = 0 in (0, 𝐿)× (0,∞),

⎫⎪⎬⎪⎭(1.1)

where 𝜙 and 𝜔 are the transverse and longitudinal displacements, respectively, and 𝜓 is the rotation angle of the
filament. Here 𝜌1, 𝜌2, 𝑘, 𝑘0 and 𝑏 are positive constants characterizing physical properties, 𝜁 > 0 is a viscosity
coefficient and 𝑙 = 1/𝑅.

We suppose that the beam is clamped at its left end 𝑥 = 0 and free to move at the end 𝑥 = 𝐿, only in the
transverse direction, where two flexible obstacles are located at distances 𝑔1 > 0 and 𝑔2 > 0 with gap 𝑔 = 𝑔1 +𝑔2
possibly asymmetrical as in Figure 1. Thus, the boundary conditions are

𝜙(0, 𝑡) = 𝜓(0, 𝑡) = 𝜔(0, 𝑡) = 0,

𝑏𝜓𝑥(𝐿, 𝑡) + 𝜁𝜓𝑥𝑡(𝐿, 𝑡) = 0,

𝜔(𝐿, 𝑡) = 0,

𝜎(𝐿, 𝑡) = −1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝜙(𝐿, 𝑡)− 𝑔1

]︀
+

)︁
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1.2)

where 𝜎(𝑥, 𝑡) = 𝑘(𝜙𝑥 + 𝑙𝜔+𝜓) + 𝜁(𝜙𝑥 + 𝑙𝑤+𝜓)𝑡,
[︀
𝑓
]︀
+

= max{𝑓, 0}, and 1/𝜀 > 0 represents the rigidity of the
obstacles.

The equations are also supplemented by initial conditions:

𝜔(·, 0) = 𝜔0, 𝜔𝑡(·, 0) = 𝜔1, 𝜙(·, 0) = 𝜙0 on (0, 𝐿),

𝜙𝑡(·, 0) = 𝜙1, 𝜓(·, 0) = 𝜓0, 𝜓𝑡(·, 0) = 𝜓1 on (0, 𝐿).

}︃
(1.3)

According to the last boundary condition, it may occur that 𝜙(𝐿, 𝑡) > 𝑔2 or 𝜙(𝐿, 𝑡) < −𝑔1. When 𝜀→ 0 the
obstacles become rigid and −𝑔1 ≤ 𝜙(𝐿, 𝑡) ≤ 𝑔2 modeling a part of the Signorini contact condition. Assuming
(1.2)4 we are considering a normal compliance condition (see, e.g., [31]) as a regularization of the Signorini
contact condition. Actually, we relax the non-penetration condition by supposing for instance that the stops at
the right end of the system are flexible.

The energy of the system (1.1)–(1.3) is given by

ℰ(𝑡) =
1
2

∫︁ 𝐿

0

(︁
𝜌1|𝜙𝑡|2 + 𝜌2|𝜓𝑡|2 + 𝜌1|𝜔𝑡|2 + 𝑏|𝜓𝑥|2 + 𝑘|𝜙𝑥 + 𝜓 + 𝑙𝜔|2

+ 𝑘0|𝜔𝑥 − 𝑙𝜙|2 +
1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀2
+

)︁)︂
d𝑥

and we note that this energy is decreasing, that is,

d
d𝑡
ℰ(𝑡) = −

∫︁ 𝐿

0

(︀
𝜁|(𝜙𝑥 + 𝜓 + 𝑙𝜔)𝑡|2 + 𝜁|𝜓𝑥𝑡|2 + 𝜁|𝜔𝑥𝑡 − 𝑙𝜙𝑡|2

)︀
d𝑥 ≤ 0. (1.4)
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Figure 1. The circular arch and the joint with clearance 𝑔 = 𝑔1 + 𝑔2.

There is a large literature on the modeling, well-posedness and longtime behavior of systems in contact (see,
e.g., [22, 27] and references therein). Applications of unilateral multibody dynamics have been analyzed in,
e.g., [36, 38]. A contact problem for a nonlinear thermoviscoelastic Timoshenko beam model was investigated
theoretically and numerically by Bernardi and Copetti [8].

A first approach of research in such a context is the mathematical formulation of the contact models leading to
PDE systems that are worth analyzing also regarding the existence, uniqueness, and regularity of the solutions
(see, e.g., [3, 30,31]), or their numerical analysis (see, e.g., [5, 6, 10,15,17–19]).

Another way of interest concerns the study of the longtime behavior of the solutions related to contact
problems involving only a single displacement and/or a single variation of temperature (see, e.g., [11, 35]), or
referring the dynamic contact between two bodies (see, e.g., [9, 12,13,34]).

The longtime behavior of Bresse systems, with different dissipative mechanism, has been considered in recent
years.

The stability of the Bresse system (1.1) with Dirichlet boundary conditions was studied by El Arwadi and
Youssef [23] where exponential decay was obtained without any condition on the physical constants.

In [1] the Bresse system has been investigated with frictional dissipation, present only in the equation of
angular displacement. In that work, the equalities

𝜌1

𝜌2
=
𝑘

𝑏
and 𝑘 = 𝑘0, (1.5)

were observed as necessary and sufficient conditions for exponential decay of the system, and, in the general
case, the system is polynomially stable. We remark that condition (1.5) is only mathematically sound and it is
not given from physics.

In [2] the Bresse model for circular beams by adding two frictional dissipation in the system has been
analyzed. The exponential stability was found if and only if 𝑘 = 𝑘0, with polynomial decay in the general case.
The problem of optimality polynomial decay rate was also studied.

In [39] the stability of Bresse system has been explored. In that case, the two wave equations about the rotation
angle and the longitudinal displacement are damped by two locally distributed feedbacks at the neighborhood
of the boundary.

In [37] the exponential decay of a dissipative Bresse system has been showed by techniques developed in [33]
and gave numerical simulations to support their results.
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When thermal effects are considered, the asymptotic behavior of the Bresse system may become more compli-
cated because of the coupling between the elasticity and heat conduction. At present, there are some theoretical
and numerical results on the asymptotic behavior of thermoelastic Bresse systems [24,25,33].

To our knowledge, this is the first paper where contact in the Bresse system has been performed. Moreover,
exponential rate of decay is achieved without any restrictions on the parameters.

The first goal of the present paper is to obtain a global in time existence result for problem (1.1)–(1.3) by
means of a Faedo-Galerkin scheme and suitable a priori estimates.

Secondly, we find the exponential stability by introducing a suitable Lyapunov functional and by using the
multiplier method.

Next, fully discrete approximations are introduced by using a finite element method for the spatial approxi-
mation and the backward Euler scheme for the discretization of the time derivatives. Discrete stability results
and a priori error estimates are obtained, from which the linear convergence is deduced under suitable regularity
assumptions.

Finally, some numerical examples are shown to demonstrate the accuracy of the algorithm and the behavior
of the solution.

2. Well-posedness

Let 𝐼 := (0, 𝐿). We introduce the following space

𝐻1
𝐸(𝐼) := {𝑓 ∈ 𝐻1(𝐼); 𝑓(0) = 0}

and denote by ‖ · ‖ and (·, ·) the norm and the scalar product in 𝐿2(𝐼), respectively. Before stating the main
result of the existence and uniqueness of the solution of (1.1)–(1.3), we recall an inequality that will play a
crucial role in all our calculation later.

Lemma 2.1. There exists 𝐶 > 0 such that, for all

(𝜙,𝜓, 𝜔) ∈
(︀
𝐻1

𝐸(𝐼)
)︀2 ×𝐻1

0 (𝐼),

we have
‖𝜙𝑥‖2 + ‖𝜓𝑥‖2 + ‖𝜔𝑥‖2 ≤ 𝐶

(︁
‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + ‖𝜓𝑥‖2 + ‖𝜔𝑥 − 𝑙𝜙‖2

)︁
. (2.1)

Proof. For the proof see Youssef [40]. �

Now, we enunciate our main theorem in this section.

Theorem 2.2. Assume that

𝜙0 ∈ 𝐻1
𝐸(𝐼) ∩𝐻2(𝐼), 𝜙1, 𝜓0, 𝜓1, 𝜔0, 𝜔1 ∈ 𝐻1

0 (𝐼) ∩𝐻2(𝐼),−𝑔1 ≤ 𝜙0(𝐿) ≤ 𝑔2,

and
𝜙0𝑥 = 𝜙1𝑥 = 𝜓0𝑥 = 𝜓1𝑥 = 𝜔0𝑥 = 𝜔1𝑥 = 0 for 𝑥 = 𝐿.

For each 𝑇 > 0, there exists a unique solution to contact problem (1.1)–(1.3) with the regularity:

𝜙,𝜙𝑡, 𝜓, 𝜓𝑡 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐻1

𝐸(𝐼) ∩𝐻2(𝐼)
)︀
, 𝜙𝑡𝑡 ∈ 𝐿2

(︀
0, 𝑇 ; 𝐻1

𝐸(𝐼)
)︀
∩ 𝐿∞

(︀
0, 𝑇 ; 𝐿2(𝐼)

)︀
,

𝜔, 𝜔𝑡 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐻1

0 (𝐼) ∩𝐻2(𝐼)
)︀
, 𝜓𝑡𝑡, 𝜔𝑡𝑡 ∈ 𝐿2

(︀
0, 𝑇 ; 𝐻1

0 (𝐼)
)︀
∩ 𝐿∞

(︀
0, 𝑇 ; 𝐿2(𝐼)

)︀
,

𝜎 ∈ 𝐿∞
(︀
0, 𝑇 ; 𝐿2(𝐼)

)︀
, 𝜎𝑥 ∈ 𝐿2

(︀
0, 𝑇 ; 𝐿2(𝐼)

)︀
.

Proof. For the proof, the Faedo-Galerkin method will be used. Indeed, several steps are required.
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Step 1. Applying integration by parts and using boundary conditions (1.2), the weak form associated to the
continuous problem, obtained by multiplying equations (1.1) by test functions 𝜂, 𝜒 ∈ 𝐻1

𝐸(𝐼) and 𝜉 ∈ 𝐻1
0 (𝐼),

is the following:

𝜌1(𝜙𝑡𝑡, 𝜂) + 𝑘(𝜙𝑥 + 𝜓 + 𝑙𝜔, 𝜂𝑥) + 𝜁(𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡, 𝜂𝑥)− 𝑘0𝑙(𝜔𝑥 − 𝑙𝜙, 𝜂)− 𝜁𝑙(𝜔𝑥𝑡 − 𝑙𝜙𝑡, 𝜂)

+
1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀
+

)︁
𝜂(𝐿) = 0,

𝜌2(𝜓𝑡𝑡, 𝜒) + 𝑏(𝜓𝑥, 𝜒𝑥) + 𝜁(𝜓𝑥𝑡, 𝜒𝑥) + 𝑘(𝜙𝑥 + 𝜓 + 𝑙𝜔, 𝜒) + 𝜁(𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡, 𝜒) = 0,

𝜌1(𝜔𝑡𝑡, 𝜉) + 𝑘0(𝜔𝑥 − 𝑙𝜙, 𝜉𝑥) + 𝜁(𝜔𝑥𝑡 − 𝑙𝜙𝑡, 𝜉𝑥) + 𝑘𝑙(𝜙𝑥 + 𝜓 + 𝑙𝜔, 𝜉) + 𝜁𝑙(𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡, 𝜉) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.2)

For convenience, we look for approximate solutions of a modified version of (2.2) in which the initial data is
zero. Let ̂︀𝜙 = 𝜙− 𝜙0 − 𝑡𝜙1, ̂︀𝜓 = 𝜓 − 𝜓0 − 𝑡𝜓1, ̂︀𝜔 = 𝜔 − 𝜔0 − 𝑡𝜔1,

and choose
{︀
𝜂𝑖

}︀∞
𝑖=1

⊂ 𝐶∞(𝐼) and
{︀
𝜇𝑖

}︀∞
𝑖=1

⊂ 𝐶∞(𝐼) bases for 𝐻1
𝐸(𝐼) and 𝐻1

0 (𝐼), respectively. We introduce

𝜙𝑚 =
𝑚∑︁

𝑖=0

𝑐𝑖(𝑡)𝜂𝑖(𝑥), 𝜓𝑚 =
𝑚∑︁

𝑖=0

𝑑𝑖(𝑡)𝜂𝑖(𝑥), 𝜔𝑚 =
𝑚∑︁

𝑖=0

𝑒𝑖(𝑡)𝜇𝑖(𝑥),

satisfying, ∀𝜂, 𝜒 ∈ 𝑉 𝑚 := span
{︀
𝜂𝑖

}︀𝑚

𝑖=1
and ∀𝜉 ∈𝑊𝑚 := span

{︀
𝜇𝑖

}︀𝑚

𝑖=1
, the variational equations

𝜌1(𝜙𝑚
𝑡𝑡 , 𝜂) + 𝑘(𝜙𝑚

𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚 + 𝜙0𝑥 + 𝑡𝜙1𝑥 + 𝜓0 + 𝑡𝜓1 + 𝑙𝜔0 + 𝑙𝑡𝜔1, 𝜂𝑥)

+
1
𝜀

(︁[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜂(𝐿)

− 𝑙𝑘0(𝑤𝑚
𝑥 + 𝜔0𝑥 + 𝑡𝜔1𝑥 − 𝑙𝜙𝑚 − 𝑙𝜙0 − 𝑙𝑡𝜙1, 𝜂)

