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MULTILEVEL MONTE CARLO FINITE VOLUME METHODS FOR RANDOM
CONSERVATION LAWS WITH DISCONTINUOUS FLUX
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Abstract. We consider conservation laws with discontinuous flux where the initial datum, the flux
function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish
a notion of random adapted entropy solutions to these equations and prove well-posedness provided
that the spatial dependency coefficient is piecewise constant with finitely many discontinuities. In
particular, the setting under consideration allows the flux to change across finitely many points in
space whose positions are uncertain. We propose a single- and multilevel Monte Carlo method based
on a finite volume approximation for each sample. Our analysis includes convergence rate estimates of
the resulting Monte Carlo and multilevel Monte Carlo finite volume methods as well as error versus work
rates showing that the multilevel variant outperforms the single-level method in terms of efficiency. We
present numerical experiments motivated by two-phase reservoir simulations for reservoirs with varying
geological properties.
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1. Introduction

This paper concerns uncertainty quantification for conservation laws with discontinuous flux of the form

𝑢𝑡 + 𝑓(𝑘(𝑥), 𝑢)𝑥 = 0, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R.
(1.1)

Here, 𝑢 : R× [0,∞) → R is the unknown and 𝑓 ∈ 𝒞2(R2; R) is the flux function having a possibly discontinuous
spatial dependency through the coefficient 𝑘. In particular, we will assume that the initial datum 𝑢0 is in
(L∞ ∩ BV)(R), the flux 𝑓 is strictly increasing in 𝑢, and the coefficient 𝑘 is piecewise constant with finitely
many discontinuities. Going back to (1.1), this amounts to switching from one 𝑢-dependent flux to another
across finitely many points in space.
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Equations of type (1.1) arise in a number of areas of application including vehicle traffic flow in the presence
of abruptly varying road conditions (see [35]), polymer flooding in oil recovery (see [48]), two-phase flow through
heterogeneous porous media (see [22,23,44]), and sedimentation processes (see [9, 14]).

Even in the absence of flux discontinuities, and even if the initial datum is smooth, solutions of (1.1) develop
discontinuities in finite time and for this reason weak solutions are sought. Weak solutions to (1.1) are not
unique, so the weak formulation of the problem is augmented with an additional entropy condition. In the case
where 𝑥 ↦→ 𝑓(𝑘(𝑥), 𝑢) is smooth, uniqueness follows from the classical Kružkov entropy conditions [33]. In the
presence of spatial flux discontinuities, standard Kružkov entropy conditions no longer make sense. This difficulty
is usually resolved by requiring that Kružkov entropy conditions hold away from the spatial flux discontinuities
and imposing additional jump conditions along the spatial interfaces [1, 4, 5, 14, 21, 22, 26, 29, 30, 49, 50] or by
adapting the Kružkov entropy conditions in a suitable way [6–8,42,46,51]. In the present paper we will focus on
the second approach of so-called adapted entropy solutions for which we need to require that the flux function
𝑓 is strictly monotone in 𝑢.

In the last two decades, there has been a large interest in the numerical approximation of entropy solutions
of (1.1) under various assumptions on 𝑘 and 𝑓 . We refer to [3, 4, 9, 10, 12, 20–22, 25–28, 30, 31, 37, 49, 50, 55] for
a partial list of references regarding finite volume methods respectively the front tracking method. Specifically,
in the adapted entropy framework we want to highlight the results of [7, 8, 15–17, 42, 46, 51] regarding finite
volume methods and the front tracking method. We refer to [5,7,46] for an overview of the literature concerning
conservation laws with discontinuous flux.

The classical paradigm for designing efficient numerical schemes assumes that data for (1.1), i.e., the initial
datum 𝑢0, the flux 𝑓 , and the spatial dependency coefficient 𝑘, are known exactly.

However, in many situations of practical interest, there is an inherent uncertainty in the modeling and
measurement of physical parameters. For example, in two-phase flow through a heterogeneous porous medium
the position of the interface between two rock types is typically not known exactly. Often these parameters are
only known up to certain statistical quantities of interest like the mean, variance, or higher moments. In such
cases, a mathematical framework of (1.1) is required which allows for random data.

For standard conservation laws without spatial flux dependency, i.e., for

𝑢𝑡 + 𝑓(𝑢)𝑥 = 0, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R,
(1.2)

such a framework was developed in a series of papers allowing for random initial datum [38], random (spatially
independent) flux [41], and even random source terms [39] and random diffusion [32].

The first aim of the current paper is to extend this mathematical framework to include scalar conservation
laws with discontinuous flux with random discontinuous spatial dependency. To that end, we define random
entropy solutions and provide an existence and uniqueness result, which generalizes the well-posedness results
for (1.2) to the case of uncertain initial datum, flux, and discontinuous spatial dependency. In particular, our
framework allows for uncertain positions of the flux discontinuities.

The second aim of this paper is to design fast and robust numerical algorithms for computing the mean of
random entropy solutions of conservation laws with discontinuous flux. Specifically, we propose and analyze
a multilevel combination of Monte Carlo (MC) sampling and a “pathwise” finite volume method (FVM) to
approximate the mean of random entropy solutions of conservation laws with discontinuous flux. The multilevel
Monte Carlo finite volume method (MLMCFVM) for (1.1) is non-intrusive (in the sense that it requires only
repeated applications of existing solvers for input data samples), easy to implement and to parallelize, and well
suited for random solutions with low spatial regularity. Solutions exhibiting spatial discontinuities are generic for
conservation laws and, in particular, for conservation laws with discontinuous flux. This reduced regularity poses
some challenges to the design of efficient so-called stochastic Galerkin methods for example which are based
on generalized polynomial chaos. These methods are well-developed for conservation laws – albeit without flux
discontinuities – (see [2,11,36,43,52,54] and references therein), but they are more intrusive, generally harder to
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implement and to parallelize. Thus, in the present paper, we focus on the design and mathematical analysis of
statistical MC-type methods. Our analysis includes the proof of convergence rates at which the MCFVM and the
MLMCFVM converge towards the mean of the random entropy solution of (1.1). The analysis is complicated by
the fact that adapted entropy solutions of (1.1) do not possess the same stability properties as entropy solutions
of (1.2). Moreover, we determine the number of MC samples needed to minimize the computational work for a
given error tolerance.

We want to emphasize that the framework of adapted entropy solutions and more specifically the setting of
the present paper is currently the only setting for which we simultaneously have existence [51], uniqueness [6],
stability with respect to the modeling parameters [46], and numerical methods with a provable convergence rate
[7, 46] – the essential components for an uncertainty quantification framework (cf. [41]).

The remainder of this paper is organized as follows. In Section 2 we introduce preliminary results regarding
the MC approximation of Banach space-valued random variables. Section 3 is devoted to a review of existence
and stability results regarding entropy solutions of (deterministic) conservation laws with discontinuous flux
of the form (1.1). In Section 4 we introduce random entropy solutions of (1.1) where the initial datum 𝑢0,
the flux 𝑓 , and the discontinuous coefficient 𝑘 are subject to randomness. In particular, we prove existence
and uniqueness of random entropy solutions. In Section 5, we first review a FVM which was introduced in [7]
for the deterministic problem, prove certain stability estimates, and then extend the FVM to MC as well as
MLMC versions for (1.1) with random parameters. In Section 6 we perform numerical experiments motivated by
two-phase reservoir simulations for reservoirs with varying geological properties to validate our error estimates.
Finally, we summarize the findings of this paper in Section 7.

2. Preliminaries on the Monte Carlo method

We first introduce some preliminary concepts which are needed in the exposition. To that end, we follow
[34,53], see also Section 2 of [32] and Section 5 of [13].

Given a probability space (Ω,ℱ , P), a Banach space 𝑉 , and a random variable 𝑋 : Ω → 𝑉 we are interested
in approximating the mean E[𝑋] of 𝑋 via Monte Carlo sampling. To this end, let (𝑋̂𝑖)𝑀

𝑖=1, 𝑖 = 1, . . . ,𝑀 , be 𝑀
independent, identically distributed samples of 𝑋. Then, the Monte Carlo estimator 𝐸𝑀 [𝑋] of E[𝑋] is defined
as the sample average

𝐸𝑀 [𝑋] :=
1
𝑀

𝑀∑︁
𝑖=1

𝑋̂𝑖.

We are interested in deriving a rate at which

‖E[𝑋]− 𝐸𝑀 [𝑋]‖L𝑞(Ω;𝑉 ) = E[‖E[𝑋]− 𝐸𝑀 [𝑋]‖𝑞
𝑉 ]

1
𝑞

converges as 𝑀 →∞ for some 1 ≤ 𝑞 < ∞ and some Banach space 𝑉 (typically a Lebesgue space). For general
Banach spaces 𝑉 such convergence rate estimates depend on the type of the Banach space.

Definition 2.1 (Banach space of type 𝑞 [34], p. 246). Assume that Ω permits a sequence of independent
Rademacher random variables 𝑍𝑖, 𝑖 ∈ N. We say that a Banach space 𝑉 is a Banach space of type 1 ≤ 𝑞 ≤ 2 if
there is a constant 𝜅 > 0 such that for all finite sequences (𝑥𝑖)𝑀

𝑖=1 ⊆ 𝑉

(︃
E

⃦⃦⃦⃦
⃦

𝑀∑︁
𝑖=1

𝑍𝑖𝑥𝑖

⃦⃦⃦⃦
⃦

𝑞

𝑉

)︃ 1
𝑞

≤ 𝜅

(︃
𝑀∑︁
𝑖=1

‖𝑥𝑖‖𝑞
𝑉

)︃ 1
𝑞

.

We will refer to 𝜅 as the type constant of 𝑉 .
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Every Banach space is a Banach space of type 1 and every Hilbert space a Banach space of type 2 ([34], Thm.
9.10). Moreover, L𝑝 spaces are Banach spaces of type 𝑞 = min(2, 𝑝) for 1 ≤ 𝑝 < ∞ ([34], p. 247). We will need
the following results regarding Lebesgue spaces of functions with values in a Banach space of type 𝑞.

Lemma 2.2 ([34], p. 247). Let 1 ≤ 𝑟 ≤ ∞, (Ω,ℱ , P) be a measure space, and 𝑉 be a Banach space of type 𝑞.
Then the space L𝑟(Ω, 𝑉 ) is a Banach space of type min(𝑟, 𝑞).

Proposition 2.3 ([34], Prop. 9.11). Let 𝑉 be a Banach space of type 𝑞 with type constant 𝜅. Then, for every
finite sequence (𝑋𝑖)𝑀

𝑖=1 of independent mean zero random variables in L𝑞(Ω, 𝑉 ), we have

E

[︃⃦⃦⃦⃦
⃦

𝑀∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦⃦
⃦

𝑞

𝑉

]︃
≤ (2𝜅)𝑞

𝑀∑︁
𝑖=1

E [‖𝑋𝑖‖𝑞
𝑉 ] .

