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NEW H(div)-CONFORMING MULTISCALE HYBRID-MIXED METHODS FOR
THE ELASTICITY PROBLEM ON POLYGONAL MESHES
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WESLLEY PEREIRA?, ANTONIO J. B. DOS SANTOS® AND FREDERIC VALENTIN?

Abstract. This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional
linear elasticity problem on general polygonal meshes. The new methods approximate displacement,
stress, and rotation using two-scale discretizations. The first scale level setting consists of approximat-
ing the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing
elementwise rigid body modes. In the second level, the methods are made effective by solving completely
independent local boundary Neumann elasticity problems written in a mixed form with weak symme-
try enforced wvia the rotation multiplier. Since the finite-dimensional space for the traction variable
constraints the local stress approximations, the discrete stress field lies in the H(div) space globally
and stays in local equilibrium with external forces. We propose different choices to approximate local
problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices
generate the family of multiscale finite element methods for which stability and convergence are proved
in a unified framework. Notably, we prove that the methods are optimal and high-order convergent
in the natural norms. Also, it emerges that the approximate displacement and stress divergence are
super-convergent in the L*-norm. Numerical verifications assess theoretical results and highlight the
high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.
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1. INTRODUCTION

Mixed finite element (FE) methods for elasticity problems, based on the Hellinger-Reissner principle, have
been used since the beginning of finite element history. They are formulated simultaneously for stress and
displacement variables, which are of primary interest. Moreover, the importance of using hybridization in stress
mixed formulations for elasticity problems has also been early recognized by the pioneer engineers in structural
mechanics (e.g., see [38] and the citations therein, including the work by T. H. H. Pian). When correctly designed,
stress mixed methods usually give optimal stress accuracy, and local momentum conservation. Moreover, they
do not present locking behavior for incompressible or nearly incompressible materials.

We focus our study on conforming stress mixed formulations, meaning that approximations for the stress
tensor ¢ must have continuous normal traces (traction) along inter-element boundaries (i.e., the stress FE
space should be H(div)-conforming). The displacement variable u lives in a discontinuous space. These kinds
of methods are formulated as minimization problems constrained by the realization of the divergence equation,
and displacement plays the role of the corresponding Lagrange multiplier. However, as mentioned in [4], the
divergence-consistency, a property required for the method to be well-posed, has proved to be surprisingly hard
to be fulfilled by symmetric tensors and displacement FE pairs. There is another approach that does not assume
symmetry in the tensor space from the beginning. Instead, the idea is to impose the symmetry condition in
a weak form, which requires a stable choice of another FE space for the (multiplier) rotation variable q. We
denote this class of methods by the acronym MFEM-WS, and refer to [3,22] for overviews on this matter.

Realistic problems in solid mechanics are frequently associated with domains with complex geometries, in the
occurrence of fractures or heterogeneities in the materials, or under intricate types of loads. On the other hand,
standard finite element methods need refined meshes to capture small structures in the data, which reflects
an elevated computational cost. With this motivation, our purpose is to create a flexible multiscale hybrid
approach for the MFEM-WS formulation. Our method is based on a divide-and-conquer strategy combined
with bubble enrichment techniques and static condensation, which are general-purpose tools widely adopted in
multiscale simulations. It shall be denoted by the acronym MHM-WS; for its design is in the spirit of Multiscale
Hybrid Mixed (MHM) methods (already applied for Darcy problems [20,26], for displacement-based elasticity
formulations [28,35,36], and other contexts therein cited).

In summary, this means that the MHM-WS scheme shares with these MHM methods the following charac-
teristics:

(1) It can be interpreted as a discrete version of a hybrid formulation characterizing the exact solution in terms
of components given by well-posed local-global systems.

(2) There is a macro-partition 7 = {£;} of €, and a set of local problems over each (general polygonal)
subregion ;.

(3) A new normal trace variable (multiplier) is introduced over the subregion boundaries (mesh skeleton),
making the referred inter-element connection.

(4) There are two-scale operators (upscaling and downscaling) transferring information between the two levels
of resolution.

(5) There is an orthogonal decomposition of the potential (displacement) variable in terms of a coarse (piecewise
rigid body motions), defined over 7, and a fine-scale components.

(6) Asin usual static-condensation procedures, the multiplier and the coarse potential component are computed
by a stable global system (upscaling stage).

(7) In the second fine scale, the small details of all variables are computed by a set of problems restricted to the
subregions 2; € 7, taking the multiplier as Neumann boundary data over 0f);, and using the adopted stable
formulations for each one (downscaling stage). The local FE spaces may have richer internal resolution than
the boundary traces. Each local problem is completely independent of the others since test functions have
support inside a single subregion.

(8) The local downscaling problems favor the use of parallel strategies.
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We shall mention that this family of multiscale methods does not assume periodicity on the elastic coeffi-
cients nor separation of scales in its construction. Thereby, it can be used (formally) for general problems with
heterogeneous coefficients.

For the current MHM-WS scheme, the approximate stress g is obtained in a FE space of tensors with normal
traces strongly constrained to a given FE space over the mesh skeleton, where we search for the new multiplier
variable . Consequently, & is H(div)-conforming. Moreover, and to increase accuracy, we can enrich the tensor
bubble functions (with support on a single subregion) using different strategies: refining the internal mesh,
increasing the polynomial degree, or both. For neighboring subregions ; and €2;, their internal partitions 7° &
and 7% are allowed to be non-conformal over I'; j = 09; N 0Q;. In principle, element geometry, mesh widths,
and polynomial degrees in the subregions may vary. However, some mesh and space consistencies should be
satisfied (see Sect. 3.1).

The strategy we present requires some stability conditions, namely divergence and Stokes constraints, of the
two-scale tensor FE space with respect to displacement and rotation FE spaces. Under these circumstances, an
important analysis aspect of the MHM-WS method is that it may be interpreted as an equivalent stable MFEM-
WS formulation of the model problem, both based on the same FE space framework. The divergence constraint
is obtained by forming rows of tensors and displacements with Poisson-compatible FE pairs widely used for flux
and potential approximations in mixed methods. Concerning the enforcement of the Stokes constraint, we extend
the methodology proposed in [19] to construct new stable Stokes-compatible pairs: the pair used for stability
analysis at the coarsest single-level space setting is incremented with extra refined composite bubble terms for
the velocity in order to restore stability when using enlarged pressure spaces, in the spirit of the methodology
suggested in [9]. Classical tools are applied to the equivalent two-scale MFEM-WS framework, guiding the error
analysis of the MHM-WS solutions. We prove optimal and high-order convergence for displacement, stress and
rotation unknowns in their natural norms under some regularity assumptions. Stress and rotation variables are
approximated with the same accuracy order as for the trace variable. Notably, super-convergence in the L?-norm
for the divergence of the stress and enhanced displacement may be reached.

Recently, the authors in [30] pointed out that the resolution of elasticity problems by multiscale mixed stress-
displacement formulations, based on domain decomposition, had not been considered before. They proposed
and analyzed a multiscale mixed formulation using the mortar domain decomposition with non-matching grids,
and weakly imposed stress symmetry. The mortar spaces use displacement Lagrange multipliers to (weakly)
enforce interface continuity of the normal stress. Following a similar divide-and-conquer principle but designed
in the different MHM context, the MHM-WS method also fills this gap.

There are some other works that use multiscale FE methods to solve elasticity problems. In [11,12], the authors
applied the Multiscale Finite Element Method (MSFEM) to solve an elasticity problem in a composite material.
Each level in the MSFEM has its mesh and interpolation spaces that, in general, fit inside the interpolations
of lower levels. The MsFEMs have no local problems associated with the source function neither a rigorous
mathematical structure to guide the choice of local boundaries. The Heterogeneous Multiscale FE method
(HMM) [1] discretizes the elasticity problem by a macroscopic FE method coupled with a microscopic FE
method resolving the micro scales and recovering the macroscopic properties of the material. The Localized
Orthogonal Decomposition (LOD) method of [32] is a multiscale method that requires low regularity on the
variational problem. It avoids the use of additional regularity by computing the multiscale basis functions on a
set (patch) of macro elements. A generalized FE method (GFEMs) using LOD is presented in [29].

1.1. Outline of the paper

Section 2 starts with the weak stress mixed formulation with reduced stress symmetry for the model problem,
and a new hybrid local-global characterization of the exact solution. Discrete two-scale versions of these methods
are presented in Section 3. For that, we construct a hierarchy of partitions and two-scale FE space settings &5,
the corresponding formulations being denoted by the acronym MFEM-WS(E,). The MHM-WS(E,) schemes
correspond to hybrid local-global versions of the MFEM-WS(E,). In Section 4, we establish the stability of the
MHM-WS(&,) methods for two specific families of two-scale FE spaces &,, for triangular and affine quadrilateral
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partitions. The error analysis of the MHM-WS(&,) solutions is performed in Section 5. For that, we extend a
typical analysis used for single-level methods to the more general two-scale FE settings £,. We present the
results of computational simulations in Section 6, confirming the predicted theoretical convergence results of
Section 5. In the same section, we compare the results with the ones from the MHM-H! method, and with
the results obtained with the classical coarse single-level MHM-WS methods. The final part of this section
dedicates to numerical tests in heterogeneous media with high-contrast layers. After some concluding remarks
in Section 7, Appendix A presents the proofs of some theorems previously stated.

1.2. Some comments about notation

We use various symbols for the notation of variables, data, geometric elements, finite element spaces, and
nomenclature. For those wishing to keep them straight, they are listed in Appendix B. For instance, throughout
this paper, for a region D C Q, n? denotes the external unitary normal to dD. The scalar Hilbert spaces L? (D)
and H*(D) have the usual meaning and norms. We also consider the spaces L?(D,R?), L?(D, M), H*(D,R?), and
H#®(D,M), which inherit the corresponding norms associated to L?(D) and H*(D). H(div, D) is the usual space
composed by square-integrable vector functions, for which the divergence is also square integrable. Similarly,
we consider the space of tensor functions H(div, D, M), the divergence of a tensor field being the vector field

obtained by taking the divergence of each row. Moreover, for a vector function ¢ = [Zj, V x g denotes the

Vxaq 02q1 =0
tensor ¥ x ¢ = [V X (J2] B {32(12 —5’1%} '
We use the notation (-,-)p for the L*inner products, and (-,-)gp refers to the duality pairing between
HY*(OD,R*) = {u=ulop, u€ H'(D,R?)} and H Y?(dD,R?) = {u=10P|op, 7 € H(div,D,M)}. We
drop the subscript D whenever D = Q. - B

2. STRESS MIXED FORMULATION WITH REDUCED STRESS SYMMETRY

Let © € R? be a polygonal domain occupied by a linear elastic body. Given the body force Jf and Dirichlet
boundary data g, the equations of the static elasticity in the Hellinger-Reissner form determine that stress o
and displacement u fields satisfy the following equilibrium and constitutive equations

*Z’g:ia g:ég(ﬂ) in Q, @:gonaga (21)

Vu+ Vul . P . . 1 2

where g(u) = — the infinitesimal strain tensor. The given data are g € H2(9,R") and [ €
L*(Q,R?). The material properties are described by the stiffness tensor A = A(x,y) for all (z,y) € R?, which is
a self-adjoint, bounded, and uniformly positive definite linear operator acting on the set of symmetric tensors
S. We assume that A can be extended to general second-order tensors M = R?*? with the same properties. In
particular, in the case of an isotropic body, A € = 2ue + X tr(g)I, where A and p are the Lamé parameters, and
I is the 2 x 2 identity matrix. Both the material properties A and the given source data f may be heterogeneous
and embed various length scales. o B

2.1. The weak formulation

Problem (2.1) admits an equivalent expression, without assuming stress symmetry a priori, by replacing the
original constitutive equation ¢ = A g(u) by A™'g = Vu — v(u), using the relation g(u) = Vu — y(u), where

1 —
— 0 Opuy — Oyus . A new equation ¢ —o? = 0 enforces the desired stress symmetry, and we
2 [O1uz — Gauy 0 = =

y(u) =

introduce the rotation variable ¢ = 3 asym Vu, where asym 7 = 712 — 721 is the asymmetry measure defined for

T11 T12
T21 T22

tensors T = [
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Under this point of view, and adopting the simplified notation .# = H(div,Q,M), % = L*(Q,R?), and
2 = L*(Q), the mixed formulation with weakly imposed stress symmetry searches for (g,u,q) € E:= S XUX2
satisfying

(Ao, 1)+ (w, V- 1) + (g,asym 1) = (r n%, g), Vre s, (2.2)
—(V-a,v) = (f,v), Yv €U, (2.3)
(asymg,w) = 0, Yw € 2. (2.4)

This kind of method belongs to a classical methodology. It dates from the seventies, in the pioneering period of
mathematical analysis for mixed and hybrid formulations. They typically appear in minimization problems with
constraints (e.g., see [7,8,38]). In this formulation, there are two constraints. The first one is for the realization
of the divergence equation (2.3), and displacement plays the role of the corresponding Lagrange multiplier. The
other multiplier is ¢, used for the weak enforcement of stress symmetry in (2.4).