+ 𝜁(𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 + 𝜙1𝑥 + 𝜓1 + 𝑙𝜔1, 𝜂𝑥)

− 𝜁𝑙(𝑤𝑚
𝑥𝑡 + 𝜔1𝑥 − 𝑙𝜙𝑚

𝑡 − 𝑙𝜙1, 𝜂) = 0,

𝜌2(𝜓𝑚
𝑡𝑡 , 𝜒) + 𝑏(𝜓𝑚

𝑥 + 𝜓0𝑥 + 𝑡𝜓1𝑥, 𝜒𝑥)

+ 𝑘(𝜙𝑚
𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚 + 𝜙0𝑥 + 𝑡𝜙1𝑥 + 𝜓0 + 𝑡𝜓1 + 𝑙𝜔0 + 𝑙𝑡𝜔1, 𝜒)

+ 𝜁(𝜓𝑚
𝑥𝑡 + 𝜓1𝑥, 𝜒𝑥) + 𝜁(𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝑤𝑚

𝑡 + 𝜙1𝑥 + 𝜓1 + 𝑙𝜔1, 𝜒) = 0,

𝜌1(𝜔𝑚
𝑡𝑡 , 𝜉) + 𝑘0(𝜔𝑚

𝑥 − 𝑙𝜙𝑚 + 𝜔0𝑥 + 𝑡𝜔1𝑥 − 𝑙𝜙0 − 𝑡𝑙𝜙1, 𝜉𝑥)

+ 𝑘𝑙(𝜙𝑚
𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚 + 𝜙0𝑥 + 𝜓0 + 𝑙𝜔0 + 𝑡𝜙1𝑥 + 𝑡𝜓1 + 𝑡𝑙𝜔1, 𝜉)

+ 𝜁(𝜔𝑚
𝑥𝑡 − 𝑙𝜙𝑚

𝑡 + 𝜔1𝑥 − 𝑙𝜙1𝑥, 𝜉𝑥)

+ 𝜁𝑙 (𝜙𝑚
𝑥𝑡 + 𝑙𝜔𝑚

𝑡 + 𝜓𝑚
𝑡 + 𝜙1𝑥 + 𝑙𝜔1 + 𝜓1, 𝜉) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

and the initial conditions 𝜙𝑚(·, 0) = 𝜓𝑚(·, 0) = 𝜔𝑚(·, 0) = 0.
Substituting 𝜂 by 𝜙𝑚

𝑡 , 𝜒 by 𝜓𝑚
𝑡 , 𝜉 by 𝜔𝑚

𝑡 and adding the resulting variational equations, (2.3) gives

𝜌1

2
d
d𝑡
‖𝜙𝑚

𝑡 ‖2 +
𝜌2

2
d
d𝑡
‖𝜓𝑚

𝑡 ‖2 +
𝜌1

2
d
d𝑡
‖𝜔𝑚

𝑡 ‖2 +
𝑘

2
d
d𝑡
‖𝜙𝑚

𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚‖2

+ 𝑘
(︀
𝜙0𝑥 + 𝑡𝜙1𝑥 + 𝜓0𝑥 + 𝑡𝜓1𝑥 + 𝑙𝜔0𝑥 + 𝑙𝑡𝜔1𝑥, 𝜙

𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡

)︀
+
𝑘0

2
d
d𝑡
‖𝜔𝑚

𝑥 − 𝑙𝜙𝑚‖2 + 𝑘0

(︀
𝜔0𝑥 + 𝑡𝜔1𝑥 − 𝑙𝜙0 − 𝑙𝑡𝜙1, 𝜔

𝑚
𝑥𝑡 − 𝑙𝜙𝑚

𝑡

)︀
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+
𝑏

2
d
d𝑡
‖𝜓𝑚

𝑥 ‖2 + 𝑏
(︀
𝜓0𝑥 + 𝑡𝜓1𝑥, 𝜓

𝑚
𝑥𝑡

)︀
+ 𝜁‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 + 𝜁
(︀
𝜙1𝑥 + 𝜓1 + 𝑙𝜔1, 𝜙

𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡

)︀
+ 𝜁‖𝜓𝑚

𝑥𝑡‖2 + 𝜁
(︀
𝜓1𝑥, 𝜓

𝑚
𝑥𝑡

)︀
+ 𝜁‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 + 𝜁

(︀
𝜔1𝑥 − 𝑙𝜙1, 𝜔

𝑚
𝑥𝑡 − 𝑙𝜙𝑚

𝑡

)︀
+

1
2𝜀

d
d𝑡

(︁[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀2
+

)︁
= 0.

Thus,

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚‖2 + 𝑘0‖𝜔𝑚

𝑥 − 𝑙𝜙𝑚‖2 + 𝑏‖𝜓𝑚
𝑥 ‖2

+
1
𝜀

(︁[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀2
+

)︁)︁
+ 𝜁‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 + 𝜁‖𝜓𝑚
𝑥𝑡‖2 + 𝜁‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2

= − 𝑘
(︀
𝜙0𝑥 + 𝑡𝜙1𝑥 + 𝜓0𝑥 + 𝑡𝜓1𝑥 + 𝑙𝜔0𝑥 + 𝑙𝑡𝜔1𝑥, 𝜙

𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡

)︀
− 𝑘0

(︀
𝜔0𝑥 + 𝑡𝜔1𝑥 − 𝑙𝜙0 − 𝑙𝑡𝜙1, 𝜔

𝑚
𝑥𝑡 − 𝑙𝜙𝑚

𝑡

)︀
− 𝑏
(︀
𝜓0𝑥 + 𝑡𝜓1𝑥, 𝜓

𝑚
𝑥𝑡

)︀
− 𝜁
(︀
𝜙1𝑥 + 𝜓1 + 𝑙𝜔1, 𝜙

𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡

)︀
− 𝜁
(︀
𝜓1𝑥, 𝜓

𝑚
𝑥𝑡

)︀
− 𝜁
(︀
𝜔1𝑥 − 𝑙𝜙1, 𝜔

𝑚
𝑥𝑡 − 𝑙𝜙𝑚

𝑡

)︀
.

(2.4)

Using Young’s inequality, for all non-negative constants 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝜀5 and 𝜀6, we obtain from (2.4)

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚‖2 + 𝑘0‖𝜔𝑚

𝑥 − 𝑙𝜙𝑚‖2 + 𝑏‖𝜓𝑚
𝑥 ‖2

+
1
𝜀

(︁[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀2
+

)︁)︁
+ 𝜁‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 + 𝜁‖𝜓𝑚
𝑥𝑡‖2 + 𝜁‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2

≤ 𝐶 +
𝑘

2
𝜀1‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 +
𝑘0

2
𝜀2‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 +

𝑏

2
𝜀3‖𝜓𝑚

𝑥𝑡‖2

+ 𝜁𝜀4‖𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 ‖2 + 𝜁𝜀5‖𝜓𝑚

𝑥𝑡‖2 + 𝜁𝜀6‖𝜔𝑚
𝑥𝑡 − 𝑙𝜙𝑚

𝑡 ‖2,

(2.5)

where 𝐶 is a positive constant that depends on 𝜙𝑖, 𝜙𝑖𝑥, 𝜓𝑖, 𝜓𝑖𝑥, 𝜔𝑖, 𝜔𝑖𝑥, for 𝑖 = 0, 1.

Choosing 𝜀1 =
𝜁

𝑘
, 𝜀2 =

𝜁

𝑘0
, 𝜀3 =

𝜁

𝑏
, 𝜀4 = 𝜀5 = 𝜀6 =

1
4

, (2.5) leads to

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥 + 𝜓𝑚 + 𝑙𝜔𝑚‖2 + 𝑘0‖𝜔𝑚

𝑥 − 𝑙𝜙𝑚‖2 + 𝑏‖𝜓𝑚
𝑥 ‖2

+
1
𝜀

(︁[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀2
+

)︁)︁
+
𝜁

4
‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝜔𝑚

𝑡 ‖2 +
𝜁

4
‖𝜓𝑚

𝑥𝑡‖2 +
𝜁

4
‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 ≤ 𝐶.

Thereby,

𝜌1‖𝜙𝑚
𝑡 (·, 𝑇 )‖2 + 𝜌2‖𝜓𝑚

𝑡 (·, 𝑇 )‖2 + 𝜌1‖𝜔𝑚
𝑡 (·, 𝑇 )‖2 + 𝑘‖𝜙𝑚

𝑥 (·, 𝑇 ) + 𝜓𝑚(·, 𝑇 ) + 𝑙𝜔𝑚(·, 𝑇 )‖2 + 𝑘0‖𝜔𝑚
𝑥 (·, 𝑇 )

− 𝑙𝜙𝑚(·, 𝑇 )‖2+ 𝑏‖𝜓𝑚
𝑥 (·, 𝑇 )‖2+

1
𝜀

(︁[︀
𝜙𝑚(𝐿, 𝑇 ) + 𝜙0(𝐿)− 𝑔2

]︀2
+

+
[︀
− 𝑔1− 𝜙𝑚(𝐿, 𝑇 )− 𝜙0(𝐿)

]︀2
+

)︁
+
𝜁

2

∫︁ 𝑇

0

(︁
‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝜔𝑚

𝑡 ‖2 + ‖𝜓𝑚
𝑥𝑡‖2 + ‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2

)︁
d𝑡 ≤ 𝐶. (2.6)
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Step 2. Differentiating (2.3) with respect to 𝑡 and substituting 𝜂 by 𝜙𝑚
𝑡𝑡 , 𝜒 by 𝜓𝑚

𝑡𝑡 , and 𝜉 by 𝜔𝑚
𝑡𝑡 , we get

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 ‖2 + 𝑘0‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 + 𝑏‖𝜓𝑚

𝑥𝑡‖2
)︁

+ 𝜁‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2 + 𝜁‖𝜓𝑚

𝑥𝑡𝑡‖2 + 𝜁𝑙‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2

= −1
𝜀

d
d𝑡

(︁
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙0(𝐿)− 𝜙𝑚(𝐿, 𝑡)

]︀
+

)︁
𝜙𝑚

𝑡𝑡 (𝐿, 𝑡)

− 𝑘
(︀
𝜙1𝑥 + 𝜓1 + 𝑙𝜔1, 𝜙

𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡

)︀
− 𝑏
(︀
𝜓1𝑥, 𝜓

𝑚
𝑥𝑡𝑡

)︀
− 𝑘0

(︀
𝜔1𝑥 − 𝑙𝜙1, 𝜔

𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡

)︀
.

Next, using Young’s inequality, we obtain

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 ‖2 + 𝑘0‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 + 𝑏‖𝜓𝑚

𝑥𝑡‖2
)︁

+ 𝜁‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2 + 𝜁‖𝜓𝑚

𝑥𝑡𝑡‖2 + 𝜁𝑙‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2

≤ 𝛿1
𝜀

(︀
𝜙𝑚

𝑡 (𝐿, 𝑡)
)︀2 +

1
𝜀𝛿1

(︀
𝜙𝑚

𝑡𝑡 (𝐿, 𝑡)
)︀2 + 𝑘𝛿2‖𝜙𝑚

𝑥𝑡𝑡 + 𝜓𝑚
𝑡𝑡 + 𝑙𝜔𝑚

𝑡𝑡 ‖2 + 𝑏𝛿3‖𝜓𝑚
𝑥𝑡𝑡‖2 + 𝑘0𝛿4‖𝜔𝑚

𝑥𝑡𝑡 − 𝑙𝜙𝑚
𝑡𝑡 ‖2 + 𝐶1,

(2.7)
where 𝐶1 depends on 𝛿2, 𝛿3, 𝛿4, 𝑘, 𝑏, 𝑙, 𝜙1, 𝜙1𝑥, 𝜓1, 𝜔1, 𝜔1𝑥, and 𝜓1𝑥.
On the other hand, we have(︀

𝜙𝑚
𝑡 (𝐿, 𝑡)

)︀2 ≤ 𝐿‖𝜙𝑚
𝑥𝑡‖2 ≤ 𝑐

(︁
‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 + ‖𝜓𝑚
𝑡 ‖2 + ‖𝜔𝑚

𝑡 ‖2
)︁

(2.8)

and (︀
𝜙𝑚

𝑡𝑡 (𝐿, 𝑡)
)︀2 ≤ 𝐿‖𝜙𝑚

𝑥𝑡𝑡‖2 ≤ 𝑐
(︁
‖𝜙𝑚

𝑥𝑡𝑡 + 𝜓𝑚
𝑡𝑡 + 𝑙𝜔𝑚

𝑡𝑡 ‖2 + ‖𝜓𝑚
𝑡𝑡 ‖2 + ‖𝜔𝑚

𝑡𝑡 ‖2
)︁
. (2.9)

Therefore, inserting (2.8) and (2.9) into (2.7) it leads to

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 ‖2 + 𝑘0‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 + 𝑏‖𝜓𝑚

𝑥𝑡‖2
)︁

+ 𝜁‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2 + 𝜁‖𝜓𝑚

𝑥𝑡𝑡‖2 + 𝜁𝑙‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2

≤ 𝑐𝛿1
𝜀

(︁
‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 + ‖𝜓𝑚
𝑡 ‖2 + ‖𝜔𝑚

𝑡 ‖2
)︁

+
𝑐

𝜀𝛿1

(︁
‖𝜙𝑚

𝑥𝑡𝑡 + 𝜓𝑚
𝑡𝑡 + 𝑙𝜔𝑚

𝑡𝑡 ‖2 + ‖𝜓𝑚
𝑡𝑡 ‖2 + ‖𝜔𝑚

𝑡𝑡 ‖2
)︁

+ 𝑘𝛿2‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2 + 𝑏𝛿3‖𝜓𝑚

𝑥𝑡𝑡‖2 + 𝑘0𝛿4‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2 + 𝐶1.