Corollary 2.4 ([32], Cor. 2.5). Let 𝑉 be a Banach space of type 𝑞 with type constant 𝜅 and let 𝑋 ∈ L𝑞(Ω; 𝑉 )
be a zero mean random variable. Then for every finite sequence (𝑋𝑖)𝑀

𝑖=1 of independent, identically distributed
random variables with zero mean and with 𝑋𝑖

𝐷= 𝑋, we have

E [‖𝐸𝑀 [𝑋]‖𝑞
𝑉 ] = E

[︃⃦⃦⃦⃦
⃦ 1

𝑀

𝑀∑︁
𝑖=1

𝑋𝑖

⃦⃦⃦⃦
⃦

𝑞

𝑉

]︃
≤ (2𝜅)𝑞𝑀1−𝑞E [‖𝑋‖𝑞

𝑉 ] .

We can use Corollary 2.4 to derive a convergence rate of the Monte Carlo estimator in L𝑞(Ω; L𝑝(R)) for
random variables in L𝑟(Ω; L𝑝(R)).

Theorem 2.5. Let 1 ≤ 𝑟, 𝑝 ≤ ∞ and 𝑋 ∈ L𝑟(Ω; L𝑝(R)), then for 𝑞 := min{2, 𝑝, 𝑟} we have the Monte Carlo
error estimate

‖E[𝑋]− 𝐸𝑀 [𝑋]‖L𝑞(Ω;L𝑝(R)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑋‖L𝑞(Ω;L𝑝(R)) .

In particular, if 𝑝, 𝑟 > 1 (and thus 𝑞 > 1) the Monte Carlo estimator 𝐸𝑀 [𝑋] converges towards E[𝑋] in
L𝑞(Ω; L𝑝(R)).

The proof of this theorem is an adaptation of Theorem 4.1 from [32].

Proof. We have

‖E[𝑋]− 𝐸𝑀 [𝑋]‖𝑞
L𝑞(Ω;L𝑝(R)) = E

⎡⎣⃦⃦⃦⃦⃦E[𝑋]− 1
𝑀

𝑀∑︁
𝑖=1

𝑋̂𝑖

⃦⃦⃦⃦
⃦

𝑞

L𝑝(R)

⎤⎦
= E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑀

𝑀∑︁
𝑖=1

(︁
E[𝑋]− 𝑋̂𝑖

)︁⃦⃦⃦⃦⃦
𝑞

L𝑝(R)

⎤⎦ .

If we define 𝑌 = E[𝑋]−𝑋 and 𝑌𝑖 = E[𝑋]− 𝑋̂𝑖 we see that 𝑌 is in L𝑟(Ω; L𝑝(R)) with zero mean and 𝑌𝑖 are i.i.d.
random variables with zero mean satisfying 𝑌𝑖

𝐷= 𝑌 . Therefore, we can apply Corollary 2.4 since L𝑟(Ω; L𝑝(R))
is of type min(2, 𝑟, 𝑝) and L𝑝(R) is of type min(2, 𝑝) and thus in particular also of type min(2, 𝑟, 𝑝). Hence,

E

⎡⎣⃦⃦⃦⃦⃦ 1
𝑀

𝑀∑︁
𝑖=1

(︁
E[𝑋]− 𝑋̂𝑖

)︁⃦⃦⃦⃦⃦
𝑞

L𝑝(R)

⎤⎦ ≤ (2𝜅)𝑞𝑀1−𝑞E
[︁
‖E[𝑋]−𝑋‖𝑞

L𝑝(R)

]︁
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where 𝜅 is the type constant of L𝑝(R). It remains to show E
[︁
‖E[𝑋]−𝑋‖𝑞

L𝑝(R)

]︁
≤ 𝐶E

[︁
‖𝑋‖𝑞

L𝑝(R)

]︁
. This follows

from standard estimates and Jensen’s inequality in the following way:

E
[︁
‖E[𝑋]−𝑋‖𝑞

L𝑝(R)

]︁
≤ 𝐶E

[︁
‖E[𝑋]‖𝑞

L𝑝(R) + ‖𝑋‖𝑞
L𝑝(R)

]︁
≤ 𝐶

(︁(︁
E
[︁
‖𝑋‖L𝑝(R)

]︁)︁𝑞

+ E
[︁
‖𝑋‖𝑞

L𝑝(R)

]︁)︁
≤ 𝐶E

[︁
‖𝑋‖𝑞

L𝑝(R)

]︁
.

�

Note that Corollary 2.4 and Theorem 2.5 do not imply convergence if 𝑞 = 1, i.e., if 𝑟 or 𝑝 are equal to 1 in
the latter case.

3. Deterministic conservation laws with discontinuous flux

In this section, we present the main existence and stability results for deterministic conservation laws with
spatially discontinuous flux from [8,46,51].

We consider the Cauchy problem for conservation laws with discontinuous flux of the form

𝑢𝑡 + 𝑓(𝑘(𝑥), 𝑢)𝑥 = 0, 𝑥 ∈ R, 𝑡 > 0
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ R.

(3.1)

Here, we require that 𝑓 , 𝑘, and 𝑢0 satisfy the following:

Assumption 3.1. We assume that the flux 𝑓 ∈ 𝒞2(R2; R) is strictly monotone in 𝑢 in the sense that 𝑓𝑢 ≥ 𝛼 > 0,
and that 𝑓(𝑘*, 0) = 0 for all 𝑘* ∈ R. Furthermore, we assume that 𝑘 is piecewise constant with finitely many
discontinuities and that the initial datum 𝑢0 is in (L∞ ∩ BV)(R).

In the deterministic setting, we consider entropy solutions in the following sense (cf. [6, 8]). For 𝑝 ∈ R we
define the function 𝑐𝑝 : R → R through the equation

𝑓(𝑘(𝑥), 𝑐𝑝(𝑥)) = 𝑝, for all 𝑥 ∈ R.

Since 𝑓𝑢 ≥ 𝛼 > 0 this equation has a unique solution for each 𝑥 ∈ R. Note that in the case of piecewise constant
𝑘 the function 𝑐𝑝 is piecewise constant as well.

Definition 3.2 (Entropy solution). We say 𝑢 ∈ 𝒞([0, 𝑇 ]; L1(R))∩L∞((0, 𝑇 )×R) is an entropy solution of (3.1)
if ∫︁ 𝑇

0

∫︁
R

(|𝑢− 𝑐𝑝(𝑥)|𝜙𝑡 + sgn(𝑢− 𝑐𝑝(𝑥))(𝑓(𝑘(𝑥), 𝑢)− 𝑓(𝑘(𝑥), 𝑐𝑝(𝑥)))𝜙𝑥) d𝑥 d𝑡

−
∫︁

R
|𝑢(𝑥, 𝑇 )− 𝑐𝑝(𝑥)|𝜙(𝑥, 𝑇 ) d𝑥 +

∫︁
R
|𝑢0(𝑥)− 𝑐𝑝(𝑥)|𝜙(𝑥, 0) d𝑥 ≥ 0

for all 𝑝 ∈ R and for all nonnegative 𝜙 ∈ 𝒞∞𝑐 (R× [0, 𝑇 ]).

Note that a Rankine–Hugoniot-type argument shows that across a discontinuity 𝜉 of 𝑘 the entropy solution
𝑢 satisfies the Rankine–Hugoniot condition

𝑓(𝑘(𝜉−), 𝑢(𝜉−, 𝑡)) = 𝑓(𝑘(𝜉+), 𝑢(𝜉+, 𝑡)) for almost every 𝑡 ∈ (0, 𝑇 ) (3.2)

where 𝑘(𝜉∓) and 𝑢(𝜉∓, ·) denote the left and right traces of 𝑘 respectively 𝑢 both of which exist due to Remark 2.3
of [5]. In our subsequent analysis we will rely on the following two results concerning existence and stability of
entropy solutions.
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Theorem 3.3 (Existence and uniqueness of entropy solutions [7,8,51]). Let 𝑓, 𝑘, and 𝑢0 satisfy Assumption 3.1.
Then there exists a unique entropy solution 𝑢 of (3.1) which satisfies

‖𝑢(·, 𝑡)‖L∞(R) ≤
𝐶𝑓

𝛼
‖𝑢0‖L∞(R) (3.3)

TV(𝑢(·, 𝑡)) ≤ 𝐶(TV(𝑘) + TV(𝑢0))
for all 0 ≤ 𝑡 ≤ 𝑇 and

TV[0,𝑇 ](𝑢(𝑥, ·)) ≤ 𝐶TV(𝑢0)

for all 𝑥 ∈ R. Here 𝐶𝑓 denotes the maximal Lipschitz constant of 𝑓 and 𝛼 is as in Assumption 3.1.

Proof. The existence and uniqueness statement follows from the theory developed by Baiti and Jenssen [8]. The
L∞ and TV bounds follow from Theorem 1.4 of [51] and Lemma 4.6 of [7]. �

Theorem 3.4 (Stability of entropy solutions [46]). Let 𝑓, 𝑘, and 𝑢0 satisfy Assumption 3.1 and 𝑢 be the cor-
responding entropy solution of (3.1). If 𝑣 is the entropy solution of (3.1) with flux 𝑔, coefficient 𝑙, and initial
datum 𝑣0 satisfying Assumption 3.1 then for all 0 ≤ 𝑡 ≤ 𝑇

‖𝑢(·, 𝑡)− 𝑣(·, 𝑡)‖L1(R) ≤ ‖𝑢0 − 𝑣0‖L1(R) + 𝐶
(︀
‖𝑘 − 𝑙‖L∞(R) + ‖𝑓𝑢 − 𝑔𝑢‖L∞(R2;R)

)︀
. (3.4)

In particular, entropy solutions of (3.1) satisfy

‖𝑢(·, 𝑡)‖L1(R) ≤ ‖𝑢0‖L1(R)

for all 0 ≤ 𝑡 ≤ 𝑇 .

Proof. The stability estimate can be found in Theorem 4.1 of [46]. The L1 bound follows from the stability
estimate (3.4) by taking 𝑔 = 𝑓 , 𝑙 = 𝑘, and 𝑣0 = 0. �

Remark 3.5. We want to mention that the stability result from Theorem 3.4 is not only integral in proving
existence and uniqueness of random entropy solutions, but can also be used to show well-posedness of Bayesian
inverse problems for conservation laws with discontinuous flux [40].

4. Random conservation laws with discontinuous flux

We now consider conservation laws with discontinuous flux where the flux 𝑓 , the coefficient 𝑘, and the initial
datum 𝑢0 in (3.1) are uncertain. To that end, we let (Ω,ℱ , P) be a probability space and denote by ℬ(𝑋) the
Borel 𝜎-algebra on a space 𝑋. We define appropriate random data (𝑢0, 𝑘, 𝑓) in the following sense.

