
ESAIM: M2AN 55 (2021) 1005–1037 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2021013 www.esaim-m2an.org

NEW 𝐻(div)-CONFORMING MULTISCALE HYBRID-MIXED METHODS FOR
THE ELASTICITY PROBLEM ON POLYGONAL MESHES
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Weslley Pereira4, Antonio J. B. dos Santos5 and Frédéric Valentin4

Abstract. This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional
linear elasticity problem on general polygonal meshes. The new methods approximate displacement,
stress, and rotation using two-scale discretizations. The first scale level setting consists of approximat-
ing the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing
elementwise rigid body modes. In the second level, the methods are made effective by solving completely
independent local boundary Neumann elasticity problems written in a mixed form with weak symme-
try enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable
constraints the local stress approximations, the discrete stress field lies in the 𝐻(div) space globally
and stays in local equilibrium with external forces. We propose different choices to approximate local
problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices
generate the family of multiscale finite element methods for which stability and convergence are proved
in a unified framework. Notably, we prove that the methods are optimal and high-order convergent
in the natural norms. Also, it emerges that the approximate displacement and stress divergence are
super-convergent in the 𝐿2-norm. Numerical verifications assess theoretical results and highlight the
high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.
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1. Introduction

Mixed finite element (FE) methods for elasticity problems, based on the Hellinger-Reissner principle, have
been used since the beginning of finite element history. They are formulated simultaneously for stress and
displacement variables, which are of primary interest. Moreover, the importance of using hybridization in stress
mixed formulations for elasticity problems has also been early recognized by the pioneer engineers in structural
mechanics (e.g., see [38] and the citations therein, including the work by T. H. H. Pian). When correctly designed,
stress mixed methods usually give optimal stress accuracy, and local momentum conservation. Moreover, they
do not present locking behavior for incompressible or nearly incompressible materials.

We focus our study on conforming stress mixed formulations, meaning that approximations for the stress
tensor 𝜎 must have continuous normal traces (traction) along inter-element boundaries (i.e., the stress FE
space should be 𝐻(div)-conforming). The displacement variable 𝑢 lives in a discontinuous space. These kinds
of methods are formulated as minimization problems constrained by the realization of the divergence equation,
and displacement plays the role of the corresponding Lagrange multiplier. However, as mentioned in [4], the
divergence-consistency, a property required for the method to be well-posed, has proved to be surprisingly hard
to be fulfilled by symmetric tensors and displacement FE pairs. There is another approach that does not assume
symmetry in the tensor space from the beginning. Instead, the idea is to impose the symmetry condition in
a weak form, which requires a stable choice of another FE space for the (multiplier) rotation variable 𝑞. We
denote this class of methods by the acronym MFEM-WS, and refer to [3, 22] for overviews on this matter.

Realistic problems in solid mechanics are frequently associated with domains with complex geometries, in the
occurrence of fractures or heterogeneities in the materials, or under intricate types of loads. On the other hand,
standard finite element methods need refined meshes to capture small structures in the data, which reflects
an elevated computational cost. With this motivation, our purpose is to create a flexible multiscale hybrid
approach for the MFEM-WS formulation. Our method is based on a divide-and-conquer strategy combined
with bubble enrichment techniques and static condensation, which are general-purpose tools widely adopted in
multiscale simulations. It shall be denoted by the acronym MHM-WS, for its design is in the spirit of Multiscale
Hybrid Mixed (MHM) methods (already applied for Darcy problems [20, 26], for displacement-based elasticity
formulations [28,35,36], and other contexts therein cited).

In summary, this means that the MHM-WS scheme shares with these MHM methods the following charac-
teristics:

(1) It can be interpreted as a discrete version of a hybrid formulation characterizing the exact solution in terms
of components given by well-posed local-global systems.

(2) There is a macro-partition 𝒯 = {Ω𝑖} of Ω, and a set of local problems over each (general polygonal)
subregion Ω𝑖.

(3) A new normal trace variable (multiplier) is introduced over the subregion boundaries (mesh skeleton),
making the referred inter-element connection.

(4) There are two-scale operators (upscaling and downscaling) transferring information between the two levels
of resolution.

(5) There is an orthogonal decomposition of the potential (displacement) variable in terms of a coarse (piecewise
rigid body motions), defined over 𝒯 , and a fine-scale components.

(6) As in usual static-condensation procedures, the multiplier and the coarse potential component are computed
by a stable global system (upscaling stage).

(7) In the second fine scale, the small details of all variables are computed by a set of problems restricted to the
subregions Ω𝑖 ∈ 𝒯 , taking the multiplier as Neumann boundary data over 𝜕Ω𝑖, and using the adopted stable
formulations for each one (downscaling stage). The local FE spaces may have richer internal resolution than
the boundary traces. Each local problem is completely independent of the others since test functions have
support inside a single subregion.

(8) The local downscaling problems favor the use of parallel strategies.
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We shall mention that this family of multiscale methods does not assume periodicity on the elastic coeffi-
cients nor separation of scales in its construction. Thereby, it can be used (formally) for general problems with
heterogeneous coefficients.

For the current MHM-WS scheme, the approximate stress 𝜎̃ is obtained in a FE space of tensors with normal
traces strongly constrained to a given FE space over the mesh skeleton, where we search for the new multiplier
variable 𝜆̃. Consequently, 𝜎̃ is 𝐻(div)-conforming. Moreover, and to increase accuracy, we can enrich the tensor
bubble functions (with support on a single subregion) using different strategies: refining the internal mesh,
increasing the polynomial degree, or both. For neighboring subregions Ω𝑖 and Ω𝑗 , their internal partitions 𝒯 Ω𝑖

and 𝒯 Ω𝑗 are allowed to be non-conformal over Γ𝑖,𝑗 = 𝜕Ω𝑖 ∩ 𝜕Ω𝑗 . In principle, element geometry, mesh widths,
and polynomial degrees in the subregions may vary. However, some mesh and space consistencies should be
satisfied (see Sect. 3.1).

The strategy we present requires some stability conditions, namely divergence and Stokes constraints, of the
two-scale tensor FE space with respect to displacement and rotation FE spaces. Under these circumstances, an
important analysis aspect of the MHM-WS method is that it may be interpreted as an equivalent stable MFEM-
WS formulation of the model problem, both based on the same FE space framework. The divergence constraint
is obtained by forming rows of tensors and displacements with Poisson-compatible FE pairs widely used for flux
and potential approximations in mixed methods. Concerning the enforcement of the Stokes constraint, we extend
the methodology proposed in [19] to construct new stable Stokes-compatible pairs: the pair used for stability
analysis at the coarsest single-level space setting is incremented with extra refined composite bubble terms for
the velocity in order to restore stability when using enlarged pressure spaces, in the spirit of the methodology
suggested in [9]. Classical tools are applied to the equivalent two-scale MFEM-WS framework, guiding the error
analysis of the MHM-WS solutions. We prove optimal and high-order convergence for displacement, stress and
rotation unknowns in their natural norms under some regularity assumptions. Stress and rotation variables are
approximated with the same accuracy order as for the trace variable. Notably, super-convergence in the 𝐿2-norm
for the divergence of the stress and enhanced displacement may be reached.

Recently, the authors in [30] pointed out that the resolution of elasticity problems by multiscale mixed stress-
displacement formulations, based on domain decomposition, had not been considered before. They proposed
and analyzed a multiscale mixed formulation using the mortar domain decomposition with non-matching grids,
and weakly imposed stress symmetry. The mortar spaces use displacement Lagrange multipliers to (weakly)
enforce interface continuity of the normal stress. Following a similar divide-and-conquer principle but designed
in the different MHM context, the MHM-WS method also fills this gap.

There are some other works that use multiscale FE methods to solve elasticity problems. In [11,12], the authors
applied the Multiscale Finite Element Method (MsFEM) to solve an elasticity problem in a composite material.
Each level in the MsFEM has its mesh and interpolation spaces that, in general, fit inside the interpolations
of lower levels. The MsFEMs have no local problems associated with the source function neither a rigorous
mathematical structure to guide the choice of local boundaries. The Heterogeneous Multiscale FE method
(HMM) [1] discretizes the elasticity problem by a macroscopic FE method coupled with a microscopic FE
method resolving the micro scales and recovering the macroscopic properties of the material. The Localized
Orthogonal Decomposition (LOD) method of [32] is a multiscale method that requires low regularity on the
variational problem. It avoids the use of additional regularity by computing the multiscale basis functions on a
set (patch) of macro elements. A generalized FE method (GFEMs) using LOD is presented in [29].

1.1. Outline of the paper

Section 2 starts with the weak stress mixed formulation with reduced stress symmetry for the model problem,
and a new hybrid local-global characterization of the exact solution. Discrete two-scale versions of these methods
are presented in Section 3. For that, we construct a hierarchy of partitions and two-scale FE space settings ℰ𝛾 ,
the corresponding formulations being denoted by the acronym MFEM-WS(ℰ𝛾). The MHM-WS(ℰ𝛾) schemes
correspond to hybrid local-global versions of the MFEM-WS(ℰ𝛾). In Section 4, we establish the stability of the
MHM-WS(ℰ𝛾) methods for two specific families of two-scale FE spaces ℰ𝛾 , for triangular and affine quadrilateral
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partitions. The error analysis of the MHM-WS(ℰ𝛾) solutions is performed in Section 5. For that, we extend a
typical analysis used for single-level methods to the more general two-scale FE settings ℰ𝛾 . We present the
results of computational simulations in Section 6, confirming the predicted theoretical convergence results of
Section 5. In the same section, we compare the results with the ones from the MHM-𝐻1 method, and with
the results obtained with the classical coarse single-level MHM-WS methods. The final part of this section
dedicates to numerical tests in heterogeneous media with high-contrast layers. After some concluding remarks
in Section 7, Appendix A presents the proofs of some theorems previously stated.

1.2. Some comments about notation

We use various symbols for the notation of variables, data, geometric elements, finite element spaces, and
nomenclature. For those wishing to keep them straight, they are listed in Appendix B. For instance, throughout
this paper, for a region 𝐷 ⊆ Ω, 𝑛𝐷 denotes the external unitary normal to 𝜕𝐷. The scalar Hilbert spaces 𝐿2(𝐷)
and𝐻𝑠(𝐷) have the usual meaning and norms. We also consider the spaces 𝐿2(𝐷,R2), 𝐿2(𝐷,M),𝐻𝑠(𝐷,R2), and
𝐻𝑠(𝐷,M), which inherit the corresponding norms associated to 𝐿2(𝐷) and 𝐻𝑠(𝐷). 𝐻(div, 𝐷) is the usual space
composed by square-integrable vector functions, for which the divergence is also square integrable. Similarly,
we consider the space of tensor functions 𝐻(div, 𝐷,M), the divergence of a tensor field being the vector field

obtained by taking the divergence of each row. Moreover, for a vector function 𝑞 =
[︂
𝑞1
𝑞2

]︂
, ∇ × 𝑞 denotes the

tensor ∇× 𝑞 =
[︂
∇× 𝑞1
∇× 𝑞2

]︂
=

[︂
𝜕2𝑞1 −𝜕1𝑞1
𝜕2𝑞2 −𝜕1𝑞2

]︂
.

We use the notation (·, ·)𝐷 for the 𝐿2-inner products, and ⟨·, ·⟩𝜕𝐷 refers to the duality pairing between
𝐻1/2(𝜕𝐷,R2) =

{︀
𝜇 = 𝑢|𝜕𝐷, 𝑢 ∈ 𝐻1(𝐷,R2)

}︀
and 𝐻−1/2(𝜕𝐷,R2) =

{︀
𝜇 = 𝜏 𝑛𝐷|𝜕𝐷, 𝜏 ∈ 𝐻(div, 𝐷,M)

}︀
. We

drop the subscript 𝐷 whenever 𝐷 = Ω.

2. Stress mixed formulation with reduced stress symmetry

Let Ω ⊂ R2 be a polygonal domain occupied by a linear elastic body. Given the body force 𝑓 and Dirichlet
boundary data 𝑔, the equations of the static elasticity in the Hellinger-Reissner form determine that stress 𝜎
and displacement 𝑢 fields satisfy the following equilibrium and constitutive equations

−∇ · 𝜎 = 𝑓, 𝜎 = 𝐴 𝜀(𝑢) in Ω, 𝑢 = 𝑔 on 𝜕Ω, (2.1)

where 𝜀(𝑢) =
∇𝑢+∇𝑢𝑇

2
is the infinitesimal strain tensor. The given data are 𝑔 ∈ 𝐻

1
2 (𝜕Ω,R2) and 𝑓 ∈

𝐿2(Ω,R2). The material properties are described by the stiffness tensor 𝐴 = 𝐴(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ R2, which is
a self-adjoint, bounded, and uniformly positive definite linear operator acting on the set of symmetric tensors
S. We assume that 𝐴 can be extended to general second-order tensors M = R2×2 with the same properties. In
particular, in the case of an isotropic body, 𝐴 𝜀 = 2𝜇𝜀+ 𝜆 tr(𝜀)𝐼, where 𝜆 and 𝜇 are the Lamé parameters, and
𝐼 is the 2×2 identity matrix. Both the material properties 𝐴 and the given source data 𝑓 may be heterogeneous
and embed various length scales.

2.1. The weak formulation

Problem (2.1) admits an equivalent expression, without assuming stress symmetry a priori, by replacing the
original constitutive equation 𝜎 = 𝐴 𝜀(𝑢) by 𝐴−1𝜎 = ∇𝑢 − 𝛾(𝑢), using the relation 𝜀(𝑢) = ∇𝑢 − 𝛾(𝑢), where

𝛾(𝑢) =
1
2

[︂
0 𝜕2𝑢1 − 𝜕1𝑢2

𝜕1𝑢2 − 𝜕2𝑢1 0

]︂
. A new equation 𝜎− 𝜎𝑇 = 0 enforces the desired stress symmetry, and we

introduce the rotation variable 𝑞 =
1
2

asym∇𝑢, where asym 𝜏 = 𝜏12− 𝜏21 is the asymmetry measure defined for

tensors 𝜏 =
[︂
𝜏11 𝜏12
𝜏21 𝜏22

]︂
.
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Under this point of view, and adopting the simplified notation S = 𝐻(div,Ω,M), U = 𝐿2(Ω,R2), and
Q = 𝐿2(Ω), the mixed formulation with weakly imposed stress symmetry searches for (𝜎, 𝑢, 𝑞) ∈ ℰ := S×U ×Q
satisfying

(𝐴−1 𝜎, 𝜏) + (𝑢,∇ · 𝜏) + (𝑞, asym 𝜏) = ⟨𝜏 𝑛Ω, 𝑔⟩, ∀𝜏 ∈ S , (2.2)
−(∇ · 𝜎, 𝑣) = (𝑓, 𝑣), ∀𝑣 ∈ U , (2.3)

(asym𝜎,𝑤) = 0, ∀𝑤 ∈ Q. (2.4)

This kind of method belongs to a classical methodology. It dates from the seventies, in the pioneering period of
mathematical analysis for mixed and hybrid formulations. They typically appear in minimization problems with
constraints (e.g., see [7,8,38]). In this formulation, there are two constraints. The first one is for the realization
of the divergence equation (2.3), and displacement plays the role of the corresponding Lagrange multiplier. The
other multiplier is 𝑞, used for the weak enforcement of stress symmetry in (2.4).

2.2. Hybrid local-global version

The purpose of the hybrid local-global version of the stress mixed formulation (2.2)–(2.4) is to naturally
derive stable bases for the two-level discrete method in Section 3. For that, we define a partition 𝒯 = {Ω𝑖} of
the domain Ω. Associated to 𝒯 , let Γ be the mesh skeleton formed by the union of the boundaries 𝜕Ω𝑖. To make
inter-element connections, we introduce the multiplier 𝜆 which lives in a normal trace space defined over Γ:

Λ := Λ(Γ,R2) =
{︀
𝜇;𝜇 = 𝜏 𝑛|𝜕Ω𝑖

, 𝜏 ∈ 𝐻(div,Ω,M),Ω𝑖 ∈ 𝒯
}︀
,

where 𝑛 is a given vector field defined over Γ and normal to 𝜕Ω𝑖. Notice that 𝑛|Ω𝑖
= 𝛿𝑖 𝑛

Ω𝑖 , where 𝛿𝑖(𝑒) = 𝑛·𝑛Ω𝑖 |𝑒
for all edges 𝑒 ⊂ 𝜕Ω𝑖 (i.e., 𝛿𝑖(𝑒) = 1 for boundary edges and 𝛿𝑖(𝑒) = −𝛿𝑗(𝑒) for interface edges 𝑒 ⊂ Ω𝑖 ∩ Ω𝑗).
The displacement is decomposed as 𝑢 = 𝑢𝑟𝑚 + 𝑢⊥, where 𝑢𝑟𝑚 ∈ U𝑟𝑚 is a piecewise rigid body mode over 𝒯 .
Precisely,

U𝑟𝑚 := {𝑢 ∈ U ; 𝑢𝑖 = 𝑢|Ω𝑖
∈ U𝑟𝑚(Ω𝑖), Ω𝑖 ∈ 𝒯 } , U𝑟𝑚(Ω𝑖) := {(𝛼, 𝛽) + 𝜌(−𝑦, 𝑥); (𝑥, 𝑦) ∈ Ω𝑖, 𝛼, 𝛽, 𝜌 ∈ R}.

The complementary displacement term 𝑢⊥ lives in U ⊥ ⊂ U , the 𝐿2-orthogonal complement of U𝑟𝑚. For local
Neumann problems, test tensors should be bubble functions in S̊ (Ω𝑖) = {𝜏 ∈ S ; 𝜏 𝑛|𝜕Ω𝑖 = 0}.