(2.10)

However, the terms ‖𝜓𝑚
𝑡 ‖ and ‖𝜔𝑚

𝑡 ‖ are bounded due to (2.6). Thus, (2.10) implies

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 ‖2 + 𝑘0‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 + 𝑏‖𝜓𝑚

𝑥𝑡‖2
)︁

+ 𝜁‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2 + 𝜁‖𝜓𝑚

𝑥𝑡𝑡‖2 + 𝜁𝑙‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2

≤
(︁ 𝑐

𝜀𝛿1
+ 𝑘𝛿2

)︁
‖𝜙𝑚

𝑥𝑡𝑡 + 𝜓𝑚
𝑡𝑡 + 𝑙𝜔𝑚

𝑡𝑡 ‖2 + 𝑏𝛿3‖𝜓𝑚
𝑥𝑡𝑡‖2 +

𝑐

𝜀𝛿1
‖𝜓𝑚

𝑡𝑡 ‖2

+
𝑐

𝜀𝛿1
‖𝜔𝑚

𝑡𝑡 ‖2 +
𝑐𝛿1
𝜀
‖𝜙𝑚

𝑥𝑡 + 𝜓𝑚
𝑡 + 𝑙𝜔𝑚

𝑡 ‖2 + 𝑘0𝛿4‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2 + 𝐶3.

(2.11)

Then, using (2.6) and selecting 𝛿1, 𝛿2, 𝛿3, and 𝛿4 such that

𝜁 −
(︁ 𝑐

𝜀𝛿1
+ 𝑘𝛿2

)︁
>
𝜁

2
, 𝜁 − 𝑏𝛿3 >

𝜁

2
and 𝜁𝑙 − 𝑘0𝛿4 >

𝜁𝑙

2
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estimate (2.11) gives

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑚

𝑡𝑡 ‖2 + 𝜌2‖𝜓𝑚
𝑡𝑡 ‖2 + 𝜌1‖𝜔𝑚

𝑡𝑡 ‖2 + 𝑘‖𝜙𝑚
𝑥𝑡 + 𝜓𝑚

𝑡 + 𝑙𝜔𝑚
𝑡 ‖2 + 𝑘0‖𝜔𝑚

𝑥𝑡 − 𝑙𝜙𝑚
𝑡 ‖2 + 𝑏‖𝜓𝑚

𝑥𝑡‖2
)︁

+
𝜁

2
‖𝜙𝑚

𝑥𝑡𝑡 + 𝜓𝑚
𝑡𝑡 + 𝑙𝜔𝑚

𝑡𝑡 ‖2 +
𝜁

2
‖𝜓𝑚

𝑥𝑡𝑡‖2 +
𝜁𝑙

2
‖𝜔𝑚

𝑥𝑡𝑡 − 𝑙𝜙𝑚
𝑡𝑡 ‖2

≤ 𝑐

𝜀𝛿1
‖𝜓𝑚

𝑡𝑡 ‖2 +
𝑐

𝜀𝛿1
‖𝜔𝑚

𝑡𝑡 ‖2 + 𝐶3.

Now, integrating over [0, 𝑇 ], we obtain

𝜌1

2
‖𝜙𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝜌2

2
‖𝜓𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝜌1

2
‖𝜔𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝑘

2
‖𝜙𝑚

𝑥𝑡(·, 𝑇 ) + 𝜓𝑚
𝑡 (·, 𝑇 ) + 𝑙𝜔𝑚

𝑡 (·, 𝑇 )‖2

+
𝑘0

2
‖𝜔𝑚

𝑥𝑡(·, 𝑇 )− 𝑙𝜙𝑚
𝑡 (·, 𝑇 )‖2 +

𝑏

2
‖𝜓𝑚

𝑥𝑡(·, 𝑇 )‖2 +
𝜁

2

∫︁ 𝑇

0

‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2d𝑡

+
𝜁

2

∫︁ 𝑇

0

‖𝜓𝑚
𝑥𝑡𝑡‖2d𝑡+

𝜁𝑙

2

∫︁ 𝑇

0

‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2d𝑡 (2.12)

≤ 𝜌1

2
‖𝜙𝑚

𝑡𝑡 (·, 0)‖2 +
𝜌2

2
‖𝜓𝑚

𝑡𝑡 (·, 0)‖2 +
𝜌1

2
‖𝜔𝑚

𝑡𝑡 (·, 0)‖2 +
𝑐

𝜀𝛿1

∫︁ 𝑇

0

‖𝜓𝑚
𝑡𝑡 ‖2d𝑡

+
𝑐

𝜀𝛿1

∫︁ 𝑇

0

‖𝜔𝑚
𝑡𝑡 ‖2d𝑡+ 𝑇𝐶3.

Due to (2.6), (2.12) implies that

𝜌1

2
‖𝜙𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝜌2

2
‖𝜓𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝜌1

2
‖𝜔𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝑘

2
‖𝜙𝑚

𝑥𝑡(·, 𝑇 ) + 𝜓𝑚
𝑡 (·, 𝑇 ) + 𝑙𝜔𝑚

𝑡 (·, 𝑇 )‖2

+
𝑘0

2
‖𝜔𝑚

𝑥𝑡(·, 𝑇 )− 𝑙𝜙𝑚
𝑡 (·, 𝑇 )‖2 +

𝑏

2
‖𝜓𝑚

𝑥𝑡(·, 𝑇 )‖2 +
𝜁

2

∫︁ 𝑇

0

‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2d𝑡

+
𝜁

2

∫︁ 𝑇

0

‖𝜓𝑚
𝑥𝑡𝑡‖2d𝑡+

𝜁𝑙

2

∫︁ 𝑇

0

‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2d𝑡 (2.13)

≤ 𝜌1

2
‖𝜙𝑚

𝑡𝑡 (·, 0)‖2 +
𝜌2

2
‖𝜓𝑚

𝑡𝑡 (·, 0)‖2 +
𝜌1

2
‖𝜔𝑚

𝑡𝑡 (·, 0)‖2 +
𝑐

𝜀𝛿1

∫︁ 𝑇

0

‖𝜓𝑚
𝑡𝑡 ‖2d𝑡

+
𝑐

𝜀𝛿1

∫︁ 𝑇

0

‖𝜔𝑚
𝑡𝑡 ‖2d𝑡+

2𝐶
𝜁

+ 𝑇𝐶3⏟  ⏞  
:=𝐶4

.

Now, let us prove that ‖𝜙𝑚
𝑡𝑡 (·, 0)‖, ‖𝜓𝑚

𝑡𝑡 (·, 0)‖, and ‖𝜔𝑚
𝑡𝑡 (·, 0)‖ are bounded. Taking 𝑡 = 0 in (2.3), substituting

𝜂 by 𝜙𝑚
𝑡𝑡 (·, 0) and integrating by parts, we obtain

𝜌1‖𝜙𝑚
𝑡𝑡 (·, 0)‖2 ≤ 𝑘‖𝜙0𝑥𝑥 + 𝜓0𝑥 + 𝑙𝜔0𝑥‖‖𝜙𝑚

𝑡𝑡 (·, 0)‖+ 𝜁‖𝜙1𝑥𝑥 + 𝜓1𝑥 + 𝑙𝜔1𝑥‖‖𝜙𝑚
𝑡𝑡 (·, 0)‖

+ 𝑙𝑘0‖𝑤0𝑥 − 𝑙𝜙0‖‖𝜙𝑚
𝑡𝑡 (·, 0)‖+ 𝜁𝑙‖𝑤1𝑥 − 𝑙𝜙1‖‖𝜙𝑚

𝑡𝑡 (·, 0)‖. (2.14)

Next, using the following Young inequality

𝑎𝑏 ≤ 𝐶𝛾𝑎
2 + 𝛾𝑏2, ∀𝛾 > 0, (2.15)

we get, for 𝛾1, 𝛾2, 𝛾3, and 𝛾4 small enough,

𝜌1‖𝜙𝑚
𝑡𝑡 (·, 0)‖2 ≤ 𝑘𝐶𝛾1‖𝜙0𝑥𝑥 + 𝜓0𝑥 + 𝑙𝜔0𝑥‖+ 𝜁𝐶𝛾2‖𝜙1𝑥𝑥 + 𝜓1𝑥 + 𝑙𝜔1𝑥‖
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+ 𝑙𝑘0𝐶𝛾3‖𝑤0𝑥 − 𝑙𝜙0‖+ 𝜁𝑙𝐶𝛾4‖𝑤1𝑥 − 𝑙𝜙1‖. (2.16)

Therefore, ‖𝜙𝑚
𝑡𝑡 (·, 0)‖ is bounded because 𝜙0, 𝜙1, 𝜓0, 𝜓1, 𝜔0, 𝜔1 ∈ 𝐻2(𝐼). By repeating the same arguments,

we deduce that ‖𝜓𝑚
𝑡𝑡 (·, 0)‖ and ‖𝜔𝑚

𝑡𝑡 (·, 0)‖ are bounded.
Consequently, applying Gronwall’s inequality to (2.13) it results that

𝜌1

2
‖𝜙𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝜌2

2
‖𝜓𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝜌1

2
‖𝜔𝑚

𝑡𝑡 (·, 𝑇 )‖2 +
𝑘

2
‖𝜙𝑚

𝑥𝑡(·, 𝑇 ) + 𝜓𝑚
𝑡 (·, 𝑇 ) + 𝑙𝜔𝑚

𝑡 (·, 𝑇 )‖2

+
𝑘0

2
‖𝜔𝑚

𝑥𝑡(·, 𝑇 )− 𝑙𝜙𝑚
𝑡 (·, 𝑇 )‖2 +

𝑏

2
‖𝜓𝑚

𝑥𝑡(·, 𝑇 )‖2 +
𝜁

2

∫︁ 𝑇

0

‖𝜙𝑚
𝑥𝑡𝑡 + 𝜓𝑚

𝑡𝑡 + 𝑙𝜔𝑚
𝑡𝑡 ‖2d𝑡

+
𝜁

2

∫︁ 𝑇

0

‖𝜓𝑚
𝑥𝑡𝑡‖2d𝑡+

𝜁𝑙

2

∫︁ 𝑇

0

‖𝜔𝑚
𝑥𝑡𝑡 − 𝑙𝜙𝑚

𝑡𝑡 ‖2d𝑡 ≤ 𝐶3.

From the above estimates and using (2.1), there exist subsequences denoted also by {𝜙𝑚}, {𝜓𝑚}, and {𝜔𝑚}
such that:

𝜙𝑚
𝑡

*
⇀ ̂︀𝜙𝑡, 𝜓𝑚

𝑡
*
⇀ ̂︀𝜓𝑡, 𝜔𝑚

𝑡
*
⇀ ̂︀𝜔𝑡 in 𝐿∞

(︀
0, 𝑇 ;𝐻1

𝐸(𝐼)
)︀
,

𝜙𝑚
𝑡 ⇀̂︀𝜙𝑡, 𝜓𝑚

𝑡 ⇀
̂︀𝜓𝑡, 𝜔𝑚

𝑡 ⇀̂︀𝜔𝑡 in 𝐿2
(︀
0, 𝑇 ;𝐻1

𝐸(𝐼)
)︀
,

𝜙𝑚 *
⇀ ̂︀𝜙, 𝜓𝑚 *

⇀ ̂︀𝜓, 𝜔𝑚 *
⇀ ̂︀𝜔 in 𝐿∞

(︀
0, 𝑇 ;𝐻1

𝐸(𝐼)
)︀
,

𝜙𝑚
𝑡𝑡

*
⇀ ̂︀𝜙𝑡𝑡, 𝜓𝑚

𝑡𝑡
*
⇀ ̂︀𝜓𝑡𝑡, 𝜔𝑚

𝑡𝑡
*
⇀ ̂︀𝜔𝑡𝑡 in 𝐿∞

(︀
0, 𝑇 ;𝐿2(𝐼)

)︀
,

𝜙𝑚
𝑡𝑡⇀̂︀𝜙𝑡𝑡, 𝜓𝑚

𝑡𝑡⇀
̂︀𝜓𝑡𝑡, 𝜔𝑚

𝑡𝑡⇀̂︀𝜔𝑡𝑡 in 𝐿2
(︀
0, 𝑇 ;𝐻1

𝐸(𝐼)
)︀
,

1
𝜀

[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀ *
⇀

1
𝜀

[︀̂︀𝜙(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2
]︀

in 𝐿∞(0, 𝑇 ),

1
𝜀

[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀ *
⇀

1
𝜀

[︀
− 𝑔1 − ̂︀𝜙(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
in 𝐿∞(0, 𝑇 ).