Definition 4.1 (Random data). Given constants 𝐶TV, 𝐶𝑓 ∈ R, 𝛼 ∈ (0,∞), 𝑁𝑘 ∈ Z, 𝛿 > 0 and given a rectangle
𝑅 = 𝑅1 ×𝑅2 ⊂ R2 let D be the Banach space

D = (BV ∩ L∞)(R)× L∞(R)× 𝒞2(𝑅; R)

endowed with the norm

‖(𝑢0, 𝑘, 𝑓)‖D = ‖𝑢0‖L1(R) + TV(𝑢0) + ‖𝑢0‖L∞(R) + ‖𝑘‖L∞(R) + ‖𝑓‖𝒞2(𝑅;R) .

We say that a strongly measurable map (𝑢0, 𝑘, 𝑓) : (Ω,ℱ) → (D,ℬ(D)) is called random data for (3.1) if for
P-a.e. 𝜔

𝑢0(𝜔; 𝑥) ∈ 𝑅1, for a.e. 𝑥 ∈ R,

TV(𝑢0) ≤ 𝐶TV < ∞,
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𝑘(𝜔; 𝑥) ∈ 𝑅2, for a.e. 𝑥 ∈ R,

𝑘(𝜔; ·) is pcw. constant with at most 𝑁𝑘 discontinuities,
each pair of discontinuities of 𝑘 is at least 𝛿 apart,

𝑓𝑢(𝜔, 𝑘, 𝑢) ≥ 𝛼 > 0 and 𝑓(𝜔; 𝑘, 0) = 0, for all (𝑘, 𝑢) ∈ 𝑅,

‖𝑓(𝜔; ·, ·)‖𝒞2(𝑅;R) ≤ 𝐶𝑓 < ∞

such that for P-a.e. 𝜔 the data (𝑢0(𝜔), 𝑘(𝜔), 𝑓(𝜔)) satisfy Assumption 3.1.

We are interested in random entropy solutions of the random conservation law

𝜕𝑢(𝜔; 𝑥, 𝑡)
𝜕𝑡

+
𝜕𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑢(𝜔; 𝑥, 𝑡))

𝜕𝑥
= 0, 𝜔 ∈ Ω, 𝑥 ∈ R, 𝑡 > 0,

𝑢(𝜔; 𝑥, 0) = 𝑢0(𝜔; 𝑥), 𝜔 ∈ Ω, 𝑥 ∈ R.
(4.1)

Definition 4.2 (Random entropy solution). Given random data (𝑢0, 𝑘, 𝑓) : Ω → D, we say that a random
variable 𝑢 : Ω → 𝒞([0, 𝑇 ]; L1(R)) is a random entropy solution of (4.1) if 𝑢 is strongly measurable and for P-a.e.
𝜔 ∈ Ω the function 𝑢(𝜔) satisfies∫︁ 𝑇

0

∫︁
R

(|𝑢(𝜔; 𝑥, 𝑡)− 𝑐𝑝(𝜔; 𝑥)|𝜙𝑡 + 𝑞(𝜔; 𝑢(𝜔; 𝑥, 𝑡))) d𝑥 d𝑡

−
∫︁

R
|𝑢(𝜔; 𝑥, 𝑇 )− 𝑐𝑝(𝜔; 𝑥)|𝜙(𝑥, 𝑇 ) d𝑥 +

∫︁
R
|𝑢0(𝜔; 𝑥)− 𝑐𝑝(𝜔; 𝑥)|𝜙(𝑥, 0) d𝑥 ≥ 0 (4.2)

for all 𝑝 ∈ R and nonnegative 𝜙 ∈ 𝒞∞𝑐 (R× [0, 𝑇 ]). Here we have used the notation

𝑞(𝜔; 𝑢(𝜔; 𝑥, 𝑡)) = sgn(𝑢− 𝑐𝑝(𝜔; 𝑥))(𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑢)− 𝑓(𝜔; 𝑘(𝜔; 𝑥), 𝑐𝑝(𝜔; 𝑥))).

We have the following existence and uniqueness result for random entropy solutions of conservation laws with
discontinuous flux.

Theorem 4.3 (Existence and pathwise uniqueness of random entropy solutions). Let (𝑢0, 𝑘, 𝑓) be random data.
Then there exists a unique random entropy solution 𝑢 : Ω → 𝒞([0, 𝑇 ]; L1(R)) to (4.1) which is pathwise unique,
i.e., if the random data (𝑢0, 𝑘, 𝑓) and (𝑣0, 𝑙, 𝑔) are P-versions of each other and 𝑢 and 𝑣 are corresponding
random entropy solutions then 𝑢 and 𝑣 are P-versions of each other.

Proof. Let 𝑆 : D → 𝒞([0, 𝑇 ]; L1(R)) denote the solution operator from Theorem 3.3 that maps (deterministic)
(𝑢0, 𝑘, 𝑓) ∈ D to the unique (deterministic) entropy solution 𝑢̂ = 𝑆(𝑢0, 𝑘, 𝑓). Because of the stability estimate
(3.4) this solution map is Lipschitz continuous. Now, since the random data (𝑢0, 𝑘, 𝑓) : Ω → D is strongly
measurable the composition 𝑆 ∘ (𝑢0, 𝑘, 𝑓) : Ω → 𝒞([0, 𝑇 ]; L1(R)) is again strongly measurable (see [53], Cor.
1.13). Hence 𝑢 = 𝑆 ∘ (𝑢0, 𝑘, 𝑓) is a strongly measurable map satisfying (4.2) P-almost surely. Therefore, 𝑢 is a
random entropy solution to (4.1).

Regarding uniqueness of random entropy solutions, let (𝑢0, 𝑘, 𝑓) and (𝑣0, 𝑙, 𝑔) be P-versions of each other, i.e.,
‖(𝑢0(𝜔), 𝑘(𝜔), 𝑓(𝜔)) − (𝑣0(𝜔), 𝑙(𝜔), 𝑔(𝜔))‖D = 0 for P-a.e. 𝜔 ∈ Ω, and 𝑢 and 𝑣 corresponding random entropy
solutions. Then, the Lipschitz continuity of the solution operator 𝑆 gives

‖𝑢(𝜔)− 𝑣(𝜔)‖𝒞([0,𝑇 ];L1(R)) ≤ 𝐶‖(𝑢0(𝜔), 𝑘(𝜔), 𝑓(𝜔))− (𝑣0(𝜔), 𝑙(𝜔), 𝑔(𝜔))‖D = 0.

Thus, we have 𝑢(𝜔) = 𝑣(𝜔) in 𝒞([0, 𝑇 ]; L1(R)) for P-a.e. 𝜔 ∈ Ω which is pathwise uniqueness. �

Note that Theorem 4.3 generalizes the existence result of random entropy solutions of [41] for fluxes which
are strictly monotone in 𝑢 since the present setting allows for a discontinuous spatial dependency of the flux.
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Remark 4.4. All existence and continuous dependence results stated so far apply to the deterministic Cauchy
problem (3.1). By the usual arguments, verbatim the same results hold for entropy solutions on bounded intervals
𝐷 ⊂ R as well, provided periodic boundary conditions are enforced.

The following probabilistic bound will be important in the numerical approximation of random entropy
solutions on bounded domains.

Lemma 4.5. Let (𝑢0, 𝑘, 𝑓) be random data and 𝐷 ⊂ R a bounded interval. Let further 𝑢0 ∈ L𝑟(Ω; L∞(𝐷)), for
some 1 ≤ 𝑟 ≤ ∞. Then the random entropy solution 𝑢 of (4.1) is in L𝑟(Ω; 𝒞([0, 𝑇 ]; L𝑝(𝐷))) for all 1 ≤ 𝑝 ≤ ∞.
In particular,

‖𝑢(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))

for all 0 ≤ 𝑡 ≤ 𝑇 .

Proof. On bounded domains 𝐷 we have

‖𝑢(·, 𝑡)‖L𝑝(𝐷) ≤ |𝐷|
1
𝑝 ‖𝑢(·, 𝑡)‖L∞(𝐷)

and thus using the L∞-bound (3.3) we have for all 0 ≤ 𝑡 ≤ 𝑇

‖𝑢(·, 𝑡)‖𝑟
L𝑟(Ω;L𝑝(𝐷)) =

∫︁
Ω

‖𝑢(·, 𝑡)‖𝑟
L𝑝(𝐷) dP

≤ 𝐶

∫︁
Ω

‖𝑢(·, 𝑡)‖𝑟
L∞(𝐷) dP

≤ 𝐶

∫︁
Ω

‖𝑢0‖𝑟
L∞(𝐷) dP

= 𝐶 ‖𝑢0‖𝑟
L𝑟(Ω;L∞(𝐷))

which proves the claim. �

5. Numerical approximation of random entropy solutions

In this section, we want to approximate the expectation E[𝑢(·, 𝑡)] of a random entropy solution 𝑢 of the
random conservation law with discontinuous flux (4.1). On the one hand, we will use the Monte Carlo and
multilevel Monte Carlo method to approximate in the stochastic domain Ω. On the other hand, since in general
exact solutions to (4.1) are not at hand, we will approximate in the physical domain R × [0, 𝑇 ] by a finite
volume method. To this end, we use a modified version of monotone finite volume methods for conservation
laws introduced in [7] which appropriately addresses the presence of the discontinuous parameter 𝑘.

The resulting approximation error introduced by the Monte Carlo method depends on the number of samples
used, while the error introduced by the finite volume method depends on the resolution of the grid. In the
following subsections, we will review the finite volume method for the deterministic problem, detail how to
combine it with the Monte Carlo and multilevel Monte Carlo method and prove error estimates for the resulting
Monte Carlo and multilevel Monte Carlo finite volume method.

5.1. Finite volume methods for conservation laws with discontinuous flux

We will first consider the (deterministic) conservation law with discontinuous flux (3.1) and present a class
of finite volume methods introduced in [7].