The hybrid version is formulated in two stages. There is a global system of equations for the multiplier 𝜆 ∈ Λ
and the rigid body motion displacement component 𝑢𝑟𝑚 ∈ U𝑟𝑚. To obtain the solution (𝜎, 𝑢, 𝑞) ∈ S ×U ×Q,
we add local fine scale components to the solution of the global stage as follows

𝜎 = 𝑇𝜎(𝜆) + 𝑇𝜎(𝑓), 𝑢 = 𝑢𝑟𝑚 + 𝑇𝑢(𝜆) + 𝑇𝑢(𝑓), 𝑞 =
1
2

asym∇𝑢𝑟𝑚 + 𝑇 𝑞(𝜆) + 𝑇 𝑞(𝑓), (2.5)

where

𝑇 : Λ → S ×U ⊥ ×Q, 𝑇 : U → S ×U ⊥ ×Q, (2.6)

are linear operators whose images are solutions of local Neumann elasticity problems on each subregion Ω𝑖.
Based on the above functional framework, consider the local-global stages:

– Local stage: For 𝜆 ∈ Λ, 𝜆 ̸= 0, and 𝑓 ∈ 𝐿2(Ω,R2), let the operators 𝑇 (𝜆) = {𝑇𝜎(𝜆), 𝑇𝑢(𝜆), 𝑇 𝑞(𝜆)} and
𝑇 (𝑓) = {𝑇𝜎(𝑓), 𝑇𝑢(𝑓), 𝑇 𝑞(𝑓)} be locally defined in each Ω𝑖 by the following mixed formulations with weakly
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imposed stress symmetry and Neumann boundary conditions:

(∇ · 𝑇𝜎 (𝜆) , 𝑣)Ω𝑖
= 0, ∀𝑣 ∈ U ⊥ (Ω𝑖) , (2.7)(︀

𝐴−1 𝑇𝜎 (𝜆) , 𝜏
)︀
Ω𝑖

+
(︀
𝑇𝑢(𝜆),∇ · 𝜏

)︀
Ω𝑖

+
(︀
𝑇 𝑞(𝜆), asym 𝜏

)︀
Ω𝑖

= 0, ∀𝜏 ∈ S̊ (Ω𝑖) , (2.8)

(asym𝑇𝜎 (𝜆) , 𝜙)Ω𝑖
= 0, ∀𝜙 ∈ 𝐿2 (Ω𝑖) , (2.9)

𝑇𝜎 (𝜆) 𝑛|𝜕Ω𝑖
= 𝜆|𝜕Ω𝑖

. (2.10)

−
(︁
∇ · 𝑇𝜎

(︀
𝑓
)︀
, 𝑣

)︁
Ω𝑖

=
(︀
𝑓, 𝑣

)︀
Ω𝑖
, ∀𝑣 ∈ U ⊥ (Ω𝑖) , (2.11)(︁

𝐴−1 𝑇𝜎
(︀
𝑓
)︀
, 𝜏

)︁
Ω𝑖

+
(︁
𝑇𝑢(𝑓),∇ · 𝜏

)︁
Ω𝑖

+
(︁
𝑇 𝑞(𝑓), asym 𝜏

)︁
Ω𝑖

= 0, ∀𝜏 ∈ S̊ (Ω𝑖) , (2.12)(︁
asym𝑇𝜎

(︀
𝑓
)︀
, 𝜙

)︁
Ω𝑖

= 0, ∀𝜙 ∈ 𝐿2 (Ω𝑖) , (2.13)

𝑇𝜎
(︀
𝑓
)︀
𝑛|𝜕Ω𝑖

= 0. (2.14)

– Global stage: Given 𝑓 ∈ U , and 𝑔 ∈ 𝐻 1
2

(︀
𝜕Ω,R2

)︀
, find 𝑢𝑟𝑚 ∈ U𝑟𝑚 and 𝜆 ∈ Λ that solve

(︀
𝐴−1𝑇𝜎(𝜆), 𝑇𝜎(𝜇)

)︀
+

(︀
𝑢𝑟𝑚,∇ · 𝑇

𝜎(𝜇)
)︀

= −
(︀
𝑓, 𝑇𝑢(𝜇)

)︀
+ ⟨𝜇, 𝑔⟩, ∀𝜇 ∈ Λ, (2.15)

− (∇ · 𝑇𝜎(𝜆), 𝑣) =
(︀
𝑓, 𝑣

)︀
, ∀𝑣 ∈ U𝑟𝑚. (2.16)

Notice that the boundary data for 𝑇 (𝜆) is 𝜆, while vanishing Neumann boundary conditions are applied for
𝑇 (𝑓). Knowing 𝜆, these operators define the stress 𝜎 ∈ S , the fine scale rigid-body-motion-free component
𝑢⊥ := 𝑇𝑢(𝜆) + 𝑇𝑢(𝑓) ∈ U ⊥, and the part 𝑇 𝑞(𝜆) + 𝑇 𝑞(𝑓) required to form 𝑞. The missing information comes
from the global system to be solved for 𝑢𝑟𝑚 and 𝜆. The following theorem states the well-posedness of the
local-global continuous formulation (2.7)–(2.16). This formulation naturally derives multiscale discrete versions,
as discussed in the following sections.

Theorem 2.1. The global system (2.15) and (2.16) has a unique solution (𝑢𝑟𝑚, 𝜆) ∈ U𝑟𝑚 × Λ. Moreover, a
function (𝜎, 𝑢, 𝑞) is recovered from (𝑢𝑟𝑚, 𝜆) as stated in (2.5), by solving the local problems 𝑇 (𝜆), defined in
(2.7)–(2.10) and 𝑇 (𝑓), defined in (2.11)–(2.14), if and only if (𝜎, 𝑢, 𝑞) solves the weak formulation (2.2)–(2.4).

Proof. It is postponed to Appendix A.1. �

Remarks

The hybrid local-global characterization given in Theorem 2.1 modifies the one for the MHM-𝐻1 method
proposed in [28]. The MHM-𝐻1 local-global characterization of the exact solution is based on the classical
primal hybrid approach for the displacement formulation of the elasticity problem. The fine scale information
incorporated into the global system in this primal approach comes from a different kind of local solver. Instead
of using local stress mixed formulations with weak symmetry in each subregion Ω𝑖, the second stage of the
primal MHM formulation solves local Neumann elasticity problems on the displacement field only. Differently
from the current work, the stress field in the MHM-𝐻1 methods are not in the desirable 𝐻(div,Ω,M) and there
is so far no result that assures the convergence of the divergence of the stress.

3. Discrete two-scale stress hybrid-mixed models with reduced symmetry

This section is dedicated to discrete elasticity models derived from the stress mixed formulation with reduced
stress symmetry and based on two-scale FE space settings ℰ𝛾 . Our main goal is to propose and analyze the
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Figure 1. Diagram illustration of some aspects of a hierarchy of partitions and discretization
parameters: a macro-partition 𝒯 (left-image), coarsest conformal mesh 𝒯ℎ𝑠𝑘

(center-image),
refined partitions 𝒯 Ω𝑖

ℎ𝑖𝑛
and polynomial degrees 𝑘𝑠𝑘 and 𝑘𝑖𝑛 (right-image).

method denoted by the acronym MHM-WS(ℰ𝛾), following the principles of the local-global hybrid character-
ization described in Section 2.2. For that, we present a unified and flexible procedure for the construction of
hierarchies of two-scale meshes supporting the FE spaces ℰ𝛾 . We define two sets of parameters 𝛾 := (𝛾𝑠𝑘, 𝛾𝑖𝑛),
where 𝛾𝑠𝑘 = (ℎ𝑠𝑘, 𝑘𝑠𝑘) and 𝛾𝑖𝑛 = (ℎ𝑖𝑛, 𝑘𝑖𝑛) are used to indicate the mesh widths and polynomial degrees of two
scales: coarse and fine. The focus is on two-scale frameworks, but single-level cases 𝛾𝑠𝑘 = 𝛾𝑖𝑛 may be treated in
the same context as well.

3.1. Two-scale partitions and finite element spaces

The two-scale mesh and FE space hierarchies are obtained by the following stages.

3.1.1. Discretization parameters and mesh hierarchy

– Given 𝛾𝑠𝑘 = (ℎ𝑠𝑘, 𝑘𝑠𝑘), let 𝒯ℎ𝑠𝑘
be a conformal shape regular partition of Ω formed by the union of sub-meshes

𝒯 Ω𝑖

ℎ𝑠𝑘
= {𝐾}, all of them with characteristic size ℎ𝑠𝑘.

– Refined internal partitions 𝒯 Ω𝑖

ℎ𝑖𝑛
are obtained by the subdivision of 𝒯 Ω𝑖

ℎ𝑠𝑘
. We choose the mesh characteristic

size ℎ𝑖𝑛 such that ℎ𝑖𝑛 ∼ ℎ𝑠𝑘/2ℓ, for a given integer ℓ ≥ 0. Define 𝛾𝑖𝑛 = (ℎ𝑖𝑛, 𝑘𝑖𝑛), where 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, for a
given integer 𝑛 ≥ 0.

– Define the partition 𝒯 Γ = {𝐹} of Γ by taking the edges 𝐹 induced by 𝒯ℎ𝑠𝑘
over Γ ∖ 𝜕Ω, and the edges 𝐹

induced by 𝒯 Ω𝑖

ℎ𝑖𝑛
over 𝜕Ω ∩ 𝜕Ω𝑖. Thus, the characteristic sizes are ℎ𝑠𝑘 for internal edges, and ℎ𝑖𝑛 otherwise.

Figure 1 illustrates some aspects of the two-scale hierarchy of meshes: the macro-partition 𝒯 , a conformal
partition 𝒯ℎ𝑠𝑘

, and local refined partitions 𝒯 Ω𝑖

ℎ𝑖𝑛
. Observe that, over an edge 𝑒 = Γ𝑖,𝑗 = Ω𝑖 ∩ Ω𝑗 , the meshes

𝒯 Ω𝑖

ℎ𝑖𝑛
and 𝒯 Ω𝑗

ℎ𝑖𝑛
do not necessarily need to be conformal (e.g., in 𝑒 = Γ1,2). We also show examples of polynomial

degrees over the subregions and over edges of the mesh skeleton. Although 𝛾𝑠𝑘 and 𝛾𝑖𝑛 do not need to be
uniform, as illustrated in Figure 1, for simplicity we shall only consider uniform distributions for them.

3.1.2. Two-scale FE space settings

– Let Λ𝛾 ⊂ Λ be the trace space piecewisely defined over 𝒯 Γ by polynomials of degree ≤ 𝑘𝑠𝑘 over the internal
edges, and of degree 𝑘𝑖𝑛 over the boundary edges.
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– Define refined single-level FE spaces in the interior of the subregions on top of the internal partitions 𝒯 Ω𝑖

ℎ𝑖𝑛

S𝛾𝑖𝑛(Ω𝑖) =
{︁
𝜏 ∈ 𝐻(div,Ω𝑖,M); 𝜏 |𝐾 ∈ 𝑆(𝐾,M), ∀𝐾 ∈ 𝒯 Ω𝑖

ℎ𝑖𝑛

}︁
, (3.1)

U𝛾𝑖𝑛(Ω𝑖) =
{︁
𝑢 ∈ 𝐿2(Ω𝑖,R2); 𝑢|𝐾 ∈ 𝑈(𝐾,R2), ∀𝐾 ∈ 𝒯 Ω𝑖

ℎ𝑖𝑛

}︁
, (3.2)

Q𝛾𝑖𝑛(Ω𝑖) =
{︁
𝑞 ∈ 𝐿2(Ω𝑖); 𝑞|𝐾 ∈ 𝑄(𝐾), ∀𝐾 ∈ 𝒯 Ω𝑖

ℎ𝑖𝑛

}︁
, (3.3)

in terms of local FE spaces 𝑆(𝐾,M), 𝑈(𝐾,R2) and 𝑄(𝐾) for the elements 𝐾 ∈ 𝒯 Ω𝑖

ℎ𝑖𝑛
. The degree 𝑘𝑖𝑛 refers

to the polynomials associated to the normal traces over 𝜕𝐾 of the tensors 𝜏 ∈ 𝑆(𝐾,M).
– In this setting, we introduce the two-scale tensor FE spaces S𝛾(Ω𝑖), composed by functions in S𝛾𝑖𝑛

(Ω𝑖)
whose normal traces are constrained to Λ𝛾 , i.e.,

S𝛾(Ω𝑖) =
{︀
𝜏 ∈ S𝛾𝑖𝑛

(Ω𝑖); 𝜏 𝑛|𝜕Ω𝑖∖𝜕Ω ∈ Λ𝛾 |𝜕Ω𝑖∖𝜕Ω

}︀
. (3.4)

Notice that the constrained tensor space (3.4) is well defined due to the fact the trace functions induced by
S𝛾𝑖𝑛

(Ω𝑖) over 𝜕Ω𝑖 are piecewisely defined by polynomials of degree 𝑘𝑖𝑛 ≥ 𝑘𝑠𝑘 on top of elements obtained
by the refinement of the mesh 𝒯 Γ ∩ 𝜕Ω𝑖. Moreover, S𝛾(Ω𝑖) can be expressed as a two-scale direct sum
S𝛾(Ω𝑖) = S 𝜕

𝛾 (Ω𝑖) ⊕ S̊𝛾𝑖𝑛(Ω𝑖), where S̊𝛾𝑖𝑛(Ω𝑖) is the set of bubble tensors, with vanishing normal traces
over 𝜕Ω𝑖, having refined resolution. The edge tensors in S 𝜕

𝛾 (Ω𝑖) have normal traces over 𝜕Ω𝑖∖𝜕Ω constrained
to Λ𝛾 having coarser resolution 𝛾𝑠𝑘 over internal edges 𝐹 ∈ 𝒯 Γ.

– Finally, let ℰ𝛾 = S𝛾 × U𝛾𝑖𝑛
×Q𝛾𝑖𝑛

⊂ 𝐻(div,Ω,M) × 𝐿2(Ω,R2) × 𝐿2(Ω) be the two-scale FE space whose
restriction to each subdomain Ω𝑖 ∈ 𝒯 is the local FE space ℰ𝛾(Ω𝑖) = S𝛾(Ω𝑖) × U𝛾𝑖𝑛(Ω𝑖) ×Q𝛾𝑖𝑛(Ω𝑖). We
restrict the analysis to displacement FE spaces satisfying U𝑟𝑚 ⊂ U𝛾𝑖𝑛

, and let U ⊥
𝛾𝑖𝑛

be the 𝐿2-orthogonal
complement of U𝑟𝑚 in U𝛾𝑖𝑛

, with local components U ⊥
𝛾𝑖𝑛

(Ω𝑖).

3.2. Derivation of the MHM-WS(ℰ𝛾) method

The two discrete local-global building blocks of information-passing in the MHM-WS(ℰ𝛾) scheme shall be
referred as downscaling and upscaling stages, following a terminology usually used in multiscale contexts (see
e.g., [21]). At the coarsest scale level, 𝜆̃ ∈ Λ𝛾 and 𝑢̃𝑟𝑚 ∈ U𝑟𝑚 are computed by a global system (upscaling

stage). At the fine scale level, 𝑢̃⊥ := 𝑇𝑢(𝜆̃) + ˜̂
𝑇𝑢(𝑓) ∈ U ⊥

𝛾𝑖𝑛
, 𝜎̃ ∈ S𝛾 and 𝑞 ∈ Q𝛾𝑖𝑛

, are solutions of a set of
completely independent Neumann boundary local problems restricted to the subregions Ω𝑖 ∈ 𝒯 (downscaling
stage). These local systems may be represented by the action of operators 𝑇 : Λ𝛾 → S𝛾 × U ⊥

𝛾𝑖𝑛
× Q𝛾𝑖𝑛 and

˜̂
𝑇 : U → S𝛾 ×U ⊥

𝛾𝑖𝑛
×Q𝛾𝑖𝑛 , as discrete versions of the operators (2.6) defined in Section 2.2.

Using this procedure we characterize the approximate solution as a discrete counterpart of (2.5):

𝜎̃ = 𝑇𝜎(𝜆̃) + ˜̂
𝑇𝜎(𝑓), 𝑢̃ = 𝑢̃𝑟𝑚 + 𝑇𝑢(𝜆̃) + ˜̂

𝑇𝑢(𝑓), 𝑞 =
1
2

asym∇𝑢̃𝑟𝑚 + 𝑇 𝑞(𝜆̃) + ˜̂
𝑇 𝑞(𝑓). (3.5)

Precisely, the local-global discrete systems composing the MHM-WS(ℰ𝛾) scheme, transferring information
from the fine to the coarse-scale level and vice versa, are written in the following form.

– Local stage (Downscaling): For 𝜆̃ ∈ Λ𝛾 , 𝜆̃ ̸= 0, and 𝑓 ∈ 𝐿2(Ω,R2), let the operators 𝑇 (𝜆̃) =

{𝑇𝜎(𝜆̃), 𝑇𝑢(𝜆̃), 𝑇 𝑞 (̃𝜆)} and ˜̂
𝑇 (𝑓) = { ˜̂

𝑇𝜎(𝑓), ˜̂
𝑇𝑢(𝑓), ˜̂

𝑇 𝑞(𝑓)} be determined in each subregion Ω𝑖 by the follow-
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ing MFEM-WS(ℰ𝛾) formulations locally defined in each Ω𝑖 with Neumann boundary conditions:(︁
∇ · 𝑇𝜎

(︁
𝜆̃
)︁
, 𝑣

)︁
Ω𝑖

= 0, ∀𝑣 ∈ U ⊥
𝛾𝑖𝑛

(Ω𝑖) , (3.6)(︁
𝐴−1 𝑇𝜎

(︁
𝜆̃
)︁
, 𝜏

)︁
Ω𝑖

+
(︁
𝑇𝑢

(︁
𝜆̃
)︁
,∇ · 𝜏

)︁
Ω𝑖

+
(︁
𝑇 𝑞

(︁
𝜆̃
)︁
, asym 𝜏

)︁
Ω𝑖

= 0, ∀𝜏 ∈ S̊𝛾 (Ω𝑖) , (3.7)(︁
asym𝑇𝜎

(︁
𝜆̃
)︁
, 𝜙

)︁
Ω𝑖

= 0, ∀𝜙 ∈ Q𝛾𝑖𝑛
(Ω𝑖) , (3.8)

𝑇𝜎
(︁
𝜆̃
)︁
𝑛|𝜕Ω𝑖 = 𝜆̃|𝜕Ω𝑖 . (3.9)

−
(︁
∇ · ˜̂

𝑇𝜎
(︀
𝑓
)︀
, 𝑣

)︁
Ω𝑖

=
(︀
𝑓, 𝑣

)︀
Ω𝑖
, ∀𝑣 ∈ U ⊥

𝛾𝑖𝑛
(Ω𝑖) , (3.10)(︁

𝐴−1 ˜̂
𝑇𝜎

(︀
𝑓
)︀
, 𝜏

)︁
Ω𝑖

+
(︁ ˜̂
𝑇𝑢

(︀
𝑓
)︀
,∇ · 𝜏

)︁
Ω𝑖

+
(︁ ˜̂
𝑇 𝑞

(︀
𝑓
)︀
, asym 𝜏

)︁
Ω𝑖

= 0, ∀𝜏 ∈ S̊𝛾 (Ω𝑖) , (3.11)(︁
asym ˜̂

𝑇𝜎
(︀
𝑓
)︀
, 𝜙

)︁
Ω𝑖

= 0, ∀𝜙 ∈ Q𝛾𝑖𝑛
(Ω𝑖) , (3.12)

˜̂
𝑇𝜎

(︀
𝑓
)︀
𝑛|𝜕Ω𝑖 = 0. (3.13)

– Global stage (Upscaling): 𝑢̃𝑟𝑚 ∈ U𝑟𝑚 and 𝜆̃ ∈ Λ𝛾 are determined by the global system(︁
𝐴−1𝑇𝜎

(︁
𝜆̃
)︁
, 𝑇𝜎

(︀
𝜇
)︀)︁

+
(︁
𝑢̃𝑟𝑚,∇ · 𝑇

𝜎
(︀
𝜇
)︀)︁

= −
(︁
𝑓, 𝑇𝑢

(︀
𝜇
)︀)︁

+ ⟨𝜇, 𝑔⟩, ∀𝜇 ∈ Λ𝛾 , (3.14)

−
(︁
∇ · 𝑇𝜎

(︁
𝜆̃
)︁
, 𝑣

)︁
=

(︀
𝑓, 𝑣

)︀
, ∀𝑣 ∈ U𝑟𝑚. (3.15)

3.3. MHM-WS(ℰ𝛾) as a MFEM-WS(ℰ𝛾) formulation

As for the weak formulations in infinite dimension, a remarkable property of the MHM-WS(ℰ𝛾) method is
that it can be interpreted as a hybrid local-global characterization of a discrete stress mixed formulation with
reduced symmetry based on the FE space setting ℰ𝛾 = S𝛾 × U𝛾𝑖𝑛

×Q𝛾𝑖𝑛
. It is denoted here by the acronym

MFEM-WS(ℰ𝛾), and will play a crucial role in the forthcoming sections for the analysis of the MHM-WS(ℰ𝛾)
method.

