New H ( div ) -conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1005-1037

This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H(div) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L2-norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.

DOI : 10.1051/m2an/2021013
Classification : 65N12, 65N15, 65N30, 74G15
Keywords: Multiscale, mixed finite elements, linear elasticity, hybridization
@article{M2AN_2021__55_3_1005_0,
     author = {Devloo, Philippe R. B. and Farias, Agnaldo M. and Gomes, S\^onia M. and Pereira, Weslley and dos Santos, Antonio J. B. and Valentin, Fr\'ed\'eric},
     title = {New $H ( \mathrm{div} )$-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1005--1037},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021013},
     mrnumber = {4253171},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021013/}
}
TY  - JOUR
AU  - Devloo, Philippe R. B.
AU  - Farias, Agnaldo M.
AU  - Gomes, Sônia M.
AU  - Pereira, Weslley
AU  - dos Santos, Antonio J. B.
AU  - Valentin, Frédéric
TI  - New $H ( \mathrm{div} )$-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1005
EP  - 1037
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021013/
DO  - 10.1051/m2an/2021013
LA  - en
ID  - M2AN_2021__55_3_1005_0
ER  - 
%0 Journal Article
%A Devloo, Philippe R. B.
%A Farias, Agnaldo M.
%A Gomes, Sônia M.
%A Pereira, Weslley
%A dos Santos, Antonio J. B.
%A Valentin, Frédéric
%T New $H ( \mathrm{div} )$-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1005-1037
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021013/
%R 10.1051/m2an/2021013
%G en
%F M2AN_2021__55_3_1005_0
Devloo, Philippe R. B.; Farias, Agnaldo M.; Gomes, Sônia M.; Pereira, Weslley; dos Santos, Antonio J. B.; Valentin, Frédéric. New $H ( \mathrm{div} )$-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1005-1037. doi: 10.1051/m2an/2021013

[1] A. Abdulle, Analysis of a heterogeneous multiscale FEM for problems in elasticity. Math. Models Methods Appl. Sci. 16 (2006) 615–635. | MR | Zbl | DOI

[2] D. N. Arnold, D. Boffi and R. S. Falk, Quadrilateral H ( div ) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451. | MR | Zbl | DOI

[3] D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76 (2007) 1699–1723. | MR | Zbl | DOI

[4] D. N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions. Math. Comp. 77 (2008) 1229–1251. | MR | Zbl | DOI

[5] D. N. Arnold, G. Awanou, B. W. Bestbury and W. Qiu, Mixed finite elements for elasticity on quadrilateral meshes. Adv. Comput. Math. 41 (2015) 553–572. | MR | DOI

[6] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8 (2009) 95–121. | MR | Zbl | DOI

[7] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer-Verlag, New York (2013). | MR | Zbl

[8] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO: Anal. Numér. 2 (1974) 129–151. | MR | Zbl | Numdam

[9] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solutions of Elliptic Systems, edited by W. Hackbusch. Braunschweig, Wiesbaden (1984) 11–19. | MR | Zbl | DOI

[10] F. Brezzi, J. Douglas and L. D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | MR | Zbl | DOI

[11] M. Buck, O. Iliev and H. Andrä, Multiscale finite element coarse spaces for the application to linear elasticity. Cent. Eur. J. Math. 11 (2013) 608–701. | MR | Zbl

[12] M. Buck, O. Iliev and H. Andrä, Multiscale finite elements for linear elasticity: oscillatory boundary conditions. In Lect. Not. Comp. Sci. Springer International Publishing (2014) 237–245. | MR

[13] B. Cockburn, J. Gopalakrishnan and J. Guzmán, A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79 (2010) 1331–1349. | MR | Zbl | DOI

[14] M. Crouzeix and P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM:M2AN 7 (1973) 33–75. | MR | Zbl | Numdam

[15] J. De La Puente, HPC4E Seismic Test Suite. https://hpc4e.eu/downloads/datasets-and-software (2016).