For a given (deterministic) function 𝑘 with discontinuities 𝜉1 < 𝜉2 < . . . < 𝜉𝑁 such that 𝑘 satisfies the relevant
assumptions in Definition 4.1 we denote by 𝐷𝑖 = (𝜉𝑖, 𝜉𝑖+1), 𝑖 = 0, . . . , 𝑁 , the subdomains where 𝑘 is constant.
Here, we have used the notation 𝜉0 = −∞ and 𝜉𝑁+1 = +∞. In the following we will write

𝑓 (𝑖) = 𝑓(𝑘(𝑥), ·), for 𝑥 ∈ 𝐷𝑖, 𝑖 = 0, . . . , 𝑁.
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We discretize the domain R × [0, 𝑇 ] using the spatial and temporal grid discretization parameters ∆𝑥 and
∆𝑡. Here we assume that the spatial discretization parameter ∆𝑥 is already small with respect to the given
minimal distance 𝛿 between discontinuities of 𝑘, i.e., ∆𝑥 < 𝛿. In order to define the finite volume method we
need the spatial grid to be aligned in such a way that all discontinuities of 𝑘 lie on grid points. We acomplish
that in the following way: To the left of 𝜉1 and to the right of 𝜉𝑁 we use a mesh of width ∆𝑥 that is aligned
with 𝜉1 respectively 𝜉𝑁 . Inside each interval 𝐷𝑖 = (𝜉𝑖, 𝜉𝑖+1) a mesh of the form {𝜉𝑖 + 𝑗∆𝑥}𝐽

𝑗=1 might not align
with the point 𝜉𝑖+1. This happens precisely when 𝐽∆𝑥 < 𝜉𝑖+1 − 𝜉𝑖 < (𝐽 + 1)∆𝑥 in which case we set up the
finer mesh {𝜉𝑖 + 𝑗∆𝑥𝑖}𝐽+1

𝑗=1 where ∆𝑥𝑖 = 𝜉𝑖+1−𝜉𝑖

𝐽+1 . Note that by definition we have

1
2

∆𝑥 ≤ ∆𝑥𝑖 ≤ ∆𝑥. (5.1)

In this way we can set up a spatial grid that is globally non-uniform, but uniform on each subdomain 𝐷𝑖.
We want to point out the important fact that while the local grid sizes ∆𝑥𝑖 depend on the distance between
neighboring discontinuities of 𝑘 (which we will assume to be random later) the upper and lower bounds of ∆𝑥𝑖

given by (5.1) are independ of 𝑘.
The resulting grid cells we denote by 𝒞𝑗 = (𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
) for points 𝑥𝑗+ 1

2
, such that for 𝑗 ∈ Z we have

𝑥𝑗+ 1
2
− 𝑥𝑗− 1

2
= ∆𝑥𝑖 for some 𝑖 = 0, . . . , 𝑁 . Here we used the notation ∆𝑥0 = ∆𝑥𝑁 = ∆𝑥. The temporal grid

cells we denote by 𝒞𝑛 = [𝑡𝑛, 𝑡𝑛+1) where 𝑡𝑛 = 𝑛∆𝑡 for 𝑛 = 0, . . . ,𝑀 + 1. Since the grid is aligned with the
discontinuities of 𝑘 we have 𝜉𝑖 = 𝑥𝑃𝑖− 1

2
for some integers 𝑃𝑖, 𝑖 = 1, . . . , 𝑁 .

We consider two-point numerical fluxes 𝐹 (𝑢, 𝑣) that have the upwind property such that if 𝑓 ′ ≥ 0 (which is
the setting of the present paper), we have 𝐹 (𝑢, 𝑣) = 𝑓(𝑣). This includes the upwind flux, the Godunov flux, and
the Engquist–Osher flux. The finite volume method we consider is the following [7]:

𝑢0
𝑗 =

1
∆𝑥

∫︁
𝒞𝑗

𝑢0(𝑥) d𝑥, 𝑗 ∈ Z,

𝑢𝑛+1
𝑗 = 𝑢𝑛

𝑗 − 𝜆𝑖

(︁
𝑓 (𝑖)

(︀
𝑢𝑛

𝑗

)︀
− 𝑓 (𝑖)

(︀
𝑢𝑛

𝑗−1

)︀)︁
, 𝑛 ≥ 0, 𝑃𝑖 < 𝑗 < 𝑃𝑖+1, 0 ≤ 𝑖 ≤ 𝑁,

𝑢𝑛+1
𝑃𝑖

=
(︁
𝑓 (𝑖)
)︁−1 (︁

𝑓 (𝑖−1)
(︀
𝑢𝑛+1

𝑃𝑖−1

)︀)︁
, 𝑛 ≥ 0, 0 < 𝑖 ≤ 𝑁,

(5.2)

where 𝑃0 = −∞, 𝑃𝑁+1 = +∞, and 𝜆𝑖 = ∆𝑡/∆𝑥. We assume that the grid discretization parameters satisfy the
CFL condition

max
𝑖

max
𝑢

(︁
𝑓 (𝑖)
)︁′

(𝑢)
∆𝑡

∆𝑥
≤ 1

2
(5.3)

such that, in particular,

max
𝑖

max
𝑢

(︁
𝑓 (𝑖)
)︁′

(𝑢)𝜆𝑖 ≤ 1.

Note that the last line of (5.2) represents a discrete version of the Rankine–Hugoniot condition (3.2). Here, we
use the ghost cells 𝒞𝑃𝑖

, 𝑖 = 1, . . . , 𝑁 to explicitly enforce the Rankine–Hugoniot condition on the discrete level.
With the sequence of cell averages (𝑢𝑛

𝑗 )𝑗,𝑛 we associate the piecewise constant function 𝑢Δ𝑥(𝑥, 𝑡) given by

𝑢Δ𝑥(𝑥, 𝑡) = 𝑢𝑛
𝑗 , (𝑥, 𝑡) ∈ 𝒞𝑗 × 𝒞𝑛.

The following lemma shows that the finite volume method is stable in L∞ and L1.

Lemma 5.1 (Stability of the finite volume method). If the numerical scheme (5.2) satisfies the CFL condi-
tion (5.3) we have the following stability estimates:

‖𝑢Δ𝑥(·, 𝑡)‖L∞(R) ≤
𝐶𝑓

𝛼
‖𝑢0‖L∞(R) (5.4)
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and
‖𝑢Δ𝑥(·, 𝑡)‖L1(R) ≤ ‖𝑢0‖L1(R) + 𝐶TV(𝑢0)∆𝑥.

Proof. (1) We first prove the L∞-bound. To that end, we show by induction over 𝑖 = 0, . . . , 𝑁 that

𝑢𝑛
𝑗 ≤ max

𝑚=0,...,𝑖
sup

𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖)
)︁−1 (︁

𝑓 (𝑚)
(︀
𝑢0

𝑙

)︀)︁
(5.5)

for all 𝑗 = 𝑃𝑖, . . . , 𝑃𝑖+1 − 1 and 𝑛 = 0, . . . ,𝑀 + 1. For 𝑖 = 0, standard techniques for finite volume methods
for conservation laws show

𝑢𝑛
𝑗 ≤ max

{︀
𝑢𝑛−1

𝑗−1 , 𝑢𝑛−1
𝑗

}︀
≤ . . . ≤ sup

𝑙<𝑃1

𝑢0
𝑙 .

Assume now that (5.5) holds for some 𝑖 ∈ {0, . . . , 𝑁 − 1} and all 𝑗 = 𝑃𝑖, . . . , 𝑃𝑖+1 − 1 and 𝑛 = 0, . . . ,𝑀 + 1.
Then we have for 𝑗 = 𝑃𝑖+1

𝑢𝑛
𝑃𝑖+1

=
(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑖)

(︁
𝑢𝑛

𝑃𝑖+1−1

)︁)︁
≤ max

𝑚=0,...,𝑖
sup

𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑚)

(︀
𝑢0

𝑙

)︀)︁
.

On the other hand, for 𝑗 ∈ {𝑃𝑖+1 + 1, . . . , 𝑃𝑖+2 − 1} we have as before

𝑢𝑛
𝑗 ≤ max

{︀
𝑢𝑛−1

𝑗−1 , . . . , 𝑢1
𝑗−1, 𝑢

0
𝑗−1, 𝑢

0
𝑗

}︀
≤ . . . ≤ max

{︁
𝑢

𝑛−(𝑗−𝑃𝑖+1)
𝑃𝑖+1

, . . . , 𝑢1
𝑃𝑖+1

, 𝑢0
𝑃𝑖+1

, . . . , 𝑢0
𝑗

}︁
.

By combining both estimates, we obtain for 𝑗 ∈ {𝑃𝑖+1, . . . , 𝑃𝑖+2 − 1}

𝑢𝑛
𝑗 ≤ max

{︃
max

𝑙=𝑃𝑖+1,...,𝑃𝑖+2−1
𝑢0

𝑙 , max
𝑚=0,...,𝑖

sup
𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑚)

(︀
𝑢0

𝑙

)︀)︁}︃

= max
𝑚=0,...,𝑖+1

sup
𝑙=𝑃𝑚,...,𝑃𝑚+1−1

(︁
𝑓 (𝑖+1)

)︁−1 (︁
𝑓 (𝑚)

(︀
𝑢0

𝑙

)︀)︁
which completes the induction. By taking absolute values in (5.5) we get for 𝑗 ∈ Z

|𝑢𝑛
𝑗 | ≤

1
𝛼

max
𝑖=0,...,𝑁

⃦⃦⃦
𝑓 (𝑖)
⃦⃦⃦

Lip
‖𝑢0‖L∞(R) .

Taking the supremum over 𝑗 yields the L∞-bound (5.4).
(2) In order to prove the L1-bound note that we have the discrete entropy inequalities

|𝑢𝑛+1
𝑗 − 𝑐| − |𝑢𝑛

𝑗 − 𝑐|+ 𝜆
(︁
𝑞
(𝑖),𝑛
𝑗 − 𝑞

(𝑖),𝑛
𝑗−1

)︁
≤ 0, 𝑖 = 0, . . . , 𝑁, 𝑗 = 𝑃𝑖 + 1, . . . , 𝑃𝑖+1 − 1

for all 𝑐 ∈ R (see [7]). Here, we have denoted 𝑞
(𝑖),𝑛
𝑗 = |𝑓 (𝑖)(𝑢𝑛

𝑗 ) − 𝑓 (𝑖)(𝑐)|. Taking 𝑐 = 0 and summing over
𝑗 ∈ Z ∖ {𝑃1, . . . , 𝑃𝑁} yields

∑︁
𝑗 ̸=𝑃𝑖

|𝑢𝑛+1
𝑗 | ≤

∑︁
𝑗 ̸=𝑃𝑖

|𝑢𝑛
𝑗 | − 𝜆

𝑁∑︁
𝑖=0

𝑃𝑖+1−1∑︁
𝑗=𝑃𝑖+1

(︁
𝑞
(𝑖),𝑛
𝑗 − 𝑞

(𝑖),𝑛
𝑗−1

)︁
=
∑︁
𝑗 ̸=𝑃𝑖

|𝑢𝑛
𝑗 |.

Therefore, we have

∑︁
𝑗∈Z

|𝑢𝑛+1
𝑗 | ≤

∑︁
𝑗∈Z

|𝑢𝑛
𝑗 |+

𝑁∑︁
𝑖=1

(︀⃒⃒
𝑢𝑛+1

𝑃𝑖
| − |𝑢𝑛

𝑃𝑖

⃒⃒)︀
≤
∑︁
𝑗∈Z

|𝑢𝑛
𝑗 |+

𝑁∑︁
𝑖=1

1
𝛼

⃦⃦⃦
𝑓 (𝑖−1)

⃦⃦⃦
Lip

⃒⃒
𝑢𝑛+1

𝑃𝑖−1 − 𝑢𝑛
𝑃𝑖−1

⃒⃒
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and hence ∑︁
𝑗∈Z

|𝑢𝑛+1
𝑗 | ≤

∑︁
𝑗∈Z

|𝑢0
𝑗 |+

𝑁∑︁
𝑖=0

1
𝛼

⃦⃦⃦
𝑓 (𝑖−1)

⃦⃦⃦
Lip

𝑛∑︁
𝑚=0

⃒⃒
𝑢𝑚+1

𝑃𝑖−1 − 𝑢𝑚
𝑃𝑖−1

⃒⃒
.

