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MULTILEVEL MONTE CARLO FINITE VOLUME METHODS FOR RANDOM
CONSERVATION LAWS WITH DISCONTINUOUS FLUX

JAYESH BADWAIK!, CHRISTIAN KLINGENBERG!, NILS HENRIK RISEBRO?
AND ADRIAN M. RUF%*

Abstract. We consider conservation laws with discontinuous flux where the initial datum, the flux
function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish
a notion of random adapted entropy solutions to these equations and prove well-posedness provided
that the spatial dependency coefficient is piecewise constant with finitely many discontinuities. In
particular, the setting under consideration allows the flux to change across finitely many points in
space whose positions are uncertain. We propose a single- and multilevel Monte Carlo method based
on a finite volume approximation for each sample. Our analysis includes convergence rate estimates of
the resulting Monte Carlo and multilevel Monte Carlo finite volume methods as well as error versus work
rates showing that the multilevel variant outperforms the single-level method in terms of efficiency. We
present numerical experiments motivated by two-phase reservoir simulations for reservoirs with varying
geological properties.
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1. INTRODUCTION

This paper concerns uncertainty quantification for conservation laws with discontinuous fluz of the form

ut + f(k(z),u), =0, z€R, t>0, (1)

u(z,0) = up(z), zeR. '
Here, u: R x [0,00) — R is the unknown and f € C*(R?;R) is the flux function having a possibly discontinuous
spatial dependency through the coefficient k. In particular, we will assume that the initial datum wug is in
(L* N BV)(R), the flux f is strictly increasing in u, and the coefficient k is piecewise constant with finitely
many discontinuities. Going back to (1.1), this amounts to switching from one u-dependent flux to another
across finitely many points in space.
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Equations of type (1.1) arise in a number of areas of application including vehicle traffic flow in the presence
of abruptly varying road conditions (see [35]), polymer flooding in oil recovery (see [48]), two-phase flow through
heterogeneous porous media (see [22,23,44]), and sedimentation processes (see [9,14]).

Even in the absence of flux discontinuities, and even if the initial datum is smooth, solutions of (1.1) develop
discontinuities in finite time and for this reason weak solutions are sought. Weak solutions to (1.1) are not
unique, so the weak formulation of the problem is augmented with an additional entropy condition. In the case
where z — f(k(x),u) is smooth, uniqueness follows from the classical Kruzkov entropy conditions [33]. In the
presence of spatial flux discontinuities, standard Kruzkov entropy conditions no longer make sense. This difficulty
is usually resolved by requiring that Kruzkov entropy conditions hold away from the spatial flux discontinuities
and imposing additional jump conditions along the spatial interfaces [1,4, 5,14, 21, 22, 26, 29, 30, 49, 50] or by
adapting the Kruzkov entropy conditions in a suitable way [6-8,42,46,51]. In the present paper we will focus on
the second approach of so-called adapted entropy solutions for which we need to require that the flux function
f is strictly monotone in w.

In the last two decades, there has been a large interest in the numerical approximation of entropy solutions
of (1.1) under various assumptions on k and f. We refer to [3,4,9, 10, 12,20-22,25-28, 30, 31, 37,49, 50, 55] for
a partial list of references regarding finite volume methods respectively the front tracking method. Specifically,
in the adapted entropy framework we want to highlight the results of [7,8,15-17,42, 46, 51] regarding finite
volume methods and the front tracking method. We refer to [5,7,46] for an overview of the literature concerning
conservation laws with discontinuous flux.

The classical paradigm for designing efficient numerical schemes assumes that data for (1.1), i.e., the initial
datum ug, the flux f, and the spatial dependency coefficient k, are known exactly.

However, in many situations of practical interest, there is an inherent uncertainty in the modeling and
measurement of physical parameters. For example, in two-phase flow through a heterogeneous porous medium
the position of the interface between two rock types is typically not known exactly. Often these parameters are
only known up to certain statistical quantities of interest like the mean, variance, or higher moments. In such
cases, a mathematical framework of (1.1) is required which allows for random data.

For standard conservation laws without spatial flux dependency, i.e., for

ur+ f(u)e=0, zeR, t>0, Lo

u(z,0) = up(x), x€R, (12)
such a framework was developed in a series of papers allowing for random initial datum [38], random (spatially
independent) flux [41], and even random source terms [39] and random diffusion [32].

The first aim of the current paper is to extend this mathematical framework to include scalar conservation
laws with discontinuous fluxz with random discontinuous spatial dependency. To that end, we define random
entropy solutions and provide an existence and uniqueness result, which generalizes the well-posedness results
for (1.2) to the case of uncertain initial datum, flux, and discontinuous spatial dependency. In particular, our
framework allows for uncertain positions of the flux discontinuities.

The second aim of this paper is to design fast and robust numerical algorithms for computing the mean of
random entropy solutions of conservation laws with discontinuous flux. Specifically, we propose and analyze
a multilevel combination of Monte Carlo (MC) sampling and a “pathwise” finite volume method (FVM) to
approximate the mean of random entropy solutions of conservation laws with discontinuous flux. The multilevel
Monte Carlo finite volume method (MLMCFVM) for (1.1) is non-intrusive (in the sense that it requires only
repeated applications of existing solvers for input data samples), easy to implement and to parallelize, and well
suited for random solutions with low spatial regularity. Solutions exhibiting spatial discontinuities are generic for
conservation laws and, in particular, for conservation laws with discontinuous flux. This reduced regularity poses
some challenges to the design of efficient so-called stochastic Galerkin methods for example which are based
on generalized polynomial chaos. These methods are well-developed for conservation laws — albeit without flux
discontinuities — (see [2,11,36,43,52,54] and references therein), but they are more intrusive, generally harder to
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implement and to parallelize. Thus, in the present paper, we focus on the design and mathematical analysis of
statistical MC-type methods. Our analysis includes the proof of convergence rates at which the MCFVM and the
MLMCFVM converge towards the mean of the random entropy solution of (1.1). The analysis is complicated by
the fact that adapted entropy solutions of (1.1) do not possess the same stability properties as entropy solutions
of (1.2). Moreover, we determine the number of MC samples needed to minimize the computational work for a
given error tolerance.

We want to emphasize that the framework of adapted entropy solutions and more specifically the setting of
the present paper is currently the only setting for which we simultaneously have existence [51], uniqueness [6],
stability with respect to the modeling parameters [46], and numerical methods with a provable convergence rate
[7,46] — the essential components for an uncertainty quantification framework (cf. [41]).

The remainder of this paper is organized as follows. In Section 2 we introduce preliminary results regarding
the MC approximation of Banach space-valued random variables. Section 3 is devoted to a review of existence
and stability results regarding entropy solutions of (deterministic) conservation laws with discontinuous flux
of the form (1.1). In Section 4 we introduce random entropy solutions of (1.1) where the initial datum wo,
the flux f, and the discontinuous coefficient k are subject to randomness. In particular, we prove existence
and uniqueness of random entropy solutions. In Section 5, we first review a FVM which was introduced in [7]
for the deterministic problem, prove certain stability estimates, and then extend the FVM to MC as well as
MLMC versions for (1.1) with random parameters. In Section 6 we perform numerical experiments motivated by
two-phase reservoir simulations for reservoirs with varying geological properties to validate our error estimates.
Finally, we summarize the findings of this paper in Section 7.

2. PRELIMINARIES ON THE MONTE CARLO METHOD

We first introduce some preliminary concepts which are needed in the exposition. To that end, we follow
[34,53], see also Section 2 of [32] and Section 5 of [13].