2.2. Hybrid local-global version

The purpose of the hybrid local-global version of the stress mixed formulation (2.2)—(2.4) is to naturally
derive stable bases for the two-level discrete method in Section 3. For that, we define a partition 7 = {Q;} of
the domain €. Associated to 7, let T" be the mesh skeleton formed by the union of the boundaries 0€2;. To make
inter-element connections, we introduce the multiplier A which lives in a normal trace space defined over I':

A= A(T,R?) = {EH:;m@Qm T € H(div,Q,M),Q; € T},

where n is a given vector field defined over I' and normal to 99;. Notice that n|g, = §; n'¥ where di(e) = n-n't le
for all edges e C 9Q; (i.e., d;(e) = 1 for boundary edges and ¢;(e) = —d,(e) for interface edges e C Q; N ).
The displacement is decomposed as u = u,.,,, + yJ‘, where w,.,,, € %m is a piecewise rigid body mode over 7.
Precisely,

Urm = {u € U; u; = ula, € Um(Qi), U €T}, UUm(Qi):={(a,0) + p(~y,2); (z,y) € Qi, o, B,p € R}.

The complementary displacement term u™ lives in %+ C %, the L?-orthogonal complement of %.,,. For local
Neumann problems, test tensors should be bubble functions in .%(Q;) = {r € .%; T n|aq, = 0}.

The hybrid version is formulated in two stages. There is a global system of equations for the multiplier A € A
and the rigid body motion displacement component w,.,, € %.,. To obtain the solution (o, u,q) € & X % x 2,
we add local fine scale components to the solution of the global stage as follows B

0 =TEQ) + T2f), U=ty + TN +T*(f), ¢ = % asym Vu,., +T7(A) +T7(f), (2:5)

where
TN SXUx2, T:U—S XU x2, (2.6)

are linear operators whose images are solutions of local Neumann elasticity problems on each subregion £2;.
Based on the above functional framework, consider the local-global stages:

~ Local stage: For A € A, A # 0, and f € L*(Q,R?), let the operators T'(\) = {TZ(\),T%()\),T%(\)} and
T( f) = {T2( f)s T ) T9( )} be locally defined in each ; by the following mixed formulations with weakly
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imposed stress symmetry and Neumann boundary conditions:

(V- T2(3) ), =0, vewt (@), (27)

(é_l TZ ()\) ’L)Qi + (TM(A)’Z'QM + (TQ(A),asymg)Qi =0, V1 € §Z(Qi), (2.8)
(asymTZ(A) ,)q. =0, Vo € L? (), (2.9)

T=(Q) nloa, = Alaa,- (2.10)

(L2 ), = L)y, eew @), (21
(équ@ygm+(ﬁ%ﬂ§ggm+(Wg)%mggm:m Vres (),  (212)
(asymf’% (f) ,@)Qi =0, Yo € L% (), (2.13)

72 (f) nlo, = 0. (2.14)

— Global stage: Given f € %, and g € H? (8Q,R2), find w,.,,, € %-m and A € A that solve

(AT'TZN), TE()) + (U V- TE()) = = (£, T(p)) + (1. 9), Y € A, (2.15)
—(¥-T2()),0) = (f,2v), Y € Uy (2.16)

Notice that the boundary data for T'(A) is A\, while vanishing Neumann boundary conditions are applied for
T( f). Knowing )\, these operators define the stress o € ., the fine scale rigid-body-motion-free component
ut = T\ + T%(f) € %+, and the part T9(\) + T9(f) required to form ¢. The missing information comes
from the global system to be solved for Uy, a0d A The following theorem states the well-posedness of the
local-global continuous formulation (2.7)—(2.16). This formulation naturally derives multiscale discrete versions,
as discussed in the following sections.

Theorem 2.1. The global system (2.15) and (2.16) has a unique solution (u,,,,A) € Um X A. Moreover, a

“rmy 2

Junction (g,u,q) is recovered from (u,.,,,A) as stated in (2.5), by solving the local problems T(\), defined in
(2.7)-(2.10) and T(i), defined in (2.11)-(2.14), if and only if (g, u, q) solves the weak formulation (2.2)-(2.4).

Proof. 1t is postponed to Appendix A.1. O

Remarks

The hybrid local-global characterization given in Theorem 2.1 modifies the one for the MHM-H' method
proposed in [28]. The MHM-H ! Jocal-global characterization of the exact solution is based on the classical
primal hybrid approach for the displacement formulation of the elasticity problem. The fine scale information
incorporated into the global system in this primal approach comes from a different kind of local solver. Instead
of using local stress mixed formulations with weak symmetry in each subregion €;, the second stage of the
primal MHM formulation solves local Neumann elasticity problems on the displacement field only. Differently
from the current work, the stress field in the MHM-H" methods are not in the desirable H(div,Q, M) and there
is so far no result that assures the convergence of the divergence of the stress.

3. DISCRETE TWO-SCALE STRESS HYBRID-MIXED MODELS WITH REDUCED SYMMETRY

This section is dedicated to discrete elasticity models derived from the stress mixed formulation with reduced
stress symmetry and based on two-scale FE space settings £,. Our main goal is to propose and analyze the
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FIGURE 1. Diagram illustration of some aspects of a hierarchy of partitions and discretization
parameters: a macro-partition 7 (left-image), coarsest conformal mesh 7y, (center-image),
refined partitions 7;?” and polynomial degrees kg and k;p, (right-image).

method denoted by the acronym MHM-WS(E, ), following the principles of the local-global hybrid character-
ization described in Section 2.2. For that, we present a unified and flexible procedure for the construction of
hierarchies of two-scale meshes supporting the FE spaces £,. We define two sets of parameters v := (Vsi, Yin)»
where Vs = (hsk, ksk) and vin, = (hin, kin) are used to indicate the mesh widths and polynomial degrees of two
scales: coarse and fine. The focus is on two-scale frameworks, but single-level cases s = 7;, may be treated in
the same context as well.

3.1. Two-scale partitions and finite element spaces

The two-scale mesh and FE space hierarchies are obtained by the following stages.

8.1.1. Discretization parameters and mesh hierarchy

— Given s, = (hsk, ksk), let 7p,_, be a conformal shape regular partition of 2 formed by the union of sub-meshes
ThQ; = {K}, all of them with characteristic size hgy.

— Refined internal partitions Thﬂn are obtained by the subdivision of Thﬂk We choose the mesh characteristic
size h;y, such that h;, ~ hsk/2e7 for a given integer ¢ > 0. Define 7;, = (hin, kin), where k;, = ks +n, for a
given integer n > 0.

— Define the partition 7' = {F} of T by taking the edges F induced by 7j,, over T'\ 99, and the edges F
induced by 'Zzﬂn over 02 N 9€);. Thus, the characteristic sizes are hg for internal edges, and h;, otherwise.

Figure 1 illustrates some aspects of the two-scale hierarchy of meshes: the macro-partition 7, a conformal
partition 75, , and local refined partitions ’Thﬂn Observe that, over an edge e = I'; ; = Q; N )5, the meshes

ThQ:L and ’Z}iz; do not necessarily need to be conformal (e.g., in e =TI'y 2). We also show examples of polynomial
degrees over the subregions and over edges of the mesh skeleton. Although 7 and ~;, do not need to be
uniform, as illustrated in Figure 1, for simplicity we shall only consider uniform distributions for them.

3.1.2. Two-scale FE space settings

— Let A, C A be the trace space piecewisely defined over 7 I by polynomials of degree < kg over the internal
edges, and of degree k;,, over the boundary edges.
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— Define refined single-level FE spaces in the interior of the subregions on top of the internal partitions ’Ths};

10, (9) = {z € H(div, 0, M); 7]ic € S(K,M), VK € T% |, (3.1)
%, () = {w e L2(:, R?); ulx € U(K,R?), VK € T}, (3.2)
2. () = {q € L2(): qlx € Q(K), VK € Thﬂ} (3.3)

in terms of local FE spaces S(K,M), U(K,R?) and Q(K) for the elements K € ’TQ The degree k;,, refers
to the polynomials associated to the normal traces over K of the tensors 7 € § (K M)

— In this setting, we introduce the two-scale tensor FE spaces %, (£2;), composed by functions in .7, (2;)
whose normal traces are constrained to A,

Z( Q) = {z € S, (Q); Tnlsaoa € MAlonno0} - (3.4)

Notice that the constrained tensor space (3.4) is well defined due to the fact the trace functions induced by
Frin (i) over 0L); are piecewisely defined by polynomials of degree ki, > kg, on top of elements obtained
by the refinement of the mesh 7% N 9%;. Moreover, 7 (£;) can be expressed as a two-scale direct sum
() = 5”3 () & .7, (%), where YW(QZ) is the set of bubble tensors, with vanishing normal traces

in

over 0€2;, having refined resolution. The edge tensors in Y,YO (€2;) have normal traces over 92, \ 02 constrained

to A, having coarser resolution v over internal edges F' € T'.

— Finally, let &, = %, x %,,, x 2,,, C H(div,Q,M) x L*(Q,R?) x L*(Q2) be the two-scale FE space whose
restriction to each subdomain Q; € 7 is the local FE space &,(€;) = A4 (Q) X %, () x 2., (;). We
restrict the analysis to displacement FE spaces satisfying %,.,, C %,,,, and let %,fi‘n be the L?-orthogonal

complement of %, in %,,,, with local components %ﬂi‘n(QZ)

in?

3.2. Derivation of the MHM-WS(&,) method

The two discrete local-global building blocks of information-passing in the MHM-WS(E,) scheme shall be
referred as downscaling and upscaling stages, following a terminology usually used in multiscale contexts (see
e.g., [21]). At the coarsest scale level, A € A, and Uy, € Uwmy, are computed by a global system (upscaling

stage). At the fine scale level, 4 := T%(\) + T“(f) € %J‘ , 0 €S and ¢ € 2,, , are solutions of a set of
completely independent Neumann boundary local problems restrlcted to the subregions Q; € T (downscaling
stage). These local systems may be represented by the action of operators T' : A, — %, X ?/ X 2., and

T:% — yﬂ,x%ﬁn X 2y,

Using this procedure we characterize the approximate solution as a discrete counterpart of (2.5):

as discrete versions of the operators (2.6) defined in Section 2.2.