In Lemma 4.6 of [7], it was shown that for all 𝑖 = 0, . . . , 𝑁 we have

𝑛∑︁
𝑚=0

⃒⃒
𝑢𝑚+1

𝑃𝑖−1 − 𝑢𝑚
𝑃𝑖−1

⃒⃒
≤ 𝐶TV(𝑢0)

which together with the foregoing estimate finally yields

‖𝑢Δ𝑥(·, 𝑡)‖L1(R) ≤ ‖𝑢0‖L1(R) + 𝐶TV(𝑢0)∆𝑥.

�

In order to prove error estimates of the Monte Carlo and multilevel Monte Carlo finite volume method we
will need the following convergence rate estimate which was proved in [7].

Theorem 5.2 (Convergence rate of the finite volume method [7]). Let 𝑓, 𝑘, and 𝑢0 satisfy Assumption 3.1
and the discretization parameters satisfy the CFL condition (5.3). Then the finite volume approximation 𝑢Δ𝑥

given by the scheme (5.2) converges towards the unique entropy solution 𝑢 of (4.1) almost everywhere and in
L1(R× (0, 𝑇 )). In particular, we have the following convergence rate estimate

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L1(R) ≤ 𝐶∆𝑥
1
2 (5.6)

for all 0 ≤ 𝑡 ≤ 𝑇 .

Note that the convergence rate estimate (5.6) is optimal in the sense that the exponent 1
2 cannot be improved

without further assumptions on the initial datum [7] (see [47] for an overview of the literature regarding optimal
convergence rates of finite volume methods for conservation laws without spatial dependency).

Remark 5.3. We want to point out that the constant 𝐶 in (5.6) depends only on TV(𝑢0), ‖𝑢0‖L∞ , ‖𝑓‖∞, 𝛼
and the number of discontinuities of 𝑘. In particular, for random data given according to Definition 4.1 all those
quantities are uniformly bounded and thus for random entropy solutions the constant 𝐶 in (5.6) is integrable
in 𝜔.

Remark 5.4. Reasoning as for entropy solutions, the finite volume approximation satisfies

‖𝑢Δ𝑥(·, 𝑡)‖L𝑝(𝐷) ≤ |𝐷|
1
𝑝 ‖𝑢Δ𝑥(·, 𝑡)‖L∞(𝐷) ≤ 𝐶 ‖𝑢0‖L∞(𝐷)

for all 1 ≤ 𝑝 ≤ ∞. Like in Lemma 4.5, this translates into the following probabilistic bound:

‖𝑢Δ𝑥(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) (5.7)

for all 0 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑝 ≤ ∞.

For the rest of this paper, we will consider entropy solutions on a bounded interval 𝐷 ⊂ R with periodic
boundary conditions. With the usual arguments, all previous results concerning entropy solutions and their
finite volume approximations carry over to this setting verbatim. Note that restricting ourselves to a bounded
domain will enable us to prove error estimates of the Monte Carlo and multilevel Monte Carlo finite volume
method also in L2(Ω; L1(𝐷)) (cf. [45]).
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5.2. Monte Carlo finite volume method

We now consider the random conservation law with discontinuous flux (4.1) and introduce and analyze the
Monte Carlo finite volume method.

Given 𝑀 ∈ N, we generate 𝑀 independent and identically distributed samples (𝑓 𝑖, 𝑘𝑖, 𝑢̂𝑖
0)𝑀

𝑖=1 of given random
data (𝑢0, 𝑘, 𝑓). Let now 𝑢̂𝑖

Δ𝑥(·, 𝑡), 𝑖 = 1, . . . ,𝑀 , denote the numerical solutions generated by the finite volume
method (5.2) at time 𝑡 corresponding to the sample (𝑓 𝑖, 𝑘𝑖, 𝑢̂𝑖

0). Then, the 𝑀 -sample MCFVM approximation
to E[𝑢(·, 𝑡)] is defined as

𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)] =
1
𝑀

𝑀∑︁
𝑖=1

𝑢̂𝑖
Δ𝑥(·, 𝑡).

As mentioned earlier the approximation error of the MCFVM has a component coming from the statistical
sampling error and one from the deterministic discretization error. We will make this statement precise in the
following theorem.

Theorem 5.5 (MCFVM error estimate). Let (𝑢0, 𝑘, 𝑓) be random data and 𝑢 the corresponding random entropy
solution of (4.1). Assume that 𝑢0 satisfies the 𝑟-th moment condition

‖𝑢0‖L𝑟(Ω;L∞(𝐷)) < ∞

for some 1 < 𝑟 ≤ ∞. Assume further that we are given a FVM (5.2) such that the CFL condition (5.3) holds.
Then, for each 1 ≤ 𝑝 ≤ ∞ and 0 ≤ 𝑡 ≤ 𝑇 and for 𝑞 = min(2, 𝑟) > 1, the MCFVM approximation satisfies the
error estimate

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶

(︂
𝑀

1−𝑞
𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) + ‖𝑢0‖

1− 1
𝑝

L𝑟(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

)︂
. (5.8)

In particular, the MCFVM approximation converges towards E[𝑢(·, 𝑡)] in L𝑞(Ω; L𝑝(𝐷)) as 𝑀 →∞ and ∆𝑥 → 0.

Proof. We use the triangle inequality to get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

≤ ‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) + ‖𝐸𝑀 [𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) (5.9)

and estimate the resulting two terms separately. For the first term in (5.9), we distinguish the two cases 𝑝 ≥ 𝑞
and 𝑝 < 𝑞.

(1) We first consider the case 𝑝 ≥ 𝑞. According to Lemma 4.5 we have

‖𝑢(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))

and thus 𝑢(·, 𝑡) ∈ L𝑟(Ω; L𝑝(𝐷)). Therefore, we can apply Theorem 2.5 to get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢(·, 𝑡)‖L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢(·, 𝑡)‖L𝑟(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) .

(2) In the case 𝑝 < 𝑞, we can apply Hölder’s inequality to estimate

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶 ‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑞(𝐷)) .
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Again, we want to employ Theorem 2.5. To that end, we note that because of Lemma 4.5 and the fact that
𝑞 ≤ 𝑟 we have

‖𝑢(·, 𝑡)‖L𝑞(Ω;L𝑞(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑞(Ω;L∞(𝐷)) ≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))

and therefore 𝑢(·, 𝑡) ∈ L𝑞(Ω; L𝑞(𝐷)) and we can apply Theorem 2.5 to get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑞(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢(·, 𝑡)‖L𝑞(Ω;L𝑞(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) .

Hence, for all 1 ≤ 𝑝 ≤ ∞, we get

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶𝑀
1−𝑞

𝑞 ‖𝑢0‖L𝑟(Ω;L∞(𝐷)) .

On the other hand, for the second term in (5.9) we can use the triangle inequality and the linearity of the
expected value to obtain

‖𝐸𝑀 [𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤
1
𝑀

𝑀∑︁
𝑖=1

⃦⃦
𝑢̂𝑖(·, 𝑡)− 𝑢̂𝑖

Δ𝑥(·, 𝑡)
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

= ‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑞(Ω;L𝑝(𝐷)) .

Using the interpolation inequality between L1 and L∞, the L∞-bound for both 𝑢(·, 𝑡) and 𝑢Δ𝑥(·, 𝑡) (see (3.3)
respectively (5.4)), and the convergence rate estimate (5.6), we get

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑞(Ω;L𝑝(𝐷)) ≤ ‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖
1
𝑝

L𝑞(Ω;L1(𝐷)) ‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖1−
1
𝑝

L𝑞(Ω;L∞(𝐷))

≤ 𝐶 ‖𝑢0‖
1− 1

𝑝

L𝑟(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝 ,

which completes the proof. �

Note that the computations in the proof of the error estimate (5.8) are also valid if 𝑟 = 1 (and thus 𝑞 = 1).
However, in that case the right-hand side does not decrease as 𝑀 →∞.

5.3. Multilevel Monte Carlo finite volume method

Instead of just considering Monte Carlo samples of a single fixed resolution of the finite volume method,
we now detail the corresponding multilevel variant – the multilevel Monte Carlo finite volume method. The
idea of MLMC discretization of differential equations with random parameters was proposed by Giles in [18,19]
based upon earlier work by Heinrich on numerical quadrature [24]. The key ingredient of the MLMCFVM is
simultaneous MC sampling on different levels of resolution of the finite volume method with level-dependent
numbers 𝑀𝑙 of MC samples.

To that end, we generate a sequence of finite volume approximations 𝑈(·, 𝑡) := (𝑢𝑙(·, 𝑡))𝐿
𝑙=0 on grids with cell

sizes ∆𝑥𝑙 and time steps ∆𝑡𝑙 (subject to the CFL condition (5.3)) and set 𝑢Δ𝑥−1(·, 𝑡) = 0. Then, we have

E[𝑢Δ𝑥𝐿
(·, 𝑡)] = E

[︃
𝐿∑︁

𝑙=0

(𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡))

]︃
=

𝐿∑︁
𝑙=0

E[𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)].

We now approximate each term E[𝑢Δ𝑥𝑙
(·, 𝑡) − 𝑢Δ𝑥𝑙−1(·, 𝑡)] by a Monte Carlo estimator with 𝑀𝑙 samples. The

resulting MLMCFVM approximation to E[𝑢(·, 𝑡)] then is

𝐸𝐿[𝑈(·, 𝑡)] =
𝐿∑︁

𝑙=0

𝐸𝑀𝑙

[︀
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
]︀
. (5.10)
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In the following convergence analysis, we will assume for simplicity that ∆𝑥𝑙 = 2−𝑙∆𝑥0, 𝑙 = 0, . . . , 𝐿, for some
∆𝑥0 > 0.

As for the MCFVM, we want to obtain a rate at which 𝐸𝐿[𝑈(·, 𝑡)] converges towards E[𝑢(·, 𝑡)] in terms of
the number of MC samples 𝑀𝑙 and the spatial resolution ∆𝑥𝑙 on each level 𝑙 = 0, . . . , 𝐿.