Given a probability space (2, F,P), a Banach space V, and a random variable X :  — V we are interested
in approximating the mean E[X] of X via Monte Carlo sampling. To this end, let ()A(Z)f\il, i=1,...,M,be M
independent, identically distributed samples of X. Then, the Monte Carlo estimator E/[X] of E[X] is defined
as the sample average

| M
Ey[X]=—>) X"
We are interested in deriving a rate at which
1
IEIX] = En[X] Loy = EIBX] = Ea (X7 ]

converges as M — oo for some 1 < g < co and some Banach space V' (typically a Lebesgue space). For general
Banach spaces V such convergence rate estimates depend on the type of the Banach space.

Definition 2.1 (Banach space of type g [34], p. 246). Assume that Q permits a sequence of independent

Rademacher random variables Z;,i € N. We say that a Banach space V is a Banach space of type 1 < g < 2 if
there is a constant k > 0 such that for all finite sequences (z;)*, C V

M q % M %
i=1 \% i=1

We will refer to k as the type constant of V.
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Every Banach space is a Banach space of type 1 and every Hilbert space a Banach space of type 2 ([34], Thm.
9.10). Moreover, L? spaces are Banach spaces of type ¢ = min(2,p) for 1 < p < oo ([34], p. 247). We will need
the following results regarding Lebesgue spaces of functions with values in a Banach space of type q.

Lemma 2.2 ([34], p. 247). Let 1 <r < oo, (Q,F,P) be a measure space, and V be a Banach space of type q.
Then the space L™ (Q, V) is a Banach space of type min(r, q).

Proposition 2.3 ([34], Prop. 9.11). Let V be a Banach space of type q with type constant k. Then, for every
finite sequence (X;)M, of independent mean zero random variables in L9(2, V), we have

M

>x,

=1

4 M
E ] < (28)) EIX]7]-

\%4 i=1

Corollary 2.4 ([32], Cor. 2.5). Let V be a Banach space of type q with type constant k and let X € LI(Q; V)
be a zero mean random variable. Then for every finite sequence (X;)M, of independent, identically distributed

random variables with zero mean and with X; 2 X, we have

M

TR
i=1

We can use Corollary 2.4 to derive a convergence rate of the Monte Carlo estimator in L7(Q;L?(R)) for
random variables in L"(€; LP(R)).

E(lExX]V] =E [

] < (26)"M TR [IXI]
v

Theorem 2.5. Let 1 < r,p < oo and X € L"(Q;LP(R)), then for ¢ := min{2,p,r} we have the Monte Carlo
error estimate

1—gq
IE[X] — EM[X]”Lq(Q;Lp(R)) <CM HX“Lq(Q;Lp(R)) :

In particular, if p,r > 1 (and thus ¢ > 1) the Monte Carlo estimator En[X] converges towards E[X] in
L1(Q; LP(R)).

The proof of this theorem is an adaptation of Theorem 4.1 from [32].

Proof. We have

- " .
1 i
IE[X] — EM[X]H%Q(Q;LP(]R)) =E | |E[X] - M ZX
L =1 L (R)
[ | M q
=E |2 (E[X] —Xl>
i=1 Lr(R)

If we define Y = E[X]— X and Y; = E[X] — X' we see that Y is in L"(€2; L?(R)) with zero mean and Y; are i.i.d.

random variables with zero mean satisfying Y; 2y, Therefore, we can apply Corollary 2.4 since L"(Q; LP(R))
is of type min(2,r, p) and LP(R) is of type min(2,p) and thus in particular also of type min(2, r, p). Hence,

q

E < (2x)TM'E ||E[X] — XIIEp gy

1 U g
M; (E[X] le)

Lr(R)
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where & is the type constant of LP(R). It remains to show E [||E[X] - XH%,,(R)] <CE [||XHEP(R)]. This follows

from standard estimates and Jensen’s inequality in the following way:
E [IELX] - X)Ly z)] < CE [IBIXIIL, @) + 1 X0

<0 ((B[1Xlm)) "+ E [IX1@))
< CR [|X )8, q)] -
O

Note that Corollary 2.4 and Theorem 2.5 do not imply convergence if ¢ = 1, i.e., if r or p are equal to 1 in
the latter case.

3. DETERMINISTIC CONSERVATION LAWS WITH DISCONTINUOUS FLUX

In this section, we present the main existence and stability results for deterministic conservation laws with
spatially discontinuous flux from [8,46,51].
We consider the Cauchy problem for conservation laws with discontinuous flux of the form

up + f(k(z),u)e =0, z€R, t>0 )
u(z,0) = ug(z), =€R. :
Here, we require that f, k, and ug satisfy the following:

Assumption 3.1. We assume that the flur f € C?(R?;R) is strictly monotone in u in the sense that f, > o > 0,
and that f(k*,0) = 0 for all k* € R. Furthermore, we assume that k is piecewise constant with finitely many
discontinuities and that the initial datum ug is in (L NBV)(R).

In the deterministic setting, we consider entropy solutions in the following sense (¢f. [6,8]). For p € R we
define the function c,: R — R through the equation

fk(z), cp(x)) = p, for all z € R.

Since f,, > a > 0 this equation has a unique solution for each = € R. Note that in the case of piecewise constant
k the function ¢, is piecewise constant as well.

Definition 3.2 (Entropy solution). We say u € C([0, T]; L}(R)) NL>°((0,T) x R) is an entropy solution of (3.1)

if
/O / (I — e ()01 + sen(u — ep(@)) (k). u) — F((z), cp(x))ps) daz
- / u(zr, T) — ep(@) ol T) da + / o () — () p(,0) dz > 0

for all p € R and for all nonnegative ¢ € C°(R x [0,T]).

Note that a Rankine-Hugoniot-type argument shows that across a discontinuity £ of £ the entropy solution
u satisfies the Rankine—Hugoniot condition

Fk(E=),u(€—,t) = f(k(E+),u(é+,1)) for almost every t € (0,7) (3.2)

where k(F) and (€T, -) denote the left and right traces of k respectively u both of which exist due to Remark 2.3
of [5]. In our subsequent analysis we will rely on the following two results concerning existence and stability of
entropy solutions.
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Theorem 3.3 (Existence and uniqueness of entropy solutions [7,8,51]). Let f, k, and ug satisfy Assumption 3.1.
Then there exists a unique entropy solution u of (3.1) which satisfies

C
s Dl gy < ol ay (3.3)

TV (u(-,t)) < C(TV(k) + TV (ug))
for all0 <t <T and
TVio,r)(u(z,-)) < CTV(uo)

for all x € R. Here Cy denotes the maximal Lipschitz constant of f and « is as in Assumption 3.1.

Proof. The existence and uniqueness statement follows from the theory developed by Baiti and Jenssen [8]. The
L> and TV bounds follow from Theorem 1.4 of [51] and Lemma 4.6 of [7]. O

Theorem 3.4 (Stability of entropy solutions [46]). Let f,k, and ug satisfy Assumption 3.1 and u be the cor-
responding entropy solution of (3.1). If v is the entropy solution of (3.1) with flux g, coefficient I, and initial
datum vg satisfying Assumption 3.1 then for all0 <t <T

[u(-t) = v( Ollpmy < luo = vollp gy + C (Ik = UL @) + 1 fu = gullLe 2m)) - (3.4)
In particular, entropy solutions of (3.1) satisfy
Ju( Dl gy < Mol g
forall0<t<T.