Moreover, the fact that
{︀
𝜙𝑚(𝐿, 𝑡)

}︀
and

{︀
𝜙𝑚

𝑡 (𝐿, 𝑡)
}︀

are bounded implies that

𝜙𝑚(𝐿, 𝑡) ⇀ ̂︀𝜙(𝐿, 𝑡) in 𝐻1(0, 𝑇 ).

Therefore, the compactness of 𝐻1(0, 𝑇 ) ⊂ 𝐿2(0, 𝑇 ) leads to

𝜙𝑚(𝐿, 𝑡) → ̂︀𝜙(𝐿, 𝑡) in 𝐿2(0, 𝑇 ).

Next, we have⃦⃦⃦[︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀̂︀𝜙(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

⃦⃦⃦2

𝐿2(0,𝑇 )
≤ ‖𝜙𝑚(𝐿, 𝑡)− ̂︀𝜙(𝐿, 𝑡)‖𝐿2(0,𝑇 ) .

Consequently, [︀
𝜙𝑚(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
→
[︀̂︀𝜙(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

in 𝐿2(0, 𝑇 ).

Similarly, we show that[︀
− 𝑔1 − 𝜙𝑚(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+
→
[︀
− 𝑔1 − ̂︀𝜙(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

in 𝐿2(0, 𝑇 ).

Taking the limit in (2.3) as 𝑚 → +∞ and reversing the change of variables, we deduce that 𝜙,𝜓 and 𝜔
satisfy variational problem (2.2). By standard arguments, the existence result follows.

Step 3. In this step, we shall prove the uniqueness of the solution. So, let us suppose that (𝜙1, 𝜓1, 𝜔1) and
(𝜙2, 𝜓2, 𝜔2) are two solutions to equations (1.1) and let

𝜙 = 𝜙1 − 𝜙2, 𝜓 = 𝜓1 − 𝜓2, 𝜔 = 𝜔1 − 𝜔2.
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Thus, from the weak formulation (2.2) we get

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 + 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + 𝑘0‖𝜔𝑥 − 𝑙𝜙‖2 + 𝑏‖𝜓𝑥‖2

)︁
+ 𝜁‖𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡‖2 + 𝜁‖𝜔𝑥𝑡 − 𝑙𝜙𝑡‖2 + 𝜁‖𝜓𝑥𝑡‖2

+
1
𝜀

(︁[︀
𝜙1(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙1(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜙𝑡(𝐿, 𝑡)

− 1
𝜀

(︁[︀
𝜙2(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

+
[︀
− 𝑔1 − 𝜙2(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜙𝑡(𝐿, 𝑡) = 0.

(2.17)

Next, let us estimate the two last term 𝐼1 − 𝐼2 in (2.17). First, note that

𝜙1(𝐿, 𝑡) =
∫︁ 𝐿

0

𝜙1𝑥(𝑡, 𝑥)d𝑥 and 𝜙2(𝐿, 𝑡) =
∫︁ 𝐿

0

𝜙2𝑥(𝑡, 𝑥)d𝑥.

Applying the Young inequality, for all 𝛿 > 0, we get

1
𝜀

(︁[︀
𝜙1(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙1(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜙𝑡(𝐿, 𝑡)

− 1
𝜀

(︁[︀
𝜙2(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

+
[︀
− 𝑔1 − 𝜙2(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜙𝑡(𝐿, 𝑡)

≤ 𝛿

2𝜀
|𝜙𝑡(𝐿, 𝑡)|2

+
1

2𝛿𝜀

(︁[︀
𝜙1(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙1(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

−
[︀
𝜙2(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

+
[︀
− 𝑔1 − 𝜙2(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁2

.

(2.18)

On the other hand, we have⃒⃒⃒[︀
𝜙1(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
𝜙2(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

⃒⃒⃒
≤
⃒⃒
𝜙1(𝐿, 𝑡)− 𝜙2(𝐿, 𝑡)

⃒⃒
(2.19)

and ⃒⃒⃒
−
[︀
− 𝑔1 − 𝜙1(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

+
[︀
− 𝑔1 − 𝜙2(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

⃒⃒⃒
≤
⃒⃒
𝜙1(𝐿, 𝑡)− 𝜙2(𝐿, 𝑡)

⃒⃒
. (2.20)

Hence, using (2.19) and (2.20) in (2.18), we obtain

1
𝜀

(︁[︀
𝜙1(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙1(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜙𝑡(𝐿, 𝑡)

− 1
𝜀

(︁[︀
𝜙2(𝐿, 𝑡) + 𝜙0(𝐿)− 𝑔2

]︀
+

+
[︀
− 𝑔1 − 𝜙2(𝐿, 𝑡)− 𝜙0(𝐿)

]︀
+

)︁
𝜙𝑡(𝐿, 𝑡)

≤ 𝛿𝐿

2𝜀
‖𝜙𝑥𝑡‖2 +

2𝐿
𝛿𝜀
‖𝜙𝑥‖2.

(2.21)

Therefore, using (2.21) and (2.1), (2.17) leads to

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 + 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + 𝑘0‖𝜔𝑥 − 𝑙𝜙‖2 + 𝑏‖𝜓𝑥‖2

)︁
+ 𝜁‖𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡‖2 + 𝜁‖𝜔𝑥𝑡 − 𝑙𝜙𝑡‖2 + 𝜁‖𝜓𝑥𝑡‖2

≤ 𝛿𝐿𝐶

2𝜀

(︁
‖𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡‖2 + ‖𝜔𝑥𝑡 − 𝑙𝜙𝑡‖2 + ‖𝜓𝑥𝑡‖2

)︁
+

2𝐿𝐶
𝛿𝜀

(︁
‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + ‖𝜔𝑥 − 𝑙𝜙‖2 + ‖𝜓𝑥‖2

)︁
.

(2.22)
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Now, selecting 𝛿 =
2𝜀𝜁
𝐿𝐶

, (2.22) gives

1
2

d
d𝑡

(︁
𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 + 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + 𝑘0‖𝜔𝑥 − 𝑙𝜙‖2 + 𝑏‖𝜓𝑥‖2

)︁
≤ 𝐶1

(︁
𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 + 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + 𝑘0‖𝜔𝑥 − 𝑙𝜙‖2 + 𝑏‖𝜓𝑥‖2

)︁
.

(2.23)

Thus, by the Gronwall inequality, we get

𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 + 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 + 𝑘0‖𝜔𝑥 − 𝑙𝜙‖2 + 𝑏‖𝜓𝑥‖2 = 0.

Thereby, due to (2.1), we have
‖𝜙𝑥‖2 = ‖𝜔𝑥‖2 = ‖𝜓𝑥‖2 = 0

and so
𝜙 = 𝜔 = 𝜓 = 0.

Hence, the uniqueness is established. �

3. Exponential stability

The exponential stability result is summarized in the following theorem.

Theorem 3.1. There exist two positive constants 𝐶1 and 𝜂 such that the energy of the solution of (1.1)–(1.3)
satisfies

ℰ(𝑡) ≤ 𝐶1ℰ(0)𝑒−𝜂𝑡 ∀𝑡 ≥ 0.

Proof. Let

𝐼1 =
∫︁ 𝐿

0

(︁
𝜌1𝜙𝑡𝜙+ 𝜌2𝜓𝑡𝜓 + 𝜌1𝜔𝑡𝜔

)︁
d𝑥,

𝐼2 =
𝜁

2
‖𝜙𝑥 + 𝜓𝑡 + 𝑙𝜔𝑡‖2 +

𝜁

2
‖𝜔𝑥 − 𝑙𝜙‖2 +

𝜁

2
‖𝜓𝑥‖2

and consider the functional L := 𝛽ℰ(𝑡) + 𝐼1 + 𝐼2 for a suitable choice of 𝛽.
First, using the Poincaré inequality and the estimate (2.1), we get

|𝐼1| ≤ 𝐾1ℰ(𝑡), ∀𝑡 > 0,

where 𝐾1 is a positive constant that depends on 𝜌1, 𝜌2, 𝜌1, 𝜁, 𝐶. So, for 𝛽 sufficiently large, we have

𝐾2ℰ(𝑡) ≤ L (𝑡) ≤ 𝐾3ℰ(𝑡), (3.1)

where 𝐾2 and 𝐾3 are positive constants. Moreover, using the three equations of (1.1) we have

d
d𝑡
𝐼1 = 𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 − 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − 𝑘0‖𝑤𝑥 − 𝑙𝜙‖2 − 𝑏‖𝜓𝑥‖2

− 𝜁

2
d
d𝑡
(︀
‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − ‖𝑤𝑥 − 𝑙𝜙‖2 − ‖𝜓𝑥‖2

)︀
− 1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀
+

)︁
𝜙(𝐿, 𝑡).

(3.2)
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Now, let us estimate the last term in (3.2). In fact, we have

−1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀
+

)︁
𝜙(𝐿, 𝑡)

≤ −1
𝜀

[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀
+

(︀
𝜙(𝐿, 𝑡)− 𝑔2

)︀
+

1
𝜀

[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀
+

(︀
𝑔1 + 𝜙(𝐿, 𝑡)

)︀
≤ −1

𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀2
+

)︁
.

(3.3)

Therefore, using (3.3) in (3.2) we obtain

d
d𝑡
𝐼1 ≤ 𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 − 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − 𝑘0‖𝑤𝑥 − 𝑙𝜙‖2 − 𝑏‖𝜓𝑥‖2

− 𝜁

2
d
d𝑡
(︀
‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − ‖𝑤𝑥 − 𝑙𝜙‖2 − ‖𝜓𝑥‖2

)︀
− 1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀2
+

)︁
and so

d
d𝑡

(︁
𝐼1 +

𝜁

2
‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 +

𝜁

2
‖𝑤𝑥 − 𝑙𝜙‖2 +

𝜁

2
‖𝜓𝑥‖2

)︁
≤ 𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 − 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2

− 𝑘0‖𝑤𝑥 − 𝑙𝜙‖2 − 𝑏‖𝜓𝑥‖2 −
1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀2
+

)︁
. (3.4)

Next, thanks to (1.4) and (3.4), we get

d
d𝑡

L (𝑡) ≤ 𝛽
(︀
− 𝜁‖𝜙𝑥𝑡 + 𝜓𝑡 + 𝑙𝜔𝑡‖2 − 𝜁‖𝜓𝑥𝑡‖2 − 𝜁‖𝜔𝑥𝑡 − 𝑙𝜙𝑡|2

)︀
+ 𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 − 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − 𝑘0‖𝑤𝑥 − 𝑙𝜙‖2

− 𝑏‖𝜓𝑥‖2 −
1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀2
+

)︁
.

Now, due to (2.1) and the Poincaré inequality, we have

d
d𝑡

L (𝑡) ≤ 𝛽
(︀
− 𝜁𝑐‖𝜙𝑡‖2 − 𝜁𝑐‖𝜓𝑡‖2 − 𝜁𝑐‖𝜔𝑡‖2

)︀
+ 𝜌1‖𝜙𝑡‖2 + 𝜌2‖𝜓𝑡‖2 + 𝜌1‖𝜔𝑡‖2 − 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − 𝑘0‖𝑤𝑥 − 𝑙𝜙‖2

− 𝑏‖𝜓𝑥‖2 −
1
𝜀

(︁[︀
𝜙(𝑡, 𝐿)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝑡, 𝐿)

]︀2
+

)︁
.

Thus,

d
d𝑡

L (𝑡) ≤
(︀
𝜌1 − 𝛽𝜁𝑐

)︀
‖𝜙𝑡‖2 +

(︀
𝜌2 − 𝛽𝜁𝑐

)︀
‖𝜓𝑡‖2 +

(︀
𝜌1 − 𝛽𝜁𝑐

)︀
‖𝜔𝑡‖2

)︀
− 𝑘‖𝜙𝑥 + 𝜓 + 𝑙𝜔‖2 − 𝑘0‖𝑤𝑥 − 𝑙𝜙‖2 − 𝑏‖𝜓𝑥‖2 −

1
𝜀

(︁[︀
𝜙(𝐿, 𝑡)− 𝑔2

]︀2
+

+
[︀
− 𝑔1 − 𝜙(𝐿, 𝑡)

]︀2
+

)︁
.

Hence, for 𝛽 large enough, it follows that

d
d𝑡

L (𝑡) ≤ −𝑐ℰ(𝑡).

Thus, due to (3.1), this leads to
d
d𝑡

L (𝑡) ≤ − 𝑐

𝐾3
L (𝑡)

and the proof is completed. �
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4. Numerical approximation

In this section, we will provide the numerical analysis of the problem described and studied, from a mathe-
matical point of view, in the previous section.