The MFEM-WS(ℰ𝛾) method searches for approximations (𝜎̃, 𝑢̃, 𝑞) ∈ ℰ𝛾 = S𝛾 ×U𝛾𝑖𝑛 ×Q𝛾𝑖𝑛 such that(︀
𝐴−1 𝜎̃, 𝜏

)︀
+

(︀
𝑢̃,∇ · 𝜏

)︀
+

(︀
𝑞, asym 𝜏

)︀
= ⟨𝜏 𝑛Ω, 𝑔⟩, ∀𝜏 ∈ S𝛾 , (3.16)

−
(︀
∇ · 𝜎̃, 𝑣

)︀
=

(︀
𝑓, 𝑣

)︀
, ∀𝑣 ∈ U𝛾𝑖𝑛 , (3.17)(︀

asym 𝜎̃, 𝑤
)︀

= 0, ∀𝜙 ∈ Q𝛾𝑖𝑛 . (3.18)

Notice that classical formulations associated to single-level FE spaces, with 𝛾𝑠𝑘 = 𝛾𝑖𝑛, are particular cases of
the MFEM-WS(ℰ𝛾) method. Even though the original stress mixed formulation (2.2)–(2.4), with reduced stress
symmetry, is well posed, this may not be true for discrete versions (3.16)–(3.18). According to Brezzi’s theory,
the FE spaces of each field cannot be chosen independently one from the other, i.e., they should be compatible,
meaning that some stability (inf-sup) conditions are mandatory. This topic shall be clarified in Section 4 for the
specific two-scale settings ℰ𝛾 under consideration.

Assuming the FE spaces ℰ𝛾 = S𝛾 × U𝛾𝑖𝑛 × Q𝛾𝑖𝑛 verify the stability constraints for the two-scale mixed
FE formulation MFEM-WS(ℰ𝛾), the goal is to show the equivalence of its unique solution with the solution
reconstructed from the local-global output of the MHM-WS (ℰ𝛾) method. The proof of this property has two
stages: (i) we prove uniqueness for the MFEM-WS(ℰ𝛾) method (Thm. 3.1) and (ii) we prove that the unique
solution of the MFEM-WS(ℰ𝛾) method solves the local-global MHM-WS(ℰ𝛾) systems (this implies existence of
solution for the MHM-WS method). Equivalence holds as consequence of the uniqueness property held by both
methods (Thm. 3.2).
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Theorem 3.1. Assume the FE spaces ℰ𝛾 = S𝛾 ×U𝛾𝑖𝑛
×Q𝛾𝑖𝑛

verify the stability constraints for the MFEM-
WS(ℰ𝛾) method stated in Section 4.1. Then, the MHM-WS(ℰ𝛾) scheme defined by the downscaling local solvers
(3.6)–(3.9) and (3.10)–(3.13) and by the global upscaling system (3.14) and (3.15) has a unique solution.

Proof. The proof of this uniqueness result is postponed to Appendix A.2, and it makes use of the stability held
by the MFEM-WS(ℰ𝛾) formulation for the local Neumann problems. �

The following theorem establishes the relation between the triad (𝜎̃, 𝑢̃, 𝑞) recovered as in (3.5) from the
approximate variables given by the MHM-WS(ℰ𝛾) scheme and the solution of the MFEM-WS(ℰ𝛾) formulation.

Theorem 3.2. Under the assumptions of Theorem 3.1, let (𝑢̃𝑟𝑚, 𝜆̃) be the unique solution of the MHM-WS(ℰ𝛾)
upscaling system (3.14) and (3.15). Then, (𝜎̃, 𝑢̃, 𝑞) is the function recovered from (𝑢̃𝑟𝑚, 𝜆̃), as stated in (3.5), by

solving the local problems 𝑇 (𝜆̃), defined in (3.6)–(3.9), and ˜̂
𝑇 (𝑓), defined in (2.11)–(2.14), if and only if (𝜎̃, 𝑢̃, 𝑞)

solves the MFEM-WS(ℰ𝛾) formulation (3.16)–(3.18).

Proof. The proof of this equivalence result is documented in Appendix A.3. �

Remarks

(i) By construction, the strong enforcement of the Neumann boundary conditions (3.9) and (3.13) is the reason

to assume, from start, that 𝜎̃ = 𝑇𝜎(𝜆̃) + ˜̂
𝑇𝜎(𝑓) ∈ S𝛾 , i.e., that the stress is globally 𝐻(div)-conforming.

This is an important property of the MHM-WS(ℰ𝛾) solutions that, for instance, distinguish them from
those of the multiscale mortar domain decomposition method [30].

(ii) The exercise of strongly enforcing the coarser traction variable in the constrained stress FE approximations
of the MHM-WS(ℰ𝛾) scheme is a process that can be computationally accomplished in a similar manner
as for conforming constrained functions commonly used in ℎ𝑝-adaptive strategies. Instead, the MHM-𝐻1

method in [28] imposes Neumann boundary conditions in a weak multiplier sense.
(iii) The approximate displacement 𝑢̃ by the MHM-WS(ℰ𝛾) method decomposes as 𝑢̃ = 𝑢̃𝑟𝑚 + 𝑢̃⊥, without

continuity constraints for 𝑢̃⊥ := 𝑇𝑢(𝜆̃) + ˜̂
𝑇𝑢(𝑓) inside Ω𝑖. This aspect, combined with the global 𝐻(div)-

conformity of the tensor 𝜎̃, is crucial in the proof of the local conservation property verified by the MHM-
WS(ℰ𝛾) method at the micro scale level. This is essential for ensuring local equilibrium. Furthermore, for
𝑓 = 0, the resulting tensor 𝜎̃ is strongly divergence-free due to the divergence-compatibility condition (4.1)
valid for S𝛾(Ω𝑖) and U𝛾𝑖𝑛

(Ω𝑖).

(iv) The local contribution ˜̂
𝑇 (𝑓) of the numerical solution, defined in (3.10)–(3.13), is one of the important

properties of the proposed multiscale method. Notably, such a perspective is paramount when 𝑓 changes

rapidly or embeds multiple scales. In particular, observe that if 𝑓 belongs to U𝑟𝑚 then ˜̂
𝑇 (𝑓) = 0. As

a result, if 𝑓 is a low-degree polynomial function, then ˜̂
𝑇 (𝑓) may be disregarded without undermining

convergence. Importantly, such a contribution is local and then can be computed in parallel in the off-
line stage. Moreover, it does not impact the computational complexity of the method negatively, for its
computation is local and “embarrassingly parallel” as the local problems are independent of one another.
Finally, the contribution ˜̂

𝑇 (𝑓) does not appear in the unknowns of the global system (3.14) and (3.15),

for ˜̂
𝑇𝜎(𝑓) is a bubble function (with vanishing traction) and ˜̂

𝑇𝑢(𝑓) is free of rigid body modes. As such,
the solution of (3.10)–(3.13) can be entirely computed in the off-line stage, and then it does not enter in
the most demanding computational effort for assembly and solve the global system (3.14) and (3.15). Also,

the MHM methodology can handle problems with multi-query aspects, in which ˜̂
𝑇 (𝑓) must be computed

with several source terms 𝑓 . In fact, one can adopt the strategy to compute ˜̂
𝑇 (𝜓) first at the off-line stage,

where 𝜓 stands for a function of a polynomial basis spanning an approximation of 𝑓 without undermining

convergence, and then reuse ˜̂
𝑇 (𝜓) to calculate ˜̂

𝑇 (𝑓) straightforwardly for all different 𝑓 .
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(v) The relevant question about the robustness of the MHM-WS(ℰ𝛾) methods in terms of physical coefficients
may be handled mathematically by the strategy proposed in [34] for the Poisson equation with oscillatory
coefficients. In the sequel, we show numerical evidence in this regard and leave the subject’s theoretical
investigation to future works.

4. Stability analysis for the MHM-WS(ℰ𝛾) method

In this section we give guidelines for effective construction of stable MHM-WS(ℰ𝛾) methods. In light of
Theorem 3.2, stability is reached provided it is valid for the corresponding MFEM-WS(ℰ𝛾) methods. As such,
let us first recall some standard stability requirements.

4.1. Stability constraints

As briefly remarked in the previous section, even though the stress mixed formulation with reduced symmetry
(2.2)–(2.4) is well posed, this may not be true for discrete versions of it, as for the MFEM-WS(ℰ𝛾) methods.
According to Brezzis’s theory, the FE spaces of each field can not be chosen independently one from the other,
which must respect some compatibility conditions [5,6,13,23]. Following this theory, there are two steps in the
path to derive stable two-scale elasticity triplets {S𝛾 ,U𝛾𝑖𝑛

,Q𝛾𝑖𝑛
} for the relaxed-symmetry stress problem.

(1) To cope with the divergence constraint (3.17), the FE pair {S𝛾 ,U𝛾𝑖𝑛
} for stress and displacement approx-

imations should be divergence compatible

∇ · S𝛾 = U𝛾𝑖𝑛
. (4.1)

Unfortunaltely, enforcing tensor 𝐻(div)-conformity and the divergence constraint may, eventually, lead to
complications for higher order schemes. One natural way to cope with (4.1) is to to built the rows and
components of the two-scale pair S𝛾×U𝛾𝑖𝑛

by two-scale Poisson-compatible pair V𝛾×P𝛾𝑖𝑛
defined in [20],

where V𝛾 = V 𝜕
𝛾 ⊕ V̊𝛾𝑖𝑛 is a constrained two-scale flux space.

(2) Once divergence compatible stress and displacement FE spaces {S𝛾 ,U𝛾𝑖𝑛
} are available, to complete the

triplet {S𝛾 ,U𝛾𝑖𝑛
,Q𝛾𝑖𝑛

} the next step is a stable choice of the FE space Q𝛾𝑖𝑛
. For two-dimensional problems,

one option is to take Q𝛾𝑖𝑛 from a Stokes-compatible FE pair {W𝛾 ,Q𝛾𝑖𝑛} such that the following Stokes
constraint is satisfied:

∇×W𝛾 ⊂ S𝛾 . (4.2)

In the sequel, we show how to accomplish this objective. We start with a given coarse single-level Stokes-
compatible pair {W𝛾𝑠𝑘

,Q𝛾𝑠𝑘
} such that ∇×W𝛾𝑠𝑘

⊂ S𝛾𝑠𝑘
. Using the methodology in [9], Stokes-consistency

for a FE pair {W𝛾 ,Q𝛾𝑖𝑛
} can be recovered when using the refined pressure space Q𝛾𝑖𝑛

by enriching the
velocity space W𝛾𝑠𝑘

with some properly chosen bubble functions to form W𝛾 . Moreover, we prove that the
desired Stokes constraint (4.2) naturally holds.

In the sequel, some basic aspects of the required Poisson-compatible and Stokes-compatible FE pairs are
clarified, including the examples that shall be adopted in the current work for the construction of stable FE
settings ℰ𝛾 . The stability process shall be described with more details in Section 4.3 for these specific examples.

4.2. Some stable FE pairs for Poisson and Stokes Problems

For a triangular or quadrilateral element 𝐾, there is a reference element 𝐾̂ and a geometric invertible map
𝐹𝐾 : 𝐾̂ → 𝐾 transforming 𝐾̂ onto 𝐾. 𝐹𝐾 induces mappings F𝐾 and Fdiv

𝐾 used to map functions defined in 𝐾̂
to functions defined in 𝐾.

– Scalar functions: 𝑝 = F𝐾𝑝 = 𝑝 ∘ 𝐹−1
𝐾 .

– Vector functions: 𝑣 = F𝐾𝑣, where 𝐹𝐾 is applied component-wisely.
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– Vector functions in 𝐻(div,𝐾,R2): 𝑣 = Fdiv
𝐾 𝑣 = F𝐾

[︂
1

J𝐾
D𝐹𝐾𝑣

]︂
, where D𝐹𝐾 is the Jacobian matrix of 𝐹𝐾 ,

and J𝐾 = |det(D𝐹𝐾)| (Piola transformation).
– For tensors: 𝜏 = Fdiv

𝐾 𝜏 is the Piola transformation applied to each row of 𝜏 .

In 𝐾̂, scalar polynomials are usually of the form: P𝑘(𝐾̂), of total degree at most 𝑘, for the triangle; Q𝑘,𝑡(𝐾̂),
of maximum degree 𝑘 in 𝑥 and 𝑡 in 𝑦, for the square.

Poisson-compatible FE pairs

Usually, the local FE spaces 𝑉 (𝐾,R2) = Fdiv
𝐾 V̂ and 𝑃 (𝐾) = F𝐾𝑃 are constructed by mapping polynomial

spaces V̂ and 𝑃 defined on a reference element 𝐾̂. The stability (inf-sup) condition requires the divergence-
consistency condition ∇ · V̂ = 𝑃 . We consider that V̂ is spanned by a hierarchy of vector shape functions of
two classes: functions of interior type in ˚̂V, with vanishing normal traces over 𝜕𝐾̂, and functions associated to
the element edges in V̂𝜕 . Thus, the decomposition V̂ = V̂𝜕 ⊕ ˚̂V naturally holds.

Divergence-consistency can be extended to the spaces 𝑉 (𝐾,R2) and 𝑃 (𝐾) by means of uniformly bounded
interpolants 𝜋𝐷

𝛾 : 𝐻1(𝐾,R2) → 𝑉 (𝐾,R2) such that (∇ · (𝜂 − 𝜋𝐷
𝛾 𝜂), 𝜓) = 0, ∀𝜓 ∈ 𝑃 (𝐾). A general form

to define 𝜋𝐷
𝛾 is by the so called projection-based operators (see [16]). It is firstly defined in 𝐾̂ using the

representation 𝜋𝐷
𝛾 𝜂 = 𝜋𝐷,𝜕

𝛾 𝜂+ 𝜋̊𝐷
𝛾 (𝜂−𝜋𝐷,𝜕

𝛾 𝜂) in terms of edge and internal operators. Let 𝑃 (𝜕𝐾̂) be the space
of normal traces of vector functions in V̂. For 𝜂 ∈ 𝐻1(𝐾̂,R2) and 𝜂̊ ∈ 𝐻1

0 (𝐾̂,R2), the interpolants verify:⟨
𝜋𝐷,𝜕

𝛾 𝜂 · 𝑛𝐾̂ , 𝜑
⟩

𝜕𝐾̂
= ⟨𝜂 · 𝑛𝐾̂ , 𝜑⟩𝜕𝐾̂ ; ∀𝜑 ∈ 𝑃

(︁
𝜕𝐾̂

)︁
, (4.3)(︁

∇ · 𝜋̊𝐷
𝛾 𝜂̊, ∇ · 𝑤

)︁
𝐾̂

=
(︀
∇ · 𝜂̊, ∇ · 𝑤

)︀
𝐾̂
, ∀𝑤 ∈ ˚̂V, (4.4)(︁

𝜋̊𝐷
𝛾 𝜂̊, 𝑤

)︁
𝐾̂

=
(︀
𝜂, 𝑤

)︀
𝐾̂
, ∀𝑤 ∈ ˚̂V, ∇ · 𝑤 = 0. (4.5)

Then 𝜋𝐷
𝛾 is extended to the computational elements 𝐾, and assembled to the whole domain Ω.

In the current work, we shall deal with the following divergence-consistent FE pairs:

– For triangular elements: (Brezzi–Douglas–Marini FE pair and enriched versions):
∙ ℬ𝒟ℳ𝑘, 𝑘 ≥ 1 [10]: 𝑉ℬ𝒟ℳ𝑘

= P𝑘(𝐾̂,R2) and 𝑃ℬ𝒟ℳ𝑘
= P𝑘−1(𝐾̂).

∙ ℬ𝒟ℳ+
𝑘 , 𝑘 ≥ 1 [7]: 𝑉ℬ𝒟ℳ+

𝑘
= P𝜕

𝑘(𝐾̂,R2)⊕ P̊𝑘+1(𝐾̂,R2), 𝑃ℬ𝒟ℳ+
𝑘

= P𝑘(𝐾̂) (known as 𝐵𝐷𝐹𝑀𝑘+1).

∙ ℬ𝒟ℳ++
𝑘 , 𝑘 ≥ 1 [18]: 𝑉ℬ𝒟ℳ++

𝑘
= P𝜕

𝑘(𝐾̂,R2)⊕ P̊𝑘+2(𝐾̂,R2), 𝑃ℬ𝒟ℳ++
𝑘

= P𝑘+1(𝐾̂).
– For quadrilateral elements (Raviart–Thomas FE pair and enriched version)

∙ ℛ𝒯 [𝑘], 𝑘 ≥ 1 [37]: 𝑉ℛ𝒯 [𝑘] = Q𝑘+1,𝑘(𝐾̂)×Q𝑘,𝑘+1(𝐾̂) and 𝑃ℛ𝒯 [𝑘] = Q𝑘,𝑘(𝐾̂).

∙ ℛ𝒯 +
[𝑘], 𝑘 ≥ 1 [18]: 𝑉ℛ𝒯 +

[𝑘]
= 𝑉 𝜕

ℛ𝒯 [𝑘]
(𝐾̂)⊕ ˚̂

𝑉ℛ𝒯 [𝑘+1](𝐾̂) and 𝑃ℛ𝒯 +
[𝑘]

= Q𝑘+1,𝑘+1(𝐾̂).