Proof. The stability estimate can be found in Theorem 4.1 of [46]. The L' bound follows from the stability
estimate (3.4) by taking g = f, I =k, and vy = 0. 0

Remark 3.5. We want to mention that the stability result from Theorem 3.4 is not only integral in proving
existence and uniqueness of random entropy solutions, but can also be used to show well-posedness of Bayesian
inverse problems for conservation laws with discontinuous flux [40].

4. RANDOM CONSERVATION LAWS WITH DISCONTINUOUS FLUX

We now consider conservation laws with discontinuous flux where the flux f, the coefficient k, and the initial
datum ug in (3.1) are uncertain. To that end, we let (2, F,P) be a probability space and denote by B(X) the
Borel g-algebra on a space X. We define appropriate random data (ug, k, f) in the following sense.

Definition 4.1 (Random data). Given constants Cty,Cr € R, a € (0,00), Ny € Z, 6 > 0 and given a rectangle
R = R; x Ry C R? let D be the Banach space

D = (BVNL®)(R) x L*=(R) x C*(R;R)
endowed with the norm
([ (uo, &, )llp = lluollp @y + TV (uo) + luollpee gy + 1FllLoe m) + [1f le2(rim) -

We say that a strongly measurable map (ug, k, f): (2, F) — (D, B(D)) is called random data for (3.1) if for
P-a.e. w

uo(w; z) € Ry, for a.e. © € R,
TV (ug) < Crv < 00,
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k(w;z) € Ra, for a.e. x € R,
k(w;-)is pcw. constant with at most Ny, discontinuities,
each pair of discontinuities of kis at least § apart,
fulw,k,u) > a > 0and f(w;k,0) =0, for all (k,u) € R,
1f (s ez (rmy < C <00
such that for P-a.e. w the data (ug(w), k(w), f(w)) satisfy Assumption 3.1.

We are interested in random entropy solutions of the random conservation law

Ou(w; 1) | 0 (wi Hws ), u(wi, 1)
ot ox
u(w;z,0) =uw(w;z), we, zelR

=0, we, zeR, t>0, (4.1)

Definition 4.2 (Random entropy solution). Given random data (ug,k, f): € — D, we say that a random
variable u: Q — C([0,T]; L}(R)) is a random entropy solution of (4.1) if u is strongly measurable and for P-a.e.
w € O the function u(w) satisfies

T
| [ Gt ) = cpwsolien + ates sz, ) do i
o Jr
- / lw(w; z, T) — cp(w; x)|p(z, T) do +/ luo(w; ) — cp(w; x)|p(z,0)dz >0 (4.2)
R R
for all p € R and nonnegative ¢ € C3°(R x [0,7T]). Here we have used the notation

q(w; u(w; z, 1)) = sgn(u — cp(w; 2)) (f (w; k(w; 2),u) = fw; k(w; ), ¢p(w; 2))).

We have the following existence and uniqueness result for random entropy solutions of conservation laws with
discontinuous flux.

Theorem 4.3 (Existence and pathwise uniqueness of random entropy solutions). Let (ug, k, f) be random data.
Then there exists a unique random entropy solution u: Q — C([0,T]; L*(R)) to (4.1) which is pathwise unique,
i.e., if the random data (ug,k, f) and (vo,l,g) are P-versions of each other and u and v are corresponding
random entropy solutions then u and v are P-versions of each other.

Proof. Let S: D — C([0,T]; L*(R)) denote the solution operator from Theorem 3.3 that maps (deterministic)
(ug, k, f) € D to the unique (deterministic) entropy solution @ = S(ug, k, f). Because of the stability estimate
(3.4) this solution map is Lipschitz continuous. Now, since the random data (ug,k, f): @ — D is strongly
measurable the composition S o (ug, k, f): @ — C([0,7]; L*(R)) is again strongly measurable (see [53], Cor.
1.13). Hence u = S o (ug, k, f) is a strongly measurable map satisfying (4.2) P-almost surely. Therefore, « is a
random entropy solution to (4.1).

Regarding uniqueness of random entropy solutions, let (ug, k, f) and (vg, , g) be P-versions of each other, i.e.,
l(uo(w), k(w), f(w)) = (vo(w), l(w), g(w))|lp = 0 for P-a.e. w € Q, and u and v corresponding random entropy
solutions. Then, the Lipschitz continuity of the solution operator S gives

[u(w) = v(@)lleo.rpi @) < Cll(uo(w), k(w), f(w)) = (vo(w), l(w), 9(w))[|lp = 0.
Thus, we have u(w) = v(w) in C([0, T]; L*(R)) for P-a.e. w € Q which is pathwise uniqueness. O

Note that Theorem 4.3 generalizes the existence result of random entropy solutions of [41] for fluxes which
are strictly monotone in w since the present setting allows for a discontinuous spatial dependency of the flux.
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Remark 4.4. All existence and continuous dependence results stated so far apply to the deterministic Cauchy
problem (3.1). By the usual arguments, verbatim the same results hold for entropy solutions on bounded intervals
D C R as well, provided periodic boundary conditions are enforced.

The following probabilistic bound will be important in the numerical approximation of random entropy
solutions on bounded domains.

Lemma 4.5. Let (ug, k, f) be random data and D C R a bounded interval. Let further ug € L™(Q2;L>°(D)), for
some 1 <r < oo. Then the random entropy solution u of (4.1) is in L"(Q;C([0,T]; LP(D))) for all 1 < p < co.
In particular,

[[ul-; )]

vr@irr(py) < Clluollr@ie=(n))

forall0<t<T.

Proof. On bounded domains D we have

1
(s DllLepy < [P [l )L~ (p)

and thus using the L>°-bound (3.3) we have for all 0 <¢ < T
IOl quzrcon = [ T Ol P
<C [ 0y 4P

SC/Q||U0||£oc(D) dP
= C|uol

£"'(Q;L‘°"(D))

which proves the claim. O

5. NUMERICAL APPROXIMATION OF RANDOM ENTROPY SOLUTIONS

In this section, we want to approximate the expectation E[u(-,t)] of a random entropy solution wu of the
random conservation law with discontinuous flux (4.1). On the one hand, we will use the Monte Carlo and
multilevel Monte Carlo method to approximate in the stochastic domain €2. On the other hand, since in general
exact solutions to (4.1) are not at hand, we will approximate in the physical domain R x [0,7] by a finite
volume method. To this end, we use a modified version of monotone finite volume methods for conservation
laws introduced in [7] which appropriately addresses the presence of the discontinuous parameter k.

The resulting approximation error introduced by the Monte Carlo method depends on the number of samples
used, while the error introduced by the finite volume method depends on the resolution of the grid. In the
following subsections, we will review the finite volume method for the deterministic problem, detail how to
combine it with the Monte Carlo and multilevel Monte Carlo method and prove error estimates for the resulting
Monte Carlo and multilevel Monte Carlo finite volume method.

5.1. Finite volume methods for conservation laws with discontinuous flux

We will first consider the (deterministic) conservation law with discontinuous flux (3.1) and present a class
of finite volume methods introduced in [7].