[16] L. Demkowicz, Polynomial exact sequences and projection-based interpolation with application to Maxwell equations. In: Mixed Finite Elements, Compatibility Conditions, and Applications, edited by D. Boffi and L. Gastaldi. Vol. 1939 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (2008) 101–158. | Zbl | DOI

[17] P.R.B. Devloo, C. M. A. A. Bravo and E. C. Rylo, Systematic and generic construction of shape functions for p -adaptive meshes of multidimensional finite elements. Comput. Meth. Appl. Mech. Eng. 198 (2009) 1716–1725. | MR | Zbl | DOI

[18] P. R. B. Devloo, A. M. Farias and S. M. Gomes, A remark concerning divergence accuracy order for 𝐇 ( div ) -conforming finite element flux approximations. Comput. Math. Appl. 77 (2019) 1864–1872. | MR | DOI

[19] P. R. B. Devloo, S. M. Gomes, T. Quinelato and S. Tian, Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry. Comput. Math. App. 79 (2020) 2678–2700. | MR

[20] O. Durán, P. R. B. Devloo, S. M. Gomes and F. Valentin, A multiscale hybrid method for Darcy’s problems using mixed finite element local solvers. Comput. Meth. Appl. Mech. Eng. 354 (2019) 213–244. | MR | DOI

[21] Y. Efendiev and Y. Hou, Multiscale Finite Element Methods: Theory and Applications, Tutorials in the Applied Mathematical Sciences. Springer, New York 4 (2009). | MR | Zbl

[22] R. S. Falk, Finite element methods for linear elasticity. In: Mixed Finite Elements, Compatibility Conditions, and Applications, edited by D. Boffi and L. Gastaldi. Vol. 1939 of Lecture Notes in MathematicsSpringer, Berlin, Heidelberg (2008) 159–194. | Zbl | DOI

[23] M. Farhloul and M. Fortin, Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76 (1997) 419–440. | MR | Zbl | DOI

[24] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, New York (1991). | MR | Zbl

[25] A. T. A. Gomes, D. Paredes, W. D. S. Pereira, R. P. Souto and F. Valentin, Performance analysis of the MHM simulator in a petascale machine. In: Proceedings of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering. ABMEC (2017). | DOI

[26] C. Harder, D. Paredes and F. Valentin, A family of multiscale hybrid-mixed finite element methods for the darcy equation with rough coefficients. J. Comput. Phys. 245 (2013) 107–130. | MR | DOI

[27] C. Harder, D. Paredes and F. Valentin, On a multiscale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients. SIAM Multiscale Model. Simul. 3 (2015) 491–518. | MR | DOI

[28] C. Harder, A. L. Madureira and F. Valentin, A hybrid-mixed method for elasticity. ESAIM:M2AN 50 (2016) 311–336. | MR | Numdam | DOI

[29] P. Henning and A. Persson, A multiscale method for linear elasticity reducing poisson locking. Comput. Meth. Appl. Mech. Eng. 310 (2016) 156–171. | MR | DOI

[30] E. Khattatov and I. Yotov, Domain decomposition and multiscale mortar mixed finite elements methods for linear elasticity with weak stress symmetry. Math. Model. Numer. Anal. 53 (2019) 2081–2108. | MR | Numdam | DOI

[31] M. Kuchta, K.-A. Mardal and M. Mortensen, On the singular Neumann problem in linear elasticity. Numer. Linear. Algebra Appl. 26 (2019) e2212. | MR | DOI

[32] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. | MR | Zbl | DOI

[33] L. Mansfield, Finite element subspaces with optimal rates of convergence for the stationary Stokes problem. RAIRO Anal. Numer. 16 (1982) 49–66. | MR | Zbl | Numdam | DOI

[34] D. Paredes, F. Valentin and H. M. Versieux, On the robustness of multiscale hybrid-mixed methods. Math. Comput. 86 (2016) 525–548. | MR | DOI

[35] W. S. Pereira, Multiscale hybrid-mixed methods for heterogeneous elastic models. Ph.D. thesis, LNCC, RJ, BR (2019).

[36] W. Pereira and F. Valentin, A locking-free MHM method for elasticity. In: Vol. 5 of Proceeding Series of the Brazilian Society of Computational and Applied Mathematics (2017). | DOI

[37] P. A. Raviart and J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31 (1997) 391–413. | MR | Zbl | DOI

[38] J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In: Handbook of Numerical Analysis, edited by P. G. Ciarlet and J.-L. Lions. Elsevier Science Publishers (1991) 527–639. | MR | Zbl

[39] D. Siqueira, P. R. B. Devloo and S. M. Gomes, A new procedure for the construction of hierarchical high order H div and H curl finite element spaces. J. Comput. Appl. Math. 240 (2013) 204–214. | MR | Zbl | DOI

[40] R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513–538. | MR | Zbl | DOI

Cité par Sources :