For the spatial approximation of problem (2.2), we assume that the interval [0, 𝐿] is divided into 𝑀 subinter-
vals 𝑎0 = 0 < 𝑎1 < . . . < 𝑎𝑀 = 𝐿 of length ℎ = 𝑎𝑖+1−𝑎𝑖 = 𝐿/𝑀 . Then, in order to approximate the variational
spaces 𝐻1

𝐸(𝐼) and 𝐻1
0 (𝐼), we construct the finite dimensional spaces 𝑆ℎ

𝐸 ⊂ 𝐻1
𝐸(𝐼) and 𝑆ℎ

0 ⊂ 𝐻1
0 (𝐼) given by

𝑆ℎ
𝐸 = {𝜂ℎ ∈ 𝐶([0, 𝐿]) ; 𝜂ℎ

|[𝑎𝑖,𝑎𝑖+1]
∈ 𝑃1([𝑎𝑖, 𝑎𝑖+1]) 𝑖 = 0, . . . ,𝑀 − 1, 𝜂ℎ(0) = 0}, (4.1)

𝑆ℎ
0 = {𝜉ℎ ∈ 𝐶([0, 𝐿]) ; 𝜉ℎ

|[𝑎𝑖,𝑎𝑖+1]
∈ 𝑃1([𝑎𝑖, 𝑎𝑖+1]) 𝑖 = 0, . . . ,𝑀 − 1, 𝜉ℎ(0) = 𝜉ℎ(𝐿) = 0}, (4.2)

where 𝑃1([𝑎𝑖, 𝑎𝑖+1]) represents the space of polynomials of degree less or equal to 1 in the subinterval [𝑎𝑖, 𝑎𝑖+1];
i.e. both finite element spaces are composed of continuous and piecewise affine functions. Here, ℎ > 0 denotes
the spatial discretization parameter. Moreover, we assume that the discrete initial conditions, denoted by 𝜙0

ℎ,
𝜙0

ℎ, 𝜓
0
ℎ, 𝜓

0
ℎ, 𝜔

0
ℎ and 𝜔̃0

ℎ, are given by

𝜙0
ℎ = 𝑃ℎ

𝐸𝜙0, 𝜙0
ℎ = 𝑃ℎ

𝐸𝜙1, 𝜓0
ℎ = 𝑃ℎ

𝐸𝜓0, 𝜓0
ℎ = 𝑃ℎ

𝐸𝜓1, 𝜔0
ℎ = 𝑃ℎ

0 𝜔0, 𝜔̃0
ℎ = 𝑃ℎ

0 𝜔1. (4.3)

Here, 𝑃ℎ
𝐸 and 𝑃ℎ

0 are the classical finite element interpolation operators over 𝑆ℎ
𝐸 and 𝑆ℎ

0 , respectively (see [16]).
In order to provide the time discretization of problem (2.2), we consider a uniform partition of the time

interval [0, 𝑇 ], denoted by 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑇 , with constant step size ∆𝑡 = 𝑇/𝑁 and nodes 𝑡𝑛 = 𝑛∆𝑡
for 𝑛 = 0, 1, . . . , 𝑁 . For a continuous function 𝑧(𝑡), we use the notation 𝑧𝑛 = 𝑧(𝑡𝑛) and 𝑧 = 𝑧𝑡.

Therefore, using the backward Euler scheme in time, the fully discrete approximation of problem (2.2) is to
find 𝜙𝑛

ℎ, 𝜓
𝑛
ℎ ∈ 𝑆ℎ

𝐸 and 𝜔̃𝑛
ℎ ∈ 𝑆ℎ

0 such that, for 𝑛 = 1, . . . , 𝑁 and for all 𝜂ℎ, 𝜒ℎ ∈ 𝑆ℎ
𝐸 and 𝜉ℎ ∈ 𝑆ℎ

0 ,

𝜌1

∆𝑡
(𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ , 𝜂ℎ) + 𝑘(𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ , 𝜂ℎ𝑥) + 𝜁(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ , 𝜂ℎ𝑥)− 𝑘0𝑙(𝜔𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜂ℎ)

− 𝜁𝑙(𝜔̃𝑛
ℎ𝑥 − 𝑙𝜙𝑛

ℎ, 𝜂ℎ) +
1
𝜀

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
𝜂ℎ(𝐿) = 0,

𝜌2

∆𝑡
(𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ , 𝜒ℎ) + 𝑏(𝜓𝑛

ℎ𝑥, 𝜒ℎ𝑥) + 𝜁(𝜓𝑛
ℎ𝑥, 𝜒ℎ𝑥) + 𝑘(𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ , 𝜒ℎ) + 𝜁(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ , 𝜒ℎ) = 0,

𝜌1

∆𝑡
(𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ , 𝜉ℎ) + 𝑘0(𝜔𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜉ℎ𝑥) + 𝜁(𝜔̃𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜉ℎ𝑥) + 𝑘𝑙(𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ , 𝜉ℎ)

+ 𝜁𝑙(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ , 𝜉ℎ) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.4)

where

𝜙𝑛
ℎ =

𝜙𝑛
ℎ − 𝜙𝑛−1

ℎ

∆𝑡
, 𝜓𝑛

ℎ =
𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ

∆𝑡
, 𝜔̃𝑛

ℎ =
𝜔𝑛

ℎ − 𝜔𝑛−1
ℎ

∆𝑡
(4.5)

are approximations to 𝜙𝑛 = 𝜙𝑡(𝑡𝑛), 𝜓𝑛 = 𝜓𝑡(𝑡𝑛) and 𝜔̃𝑛 = 𝜔𝑡(𝑡𝑛), respectively.
The next result is a discrete version of the energy decay property (1.4) satisfied by the continuous solution.

Theorem 4.1. Let the discrete energy be given by

ℰ𝑛
ℎ =

1
2

(︁
𝜌1(‖𝜙𝑛

ℎ‖2 + ‖𝜔̃𝑛
ℎ‖2) + 𝜌2‖𝜓𝑛

ℎ‖2 + 𝑏‖𝜓𝑛
ℎ𝑥‖2 + 𝑘‖𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ‖2 + 𝑘0‖𝜔𝑛
ℎ𝑥 − 𝑙𝜙𝑛

ℎ‖2

+
1
𝜀

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀2
+

+
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀2
+

)︁)︁
.

Then, the decay property
ℰ𝑛

ℎ − ℰ
𝑛−1
ℎ

∆𝑡
≤ 0

holds for 𝑛 = 1, 2, . . . , 𝑁.
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Proof. Taking 𝜂ℎ = 𝜙𝑛
ℎ, 𝜒ℎ = 𝜓𝑛

ℎ and 𝜉ℎ = 𝜔̃𝑛
ℎ , it results that

𝜌1

2∆𝑡

(︁
‖𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ ‖2 + ‖𝜙𝑛

ℎ‖2 − ‖𝜙𝑛−1
ℎ ‖2

)︁
+ 𝑘(𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ , 𝜙
𝑛
ℎ𝑥)

+ 𝜁(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ , 𝜙

𝑛
ℎ𝑥)− 𝑘0𝑙(𝜔𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜙

𝑛
ℎ)− 𝜁𝑙(𝜔̃𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜙

𝑛
ℎ)

+
1
𝜀

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
𝜙𝑛

ℎ(𝐿) = 0, (4.6)

𝜌2

2∆𝑡

(︁
‖𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ ‖2 + ‖𝜓𝑛

ℎ‖2 − ‖𝜓𝑛−1
ℎ ‖2

)︁
+ 𝑘(𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ , 𝜓
𝑛
ℎ)

+
𝑏

2∆𝑡

(︁
‖𝜓𝑛

ℎ𝑥 − 𝜓𝑛−1
ℎ𝑥 ‖2 + ‖𝜓𝑛

ℎ𝑥‖2 − ‖𝜓𝑛−1
ℎ𝑥 ‖2

)︁
+ 𝜁‖𝜓𝑛

ℎ𝑥‖2 + 𝜁(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ , 𝜓

𝑛
ℎ) = 0, (4.7)

and
𝜌1

2∆𝑡

(︁
‖𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ ‖2 + ‖𝜔̃𝑛

ℎ‖2 − ‖𝜔̃𝑛−1
ℎ ‖2

)︁
+ 𝑘𝑙(𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ , 𝜔̃
𝑛
ℎ)

+ 𝜁𝑙(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ , 𝜔̃

𝑛
ℎ) + 𝑘0(𝜔𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜔̃

𝑛
ℎ𝑥) + 𝜁(𝜔̃𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ, 𝜔̃

𝑛
ℎ𝑥) = 0. (4.8)

Thus, summing equations (4.6)–(4.8) and observing that

𝑘(𝜙𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔𝑛
ℎ , 𝜙

𝑛
ℎ𝑥 + 𝜓𝑛

ℎ + 𝑙𝜔̃𝑛
ℎ) ≥ 𝑘

2∆𝑡

(︁
‖𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ‖2 − ‖𝜙𝑛−1
ℎ𝑥 + 𝜓𝑛−1

ℎ + 𝑙𝜔𝑛−1
ℎ ‖2

)︁
and that

𝑘0(𝜔𝑛
ℎ𝑥 − 𝑙𝜙𝑛

ℎ, 𝜔̃
𝑛
ℎ𝑥 − 𝑙𝜙𝑛

ℎ) ≥ 𝑘0

2∆𝑡

(︁
‖𝜔𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ‖2 − ‖𝜔𝑛−1

ℎ𝑥 − 𝑙𝜙𝑛−1
ℎ ‖2

)︁
,

we find

𝜌1

2∆𝑡

(︁
‖𝜙𝑛

ℎ‖2 − ‖𝜙𝑛−1
ℎ ‖2 + ‖𝜔̃𝑛

ℎ‖2 − ‖𝜔̃𝑛−1
ℎ ‖2

)︁
+

𝜌2

2∆𝑡

(︁
‖𝜓𝑛

ℎ‖2 − ‖𝜓𝑛−1
ℎ ‖2

)︁
+

𝑏

2∆𝑡

(︁
‖𝜓𝑛

ℎ𝑥‖2 − ‖𝜓𝑛−1
ℎ𝑥 ‖2

)︁
+ 𝜁‖𝜓𝑛

ℎ𝑥‖2 +
𝑘

2∆𝑡

(︁
‖𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔𝑛

ℎ‖2 − ‖𝜙𝑛−1
ℎ𝑥 + 𝜓𝑛−1

ℎ + 𝑙𝜔𝑛−1
ℎ ‖2

)︁
+

𝑘0

2∆𝑡

(︁
‖𝜔𝑛

ℎ𝑥 − 𝑙𝜙𝑛
ℎ‖2 − ‖𝜔𝑛−1

ℎ𝑥 − 𝑙𝜙𝑛−1
ℎ ‖2

)︁
+ 𝜁‖𝜙𝑛

ℎ𝑥 + 𝜓𝑛
ℎ + 𝑙𝜔̃𝑛

ℎ‖2 + 𝜁‖𝜔̃𝑛
ℎ𝑥 − 𝑙𝜙𝑛

ℎ‖2

+
1
𝜀

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
𝜙𝑛

ℎ(𝐿) ≤ 0.

Now, we note that

1
𝜀

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
𝜙𝑛

ℎ(𝐿)

=
1
𝜀

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁(︁𝜙𝑛
ℎ(𝐿)− 𝜙𝑛−1

ℎ (𝐿)
∆𝑡

)︁
=

1
𝜀∆𝑡

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+

(𝜙𝑛
ℎ(𝐿) + 𝑔2 − 𝑔2 − 𝜙𝑛−1

ℎ (𝐿))
)︁

− 1
𝜀∆𝑡

[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

(𝜙𝑛
ℎ(𝐿) + 𝑔1 − 𝑔1 − 𝜙𝑛−1

ℎ (𝐿))
)︁

=
1
𝜀∆𝑡

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀2
+
−
[︀
𝜙𝑛

ℎ(𝐿)− 𝑔2
]︀
+

(𝜙𝑛−1
ℎ (𝐿)− 𝑔2)

)︁
+

1
𝜀∆𝑡

(︁[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀2
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿)
]︀
+

(−𝑔1 − 𝜙𝑛−1
ℎ (𝐿))

)︁
≥ 1
𝜀∆𝑡

(︁[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀2
+
−
[︀
𝜙𝑛

ℎ(𝐿)− 𝑔2
]︀
+

[︀
𝜙𝑛−1

ℎ (𝐿)− 𝑔2
]︀
+

)︁
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+
1
𝜀∆𝑡

(︁[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀2
+
−
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿)
]︀
+

[︀
− 𝑔1 − 𝜙𝑛−1

ℎ (𝐿)
]︀
+

)︁
≥ 1

2𝜀∆𝑡

(︁[︀
𝜙𝑛

ℎ(𝐿)− 𝑔2
]︀2
+
−
[︀
𝜙𝑛−1

ℎ (𝐿)− 𝑔2
]︀2
+

)︁
+

1
2𝜀∆𝑡

(︁[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿)
]︀2
+
−
[︀
− 𝑔1 − 𝜙𝑛−1

ℎ (𝐿)
]︀2
+

)︁
,

which proves the result. �

Now, we obtain some a priori error estimates on the numerical errors 𝜙𝑛 − 𝜙𝑛
ℎ, 𝜓𝑛 − 𝜓𝑛

ℎ , 𝜔̃
𝑛 − 𝜔̃𝑛

ℎ , 𝜙𝑛 − 𝜙𝑛
ℎ,

𝜓𝑛 − 𝜓𝑛
ℎ and 𝜔𝑛 − 𝜔𝑛

ℎ . We have the following.