For a given (deterministic) function k with discontinuities £; < &3 < ... < £ such that k satisfies the relevant
assumptions in Definition 4.1 we denote by D; = (&;,&;+1), ¢ = 0,..., N, the subdomains where k is constant.
Here, we have used the notation £y = —oo and {41 = +00. In the following we will write

f(i):f(k(gg),-)7 forxe D;, i=0,...,N.
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We discretize the domain R X [0, 7] using the spatial and temporal grid discretization parameters Az and
At. Here we assume that the spatial discretization parameter Az is already small with respect to the given
minimal distance § between discontinuities of k, i.e., Az < . In order to define the finite volume method we
need the spatial grid to be aligned in such a way that all discontinuities of k lie on grid points. We acomplish
that in the following way: To the left of & and to the right of £ we use a mesh of width Az that is aligned
with & respectively {y. Inside each interval D; = (&;,&;1+1) a mesh of the form {¢; + jAm}le might not align
with the point & 1. This happens precisely when JAz < &1 — & < (J + 1)Az in which case we set up the

finer mesh {¢& + jAz; jill where Ax; = % Note that by definition we have

%Aw < Az; < Azx. (5.1)

In this way we can set up a spatial grid that is globally non-uniform, but uniform on each subdomain D;.
We want to point out the important fact that while the local grid sizes Ax; depend on the distance between
neighboring discontinuities of k£ (which we will assume to be random later) the upper and lower bounds of Az;
given by (5.1) are independ of k.

The resulting grid cells we denote by C; = (xjfé,x]qr%) for points Tii1, such that for j € Z we have

Tjg1 — X 1= Ax; for some ¢ = 0,..., N. Here we used the notation Azg = Azy = Az. The temporal grid
cells we denote by C* = [t",t"*1) where t" = nAt for n = 0,...,M + 1. Since the grid is aligned with the
discontinuities of k£ we have &; = Tp,_1 for some integers P;, i =1,..., N.

We consider two-point numerical fluxes F'(u,v) that have the upwind property such that if f/ > 0 (which is
the setting of the present paper), we have F(u,v) = f(v). This includes the upwind flux, the Godunov flux, and
the Engquist—Osher flux. The finite volume method we consider is the following [7]:
uo-:i up(x)de, jE€Z
J AJ; cj ) b

ut = (f“) (u?) — £ (u;%_l)) , n>0, P<j<Py, 0<i<N, (5.2)

u?,j'l = (f(i))_l (f(ifl) (u%j'_ll)) , n>0, 0<i<N,

where Py = —o0, Py41 = 400, and \; = At/Axz. We assume that the grid discretization parameters satisfy the
CFL condition
At <

max max (f(i)> , (u)— (5.3)

1
Ax — 2
such that, in particular,
N/
max max (f(l)) (u)A; < 1.
Note that the last line of (5.2) represents a discrete version of the Rankine-Hugoniot condition (3.2). Here, we

use the ghost cells Cp,, i = 1,..., N to explicitly enforce the Rankine-Hugoniot condition on the discrete level.

With the sequence of cell averages (uf);, we associate the piecewise constant function ua.(z,t) given by

upg (T, t) = ul, (x,t) € C; x C™.

The following lemma shows that the finite volume method is stable in L> and L.

Lemma 5.1 (Stability of the finite volume method). If the numerical scheme (5.2) satisfies the CFL condi-
tion (5.3) we have the following stability estimates:

C
luse (o)l < = ol ey (5.4)
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and

lune (5 )l ) < luollps gy + CTV (uo) Az

Proof. (1) We first prove the L>-bound. To that end, we show by induction over i = 0,..., N that

W< max s (FO)7 (50 @) (5.5)

m=0,.., =P, ...,Ppy1—1

forall j=F;,...,P41 —land n=0,...,M + 1. For ¢ = 0, standard techniques for finite volume methods
for conservation laws show

u <rnax{uJ 1 ] }< glsu}gu?.
<P

Assume now that (5.5) holds for some i € {0,...,N—1} andall j=PF,,..., Py —landn=0,..., M + 1.
Then we have for j = P11

u%H = (f(i+1))*1 (f(z') (U%Hq)) < max sup (f(i—t—l))*l (f(m) (u?)> |

m=0,....,0 =P, ..., Ppy1—1
On the other hand, for j € {P;11 +1,..., P,yo — 1} we have as before
(J Pit1) 1 0 0
u <max{u] 1o ] LU J 1 ]}< Smax{ see ey WP U, ey U

By combining both estimates, we obtain for j € {Pit+1,...,Piqa — 1}

, -1
uf < max max u?, max sup (f(“rl)) (f(m) (u?))
1=Pit1,...,Piy2—1 m=0,...,i|=pP, .. Pni1—1

= _nax sup (f(”l))il (f(m) (u?))

m=0,. ’7'+1l P, P7n+1_1
which completes the induction. By taking absolute values in (5.5) we get for j € Z

f(i)

1
luf| < — _max H
@ i=0,..., N

o l[uollpo ) -

Taking the supremum over j yields the L>°-bound (5.4).
In order to prove the L'-bound note that we have the discrete entropy inequalities

|uy+1—c|—|u;?—c|+A(q§”’ qj()’l) <0, i=0,....,N, j=Pi+1,..., Py —1

for all ¢ € R (see [7]). Here, we have denoted q§i)’n = |f@ (uf) — f@(c)|. Taking ¢ = 0 and summing over
JEZN\A{Py,...,Py} yields

N Pijg1—-1
ASED I M) SR UL ED M
J#Pi J#Pi i=0 j=P;i+1 J#Pi

Therefore, we have

Z|u"+1\<2|u”|+2 (lup] - ZIU"HZ ] IR e

JEZ JEZL JEZ
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and hence
N n
n 1 i — m
PIUARES DITHESD DE Vil D DY At a )
jez jez i=0 P =0
In Lemma 4.6 of [7], it was shown that for all i =0,..., N we have

n
S fupth — wp | < CTV (uo)
m=0

which together with the foregoing estimate finally yields
e (4 8)lls gy < ltollpa ey + CTV (o)A
O

In order to prove error estimates of the Monte Carlo and multilevel Monte Carlo finite volume method we
will need the following convergence rate estimate which was proved in [7].

Theorem 5.2 (Convergence rate of the finite volume method [7]). Let f,k, and ug satisfy Assumption 3.1
and the discretization parameters satisfy the CFL condition (5.3). Then the finite volume approzimation ua,
given by the scheme (5.2) converges towards the unique entropy solution u of (4.1) almost everywhere and in
LY(R x (0,T)). In particular, we have the following convergence rate estimate

flu(-,t) —uaz( t)”Ll(]R) < CAz2 (5.6)
forall0<t<T.

Note that the convergence rate estimate (5.6) is optimal in the sense that the exponent % cannot be improved
without further assumptions on the initial datum [7] (see [47] for an overview of the literature regarding optimal
convergence rates of finite volume methods for conservation laws without spatial dependency).

Remark 5.3. We want to point out that the constant C' in (5.6) depends only on TV (uo), |[uolljec, || fllec, @
and the number of discontinuities of k. In particular, for random data given according to Definition 4.1 all those
quantities are uniformly bounded and thus for random entropy solutions the constant C' in (5.6) is integrable
in w.

Remark 5.4. Reasoning as for entropy solutions, the finite volume approximation satisfies
1
luaz(5 )l py < 1DI7 luas (D)l py < C lluollyep
for all 1 < p < oco. Like in Lemma 4.5, this translates into the following probabilistic bound:

[uaz(-1)]

L@ () < ClluollLr .= (py) (5.7)

forall 0 <t < T and 1 <p < 0.