Theorem 5.6 (MLMCFVM error estimate). Let 𝐿 > 0, (𝑢0, 𝑘, 𝑓) be random data, and 𝑢 the corresponding
random entropy solution of (4.1). Assume that 𝑢0 satisfies

‖𝑢0‖L𝑟(Ω;L∞(𝐷)) < ∞

for some 1 < 𝑟 ≤ ∞. Assume further that we are given a FVM (5.2) such that the CFL condition (5.3)
holds. Then, for each 0 ≤ 𝑡 ≤ 𝑇 , for any sequence (𝑀𝑙)𝐿

𝑙=0 of sample sizes at mesh level 𝑙 the MLMCFVM
approximation (5.10) satisfies the following error estimate for 𝑞 = min(2, 𝑟) > 1⃦⃦

E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(R))

≤ 𝐶

(︃
‖𝑢0‖

1− 1
̃︀𝑝

L1(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

𝐿 + ‖𝑢0‖L𝑞(Ω;L∞(𝐷)) 𝑀
1−𝑞

𝑞

0 + ‖𝑢0‖
1− 1

̃︀𝑝
L𝑞(Ω;L∞(𝐷))

𝐿∑︁
𝑙=0

𝑀
1−𝑞

𝑞

𝑙 ∆𝑥
1
2̃︀𝑝
𝑙

)︃
(5.11)

where ̃︀𝑝 = max(𝑝, 𝑞). In particular, for fixed 𝐿 the MLMCFVM approximation 𝐸𝐿[𝑈(·, 𝑡)] converges towards
E[𝑢(·, 𝑡)] in L𝑞(Ω; L𝑝(𝐷)) as 𝑀𝑙 →∞ and ∆𝑥0 → 0.

Proof. Using the triangle inequality and the linearity of the expectation, we get

‖E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

≤ ‖E[𝑢(·, 𝑡)]− E[𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) +

⃦⃦
E[𝑢Δ𝑥𝐿

(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

= ‖E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

+

⃦⃦⃦⃦
⃦

𝐿∑︁
𝑙=0

(︀
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
)︀⃦⃦⃦⃦⃦

L𝑞(Ω;L𝑝(𝐷))

≤ ‖E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

+
𝐿∑︁

𝑙=0

⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))
.

For the first term, note that the function E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)] is deterministic and thus we can use the conver-

gence rate estimate (5.6) to get

‖E[𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷))

≤ ‖𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)‖L1(Ω;L𝑝(𝐷))

≤ ‖𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)‖

1
𝑝

L1(Ω;L1(𝐷)) ‖𝑢(·, 𝑡)− 𝑢Δ𝑥𝐿
(·, 𝑡)‖1−

1
𝑝

L1(Ω;L∞(𝐷))

≤ 𝐶 ‖𝑢0‖
1− 1

𝑝

L1(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

𝐿 .

We now estimate the summands in the second term. Similarly to the proof of Theorem 5.5 we distinguish the
two cases 𝑝 ≥ 𝑞 and 𝑝 < 𝑞.

(1) We first consider the case 𝑝 ≥ 𝑞. Because of the triangle inequality and (5.7) we have⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑟(Ω;L𝑝(𝐷))
≤ 𝐶 ‖𝑢0‖L𝑟(Ω;L∞(𝐷))
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and thus 𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡) ∈ L𝑟(Ω; L𝑝(𝐷)). Therefore we can apply Theorem 2.5 to get⃦⃦

E[𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙

[𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]

⃦⃦
L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞

𝑙

⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L𝑝(𝐷))
.

(2) In the case 𝑝 < 𝑞, we can apply Hölder’s inequality to estimate⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶
⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑞(𝐷))
.

Following the same steps as in case (2) in the proof of Theorem 5.5 for 𝑢Δ𝑥𝑙
(·, 𝑡) − 𝑢Δ𝑥𝑙−1(·, 𝑡) instead of

𝑢(·, 𝑡) and using (5.7) instead of Lemma 4.5, we see that 𝑢Δ𝑥𝑙
(·, 𝑡) − 𝑢Δ𝑥𝑙−1(·, 𝑡) ∈ L𝑞(Ω; L𝑞(𝐷)). Thus, we

can apply Theorem 2.5 again and get⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑞(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞

𝑙

⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L𝑞(𝐷))
.

Combining both cases, we get⃦⃦
E[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)]
⃦⃦

L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶𝑀
1−𝑞

𝑞

𝑙

⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L̃︀𝑝(𝐷))

where ̃︀𝑝 = max(𝑝, 𝑞). Now, we can use the triangle inequality to get⃦⃦
𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)
⃦⃦

L𝑞(Ω;L̃︀𝑝(𝐷))
≤ ‖𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) +
⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦
L𝑞(Ω;L̃︀𝑝(𝐷))

.

For 𝑙 > 0, we can use the interpolation inequality between L1 and L∞, the L1 and L∞ bounds of the entropy
solution and finite volume approximations (see (3.3) respectively (5.4)), and the convergence rate estimate (5.6)
to get

‖𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) +

⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦
L𝑞(Ω;L̃︀𝑝(𝐷))

≤ ‖𝑢Δ𝑥𝑙
(·, 𝑡)− 𝑢(·, 𝑡)‖

1
̃︀𝑝
L𝑞(Ω;L1(𝐷)) ‖𝑢Δ𝑥𝑙

(·, 𝑡)− 𝑢(·, 𝑡)‖1−
1
̃︀𝑝

L𝑞(Ω;L∞(𝐷))

+
⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦ 1
̃︀𝑝
L𝑞(Ω;L1(𝐷))

⃦⃦
𝑢(·, 𝑡)− 𝑢Δ𝑥𝑙−1(·, 𝑡)

⃦⃦1− 1
̃︀𝑝

L𝑞(Ω;L∞(𝐷))

≤ 𝐶 ‖𝑢0‖
1− 1

̃︀𝑝
L𝑞(Ω;L∞(𝐷))

(︂
∆𝑥

1
2̃︀𝑝
𝑙 + ∆𝑥

1
2̃︀𝑝
𝑙−1

)︂
≤ 𝐶 ‖𝑢0‖

1− 1
̃︀𝑝

L𝑞(Ω;L∞(𝐷)) ∆𝑥
1
2̃︀𝑝
𝑙 .

Similarly, for 𝑙 = 0 (note that 𝑢Δ𝑥−1 = 0), the convergence rate estimate (5.6) and the bound from Lemma 4.5
give

‖𝑢Δ𝑥0(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) ≤ ‖𝑢Δ𝑥0(·, 𝑡)− 𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷)) + ‖𝑢(·, 𝑡)‖L𝑞(Ω;L̃︀𝑝(𝐷))

≤ 𝐶

(︂
‖𝑢0‖

1− 1
̃︀𝑝

L𝑞(Ω;L∞(𝐷)) ∆𝑥
1
2̃︀𝑝
0 + ‖𝑢0‖L𝑞(Ω;L∞(𝐷))

)︂
.
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Combining all estimates finally gives⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L𝑞(Ω;L𝑝(R))

≤ 𝐶

(︃
‖𝑢0‖

1− 1
̃︀𝑝

L1(Ω;L∞(𝐷)) ∆𝑥
1
2𝑝

𝐿 + ‖𝑢0‖L𝑞(Ω;L∞(𝐷)) 𝑀
1−𝑞

𝑞

0 + ‖𝑢0‖
1− 1

̃︀𝑝
L𝑞(Ω;L∞(𝐷))

𝐿∑︁
𝑙=0

𝑀
1−𝑞

𝑞

𝑙 ∆𝑥
1
2̃︀𝑝
𝑙

)︃
.

�

5.4. Work estimates and sample number optimization

In order to analyze the efficiency of the MC and MLMCFVM, it is important to estimate the computational
work which is needed to compute one approximation of the solution by the deterministic FVM and how it
increases with respect to mesh refinement. Here, by computational work, we understand the number of floating
point operations performed when executing an algorithm and we assume that this in turn is proportional to the
runtime of the algorithm.

In practice, we deal with bounded domains instead of working on the whole real line and thus the number of
grid cells scales as 1/∆𝑥. For the deterministic FVM (5.2) the number of floating point operations per time step
is proportional to the number of cells in the spatial domain, hence the computational work can be bounded by
𝐶∆𝑡−1∆𝑥−1. Considering the CFL condition (5.3), we thus obtain the computational work estimate

𝑊FVM(∆𝑥) ≤ 𝐶∆𝑥−2

for the deterministic FVM approximation. However, for the sake of generality, we will in the following only
assume that the computational work scales as

𝑊FVM(∆𝑥) ≤ 𝐶∆𝑥−𝑤 (5.12)

for some 𝑤 > 0. As seen before, we have the L𝑝 convergence rate estimate

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑝(𝐷) ≤ 𝐶∆𝑥
𝑠
𝑝

(for 𝑠 = 1
2 ) which yields the following deterministic convergence rate with respect to work:

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L𝑝(𝐷) ≤ 𝐶
(︀
𝑊FVM

)︀− 𝑠
𝑤𝑝 . (5.13)

In particular, for 𝑝 = 1, 𝑤 = 2, and 𝑠 = 1
2 we have

‖𝑢(·, 𝑡)− 𝑢Δ𝑥(·, 𝑡)‖L1(𝐷) ≤ 𝐶
(︀
𝑊FVM

)︀− 1
4 .

5.4.1. Work estimates for the MCFVM approximation

Since for the Monte Carlo finite volume method 𝑀 deterministic finite volume approximations need to be
computed, each of which require work as in (5.12), the computational work for the MCFVM is bounded as

𝑊MC
𝑀 ≤ 𝐶𝑀∆𝑥−𝑤. (5.14)

In order to obtain the order of convergence of the approximation error in terms of computational work, we
equilibrate the terms 𝑀

1−𝑞
𝑞 and ∆𝑥

𝑠
𝑝 in (5.8) by choosing 𝑀 = 𝐶∆𝑥

𝑠𝑞
𝑝(1−𝑞) . Inserting this into the work

bound (5.14) yields

𝑊MCFVM
𝑀 ≤ 𝐶∆𝑥

𝑠𝑞−𝑤𝑝(1−𝑞)
𝑝(1−𝑞)
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such that we obtain from (5.8)

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L𝑞(Ω;L𝑝(𝐷)) ≤ 𝐶∆𝑥
𝑠
𝑝 ≤ 𝐶

(︀
𝑊MC

𝑀

)︀− 𝑠
𝑤𝑝+𝑠

𝑞
𝑞−1 . (5.15)

Note that, since 𝑞/(𝑞 − 1) is positive, we have

𝑠

𝑤𝑝 + 𝑠 𝑞
𝑞−1

≤ 𝑠

𝑤𝑝

and thus the rate (5.15) is worse than the error rate in terms of computational work (5.13) of the deterministic
finite volume method.

In particular, for 𝑝 = 1 and 𝑟 ≥ 2 (which implies 𝑞 = 2), and taking into account that 𝑤 = 2 and 𝑠 = 1
2 , the

rate (5.15) reads

‖E[𝑢(·, 𝑡)]− 𝐸𝑀 [𝑢Δ𝑥(·, 𝑡)]‖L2(Ω;L1(𝐷)) ≤ 𝐶
(︀
𝑊MC

𝑀

)︀− 1
6 .

5.4.2. Optimal sample numbers for the MLMCFVM approximation

In [32], Koley et al. showed the following general result for multilevel Monte Carlo finite volume methods
which we can apply to our case to determine the number of samples needed at each level 𝑙 such that, given an
error tolerance 𝜀 > 0, the computational work of the MLMCFVM is minimal.