= T2(3) + TZ(/),

= iy, + THR) 4 TH(f), G= gasym Vi, + T9Q) 479, (35)

IS

qu

Precisely, the local-global discrete systems composing the MHM-WS(E,,) scheme, transferring information
from the fine to the coarse-scale level and vice versa, are written in the following form.

— Local stage (Downscaling): For )\

{T2(3), T%(3), T} and T(f) = {T

Ay, A # 0, and f € L*(,R?), let the operators TQA) =
£),T*(f), T f (f)} be determined in each subregion €; by the follow-

)

I m

(
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ing MFEM-WS(&,) formulations locally defined in each €; with Neumann boundary conditions:

(y Te (;) ,y) =0, Voe %t (),  (3.6)

(éfl Tz (i) £>Q + (Tﬁ (i) v ;)Qi + (Tq (i) ,asymg) =0, VT e .7 (), (3.7)
(asym T (A) ,@) o =0 Voe 2, (), (3.8)

72 (3) ulon, = Aloo,. (3.9)

= (fv)q,, Yee#, (), (3.10)

(a7 72().2), + (). ¥ z), +(T7(f) asymz) =0, vre s (), (311)
(asym 72 (f) ,so) o =0 Vo€ 2, (), (3.12)
T2 (f) nlo, =0. (3.13)
— Global stage (Upscaling): @,,, € %m and A € A, are determined by the global system
(4772 (3) .72 (1)) + (o -T2 (1)) = = (£:7% (1)) + (1 9), i € Ay, (3.14)
- (y.T% (A) ,g) = (f,v), Vo € Uy (3.15)

3.3. MHM-WS(&,) as a MFEM-WS(&,) formulation

As for the weak formulations in infinite dimension, a remarkable property of the MHM-WS(E,) method is
that it can be interpreted as a hybrid local-global characterization of a discrete stress mixed formulation with
reduced symmetry based on the FE space setting £, = 7, x %,,, x 2,,,. It is denoted here by the acronym
MFEM-WS(E,), and will play a crucial role in the forthcoming sections for the analysis of the MHM-WS(E,)
method.

The MFEM-WS(E,,) method searches for approximations (4,4, §) € &, = %y X U, X £,, such that

A" an)+ @Y o)+ (Gasymz) = (zn", g), VL E.7, (3.16)
- (¥-5,0) = (f,0), Vv € Uy, (3.17)
(asymg,w) =0, Voe 2, (3.18)

Notice that classical formulations associated to single-level FE spaces, with ysx = iy, are particular cases of
the MFEM-WS(E,) method. Even though the original stress mixed formulation (2.2)—(2.4), with reduced stress
symmetry, is well posed, this may not be true for discrete versions (3.16)—(3.18). According to Brezzi’s theory,
the FE spaces of each field cannot be chosen independently one from the other, i.e., they should be compatible,
meaning that some stability (inf-sup) conditions are mandatory. This topic shall be clarified in Section 4 for the
specific two-scale settings £, under consideration.

Assuming the FE spaces &, = 7, x %,,, x 2,,, verify the stability constraints for the two-scale mixed
FE formulation MFEM-WS(E,), the goal is to show the equivalence of its unique solution with the solution
reconstructed from the local-global output of the MHM-WS (&,) method. The proof of this property has two
stages: (i) we prove uniqueness for the MFEM-WS(E,) method (Thm. 3.1) and (ii) we prove that the unique
solution of the MFEM-WS(&,) method solves the local-global MHM-WS(E,) systems (this implies existence of
solution for the MHM-WS method). Equivalence holds as consequence of the uniqueness property held by both
methods (Thm. 3.2).



1014 P.R.B. DEVLOO ET AL.

Theorem 3.1. Assume the FE spaces £y = S X U,,, X 2., verify the stability constraints for the MFEM-
WS(E,) method stated in Section 4.1. Then, the MHM-WS(E,) scheme defined by the downscaling local solvers
(3.6)-(3.9) and (3.10)—(3.13) and by the global upscaling system (3.14) and (3.15) has a unique solution.

Proof. The proof of this uniqueness result is postponed to Appendix A.2, and it makes use of the stability held
by the MFEM-WS(&,) formulation for the local Neumann problems. O

The following theorem establishes the relation between the triad (&,a,G) recovered as in (3.5) from the
approximate variables given by the MHM-WS(&,) scheme and the solution of the MFEM-WS(E,) formulation.

Theorem 3.2. Under the assumptions of Theorem 3.1, let (i,.,,, \) be the unique solution of the MHM-WS(E,,)

Zrmo 2 >

upscaling system (3.14) and (3.15). Then, (3,1, q) is the function recovered from (i,,,, ), as stated in (3.5), by

solving the local problems T()), defined in (3.6)~(3.9), and f(i), defined in (2.11)~(2.14), if and only if (7, @, )
solves the MFEM-WS(E,) formulation (3.16)—(3.18).

Proof. The proof of this equivalence result is documented in Appendix A.3. (]

Remarks
(i) By construction, the strong enforcement of the Neumann boundary conditions (3.9) and (3.13) is the reason

to assume, from start, that & = TZ()\) + TZ(f) € .%,, i.c., that the stress is globally H (div)-conforming.
This is an important property of the MHM—VVS(&,) solutions that, for instance, distinguish them from
those of the multiscale mortar domain decomposition method [30].

(ii) The exercise of strongly enforcing the coarser traction variable in the constrained stress FE approximations
of the MHM-WS(E,) scheme is a process that can be computationally accomplished in a similar manner
as for conforming constrained functions commonly used in hp-adaptive strategies. Instead, the MHM-H*!
method in [28] imposes Neumann boundary conditions in a weak multiplier sense.

(iii) The approximate displacement @ by the MHM-WS(E,) method decomposes as & = i,.,, + @, without

continuity constraints for @' := T%()) 4+ T(f) inside €;. This aspect, combined with the global H(div)-
conformity of the tensor &, is crucial in the proof of the local conservation property verified by the MHM-
WS(E,,) method at the micro scale level. This is essential for ensuring local equilibrium. Furthermore, for
f =0, the resulting tensor & is strongly divergence-free due to the divergence-compatibility condition (4.1)

valid for .7, (€;) and %,,, ().
(iv) The local contribution T'(f) of the numerical solution, defined in (3.10)~(3.13), is one of the important

properties of the proposed multiscale method. Notably, such a perspective is paramount when f changes
rapidly or embeds multiple scales. In particular, observe that if f belongs to %.,, then T( f) = 0. As

a result, if f is a low-degree polynomial function, then T( f) may be disregarded without undermining
convergence. Importantly, such a contribution is local and then can be computed in parallel in the off-
line stage. Moreover, it does not impact the computational complexity of the method negatively, for its

computation is local and “embarrassingly parallel” as the local problems are independent of one another.

Finally, the contribution T( f) does not appear in the unknowns of the global system (3.14) and (3.15),

for fg( f) is a bubble function (with vanishing traction) and 1:@( f) is free of rigid body modes. As such,
the solution of (3.10)—(3.13) can be entirely computed in the off-line stage, and then it does not enter in
the most demanding computational effort for assembly and solve the global system~(3.14) and (3.15). Also,

the MHM methodology can handle problems with multi-query aspects, in which T( ) must be computed

with several source terms f. In fact, one can adopt the strategy to compute T(w first at the off-line stage,

where ¢ stands for a function of a polynomial basis spanning an approximation of f without undermining

convergence, and then reuse 7'(1)) to calculate T'(f) straightforwardly for all different f.
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(v) The relevant question about the robustness of the MHM-WS(&,) methods in terms of physical coefficients
may be handled mathematically by the strategy proposed in [34] for the Poisson equation with oscillatory
coefficients. In the sequel, we show numerical evidence in this regard and leave the subject’s theoretical
investigation to future works.

4. STABILITY ANALYSIS FOR THE MHM-WS(&,) METHOD

In this section we give guidelines for effective construction of stable MHM-WS(E,) methods. In light of
Theorem 3.2, stability is reached provided it is valid for the corresponding MFEM-WS(&,,) methods. As such,
let us first recall some standard stability requirements.

4.1. Stability constraints

As briefly remarked in the previous section, even though the stress mixed formulation with reduced symmetry
(2.2)—(2.4) is well posed, this may not be true for discrete versions of it, as for the MFEM-WS(E,) methods.
According to Brezzis’s theory, the FE spaces of each field can not be chosen independently one from the other,
which must respect some compatibility conditions [5,6,13,23]. Following this theory, there are two steps in the
path to derive stable two-scale elasticity triplets {7, %,,,,, 2, } for the relaxed-symmetry stress problem.

(1) To cope with the divergence constraint (3.17), the FE pair {.,, %,,, } for stress and displacement approx-
imations should be divergence compatible

VS =,. (4.1)

Unfortunaltely, enforcing tensor H(div)-conformity and the divergence constraint may, eventually, lead to

complications for higher order schemes. One natural way to cope with (4.1) is to to built the rows and

components of the two-scale pair ., x %, by two-scale Poisson-compatible pair 7, x &, = defined in [20],
where ¥, = %f) @ %n is a constrained two-scale flux space.

(2) Once divergence compatible stress and displacement FE spaces {.,, %,,, } are available, to complete the
triplet {7, %,.,,, 2., } the next step is a stable choice of the FE space 2., . For two-dimensional problems,
one option is to take 2., from a Stokes-compatible FE pair {#,,2,, } such that the following Stokes
constraint is satisfied:

Y x Wy C . (4.2)

In the sequel, we show how to accomplish this objective. We start with a given coarse single-level Stokes-
compatible pair {#,, , 2., } such that V. x %, C ., , . Using the methodology in [9], Stokes-consistency
for a FE pair {#,,2,,,} can be recovered when using the refined pressure space 2., by enriching the
velocity space #5,, with some properly chosen bubble functions to form #.,. Moreover, we prove that the
desired Stokes constraint (4.2) naturally holds.

In the sequel, some basic aspects of the required Poisson-compatible and Stokes-compatible FE pairs are
clarified, including the examples that shall be adopted in the current work for the construction of stable FE
settings £,. The stability process shall be described with more details in Section 4.3 for these specific examples.

4.2. Some stable FE pairs for Poisson and Stokes Problems

For a triangular or quadrilateral element K, there is a reference element K and a geometric invertible map
Fi : K — K transforming K onto K. Fk induces mappings Fyx and ]F?(‘V used to map functions defined in K
to functions defined in K.

— Scalar functions: p=Fgp=po Fgl.
— Vector functions: v = Fx v, where F is applied component-wisely.



1016 P.R.B. DEVLOO ET AL.

: 1
— Vector functions in H(div, K, R?): v = F(}(N; =Fx |:JDFK®], where DF is the Jacobian matrix of Fl,
K

and Jx = |det(DFk)| (Piola transformation).
— For tensors: 7 = IE‘d‘VT is the Piola transformation applied to each row of 7.

In K, scalar polynomials are usually of the form: Py (K ) of total degree at most k, for the triangle; Qy ¢ (K )
of maximum degree k in x and ¢ in y, for the square.

Poisson-compatible FE pairs

Usually, the local FE spaces V (K, R?) = F%VVA and P(K) = FgP are constructed by mapping polynomial
spaces V and P defined on a reference element K. The stability (inf-sup) condition requires the divergence-
consistency condition V - V = P. We consider that V is spanned by a hierarchy of vector shape functions of

two classes: functions of interior type in V, with vanishing normal traces over 0K, and functions associated to

the element edges in Vo. Thus, the decomposition V=ViaVv naturally holds.