Stokes-compatible FE pairs

The FE pairs used for velocity and pressure approximations in mixed Stokes formulations are generally
defined by local finite element pairs {𝑊 (𝐾,R2), 𝑄(𝐾)}. For stability, they should be compatible with the
inf-sup condition. The following stable Stokes-compatible FE families shall be used in this paper:

– For triangular elements 𝐾 (Crouzeix–Raviart FE pair and enriched version):
∙ 𝒞ℛ𝑘, proposed in [14] for 𝑘 = 2, 3, and extended to higher orders in [33]:
𝑊𝒞ℛ𝑘

(𝐾,R2) = P𝑘(𝐾,R2) + 𝑏𝐾P𝑘−2(𝐾,R2), where 𝑏𝐾 = 𝜆1𝜆2𝜆3 are bubble functions defined by the
barycentric coordinates 𝜆𝑖 of 𝐾, and 𝑄𝒞ℛ𝑘

(𝐾) = P𝑘−1(𝐾).
∙ 𝒞ℛ+

𝑘 , 𝑘 ≥ 2 [19]: 𝑊𝒞ℛ+
𝑘

(𝐾,R2) = 𝑊𝒞ℛ𝑘
(𝐾,R2) + 𝑏𝐾∇P𝑘(𝐾), where 𝑏𝐾 = 𝜆1𝜆2𝜆3 are the bubble

functions defined by the barycentric coordinates 𝜆𝑖 of the triangle 𝐾, and 𝑄𝒞ℛ+
𝑘

(𝐾) = P𝑘(𝐾).
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Table 1. Some known methods for triangular (T) and quadrilateral (Q) reference elements 𝐾̂:
FE spaces 𝑆(𝐾̂,M), 𝑈(𝐾̂,R2), and 𝑄(𝐾̂) for tensor, displacement and rotation, the associated
Poisson-compatible and Stokes-compatible FE pairs used in their construction and stability
analyses, and their accuracy parameters (𝑡, 𝑟) verify (4.6).

𝐾̂ Poisson Stokes 𝑆(𝐾̂, M) 𝑈(𝐾̂, R2) 𝑄(𝐾̂) (𝑡, 𝑟) Ref.

T
ℬ𝒟ℳ𝑘 – P𝜕

𝑘(𝐾̂, M)⊕ P̊𝑘(𝐾̂, M) P𝑘−1(𝐾̂, R2) P𝑘−1(𝐾̂) (−1,−1) [3]

ℬ𝒟ℳ+
𝑘 𝒞ℛ𝑘+1 P𝜕

𝑘(𝐾̂, M)⊕ P̊𝑘+1(𝐾̂, M) P𝑘(𝐾̂, R2) P𝑘(𝐾̂) (0, 0) [19]

ℬ𝒟ℳ++
𝑘 𝒞ℛ+

𝑘+1 P𝜕
𝑘(𝐾̂, M)⊕ P̊𝑘+2(𝐾̂, M) P𝑘+1(𝐾̂, R2) P𝑘+1(𝐾̂) (1, 1) [19]

Q
ℛ𝒯 [𝑘] 𝒢ℛ[𝑘+1] 𝑆ℛ𝒯 [𝑘](𝐾̂, M) = Q𝑘+1,𝑘(𝐾̂, M)×Q𝑘,𝑘+1(𝐾̂, M) Q𝑘,𝑘(𝐾̂, R2) P𝑘(𝐾̂) (0, 0) [5]

ℛ𝒯 +
[𝑘] 𝒢ℛ+

[𝑘+1] 𝑆𝜕
ℛ𝒯 [𝑘]

(𝐾̂, M)⊕ 𝑆ℛ𝒯 [𝑘+1](𝐾̂, M) Q𝑘+1,𝑘+1(𝐾, R2) P𝑘+1(𝐾̂) (1, 1) [19]

Table 2. Two-scale Stokes-compatible FE pairs {W𝛾(Ω𝑖),Q𝛾𝑖𝑛
(Ω𝑖)}: local spaces in 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘

for triangular (T) and affine quadrilateral (Q) elements.

𝐾̄ Spaces Q𝛾𝑖𝑛(𝐾̄) 𝑊𝛾

(︀
𝐾̄, R2)︀

T 𝒞ℛ𝛾 P𝑘𝑖𝑛−1(𝒯 𝐾̄
ℎ𝑖𝑛

) 𝑊𝒞ℛ𝑘𝑠𝑘+1

(︀
𝐾̄, R2)︀+ 𝐵𝒞ℛ𝑘𝑖𝑛

(𝒯 𝐾
ℎ𝑖𝑛

, R2)

Q 𝒢ℛ[𝛾] P𝑘𝑖𝑛(𝒯 𝐾̄
ℎ𝑖𝑛

) 𝑊𝒢ℛ[𝑘𝑠𝑘+1]

(︀
𝐾̄, R2)︀+ 𝐵𝒢ℛ[𝑘𝑖𝑛]

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
, R2
)︁

– For quadrilateral elements 𝐾 (Girault–Raviart FE pair and enriched version):
∙ 𝒢ℛ[𝑘], 𝑘 ≥ 1 [24]: 𝑊𝒢ℛ[𝑘](𝐾,R

2) = F𝐾(Q𝑘,𝑘(𝐾̂,R2) and 𝑄𝒢ℛ[𝑘](𝐾) = P𝑘−1(𝐾).
∙ 𝒢ℛ+

[𝑘], 𝑘 ≥ 1 [19]: 𝑊𝒢ℛ+
[𝑘]

(𝐾,R2) = 𝑊𝒢ℛ[𝑘](𝐾,R
2) + 𝐵𝑘+1(𝐾,R2), Q𝒢ℛ+

[𝑘]
(𝐾) = P𝑘(𝐾). 𝐵𝑘+1(𝐾,R2) is

mapped from 𝐵𝑘+1(𝐾̂,R2) = {𝑏𝐾̂𝑤̂; 𝑤̂ ∈ Q𝑘−1,𝑘−1(𝐾̂,R2)}; 𝑏𝐾̂ ∈ Q2,2(𝐾̂) is a bubble function.

4.3. Examples of stable MHM-WS(ℰ𝛾) methods

Table 1 summarizes some FE spaces 𝑆(𝐾̂,M), 𝑈(𝐾̂,R2), and 𝑄(𝐾̂) that shall be used to form stable FE
spaces ℰ𝛾 for the stress mixed formulation with reduced symmetry. It also shows the corresponding Poisson-
compatible and Stokes-compatible FE spaces used in their construction and stability analysis. These methods
are known to be stable in single-level settings, as proved in the indicated references. The following accuracy
properties are valid for them with 𝑘 ≥ 1 and the indicated parameters 𝑡, 𝑟 ∈ {−1, 0, 1}:

P𝑘(𝐾̂,M) ⊂ 𝑆(𝐾̂,M), P𝑘+𝑡(𝐾̂,R2) ⊂ 𝑈(𝐾̂,R2), P𝑘+𝑟(𝐾̂) ⊂ 𝑄(𝐾̂). (4.6)

Three particular stable scenarios indicated in Table 1, recently analyzed in [19], are for single-level triangular
or quadrilateral meshes (i.e. ℎ𝑖𝑛 = ℎ𝑠𝑘 = ℎ) and for enriched internal polynomial degrees 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1
or 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 2. We argue that similar methodology may be successfully applied to more general two-scale
composite FE space settings ℰ𝛾 .

In fact, for the enforcement of the Stokes-constraint (4.2), one may build two-scale composite Stokes-
compatible FE pairs by adding bubble vector functions to the velocity spaces 𝑊𝒞ℛ𝑘𝑠𝑘+1

(︀
𝐾̄,R2

)︀
of the Crouzeix–

Raviart spaces for triangles, or of the Girault-Raviart family 𝑊𝒢ℛ[𝑘𝑠𝑘+1]

(︀
𝐾̄,R2

)︀
for affine quadrilaterals, defined

in the coarsest elements 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘
(see [9]). These extra terms are defined by the multiplication of appropri-

ate vector spaces, containing the gradient of the enlarged pressure elements, by a fixed scalar bubble function
defined for each 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘
. The next two sections describe the construction of these two-scale Stokes-compatible

FE pairs. As far as we understand, they are new in the literature.
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4.3.1. Stokes-constraint for FE spaces ℰℬ𝒟ℳ𝛾
(𝑘𝑖𝑛 ≥ 2) for triangular meshes

Since 𝑘𝑖𝑛 ≥ 2, the property U𝑟𝑚 ⊂ U𝛾𝑖𝑛
, required by the MHM-WS(ℰℬ𝒟ℳ𝛾

) scheme, holds. The particular
cases based on the conformal coarse partitions 𝒯 Ω𝑖

ℎ𝑠𝑘
(ℎ𝑖𝑛 = ℎ𝑠𝑘), and polynomial increment 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, for

𝑛 = 1, 2, correspond to the FE spaces denoted by ℰℬ𝒟ℳ+
𝛾𝑠𝑘

and ℰℬ𝒟ℳ++
𝛾𝑠𝑘

considered in [19]. For these methods,

the composite rotation space of piecewise polynomials Qℬ𝒟ℳ𝛾𝑖𝑛
(Ω𝑖) := P𝑘𝑖𝑛−1(𝒯 Ω𝑖

ℎ𝑠𝑘
) is stable. This choice is

guided by considering the Stokes-compatible Crouzeix–Raviart spaces 𝒞ℛ𝛾(Ω𝑖), with FE spaces

W𝒞ℛ𝛾
(Ω𝑖) ⊂ 𝐻1(Ω𝑖,R2) and Q𝒞ℛ𝛾𝑖𝑛

(Ω𝑖) ⊂ 𝐿2(Ω𝑖)

and local FE spaces on each coarse element 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘
defined as

W𝒞ℛ𝛾
(𝐾̄) = 𝑊𝒞ℛ𝑘𝑖𝑛

(︀
𝐾̄,R2

)︀
:= P𝑘𝑖𝑛

(︀
𝐾̄,R2

)︀
+ 𝑏𝐾̄P𝑘𝑠𝑘−1

(︀
𝐾̄,R2

)︀
and Q𝒞ℛ𝛾𝑖𝑛

(𝐾̄) := P𝑘𝑖𝑛−1(𝐾̄)

for velocity and pressure, respectively, where 𝑏𝐾̄ is the basic bubble function on 𝐾̄.
Let us consider now general two-scale scenarios 𝛾 = (𝛾𝑠𝑘, 𝛾𝑖𝑛), using internal polynomial degree increment

𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, 𝑛 ≥ 1 and internal refined partitions 𝒯 Ω𝑖

ℎ𝑖𝑛
, with ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ ≥ 0. The stability of the newly

proposed two-scale FE space settings ℰℬ𝒟ℳ𝛾 also requires two-scale Stokes-compatible Crouzeix-Raviart spaces
W𝒞ℛ𝛾

(Ω𝑖) ⊂ 𝐻1(Ω𝑖,R2) and Q𝒞ℛ𝛾𝑖𝑛
(Ω𝑖) ⊂ 𝐿2(Ω𝑖). They are defined on 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘
by the composite space

Q𝒞ℛ𝛾𝑖𝑛
(𝐾̄) = P𝑘𝑖𝑛−1(𝒯 𝐾̄

ℎ𝑖𝑛
) for pressure, piecewise-defined over the refined partition 𝒯 𝐾̄

ℎ𝑖𝑛
induced on 𝐾̄, and

the velocity space 𝑊𝒞ℛ𝑘𝑠𝑘+1

(︀
𝐾̄,R2

)︀
+𝐵𝒞ℛ𝑘𝑖𝑛

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
,R2

)︁
, where the stabilizing bubble spaces are

𝐵𝒞ℛ𝑘𝑖𝑛

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
,R2

)︁
=

{︁
𝑤 ∈ 𝐻1(𝐾̄,R2);𝑤|𝐾 = 𝑏𝐾∇P𝑘𝑖𝑛−1(𝐾),𝐾 ∈ 𝒯 𝐾̄

ℎ𝑖𝑛

}︁
.

Using these local FE pairs, the requirements of the corollary of Theorem 2 in [9] are fulfilled, and the Stokes-
compatibility of the resulting two-scale space configuration holds. Furthermore, ∇ × 𝐵𝒞ℛ𝑘𝑖𝑛

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
,R2

)︁
are

divergence-free bubble functions in 𝐾̄ ∈ 𝒯 Ω𝑗

ℎ𝑠𝑘
, with degree 𝑘𝑖𝑛 and,

therefore, the required property holds

∇× W𝒞ℛ𝛾 (Ω𝑖) ⊂ S𝐵𝐷𝑀𝑘𝛾(Ω𝑖) = S 𝜕
ℬ𝒟ℳ𝛾

(Ω𝑖)⊕ S̊ℬ𝒟ℳ𝛾𝑖𝑛
(Ω𝑖),

which implies that the composite rotation space Qℬ𝒟ℳ𝛾𝑖𝑛
(Ω𝑖) := P𝑘𝑖𝑛−1(𝒯 Ω𝑖

ℎ𝑖𝑛
) is a stable choice for ℰℬ𝒟ℳ𝛾 (Ω𝑖).

4.3.2. Stokes-constraint for two-scale FE spaces ℰℛ𝒯 [𝛾] for affine quadrilateral meshes

Firstly, let us recall the specific FE space setting for 𝛾 = (𝛾𝑠𝑘, 𝛾𝑖𝑛) based on conformal quadrilateral
partitions 𝒯 Ω𝑖

ℎ𝑠𝑘
(ℎ𝑖𝑛 = ℎ𝑠𝑘) and polynomial increment 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1. It corresponds to the case ℰℛ𝒯 +

[𝛾𝑠𝑘]

considered in [19]. For them, we obtain stable rotation spaces Qℛ𝒯 [𝛾𝑖𝑛](Ω𝑖) = P𝛾𝑖𝑛
(𝒯 Ω𝑖

ℎ𝑠𝑘
) by considering

enriched Stokes-compatible Girault-Raviart spaces 𝒢ℛ+
[𝑘𝑠𝑘+1](Ω𝑖), with local FE spaces 𝑊𝒢ℛ+

[𝑘𝑠𝑘+1]

(︀
𝐾̄,R2

)︀
=

Q𝑘𝑠𝑘+1,𝑘𝑠𝑘+1

(︀
𝐾̄,R2

)︀
+𝐵𝒢ℛ[𝑘𝑠𝑘+1](𝐾̄,R

2) for velocity, and P𝑘𝑠𝑘+1(𝐾̄) for pressure, in 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘
. Functions 𝑤 in

the bubble spaces 𝐵𝒢ℛ[𝑘𝑠𝑘+1](𝐾̄,R
2) are written as 𝑤 = 𝑏𝐾̄Q𝑘𝑠𝑘,𝑘𝑠𝑘

(𝐾̄), where 𝑏𝐾̄ is the basic bubble function
on 𝐾̄.

This enrichment methodology can also be extended to prove stability for general local FE spaces ℰℛ𝒯 [𝛾] , for
𝛾 = (𝛾𝑠𝑘, 𝛾𝑖𝑛), using both non-trivial internal polynomial degree increment 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, 𝑛 ≥ 0, and partition
refinement ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ ≥ 0. We obtain stable rotation spaces Qℛ𝒯 [𝛾𝑖𝑛](Ω𝑖) := P𝑘𝑖𝑛

(𝒯 Ω𝑖

ℎ𝑖𝑛
) using the FE Stokes

pair {W𝒢ℛ[𝛾](Ω𝑖),Q𝒢ℛ[𝛾𝑖𝑛](Ω𝑖)} ⊂ 𝐻1(Ω𝑖,R2) × 𝐿2(Ω𝑖), with local pressure space Q̃𝒢ℛ[𝛾𝑖𝑛](𝐾̄) = P𝑘𝑖𝑛(𝒯 𝐾̄
ℎ𝑖𝑛

),

on all 𝐾̄ ∈ 𝒯 Ω𝑖

ℎ𝑠𝑘
, and local velocity space 𝑊𝒢ℛ[𝑘𝑠𝑘+1]

(︀
𝐾̄,R2

)︀
+ 𝐵𝒢ℛ[𝑘𝑖𝑛]

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
,R2

)︁
, where the bubble spaces
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𝐵𝒢ℛ[𝑘𝑖𝑛]

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
,R2

)︁
⊂ 𝐻1(𝐾̄,R2) are composed by functions 𝑤 such that 𝑤|𝐾 = 𝑏𝐾Q𝑘𝑖𝑛−1,𝑘𝑖𝑛−1(𝐾), 𝐾 ∈ 𝒯 𝐾̄

ℎ𝑖𝑛
.

Since Q𝑘𝑖𝑛−1,𝑘𝑖𝑛−1(𝐾) contains P𝑘𝑖𝑛−1

(︀
𝐾,R2

)︀
= ∇P𝑘𝑖𝑛(𝐾), and accordingly to the corollary of Theorem 2 in

[9], the stability of the resulting enriched Stokes-compatible space configuration holds. Furthermore, the tensors
in ∇× 𝐵𝒢ℛ[𝑘𝑖𝑛]

(︁
𝒯 𝐾̄

ℎ𝑖𝑛
,R2

)︁
are divergence-free bubble functions piecewise defined in 𝐾̄ ∈ 𝒯 Ω𝑗

ℎ𝑠𝑘
, with degree 𝑘𝑖𝑛.

The required property ∇× Wℛ𝒯 [𝛾] ⊂ Sℛ𝒯 [𝛾] holds, concluding that Qℛ𝒯 [𝛾𝑖𝑛] is a stable choice for the rotation
space in ℰℛ𝒯 [𝛾] .

We summarize the results of Section 4 in the following theorem.

Theorem 4.1. The MFEM-WS(ℰ𝛾) formulation (3.16)–(3.18) is well-posed for any of the two-scale FE spaces
ℰℬ𝒟ℳ𝛾 and ℰℛ𝒯 [𝛾] . Moreover, by means of Theorem 3.2, this well-posedness property is also valid for the MHM-
WS(ℰ𝛾) scheme defined by (3.6)–(3.15) and based on the respective FE space setting.

Remarks

– ℰℬ𝒟ℳ+
𝛾

: for 𝑘𝑠𝑘 ≥ 1, these two-scale FE spaces can also be interpreted as two-scale FE spaces ℰℬ𝒟ℳ𝛾+ for
𝛾+ = (𝛾+

𝑠𝑘, 𝛾
+
𝑖𝑛), with 𝛾+

𝑖𝑛 = (ℎ𝑖𝑛, 𝑘𝑖𝑛 + 1). Thus, the stability proved to be valid for the later case also holds
for the family ℰℬ𝒟ℳ+

𝛾
.