Theorem 4.2. Let the assumptions of Theorem 2.2 hold. If we denote by (𝜙𝑛, 𝜙𝑛, 𝜓𝑛, 𝜓𝑛, 𝜔𝑛, 𝜔̃𝑛) the solution
to problem (2.2) at time 𝑡𝑛 and by (𝜙𝑛

ℎ, 𝜙
𝑛
ℎ, 𝜓

𝑛
ℎ , 𝜓

𝑛
ℎ , 𝜔

𝑛
ℎ , 𝜔̃

𝑛
ℎ) the solution to problem (4.4), then we have the

following error estimates

max
0≤𝑛≤𝑁

{︁
‖𝜙𝑛 − 𝜙𝑛

ℎ‖
2 + ‖𝜓𝑛 − 𝜓𝑛

ℎ‖
2+ ‖𝜔̃𝑛 − 𝜔̃𝑛

ℎ‖
2 + ‖𝜙𝑛 − 𝜙𝑛

ℎ‖
2
𝐻1(0,𝐿) + ‖𝜓𝑛 − 𝜓𝑛

ℎ‖
2
𝐻1(0,𝐿)+ ‖𝜔𝑛 − 𝜔𝑛

ℎ‖
2
𝐻1(0,𝐿)

}︁
≤ 𝐶Δ𝑡

𝑁∑︁
𝑗=1

(︁
‖𝜙𝑗

𝑡 −
1

Δ𝑡

(︁
𝜙𝑗 − 𝜙𝑗−1

)︁
‖2 + ‖𝜓𝑗

𝑡 −
1

Δ𝑡

(︁
𝜓𝑗 − 𝜓𝑗−1

)︁
‖2 + ‖𝜔̃𝑗

𝑡 −
1

Δ𝑡

(︁
𝜔̃𝑗 − 𝜔̃𝑗−1

)︁
‖2

+ ‖𝜙𝑗 − 𝜂𝑗
ℎ‖

2
𝐻1(0,𝐿) + ‖𝜓𝑗 − 𝜒𝑗

ℎ‖
2
𝐻1(0,𝐿) + ‖𝜔̃𝑗 − 𝜉𝑗

ℎ‖
2
𝐻1(0,𝐿) + ‖𝜙𝑗

𝑡 −
𝜙𝑗 − 𝜙𝑗−1

Δ𝑡
‖2𝐻1(0,𝐿)

+ ‖𝜓𝑗
𝑡 −

𝜓𝑗 − 𝜓𝑗−1

Δ𝑡
‖2𝐻1(0,𝐿) + ‖𝜔𝑗

𝑡 −
𝜔𝑗 − 𝜔𝑗−1

Δ𝑡
‖2𝐻1(0,𝐿)

)︂
+ 𝐶 max

0≤𝑛≤𝑁
‖𝜙𝑛 − 𝜂𝑛

ℎ‖
2

+
𝐶

Δ𝑡

𝑁−1∑︁
𝑗=1

[︁
‖𝜙𝑗 − 𝜂𝑗

ℎ −
(︁
𝜙𝑗+1 − 𝜂𝑗+1

ℎ

)︁
‖2 + ‖𝜓𝑗 − 𝜒𝑗

ℎ −
(︁
𝜓𝑗+1 − 𝜒𝑗+1

ℎ

)︁
‖2 + ‖𝜔̃𝑗 − 𝜉𝑗

ℎ −
(︁
𝜔̃𝑗+1 − 𝜉𝑗+1

ℎ

)︁
‖2
]︁

+ 𝐶 max
0≤𝑛≤𝑁

‖𝜓𝑛 − 𝜒𝑛
ℎ‖

2 + 𝐶 max
0≤𝑛≤𝑁

‖𝜔̃𝑛 − 𝜉𝑛
ℎ‖

2 + 𝐶
(︁
‖𝜙1 − 𝜙0

ℎ‖
2 + ‖𝜓1 − 𝜓0

ℎ‖
2 + ‖𝜔1 − 𝜔̃0

ℎ‖
2

+ ‖𝜙0 − 𝜙0
ℎ‖

2
𝐻1(0,𝐿) + ‖𝜓0 − 𝜓0

ℎ‖
2
𝐻1(0,𝐿) + ‖𝜔0 − 𝜔0

ℎ‖
2
𝐻1(0,𝐿)

)︁
,

for all 𝜂ℎ = {𝜂𝑗
ℎ}𝑁

𝑗=0, 𝜒ℎ = {𝜒𝑗
ℎ}𝑁

𝑗=0 ⊂ 𝑆ℎ
𝐸 , and 𝜉ℎ = {𝜉𝑗

ℎ}𝑁
𝑗=0 ⊂ 𝑆ℎ

0 .

Proof. Subtracting variational equations (2.2) at time 𝑡𝑛 for discrete test functions 𝜂 = 𝜂ℎ, 𝜒 = 𝜒ℎ and 𝜉 = 𝜉ℎ
and the corresponding discrete variational equations (4.4) we find, for all 𝜂ℎ, 𝜒ℎ ∈ 𝑆ℎ

𝐸 , 𝜉ℎ ∈ 𝑆ℎ
0 ,

𝜌1

(︂
𝜙𝑛

𝑡 −
1

∆𝑡
(︀
𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ

)︀
, 𝜂ℎ

)︂
+ 𝑘 (𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛
ℎ) , 𝜂ℎ𝑥) + 𝜁

(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ

+ 𝑙 (𝜔̃𝑛 − 𝜔̃𝑛
ℎ) , 𝜂ℎ𝑥)− 𝑘0𝑙 (𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜂ℎ)− 𝜁𝑙 (𝜔̃𝑥 − 𝜔̃𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜂ℎ)

+
1
𝜀

(︁
[𝜙𝑛(𝐿, 𝑡)− 𝑔2]+ −

[︀
− 𝑔1 − 𝜙𝑛(𝐿, 𝑡)

]︀
+
−
[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+

+
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
𝜂ℎ(𝐿) = 0,

𝜌2

(︂
𝜓𝑛

𝑡 −
1

∆𝑡

(︁
𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ

)︁
, 𝜒ℎ

)︂
+ 𝑏 (𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥, 𝜒ℎ𝑥) + 𝜁

(︁
𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥, 𝜒ℎ𝑥

)︁
+ 𝑘 (𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙(𝜔𝑛 − 𝜔𝑛
ℎ), 𝜒ℎ) + 𝜁

(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃ − 𝜔̃𝑛
ℎ) , 𝜒ℎ

)︁
= 0,

𝜌1

(︂
𝜔̃𝑛

𝑡 −
1

∆𝑡
(︀
𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ

)︀
, 𝜉ℎ

)︂
+ 𝑘0 (𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜉ℎ𝑥) + 𝜁 (𝜔̃𝑛
𝑥 − 𝜔̃𝑛

ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛
ℎ) , 𝜉ℎ𝑥)

+ 𝑘𝑙 (𝜙𝑛
𝑥 − 𝜙𝑛

ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛
ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛

ℎ) , 𝜉ℎ) + 𝜁𝑙
(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃𝑛 − 𝜔̃𝑛
ℎ) , 𝜉ℎ

)︁
= 0,
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and therefore,

𝜌1

(︂
𝜙𝑛

𝑡 −
1

∆𝑡
(︀
𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ

)︀
, 𝜙𝑛 − 𝜙𝑛

ℎ

)︂
+ 𝑘 (𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛
ℎ) , 𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥)

+ 𝜁
(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃𝑛 − 𝜔̃𝑛
ℎ) , 𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥

)︁
− 𝑘0𝑙 (𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜙𝑛 − 𝜙𝑛
ℎ)− 𝜁𝑙 (𝜔̃𝑥 − 𝜔̃𝑛

ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛
ℎ) , 𝜙𝑛 − 𝜙𝑛

ℎ)

+
1
𝜀

(︁[︀
𝜙𝑛(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛(𝐿, 𝑡)

]︀
+
−
[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+

+
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
(𝜙𝑛 − 𝜙𝑛

ℎ) (𝐿)

= 𝜌1

(︂
𝜙𝑡(𝑡𝑛)− 1

∆𝑡
(︀
𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ

)︀
, 𝜙𝑛 − 𝜂ℎ

)︂
+ 𝑘 (𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛
ℎ) , (𝜙𝑛 − 𝜂ℎ)𝑥)

+ 𝜁
(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃𝑛 − 𝜔̃𝑛
ℎ) , (𝜙𝑛 − 𝜂ℎ)𝑥

)︁
− 𝑘0𝑙 (𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜙𝑛 − 𝜂ℎ)− 𝜁𝑙 (𝜔̃𝑥 − 𝜔̃𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜙𝑛 − 𝜂ℎ)

+
1
𝜀

(︁[︀
𝜙𝑛(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛(𝐿, 𝑡)

]︀
+
−
[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+

+
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
(𝜙𝑛 − 𝜂ℎ)(𝐿),

𝜌2

(︂
𝜓𝑛

𝑡 −
1

∆𝑡

(︁
𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ

)︁
, 𝜓𝑛 − 𝜓𝑛

ℎ

)︂
+ 𝑏

(︁
𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥, 𝜓

𝑛
𝑥 − 𝜓𝑛

ℎ𝑥

)︁
+ 𝜁

(︁
𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥, 𝜓

𝑛
𝑥 − 𝜓𝑛

ℎ𝑥

)︁
+ 𝑘

(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛
ℎ) , 𝜓𝑛 − 𝜓𝑛

ℎ

)︁
+ 𝜁

(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃ − 𝜔̃𝑛
ℎ) , 𝜓𝑛 − 𝜓𝑛

ℎ

)︁
= 𝜌2

(︂
𝜓𝑛

𝑡 −
1

∆𝑡

(︁
𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ

)︁
, 𝜓𝑛 − 𝜒ℎ

)︂
+ 𝑏

(︁
𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥,
(︁
𝜓𝑛 − 𝜒ℎ

)︁
𝑥

)︁
+ 𝜁

(︁
𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥,
(︁
𝜓𝑛 − 𝜒ℎ

)︁
𝑥

)︁
+ 𝑘

(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛
ℎ) , 𝜓𝑛 − 𝜒ℎ

)︁
+ 𝜁

(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃ − 𝜔̃𝑛
ℎ) , 𝜓𝑛 − 𝜒ℎ

)︁
,

𝜌1

(︂
𝜔̃𝑛

𝑡 −
1

∆𝑡
(︀
𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ

)︀
, 𝜔̃𝑛 − 𝜔̃𝑛

ℎ

)︂
+ 𝑘0 (𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , 𝜔̃𝑛
𝑥 − 𝜔̃𝑛

ℎ𝑥)

+ 𝜁 (𝜔̃𝑛
𝑥 − 𝜔̃𝑛

ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛
ℎ) , 𝜔̃𝑛

𝑥 − 𝜔̃𝑛
ℎ𝑥) + 𝑘𝑙 (𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔𝑛 − 𝜔𝑛
ℎ) , 𝜔̃𝑛 − 𝜔̃𝑛

ℎ)

+ 𝜁𝑙
(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃𝑛 − 𝜔̃𝑛
ℎ) , 𝜔̃𝑛 − 𝜔̃𝑛

ℎ

)︁
= 𝜌1

(︂
𝜔̃𝑛

𝑡 −
1

∆𝑡
(︀
𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ

)︀
, 𝜔̃𝑛 − 𝜉ℎ

)︂
+ 𝑘0 (𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛

ℎ) , (𝜔𝑛 − 𝜉ℎ)𝑥)

+ 𝜁 (𝜔̃𝑛
𝑥 − 𝜔̃𝑛

ℎ𝑥 − 𝑙 (𝜙𝑛 − 𝜙𝑛
ℎ) , (𝜔̃𝑛 − 𝜉ℎ)𝑥) + 𝑘𝑙 (𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙(𝜔𝑛 − 𝜔𝑛
ℎ), 𝜔̃𝑛 − 𝜉ℎ)

+ 𝜁𝑙
(︁
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥 + 𝜓𝑛 − 𝜓𝑛

ℎ + 𝑙 (𝜔̃𝑛 − 𝜔̃𝑛
ℎ) , 𝜔̃𝑛 − 𝜉ℎ

)︁
.