Divergence-consistency can be extended to the spaces V(K,R?) and P(K) by means of uniformly bounded
interpolants 71'5 : H'(K,R*) — V(K,R?) such that (V- (n — Trf?ﬂ),w) =0, V¢ € P(K). A general form
to define 71:? is by the so called projection-based operators (see [16]). It is firstly defined in K using the

D,o

representation w,’?ﬂ = ﬂ,?’aQJr [ (77 . °“n) in terms of edge and internal operators. Let P(@K’) be the space

of normal traces of vector functlons in V. For n € H'(K,R?) and 0 € H) (K,R?), the interpolants verify:

(720", 0) = (n-n%,0),5: Yo € P (0K), (4.3)
(V-#Pi Vow) = (Vi Vew),, VweV, (4.4)
(ﬁ-fﬁ,g)f( = (hw) ., YweV, Vow=0, (4.5)

Then 7r,€) is extended to the computational elements K, and assembled to the whole domain €.

In the current work, we shall deal with the following divergence-consistent FE pairs:

— For triangular elements: (Brezm Douglas Marini FE pair and enriched versions):
° BDMk, k > 1 [10] VBDMk = ]P)k(K R ) and PBDMk —Pk 1(K)
e BDM}, k> 17 VBDM+ = PY(K,R?) @ Py (K, R?), PBDM+ = Pi(K) (known as BDF M. 1).
e BDM*, k>1[18]: VBDMkﬁ = PY(K,R?) @ Pj o(K,R?), PBDM? = Pry1(K).
— For quadrilateral elements (Raviart-Thomas FE pair and enriched version) |
o RT[k],k‘ >1 [37} VRT[k] = Qk+17k(K) X @k7k+l(K) and PRT[M = Qqu(K)

o RT[J;C], k>1[18]: VRTFL] = Vng[k] (K) @ VRT[k+1] (K) and pRTfL] = Qrr1p41(K).

Stokes-compatible FE pairs

The FE pairs used for velocity and pressure approximations in mixed Stokes formulations are generally
defined by local finite element pairs {W(K,R?),Q(K)}. For stability, they should be compatible with the
inf-sup condition. The following stable Stokes-compatible FE families shall be used in this paper:

— For triangular elements K (Crouzeix-Raviart FE pair and enriched version):
e CRy, proposed in [14] for k = 2,3, and extended to higher orders in [33]:
Wer, (K,R?) = Pp(K,R?) + bgPy_o(K,R?), where by = A\ A2A3 are bubble functions defined by the
barycentric coordinates A; of K, and Qcgr, (K) = Pr_1(K).
o CRY, k > 2 [19]: WCRI(K,]RQ) = Wer, (K,R?) + bg VP, (K), where by = A Aa)3 are the bubble
functions defined by the barycentric coordinates \; of the triangle K, and QCR; (K) = Pr(K).
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TABLE 1. Some known methods for triangular (T) and quadrilateral (Q) reference elements K:
FE spaces S(K,M), U(K,R?), and Q(K) for tensor, displacement and rotation, the associated
Poisson-compatible and Stokes-compatible FE pairs used in their construction and stability
analyses, and their accuracy parameters (¢,7) verify (4.6).

K Poisson Stokes S(K,M) U(K,R?) Q(K) (t,r) Ref.
BDM; — — PY(K, M) ® Py (K, M) Py_1(K,R?) Pe 1(K) (=1,—1) [3]
T BDM; cm+1 z(K,M)@PkH(K,M) Py (K,R?) Pr(K)  (0,0) [19]
BDM;T CRE, PR(K,M)® Pria(K, M) Pry1 (K, R?) Pr1(K) (1,1) [19]
RT GRps1 SRTk](K M) = Qpp1,1(K, M) X Qppr1(K,M) Qi x(K,R?) Px(K)  (0,0) [5]
Q RT[;] GRsy Srryy (K,M) @ Srr )y )y (K, M) Qrr1o1 (K, RY) Prya(K) (L,1) [19]

TABLE 2. Two-scale Stokes-compatible FE pairs {#%(Q;), 2, (€;)}: local spaces in K € Tth
for triangular (T) and affine quadrilateral (Q) elements.

K Spaces 2., (K) W, (K, ]Rz)
T CR, 77171(/2—]1 ) WCRk5k+1 (K?R2) + éCRki (777'7717 )
Q GRy B (T)  Wory, . (KB + Bory, ) (T, B%)

— For quadrilateral elements K (Girault-Raviart FE pair and enriched version):
o GRup, k> 1 [24]: Wory,, (K, R?) = Fre(Qi (K, R?) and Qgr,y, (K) = Pi_1(K).
i gR+ k=>1 [19] WQR[J;] (Ka R2) = WgR[k] (Ka RQ) + Bk+1(K7 R2)a QQR[J;] (K) = Pk(K) Bk+1(Ka R2) is

mapped from Bk+1(k,R2) ={bpw; w e Qk_Lk_l(IA(,RQ)}; by € QQ,Q(K) is a bubble function.

4.3. Examples of stable MHM-WS(&,) methods

Table 1 summarizes some FE spaces S(K,M), U(K, R?), and Q(K) that shall be used to form stable FE
spaces £, for the stress mixed formulation with reduced symmetry. It also shows the corresponding Poisson-
compatible and Stokes-compatible FE spaces used in their construction and stability analysis. These methods
are known to be stable in single-level settings, as proved in the indicated references. The following accuracy
properties are valid for them with k& > 1 and the indicated parameters ¢,r € {—1,0,1}:

Pk(KaM) - S(kvM)a Pk+t(k7R2> - U(KaRz)v Pk+r(k) C Q(K) (46)

Three particular stable scenarios indicated in Table 1, recently analyzed in [19], are for single-level triangular
or quadrilateral meshes (i.e. h;, = hg, = h) and for enriched internal polynomial degrees ki, = ks + 1
or ki, = ks + 2. We argue that similar methodology may be successfully applied to more general two-scale
composite FE space settings &,.

In fact, for the enforcement of the Stokes-constraint (4.2), one may build two-scale composite Stokes-
compatible FE pairs by adding bubble vector functions to the velocity spaces Weg,, ., (I_( , ]RZ) of the Crouzeix—
Raviart spaces for triangles, or of the Girault-Raviart family Wor,, ., (K,R?) for affine quadrilaterals, defined

in the coarsest elements K € ’ThQ . (see [9]). These extra terms are defined by the multiplication of appropri-
ate vector spaces, containing the gradient of the enlarged pressure elements, by a fixed scalar bubble function
defined for each K € TQ The next two sections describe the construction of these two-scale Stokes-compatible
FE pairs. As far as we understand they are new in the literature.
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4.8.1. Stokes-constraint for FE spaces Eppm., (kin > 2) for triangular meshes

Since ki, > 2, the property %, C %,,,, required by the MHM-WS(Espaq, ) scheme, holds. The particular
cases based on the conformal coarse partitions ,Ths:k (hin, = hsi), and polynomial increment k;,, = ks, + n, for
n = 1,2, correspond to the FE spaces denoted by £, M and &,z M considered in [19]. For these methods,
the composite rotation space of piecewise polynomials Zppar, (i) == Pk,l('];lﬂk) is stable. This choice is
guided by considering the Stokes-compatible Crouzeix—Raviart spaces CR~(€2;), with FE spaces

%R’Y (Qz) C ITI-1 (QZ, Rz) and QCR'Y-;” (Ql) C L2 (Qz)

and local FE spaces on each coarse element K € ’Z;f:k defined as

Wer,(K) = Wer,, (K, R?) :=Py,, (K,R?) 4 bgPy,, -1 (K,R?) and  Zer. (K): =P, _1(K)

Yin
for velocity and pressure, respectively, where by is the basic bubble function on K.

Let us consider now general two-scale scenarios v = (s, Vin), using internal polynomial degree increment
kin = ks +n, n > 1 and internal refined partitions ’Z;Si, with h;, = hsk/Qe, ¢ > 0. The stability of the newly
proposed two-scale FE space settings Egpaq,, also requires two-scale Stokes-compatible Crouzeix-Raviart spaces
Wer., () C H*(Q;,R?) and DR, (%) C L*(Q;). They are defined on K € Thfjk by the composite space
2er,,, (K) = Py,,—1(T,5 ) for pressure, piecewise-defined over the refined partition 7% induced on K, and

the velocity space Wer,_ ,, (K,R?) + ECRkin (Thii, R2>, where the stabilizing bubble spaces are

Ber,,. (T;fw]R?) _ {w € HY(K,R?);w|x = bx VP, 1(K),K € Zf(n}

Using these local FE pairs, the requirements of the corollary of Theorem 2 in [9] are fulfilled, and the Stokes-

compatibility of the resulting two-scale space configuration holds. Furthermore, V x ECR,% (’Z}fn,RQ) are

divergence-free bubble functions in K € ’];Lﬂi , with degree k;;, and,
therefore, the required property holds

Y x #er, () C TBoury (%) = S, () & oo, (),

which implies that the composite rotation space Zppat,,, (i) := Py, —1 (Th?:l) is a stable choice for Egpar, ().

4.3.2. Stokes-constraint for two-scale FE spaces Ert | for affine quadrilateral meshes

Firstly, let us recall the specific FE space setting for v = (ysk,7in) based on conformal quadrilateral

partitions ’Tth (hin = hsk) and polynomial increment k;;, = kg + 1. It corresponds to the case SRT[* ]

sk Vsk

considered in [19]. For them, we obtain stable rotation spaces 2rr (i) = P, (’Z;fzk) by considering

enriched Stokes-compatible Girault-Raviart spaces GR (€;), with local FE spaces W, + (I_( ,RQ) =
[ksk‘f’l] gR[ksk+1]

Qbort1, k1 (K, R?) + égR[kskJrl] (K, R?) for velocity, and Py, 41 (K) for pressure, in K € Thﬂk Functions w in

the bubble spaces égn[ (K,R?) are written as w = bz Qy., 1., (K), where bz is the basic bubble function

on K.

This enrichment methodology can also be extended to prove stability for general local FE spaces Err ), for
v = (Vsk, Vin), using both non-trivial internal polynomial degree increment k;, = ks +n, n > 0, and partition
refinement hyy, = hgy, /2%, ¢ > 0. We obtain stable rotation spaces o@RThm] () := Py, (7;19) using the FE Stokes

pair {#gr,, (), Zgr,, (i)} C H'(Q;,R?) x L?(€;), with local pressure space gngnl(K) = Py, (’Thf{ﬂ),
onall K € T;LQ’C, and local velocity space Wgn[kskﬂ] (I_(,RQ) + égn[km] (’T,II;L,RQ), where the bubble spaces

ks 1]
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égR[km] (’Z}fﬁy,R2) C H'(K,R?) are composed by functions w such that w|x = bxQx,, 1.4, -1(K), K € Th{i
Since Qp,, —1,k;,—1(K) contains Py, _1 (K,R?) = VPy, (K), and accordingly to the corollary of Theorem 2 in
[9], the stability of the resulting enriched Stokes-compatible space configuration holds. Furthermore, the tensors
in V x B%QRU%] (’Thf{n , RQ) are divergence-free bubble functions piecewise defined in K € Thﬂi , with degree k;,.
The required property V x WRTM C IRr1, holds, concluding that QRTHMJ is a stable choice for the rotation
space in ERTM.

We summarize the results of Section 4 in the following theorem.