– ℰℛ𝒯 +
[𝛾]

: these two-scale FE spaces for affine quadrilateral meshes can also be interpreted as two-scale FE

spaces ℰℛ𝒯 [𝛾+]
, for 𝛾+ = (𝛾𝑠𝑘, 𝛾

+
𝑖𝑛), with 𝛾+

𝑖𝑛 = (ℎ𝑖𝑛, 𝑘𝑖𝑛 + 1). Thus, the stability property valid for the latter
cases also holds for the family ℰℛ𝒯 +

[𝛾]
.

5. Unified error analysis for the MHM-WS(ℰ𝛾) method

In this section, we present a unified error analysis for stable MHM-WS(ℰ𝛾) methods for two-scale FE spaces
ℰ𝛾 via the equivalent MFEM-WS(ℰ𝛾) formulations, by means of Theorem 3.2. The analysis is general enough
to be applied to the stable families ℰℬ𝒟ℳ𝛾 and ℰℛ𝒯 [𝛾] , but also to other stable two-scale FE spaces eventually
constructed under similar circumstances, in association to other kinds of Poisson-compatible FE pairs.

A well-known methodology for error analysis of MFEM-WS(ℰ𝛾) formulations requires the construction of
appropriate interpolants, as proposed in [6]. The error estimates are then bounded in terms of the interpolation
errors. The particular two-scale interpolants of interest are discussed in the next theorem.

Theorem 5.1. Let ℰ𝛾 = S𝛾 ×U𝛾𝑖𝑛
×Q𝛾𝑖𝑛

be FE spaces verifying the stability constraints (4.1) and (4.2).

(1) There exists an interpolant Π
𝜎
𝛾 : 𝐻1(Ω,M) → S𝛾 , satisfying(︁

∇ ·
(︁
𝜏 −Π

𝜎
𝛾𝜏

)︁
, 𝑣

)︁
+

(︁
asym

(︁
𝜏 −Π

𝜎
𝛾𝜏

)︁
, 𝜙

)︁
= 0, ∀𝑣 ∈ U𝛾𝑖𝑛

, ∀𝜙 ∈ Q𝛾𝑖𝑛
, (5.1)

||Π
𝜎
𝛾𝜏 ||𝐻(div,Ω,M) . ||𝜏 ||𝐻(div,Ω,M). (5.2)

(2) For a sufficiently smooth tensor 𝜏 , the interpolation error estimate reads

||𝜏 −Π
𝜎
𝛾𝜏 ||L2(Ω,M) . ℎ𝑘𝑠𝑘+1

𝑠𝑘 ||𝜏 ||𝐻𝑘𝑠𝑘+1(Ω,M). (5.3)

The leading constants appearing on the right sides of estimates (5.2) and (5.3) are independent of 𝛾.

Proof. The idea proposed in [6] is to express the interpolant in the form Π
𝜎
𝛾𝜏 = Π

𝜎

1,𝛾𝜏 + Π
𝜎

2,𝛾𝜏 . The first
component Π

𝜎

1,𝛾𝜏 verifies the divergence commutative property expressed by (5.1) when taking 𝜙 = 0. It is
row-wisely defined in the spirit of standard projection-based interpolants 𝜋𝐷

𝛾 : 𝐻𝑠(Ω,R2) → V𝛾 adopted for
two-scale Poisson-compatible pairs {V𝛾 ,P𝛾𝑖𝑛

}, with enhanced bubble flux components (see [19, 20]). Recalling
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the definition of 𝜋𝐷
𝛾 for the single-level case (4.3)–(4.5), the two-scale version becomes 𝜋𝐷

𝛾 𝜂 = 𝜋𝐷,𝜕
𝛾 𝜂+ 𝜋̊𝐷

𝛾𝑖𝑛
(𝜂−

𝜋𝐷,𝜕
𝛾 𝜂), where only the internal interpolant 𝜋̊𝐷

𝛾𝑖𝑛
has to be updated. A uniform bound for ||Π

𝜎

1,𝛾𝜏 ||𝐻(div,Ω,M),
independent of 𝛾, follows from the same property valid for ||𝜋𝐷

𝛾 ||𝐻(div,Ω,R2).
The second interpolant Π

𝜎

2,𝛾𝜏 should verify the commutative property (5.2) when 𝑣 = 0. It is defined fol-
lowing similar arguments applied in [6] for the single-level cases. Namely, consider the Stokes-compatible pair
{W𝛾 , Q𝛾𝑖𝑛

}. This pair exists since the stability Stokes-constraint is satisfied. Let 𝜑 = [𝜑1 𝜑2] ∈ W𝛾 be the

solution of the Stokes problem with divergence constraint −(∇ · 𝜑, 𝜙) =
(︁

asym
(︁

Π
𝜎

1,𝛾𝜏 − 𝜏
)︁
, 𝜙

)︁
, ∀𝜙 ∈ Q𝛾𝑖𝑛

,

and define Π
𝜎

2,𝛾𝜏 = ∇× 𝜑 =
[︂
𝜕2𝜑1 −𝜕1𝜑1

𝜕2𝜑2 −𝜕1𝜑2

]︂
∈ S𝛾 . Therefore, Π

𝜎

2,𝛾𝜏 is divergence free and

‖Π
𝜎

2,𝛾𝜏‖𝐻(div,Ω,M) = ‖Π
𝜎

2,𝛾𝜏‖𝐿2(Ω,M) . ‖Π
𝜎

1,𝛾𝜏 − 𝜏‖𝐿2(Ω,M). (5.4)

Since asym Π
𝜎

2,𝛾𝜏 = −𝜕1𝜑1 − 𝜕2𝜑2 = −∇ · 𝜑, so that the required commutative property holds.
Concerning the error estimate (5.2), we first observe that it holds for Π

𝜎

1,𝛾 . In fact, this is a consequence
of similar error estimate valid for 𝜋𝐷

𝛾 of the associated two-scale FE Poisson-compatible space, proved in [20],
the leading constant appearing on the right side only depending on the shape-regularity factors of the meshes
𝒯 Ω𝑖

ℎ𝑖𝑛
, which are supposed to be independent of the mesh-widths, and on the bound for the projection 𝜋̂𝐷 on

the corresponding reference element 𝐾̂ (see also Thm. 4.1 in [2]).
We conclude the proof after using the triangular inequality and the estimate (5.4). �

Error estimates for the MHM-WS(ℰ𝛾) method use both discretization parameters 𝛾𝑠𝑘 and 𝛾𝑖𝑛 set in
Section 3.1. Moreover, the elliptic regularity property, which is known to hold in a variety of circumstances of pla-
nar elasticity on convex domains Ω [13], is used for the error estimate in 𝑢. Namely, if 𝑣 = 𝐴−1𝜀(𝑤) ∈ 𝐻(div,Ω,S)
is the solution of the elasticity problem ∇ · 𝑣 = 𝜃, with boundary condition 𝑤 = 0 on 𝜕Ω, we assume that

‖𝑣‖𝐻1(Ω,M) + ‖𝑤‖𝐻2(Ω,R2) . ‖𝜃‖𝐿2(Ω,R2). (5.5)

Theorem 5.2. Suppose ℰ𝛾 = S𝛾×U𝛾𝑖𝑛
×Q𝛾𝑖𝑛

is a two-scale FE space setting verifying the stability constraints
(4.1) and (4.2) and the accuracy properties (4.6), and let (𝜎̃, 𝑢̃, 𝑞) ∈ S𝛾 × U𝛾𝑖𝑛× ∈ Q𝛾𝑖𝑛 be the approximate
solution recovered from the output of the MHM-WS(ℰ𝛾) method, as in (3.5). Assume the regularity property
(5.5) holds.

(1) Then, the next estimates are valid:

‖𝜎 − 𝜎̃‖L2(Ω,M) + ‖𝑞 − 𝑞‖𝐿2(Ω) . ℎ
𝑘𝑠𝑘+1
𝑠𝑘 ‖𝜎‖𝐻𝑘𝑠𝑘+1(Ω,M) + ℎ𝑘𝑖𝑛+𝑟+1

𝑖𝑛 ‖𝑞‖𝐻𝑘𝑖𝑛+𝑟+1(Ω), (5.6)

‖∇ · (𝜎 − 𝜎̃)‖𝐿2(Ω,R2) . ℎ
𝑘𝑖𝑛+𝑡+1
𝑖𝑛 ‖∇ · 𝜎‖𝐻𝑘𝑖𝑛+𝑡+1(Ω,R2), (5.7)

‖𝑢− 𝑢̃‖𝐿2(Ω,R2) . ℎ
𝑘𝑠𝑘+2
𝑠𝑘 ‖𝜎‖𝐻𝑘𝑖𝑛+𝑡+1(Ω,M) + ℎ𝑘𝑖𝑛+𝑡+1

𝑖𝑛 ‖𝑢‖𝐻𝑘𝑖𝑛+𝑡+1(Ω,R2)

+ ℎ𝑠𝑘ℎ
𝑘𝑖𝑛+𝑟+1
𝑖𝑛 ‖𝑞‖𝐻𝑘𝑖𝑛+𝑟+1(Ω). (5.8)

where the exact fields 𝜎, 𝑢 and 𝑞 are regular enough for the norms to make sense.
(2) The above estimates hold for the MHM-WS(ℰ𝛾) formulations using ℰℛ𝒯 [𝛾] and ℰℬ𝒟ℳ+

𝛾
FE spaces, with

𝑡 = 𝑟 = 0, and using ℰℬ𝒟ℳ𝛾
FE spaces for 𝑘𝑖𝑛 > 1, with 𝑡 = 𝑟 = −1.

Proof. By means of Theorem 3.2, we derive the error estimates for the equivalent MFEM-WS(ℰ𝛾) formulation,
for which the following estimates in terms of interpolation errors hold (see [19] or the references therein):

‖𝜎 − 𝜎̃‖𝐿2(Ω,M) + ‖𝑞 − 𝑞‖𝐿2(Ω) . ‖𝜎 −Π
𝜎
𝛾𝜎‖𝐿2(Ω,M) + ‖𝑞 −Π𝑞

𝛾𝑖𝑛
𝑞‖𝐿2(Ω), (5.9)

‖∇ ·
(︀
𝜎 − 𝜎̃

)︀
‖𝐿2(Ω,R2) . ‖∇ ·

(︁
𝜎 −Π

𝜎
𝛾𝜎

)︁
‖𝐿2(Ω,R2), (5.10)

‖Π𝑢
𝛾𝑖𝑛
𝑢− 𝑢̃‖2𝐿2(Ω,R2) =

(︁
𝐴

(︀
𝜎 − 𝜎̃

)︀
, 𝑣 −Π

𝜎
𝛾𝑣

)︁
+

(︁
Π𝑞

𝛾𝑖𝑛
𝑞 − 𝑞, asym

(︁
𝑣 −Π

𝜎
𝛾𝑣

)︁)︁
, (5.11)
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where Π
𝜎
𝛾 : 𝐻1(Ω,M) → S𝛾 is the interpolant defined in Section 5.1, Π𝑢

𝛾𝑖𝑛
: 𝐿2(Ω,R2) → U𝛾𝑖𝑛

and Π𝑞
𝛾𝑖𝑛

:
𝐿2(Ω,R2) → Q𝛾𝑖𝑛 are 𝐿2-orthogonal-projections, and 𝑣 = 𝐴−1𝜀(𝑤) ∈ 𝐻(div,Ω,S) is the solution of the
elasticity problem ∇ · 𝐴−1𝜀(𝑤) = Π𝑢

𝛾𝑖𝑛
𝑢 − 𝑢̃ with homogeneous boundary condition 𝑤 = 0 on 𝜕Ω. Being a

𝐿2-projections, Π𝑢
𝛾𝑖𝑛

and Π𝑞
𝛾𝑖𝑛

have unitary norm, and the following error estimates hold

||𝑣 −Π𝑢
𝛾𝑖𝑛
𝑣||𝐿2(Ω,R2) . ℎ𝑘𝑖𝑛+𝑡+1

𝑖𝑛 ||𝑣||𝐻𝑘𝑖𝑛+𝑡+1(Ω,R2), (5.12)

||𝜙−Π𝑞
𝛾𝑖𝑛
𝜙||𝐿2(Ω) . ℎ𝑘𝑖𝑛+𝑟+1

𝑖𝑛 ||𝜙||𝐻𝑘𝑖𝑛+𝑟+1(Ω). (5.13)

Due to the divergence-consistency property, meaning that ∇ ·Π
𝜎
𝛾𝜏 is the 𝐿2-projection of ∇ · 𝜏 over U𝛾𝑖𝑛 , then

||∇ · (𝜏 −Π
𝜎
𝛾𝜏)||𝐿2(Ω,R2) . ℎ𝑘𝑖𝑛+𝑡+1

𝑖𝑛 ||∇ · 𝜏 ||𝐻𝑘𝑖𝑛+𝑡+1(Ω,R2). (5.14)

Consequently, estimates (5.6) and (5.7) follow directly by inserting the interpolation errors (5.3), (5.13), and
(5.14) in (5.9) and (5.10). Using Cauchy-Schwartz inequality in (5.11), we obtain

‖Π𝑢
𝛾𝑖𝑛
𝑢− 𝑢̃‖2𝐿2(Ω,R2) ≤ ‖𝐴(𝜎 − 𝜎̃)‖𝐿2(Ω,M)‖𝑣 −Π

𝜎
𝛾𝑣‖𝐿2(Ω,M) + ‖Π𝑞

𝛾𝑖𝑛
𝑞 − 𝑞‖𝐿2(Ω)‖ asym

(︁
𝑣 −Π

𝜎
𝛾𝑣

)︁
‖𝐿2(Ω).

Therefore, we use ‖𝑣 − Π
𝜎
𝛾𝑣‖𝐿2(Ω,M) . ℎ𝑠𝑘‖𝑣‖𝐻1(Ω,M), ‖ asym

(︁
𝑣 −Π

𝜎
𝛾𝑣

)︁
‖𝐿2(Ω) . ℎ𝑠𝑘‖𝑣‖𝐻1(Ω,M), and the esti-

mate ‖𝑣‖𝐻1(Ω,M) . ‖Π𝑢
𝛾𝑖𝑛
𝑢− 𝑢̃‖𝐿2(Ω,R2), given by elliptic regularity property (5.5), to obtain

‖Π𝑢
𝛾𝑖𝑛
𝑢− 𝑢̃‖𝐿2(Ω,R2) . ℎ𝑠𝑘

(︀
‖𝜎 − 𝜎̃‖𝐿2(Ω,M) + ‖Π𝑞

𝛾𝑖𝑛
𝑞 − 𝑞‖𝐿2(Ω)

)︀
.

Then, we insert the estimate above in the triangle inequality to obtain ‖𝑢− 𝑢̃‖𝐿2(Ω,R2) ≤ ‖𝑢−Π𝑢
𝛾𝑖𝑛
𝑢‖𝐿2(Ω,R2) +

‖Π𝑢
𝛾𝑖𝑛
𝑢− 𝑢̃‖𝐿2(Ω,R2). The estimate (5.8) follows from this last inequality and using the interpolation errors (5.12)

and (5.13), and the estimate (5.6). Finally, the second statement follows from the first one, for all hypotheses
are satisfied. �

Remarks

(i) The stress error is limited to the order 𝑂(ℎ𝑘𝑠𝑘+1
𝑠𝑘 ), independently of internal enrichment, because the edge

terms live in the coarsest scale level 𝛾𝑠𝑘 = (ℎ𝑠𝑘, 𝑘𝑠𝑘) of the normal traces over the skeleton interfaces.
(ii) Divergence of the stress can reach arbitrary high accuracy orders, profiting from finer meshes and higher

polynomial degrees used for the approximations in U𝛾𝑖𝑛
.

(iii) Despite the fact that finer meshes and higher polynomial degrees are also used for the approximations in
Q𝛾𝑖𝑛

, the accuracy of the rotation is limited by the stress accuracy order 𝑂(ℎ𝑘𝑠𝑘+1
𝑠𝑘 ).

(iv) The constants in the above error estimates are independent of the Poisson ratio, a fact allowing to work with
materials near the incompressible limit, avoiding the locking phenomena, which is one of main advantages
of using stress mixed methods to solve linear elasticity.

(v) Since ||𝜏 · 𝑛||
𝐻−

1
2 (Γ)

≤ ||𝜏 ||
𝐻(div,Ω,M)

, for 𝜏 ∈ S , convergence rate for ||𝜆 − 𝜆̃||
𝐻−

1
2 (Γ)

can be obtained

directly from the estimations (5.6), and (5.7) as

||𝜆− 𝜆̃||
𝐻−

1
2 (Γ)
. ℎ𝑘𝑠𝑘+1

𝑠𝑘 ‖𝜎‖𝐻𝑘𝑠𝑘+1(Ω,M) + ℎ𝑘𝑖𝑛+𝑡+1
𝑖𝑛 ‖∇ · 𝜎‖𝐻𝑘𝑖𝑛+𝑡+1(Ω,R2) + ℎ𝑘𝑖𝑛+𝑟+1

𝑖𝑛 ‖𝑞‖𝐻𝑘𝑖𝑛+𝑟+1(Ω).

(vi) Due to the 𝐿2-orthogonality of U𝑟𝑚 and U ⊥ , the convergence rate (5.8) valid for ||𝑢 − 𝑢̃||𝐿2(Ω,R2) also
holds for ||𝑢𝑟𝑚 − 𝑢̃0||2𝐿2(Ω,R2) and ||𝑢⊥ − 𝑢̃⊥||2𝐿2(Ω,R2), for

||𝑢− 𝑢̃||2𝐿2(Ω,R2) = ||(𝑢𝑟𝑚 − 𝑢̃𝑟𝑚) + (𝑢⊥ − 𝑢̃⊥)||2𝐿2(Ω,R2) = ||𝑢𝑟𝑚 − 𝑢̃𝑟𝑚||2𝐿2(Ω,R2) + ||𝑢⊥ − 𝑢̃⊥||2𝐿2(Ω,R2).
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Figure 2. Oscillatory Young’s modulus 𝐸, the components of the analytic displacement 𝑢 and
stress tensor 𝜎.

6. Numerical verification tests

In this section, we present and discuss some verification tests for the MHM-WS(ℰ𝛾) formulation analyzed
in the previous sections. The results are compared with the ones given by the coarse single-level MFEM-
WS(ℰ𝛾𝑠𝑘

) formulation, and by the MHM-𝐻1 formulation [28, 35], that use 𝐻1-conforming FE displacement
spaces of corresponding two-scale resolution, using the hierarchical shape functions described in [17]. We refer
to [18,39] for the implementation of 𝐻(div)-conforming shape functions of edge and internal types, required in
the construction of tensor FE spaces.