For the rest of this paper, we will consider entropy solutions on a bounded interval D C R with periodic
boundary conditions. With the usual arguments, all previous results concerning entropy solutions and their
finite volume approximations carry over to this setting verbatim. Note that restricting ourselves to a bounded
domain will enable us to prove error estimates of the Monte Carlo and multilevel Monte Carlo finite volume
method also in L2(Q; LY(D)) (cf. [45]).
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5.2. Monte Carlo finite volume method

We now consider the random conservation law with discontinuous flux (4.1) and introduce and analyze the
Monte Carlo finite volume method.

Given M € N, we generate M independent and identically distributed samples ( fﬂ I%i, a§)M, of given random
data (uo, k, f). Let now a'y,(-,t), i = 1,..., M, denote the numerical solutions generated by the finite volume

method (5.2) at time ¢ corresponding to the sample (fi, i, @%). Then, the M-sample MCFVM approximation
to E[u(-,t)] is defined as

1 -

As mentioned earlier the approximation error of the MCFVM has a component coming from the statistical
sampling error and one from the deterministic discretization error. We will make this statement precise in the
following theorem.

Theorem 5.5 (MCFVM error estimate). Let (ug, k, f) be random data and u the corresponding random entropy
solution of (4.1). Assume that ug satisfies the r-th moment condition

[uollLr @ (py) < 00

for some 1 < r < co. Assume further that we are given a FVM (5.2) such that the CFL condition (5.3) holds.
Then, for each 1 < p < oo and 0 <t < T and for ¢ = min(2,r) > 1, the MCFVM approximation satisfies the
error estimate

1—gq 1—1 1
[Efu(-,t)] — EJW[UAJU('at)]HLq(Q;LP(D)) <C (M ? Hu0||L7‘(Q;L°°(D)) + HUOHLT(?Z;LOC(D)) AW‘D) : (5.8)

In particular, the MCFVM approximation converges towards Elu(-,t)] in LI(Q; LP(D)) as M — oo and Az — 0.
Proof. We use the triangle inequality to get
[E[u(, )] = Enuaz (- )]llLe @ (py)
< Efu(0)] = EvluC O]llnereny) + 1Emlul )] = Exluaz( O)]llue@epyy  (5-9)

and estimate the resulting two terms separately. For the first term in (5.9), we distinguish the two cases p > ¢
and p < q.

(1) We first consider the case p > ¢. According to Lemma 4.5 we have
”u('vt)”LT(Q;LP(D)) <C ”uO”LT(Q%L‘X’(D))
and thus u(-,t) € L"(; LP(D)). Therefore, we can apply Theorem 2.5 to get
1-q
[E[u(, )] = En[uC O)llLawepy < CM™T [[ul D)llLauepy)
1-gq
SOM™7 lul, Ol e (py)

1-gq
SOM 7 ol (py) -
(2) In the case p < ¢, we can apply Hoélder’s inequality to estimate

[E[u(-8)] = ExrluC O)|Looepy) < CIE[u( )] = ExrluC O)]|Loo;napy) -



MULTILEVEL MONTE CARLO FINITE VOLUME 1051

Again, we want to employ Theorem 2.5. To that end, we note that because of Lemma 4.5 and the fact that
q < r we have
[uCs DllLe@sa(ny < CllwollLa@ue () < € luollir oo (py)

and therefore u(-,t) € LY(Q;L4(D)) and we can apply Theorem 2.5 to get

IE[u(-, )] — Enlu(- )]”Lq(Q La(D)) < CM HU( )HLq(Q La(D)) = CM ”uO“LT(Q L (D))

Hence, for all 1 < p < oo, we get

1—g
IEfu(, )] = Earlul Ollgaaurooy < OM 7 ol (py) -

On the other hand, for the second term in (5.9) we can use the triangle inequality and the linearity of the
expected value to obtain

M
1
[Enluls8)] = Enluae( DlllLooir () < M 4

~1

A (- t) = pg (- HLq (L2 (D))

=1
= ||u( t) — “Az(‘at)”Lq(Q;Lp(D)) :

Using the interpolation inequality between L' and L°°, the L°*-bound for both u(-,t) and ua.(-,t) (see (3.3)
respectively (5.4)), and the convergence rate estimate (5.6), we get

Jul,t) — uAI('vt)HLQ(Q L?(D)) = < lul-,t) - UAz(‘at)||1§q(Q;L1(D)) [Ju(-t) — UAm('at)HLq(%;Loo(D))

1-1 1
< C ol (o)) A
which completes the proof. (I

Note that the computations in the proof of the error estimate (5.8) are also valid if r = 1 (and thus ¢ = 1).
However, in that case the right-hand side does not decrease as M — oo.

5.3. Multilevel Monte Carlo finite volume method

Instead of just considering Monte Carlo samples of a single fixed resolution of the finite volume method,
we now detail the corresponding multilevel variant — the multilevel Monte Carlo finite volume method. The
idea of MLMC discretization of differential equations with random parameters was proposed by Giles in [18,19]
based upon earlier work by Heinrich on numerical quadrature [24]. The key ingredient of the MLMCFVM is
simultaneous MC sampling on different levels of resolution of the finite volume method with level-dependent
numbers M; of MC samples.

To that end, we generate a sequence of finite volume approximations U (-, t) == (u;(-, 1))k, on grids with cell
sizes Ax; and time steps At; (subject to the CFL condition (5.3)) and set ua,_, (-,t) = 0. Then, we have

L

L
E[UAIL )t Z U'Azl ,t UAI171('7t)) = ZE[UAIL('vt) - qulfl(',t)].
=0

=0

We now approximate each term Eluag, (-, t) — uag,_, (-, t)] by a Monte Carlo estimator with M; samples. The
resulting MLMCFVM approximation to E[u(-,¢)] then is

t)] = ZEM! [qul(" t) - qul—l(.7t)j| . (510)
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In the following convergence analysis, we will assume for simplicity that Az; = 27'Axg, I = 0,..., L, for some
Axgy > 0.

As for the MCFVM, we want to obtain a rate at which EX[U(-,t)] converges towards E[u(,t)] in terms of
the number of MC samples M; and the spatial resolution Ax; on each level [ =0,..., L.

Theorem 5.6 (MLMCFVM error estimate). Let L > 0, (ug, k, f) be random data, and u the corresponding
random entropy solution of (4.1). Assume that ug satisfies
ol i (D)) < 00

for some 1 < r < oo. Assume further that we are given a FVM (5.2) such that the CFL condition (5.3)
holds. Then, for each 0 < t < T, for any sequence (M;)l, of sample sizes at mesh level | the MLMCFVM
approximation (5.10) satisfies the following error estimate for ¢ = min(2,r) > 1

B 6)) = EXUC ]| agaunney)

L
- % 1 - S0, A
<C <||U0||L1(§2;Loo(p)) AIE + ||UOHL<1(Q;L°°(D)) MO + Hu’O”Lq(Q;LOC(D)) Ml A3312 ) (5-11)
=0

where p = max(p, q). In particular, for fived L the MLMCFVM approzimation E*[U(-,t)] converges towards
Elu(-,t)] in LY(Q; LP (D)) as M; — oo and Azg — 0.