Theorem 4.1. The MFEM-WS(E,,) formulation (3.16)—(3.18) is well-posed for any of the two-scale FE spaces
&spm., and Err . Moreover, by means of Theorem 3.2, this well-posedness property is also valid for the MHM-
WS(E,) scheme defined by (3.6)(3.15) and based on the respective FE space setting.

Remarks
Epp M for kg > 1, these two-scale FE spaces can also be interpreted as two-scale FE spaces Egp M for

~T = (’y:%, 7;[1)7 with 'y;; = (hin, kin + 1). Thus, the stability proved to be valid for the later case also holds
for the family &4, M
- 5727[*]: these two-scale FE spaces for affine quadrilateral meshes can also be interpreted as two-scale FE
.

spaces gRTh .., for vt = (Ysk, fy;l), with fyj;l = (hin, kin +1). Thus, the stability property valid for the latter
cases also holés for the family SRT[+].
il

5. UNIFIED ERROR ANALYSIS FOR THE MHM-WS(&,) METHOD

In this section, we present a unified error analysis for stable MHM-WS(&,) methods for two-scale FE spaces
&, via the equivalent MEEM-WS(E,) formulations, by means of Theorem 3.2. The analysis is general enough
to be applied to the stable families Ezp M., and ERTM, but also to other stable two-scale FE spaces eventually
constructed under similar circumstances, in association to other kinds of Poisson-compatible FE pairs.

A well-known methodology for error analysis of MFEM-WS(&,) formulations requires the construction of
appropriate interpolants, as proposed in [6]. The error estimates are then bounded in terms of the interpolation
errors. The particular two-scale interpolants of interest are discussed in the next theorem.

Theorem 5.1. Let £, = .7, X U,,, x 2., be FE spaces verifying the stability constraints (4.1) and (4.2).

(1) There exists an interpolant H% : HY(Q,M) — 7, satisfying

(Z- (; - H%;) ,Q) + (asym (2 — H%;) ,<p) =0, Vv € %,,,, Vo€ 2., (5.1)
5z aiv,om) S Nzl Ediv.om)- (5.2)

(2) For a sufficiently smooth tensor , the interpolation error estimate reads

o "
Iz~ I5zllezcomy S PG Izl s @ - (5.3)
The leading constants appearing on the right sides of estimates (5.2) and (5.3) are independent of ~.

Proof. The idea proposed in [6] is to express the interpolant in the form H%; = H%yg + H%ﬁ; The first
component H%W; verifies the divergence commutative property expressed by (5.1) when taking ¢ = 0. It is

row-wisely defined in the spirit of standard projection-based interpolants 71',’? : H5(Q,R?) — ¥, adopted for
two-scale Poisson-compatible pairs {75, &2, }, with enhanced bubble flux components (see [19,20]). Recalling

in
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the definition of 71'5 for the single-level case (4.3)—(4.5), the two-scale version becomes 71'5@ = W,?’aﬂ+ %,ﬁn (n—
wf’aﬂ), where only the internal interpolant f’rfm has to be updated. A uniform bound for ||H%7£||H(diV,Q’M),
independent of v, follows from the same property valid for ||7r,1? I £ (div,0.R2)-

The second interpolant H%,’é should verify the commutative property (5.2) when v = 0. It is defined fol-
lowing similar arguments applied in [6] for the single-level cases. Namely, consider the Stokes-compatible pair
{#,, 2,,,} This pair exists since the stability Stokes-constraint is satisfied. Let ¢ = [¢1 ¢2] € # be the

solution of the Stokes problem with divergence constraint —(V - ¢, ) = (asym <H%7£ — 2) ,(p) , Vo e 2.,

and define H%ﬁg =Vx¢= {gii; :giz;] € #,. Therefore, H%Wg is divergence free and

ISzl a2 (aiv.omy = 5,2l 2wy S 1T, 2 — Zll22m)- (5.4)

Since asym H%ﬁ£ = —01¢1 — D292 = =V - ¢, so that the required commutative property holds.

Concerning the error estimate (5.2), we first observe that it holds for H%,Y. In fact, this is a consequence
of similar error estimate valid for 71'[7j of the associated two-scale FE Poisson-compatible space, proved in [20],
the leading constant appearing on the right side only depending on the shape-regularity factors of the meshes
’Z;LQ, which are supposed to be independent of the mesh-widths, and on the bound for the projection #P on
the corresponding reference element K (see also Thm. 4.1 in [2]).

We conclude the proof after using the triangular inequality and the estimate (5.4). O

Error estimates for the MHM-WS(E,) method use both discretization parameters -y, and v, set in
Section 3.1. Moreover, the elliptic regularity property, which is known to hold in a variety of circumstances of pla-
nar elasticity on convex domains € [13], is used for the error estimate in u. Namely, if v = A" e(w) € H(div,Q,S)
is the solution of the elasticity problem V - v = 6, with boundary condition w = 0 on 85, we assume that

ol zromy + llwll g2 or2) S 10l 220.r2)- (5.5)

Theorem 5.2. Suppose &, = Sy XUy, X 2., is a two-scale FE space setting verifying the stability constraints
(4.1) and (4.2) and the accuracy properties (4.6), and let (3,%,q) € S X Uy, x € 2,,, be the approzvimate
solution recovered from the output of the MHM-WS(E,) method, as in (3.5). Assume the reqularity property
(5.5) holds.

(1) Then, the next estimates are valid:

||g - i”Lz(Q,M) + [lg — 67||L2(Q) S hffck+1”g”H’“sk+1(Q,M) + hfﬁ"’““H(J||H’€m+r+1(9)v (5.6)
IV - (2 = Dllz2re) S AT THIY - gll st o p2), (5.7)

lu — @l r2(0r2) hlzlsck+2||g”H’“in+f'+1(Q,M) + hfﬁ"““||H\\Hkin+t+1(Q,R2)
+ hskhfﬁ"JﬁH||(1||Hkm+r+1(9)~ (5.8)

where the exact fields o, w and q are regular enough for the norms to make sense.
(2) The above estimates hold for the MHM-WS(Ey) formulations using Ert ) and Eppmyt FE spaces, with
t=r =0, and using Espm,, FE spaces for ki, > 1, witht =7 = —1.

Proof. By means of Theorem 3.2, we derive the error estimates for the equivalent MFEM-WS(E,) formulation,
for which the following estimates in terms of interpolation errors hold (see [19] or the references therein):

le — &)l 2 + g = dllz20) S lle — Mallr2my + g — 109, qllz2(), (5.9)
IV (2= 3) le2are) SV - (g* H%g) 2 (2,r2), (5.10)

I, w = Gl o ) = (A (-3).v- H%g) + (Himq — ¢ asym (g - H%g)) ;o (511
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where H% . HY(Q,M) — .7, is the interpolant defined in Section 5.1, I L*(Q,R?) — %, and T

Yin :
L*(Q,R*) — 2,, are L®-orthogonal-projections, and v = é_lg(w) € H(div,Q,S) is the solution of the

elasticity problem V - A 'e(w) = 1% u

L?-projections, 115, and IIZ,  have unitary norm, and the following error estimates hold

u — & with homogeneous boundary condition w = 0 on 9f). Being a

lo =T vllza@pny S A4 0l @ pe), (5.12)
lp =112, @llzaoy S BE 1l ke o1 - (5.13)

Due to the divergence-consistency property, meaning that V - H%; is the L?-projection of V - T over %,,,, then

IV (2= T5D) 2 @re) $ R IV Zll s e (5.14)

Consequently, estimates (5.6) and (5.7) follow directly by inserting the interpolation errors (5.3), (5.13), and
(5.14) in (5.9) and (5.10). Using Cauchy-Schwartz inequality in (5.11), we obtain

T, u — |72 0m2) < [1A( — @)l 20w |2 — 52l 2@ pn) + 1114, @ — qll 20|l asym (g - H@) lz2()-

Therefore, we use [|lu — I5v| z2(m) S hakll2ll @, || asym (g - H%g) lz2(0) < hskllellmr (), and the esti-

mate |v]lgrum S 115, u — @[|2(o,r2), given by elliptic regularity property (5.5), to obtain

I, u = all 2 (or2) < hsk (Il = ll 2w + 1119, 0 — all2e)) -

Then, we insert the estimate above in the triangle inequality to obtain [l — @[/ z2(qr2) < |lu— H%MLQHLZ(QJR2) +
ITI%, w—1l[2(q k). The estimate (5.8) follows from this last inequality and using the interpolation errors (5.12)
and (5.13), and the estimate (5.6). Finally, the second statement follows from the first one, for all hypotheses
are satisfied. O

Remarks

(i) The stress error is limited to the order O(hfz’“ﬂ), independently of internal enrichment, because the edge
terms live in the coarsest scale level vs, = (hsg, ksx) of the normal traces over the skeleton interfaces.

(ii) Divergence of the stress can reach arbitrary high accuracy orders, profiting from finer meshes and higher
polynomial degrees used for the approximations in %, .

(iii) Despite the fact that finer meshes and higher polynomial degrees are also used for the approximations in
2.,., the accuracy of the rotation is limited by the stress accuracy order O(hfzkﬂ).

(iv) The constants in the above error estimates are independent of the Poisson ratio, a fact allowing to work with
materials near the incompressible limit, avoiding the locking phenomena, which is one of main advantages
of using stress mixed methods to solve linear elasticity.

(v) Since ||T - @||H_%(F) < ||£HH(dinM)7 for 7 € ., convergence rate for ||\ — 5\||H can be obtained

1
“2(m)
directly from the estimations (5.6), and (5.7) as

3 ke' 1 kin 1 kin 1
||>\ - >\||H_%(F) 5 h’sick—‘r ||g||Hksk+1(Q,M) + h’zn A Hz : g||Hkin+t+1(Q,R2) + h’in e ||q||Hki7L+T+1(Q)'
(vi) Due to the L?-orthogonality of %, and %~ , the convergence rate (5.8) valid for ||u — @||2(qre) also
holds for ||grm — QOH%?(Q,RZ) and ||QL — @J_”%z(gz,]l@), for

1

~ ~ ~ 1 ~ ~ 1
= @llF20r2) = @ = Bpm) + (@5 = @) 1F200.2) = [ — B [T r2) + [lut = @5 (720 ey
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FIGURE 2. Oscillatory Young’s modulus F, the components of the analytic displacement v and
stress tensor g.

6. NUMERICAL VERIFICATION TESTS

In this section, we present and discuss some verification tests for the MHM-WS(E,) formulation analyzed
in the previous sections. The results are compared with the ones given by the coarse single-level MFEM-
WS(E,.,) formulation, and by the MHM-H"' formulation [28, 35], that use H'-conforming FE displacement
spaces of corresponding two-scale resolution, using the hierarchical shape functions described in [17]. We refer
to [18,39] for the implementation of H (div)-conforming shape functions of edge and internal types, required in
the construction of tensor FE spaces.

For the current simulations, we implemented the methods in the computational framework NeoPZ°, where
tools for the construction of the required constrained H (div)-conforming spaces are available (e.g., a hierarchy
of shape functions of high degree for a variety of element geometry, data structure allowing the identification of
face and internal shape functions of different degrees, and procedures for shape function restraints, as the ones
usually adopted in adaptive hp-strategies). The upscaling-downscaling stages are crucial for the construction of
efficient computational algorithms, mainly because they decompose the resolution of the problem in terms of
local expensive (but independent local solvers) and cheaper coupled global systems. We refer to [20,35] for a
discussion of different ways to implement MHM methods.