Lemma 5.7 ([32], Lem. 4.9). Assume that the work of a multilevel Monte Carlo finite volume method with 𝐿
discretization levels scales asymptotically as

𝑊MLMC
𝐿 = 𝐶

𝐿∑︁
𝑙=0

𝑀𝑙∆𝑥−𝑤
𝑙

for some 𝑤 > 0 and that the approximation error (raised to the 𝑞-th power) scales as

Err𝐿 = 𝐶

(︃
∆𝑥

𝑠𝑞
𝑝

𝐿 + 𝑀1−𝑞
0 +

𝐿∑︁
𝑙=0

𝑀1−𝑞
𝑙 ∆𝑥

𝑠𝑞
̃︀𝑝

𝑙

)︃

where ̃︀𝑝 = max(𝑝, 𝑞) (cf. (5.11)). Then, given an error tolerance 𝜀 > 0, the optimal sample numbers 𝑀𝑙 mini-
mizing the computational work given the error tolerance 𝜀 are given by

𝑀0 ≃

(︃
1 + ∆𝑥

𝑠
̃︀𝑝
0

∑︀𝐿
𝑙=1 2𝑙(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )

𝜀−∆𝑥
𝑠𝑞
𝑝

𝐿

)︃ 1
𝑞−1

(5.16)

and
𝑀𝑙 ≃ 𝑀0∆𝑥

𝑠
̃︀𝑝
0 2−𝑙( 𝑠

̃︀𝑝 + 𝑤
𝑞 ), for 𝑙 > 0, (5.17)

where ≃ indicates that this is the number of samples up to a constant which is independent of 𝑙 and 𝐿. The
minimal amount of work then is

𝑊MLMC
𝐿 ≃ ∆𝑥−𝑤

0

(︃
1 + ∆𝑥

𝑠
̃︀𝑝
0

𝐿∑︁
𝑙=1

2𝑙(𝑤 𝑞−1
𝑞 − 𝑠

̃︀𝑝 )
)︃(︃

1 + ∆𝑥
𝑠
̃︀𝑝
0

∑︀𝐿
𝑙=1 2𝑙(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )

𝜀−∆𝑥
𝑠𝑞
𝑝

0 2−𝐿 𝑞𝑠
𝑝

)︃ 1
𝑞−1

.

Lemma 5.7 can be used to derive a rate for the approximation error of the MLMCFVM in terms of the
computational work.
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Corollary 5.8. In addition to the assumptions of Lemma 5.7, assume that 𝑤 𝑞−1
𝑞 − 𝑠

̃︀𝑝 > 0 and that 𝐿 and ∆𝑥0

are large enough such that

∆𝑥
𝑠
̃︀𝑝

𝑞
𝑞−1−𝑤

𝐿 > ∆𝑥−𝑤
0

where ̃︀𝑝 = max(𝑝, 𝑞) and 𝑤 is as in (5.7). Then, for each 0 ≤ 𝑡 ≤ 𝑇 and for 𝑞 = min(2, 𝑟) the L𝑞(Ω; L𝑝(𝐷))-
approximation error of the MLMCFVM (5.10) scales with respect to computational work as

⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L𝑞(Ω;L𝑝(𝐷))

≤ 𝐶
(︀
𝑊MLMC

𝐿

)︀− 𝑠

𝑤𝑝+𝑠
̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1 . (5.18)

Proof. Since
(︁
𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝

)︁
> 0 the sums in the expression for 𝑊MLMC

𝑀 from Lemma 5.7 are dominated by

2𝐿(𝑤 𝑞−1
𝑞 − 𝑠

̃︀𝑝 ). Choosing 𝜀 = 2∆𝑥
𝑠𝑞
𝑝

𝐿 and using that ∆𝑥
𝑠
̃︀𝑝

𝑞
𝑞−1−𝑤

𝐿 > ∆𝑥−𝑤
0 in the last step, we find

𝑊MLMC
𝐿 ≃ ∆𝑥−𝑤

0

(︁
1 + ∆𝑥

𝑠
̃︀𝑝
0 2𝐿(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )
)︁(︃1 + ∆𝑥

𝑠
̃︀𝑝
0 2𝐿(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )

∆𝑥
𝑠𝑞
𝑝

𝐿

)︃ 1
𝑞−1

≃ ∆𝑥−𝑤
0 ∆𝑥

− 𝑠𝑞
𝑝(𝑞−1)

𝐿

(︁
1 + ∆𝑥

𝑠
̃︀𝑝
0 2𝐿(𝑤 𝑞−1

𝑞 − 𝑠
̃︀𝑝 )
)︁ 𝑞

𝑞−1

≃ ∆𝑥
− 𝑠𝑞

𝑝(𝑞−1)

𝐿

(︁
∆𝑥−𝑤

0 + ∆𝑥
𝑠
̃︀𝑝

𝑞
𝑞−1−𝑤

𝐿

)︁
≃ ∆𝑥

𝑠( 1
̃︀𝑝−

1
𝑝 ) 𝑞

𝑞−1−𝑤

𝐿 .

Thus, we have

⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L2(Ω;L1(𝐷))

= 𝜀
1
𝑞 ≃ ∆𝑥

𝑠
𝑝

𝐿 ≃
(︀
𝑊MLMC

𝐿

)︀− 𝑠

𝑤𝑝+𝑠
̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1 .

�

Since (̃︀𝑝−𝑝)
̃︀𝑝 and 𝑞

(𝑞−1) are nonnegative, we have

𝑠

𝑤𝑝 + 𝑠 ̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1

≤ 𝑠

𝑤𝑝

and thus the error rate in terms of the computational work (5.18) of the MLMCFVM is worse than the error
rate (5.13) for the deterministic scheme. However, since ̃︀𝑝−𝑝

̃︀𝑝 ≤ 1− 𝑝
𝑞 ≤ 1, we have

𝑠

𝑤𝑝 + 𝑠 ̃︀𝑝−𝑝
̃︀𝑝

𝑞
𝑞−1

≥ 𝑠

𝑤𝑝 + 𝑠 𝑞
𝑞−1

and thus the error rate (5.18) of the MLMCFVM constitutes an improvement over the (single-level) MCFVM,
cf. (5.15).

Note that, in particular, for 𝑝 = 1 and 𝑟 ≥ 2 (which implies 𝑞 = 2 and ̃︀𝑝 = 2), and taking into account that
𝑤 = 2 and 𝑠 = 1

2 , the error rate (5.18) reads

⃦⃦
E[𝑢(·, 𝑡)]− 𝐸𝐿[𝑈(·, 𝑡)]

⃦⃦
L2(Ω;L1(𝐷))

≤ 𝐶
(︀
𝑊MLMC

𝐿

)︀− 1
5 .
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Figure 1. Two possible fluxes of the form (6.1) for 𝑘(𝑥) = 0.7 (dashed line) and 𝑘(𝑥) = 2.3
(solid line)

6. Numerical experiments

In this section, we present numerical experiments motivated by two-phase flow in a heterogeneous porous
medium1. The time evolution of the oil saturation 𝑢 ∈ [0, 1] can be modeled by (1.1) where the flux is given by

𝑓(𝑘(𝑥), 𝑢) =
𝜆o(𝑢)

𝜆o(𝑢) + 𝜆w(𝑢)
(1− 𝑘(𝑥)𝜆w(𝑢)), (6.1)

see Example 8.2 of [25]. Here, the functions 𝜆o and 𝜆w denote the phase mobilities/relative permeabilities of
the oil and the water phase, respectively. Typically, one uses the simple expressions

𝜆o(𝑢) = 𝑢2, 𝜆w(𝑢) = (1− 𝑢)2

which we will also do in the first two subsequent experiments. The coefficient 𝑘 in (6.1) corresponds to the
absolute permeability of the medium. Since the medium is usually layered to some extent throughout the
reservoir and even continuously varying geology is typically mapped onto some grid, the coefficient 𝑘 is often
modeled as a piecewise constant function [23].

Since numerical experiments for conservation laws where the initial datum or the flux is uncertain have been
reported in other works (albeit without spatially discontinuous flux), we will here focus on numerical experiments
where, in particular, the discontinuous coefficient 𝑘 is subject to randomness. We consider the initial datum

𝑢0(𝑥) =

{︃
0.8, −0.9 < 𝑥 < −0.2,

0.4, otherwise,
(6.2)

on the spatial domain 𝐷 = [−1, 1] with periodic boundary conditions. Figure 1 shows two examples of fluxes of
the form (6.1) and indicates the relevant domain determined by the initial datum (6.2). In all experiments we
use 𝜆 = Δ𝑡

Δ𝑥 = 0.2 in the finite volume approximation (5.2).
When choosing the number of samples for the MLMC estimator we use the formulae (5.16) and (5.17) with

“=” replacing “≃” and rounding to the next biggest integer. Here we use 𝑝 = 1, 𝑟 = 𝑞 = 2, 𝑤 = 2, 𝑠 = 1
2 , and

𝜀 = 2∆𝑥2𝑠
𝐿 in (5.16) and (5.17)2.

1The code used to produce these experiments can be found at https://github.com/adrianmruf/MLMC_discontinuous_flux
2For example, for 𝐿 = 7 and Δ𝑥0 = 2−4 we use (𝑀𝑙)

𝐿
𝑙=0 = (95 646, 20 107, 8 454, 3 555, 1 495, 629, 265, 112) samples.

https://github.com/adrianmruf/MLMC_discontinuous_flux
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In order to compute an estimate of the approximation error⃦⃦
E[𝑢(·, 𝑇 )]− 𝐸𝐿[𝑈(·, 𝑇 )]

⃦⃦
L2(Ω;L1(𝐷))

=
(︁
E
[︁⃦⃦

E[𝑢(·, 𝑇 )]− 𝐸𝐿[𝑈(·, 𝑇 )]
⃦⃦2

L1(𝐷)

]︁)︁ 1
2

we use the root mean square estimator introduced in [38]: We denote by 𝑈ref(·, 𝑇 ) a reference solution and by
(𝑈𝑖(·, 𝑇 ))𝐾

𝑖=1 a sequence of independent approximate solutions 𝐸𝐿[𝑈(·, 𝑇 )] obtained by running the MLMCFVM
estimator with 𝐿 levels 𝐾 times. Then, we estimate the relative error by

ℛℳ𝒮 =

(︃
1
𝐾

𝐾∑︁
𝑖=1

(ℛℳ𝒮𝑖)
2

)︃ 1
2

where

ℛℳ𝒮𝑖 = 100×
‖𝑈ref(·, 𝑇 )− 𝑈𝑖(·, 𝑇 )‖L1(𝐷)

‖𝑈ref(·, 𝑇 )‖L1(𝐷)

·

Here, as suggested in [38], we use 𝐾 = 30 which was shown to be sufficient for most problems. In each experiment,
as a reference approximation 𝑈ref(·, 𝑇 ) of E[𝑢(·, 𝑇 )], we use a solution computed by the MLMCFVM with
∆𝑥0 = 2−4 and 𝐿 = 8 which entails using 213 cells on the finest level.

