Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1039-1065

We consider conservation laws with discontinuous flux where the initial datum, the flux function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish a notion of random adapted entropy solutions to these equations and prove well-posedness provided that the spatial dependency coefficient is piecewise constant with finitely many discontinuities. In particular, the setting under consideration allows the flux to change across finitely many points in space whose positions are uncertain. We propose a single- and multilevel Monte Carlo method based on a finite volume approximation for each sample. Our analysis includes convergence rate estimates of the resulting Monte Carlo and multilevel Monte Carlo finite volume methods as well as error versus work rates showing that the multilevel variant outperforms the single-level method in terms of efficiency. We present numerical experiments motivated by two-phase reservoir simulations for reservoirs with varying geological properties.

DOI : 10.1051/m2an/2021011
Classification : 35L65, 35R05, 65C05, 65M12
Keywords: Uncertainty quantification, conservation laws, discontinuous flux, numerical methods
@article{M2AN_2021__55_3_1039_0,
     author = {Badwaik, Jayesh and Klingenberg, Christian and Risebro, Nils Henrik and Ruf, Adrian M.},
     title = {Multilevel {Monte} {Carlo} finite volume methods for random conservation laws with discontinuous flux},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1039--1065},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021011},
     mrnumber = {4265263},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021011/}
}
TY  - JOUR
AU  - Badwaik, Jayesh
AU  - Klingenberg, Christian
AU  - Risebro, Nils Henrik
AU  - Ruf, Adrian M.
TI  - Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1039
EP  - 1065
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021011/
DO  - 10.1051/m2an/2021011
LA  - en
ID  - M2AN_2021__55_3_1039_0
ER  - 
%0 Journal Article
%A Badwaik, Jayesh
%A Klingenberg, Christian
%A Risebro, Nils Henrik
%A Ruf, Adrian M.
%T Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1039-1065
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021011/
%R 10.1051/m2an/2021011
%G en
%F M2AN_2021__55_3_1039_0
Badwaik, Jayesh; Klingenberg, Christian; Risebro, Nils Henrik; Ruf, Adrian M. Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 1039-1065. doi: 10.1051/m2an/2021011

[1] R. Aae Klausen and N. H. Risebro, Stability of conservation laws with discontinuous coefficients. J. Differ. Equ. 157 (1999) 41–60. | MR | Zbl | DOI

[2] R. Abgrall, A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems (2008).

[3] S. M. Adimurthi and G. V. Gowda, Conservation law with the flux function discontinuous in the space variable – II: convex–concave type fluxes and generalized entropy solutions. J. Comput. Appl. Math. 203 (2007) 310–344. | MR | Zbl | DOI

[4] S. M. Adimurthi and G. V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783–837. | MR | Zbl | DOI

[5] B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27–86. | MR | Zbl | DOI

[6] E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. R. Soc. Edinburgh Sect. A: Math. 135 (2005) 253–265. | MR | Zbl | DOI

[7] J. Badwaik and A. M. Ruf, Convergence rates of monotone schemes for conservation laws with discontinuous flux. SIAM J. Numer. Anal. 58 (2020) 607–629. | MR | DOI

[8] P. Baiti and H. K. Jenssen, Well-posedness for a class of 2 × 2 L data. J. Differ. Equ. 140 (1997) 161–185. | MR | Zbl | DOI

[9] R. Bürger, K. Karlsen, C. Klingenberg and N. Risebro, A front tracking approach to a model of continuous sedimentation in ideal clarifier–thickener units. Nonlinear Anal.: Real World App. 4 (2003) 457–481. | MR | Zbl | DOI

[10] R. Bürger, K. H. Karlsen and J. D. Towers, An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47 (2009) 1684–1712. | MR | Zbl | DOI

[11] Q.-Y. Chen, D. Gottlieb and J. S. Hesthaven, Uncertainty analysis for the steady-state flows in a dual throat nozzle. J. Comput. Phys. 204 (2005) 378–398. | MR | Zbl | DOI

[12] G. M. Coclite and N. H. Risebro, Conservation laws with time dependent discontinuous coefficients. SIAM J. Math. Anal. 36 (2005) 1293–1309. | MR | Zbl | DOI

[13] S. Cox, M. Hutzenthaler, A. Jentzen, J. Van Neerven and T. Welti, Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions. IMA J. Numer. Anal. 41 (2021) 493–548. | MR | DOI

[14] S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Appl. Math. 56 (1996) 388–419. | MR | Zbl | DOI

[15] S. S. Ghoshal, A. Jana and J. D. Towers, Convergence of a Godunov scheme to an Audusse-Perthame adapted entropy solution for conservation laws with BV spatial flux. Numer. Math. 146 (2020) 629–659. | MR | DOI

[16] S. S. Ghoshal, J. D. Towers and G. Vaidya, Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov type fluxes. Preprint: (2020). | arXiv | MR

[17] S. S. Ghoshal, J. D. Towers and G. Vaidya, Well-posedness for conservation laws with spatial heterogeneities and a study of BV regularity. Preprint: (2020). | arXiv

[18] M. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme. In: Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer (2008) 343–358. | MR | Zbl | DOI

[19] M. B. Giles, Multilevel Monte Carlo path simulation. Oper. Res. 56 (2008) 607–617. | MR | Zbl | DOI

[20] T. Gimse, Conservation laws with discontinuous flux functions. SIAM J. Math. Anal. 24 (1993) 279–289. | MR | Zbl | DOI