6.1. Problem 1: An oscillatory Young’s modulus case

E(z,y)v _ E(,y)
— T and p=
(I+v)(1-2v) 2(1+v)
expressed in terms of the oscillatory Young’s modulus E(z,y) = 100(1 + 0.3sin(107(z — 0.5)) cos(107y) and
Poisson ratio v = 0.3. The exact displacement u, vanishing on 0f), and is given by the expression

Let Q = (0,1)x(0, 1) be a isotropic elastic body with Lamé parameters A =

1 rz\2 , .
u(eny) = 3 (5) y~ cos(6mz) sin(7my)
gey sin(4nx)

from which the body force f is derived. Plots for E, components u;, and g, . are shown in Figure 2.

)

6NeoPZ open-source platform: http://github.com/labmec/neopz.
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FIGURE 3. Effects of hffj“ in Term 1 (T1), and %! in Term 2 (T2) in the displacement error
estimate: ks = 2, kin = ksxp +n, n =20, 1, and 2, for h;, = hsk/2l, £=1,2, and 3.

The results shown in this section are for two-scale FE spaces 5727’[7]7 for square meshes, Egpat.,, and Egp M
for triangular elements. Two types of curves are shown: mesh-based and space-based convergence histories.

In the mesh-based scenario, convergence rate is based on the usual H-refinement of the macro-partition, and
use hgp = H (no mesh-skeleton refinement). The goal is to verify the error estimates predicted in Theorem 5.2.
Concerning displacement errors, the three terms in the right hand side of (5.8) may have different influence on
the results. For instance, for the two-scale families of FE spaces SRTM and Epp ME the last term hskhf;;f"H is

always dominated by h’;,z’”'Q (Term 1) and hfg’“"‘""'l (Term 2) appearing in the first and second terms. Different
regimes may be observed for Term 1 and Term 2, depending on parameter configurations. For instance, when
internal polynomial degree increment k;,, = ks + n is applied, with n > 1, the influence of Term 1 dominates
Term 2 in the range for hgy illustrated in Figure 3 (left-plots), independently of the internal mesh refinement
hin = hsk/2£, £ > 1. For the two-scale FE spaces SBDMW Term 1 dominates Term 2 when n > 2, as shown in
Figure 3 (right-plots). These effects shall be verified in the simulations presented in this section.

Note also that the macro mesh-size H does not appear explicitly in the error estimates of Theorem 5.2.
This means that convergence is achieved by making hg, — 0, even if 7y stays unchanged. This second type of
convergence history is called space-based convergence, based on the refinement of the skeleton partitions (as well
as the internal ones) while keeping fixed the macro-partition. The purpose is to verify if an extra convergence

rate of order hi,/f occurs, as observed in the numerical tests of [27,35] using the MHM-H' method.

6.1.1. Mesh-based convergence with square elements

In this part, all verification tests for the oscillatory Young’s modulus case are for FE spaces Er7,, based on
square local partitions.

The results for the stress component 11 obtained by the application of the MHM—WS(ERTM) scheme are
displayed in Figure 4, for different configurations of . Precisely, we show plots for: (a) 8 x 8 subregions, H = 273,
hsk = H, kg, = 2; (b) 8 x 8 subregions, hg, = H/4, kg, = 0; and (¢) 32 x 32 subregions, H = 275 hg, = H,
ks = 2. In all these cases, h;, = 2_7, and k;, = ke + 1. It is clear that the FE space of the case (a) is
not sufficiently refined to capture the essential features of the solution. The other two FE spaces, which are
equivalent in terms of element sizes on the edges, show similar approximations, but the errors for the FE space
of case (c) are the smallest ones.

1
Figures 5 and 6 show L2-error curves for u, g, Vg, q, and energy norm (é g(g),g(g)) 2, in terms of the
macro mesh size H =277, j =1,2,--- ,6, for the MHM-WS(SRTM) scheme, using hgr, = H, kg, = 1 or 2, and
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FIGURE 4. Problem 1 — Tensor component o1 solved by the MHM—WS(ERTM) scheme for
different square partitions: 8 x 8 subregions, hg, = H, ks, = 2 (left-image); 8 x 8 subregions,
hsi = H/4, ks, = 0 (middle-image); and 32x 32 subregions, hg, = H, and kg = 2 (right-image).
In all the cases ki, = ks + 1, and hi, = 277
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FIGURE 5. Problem 1 — Effect of increasing k;,,: MHM—WS(SRTM) scheme with hg, = H =277,
j=1,2,--6, hyy = hs/2, ke = 1, and ki, = ks + n, n = 0,1,2; single-level MFEM-

WS(ERTHSM )

different fine scale parameters ~;,. We compare the results with the respective single-level MFEM—WS(SRTH . ])
methods, and show that the two-scale FE settings overcome the single-level one in all scenarios.

Assessing the effect of polynomial degree increment on errors

Figure 5 shows the cases for kg, = 1, with h;, = hgr/2. The purpose is to analyze the effect of increasing
kin = ks +n,n=0,1 and 2.

As predicted in (5.6), the errors in ¢ and ¢ are of order kg + 1, independently of n, and these errors are about
the same magnitude, in all the cases. The stress symmetry errors, which are proportional to the stress errors, also
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FIGURE 6. Problem 1 — Effect of decreasing h;,,: MHM—WS(SRTM) scheme with k;, = ks = 2,
haw = H =277, j =1,2,---5, hin = he/2°, £ = 1,2, and 3; single-level MEEM-WS(Er7,, ).

have convergence rates of order kg, +1, but the increment of the polynomial degrees inside the subregions reduces
their magnitudes significantly. As expected, the divergence of the stress systematically improves accuracy to
order ks +n + 1 =mn+ 2 (recall that t = 0 for g7 ). For these space configurations, we verify the dominant
effect of the first term in the displacement error estimate (5.8) of order kg + 2 when n = 1,2. For n = 0, i.e.,
when k;;, = ks, the second term of (5.8) takes place, and convergence rate of order kgi, + 1 occurs, in accordance
with the illustration of Figure 3 (left-plots).

Assessing the effect of internal mesh refinement on errors

Now we take k;, = ks = 2, and analyze the effect of refining the internal meshes, for h;, = hsk/2é, f=1,2
and 3, comparing the cases in Figure 6. Again, for coarser levels (£ = 1,2) the second term in the displacement
error is the most significant, of order kg, + 1, in accordance with the left-plots of Figure 3. By further refining
the internal grids (¢ = 3), the convergence rate tends to the order kgi + 2 related to the first term in (5.8). We
highlight the different regimes for the divergence of the stress, which is now always of fixed order ks + 1 = 3,
but with reducing magnitude as ¢ increases. The behavior of the other variables are not significantly affected
by using these FE space settings.

Comparison between MHM-WS(E,) and MHM-H' methods

We compare the convergence histories of the MHM—WS(SRTM) and MHM-H' methods in the plots of
Figure 7. The FE spaces have polynomial degree ks, = 1, without skeleton subdivision (hsy = H) and no
internal polynomial degree enrichment (n = 0), but using ¢ = 1,2, and 3 to form the micro meshes inside the
macro-elements (h;, = H/2%).

For the MHM-H"' method, using scalar polynomials obtained from Qk,k(f( ), L2-stress and energy errors
maintain of order kg, but as the internal mesh refinement increases, the magnitude of the errors decrease.
Concerning the displacement variable, both methods show similar behavior, starting with rates of order kg + 1



1026 P.R.B. DEVLOO ET AL.

Ko =1 ks =1

Energy error

Error in displacement
Error in stress

o MHM-H',r =1

von MHM-H'.f=1
g weae MHM-H'.0=2 107 wesee MHM—H', ¢ =2
A s —o— MHM-H' ¢ =3 —o— MHM-H' (=3
1075 ‘/ e MHM-WS, ¢ =1 e MHM-WS. /¢ =1
s MHM-WS, /=2 sswes MHM-WS. /=2
—— MHM-WS,7=3 10-2 —— MHM-WS. /=3

1072 107! 10° 1072 107! 10°

H H
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FIGURE 8. Problem 1 — Space-based convergence (s-b) for the MHM-WS(Er7 ;) scheme: fixed

macro-partition with 16 uniform square subregions, hg, = 277, j = 2,--- ,6, for kg, = 1 or 2,
hin = hsi/2, and k;, = ks + 1; mesh-based convergence (m-b) is for macro-partitions with
H = hgy.

at low internal refinement levels, typical of single-level schemes, as predicted by the error estimate in (5.8) for
this kind of space configuration (n = 0, ¢ = 0, and h;, ~ h), whose first term on the right side of (5.8) is
dominating.

However, as { increases, with h;, < hgg, the error magnitudes decrease. The enhanced rate of order kg + 2
is observed at ¢ = 3, illustrating the domination of the first term on the right side of (5.8).

Notice that the observed rates of convergence for the MHM-H' method are in accordance with the predicted
ones in [28,35], the errors from the local level solver polluting the global convergence when k;, = ksi. One can
recover the higher convergence order O(hffc’fﬂ) for L2-stress and energy norms by using ki, = ke + 1 and,

provided some smoothing properties hold, recover the super-convergence order O(hfffﬁ) by using k;n, = ksg +2
in the MHM-H" method [35].

6.1.2. A space-based convergence study

1
Consider now fixed macro-partitions with 16 uniform squares or 32 triangles, respectively (mesh-size H = 1),
and skeleton partitions taking he, = 277H, j = 0,1,2,---. Inside the subregions, we take uniform partitions

Ths?; with h;, = hgi/2. The polynomial degrees used for the trace spaces are kg = 1 or 2, and for the local FE
spaces are ki, = kg + 1 (i.e., n =1).
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TABLE 3. Problem 1 — Space-based convergence for the MHM-WS(E, ) method: L?-errors and
convergence rates using fixed macro-partition of 32 triangles for two-scale FE spaces Egp.,

and SBDM# hew =279, kg =1 0r 2, hjyp = hsk/2, and ki, = kg + 1.

Triangular local partitions

EBDM,,
ksk = 1
. Stress Displacement Divergence Rotation Asymmetry Energy
J Error Rate  Error Rate  Error Rate  Error Rate  Error Rate  Error Rate
2 1.5298e+1 — 6.1570e—3 2.3282e+2 — 1.5827e+4-0 — 5.0094e+0 — 1.5277e+40 -
3 3.8547e+0 1.99 1.2550e—3 2.29 6.6334e+1 1.81 3.8729e—2 2.03 1.3566e+0 1.88 3.7603e—1 2.02
4 7.9571le—1 2.28 2.8845e—4 2.12 1.7167e+1 1.95 7.2450e—3 2.42 2.6268e—1 2.37 7.6726e—2 2.29
5 1.6220e—1 2.30 7.1211e—5 2.02 4.3292e+0 1.99 1.4674e—3 2.30 4.8063e—2 2.45 1.5543e—2 2.30
ks =2
. Stress Displacement Divergence Rotation Asymmetry Energy
J Error Rate  Error Rate  Error Rate  Error Rate  Error Rate  Error Rate
2 6.5982e+0 — 1.4763e—3 — 1.0815e+1 — 6.8016e—2 — 1.4044e+0 —— 6.4350e—1 —
3 1.1056e—1 2.58 1.2802e—4 3.53 1.0815e+1 2.79 1.0762e—2 2.66 1.9111e—1 2.88 1.0699e—1 2.59
4 1.1581e—1 3.25 8.1727e—6 3.97 1.4003e+0 2.95 1.1113e—3 3.28 2.3519e—2 3.02 1.1212e—2 3.20
5 9.4750e—3 3.61 6.4039e—7 3.67 1.7659e—1 2.99 8.5089e—5 3.71 2.6922e—3 3.13 9.2499e—4 3.60
Eppat
ks =1
. Stress Displacement Divergence Rotation Asymmetry Energy
J Error Rate  Error Rate  Error Rate  Error Rate  Error Rate  Error Rate
2 1.5909e+1 — 4.7291e—3 — 7.4825e+1 — 1.9752e—1 — 2.6632e+0 — 1.5436e+-0 —
3 4.0471e+0 1.97 6.1283e—4 2.95 1.0815e+1 2.79 4.8076e—2 2.04 7.1458e—1 1.90 3.8563e—1 2.00
4 8.2132e—1 2.30 5.8335e—5 3.39 1.4003e+-0 2.95 8.4784e—3 2.50 1.2752e—1 2.49 7.7762e—2 2.31
5 1.6348e—1 2.33 6.3446e—6 3.20 1.7659e+1 2.99 1.5663e—3 2.44 1.9175e—2 2.73 1.5442e—2 2.33
ks =2
. Stress Displacement Divergence Rotation Asymmetry Energy
J Error Rate  Error Rate  Error Rate  Error Rate  Error Rate  Error Rate
2 6.6848e+0 — 1.4911e—3 — 2.0206e+1 — 7.3370e—2 — 9.1499e+1 — 6.4407e+1 —
3 1.1190e4-0 2.58 1.2639e—4 3.56 1.4320e+0 3.82 1.1316e—2 2.70 1.1343e—1 3.01 1.0775e—1 2.58
4 1.1724e—1 3.25 6.8611e—6 4.20 9.2555e—2 3.95 1.1689e—3 3.28 1.5131e—2 2.91 1.1291e—2 3.25
5 9.6566e—3 3.60 2.5853e—7 4.73 5.8340e—3 3.99 9.3046e—5 3.65 1.7545e—3 3.11 9.3336e—4 3.60