Now, we observe that(︂
𝜙𝑛

𝑡 −
1

∆𝑡
(︀
𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ

)︀
, 𝜙𝑛 − 𝜙𝑛

ℎ

)︂
≥
(︂
𝜙𝑛

𝑡 −
1

∆𝑡
(︀
𝜙𝑛 − 𝜙𝑛−1

)︀
, 𝜙𝑛 − 𝜙𝑛

ℎ

)︂
+

1
∆𝑡
(︀
‖𝜙𝑛 − 𝜙𝑛

ℎ‖ − ‖𝜙𝑛−1 − 𝜙𝑛−1
ℎ ‖

)︀
,(︂

𝜓𝑛
𝑡 −

1
∆𝑡

(︁
𝜓𝑛

ℎ− 𝜓𝑛−1
ℎ

)︁
, 𝜓𝑛− 𝜓𝑛

ℎ

)︂
≥
(︂
𝜓𝑛

𝑡 −
1

∆𝑡

(︁
𝜓𝑛− 𝜓𝑛−1

)︁
, 𝜓𝑛− 𝜓𝑛

ℎ

)︂
+

1
∆𝑡

(︁
‖𝜓𝑛− 𝜓𝑛

ℎ‖ − ‖𝜓𝑛−1− 𝜓𝑛−1
ℎ ‖

)︁
,(︂

𝜔̃𝑛
𝑡 −

1
∆𝑡
(︀
𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ

)︀
, 𝜔̃𝑛 − 𝜔̃𝑛

ℎ

)︂
≥
(︂
𝜔̃𝑛

𝑡 −
1

∆𝑡
(︀
𝜔̃𝑛 − 𝜔̃𝑛−1

)︀
, 𝜔̃𝑛 − 𝜔̃𝑛

ℎ

)︂
+

1
∆𝑡
(︀
‖𝜔̃𝑛 − 𝜔̃𝑛

ℎ‖ − ‖𝜔̃𝑛−1 − 𝜔̃𝑛−1
ℎ ‖

)︀
,

(𝜙𝑛
𝑥 − 𝜙𝑛

ℎ𝑥, 𝜙
𝑛
𝑥 − 𝜙𝑛

ℎ𝑥) ≥
(︂
𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥, 𝜙

𝑛
𝑥𝑡 −

𝜙𝑛
𝑥 − 𝜙𝑛−1

𝑥

∆𝑡

)︂
+

1
∆𝑡
(︀
‖𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥‖2 − ‖𝜙𝑛−1

𝑥 − 𝜙𝑛−1
ℎ𝑥 ‖2

)︀
,(︁

𝜓𝑛
𝑥 − 𝜓𝑛

ℎ𝑥, 𝜓
𝑛
𝑥 − 𝜓𝑛

ℎ𝑥

)︁
≥
(︂
𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥, 𝜓

𝑛
𝑥𝑡 −

𝜓𝑛
𝑥 − 𝜓𝑛−1

𝑥

∆𝑡

)︂
+

1
∆𝑡
(︀
‖𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥‖2 − ‖𝜓𝑛−1

𝑥 − 𝜓𝑛−1
ℎ𝑥 ‖2

)︀
,
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(𝜔𝑛
𝑥 − 𝜔𝑛

ℎ𝑥, 𝜔̃
𝑛
𝑥 − 𝜔̃𝑛

ℎ𝑥) ≥
(︂
𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥, 𝜔

𝑛
𝑥𝑡 −

𝜔𝑛
𝑥 − 𝜔𝑛−1

𝑥

∆𝑡

)︂
+

1
∆𝑡
(︀
‖𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥‖2 − ‖𝜔𝑛−1

𝑥 − 𝜔𝑛−1
ℎ𝑥 ‖2

)︀
,

(𝜙𝑛 − 𝜙𝑛
ℎ, 𝜙

𝑛 − 𝜙𝑛
ℎ) ≥

(︂
𝜙𝑛 − 𝜙𝑛

ℎ, 𝜙
𝑛
𝑡 −

𝜙𝑛 − 𝜙𝑛−1

∆𝑡

)︂
+

1
∆𝑡
(︀
‖𝜙𝑛 − 𝜙𝑛

ℎ‖2 − ‖𝜙𝑛−1 − 𝜙𝑛−1
ℎ ‖2

)︀
,(︁

𝜓𝑛 − 𝜓𝑛
ℎ , 𝜓

𝑛 − 𝜓𝑛
ℎ

)︁
≥
(︂
𝜓𝑛 − 𝜓𝑛

ℎ , 𝜓
𝑛
𝑡 −

𝜓𝑛 − 𝜓𝑛−1

∆𝑡

)︂
+

1
∆𝑡
(︀
‖𝜓𝑛 − 𝜓𝑛

ℎ‖2 − ‖𝜓𝑛−1 − 𝜓𝑛−1
ℎ ‖2

)︀
,

(𝜔𝑛 − 𝜔𝑛
ℎ , 𝜔̃

𝑛 − 𝜔̃𝑛
ℎ) ≥

(︂
𝜔𝑛 − 𝜔𝑛

ℎ , 𝜔
𝑛
𝑡 −

𝜔𝑛 − 𝜔𝑛−1

∆𝑡

)︂
+

1
∆𝑡
(︀
‖𝜔𝑛 − 𝜔𝑛

ℎ‖2 − ‖𝜔𝑛−1 − 𝜔𝑛−1
ℎ ‖2

)︀
,⃒⃒⃒⃒

1
𝜀

(︁[︀
𝜙𝑛(𝐿, 𝑡)− 𝑔2

]︀
+
−
[︀
− 𝑔1 − 𝜙𝑛(𝐿, 𝑡)

]︀
+
−
[︀
𝜙𝑛

ℎ(𝐿, 𝑡)− 𝑔2
]︀
+

+
[︀
− 𝑔1 − 𝜙𝑛

ℎ(𝐿, 𝑡)
]︀
+

)︁
𝜂(𝐿)

⃒⃒⃒⃒
≤ 𝐶

(︁
‖𝜙𝑛 − 𝜙𝑛

ℎ‖2𝐻1(0,𝐿) + ‖𝜂‖2𝐻1(0,𝐿)

)︁
,

and summing up the previous three equations, using Young’s inequality (2.15) several times and Cauchy–Schwarz
inequality we find that, for all 𝜂ℎ, 𝜒ℎ ∈ 𝑆ℎ

𝐸 , 𝜉ℎ ∈ 𝑆ℎ
0 ,

1
∆𝑡
(︀
‖𝜙𝑛 − 𝜙𝑛

ℎ‖ − ‖𝜙𝑛−1 − 𝜙𝑛−1
ℎ ‖

)︀
+

1
∆𝑡

(︁
‖𝜓𝑛 − 𝜓𝑛

ℎ‖ − ‖𝜓𝑛−1 − 𝜓𝑛−1
ℎ ‖

)︁
+

1
∆𝑡
(︀
‖𝜔̃𝑛 − 𝜔̃𝑛

ℎ‖ − ‖𝜔̃𝑛−1 − 𝜔̃𝑛−1
ℎ ‖

)︀
+

1
∆𝑡
(︀
‖𝜙𝑛

𝑥 − 𝜙𝑛
ℎ𝑥‖2 − ‖𝜙𝑛−1

𝑥 − 𝜙𝑛−1
ℎ𝑥 ‖2

)︀
+

1
∆𝑡
(︀
‖𝜓𝑛

𝑥 − 𝜓𝑛
ℎ𝑥‖2 − ‖𝜓𝑛−1

𝑥 − 𝜓𝑛−1
ℎ𝑥 ‖2

)︀
+

1
∆𝑡
(︀
‖𝜔𝑛

𝑥 − 𝜔𝑛
ℎ𝑥‖2 − ‖𝜔𝑛−1

𝑥 − 𝜔𝑛−1
ℎ𝑥 ‖2

)︀
+

1
∆𝑡
(︀
‖𝜙𝑛 − 𝜙𝑛

ℎ‖2 − ‖𝜙𝑛−1 − 𝜙𝑛−1
ℎ ‖2

)︀
+

1
∆𝑡
(︀
‖𝜓𝑛 − 𝜓𝑛

ℎ‖2 − ‖𝜓𝑛−1 − 𝜓𝑛−1
ℎ ‖2

)︀
+

1
∆𝑡
(︀
‖𝜔𝑛 − 𝜔𝑛

ℎ‖2 − ‖𝜔𝑛−1 − 𝜔𝑛−1
ℎ ‖2

)︀
≤ 𝐶

(︃
‖𝜙𝑛

𝑡 −
1

∆𝑡
(︀
𝜙𝑛 − 𝜙𝑛−1

)︀
‖2 + ‖𝜓𝑛

𝑡 −
1

∆𝑡

(︁
𝜓𝑛 − 𝜓𝑛−1

)︁
‖2

+ ‖𝜔̃𝑛
𝑡 −

1
∆𝑡
(︀
𝜔̃𝑛 − 𝜔̃𝑛−1

)︀
‖2 + ‖𝜙𝑛 − 𝜂ℎ‖2𝐻1(0,𝐿)

+ ‖𝜓𝑛 − 𝜒ℎ‖2𝐻1(0,𝐿) + ‖𝜔̃𝑛 − 𝜉ℎ‖2𝐻1(0,𝐿) + ‖𝜙𝑛
𝑥𝑡 −

𝜙𝑛
𝑥 − 𝜙𝑛−1

𝑥

∆𝑡
‖2

+ ‖𝜓𝑛
𝑥𝑡 −

𝜓𝑛
𝑥 − 𝜓𝑛−1

𝑥

∆𝑡
‖2 + ‖𝜔𝑛

𝑥𝑡 −
𝜔𝑛

𝑥 − 𝜔𝑛−1
𝑥

∆𝑡
‖2

+
(︂

1
∆𝑡
(︀
𝜙𝑛 − 𝜙𝑛−1 −

(︀
𝜙𝑛

ℎ − 𝜙𝑛−1
ℎ

)︀)︀
, 𝜙𝑛 − 𝜂ℎ

)︂
+ ‖𝜙𝑛

𝑡 −
𝜙𝑛 − 𝜙𝑛−1

∆𝑡
‖2

+
(︂

1
∆𝑡

(︁
𝜓𝑛 − 𝜓𝑛−1 −

(︁
𝜓𝑛

ℎ − 𝜓𝑛−1
ℎ

)︁)︁
, 𝜓𝑛 − 𝜒ℎ

)︂
+ ‖𝜓𝑛

𝑡 −
𝜓𝑛 − 𝜓𝑛−1

∆𝑡
‖2

+
(︂

1
∆𝑡
(︀
𝜔̃𝑛 − 𝜔̃𝑛−1 −

(︀
𝜔̃𝑛

ℎ − 𝜔̃𝑛−1
ℎ

)︀)︀
, 𝜔̃𝑛 − 𝜉ℎ

)︂
+ ‖𝜔𝑛

𝑡 −
𝜔𝑛 − 𝜔𝑛−1

∆𝑡
‖2
)︃
.

Multiplying the above estimates by ∆𝑡 and summing up to 𝑛, it follows that, for all 𝜂ℎ = {𝜂𝑗
ℎ}𝑛

𝑗=0, 𝜒ℎ =
{𝜒𝑗

ℎ}𝑛
𝑗=0 ⊂ 𝑆ℎ

𝐸 , 𝜉ℎ = {𝜉𝑗
ℎ}𝑛

𝑗=0 ⊂ 𝑆ℎ
0 ,

‖𝜙𝑛 − 𝜙𝑛
ℎ‖+ ‖𝜓𝑛 − 𝜓𝑛

ℎ‖+ ‖𝜔̃𝑛 − 𝜔̃𝑛
ℎ‖+ ‖𝜙𝑛 − 𝜙𝑛

ℎ‖2𝐻1(0,𝐿) + ‖𝜓𝑛 − 𝜓𝑛
ℎ‖2𝐻1(0,𝐿) + ‖𝜔𝑛 − 𝜔𝑛

ℎ‖2𝐻1(0,𝐿)

≤ 𝐶∆𝑡
𝑛∑︁

𝑗=1

(︃
‖𝜙𝑗

𝑡 −
1

∆𝑡
(︀
𝜙𝑗 − 𝜙𝑗−1

)︀
‖2 + ‖𝜓𝑗

𝑡 −
1

∆𝑡

(︁
𝜓𝑗 − 𝜓𝑗−1

)︁
‖2 + ‖𝜔̃𝑗

𝑡 −
1

∆𝑡
(︀
𝜔̃𝑗 − 𝜔̃𝑗−1

)︀
‖2
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+ ‖𝜙𝑗 − 𝜂𝑗
ℎ‖

2
𝐻1(0,𝐿) + ‖𝜓𝑗 − 𝜒𝑗

ℎ‖
2
𝐻1(0,𝐿) + ‖𝜔̃𝑗 − 𝜉𝑗

ℎ‖
2
𝐻1(0,𝐿) + ‖𝜙𝑗

𝑡 −
𝜙𝑗 − 𝜙𝑗−1

∆𝑡
‖2𝐻1(0,𝐿)

+ ‖𝜓𝑗
𝑡 −

𝜓𝑗 − 𝜓𝑗−1

∆𝑡
‖2𝐻1(0,𝐿) + ‖𝜔𝑗

𝑡 −
𝜔𝑗 − 𝜔𝑗−1

∆𝑡
‖2𝐻1(0,𝐿) +

(︂
1

∆𝑡

(︁
𝜙𝑗 − 𝜙𝑗−1 −

(︁
𝜙𝑗

ℎ − 𝜙𝑗−1
ℎ

)︁)︁
, 𝜙𝑗 − 𝜂𝑗

ℎ

)︂
+
(︂

1
∆𝑡

(︁
𝜓𝑗 − 𝜓𝑗−1 −

(︁
𝜓𝑗

ℎ − 𝜓𝑗−1
ℎ

)︁)︁
, 𝜓𝑗 − 𝜒𝑗

ℎ

)︂
+
(︂

1
∆𝑡

(︁
𝜔̃𝑗 − 𝜔̃𝑗−1 −

(︁
𝜔̃𝑗

ℎ − 𝜔̃𝑗−1
ℎ

)︁)︁
, 𝜔̃𝑗 − 𝜉𝑗

ℎ

)︂)︃
+ 𝐶

(︁
‖𝜙0 − 𝜙0

ℎ‖+ ‖𝜓1 − 𝜓0
ℎ‖+ ‖𝜔1 − 𝜔̃0

ℎ‖+ ‖𝜙0
𝑥 − 𝜙0

ℎ𝑥‖2 + ‖𝜓0
𝑥 − 𝜓0

ℎ𝑥‖2 + ‖𝜔0
𝑥 − 𝜔0

ℎ𝑥‖2
)︁
.