Proof. Using the triangle inequality and the linearity of the expectation, we get
[Efu(, )] = EX[U ()] llLa@ire o))

< HE[U 7t)] [UAJJL('7t>]||L<I(Q;LP(D)) + HE[UAIL('vt)] - EL[U('at)]HLq(Q;Lp(D))
= ||E[u

—~

1) —uag, (v )HlL‘I(Q;Lp(D))

+ (E[uAmz ('a t) — UAg_, (’v t)] - EMz [quz ('a t) — UAz_, ('7 t)])

Mm

1
< ||Efu(,

I
<

Le(5L7 (D))

)

t) — quL('>t)H|LQ(Q;LP(D))

+

Mm

||E[quz('at) —unz_, ()] = Eag [uag, (1) = vag,_, (1 HLq(Q .Lp(D))
l

Il
<

For the first term, note that the function E[u(-,t) — uaz, (-, t)] is deterministic and thus we can use the conver-
gence rate estimate (5.6) to get

[Blu(-t) — uae, (5 O)]lLaie ()

< lu(t) — UAzL('at)”Ll(Q;Lp(D))
1 1—1
< lu(-,t) — quL('at)”El(Q;Ll(D)) lu(-,t) — uaz, (-, )HLl(Q Lo (D))

1—1 L
< Clluollys ey Az

We now estimate the summands in the second term. Similarly to the proof of Theorem 5.5 we distinguish the
two cases p > ¢ and p < q.

(1) We first consider the case p > ¢. Because of the triangle inequality and (5.7) we have

HUAQZZ(.7 t) - uAﬂsz1('7t)’ L (Q;Le (D)) <C ||u0||L7‘(Q;L°°(D))



MULTILEVEL MONTE CARLO FINITE VOLUME 1053

and thus uag, (-, t) — uag,_, (-, ) € L7(; LP(D)). Therefore we can apply Theorem 2.5 to get

[Eluas, () = uas,_, (5 1)] = Eag[uaz (1) = was,_y (1] Lo @17(0)
< CM H“Aﬁ o) = uag, (- HLq(Q .Lr(D)) *
(2) In the case p < g, we can apply Holder’s inequality to estimate
||E[uAmz('at) —Upzy_, ()] = Eag [uaz, (1) — uaz,_, (5t HLq(Q .Lp (D))
< C||Eluag, (,t) — uag,_, ()] — Eag [uag, (1) — tag,_, (1 ||Lq(Q La(D)) *
Following the same steps as in case (2) in the proof of Theorem 5.5 for uag, (+,t) — vaz,_, (-, t) instead of

u(+,t) and using (5.7) instead of Lemma 4.5, we see that uay, (-, t) — uag,_, (-, t) € LI(Q;LI(D)). Thus, we
can apply Theorem 2.5 again and get

|E[uaz, (1) = waw,_, (- 6)] = By [uaz, (1) — tag,_, (-t HLq QL‘J(D))
= CM ||“sz( o) = unz (- ||Lq(Q ;La(D)) "
Combining both cases, we get
|Euaz, (1) = waw,_, ()] = B [uaz, (1) — tae,_, (- HLq QLP( ))
< CM H“sz b)) = tam, -, (4 HLq Q,LF(D))
where p = max(p, q). Now, we can use the triangle inequality to get
HUsz('vt) Uz, () HLq (LB(D S luaz, (-, t) — u('vt)”Lq(Q;Lf’(D)) + Hu(, —UAzy_, () HLq(Q .LF(D)) "
For [ > 0, we can use the interpolation inequality between L' and L>°, the L' and L> bounds of the entropy
solution and finite volume approximations (see (3.3) respectively (5.4)), and the convergence rate estimate (5.6)
to get
luaz, (- t) = ul, O)llLarr(py) + (-, t) — uas,_, (- HLq (L7 (D))
< luag, (1) —ul t)”]i Q; Ll(D)) luaz, (- t) — u(~,t)||Lq(% Loo(D))
+ HU(') —upz, () HLq QL1 (D)) H“ — UAz, (5 HLq(Q Le= (D))

1—1 L L
S C ||u0||Lq ?Z;LDC D)) (Amﬁp —+ Axl2p1>

'm""

<C ||u0||Lq o (py) A

Similarly, for [ = 0 (note that ua,_, = 0), the convergence rate estimate (5.6) and the bound from Lemma 4.5
give

luaz (5 Olla@Lipy) < lwas (1) = ul Dllpaqrspy + 1l DLy

1-1 o
< C | ol @ (pyy A%6" + luollLa (o (py) ) -
(©;Le° (D)) ( (D))
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Combining all estimates finally gives
HE[U(vt)] - EL[U(‘»t)H‘Lq(Q;Lp(R))

1—q 1
q

L
- 5 s ol h e ST AP
<C <||u0||L1(I§)2;LOC(D)) Az;” + ||UO||Lq(Q;La<>(D)) My "+ ||UOHL¢1(Q;LOO(D)) M, * Az} ) .
1=0

5.4. Work estimates and sample number optimization

In order to analyze the efficiency of the MC and MLMCFVM, it is important to estimate the computational
work which is needed to compute one approximation of the solution by the deterministic FVM and how it
increases with respect to mesh refinement. Here, by computational work, we understand the number of floating
point operations performed when executing an algorithm and we assume that this in turn is proportional to the
runtime of the algorithm.

In practice, we deal with bounded domains instead of working on the whole real line and thus the number of
grid cells scales as 1/Ax. For the deterministic FVM (5.2) the number of floating point operations per time step
is proportional to the number of cells in the spatial domain, hence the computational work can be bounded by
CAt 'Az~'. Considering the CFL condition (5.3), we thus obtain the computational work estimate

WEYM(Az) < CAz ™2

for the deterministic FVM approximation. However, for the sake of generality, we will in the following only
assume that the computational work scales as

WEYM(Az) < CAz™" (5.12)
for some w > 0. As seen before, we have the LP convergence rate estimate
[u(-t) = una(, )llLs(py < CAZ?
(for s = %) which yields the following deterministic convergence rate with respect to work:
”u('vt) _qu('yt)HLp(D) S C(WFVM)iwip . (513)

In particular, for p =1, w =2, and s = £ we have

2

_1
4

Hu('at) - qu('7t)|‘L1(D) < C (WFVM)

5.4.1. Work estimates for the MCEFVM approzimation

Since for the Monte Carlo finite volume method M deterministic finite volume approximations need to be
computed, each of which require work as in (5.12), the computational work for the MCFVM is bounded as

WME < CMAz™™. (5.14)

In order to obtain the order of convergence of the approximation error in terms of computational work, we

equilibrate the terms M7 and Azé in (5.8) by choosing M = CAz7iD, Inserting this into the work
bound (5.14) yields

sq—wp(l—q)

W}\V/[[CFVM < CAzx~ »0-9
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such that we obtain from (5.8)

IELu(-, 8)] = Easluse (5 OlllLauin oy < CAZF < O (WhC) e (5.15)

Note that, since ¢/(q — 1) is positive, we have

s s
7q§7
wptsZy  wp

and thus the rate (5.15) is worse than the error rate in terms of computational work (5.13) of the deterministic
finite volume method.

In particular, for p = 1 and r > 2 (which implies ¢ = 2), and taking into account that w = 2 and s = %, the
rate (5.15) reads

_1
6

[Elu(, )] = Brluac (s 0)]llrz 1oy < C (Ward)
5.4.2. Optimal sample numbers for the MLMCFVM approximation

In [32], Koley et al. showed the following general result for multilevel Monte Carlo finite volume methods
which we can apply to our case to determine the number of samples needed at each level [ such that, given an
error tolerance € > 0, the computational work of the MLMCFVM is minimal.