For the current simulations, we implemented the methods in the computational framework NeoPZ6, where
tools for the construction of the required constrained 𝐻(div)-conforming spaces are available (e.g., a hierarchy
of shape functions of high degree for a variety of element geometry, data structure allowing the identification of
face and internal shape functions of different degrees, and procedures for shape function restraints, as the ones
usually adopted in adaptive hp-strategies). The upscaling-downscaling stages are crucial for the construction of
efficient computational algorithms, mainly because they decompose the resolution of the problem in terms of
local expensive (but independent local solvers) and cheaper coupled global systems. We refer to [20, 35] for a
discussion of different ways to implement MHM methods.

6.1. Problem 1: An oscillatory Young’s modulus case

Let Ω = (0, 1)×(0, 1) be a isotropic elastic body with Lamé parameters 𝜆 =
𝐸(𝑥, 𝑦) 𝜈

(1 + 𝜈)(1− 2𝜈)
and 𝜇 =

𝐸(𝑥, 𝑦)
2(1 + 𝜈)

expressed in terms of the oscillatory Young’s modulus 𝐸(𝑥, 𝑦) = 100(1 + 0.3 sin(10𝜋(𝑥 − 0.5)) cos(10𝜋𝑦) and
Poisson ratio 𝜈 = 0.3. The exact displacement 𝑢, vanishing on 𝜕Ω, and is given by the expression

𝑢(𝑥, 𝑦) =

⎛⎜⎝ 1
3

(︁𝑥
3

)︁2

𝑦2 cos(6𝜋𝑥) sin(7𝜋𝑦)
1
5
𝑒𝑦 sin(4𝜋𝑥)

⎞⎟⎠ ,

from which the body force 𝑓 is derived. Plots for 𝐸, components 𝑢𝑖, and 𝜎
𝑖,𝑗

are shown in Figure 2.

6NeoPZ open-source platform: http://github.com/labmec/neopz.

http://github.com/labmec/neopz
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Figure 3. Effects of ℎ𝑘𝑠𝑘+2
𝑠𝑘 in Term 1 (T1), and ℎ𝑡+1

𝑖𝑛 in Term 2 (T2) in the displacement error
estimate: 𝑘𝑠𝑘 = 2, 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, 𝑛 = 0, 1, and 2, for ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ = 1, 2, and 3.

The results shown in this section are for two-scale FE spaces ℰℛ𝒯 [𝛾] , for square meshes, ℰℬ𝒟ℳ𝛾
, and ℰℬ𝒟ℳ+

𝛾
,

for triangular elements. Two types of curves are shown: mesh-based and space-based convergence histories.
In the mesh-based scenario, convergence rate is based on the usual 𝐻-refinement of the macro-partition, and

use ℎ𝑠𝑘 = 𝐻 (no mesh-skeleton refinement). The goal is to verify the error estimates predicted in Theorem 5.2.
Concerning displacement errors, the three terms in the right hand side of (5.8) may have different influence on
the results. For instance, for the two-scale families of FE spaces ℰℛ𝒯 [𝛾] and ℰℬ𝒟ℳ+

𝛾
the last term ℎ𝑠𝑘ℎ

𝑘𝑖𝑛+1
𝑖𝑛 is

always dominated by ℎ𝑘𝑠𝑘+2
𝑠𝑘 (Term 1) and ℎ𝑘𝑠𝑘+𝑛+1

𝑖𝑛 (Term 2) appearing in the first and second terms. Different
regimes may be observed for Term 1 and Term 2, depending on parameter configurations. For instance, when
internal polynomial degree increment 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛 is applied, with 𝑛 ≥ 1, the influence of Term 1 dominates
Term 2 in the range for ℎ𝑠𝑘 illustrated in Figure 3 (left-plots), independently of the internal mesh refinement
ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ ≥ 1. For the two-scale FE spaces ℰℬ𝒟ℳ𝛾 , Term 1 dominates Term 2 when 𝑛 ≥ 2, as shown in
Figure 3 (right-plots). These effects shall be verified in the simulations presented in this section.

Note also that the macro mesh-size 𝐻 does not appear explicitly in the error estimates of Theorem 5.2.
This means that convergence is achieved by making ℎ𝑠𝑘 → 0, even if 𝒯𝐻 stays unchanged. This second type of
convergence history is called space-based convergence, based on the refinement of the skeleton partitions (as well
as the internal ones) while keeping fixed the macro-partition. The purpose is to verify if an extra convergence
rate of order ℎ1/2

𝑠𝑘 occurs, as observed in the numerical tests of [27,35] using the MHM-𝐻1 method.

6.1.1. Mesh-based convergence with square elements

In this part, all verification tests for the oscillatory Young’s modulus case are for FE spaces ℰℛ𝒯 [𝛾] based on
square local partitions.

The results for the stress component 𝜎11 obtained by the application of the MHM-WS(ℰℛ𝒯 [𝛾]) scheme are
displayed in Figure 4, for different configurations of 𝛾. Precisely, we show plots for: (a) 8×8 subregions, 𝐻 = 2−3,
ℎ𝑠𝑘 = 𝐻, 𝑘𝑠𝑘 = 2; (b) 8 × 8 subregions, ℎ𝑠𝑘 = 𝐻/4, 𝑘𝑠𝑘 = 0; and (c) 32 × 32 subregions, 𝐻 = 2−5, ℎ𝑠𝑘 = 𝐻,
𝑘𝑠𝑘 = 2. In all these cases, ℎ𝑖𝑛 = 2−7, and 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1. It is clear that the FE space of the case (a) is
not sufficiently refined to capture the essential features of the solution. The other two FE spaces, which are
equivalent in terms of element sizes on the edges, show similar approximations, but the errors for the FE space
of case (c) are the smallest ones.

Figures 5 and 6 show 𝐿2-error curves for 𝑢, 𝜎, ∇ · 𝜎, 𝑞, and energy norm
(︀
𝐴 𝜀(𝑢), 𝜀(𝑢)

)︀ 1
2 , in terms of the

macro mesh size 𝐻 = 2−𝑗 , 𝑗 = 1, 2, · · · , 6, for the MHM-WS(ℰℛ𝒯 [𝛾]) scheme, using ℎ𝑠𝑘 = 𝐻, 𝑘𝑠𝑘 = 1 or 2, and



1024 P.R.B. DEVLOO ET AL.

Figure 4. Problem 1 – Tensor component 𝜎11 solved by the MHM-WS(ℰℛ𝒯 [𝛾]) scheme for
different square partitions: 8 × 8 subregions, ℎ𝑠𝑘 = 𝐻, 𝑘𝑠𝑘 = 2 (left-image); 8 × 8 subregions,
ℎ𝑠𝑘 = 𝐻/4, 𝑘𝑠𝑘 = 0 (middle-image); and 32×32 subregions, ℎ𝑠𝑘 = 𝐻, and 𝑘𝑠𝑘 = 2 (right-image).
In all the cases 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1, and ℎ𝑖𝑛 = 2−7.

Figure 5. Problem 1 – Effect of increasing 𝑘𝑖𝑛: MHM-WS(ℰℛ𝒯 [𝛾]) scheme with ℎ𝑠𝑘 = 𝐻 = 2−𝑗 ,
𝑗 = 1, 2, · · · 6, ℎ𝑖𝑛 = ℎ𝑠𝑘/2, 𝑘𝑠𝑘 = 1, and 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, 𝑛 = 0, 1, 2; single-level MFEM-
WS(ℰℛ𝒯 [𝛾𝑠𝑘]).

different fine scale parameters 𝛾𝑖𝑛. We compare the results with the respective single-level MFEM-WS(ℰℛ𝒯 [𝛾𝑠𝑘])
methods, and show that the two-scale FE settings overcome the single-level one in all scenarios.

Assessing the effect of polynomial degree increment on errors

Figure 5 shows the cases for 𝑘𝑠𝑘 = 1, with ℎ𝑖𝑛 = ℎ𝑠𝑘/2. The purpose is to analyze the effect of increasing
𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 𝑛, 𝑛 = 0, 1 and 2.

As predicted in (5.6), the errors in 𝜎 and 𝑞 are of order 𝑘𝑠𝑘 +1, independently of 𝑛, and these errors are about
the same magnitude, in all the cases. The stress symmetry errors, which are proportional to the stress errors, also
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Figure 6. Problem 1 – Effect of decreasing ℎ𝑖𝑛: MHM-WS(ℰℛ𝒯 [𝛾]) scheme with 𝑘𝑖𝑛 = 𝑘𝑠𝑘 = 2,
ℎ𝑠𝑘 = 𝐻 = 2−𝑗 , 𝑗 = 1, 2, · · · 5, ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ = 1, 2, and 3; single-level MFEM-WS(ℰℛ𝒯 [𝛾𝑠𝑘]).

have convergence rates of order 𝑘𝑠𝑘+1, but the increment of the polynomial degrees inside the subregions reduces
their magnitudes significantly. As expected, the divergence of the stress systematically improves accuracy to
order 𝑘𝑠𝑘 + 𝑛+ 1 = 𝑛+ 2 (recall that 𝑡 = 0 for ℰℛ𝒯 [𝛾]). For these space configurations, we verify the dominant
effect of the first term in the displacement error estimate (5.8) of order 𝑘𝑠𝑘 + 2 when 𝑛 = 1, 2. For 𝑛 = 0, i.e.,
when 𝑘𝑖𝑛 = 𝑘𝑠𝑘, the second term of (5.8) takes place, and convergence rate of order 𝑘𝑠𝑘 +1 occurs, in accordance
with the illustration of Figure 3 (left-plots).

Assessing the effect of internal mesh refinement on errors

Now we take 𝑘𝑖𝑛 = 𝑘𝑠𝑘 = 2, and analyze the effect of refining the internal meshes, for ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ = 1, 2
and 3, comparing the cases in Figure 6. Again, for coarser levels (ℓ = 1, 2) the second term in the displacement
error is the most significant, of order 𝑘𝑠𝑘 + 1, in accordance with the left-plots of Figure 3. By further refining
the internal grids (ℓ = 3), the convergence rate tends to the order 𝑘𝑠𝑘 + 2 related to the first term in (5.8). We
highlight the different regimes for the divergence of the stress, which is now always of fixed order 𝑘𝑠𝑘 + 1 = 3,
but with reducing magnitude as ℓ increases. The behavior of the other variables are not significantly affected
by using these FE space settings.

Comparison between MHM-WS(ℰ𝛾) and MHM-𝐻1 methods

We compare the convergence histories of the MHM-WS(ℰℛ𝒯 [𝛾]) and MHM-𝐻1 methods in the plots of
Figure 7. The FE spaces have polynomial degree 𝑘𝑠𝑘 = 1, without skeleton subdivision (ℎ𝑠𝑘 = 𝐻) and no
internal polynomial degree enrichment (𝑛 = 0), but using ℓ = 1, 2, and 3 to form the micro meshes inside the
macro-elements (ℎ𝑖𝑛 = 𝐻/2ℓ).

For the MHM-𝐻1 method, using scalar polynomials obtained from Q𝑘,𝑘(𝐾̂), 𝐿2-stress and energy errors
maintain of order 𝑘𝑠𝑘, but as the internal mesh refinement increases, the magnitude of the errors decrease.
Concerning the displacement variable, both methods show similar behavior, starting with rates of order 𝑘𝑠𝑘 + 1
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Figure 7. Problem 1 – Comparison of MHM-WS(ℰℛ𝒯 [𝛾]) and MHM-𝐻1 methods: 𝑘𝑖𝑛 = 𝑘𝑠𝑘 =
1, ℎ𝑠𝑘 = 𝐻 = 2−𝑗 , 𝑗 = 1, 2, · · · , ℎ𝑖𝑛 = ℎ𝑠𝑘/2ℓ, ℓ = 1, 2, and 3.

Figure 8. Problem 1 – Space-based convergence (s-b) for the MHM-WS(ℰℛ𝒯 [𝛾]) scheme: fixed
macro-partition with 16 uniform square subregions, ℎ𝑠𝑘 = 2−𝑗 , 𝑗 = 2, · · · , 6, for 𝑘𝑠𝑘 = 1 or 2,
ℎ𝑖𝑛 = ℎ𝑠𝑘/2, and 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1; mesh-based convergence (m-b) is for macro-partitions with
𝐻 = ℎ𝑠𝑘.

at low internal refinement levels, typical of single-level schemes, as predicted by the error estimate in (5.8) for
this kind of space configuration (𝑛 = 0, 𝑡 = 0, and ℎ𝑖𝑛 ∼ ℎ), whose first term on the right side of (5.8) is
dominating.

However, as ℓ increases, with ℎ𝑖𝑛 ≪ ℎ𝑠𝑘, the error magnitudes decrease. The enhanced rate of order 𝑘𝑠𝑘 + 2
is observed at ℓ = 3, illustrating the domination of the first term on the right side of (5.8).

Notice that the observed rates of convergence for the MHM-𝐻1 method are in accordance with the predicted
ones in [28,35], the errors from the local level solver polluting the global convergence when 𝑘𝑖𝑛 = 𝑘𝑠𝑘. One can
recover the higher convergence order 𝑂(ℎ𝑘𝑠𝑘+1

𝑠𝑘 ) for 𝐿2-stress and energy norms by using 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1 and,
provided some smoothing properties hold, recover the super-convergence order 𝑂(ℎ𝑘𝑠𝑘+2

𝑠𝑘 ) by using 𝑘𝑖𝑛 = 𝑘𝑠𝑘 +2
in the MHM-𝐻1 method [35].

6.1.2. A space-based convergence study

Consider now fixed macro-partitions with 16 uniform squares or 32 triangles, respectively (mesh-size 𝐻 =
1
4

),

and skeleton partitions taking ℎ𝑠𝑘 = 2−𝑗𝐻, 𝑗 = 0, 1, 2, · · · . Inside the subregions, we take uniform partitions
𝒯 Ω𝑖

ℎ𝑖𝑛
with ℎ𝑖𝑛 = ℎ𝑠𝑘/2. The polynomial degrees used for the trace spaces are 𝑘𝑠𝑘 = 1 or 2, and for the local FE

spaces are 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1 (i.e., 𝑛 = 1).
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Table 3. Problem 1 – Space-based convergence for the MHM-WS(ℰ𝛾) method: 𝐿2-errors and
convergence rates using fixed macro-partition of 32 triangles for two-scale FE spaces ℰℬ𝒟ℳ𝛾

and ℰℬ𝒟ℳ+
𝛾

; ℎ𝑠𝑘 = 2−𝑗 , 𝑘𝑠𝑘 = 1 or 2, ℎ𝑖𝑛 = ℎ𝑠𝑘/2, and 𝑘𝑖𝑛 = 𝑘𝑠𝑘 + 1.

Triangular local partitions

ℰℬ𝒟ℳ𝛾

𝑘𝑠𝑘 = 1

𝑗
Stress Displacement Divergence Rotation Asymmetry Energy

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

2 1.5298e+1 − 6.1570e−3 − 2.3282e+2 − 1.5827e+0 − 5.0094e+0 − 1.5277e+0 −
3 3.8547e+0 1.99 1.2550e−3 2.29 6.6334e+1 1.81 3.8729e−2 2.03 1.3566e+0 1.88 3.7603e−1 2.02

4 7.9571e−1 2.28 2.8845e−4 2.12 1.7167e+1 1.95 7.2450e−3 2.42 2.6268e−1 2.37 7.6726e−2 2.29

5 1.6220e−1 2.30 7.1211e−5 2.02 4.3292e+0 1.99 1.4674e−3 2.30 4.8063e−2 2.45 1.5543e−2 2.30

𝑘𝑠𝑘 = 2

𝑗
Stress Displacement Divergence Rotation Asymmetry Energy

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

2 6.5982e+0 − 1.4763e−3 − 1.0815e+1 − 6.8016e−2 − 1.4044e+0 −− 6.4350e−1 −
3 1.1056e−1 2.58 1.2802e−4 3.53 1.0815e+1 2.79 1.0762e−2 2.66 1.9111e−1 2.88 1.0699e−1 2.59

4 1.1581e−1 3.25 8.1727e−6 3.97 1.4003e+0 2.95 1.1113e−3 3.28 2.3519e−2 3.02 1.1212e−2 3.20

5 9.4750e−3 3.61 6.4039e−7 3.67 1.7659e−1 2.99 8.5089e−5 3.71 2.6922e−3 3.13 9.2499e−4 3.60

ℰℬ𝒟ℳ+
𝛾

𝑘𝑠𝑘 = 1

𝑗
Stress Displacement Divergence Rotation Asymmetry Energy

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

2 1.5909e+1 − 4.7291e−3 − 7.4825e+1 − 1.9752e−1 − 2.6632e+0 − 1.5436e+0 −
3 4.0471e+0 1.97 6.1283e−4 2.95 1.0815e+1 2.79 4.8076e−2 2.04 7.1458e−1 1.90 3.8563e−1 2.00

4 8.2132e−1 2.30 5.8335e−5 3.39 1.4003e+0 2.95 8.4784e−3 2.50 1.2752e−1 2.49 7.7762e−2 2.31

5 1.6348e−1 2.33 6.3446e−6 3.20 1.7659e+1 2.99 1.5663e−3 2.44 1.9175e−2 2.73 1.5442e−2 2.33

𝑘𝑠𝑘 = 2

𝑗
Stress Displacement Divergence Rotation Asymmetry Energy

Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

2 6.6848e+0 − 1.4911e−3 − 2.0206e+1 − 7.3370e−2 − 9.1499e+1 − 6.4407e+1 −
3 1.1190e+0 2.58 1.2639e−4 3.56 1.4320e+0 3.82 1.1316e−2 2.70 1.1343e−1 3.01 1.0775e−1 2.58

4 1.1724e−1 3.25 6.8611e−6 4.20 9.2555e−2 3.95 1.1689e−3 3.28 1.5131e−2 2.91 1.1291e−2 3.25

5 9.6566e−3 3.60 2.5853e−7 4.73 5.8340e−3 3.99 9.3046e−5 3.65 1.7545e−3 3.11 9.3336e−4 3.60

The space-based error curves in Figure 8 are for ℰℛ𝒯 [𝛾] spaces and are plotted versus the number of degrees
of freedom (DoF) in the condensed systems of the upscaling stage. We also include mesh-based results for
comparison, using the same grid size 𝐻 = ℎ𝑠𝑘 for the macro and the skeleton partitions, while keeping the other
parameters unchanged. These plots show that the desired accuracy can be obtained with about two orders of
magnitude fewer DoFs when the space-based strategy is adopted instead of refining the global partition.