In our figures we also indicate the approximated standard deviation. To that end, we approximate the variance
by

𝑉𝐿 =
𝐿∑︁

𝑙=0

𝐸𝑀𝑙

[︀
(𝑢Δ𝑥𝑙

(·, 𝑇 )− 𝑢Δ𝑥𝑙−1(·, 𝑇 )− 𝐸𝑀𝑙
[𝑢Δ𝑥𝑙

(·, 𝑇 )− 𝑢Δ𝑥𝑙−1(·, 𝑇 )])2
]︀
.

6.1. Uncertain position of rock layer interface

For our first numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =

{︃
1, 𝑥 < 𝜎(𝜔),
2, 𝑥 > 𝜎(𝜔)

corresponding to an uncertain position of the interface between two rock types in the reservoir. Here, the
random variable 𝜎 is uniformly distributed in [−0.3, 0.3]. Figure 2a shows two samples of the approximate
random entropy solution (with 𝜎 = −0.3 and 𝜎 = 0.3, respectively) calculated using 210 grid points at time
𝑇 = 0.2 and Figure 2b shows an estimate of the expectation E[𝑢(·, 𝑇 )] computed by the MLMCFVM with
∆𝑥0 = 2−4 and 𝐿 = 7.

Table 1 and Figure 3 show the estimated ℛℳ𝒮 error as a function of the number of levels. In particular,
Table 1a shows the observed order of convergence (OOC) with respect to ∆𝑥𝐿 while Table 1b shows the observed
order of convergence with respect to the computational work calculated based on a best linear fit under the
assumptions that ℛℳ𝒮 ∼ (∆𝑥𝐿)𝑟1 and ℛℳ𝒮 ∼ (work)𝑟2 . Here, we use the runtime as a surrogate for the
computational work. We observe that in Experiment 1 both rates are better than the rates guaranteed by our
convergence analysis.

6.2. Uncertain absolute permeabilities

For our second numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =

{︃
𝜉1(𝜔), 𝑥 < 0,

𝜉2(𝜔), 𝑥 > 0

corresponding to uncertain absolute permeabilities of two rock layers. Here, the random variables 𝜉1 and 𝜉2 are
independent and uniformly distributed in [0.7, 1.3] and [1.7, 2.3], respectively.
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Figure 2. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 1 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area between
the mean ± standard deviation. For each sample the discontinuity of 𝑘 is located in the interval
between the dotted lines. (A) Two samples of the random entropy solution (𝜎 = −0.3 (solid
line), 𝜎 = 0.3 (dashed line), ∆𝑥 = 2−9). (B) MLMCFVM approximation (∆𝑥0 = 2−4, 𝐿 = 7).

Table 1. ℛℳ𝒮 error in Experiment 1 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in s) for various values of 𝐿 and for
∆𝑥0 = 2−4.

(a) ℛℳ𝒮 versus Δ𝑥𝐿 (b) ℛℳ𝒮 versus work.

𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC 𝐿 Runtime ℛℳ𝒮 OOC

1 2−5 4.03 1 0.09 4.03
2 2−6 2.53 2 0.23 2.53
3 2−7 1.53 3 0.73 1.53
4 2−8 0.88 4 2.65 0.88
5 2−9 0.49 5 10.12 0.49
6 2−10 0.24 0.80 6 39.23 0.24 −0.45

Figure 4a shows two samples of the approximate random entropy solution (with (𝜉1, 𝜉2) = (1.3, 1.7) and
(𝜉1, 𝜉2) = (0.7, 2.3), respectively) calculated using 210 grid points at time 𝑇 = 0.2 and Figure 4b shows an
estimate of the expectation E[𝑢(·, 𝑇 )] computed by the MLMCFVM with ∆𝑥0 = 2−4 and 𝐿 = 7.

Table 2 and Figure 5 again show the root mean square error estimate and the observed order of convergence
with respect to ∆𝑥𝐿 and with respect to the computational work. As before, we observe that the observed
convergence rates are better than the theoretical bounds.

6.3. Uncertain position of rock layer interface and absolute and relative permeabilities

In our last numerical experiment we will model the absolute permeability parameter as

𝑘(𝑥) =

{︃
𝜉1(𝜔), 𝑥 < 𝜎(𝜔),
𝜉2(𝜔), 𝑥 > 𝜎(𝜔)
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Figure 3. ℛℳ𝒮 error in Experiment 1 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in 𝑠) corresponding to the values in
Table 1. The dashed lines indicate the observed order of convergence based on a best linear fit.
(A) ℛℳ𝒮 error versus ∆𝑥𝐿. (B) ℛℳ𝒮 error versus work.

Figure 4. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 2 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area
between the mean ± standard deviation and the dotted line marks the (fixed) position of
the discontinuity of 𝑘. (A) Two samples of the random entropy solution ((𝜉1, 𝜉2) = (1.3, 1.7)
(solid line), (𝜉1, 𝜉2) = (0.7, 2.3) (dashed line), ∆𝑥 = 2−9). (B) MLMCFVM approximation
(∆𝑥0 = 2−4, 𝐿 = 7).
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Table 2. ℛℳ𝒮 error in Experiment 2 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in s) for various values of 𝐿 and for
∆𝑥0 = 2−4.

(a) ℛℳ𝒮 versus Δ𝑥𝐿. (b) ℛℳ𝒮 versus work.

𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC 𝐿 Runtime (s) ℛℳ𝒮 OOC

1 2−5 3.86 1 0.07 3.86
2 2−6 2.32 2 0.18 2.32
3 2−7 1.41 3 0.64 1.41
4 2−8 0.82 4 2.52 0.82
5 2−9 0.45 5 9.88 0.45
6 2−10 0.22 0.82 6 38.16 0.22 −0.44

Figure 5. ℛℳ𝒮 error in Experiment 2 as a function of the finest grid solution ∆𝑥𝐿 and as
a function of the work (here measured by the runtime in 𝑠) corresponding to the values in
Table 2. The dotted lines indicate the observed order of convergence based on a best linear fit.
(A) ℛℳ𝒮 error versus ∆𝑥𝐿. (B) ℛℳ𝒮 error versus work.

corresponding to an uncertain position of the interface between two rock types as well as uncertain absolute
permeabilities of the rock layers. Here, the random variables 𝜉1, 𝜉2, and 𝜎 are uniformly distributed in [0.7, 1.3],
[1.7, 2.3] and [−0.3, 0.3], respectively. Furthermore, we will model the relative permeabilities 𝜆𝑜 and 𝜆𝑤 in (6.1)
as

𝜆𝑜(𝑢) = 𝑢𝑝(𝜔), 𝜆𝑤(𝑢) = (1− 𝑢)𝑝(𝜔)

where the random exponent 𝑝 is uniformly distributed in [1.5, 2.5]. Here, 𝜉1, 𝜉2, 𝜎 and 𝑝 are mutually independent.
Figure 6a shows two samples of the approximate random entropy solution (with (𝜉1, 𝜉2, 𝜎, 𝑝) =

(0.3,−0.3,−0.3, 1.5) and (𝜉1, 𝜉2, 𝜎, 𝑝) = (−0.3, 0.3, 0.3, 2.5), respectively) calculated using 210 grid points at
time 𝑇 = 0.2 and Figure 6b shows an estimate of the expectation E[𝑢(·, 𝑇 )] computed by the MLMCFVM with
∆𝑥0 = 2−4 and 𝐿 = 7.
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Figure 6. Two samples and a MLMCFVM approximation of the (mean of the) random entropy
solution for Experiment 3 with 𝑇 = 0.2 and 𝜆 = 0.2. The orange area indicates the area between
the mean ± standard deviation and the dotted line marks the (fixed) position of the disconti-
nuity of 𝑘. (A) Two samples of the random entropy solution ((𝜉1, 𝜉2, 𝜎, 𝑝) = (1.3, 1.7,−0.3, 1.5)
(solid line), (𝜉1, 𝜉2, 𝜎, 𝑝) = (0.7, 2.3, 0.3, 2.5) (dashed line), ∆𝑥 = 2−9). (B) MLMCFVM approx-
imation (∆𝑥0 = 2−4, 𝐿 = 7).

Table 3. ℛℳ𝒮 error in Experiment 3 as a function of the finest grid resolution ∆𝑥𝐿 and
as a function of the work (here measured by the runtime in s) for various values of 𝐿 and for
∆𝑥0 = 2−4.

(a) ℛℳ𝒮 versus Δ𝑥𝐿. (b) ℛℳ𝒮 versus work.

𝐿 Δ𝑥𝐿 ℛℳ𝒮 OOC 𝐿 Runtime (s) ℛℳ𝒮 OOC

1 2−5 3.44 1 0.08 3.44
2 2−6 1.97 2 0.21 1.97
3 2−7 1.14 3 0.74 1.14
4 2−8 0.63 4 3.07 0.63
5 2−9 0.33 5 12.93 0.33
6 2−10 0.17 0.86 6 55.93 0.17 −0.45

Table 3 and Figure 7 again show the root mean square error estimate and the observed order of convergence
with respect to ∆𝑥𝐿 and with respect to the computational work. Notably, the observed convergence rates are
very similar to those in Experiments 1 and 2 despite the four dimensional parameter space.

7. Conclusion

In this paper, we have considered conservation laws with discontinuous flux where the model parameters,
i.e., the initial datum, the flux function, and the discontinuous spatial dependency coefficient, are uncertain.
Based on adapted entropy solutions for the deterministic case, we have introduced a notion of random entropy
solutions and have proved well-posedness.

To numerically approximate the mean of a random entropy solution, we have proposed Monte Carlo meth-
ods coupled with a class of finite volume methods suited for conservation laws with discontinuous flux. Our
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Figure 7. ℛℳ𝒮 error in Experiment 3 as a function of the finest grid solution ∆𝑥𝐿 and as
a function of the work (here measured by the runtime in 𝑠) corresponding to the values in
Table 3. The dotted lines indicate the observed order of convergence based on a best linear fit.
(A) ℛℳ𝒮 error versus ∆𝑥𝐿. (B) ℛℳ𝒮 error versus work.

convergence analysis includes convergence rate estimates for the Monte Carlo and multilevel Monte Carlo finite
volume method. Further, we have provided error versus work rates which show that the multilevel Monte Carlo
finite volume method is more efficient than the (single-level) Monte Carlo finite volume method.

We have presented numerical experiments motivated by two-phase flow in heterogeneous porous media, e.g.,
oil reservoirs with different rock layers. The numerical experiments verify our theoretical results concerning
convergence rates of the multilevel Monte Carlo finite volume method.

As a possible direction of future research, we want to mention that – from a practical standpoint – it would be
desirable to design multilevel Monte Carlo finite volume methods based on finite volume methods that require
no processing of the flux discontinuities. Such numerical methods have been considered in [15, 51], however,
there are currently no convergence rate results available for these methods.
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