[21] T. Gimse and N. H. Risebro, Riemann problems with a discontinuous flux function. In: Vol. 1 of Proceedings of Third International Conference on Hyperbolic Problems (1991) 488–502. | MR | Zbl

[22] T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635–648. | MR | Zbl | DOI

[23] T. Gimse and N. H. Risebro, A note on reservoir simulation for heterogeneous porous media. Transp. Porous Media 10 (1993) 257–270. | DOI

[24] S. Heinrich, Multilevel Monte Carlo methods. In: International Conference on Large-Scale Scientific Computing. Springer (2001) 58–67. | Zbl | DOI

[25] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Springer 152 (2015). | MR | Zbl | DOI

[26] K. H. Karlsen and J. D. Towers, Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. 25 (2004) 287–318. | MR | Zbl | DOI

[27] K. H. Karlsen and J. D. Towers, Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ. 14 (2017) 671–701. | MR | DOI

[28] K. Karlsen, N. Risebro and J. Towers, Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623–664. | MR | Zbl | DOI

[29] K. H. Karlsen, N. H. Risebro and J. D. Towers, L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Preprint Series. Pure Mathematics http://urn.nb.no/URN:NBN:no-8076 (2003). | MR | Zbl

[30] C. Klingenberg and N. H. Risebro, Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Commun. Part. Differ. Equ. 20 (1995) 1959–1990. | MR | Zbl | DOI

[31] C. Klingenberg and N. H. Risebro, Stability of a resonant system of conservation laws modeling polymer flow with gravitation. J. Differ. Equ. 170 (2001) 344–380. | MR | Zbl | DOI

[32] U. Koley, N. H. Risebro, C. Schwab and F. Weber, A multilevel Monte Carlo finite difference method for random scalar degenerate convection–diffusion equations. J. Hyperbolic Differ. Equ. 14 (2017) 415–454. | MR | DOI

[33] S. N. Kružkov, First order quasilinear equations in several independent variables. Math. USSR-Sbornik 10 (1970) 217–243. | Zbl | MR | DOI

[34] M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes. Springer Science & Business Media (2013). | Zbl | MR

[35] M. J. Lighthill and G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 229 (1955) 317–345. | MR | Zbl

[36] G. Lin, C. Su and G. Karniadakis, The stochastic piston problem. Proc. Nat. Acad. Sci. USA 101 (2004) 15840–15845. | MR | Zbl | DOI

[37] S. Mishra, Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. SIAM J. Numer. Anal. 43 (2005) 559–577. | MR | Zbl | DOI

[38] S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput. 81 (2012) 1979–2018. | MR | Zbl | DOI

[39] S. Mishra, C. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws. In: Uncertainty Quantification in Computational Fluid Dynamics. Springer (2013) 225–294. | MR | Zbl | DOI

[40] S. Mishra, D. Ochsner, A. M. Ruf and F. Weber, Bayesian inverse problems in the Wasserstein distance and application to conservation laws. in preparation (2021).

[41] S. Mishra, N. H. Risebro, C. Schwab and S. Tokareva, Numerical solution of scalar conservation laws with random flux functions. SIAM/ASA J. Uncertainty Quant. 4 (2016) 552–591. | MR | DOI

[42] B. Piccoli and M. Tournus, A general BV existence result for conservation laws with spatial heterogeneities. SIAM J. Math. Anal. 50 (2018) 2901–2927. | MR | DOI

[43] G. Poëtte, B. Després and D. Lucor, Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009) 2443–2467. | MR | Zbl | DOI

[44] N. H. Risebro and A. Tveito, Front tracking applied to a nonstrictly hyperbolic system of conservation laws. SIAM J. Sci. Stat. Comput. 12 (1991) 1401–1419. | MR | Zbl | DOI

[45] N. H. Risebro, C. Schwab and F. Weber, Correction to: Multilevel Monte Carlo front-tracking for random scalar conservation laws. BIT Numer. Math. 58 (2018) 247–255. | MR | DOI

[46] A. M. Ruf, Flux-stability for conservation laws with discontinuous flux and convergence rates of the front tracking method. IMA J. Numer. Anal. 101 (2021) draa101. | MR

[47] A. M. Ruf, E. Sande and S. Solem, The optimal convergence rate of monotone schemes for conservation laws in the Wasserstein distance. J. Sci. Comput. 80 (2019) 1764–1776. | MR | DOI

[48] W. Shen, On the uniqueness of vanishing viscosity solutions for riemann problems for polymer flooding. Nonlinear Differ. Equ. App. NoDEA 24 (2017) 37. | MR | DOI

[49] J. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38 (2000) 681–698. | MR | Zbl | DOI

[50] J. D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197–1218. | MR | Zbl | DOI

[51] J. D. Towers, An existence result for conservation laws having BV spatial flux heterogeneities – without concavity. J. Differ. Equ. 269 (2020) 5754–5764. | MR | Zbl | DOI

[52] J. Tryoen, O. Le Maitre, M. Ndjinga and A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229 (2010) 6485–6511. | MR | Zbl | DOI

[53] J. Van Neerven, Stochastic evolution equations. ISEM Lecture Notes (2008).

[54] X. Wan and G. E. Karniadakis, Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195 (2006) 5582–5596. | MR | Zbl | DOI

[55] X. Wen and S. Jin, Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients I: L 1 -error estimates. J. Comput. Math. 26 (2008) 1–22. | MR | Zbl

Cité par Sources :