Table 3 contains the errors and convergence rates for triangular mesh scenarios. Recall the accuracy param-
eters 𝑡 = 𝑟 = −1 for the ℰℬ𝒟ℳ𝛾

family, and 𝑡 = 𝑟 = 0 for ℰℬ𝒟ℳ+
𝛾

case. Except for the divergence of the stress,
all other variables experiment and enhanced accuracy, which is more evident for 𝑘𝑠𝑘 = 2. Since ∇ · 𝜎̃ is the
𝐿2-orthogonal projection of 𝑓 over U𝛾𝑖𝑛 , its accuracy is kept in the superconvergence rate of order ℎ𝑘𝑠𝑘+𝑡+2

𝑖𝑛 , as
predicted in (5.7). As for the MHM-𝐻1 simulations shown in [27,35], the ℰℬ𝒟ℳ+

𝛾
space family presents the same

tendency to extrapolate the predicted values by an exponent ≈ 1/2 in the space-based convergence rates. Once
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Figure 9. Problem 2 – Young’s modulus and Poisson’s ratio at the cross line 𝑦 = 5000 m.

stress convergence rate reaches the order ℎ𝑘𝑠𝑘+3/2
𝑠𝑘 , this enhanced accuracy is translated to the displacement

error estimate (5.8), improving the Term 1 to order ℎ𝑘𝑠𝑘+5/2
𝑠𝑘 .

When this term is dominant, the extra ℎ1/2
𝑠𝑘 accuracy order appears, as observed for the ℰℬ𝒟ℳ+

𝛾
family using

the mesh sizes and polynomial degree scenario of this test problem. However, this tendency is not confirmed by
the displacement errors given by the simulations with ℰℬ𝒟ℳ𝛾

, a fact that can be justified by a closer look in
the right-plots of Figure 3: using 𝑛 = 1 and ℓ = 1 the Term 2 (of order ℎ𝑘𝑠𝑘+1

𝑠𝑘 ) dominates the Term 1 as ℎ𝑠𝑘

diminishes.

6.2. Problem 2: a heterogeneous media case

In this example, we use the data from the HPC4e Test Suite [15], which defines an elastic domain with 16
layers with constant physical properties, covering an area of 10× 10× 5 km. As suggested in [35], we replace the
original layers 4 and 12 by the data of saturated clay 𝜌 = 1760 kg/m3, 𝜈 = 0.49, 𝐸 = 15 MPa, and which adds
more interesting behavior for the numerical experiments.

We consider a three-dimensional grid with ∆𝑥 = ∆𝑦 = 19.53125 m (10000/512) and ∆𝑧 = 4500/256 =
17.578125 m, to sample the compressional velocity 𝑉𝑝, shear velocity 𝑉𝑠, and density 𝜌, and use the expressions

𝜈 =
𝑉 2

𝑝 − 2𝑉 2
𝑠

2(𝑉 2
𝑝 − 𝑉 2

𝑠 )
and 𝐸 = 2𝜌𝑉 2

𝑠 (1 + 𝜈) to obtain the Poisson coefficient and Young’s modulus, respectively.

Figure 9 shows the plots of these parameters defined at the central cross line at 𝑦 = 5000 m, which corresponds
to the domain Ω used in the simulations of the heterogeneous media case.

The top, left and right sides of the domain are stress-free, and the bottom side has zero displacement. The
domain is loaded by gravity (9.81 m/s2). We choose the evolution of 𝜎

11
at the horizontal centerline of the

domain 𝑧 = 2250.25 m as a reference value.
We ran single-level MFEM-WS(ℰℛ𝒯 [𝛾𝑟𝑒𝑓 ]) simulations for 𝛾𝑟𝑒𝑓 = (ℎ, 𝑘), 𝑘 = 1, 2 and conclude that 𝑘 = 2 can

be used as a reference solution.
The plots in Figure 10 show the reference values of 𝜎

11
along the horizontal center line of the domain

𝑧 = 2250.25 m for four two-level configurations of the MHM-WS(ℰℛ𝒯 [𝛾]) using fixed 16 × 8 subregions as
documented in the right-hand side of Figure 11. The interior meshes in each subregion are obtained after
five uniform subdivisions. The approximations are obtained using FE spaces ℰℛ𝒯 [𝛾] for 𝑘𝑠𝑘 = 𝑘𝑖𝑛 = 1, and
ℎ𝑠𝑘 = 𝐻/2ℓ, ℓ = 0, 1, 2 and 3 divisions of the skeleton mesh. It can be observed that by refining the skeleton
mesh, the MHM-WS(ℰℛ𝒯 [𝛾]) approximations become closer to the reference solution, with quite well matching
for ℓ = 3.

Figure 11 shows contour plots of 𝜎
11

comparing the re ference results (left-image) with the finest MHM-
WS(ℰℛ𝒯 [𝛾]) approximate result (right-image) using ℓ = 3.
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Figure 10. Problem 2 – Plots of 𝜎
11

at the height 𝑧 = 2250.25 m. The reference approximations
(black), and the MHM-WS(ℰ𝛾) solutions (red), are for two-scale FE spaces ℰℛ𝒯 [𝛾] based on
16 × 8 macro subregions, 𝑘𝑠𝑘 = 𝑘𝑖𝑛 = 1, ℎ𝑖𝑛 = 10000/512 ≈ 19.53 m, ℎ𝑠𝑘 = 𝐻/2ℓ with
ℓ = 0, 1, 2, 3.

Figure 11. Problem 2 – 3 Component 𝜎
11

obtained with single-level reference FE space
ℰℛ𝒯 [𝛾𝑟𝑒𝑓 ] (left-image), and MHM-WS(ℰ𝛾) scheme (right-image) with two-scale FE space ℰℛ𝒯 [𝛾]

based on 16× 8 macro-elements, 𝑘𝑠𝑘 = 𝑘𝑖𝑛 = 1, ℎ𝑠𝑘 = 𝐻/8, and ℎ𝑖𝑛 = 10000/512 ≈ 19.53 𝑚.

7. Conclusions

We proposed a family of stable 𝐻(div)-conforming multiscale mixed methods for elasticity problems that
impose weakly stress symmetry on general polygonal meshes. Such a feature makes the methodology flexible
to represent complex geometries while it yields a systematic way to build multiscale FE spaces with upscaling-
downscaling stages. The multiscale nature of the methods provides a detailed representation of the solution
(stress, displacement, and rotation multiplier). Such discrete solutions combine fine-scale computations within
macro elements, which are entirely independent of one another and prompt to be parallelized, with coarse scales
represented by constrained traction (Lagrange multiplier) on mesh skeleton. As a result, the methods achieve
optimal and high-order convergence by refining the meshes’ frame and local sub-meshes only. As an upshot,
the convergence also holds with edge refinement only, i.e., keeping the first-level mesh fixed. Interestingly, we
observed numerically super-convergence in this case. Also, local stress fields are in local equilibrium with external
forces. Those properties are theoretically demonstrated and validated through numerical tests, which verified
the robustness of the methods on a highly complex multilayer problem using meshes non-aligned with interface
layers.
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We conclude with the highlight on the following topics deserving future research:

– The MHM methodology can provide an underlying algorithm with two levels of parallelism. The first one
has a mathematical origin, based on the local-global splitting in (3.6)–(3.13) and (3.14), (3.15), respectively.
The second one is computational, based on the choice of parallel algorithms to solve each problem (global
and local ones), and the management of computational resources to deliver efficient code. A study on this
direction demands expertise on the implementation of parallel algorithms, which is out of the scope of the
present manuscript. We refer to [25,35] as some seminal works considering the performance of the MHM-H1

method for elasticity.
– The construction of a two-scale MHM-WS characterization for three-dimension MFEM-WS methods is

feasible using a similar methodology, as in the 2D case presented in Theorem 3.2. Recall that, stable single-
level FE spaces for the MFEM-WS formulation are available in 3D only for tetrahedral geometry (e.g., in
[3,6,13,21,40]). However, stability analyses for them should use a different methodology, for the application
of the Stokes-compatibility constraint is less effective in 3D.

Appendix A. Proof of theorems

A.1. Proof of Theorem 2.1

Theorem 2.1 gives the characterization of the weak stress mixed formulation with reduced symmetry (2.2)–
(2.4) in terms of the local-global hybrid systems (2.7)–(2.10), (2.11)–(2.14), and (2.15), (2.16). Before going
throughout its proof, let the mapping 𝑅𝑟𝑚 : Λ → U𝑟𝑚 be defined by (𝑅𝑟𝑚(𝜆), 𝑣)Ω𝑖

= ⟨𝛿𝑖 𝜆, 𝑣⟩𝜕Ω𝑖
,∀𝑣 ∈ U𝑟𝑚. If

(𝑢𝑟𝑚, 𝜆) solves the global system (2.15) and (2.16), then for (2.7) and (2.16) we obtain −∇· 𝑇𝜎(𝜆) = 𝑅𝑟𝑚(𝜆) =
Π𝑟𝑚(𝑓), Π𝑟𝑚(𝑓) denoting the 𝐿2-orthogonal projection of 𝑓 ∈ U onto U𝑟𝑚.

Lemma A.1. The mapping 𝑅𝑟𝑚 is a surjective operator.

Proof. In fact, given 𝑣* ∈ U𝑟𝑚, let 𝜆*|𝜕Ω𝑖
= 𝜎* 𝑛|𝜕Ω𝑖

∈ Λ, where 𝜎* ∈ 𝐻1(Ω,S) satisfy ∇ · 𝜎* = 𝑣*. Thereby,

||𝑣*||2𝐿2(Ω,R2) =
∑︁

Ω𝑖

(𝑣*, 𝑣*)Ω𝑖 =
∑︁

Ω𝑖

⟨𝜎* 𝑛Ω𝑖 , 𝑣*⟩𝜕Ω𝑖 =
∑︁

Ω𝑖

⟨𝛿𝑖 𝜆*, 𝑣*⟩𝜕Ω𝑖 =
∑︁

Ω𝑖

⟨𝑅𝑟𝑚(𝜆*), 𝑣*⟩𝜕Ω𝑖 . Then,
the adjoint application of 𝑅𝑟𝑚 is injective with closed range, which implies the result. �

The results of Theorem 2.1 shall be proved by parts.

Part 1. Notice that the variables 𝑇𝜎(𝜆) ∈ 𝐻(div,Ω,M), 𝑇𝑢(𝜆) ∈ U ⊥, and 𝑇 𝑞(𝜆) ∈ 𝐿2(Ω𝑖), provided by the
local mixed solvers (2.7)–(2.10), can be interpreted as solution, in the distributional sense, of the independent
local boundary value problems for 𝑢|Ω𝑖

free of rigid body modes:

−∇ · 𝜎 = 𝑅𝑟𝑚 (𝜆) , 𝐴−1 𝜎 = ∇𝑢− 𝛾(𝑢), 𝜎 − 𝜎𝑇 = 0 in Ω𝑖, 𝜎 𝑛|𝜕Ω𝑖
= 𝜆,

with balanced force 𝑅𝑟𝑚(𝜆) and Neumann boundary condition 𝜆. Thus, their corresponding solutions are
unique. In fact, Neumann boundary value problems of linear elasticity are singular, with kernel formed by
the rigid motions of the body. However, this ambiguity can be removed by enforcing the solution to be free
of rigid body modes, and by requiring balanced force and Neumann boundary terms (e.g., see [31]).
Analogously, 𝑇𝜎(𝑓) ∈ S , 𝑇𝑢(𝑓) ∈ U ⊥, and 𝑇 𝑞(𝑓) ∈ Q, are obtained from the unique weak solutions of the
local problems

−∇ · 𝜎 = 𝑓 −Π𝑟𝑚(𝑓), 𝐴−1𝜎 = ∇𝑢− 𝛾(𝑢), 𝜎 − 𝜎𝑇 = 0 in Ω𝑖, 𝜎 𝑛|𝜕Ω𝑖
= 0.

To verify the uniqueness of the global system (2.15) and (2.16), take zero data 𝑓 = 0 and 𝑔 = 0. Then it
becomes (︀

𝐴−1𝑇𝜎(𝜆), 𝑇𝜎(𝜇)
)︀

+ (𝑢𝑟𝑚,∇ · 𝑇
𝜎(𝜇)) = 0, ∀𝜇 ∈ Λ,

(∇ · 𝑇𝜎(𝜆), 𝑣) = 0, ∀𝑣 ∈ U𝑟𝑚.
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Taking test functions 𝜇 = 𝜆 and 𝑣 = ∇ · 𝑇𝜎(𝜆) ∈ U𝑟𝑚, these equations turn into(︀
𝐴−1𝑇𝜎(𝜆), 𝑇𝜎(𝜆)

)︀
+ (𝑢𝑟𝑚,∇ · 𝑇

𝜎(𝜆)) = 0,
(∇ · 𝑇𝜎(𝜆),∇ · 𝑇𝜎(𝜆)) = 0,

implying that ∇ · 𝑇𝜎(𝜆) = 0, from which (𝐴−1𝑇𝜎(𝜆), 𝑇𝜎(𝜆)) = 0 holds. The positive definiteness of the
tensor 𝐴 implies that 𝑇𝜎(𝜆) = 0 (meaning that 𝜆 = 0, 𝑇𝑢(𝜆) = 0, and 𝑇 𝑞(𝜆) = 0 as well). Finally, 𝑢𝑟𝑚 = 0
follows from the remaining relation (𝑢𝑟𝑚,∇ · 𝑇𝜎(𝜇)) = 0, ∀𝜇 ∈ Λ, recalling that ∇ · 𝑇𝜎(𝜇) = − 𝑅𝑟𝑚(𝜇),
and that 𝑅𝑟𝑚(𝜇) is a surjective operator over U𝑟𝑚.

Part 2. Suppose (𝑢𝑟𝑚, 𝜆) ∈ U𝑟𝑚 × Λ solves (2.15), (2.16), and let (𝜎, 𝑢, 𝑞) be recovered as in (2.5). If (𝑠, 𝑤, 𝑟)
is the solution of (2.2)–(2.4), define 𝜈 = 𝑠 𝑛|Γ and set 𝑤 = 𝑤𝑟𝑚 + 𝑤⊥.
By testing (2.3) with 𝑣 ∈ U ⊥, and (2.2) with 𝜏 ∈ S̊ , both with support in Ω𝑖, and recalling that (𝑤𝑟𝑚,∇ ·

𝜏)Ω𝑖
= −1

2
(asym∇𝑤𝑟𝑚, asym 𝜏)Ω𝑖

, we obtain

(︀
𝐴−1 𝑠, 𝜏

)︀
Ω𝑖

+
(︀
𝑤⊥,∇ · 𝜏

)︀
Ω𝑖

+
(︂
𝑟 − 1

2
asym∇𝑤𝑟𝑚, asym 𝜏

)︂
Ω𝑖

= 0, (A.1)

−
(︀
∇ · 𝑠, 𝑣

)︀
Ω𝑖

=
(︀
𝑓, 𝑣

)︀
Ω𝑖
. (A.2)

For arbitrary 𝜇 ∈ Λ, take 𝜏 = 𝑇𝜎(𝜇) to test (2.2). Notice that (𝑟, asym𝑇𝜎(𝜇)) = 0 (for (2.9)), and (𝑤⊥,∇ ·
𝑇𝜎(𝜇)) = 0 (for (2.7)). Then equations (2.2) and (2.3) become(︀

𝐴−1 𝑠, 𝑇𝜎(𝜇)
)︀

+
(︀
𝑤𝑟𝑚,∇ · 𝑇

𝜎(𝜇)
)︀

= ⟨𝜇, 𝑔⟩, (A.3)

−
(︀
∇ · 𝑠, 𝑣

)︀
= (𝑓, 𝑣), ∀𝑣 ∈ U𝑟𝑚. (A.4)

By confronting (A.1)–(A.4) and (2.2) with equations (2.7)–(2.14), the differences 𝑠− 𝜎, 𝑤⊥ − 𝑢⊥, and 𝑟− 𝑞
verify: (︀

∇ · [𝑠− 𝜎], 𝑣
)︀
Ω𝑖

= 0, ∀𝑣 ∈ U ⊥(Ω𝑖), (A.5)(︀
𝐴−1 [𝑠− 𝜎], 𝜏

)︀
Ω𝑖

+
(︀
𝑤⊥ − 𝑢⊥,∇ · 𝜏

)︀
Ω𝑖

+
(︀
𝑟 − 𝑞, asym 𝜏

)︀
Ω𝑖

= 0, ∀𝜏 ∈ S̊ (Ω𝑖) (A.6)(︀
asym[𝑠− 𝜎], 𝜙

)︀
Ω𝑖

= 0, ∀𝜙 ∈ 𝐿2 (Ω𝑖) , (A.7)(︀
𝑠− 𝜎

)︀
𝑛|𝜕Ω𝑖 = (𝜈 − 𝜆) |𝜕Ω𝑖 . (A.8)

These equations imply that 𝑠− 𝜎 = 𝑇𝜎(𝜈 − 𝜆), 𝑤⊥ − 𝑢⊥ = 𝑇𝑢(𝜈 − 𝜆), and 𝑟 − 𝑞 = 𝑇 𝑞(𝜈 − 𝜆).

Furthermore, since equations (2.11), (2.8), and (2.13) imply that(︀
𝑓, 𝑇𝑢(𝜇)

)︀
Ω𝑖

= −
(︁
∇ · 𝑇𝜎(𝑓), 𝑇𝑢(𝜇)

)︁
Ω𝑖

=
(︁
𝐴−1 𝑇𝜎(𝜇), 𝑇𝜎(𝑓)

)︁
Ω𝑖

+
(︁
𝑇 𝑞(𝜇), asym𝑇𝜎(𝑓)

)︁
Ω𝑖

=
(︁
𝐴−1 𝑇𝜎(𝜇), 𝑇𝜎(𝑓)

)︁
Ω𝑖

=
(︁
𝑇𝜎(𝜇), 𝐴−1𝑇𝜎(𝑓)

)︁
Ω𝑖

,

and by recalling that (∇ · 𝑇𝜎(𝑓), 𝑣) = 0, ∀𝑣 ∈ U𝑟𝑚, we conclude from (2.15), (2.16) and (A.3), (A.4) that

(𝐴−1 [𝑠− 𝜎], 𝑇𝜎(𝜇)) + (𝑤𝑟𝑚 − 𝑢𝑟𝑚,∇ · 𝑇
𝜎(𝜇)) = 0, ∀𝜇 ∈ Λ, (A.9)

−(∇ · [𝑠− 𝜎], 𝑣) = 0, ∀𝑣 ∈ U𝑟𝑚. (A.10)
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By setting 𝜇 = 𝜈 − 𝜆 and 𝑣 = 𝑤𝑟𝑚 − 𝑢𝑟𝑚 in (A.9) and (A.10), and using the positive definiteness property
of 𝐴−1, we conclude that 𝑠 = 𝜎 (i.e., (𝜈 = 𝜆). Thus 𝑤⊥ = 𝑢⊥ and 𝑟 = 𝑞 as well. Finally, equation (A.9)
becomes

(︀
𝑤𝑟𝑚 − 𝑢𝑟𝑚,∇ · 𝑇

𝜎(𝜇)
)︀

= 0, ∀𝜇 ∈ Λ, implying that 𝑤𝑟𝑚 = 𝑢𝑟𝑚, from Remark (2). By uniqueness of
the solutions in both contexts, the equivalence property holds, and then the existence of a solution for (2.15)
and (2.16) follows from the existence of a solution for (2.2)–(2.4).