Taking into account that

∆𝑡
𝑛∑︁

𝑗=1

(︂
1

∆𝑡

(︁
𝜙𝑗 − 𝜙𝑗−1 −

(︁
𝜙𝑗

ℎ − 𝜙𝑗−1
ℎ

)︁)︁
, 𝜙𝑗 − 𝜂𝑗

ℎ

)︂
=

𝑛∑︁
𝑗=1

(︁
𝜙𝑗 − 𝜙𝑗

ℎ −
(︁
𝜙𝑗−1 − 𝜙𝑗−1

ℎ

)︁
, 𝜙𝑗 − 𝜂𝑗

ℎ

)︁

= (𝜙𝑛 − 𝜙𝑛
ℎ, 𝜙

𝑛 − 𝜂𝑛
ℎ) +

(︀
𝜙0

ℎ − 𝜙1, 𝜙
1 − 𝜂1

ℎ

)︀
+

𝑛−1∑︁
𝑗=1

(︁
𝜙𝑗 − 𝜙𝑗

ℎ, 𝜙
𝑗 − 𝜂𝑗

ℎ −
(︁
𝜙𝑗+1 − 𝜂𝑗+1

ℎ

)︁)︁
,

where we omit the similar estimates in 𝜓 and 𝜔̃ for the sake of simplicity in the writing, using a discrete version
of Gronwall’s inequality, the result follows. �

The error estimates provided in the above theorem can be used to obtain the convergence order of the approx-
imations introduced in problem (4.4). For instance, under suitable regularity conditions, the linear convergence
is deduced and summarized in the following.

Corollary 4.3. If we assume the following additional regularity conditions:

𝜙, 𝜓, 𝜔 ∈ 𝐶1([0, 𝑇 ];𝐻2(𝐼)) ∩𝐻3(0, 𝑇 ;𝐿2(𝐼)) ∩𝐻2(0, 𝑇 ;𝐻1(𝐼)),

then there exists a positive constant 𝐶 > 0, independent of discretization parameters ℎ and ∆𝑡, such that

max
0≤𝑛≤𝑁

{︁
‖𝜙𝑛 − 𝜙𝑛

ℎ‖+ ‖𝜓𝑛 − 𝜓𝑛
ℎ‖+ ‖𝜔̃𝑛 − 𝜔̃𝑛

ℎ‖+ ‖𝜙𝑛 − 𝜙𝑛
ℎ‖𝐻1(0,𝐿)

+‖𝜓𝑛 − 𝜓𝑛
ℎ‖𝐻1(0,𝐿) + ‖𝜔𝑛 − 𝜔𝑛

ℎ‖𝐻1(0,𝐿)

}︁
≤ 𝐶(ℎ+ ∆𝑡).

The proof of the above corollary is shown using classical results on the approximation by finite elements (see
[16]) and the estimates like (see [28]),

𝐶

∆𝑡

𝑁−1∑︁
𝑗=1

‖𝜙𝑗 − 𝜂𝑗
ℎ − (𝜙𝑗+1 − 𝜂𝑗+1

ℎ )‖2 ≤ 𝐶ℎ2‖𝜙‖2𝐻2(0,𝑇 ;𝐻1(0,𝐿)).

5. Numerical experiments

In this section we present the procedure used to find the numerical solution and the results of some numerical
simulations.

To solve the nonlinear problem (4.4) we use the iterative process:

𝜌2

∆𝑡

(︁
𝜓𝑛,𝑗

ℎ − 𝜓𝑛−1
ℎ , 𝜂ℎ

)︁
+ 𝑏

(︁
𝜓𝑛,𝑗

ℎ𝑥 , 𝜂ℎ𝑥

)︁
+ 𝜁

(︁
𝜓𝑛,𝑗

ℎ𝑥 , 𝜂ℎ𝑥

)︁
+ 𝑘

(︁
𝜙𝑛,𝑗−1

ℎ𝑥 + 𝜓𝑛,𝑗
ℎ + 𝑙𝜔𝑛,𝑗−1

ℎ , 𝜂ℎ

)︁
+ 𝜁

(︁
𝜙𝑛,𝑗−1

ℎ𝑥 + 𝜓𝑛,𝑗
ℎ + 𝑙𝜔̃𝑛,𝑗−1

ℎ , 𝜂ℎ

)︁
= 0,

𝜌1

∆𝑡

(︁
𝜔̃𝑛,𝑗

ℎ − 𝜔̃𝑛−1
ℎ , 𝜉ℎ

)︁
+ 𝑘0

(︁
𝜔𝑛,𝑗

ℎ𝑥 − 𝑙𝜙𝑛,𝑗−1
ℎ , 𝜉ℎ𝑥

)︁
+ 𝛾0

(︁
𝜔̃𝑛,𝑗

ℎ𝑥 − 𝑙𝜙𝑛,𝑗−1
ℎ , 𝜉ℎ𝑥

)︁
+ 𝑘𝑙

(︁
𝜙𝑛,𝑗−1

ℎ𝑥 + 𝜓𝑛,𝑗
ℎ + 𝑙𝜔𝑛

ℎ , 𝜉ℎ

)︁
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+ 𝛾1𝑙
(︁
𝜙𝑛,𝑗−1

ℎ𝑥 + 𝜓𝑛,𝑗
ℎ + 𝑙𝜔̃𝑛,𝑗

ℎ , 𝜉ℎ

)︁
= 0,

𝜌1

∆𝑡

(︁
𝜙𝑛,𝑗

ℎ − 𝜙𝑛−1
ℎ , 𝜁ℎ

)︁
+ 𝑘

(︁
𝜙𝑛,𝑗

ℎ𝑥 + 𝜓𝑛,𝑗
ℎ + 𝑙𝜔𝑛,𝑗

ℎ , 𝜁ℎ𝑥

)︁
+ 𝛾1

(︁
𝜙𝑛,𝑗

ℎ𝑥 + 𝜓𝑛,𝑗
ℎ + 𝑙𝜔̃𝑛,𝑗

ℎ , 𝜁ℎ𝑥

)︁
− 𝑘0𝑙

(︁
𝜔𝑛,𝑗

ℎ𝑥 − 𝑙𝜙𝑛,𝑗
ℎ , 𝜁ℎ

)︁
− 𝛾0𝑙

(︁
𝜔̃𝑛,𝑗

ℎ𝑥 − 𝑙𝜙𝑛,𝑗
ℎ , 𝜁ℎ

)︁
+ 𝑔

(︁
𝜙𝑛,𝑗−1

ℎ , 𝜙𝑛,𝑗
)︁

(𝐿) = 0,

where

𝑔
(︁
𝜙𝑛,𝑗−1

ℎ , 𝜙𝑛,𝑗
ℎ

)︁
(𝐿) =

⎧⎪⎨⎪⎩
1
𝜀

(︁
𝜙𝑛,𝑙

ℎ (𝐿)− 𝑔2

)︁
if 𝜙𝑛,𝑗−1

ℎ (𝐿) ≥ 𝑔2,

0 if − 𝑔1 < 𝜙𝑛,𝑗−1
ℎ (1) < 𝑔2,

1
𝜀 (𝑔1 + 𝜙𝑛,𝑗

ℎ (𝐿)) if 𝜙𝑛,𝑗−1
ℎ (𝐿) ≤ −𝑔1,

and, for 𝑗 = 1, 2, . . . ,

𝜓𝑛,𝑗
ℎ = 𝜓𝑛−1

ℎ + ∆𝑡𝜓𝑛,𝑗
ℎ , 𝜔𝑛,𝑗

ℎ = 𝜔𝑛−1
ℎ + ∆𝑡𝜔̃𝑛,𝑗

ℎ , 𝜙𝑛,𝑗
ℎ = 𝜙𝑛−1

ℎ + ∆𝑡𝜙𝑛,𝑗
ℎ .

Hence, three uncoupled linear systems of algebraic equations, which have a unique solution, are solved. First,
we compute 𝜓𝑛,𝑗

ℎ , then 𝜔̃𝑛,𝑗
ℎ and finally 𝜙𝑛,𝑗

ℎ .

The iterations are started with 𝜓𝑛,0
ℎ = 𝜓𝑛−1

ℎ , 𝜔̃𝑛,0
ℎ = 𝜔̃𝑛−1

ℎ , 𝜙𝑛,0
𝑛 = 𝜙𝑛−1

ℎ and a tolerance of 10−7 is used
to stop the process. In all the simulations, we choose a circular beam with radius of curvature 𝑅 = 1 with
𝑔1 = 0.01, 𝑔2 = 0.02, 𝜀 = 0.001, 𝜌1 = 1, 𝜌2 = 2, 𝑘 = 1, 𝑘0 = 2, 𝑏 = 1 and 𝜁 = 0.1.

5.1. Experiment 1: long time evolution

In this experiment, the length of the beam is 𝐿 = 0.5𝜋 and the discretization parameters are ℎ = 0.5𝜋/100
and ∆𝑡 = 10−4. The initial conditions are

𝜙0(𝑥) = 𝑔1

(︁
(2𝑥/𝜋)2 − 4𝑥/𝜋

)︁
, 𝜙1(𝑥) = 20𝑥(𝑥− 0.5𝜋)2,

𝜓0 = 𝜓1 = 𝜔0 = 0, 𝜔1 = 𝑥3 − 0.5𝜋𝑥2,

and we note that, at initial time, the beam is in contact with the lower obstacle.
The long time evolution of 𝜓 and 𝜙 at contact point 𝑥 = 𝐿 is presented in Figure 2. An oscillatory behavior

is observed with the beam getting in contact with both stops during some time interval. As the system evolves,
contact is lost. The spatial position of the beam, obtained taking into account the longitudinal and transverse
displacements, is shown in Figure 3 where we see that, at time 𝑡 = 80, the configuration is close to the reference
configuration, that is, a quarter circle. The results at point 𝑥 = 0.5𝐿 are displayed in Figure 4.

In Figure 5 the discrete energy is seen and exponential decay rate seems to be achieved after time 𝑡 = 10.

5.2. Experiment 2: numerical convergence

Next, we examine numerically the error estimate for a beam with length 𝐿 = 1 considering the academic
problem:

𝜌1𝜙𝑡𝑡 − 𝑘(𝜙𝑥 + 𝑙𝜔 + 𝜓)𝑥 − 𝜁(𝜙𝑥 + 𝑙𝑤 + 𝜓)𝑥𝑡 − 𝑘0𝑙(𝜔𝑥 − 𝑙𝜙)− 𝜁𝑙(𝑤𝑥 − 𝑙𝜙)𝑡 = 𝑓1,

𝜌2𝜓𝑡𝑡 − 𝑏𝜓𝑥𝑥 − 𝜁𝜓𝑥𝑥𝑡 + 𝑘(𝜙𝑥 + 𝜓 + 𝑙𝜔) + 𝜁(𝜙𝑥 + 𝑙𝜔 + 𝜓)𝑡 = 𝑓2,

𝜌1𝜔𝑡𝑡 − 𝑘0(𝜔𝑥 − 𝑙𝜙)𝑥 − 𝜁(𝜔𝑥 − 𝑙𝜙)𝑥𝑡 + 𝑘𝑙(𝜙𝑥 + 𝜓 + 𝑙𝜔) + 𝜁𝑙(𝜙𝑥 + 𝜓 + 𝑙𝜔)𝑡 = 𝑓3,

𝜎 = 𝑘(𝜙𝑥 + 𝑙𝜔 + 𝜓) + 𝜁(𝜙𝑥 + 𝑙𝑤 + 𝜓)𝑡 + 𝑓4,

with exact solution:

𝜙(𝑥, 𝑡) = −𝑔2(𝑥2 − 2𝑥)𝑡2/
√

2,
𝜓(𝑥, 𝑡) = 0.5𝑡2(0.5𝑥2 − 𝑥),
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Figure 2. The evolution in time of 𝜙 and 𝜓 at the contact point 𝐿 = 0.5𝜋.
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Table 1. Computed errors when 𝑡𝑛 = 1.5.

𝑀 Δ𝑡 Error

40 2.50× 10−3 4.922× 10−2

80 1.25× 10−3 2.498× 10−2

160 6.25× 10−4 1.262× 10−2

320 3.125× 10−4 6.349× 10−3

640 1.5625× 10−4 3.185× 10−3

1280 7.8125× 10−5 1.595× 10−3

𝜔(𝑥, 𝑡) = 𝑡𝑥2(𝑥− 1)2,

𝜎(𝑥, 𝑡) = −1
𝜀

[𝑔2(𝑡2/
√

2)− 1]+,

and functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 calculated from the given solution. Note that, when 𝑡2 ≥
√

2, the beam is in contact
with the upper obstacle.

The computed errors given by

‖𝜙𝑛 − 𝜙𝑛
ℎ‖+ ‖𝜓𝑛 − 𝜓𝑛

ℎ‖+ ‖𝜔̃𝑛 − 𝜔̃𝑛
ℎ‖+ ‖𝜙𝑛 − 𝜙𝑛

ℎ‖𝐻1(0,𝐿) + ‖𝜓𝑛 − 𝜓𝑛
ℎ‖𝐻1(0,𝐿) + ‖𝜔𝑛 − 𝜔𝑛

ℎ‖𝐻1(0,𝐿).

at 𝑡𝑛 = 1.5 are displayed in Table 1. We observe that the errors decrease by a factor of approximately 2 when
the discretization parameters are halved.
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[12] G. Bonfanti, J.E. Muñoz Rivera and M.G. Naso, Global existence and exponential stability for a contact problem between two
thermoelastic beams. J. Math. Anal. Appl. 345 (2008) 186–202.
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