Lemma 5.7 ([32], Lem. 4.9). Assume that the work of a multilevel Monte Carlo finite volume method with L
discretization levels scales asymptotically as

L
WHMO = " M Az
1=0
or some w > 0 and that the approzimation error (raised to the g-th power) scales as
0 and that the approximati ised to the q-th p [
> 1- - 1— F
Err, =C | Az} + M, 7+ ZMZ IAx)”
1=0

where p = max(p,q) (c¢f. (5.11)). Then, given an error tolerance € > 0, the optimal sample numbers M; mini-
mizing the computational work given the error tolerance € are given by

N _1
14+ Az L ot(wit =)\ 7
M0:< AT 2= 2 (5.16)
e—Azx/
and .
My~ MoAzg 27! GT5) for >0, (5.17)

where ~ indicates that this is the number of samples up to a constant which is independent of | and L. The
minimal amount of work then is

—1

1
= 5L ol(wistog)\ T
2 a=1_ s 14+ A E 2
=1

sq
- Aa—12
e —Axy 2 LS

Lemma 5.7 can be used to derive a rate for the approximation error of the MLMCFVM in terms of the
computational work.



1056 J. BADWAIK ET AL.
Corollary 5.8. In addition to the assumptions of Lemma 5.7, assume that w% — % > 0 and that L and Axg
are large enough such that
24 _q
Azt > Axy”
where p = max(p, q) and w is as in (5.7). Then, for each 0 < t < T and for ¢ = min(2,r) the L1(Q;LP(D))-
approzimation error of the MLMCFVM (5.10) scales with respect to computational work as

s

C (WMLMC) wrte B2 gty (5.18)

[ELuC, 0] = B U 0]|o ooy <

Proof. Since (wq%ql - %) > 0 the sums in the expression for WMEMC from Lemma 5.7 are dominated by

59 _q
1

oL(wizt=%). Choosing € = 2Az/ and using that Aa:p T Az ™ in the last step, we find

1

)) (1 + Agp 2w - )> !
Aqu

]

~ AxawaL et (1 + Aac"QL(w%*%Uﬁ

Silw

WMLMC ~ Ax—w (1 +A$ 2L(w

NAI ECE) (A:CO JrAqu ey w)

Thus, we have

HE[U(v t)} - EL[U('ﬂ t)] ||L2(Q;L1(D))

% are nonnegative, we have

: q
Since and D

S S
<

wp—i—sp pqq1 ~ wp

and thus the error rate in terms of the computational work (5.18) of the MLMCFVM is worse than the error
rate (5.13) for the deterministic scheme. However, since % <1-— % < 1, we have

S S

p=p _4q = _a_

P_p_9q_ wp + s
wp + s T p -1

and thus the error rate (5.18) of the MLMCFVM constitutes an improvement over the (single-level) MCFVM,
cf (5.15).

Note that, in particular, for p =1 and r > 2 (which implies ¢ = 2 and p = 2), and taking into account that
w =2 and s = 3, the error rate (5.18) reads
<C (WMLMC)*% '

H]E )] = BH[UC, HL2(Q Li(D)) =
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FIGURE 1. Two possible fluxes of the form (6.1) for k(x) = 0.7 (dashed line) and k(z) = 2.3
(solid line)

6. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments motivated by two-phase flow in a heterogeneous porous
medium'. The time evolution of the oil saturation u € [0, 1] can be modeled by (1.1) where the flux is given by

lklz),0) = -3

m(l — k(z) A\ (u)), (6.1)

see Example 8.2 of [25]. Here, the functions A\, and A, denote the phase mobilities/relative permeabilities of
the oil and the water phase, respectively. Typically, one uses the simple expressions

Ao (u) = u?, (1) = (1 — u)?

which we will also do in the first two subsequent experiments. The coefficient & in (6.1) corresponds to the
absolute permeability of the medium. Since the medium is usually layered to some extent throughout the
reservoir and even continuously varying geology is typically mapped onto some grid, the coefficient & is often
modeled as a piecewise constant function [23].

Since numerical experiments for conservation laws where the initial datum or the flux is uncertain have been
reported in other works (albeit without spatially discontinuous flux), we will here focus on numerical experiments
where, in particular, the discontinuous coefficient k is subject to randomness. We consider the initial datum

08, —-09<z<-02
uo(x) = {0.4, otherwise, (6.2)
on the spatial domain D = [—1, 1] with periodic boundary conditions. Figure 1 shows two examples of fluxes of
the form (6.1) and indicates the relevant domain determined by the initial datum (6.2). In all experiments we
use A = 2L = 0.2 in the finite volume approximation (5.2).
When choosing the number of samples for the MLMC estimator we use the formulae (5.16) and (5.17) with
“=" replacing “~” and rounding to the next biggest integer. Here we use p=1,r=¢=2, w =2, s = %, and

e =2Ax? in (5.16) and (5.17)2.

IThe code used to produce these experiments can be found at https://github.com/adrianmruf/MLMC_discontinuous_flux
2For example, for L = 7 and Az = 2~ we use (MZ)ZL:O = (95646,20107,8454,3555,1495, 629, 265,112) samples.
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In order to compute an estimate of the approximation error

1
2

2
IELu(, T)] = B0 C T aque oy = (B [JELC D) = BEUC T 1))
we use the root mean square estimator introduced in [38]: We denote by Uyet(-, T') a reference solution and by

(U;(-,T))E | asequence of independent approximate solutions EX[U (-, T')] obtained by running the MLMCFVM
estimator with L levels K times. Then, we estimate the relative error by

K 3
_ 1 - 2
RMS = (K ; (RMS;) )
where
|Uret(-, T') — Ui('»T)HLl(D)_

[Uret(, D)l ()

Here, as suggested in [38], we use K = 30 which was shown to be sufficient for most problems. In each experiment,
as a reference approximation Uet(-,T) of E[u(-,T)], we use a solution computed by the MLMCFVM with
Az = 2% and L = 8 which entails using 2'2 cells on the finest level.

In our figures we also indicate the approximated standard deviation. To that end, we approximate the variance
by

RMSl =100 x

L
Vi = ZEML [(uﬁmz('vT) — UAz;_q ("T) - EMz [UAzL('vT) - UAIL—I(.’T)])z] .
=0

6.1. Uncertain position of rock layer interface

For our first numerical experiment we will model the absolute permeability parameter as

h(z) = {1, z < o(w),

2, z>o0(w)

corresponding to an uncertain position of the interface between two rock types in the reservoir. Here, the
random variable ¢ is uniformly distributed in [—0.3,0.3]. Figure 2a shows two samples of the approximate
random entropy solution (with ¢ = —0.3 and o = 0.3, respectively) calculated using 2!° grid points at time
T = 0.2 and Figure 2b shows an estimate of the expectation E[u(-,T)] computed by the MLMCFVM with
Azg=2%and L =7.

Table 1 and Figure 3 show the estimated RMS error as a function of the number of levels. In particular,
Table 1a shows the observed order of convergence (OOC) with respect to Az, while Table 1b shows the observed
order of convergence with respect to the computational work calculated based on a best linear fit under the
assumptions that RMS ~ (Azxp)™ and RMS ~ (work)™. Here, we use the runtime as a surrogate for the
computational work. We observe that in Experiment 1 both rates are better than the rates guaranteed by our
convergence analysis.

6.2. Uncertain absolute permeabilities

For our second numerical experiment we will model the absolute permeability parameter as

& (w), x<0,
k(z)_{fg(w), x>0

corresponding to uncertain absolute permeabilities of two rock layers. Here, the random variables £&; and &; are
independent and uniformly distributed in [0.7,1.3] and [1.7, 2.3], respectively.
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FIGURE 2. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 1 with 7" = 0.2 and A = 0.2. The orange area indicates the area between
the mean =+ standard deviation. For each sample the discontinuity of % is located in the interval
between the dotted lines. (A) Two samples of the random entropy solution (o = —0.3 (solid
line), o = 0.3 (dashed line), Az = 27%). (B) MLMCFVM approximation (Azg=2"% L =71).