A.2. Proof of Theorem 3.1

The goal is to prove uniqueness of solution for the MHM-WS(ℰ𝛾) scheme. The next result is paramount for
its proof.

Lemma A.2. The mapping 𝑅̃𝑟𝑚 : Λ𝛾 → U𝑟𝑚, defined by 𝑅̃𝑟𝑚 = 𝑅𝑟𝑚|Λ𝛾
, is surjective.

Proof. Recall that, for 𝜇 ∈ Λ𝛾 , (𝑅̃𝑟𝑚(𝜇), 𝑣)Ω𝑖 = ⟨𝛿𝑖𝜇, 𝑣⟩𝜕Ω𝑖 , ∀𝑣 ∈ U𝑟𝑚. As in the proof of Lemma A.1, given
𝑣* ∈ U𝑟𝑚, let 𝜎* ∈ 𝐻1(Ω,S) satisfying ∇ · 𝜎* = 𝑣*. Then, define 𝜆̃

*
= 𝜎̃* 𝑛|𝜕Ω𝑖

, Ω𝑖 ∈ 𝒯 , where 𝜎̃* = Π
𝜎

1,𝛾 𝜎
* ∈

S𝛾 , and the interpolant Π
𝜎

1,𝛾 , defined for 𝜏 ∈ 𝐻1(Ω,M), is such that
(︁
∇ · (𝜏 −Π

𝜎

1,𝛾𝜏), 𝑣
)︁

= 0, ∀𝑣 ∈ U𝛾𝑖𝑛
. The

existence of such mapping is stated in Theorem 5.1. Thus, 𝜆̃
*
∈ Λ𝛾 , and the assumption U𝑟𝑚 ⊂ U𝛾𝑖𝑛 implies

that ∇· 𝜎̃* = 𝑣*. Consequently, (𝑣*, 𝑣)Ω𝑖
= ⟨𝜎̃* 𝑛Ω𝑖 , 𝑣⟩𝜕Ω𝑖

= ⟨𝛿𝑖 𝜆̃
*
, 𝑣⟩𝜕Ω𝑖

, meaning that 𝑅̃𝑟𝑚(𝜆̃
*
) = 𝑣*, and the

result follows. �

By hypothesis, the downscaling solvers (3.6)–(3.9) are well-posed MFEM-WS(ℰ𝛾) versions in Ω𝑖. Thus,
uniqueness holds for (𝑇𝜎(𝜆̃), 𝑇𝑢(𝜆), 𝑇 𝑞(𝜆)) ∈ S𝛾 ×U𝛾𝑖𝑛 ×Q𝛾𝑖𝑛 .

Analogously, ( ˜̂
𝑇𝜎(𝑓), ˜̂

𝑇𝑢(𝑓), ˜̂
𝑇 𝑞(𝑓)) ∈ S𝛾×U𝛾𝑖𝑛

×Q𝛾𝑖𝑛
is the unique solution piecewise defined by well-posed

MFEM-WS(ℰ𝛾) formulations (3.10)–(3.13) in Ω𝑖.
Uniqueness for the solution of the upscaling stage follows by similar proof steps as observed for the weak

formulations at the continuous level. Taking zero data 𝑓 = 0 and 𝑔 = 0, the well-posedness of the local problems

(3.10)–(3.13) implies that ˜̂
𝑇𝑢(𝑓) = 0, ˜̂

𝑇𝜎(𝑓) = 0 (and ˜̂
𝑇 𝑞(𝑓) = 0). Then, the upscaling system becomes(︁

𝐴−1𝑇𝜎(𝜆̃), 𝑇𝜎(𝜇)
)︁

+
(︁
𝑢̃𝑟𝑚,∇ · 𝑇

𝜎(𝜇)
)︁

= 0, ∀𝜇 ∈ Λ𝛾 ,(︁
∇ · 𝑇𝜎(𝜆̃), 𝑣

)︁
= 0, ∀𝑣 ∈ U𝑟𝑚.

Testing with 𝜇 = 𝜆̃ and 𝑣 = ∇ · 𝑇𝜎(𝜆̃) ∈ U𝑟𝑚 (for (3.6)), these equations turn into(︁
𝐴−1 𝑇𝜎(𝜆̃), 𝑇𝜎(𝜆̃)

)︁
+

(︁
𝑢̃𝑟𝑚,∇ · 𝑇

𝜎(𝜆̃)
)︁

= 0,(︁
∇ · 𝑇𝜎(𝜆),∇ · 𝑇𝜎(𝜆̃)

)︁
= 0,

implying that ∇·𝑇𝜎(𝜆̃) = 0, from which (𝐴−1𝑇𝜎(𝜆̃), 𝑇𝜎(𝜆̃)) = 0 holds. The positive definiteness of the tensor 𝐴
implies that 𝑇𝜎(𝜆̃) = 0, meaning that 𝜆̃ = 0 (and thus 𝑇𝑢(𝜆̃) = 0 and 𝑇 𝑞(𝜆̃) = 0 as well). Thus, the remaining
relation is (𝑢̃𝑟𝑚,∇ · 𝑇𝜎(𝜇)) = 0, ∀𝜇 ∈ Λ̃𝛾 . Noting that −∇ · 𝑇𝜎(𝜇) = 𝑅̃𝑟𝑚(𝜇) in Ω𝑖, for 𝜇 ∈ Λ̃𝛾 , and by
Lemma A.2 there exists 𝜇* ∈ Λ𝛾 such that 𝑅̃𝑟𝑚

(︀
𝜇*

)︀
= 𝑢̃𝑟𝑚, we conclude that 𝑢̃𝑟𝑚 = 0, and the result follows.

A.3. Proof of Theorem 3.2

This is a discrete version of the equivalence result in Theorem 2.1 and the proof follows similar steps. Firstly,
suppose (𝜆̃, 𝑢̃𝑟𝑚) solves the upscaling system of the MHM-WS(ℰ𝛾) method, and consider the recovered solution

of the downscaling stage 𝜎̃ = 𝑇𝜎(𝜆̃) + ˜̂
𝑇𝜎(𝑓), 𝑢̃⊥ = 𝑇𝑢(𝜆̃) + ˜̂

𝑇𝑢(𝑓), and 𝑞 =
1
2

asym 𝑢̃𝑟𝑚 + 𝑇 𝑞(𝜆̃) + ˜̂
𝑇 𝑞(𝑓). After



NEW 𝐻(div)-CONFORMING MULTISCALE HYBRID-MIXED METHODS 1033

the combination of the systems (3.6)–(3.9) and (3.10)–(3.13), we obtain the following set of equations in the
subregions:

−
(︀
∇ · 𝜎̃, 𝑣

)︀
Ω𝑖

= (𝑓, 𝑣)Ω𝑖
, ∀𝑣 ∈ Ũ ⊥

𝛾𝑖𝑛
(Ω𝑖).(︀

𝐴−1 𝜎̃, 𝜏
)︀
Ω𝑖

+
(︀
𝑢̃⊥,∇ · 𝜏

)︀
Ω𝑖

+
(︂
𝑞 − 1

2
asym∇𝑢̃𝑟𝑚, asym 𝜏

)︂
Ω𝑖

= 0, ∀𝜏 ∈ S̊𝛾(Ω𝑖),(︀
asym 𝜎̃, 𝜙

)︀
Ω𝑖

= 0, ∀𝜙 ∈ Q𝛾𝑖𝑛(Ω𝑖),

𝜎̃ 𝑛|𝜕Ω𝑖 = 𝜆̃|𝜕Ω𝑖 .

On the other hand side, let (𝑠̃, 𝑤̃, 𝑟) ∈ ℰ𝛾 be the MFEM-WS(ℰ𝛾) solution, and set 𝜈 = 𝑠̃ 𝑛|Γ, and 𝑤̃ =
𝑤̃𝑟𝑚 + 𝑤̃⊥. By confronting the above system of equations with similar one valid for (𝑠̃, 𝑤̃, 𝑟), we conclude that
𝜎̃− 𝑠̃ = 𝑇𝜎(𝜆̃− 𝜈), 𝑢̃⊥− 𝑤̃⊥ = 𝑇𝑢(𝜆̃− 𝜈), and 𝑞− 𝑟 = 𝑇 𝑞(𝜆̃− 𝜈). For arbitrary 𝜇 ∈ Λ𝛾 , (3.10), (3.7), and (3.12)

imply that (𝑓, 𝑇𝑢(𝜇))Ω𝑖
= (𝑇𝜎(𝜇), 𝐴−1 ˜̂

𝑇𝜎(𝑓))Ω𝑖
. Using this relation and the properties 𝜇|𝜕Ω = 𝑇𝜎(𝜇) 𝑛Ω (by

(3.13)), and (∇ · ˜̂
𝑇𝜎(𝑓), 𝑣) = 0, ∀𝑣 ∈ U𝑟𝑚, equations (3.14) and (3.15) become(︁
𝐴−1𝜎̃, 𝑇𝜎(𝜇)

)︁
+

(︁
𝑢̃𝑟𝑚,∇ · 𝑇

𝜎(𝜇)
)︁

= ⟨𝜇, 𝑔⟩, ∀𝜇 ∈ Λ𝛾 ,

−
(︀
∇ · 𝜎̃, 𝑣

)︀
= (𝑓, 𝑣), ∀𝑣 ∈ U𝑟𝑚.

Inserting in equation (3.16) the facts (𝑟, asym𝑇𝜎(𝜇)) = 0, and (𝑤̃⊥,∇ · 𝑇𝜎(𝜇)) = 0, and recalling equation
(3.17), we obtain (︀

𝐴−1 𝑠̃, 𝑇𝜎(𝜇)
)︀

+
(︀
𝑤̃𝑟𝑚,∇ · 𝑇

𝜎(𝜇)
)︀

= ⟨𝜇, 𝑔⟩, ∀𝜇 ∈ Λ𝛾 ,

−
(︀
∇ · 𝑠̃, 𝑣

)︀
= (𝑓, 𝑣), ∀𝑣 ∈ U𝑟𝑚.

Consequently,(︁
𝐴−1[𝜎̃ − 𝑠̃], 𝑇𝜎(𝜇)

)︁
+

(︁
𝑢̃𝑟𝑚 − 𝑤̃𝑟𝑚,∇ · 𝑇𝜎(𝜇)

)︁
= 0, ∀𝜇 ∈ Λ𝛾 .

−
(︀
∇ · [𝜎̃ − 𝑠̃], 𝑣

)︀
= 0, ∀𝑣 ∈ U𝑟𝑚.

By setting 𝜇 = 𝜆̃ − 𝜈 and 𝑣 = 𝑢̃𝑟𝑚 − 𝑤̃𝑟𝑚 in the above relations, and since we already know that 𝜎̃ − 𝑠̃ =
𝑇𝜎(𝜆̃− 𝜈), the positive definiteness property of 𝐴−1 implies that 𝜎̃ = 𝑠̃ (i.e., 𝜆̃ = 𝜈). Thus 𝑢̃⊥ = 𝑤⊥ and 𝑞 = 𝑟
as well. Finally, the remaining equation (𝑢̃𝑟𝑚− 𝑤̃𝑟𝑚,∇· 𝑇

𝜎(𝜇)) = 0, ∀𝜇 ∈ Λ𝛾 , and Lemma A.2, concerning the
surjectivity over U𝑟𝑚 of ∇·𝑇𝜎(𝜇) = −𝑅𝑟𝑚(𝜇), 𝜇 ∈ Λ𝛾 , imply that 𝑢̃𝑟𝑚 = 𝑤̃𝑟𝑚. By uniqueness of MHM-WS(ℰ𝛾)
and MFEM-WS(ℰ𝛾) solutions, these methods are equivalent.

Appendix B. List of symbols

Acronyms for FE methods

NAME Poisson FE pairs NAME Stokes FE pairs
ℬ𝒟ℳ Brezzi–Douglas–Marini for triangles 𝒞ℛ Crouzeix–Raviart for triangles
ℛ𝒯 Raviart–Thomas for quadrilaterals 𝒢ℛ Girault–Raviart for quadrilaterals

Elasticity methods
MFEM-WS Mixed FE method weakly imposing tensor symmetry
MHM-WS Multiscale hybrid mixed FE method weakly imposing tensor symmetry
MHM-H1 Primal multiscale hybrid mixed FE method
ℰ𝑁𝐴𝑀𝐸𝛾

Tensor and displacement rows come from Poisson FE pair NAME
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Scalars, vectors and tensors

𝐴 Stiffness tensor 𝜎 Stress tensor 𝜎̃ Approximate 𝜎
𝐼 Identity matrix 𝑢 Displacement 𝑢̃ Approximate 𝑢
M Second-order tensors 𝑢𝑟𝑚 Rigid body mode 𝑢̃𝑟𝑚 Approximate 𝑢𝑟𝑚

S Symmetric tensors 𝑢⊥ 𝐿2-complement of 𝑢𝑟𝑚 𝑢̃⊥ Approximate 𝑢⊥

𝜀 Strain tensor 𝜆 Multiplier (traction) 𝜆̃ Approximate 𝜆
𝑞 Rotation 𝑞 Approximate 𝑞

Data
𝑓 Body force 𝜇 Lamé’s second parameter 𝐸 Young’s modulus
𝑔 Boundary data 𝜆 Lamé’s first parameter 𝜈 Poisson’s ratio

Geometry
Ω ⊂ R2 Polygonal domain 𝒯 = {Ω𝑖} Macro-partition of Ω
𝜕Ω Boundary of Ω 𝒯ℎ𝑠𝑘

Coarse conformal partition of Ω
Ω𝑖 Subregions of Ω 𝒯 Ω𝑖

ℎ𝑠𝑘
Coarse partition of Ω𝑖

𝜕Ω𝑖 Boundary of Ω𝑖 𝒯 Ω𝑖

ℎ𝑖𝑛
Refined partition of Ω𝑖

Γ = {𝜕Ω𝑖} Mesh skeleton 𝒯 Γ Coarse partition of Γ
𝐷 ⊂ Ω Subdomain 𝐾̂ Master element
𝑛 Normal vector field 𝐾 Element in 𝒯 Ω𝑖

ℎ𝑖𝑛

𝑛𝐷 Outward unit normal 𝐾̄ Element in 𝒯 Ω𝑖

ℎ𝑠𝑘

Functional spaces

𝐿2(𝐷) Scalar 𝐿2-space S = 𝐻(div,Ω,M) Tensor H(div)-space for 𝜎
𝐿2(𝐷,E) 𝐿2-space E ∈ {R2,M} S̊ ⊂ S Bubble tensors
(, )𝐷 𝐿2 inner product U = 𝐿2(Ω,R2) Space for displacement 𝑢
𝐻𝑠(𝐷) Scalar Sobolev space U𝑟𝑚 ⊂ U Rigid body modes
𝐻𝑠(𝐷,E) Sobolev space E ∈ {R2,M} U ⊥ ⊂ U 𝐿2-orthogonal complement of U𝑟𝑚

𝐻(div, 𝐷) Vector 𝐻(div)-space Q = 𝐿2(Ω) Space for rotation 𝑞
𝐻(div, 𝐷,M) Tensor 𝐻(div)-space Λ = Λ(Γ,R2) Normal trace space for 𝜆
𝐻1/2(𝜕𝐷,R2) Trace of 𝐻(div, 𝐷,M) ⟨, ⟩ Duality pairing of traces
𝐻−1/2(𝜕𝐷,R2) Trace of 𝐻1(Ω,R2)

Downscaling operators

𝑇 (𝜆) : Λ → S ×U ⊥ ×Q 𝑇 (𝜆̃) Discrete version of 𝑇 (𝜆)
𝑇 (𝑓) : Λ → S ×U ⊥ ×Q

˜̂
𝑇 (𝑓) Discrete version of 𝑇 (𝑓)
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Finite element spaces

Mesh and Space Parameters Polynomials: scalar or for E ∈ {R2,M}
𝐻 Macro mesh size P𝑘(𝐾̂),P𝑘(𝐾̂,E) of total degree ≤ 𝑘

ℎ𝑠𝑘 Coarse mesh width Q𝑘,𝑡(𝐾̂),Q𝑘,𝑡(𝐾̂,E) degree ≤ 𝑘 in 𝑥 and ≤ 𝑡 in 𝑦
ℎ Refined mesh width Local FE spaces in 𝐾
𝑘𝑠𝑘 Coarse polynomial

degree
𝑆(𝐾,M) Tensor FE space

𝑘𝑖𝑛 Refined polynomial
degree

𝑈(𝐾,R2) Displacement FE space

𝛾 := (𝛾𝑠𝑘, 𝛾𝑖𝑛) Two-scale parame-
ters

𝑄(𝐾) Rotation FE space

𝛾𝑖𝑛 = (ℎ𝑖𝑛, 𝑘𝑖𝑛) Refined scale
parameters

𝑉 (𝐾,R2), 𝑃 (𝐾) Flux and pressure FE pair

𝛾𝑠𝑘 = (ℎ𝑠𝑘, 𝑘𝑠𝑘) Coarse scale
parameters

𝑊 (𝐾,R2), 𝑄(𝐾) Velocity and pressure FE pair

Local FE Spaces in Ω𝑖 Global Trace FE Space
S𝛾(Ω𝑖) = S 𝜕

𝛾 (Ω𝑖) ⊕ S̊𝛾𝑖𝑛
(Ω𝑖): con-

strained tensor spaces
Λ𝛾 : based on 𝒯 Γ

S 𝜕
𝛾 (Ω𝑖), S̊𝛾𝑖𝑛

(Ω𝑖) Coarse edge and
refined bubble ten-
sor spaces

U𝛾𝑖𝑛
(Ω𝑖) = U𝑟𝑚(Ω𝑖) ⊕ U ⊥

𝛾𝑖𝑛
(Ω𝑖): dis-

placement spaces
Two-scale FE setting in Ω

U𝑟𝑚(Ω𝑖) Rigid body modes ℰ𝛾 = S𝛾 ×U𝛾𝑖𝑛
×Q𝛾𝑖𝑛

U ⊥
𝛾𝑖𝑛

(Ω𝑖) Orthogonal
complements

Local FE settings

Q𝛾𝑖𝑛(Ω𝑖) Rotation spaces ℰ𝛾(Ω𝑖) = S𝛾(Ω𝑖)×U𝛾𝑖𝑛(Ω𝑖)×Q𝛾𝑖𝑛(Ω𝑖)
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