The space-based error curves in Figure 8 are for SRTM spaces and are plotted versus the number of degrees
of freedom (DoF) in the condensed systems of the upscaling stage. We also include mesh-based results for
comparison, using the same grid size H = hgj, for the macro and the skeleton partitions, while keeping the other
parameters unchanged. These plots show that the desired accuracy can be obtained with about two orders of
magnitude fewer DoF's when the space-based strategy is adopted instead of refining the global partition.

Table 3 contains the errors and convergence rates for triangular mesh scenarios. Recall the accuracy param-
eters t = r = —1 for the Egpq,, family, and t = r = 0 for SBDM;r case. Except for the divergence of the stress,
all other variables experiment and enhanced accuracy, which is more evident for ks = 2. Since V - & is the
L?-orthogonal projection of f over %.,,., its accuracy is kept in the superconvergence rate of order hfg’“+t+27
predicted in (5.7). As for the MHM-H" simulations shown in [27,35], the Esp M space family presents the same

as

tendency to extrapolate the predicted values by an exponent = 1/2 in the space-based convergence rates. Once
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FIGURE 9. Problem 2 — Young’s modulus and Poisson’s ratio at the cross line y = 5000 m.

stress convergence rate reaches the order h]:,i’“+3/ 2, this enhanced accuracy is translated to the displacement

error estimate (5.8), improving the Term 1 to order hfi’“+5/ 2

When this term is dominant, the extra hi,éz accuracy order appears, as observed for the £, M family using
the mesh sizes and polynomial degree scenario of this test problem. However, this tendency is not confirmed by
the displacement errors given by the simulations with Egpa,, a fact that can be justified by a closer look in
the right-plots of Figure 3: using n = 1 and ¢ = 1 the Term 2 (of order h’:;’“ﬂ) dominates the Term 1 as hgy
diminishes.

6.2. Problem 2: a heterogeneous media case

In this example, we use the data from the HPC4e Test Suite [15], which defines an elastic domain with 16
layers with constant physical properties, covering an area of 10 x 10 x 5km. As suggested in [35], we replace the
original layers 4 and 12 by the data of saturated clay p = 1760 kg/m?’, v =0.49, E = 15MPa, and which adds
more interesting behavior for the numerical experiments.

We consider a three-dimensional grid with Az = Ay = 19.53125m (10000/512) and Az = 4500/256 =
17.578125m, to sample the compressional velocity V;,, shear velocity V;, and density p, and use the expressions

V2 2Vv2
v = ﬁ and F = 2pVS2(1 -+ v) to obtain the Poisson coefficient and Young’s modulus, respectively.
p Vs
Figure 9 shows the plots of these parameters defined at the central cross line at y = 5000 m, which corresponds
to the domain 2 used in the simulations of the heterogeneous media case.

The top, left and right sides of the domain are stress-free, and the bottom side has zero displacement. The
domain is loaded by gravity (9.81m/s?). We choose the evolution of g,, at the horizontal centerline of the
domain z = 2250.25m as a reference value.

We ran single-level MFEM—WS((‘ZRT[%#]) simulations for v,.; = (h, k), k = 1,2 and conclude that k = 2 can
be used as a reference solution.

The plots in Figure 10 show the reference values of o L along the horizontal center line of the domain
z = 2250.25m for four two-level configurations of the MHM—WS(SRTM) using fixed 16 x 8 subregions as
documented in the right-hand side of Figure 11. The interior meshes in each subregion are obtained after
five uniform subdivisions. The approximations are obtained using FE spaces 5737[7] for ks = kin = 1, and
hs = H/ 2¢, ¢ =0,1,2 and 3 divisions of the skeleton mesh. It can be observed that by refining the skeleton
mesh, the MHM—WS(ERT[W]) approximations become closer to the reference solution, with quite well matching
for ¢ = 3.

Figure 11 shows contour plots of o » comparing the re ference results (left-image) with the finest MHM-
WS(ErT,,,) approximate result (right-image) using ¢ = 3.
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FIGURE 10. Problem 2 — Plots of 1 at the height z = 2250.25 m. The reference approximations
(black), and the MHM-WS(E,) solutions (red), are for two-scale FE spaces Er7,,, based on
16 x 8 macro subregions, ks = kin = 1, hiy = 10000/512 ~ 19.53m, hg, = H/2£ with
{=0,1,2,3.

Reference MHM-Ws
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F1GURE 11. Problem 2 — 3 Component g - obtained with single-level reference FE space
ErTY, . (left-image), and MHM-WS(E, ) scheme (right-image) with two-scale FE space Err
based on 16 x 8 macro-elements, ks = ki, = 1, hgp = H/8, and h;, = 10000/512 ~ 19.53 m.

7. CONCLUSIONS

We proposed a family of stable H(div)-conforming multiscale mixed methods for elasticity problems that
impose weakly stress symmetry on general polygonal meshes. Such a feature makes the methodology flexible
to represent complex geometries while it yields a systematic way to build multiscale FE spaces with upscaling-
downscaling stages. The multiscale nature of the methods provides a detailed representation of the solution
(stress, displacement, and rotation multiplier). Such discrete solutions combine fine-scale computations within
macro elements, which are entirely independent of one another and prompt to be parallelized, with coarse scales
represented by constrained traction (Lagrange multiplier) on mesh skeleton. As a result, the methods achieve
optimal and high-order convergence by refining the meshes’ frame and local sub-meshes only. As an upshot,
the convergence also holds with edge refinement only, i.e., keeping the first-level mesh fixed. Interestingly, we
observed numerically super-convergence in this case. Also, local stress fields are in local equilibrium with external
forces. Those properties are theoretically demonstrated and validated through numerical tests, which verified
the robustness of the methods on a highly complex multilayer problem using meshes non-aligned with interface
layers.
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We conclude with the highlight on the following topics deserving future research:

— The MHM methodology can provide an underlying algorithm with two levels of parallelism. The first one
has a mathematical origin, based on the local-global splitting in (3.6)—(3.13) and (3.14), (3.15), respectively.
The second one is computational, based on the choice of parallel algorithms to solve each problem (global
and local ones), and the management of computational resources to deliver efficient code. A study on this
direction demands expertise on the implementation of parallel algorithms, which is out of the scope of the
present manuscript. We refer to [25,35] as some seminal works considering the performance of the MHM-H*
method for elasticity.

— The construction of a two-scale MHM-WS characterization for three-dimension MFEM-WS methods is
feasible using a similar methodology, as in the 2D case presented in Theorem 3.2. Recall that, stable single-
level FE spaces for the MFEM-WS formulation are available in 3D only for tetrahedral geometry (e.g., in
[3,6,13,21,40]). However, stability analyses for them should use a different methodology, for the application
of the Stokes-compatibility constraint is less effective in 3D.

APPENDIX A. PROOF OF THEOREMS

A.1. Proof of Theorem 2.1

Theorem 2.1 gives the characterization of the weak stress mixed formulation with reduced symmetry (2.2)—
(2.4) in terms of the local-global hybrid systems (2.7)-(2.10), (2.11)—(2.14), and (2.15), (2.16). Before going
throughout its proof, let the mapping R, : A — %,.m be defined by (Rym(A),v)q, = (6 A, v)aq,, YU € XUpm. If
(s A) sOlves the global system (2.15) and (2.16), then for (2.7) and (2.16) we obtain =V - TZ(A) = Ry (A) =

Zrmy 2

"™ (f), II"™(f) denoting the L?-orthogonal projection of f €U onto U
Lemma A.1. The mapping R, is a surjective operator.

Proof. In fact, given v* € %m, let A*|aq, = a* nlaq, € A, where g* € H(Q,S) satisfy V - g = v". Thereby,

I IBamey = 3o (@500, = Do (@" 0% 0o, = D0 (0 X'07)an, = 3 (Rem(A),2%)an, Then,

7

the adjoint application of R,,, is injective with closed range, which implies the result. O

The results of Theorem 2.1 shall be proved by parts.

Part 1. Notice that the variables TZ()\) € H(div,Q, M), T%(\) € %+, and T9(\) € L*(%%), provided by the
local mixed solvers (2.7)-(2.10), can be interpreted as solution, in the distributional sense, of the independent
local boundary value problems for u|q, free of rigid body modes:

~V-o=Rm(}), A o=Vu—r(u), o-

a’'=0inQ;, anlog, =,

with balanced force R,.,,(A) and Neumann boundary condition A. Thus, their corresponding solutions are
unique. In fact, Neumann boundary value problems of linear elasticity are singular, with kernel formed by
the rigid motions of the body. However, this ambiguity can be removed by enforcing the solution to be free
of rigid body modes, and by requiring balanced force and Neumann boundary terms (e.g., see [31]).
Analogously, T2(f) € .77, T(f) € %+, and T(f) € 2, are obtained from the unique weak solutions of the
local problems B B
~V-g=f-T"(f), A'a=Vu—1(u), g-—

0. Then it

To verify the uniqueness of the global system (2.15) and (2.16), take zero data f = 0 and g
becomes

(A™'TZ(N), TZ(1)) + Uy, V - TZ (1)) =
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Taking test functions p=Aandyv=V- TZ(\) € %rm, these equations turn into

(éing(A)’Tg(A)) ( Upypy M \VAS TU()‘)) =0,
(V-T2(A), V- TE())) =0,

implying that V - TZ()\) = 0, from which (A~'"TZ(\), TZ()\)) = 0 holds. The positive definiteness of the
tensor A implies that TZ(\) = 0 (meaning that A = 0, T%()\) = 0, and T%(\) = 0 as well). Finally, u,,, = 0
follows from the remaining relation (u,,,,V - TZ(u)) = 0, Yu € A, recalling that ¥V - TZ(u) = — Ry (1),
and that R,.,(u) is a surjective operator over -~ N N N

Part 2. Suppose (., A) € %mm X A solves (2.15), (2.16), and let (g, u, q) be recovered as in (2.5). If (s,w, )

is the solution of (2.2)-(2.4), define v = s n|r and set w = w,.,, + wt.
By testing (2.3) with v € 1, and (2.2) with S j, both with support in €;, and recalling that (wym;,, V -