TABLE 1. RMS error in Experiment 1 as a function of the finest grid resolution Az and
as a function of the work (here measured by the runtime in s) for various values of L and for

Axg = 274,
(a) RMS wversus Axy, (b) RMS wversus work.
L Azxzp, RMS 0OO0C L Runtime RMS 0OOC
1 275  4.03 1 0.09 4.03
2 276 253 2 0.23 2.53
3 277  1.53 3 0.73 1.53
4 278 088 4 265 0.88
5 279 049 5 10.12 0.49
6 271 024 0.80 6 39.23 0.24 —0.45

Figure 4a shows two samples of the approximate random entropy solution (with (£1,&) = (1.3,1.7) and
(&1,&) = (0.7,2.3), respectively) calculated using 219 grid points at time 7' = 0.2 and Figure 4b shows an
estimate of the expectation E[u(-,T)] computed by the MLMCFVM with Azg =274 and L = 7.

Table 2 and Figure 5 again show the root mean square error estimate and the observed order of convergence
with respect to Az and with respect to the computational work. As before, we observe that the observed
convergence rates are better than the theoretical bounds.

6.3. Uncertain position of rock layer interface and absolute and relative permeabilities

In our last numerical experiment we will model the absolute permeability parameter as

k(z) = {fl(w), x < o(w),

&(w), x> o0(w)
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FIGURE 3. RMS error in Experiment 1 as a function of the finest grid resolution Az and
as a function of the work (here measured by the runtime in s) corresponding to the values in
Table 1. The dashed lines indicate the observed order of convergence based on a best linear fit.
(A) RMS error versus Azy,. (B) RMS error versus work.
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FIGURE 4. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 2 with 7" = 0.2 and A = 0.2. The orange area indicates the area
between the mean + standard deviation and the dotted line marks the (fixed) position of
the discontinuity of k. (A) Two samples of the random entropy solution ((&1,&2) = (1.3,1.7)
(solid line)l,l (é1,&) = (0.7,2.3) (dashed line), Ax = 279). (B) MLMCFVM approximation
(A{EO =2 ,L:7)
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TABLE 2. RMS error in Experiment 2 as a function of the finest grid resolution Az and
as a function of the work (here measured by the runtime in s) for various values of L and for

Axg = 274,
(a) RMS wversus Axy,. (b) RMS wversus work.
L Azp RMS 0O0C L Runtime (s) RMS 0O0C
1 275 386 1 0.07 3.86
2 279 232 2 0.18 2.32
3 277 141 3 0.64 1.41
4 278 082 4 2.52 0.82
5 272 045 5 9.88 0.45
6 271 022 0.82 6 38.16 0.22 —0.44
T I I I T T T T T T T T
22 [ RMS error vs. Az, P 22 . | RMS error vs. work ||
--- 0.82t + 6.12 % \ ---  —0.44t+0.22
ol : 4 2tr e
20 I /,’/ a 20 - ‘\\ N
2—1k /// | 271? \\\\ -
2—2 [ /// | 272 [ \\\ -
| | | | | | | | | | | |
2710 279 278 277 276 275 274 272 20 22 24 26
AZL’L ASUL

(4) (B)

FIGURE 5. RMS error in Experiment 2 as a function of the finest grid solution Az and as
a function of the work (here measured by the runtime in s) corresponding to the values in
Table 2. The dotted lines indicate the observed order of convergence based on a best linear fit.
(A) RMS error versus Axy,. (B) RMS error versus work.

corresponding to an uncertain position of the interface between two rock types as well as uncertain absolute
permeabilities of the rock layers. Here, the random variables &1, &, and o are uniformly distributed in [0.7,1.3],
[1.7,2.3] and [—0.3,0.3], respectively. Furthermore, we will model the relative permeabilities A, and A, in (6.1)
as

Ao(u) = uP), Ao (1) = (1 — u)P@)

where the random exponent p is uniformly distributed in [1.5,2.5]. Here, &1, &2, 0 and p are mutually independent.

Figure 6a shows two samples of the approximate random entropy solution (with (&1,&2,0,p) =
(0.3,-0.3,-0.3,1.5) and (&1,&2,0,p) = (—0.3,0.3,0.3,2.5), respectively) calculated using 2'° grid points at
time 7' = 0.2 and Figure 6b shows an estimate of the expectation E[u(-,T")] computed by the MLMCFVM with
Arg=2"%and L=71.
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FIGURE 6. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 3 with 7' = 0.2 and A = 0.2. The orange area indicates the area between
the mean + standard deviation and the dotted line marks the (fixed) position of the disconti-
nuity of k. (A) Two samples of the random entropy solution ((&1,&2,0,p) = (1.3,1.7,—0.3,1.5)
(solid line), (&1,&2,0,p) = (0.7,2.3,0.3,2.5) (dashed line), Az = 279). (B) MLMCFVM approx-

imation (Azg =274, L =7).

TABLE 3. RMS error in Experiment 3 as a function of the finest grid resolution Az and
as a function of the work (here measured by the runtime in s) for various values of L and for
Axg = 274,

(a) RMS versus Axy,.

(b) RMS wversus work.

Runtime (s)

RMS OO0C

L Azp RMS 0O0C L
1 275 344 1
2 276 197 2
3 277 114 3
4 27% 063 4
5 27° 033 5
6 271 o017 0.86 6

0.08
0.21
0.74
3.07
12.93
55.93

3.44
1.97
1.14
0.63
0.33
0.17 —0.45

Table 3 and Figure 7 again show the root mean square error estimate and the observed order of convergence
with respect to Azy, and with respect to the computational work. Notably, the observed convergence rates are
very similar to those in Experiments 1 and 2 despite the four dimensional parameter space.

7. CONCLUSION

In this paper, we have considered conservation laws with discontinuous flux where the model parameters,
i.e., the initial datum, the flux function, and the discontinuous spatial dependency coefficient, are uncertain.
Based on adapted entropy solutions for the deterministic case, we have introduced a notion of random entropy
solutions and have proved well-posedness.

To numerically approximate the mean of a random entropy solution, we have proposed Monte Carlo meth-
ods coupled with a class of finite volume methods suited for conservation laws with discontinuous flux. Our
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FIGURE 7. RMS error in Experiment 3 as a function of the finest grid solution Az and as
a function of the work (here measured by the runtime in s) corresponding to the values in
Table 3. The dotted lines indicate the observed order of convergence based on a best linear fit.
(A) RMS error versus Azy,. (B) RMS error versus work.

convergence analysis includes convergence rate estimates for the Monte Carlo and multilevel Monte Carlo finite
volume method. Further, we have provided error versus work rates which show that the multilevel Monte Carlo
finite volume method is more efficient than the (single-level) Monte Carlo finite volume method.

We have presented numerical experiments motivated by two-phase flow in heterogeneous porous media, e.g.,
oil reservoirs with different rock layers. The numerical experiments verify our theoretical results concerning
convergence rates of the multilevel Monte Carlo finite volume method.

As a possible direction of future research, we want to mention that — from a practical standpoint — it would be
desirable to design multilevel Monte Carlo finite volume methods based on finite volume methods that require
no processing of the flux discontinuities. Such numerical methods have been considered in [15,51], however,
there are currently no convergence rate results available for these methods.
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