1
To, = —§(asym Vw,,,,asym7)q,, we obtain

7m7

(éq g,g)g + (ML,Z'Q)Q + (7‘ — ;asymeTm,asym7'> =0, (A1)
Q;

(Y- sv)q, = (frv)g, - (A2)

For arbitrary p € A, take T = TZ(u) to test (2.2). Notice that (r,asymTZ(p)) = 0 (for (2.9)), and (w*,V -
T%(p)) = 0 (for (2.7)) Then equations (2.2) and (2.3) become

(é S TU(H)) (wrmvy' = H)) = <H,g>v (A3)
— (Y- s,0) =(f,v), YweEXm A4)
By confronting (A.1)~(A.4) and (2.2) with equations (2.7)-(2.14), the differences s — ¢, w* —u"', and r — ¢
verify:
(V- [§—g],y)ﬂ =0, Yve#Zt (), (A.5)
(A" s—0al 1), + W' —ut YV 1), +(r—qasymz), =0, Vre.s() (A.6)
(asym[s — a],¢), =0, Vo€ L*(Q), (A7)
(s—2) nlon, = (= X)|on,- (A8)
These equations imply that s — g = T%(v — A), wt —ut = T v—A),and r—q=Tv—\).
Furthermore, since equations (2.11), (2.8), and (2.13) imply that
(f, 7)), = — (Z~Tg(i)7T£(H)>Q
= (A lT2 [ q e
= (a7 2. T2p) |+ () s T2(D)
_ -1 g aled _ Jod — 1o
= (a7 2. T2()) | = (T2 A7),
and by recalling that (V - T%(f),v) = 0, Vo € %m, we conclude from (2.15), (2.16) and (A.3), (A.4) that
(A" [s— o), T2(0)) + (W — U, ¥+ TE()) =0, Yp € A, (A.9)

*(E [s—alv) =0, Yv& Xm. (A.10)
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By setting p = v — A and v = w,.,,, — U, in (A.9) and (A.10), and using the positive definiteness property
of A™!, we conclude that s = g (i.c., (v = A). Thus w* = u" and r = ¢ as well. Finally, equation (A.9)
becomes (W, — Uy, V- TU( )) =0, Yu € A, implying that w,.,, = u,,,, from Remark (2). By uniqueness of
the solutions in both contexts, the equivalence property holds, and then the existence of a solution for (2.15)
and (2.16) follows from the existence of a solution for (2.2)—(2.4).

A.2. Proof of Theorem 3.1

The goal is to prove uniqueness of solution for the MHM-WS(&,) scheme. The next result is paramount for
its proof.

Lemma A.2. The mapping Ry Ay — YU, defined by Ry = Rymla,, is surjective.

Proof. Recall that, for u € A, (R, m(p),v ) = (ip, v)oq,, Vv € %Tm As in the proof of Lemma A.1, given
v* € Um, let ¥ € H'(),S) satisfying V- ¢* = v*. Then, define N =5 " nlaq,, i € T, where ¢* = H L, o€
<, and the interpolant H1 defined for 7 € H (Q M), is such that (V (z— H1 2 T)s ) =0, Vv € %,,,

existence of such mapping is stated in Theorem 5.1. Thus, i* € A, and the assumption %, C %,,, implies
that V- 6* = v*. Consequently, (7*,v)q, = (" n%,v)aq, = (6; A", v)og,, meaning that R,n»(A) = v*, and the
result follows. 0

By hypothesis, the downscaling solvers (3.6)-(3.9) are well-posed MFEM-WS(E,) versions in ;. Thus,
uniqueness holds for (T”()\) T“()\) TUN)) € Sy X Uy, % D

Analogously, (TZ( ), T f), TIf)) € Sy X U,,, x 2, is the unique solution piecewise defined by well-posed
MFEM-WS(&,) formulations (3.10)(3.13) in ;.

Uniqueness for the solution of the upscaling stage follows by similar proof steps as observed for the weak
formulations at the continuous level. Taking zero data f = 0 and g = 0, the well-posedness of the local problems

(3.10)—(3.13) implies that fﬂ(i) =0, Jag(i) =0 (and K (f) = 0). Then, the upscaling system becomes

(A7 720, T2)) + (Ty, V- T2(0)) =0, Vi€ A,

(Y : Tg(i)v@) =0, Vv € Uprn.-
Testing with p = Xand v =V - TZ(\) € % (for (3.6)), these equations turn into

(47 7200, 72(0)) + (&, ¥ - T2()) =0,
(v 720, ¥ - T2(0)) = 0,

implying that ¥V -TZ()\) = 0, from which (A™ 1T2()), TZ(A)) = 0 holds. The positive definiteness of the tensor A
implies that T2(A) = 0, meaning that ) = 0 (and thus T(\) = 0 and T4 (2) = 0 as well). Thus, the remaining
relation is (&, V - TU( )) = 0, Vu € A,. Noting that —V - T%(u) = Rppn(p) in Q;, for p € A, and by

Lemma A.2 there exists u* € A, such that Rym (H*) =4 we conclude that @,.,, = 0, and the result follows.

Zrm»

A.3. Proof of Theorem 3.2

This is a discrete version of the equivalence result in Theorem 2.1 and the proof follows similar steps. Firstly,
suppose ()\ a,.,,) solves the upscaling system of the MHM- WS(E ) method, and consider the recovered solution

) =rm

of the downscaling stage & = TZ(A) + T“(f) =T%(\) + T“(f) and ¢ = % asym,,, + T7(A) + T (f). After
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the combination of the systems (3.6)—(3.9) and (3.10)—(3.13), we obtain the following set of equations in the
subregions:

(¥ g,9),, = (f0), Yo € U ().
(é_l gag)ﬂ + (@{ZI)Sl + (q_;asymva7'maasym7—) :07 VIEjW(Qi);
i =/ =) a, =
(asymg,0), =0, Vi € 2y, (),

& nloa, = Aoa,-

On the other hand side, let (3,w,7) € &, be the MFEM-WS(E,) solution, and set # = 3 n|r, and @ =

m T+ @*. By confrontlng the above system of equations with similar one valid for (3, @, ), we conclude that
75 =TZA—-D), at — ot = T%A— ) and § — 7 = T\ — ). For arbitrary u € A, (3.10), (3.7), and (3.12)
imply that (f, T(1))q, (T”( ), A” ng(i))Qi. Using this relation and the properties yfoq = T%(H) n (by

(3.13)), and (V- T=(f),v) =0, Yv € %m, equations (3.14) and (3.15) become

ISH \Sx

(A2 72w) + (2 T T2W) = (.9, Vi € Ay,
-(¥-2v) = (o), Vv € Y.

Inserting in equation (3.16) the facts (7,asymT%(u)) = 0, and (w*,V - T%(p)) = 0, and recalling equation
(3.17), we obtain

(A7 5, T2(w) + (2, ¥ - T2H(p)) = (1. 9), Vi € Ay,
- (y éaﬂ) = (i:y)7 VQ S %!"UL'
Consequently,
(4716~ 3. 720)) + (B — Do, V- TZ()) =0, Ve A,

By setting u = A= and v = Upyy — Wy 1N the above relations, and since we already know that g—35=
TJ(S\ v), the positive definiteness property of A implies that 6 = 3 (i.e., A= 7). Thus - = w' and § =7
as well. Finally, the remaining equation (&, — @,,,, V.- TZ(p)) =0, Y € Aﬂ,, and Lemma A.2, concerning the
surjectivity over %, of Z~T3(7) = —Rpm(p), p € A, imply that @,.,, = @,,,. By uniqueness of MHM-WS(&,)
and MFEM-WS(E,) solutions, these methods are equivalent.

APPENDIX B. LIST OF SYMBOLS

Acronyms for FE methods

NAME Poisson FE pairs NAME Stokes FE pairs
BDM Brezzi—-Douglas—Marini for triangles CR Crouzeix—Raviart for triangles
RT Raviart—Thomas for quadrilaterals gR Girault—Raviart for quadrilaterals

Elasticity methods
MFEM-WS  Mixed FE method weakly imposing tensor symmetry
MHM-WS Multiscale hybrid mixed FE method weakly imposing tensor symmetry
MHM-H! Primal multiscale hybrid mixed FE method
ENAME Tensor and displacement rows come from Poisson FE pair NAME
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Scalars, vectors and tensors

A Stiffness tensor g Stress tensor a Approximate o
I Identity matrix w Displacement I Approximate u
M  Second-order tensors  wu,,, Rigid body mode 4,,, Approximate u,,,
S Symmetric tensors ut L?-complement of U at Approximate u™*
e Strain tensor A Multiplier (traction) A Approximate A
a q Rotation q Approximate ¢
Data
f Body force I Lamé’s second parameter F Young’s modulus
g Boundary data A Lamé’s first parameter v Poisson’s ratio
Geometry
QCR? Polygonal domain 7 ={Q;} Macro-partition of
o0 Boundary of € Th., Coarse conformal partition of
Q, Subregions of ) ’Thﬂz Coarse partition of €;
0Q; Boundary of €; T," Refined partition of §2;
I'={0Q;} Mesh skeleton T Coarse partition of T’
DcCQ Subdomain K Master element
n Normal vector field K Element in Thﬂn
nP Outward unit normal K Element in Thék
Functional spaces
L*(D) Scalar L?-space & = H(div,Q,M) Tensor H(div)-space for o
L*(D,E) L*-space E € {R? M} S Bubble tensors
G)p L? inner product U = L*(,R?) Space for displacement u
H*(D) Scalar Sobolev space Wy C U Rigid body modes
H?*(D,E) Sobolev space E € {R? M} Ut U L?-orthogonal complement of %,
H(div, D) Vector H(div)-space 2=1L*Q) Space for rotation ¢
H(div, D,M) Tensor H (div)-space A = A(T',R?) Normal trace space for A
HY?(dD,R?)  Trace of H(div, D, M) ;) Duality pairing of traces

H~Y%(0D,R?) Trace of H'(Q,R?)

Downscaling operators
AN :A— I xUtx2 1:”(;) Discrete version of T'())
(f): A= I XU x2 T(f) Discrete version of T(i)

T
T
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Finite element spaces

Mesh and Space Parameters Polynomials: scalar or for E € {R? M}
H Macro mesh size Pr(K),Pr(K,E) of total degree < k
hsk Coarse mesh width Qkyt(f{), Qk’t(IA{,E) degree < kinz and <tiny
Refined mesh width Local FE spaces in K
ksk Coarse polynomial — S(K, M) Tensor FE space
degree
kin Refined polynomial U(K,R?) Displacement FE space
degree
v = (Ysk, Vin) Two-scale parame- Q(K) Rotation FE space
ters
Yin = (hin, kin) Refined scale  V(K,R?), P(K) Flux and pressure FE pair
parameters
Ysk = (Psk, ksk) Coarse scale  W(K,R?), Q(K) Velocity and pressure FE pair
parameters
Local FE Spaces in €); Global Trace FE Space
() = yf(ﬂi) & S, () con- A.,: based on 7"

strained tensor spaces
5”,?((21), i (i) Coarse edge and
refined bubble ten-

sor spaces
Uy, () = U (i) ® %ﬁn(Qi): dis- Two-scale FE setting in Q
placement spaces
Uy (S2;) Rigid body modes & = X Uy, X 2,
%th (%) Orthogonal Local FE settings
complements
2., (%) Rotation spaces E() = 20 (Q) x Uy, () x 2., ()
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