Numerical dissipation switch for two-dimensional central-upwind schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 713-734

We propose a numerical dissipation switch, which helps to control the amount of numerical dissipation present in central-upwind schemes. Our main goal is to reduce the numerical dissipation without risking oscillations. This goal is achieved with the help of a more accurate estimate of the local propagation speeds in the parts of the computational domain, which are near contact discontinuities and shears. To this end, we introduce a switch parameter, which depends on the distributions of energy in the x- and y-directions. The resulting new central-upwind is tested on a number of numerical examples, which demonstrate the superiority of the proposed method over the original central-upwind scheme.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2021009
Classification : 76M12, 65M08, 35L65, 86-08
Keywords: Central-upwind schemes, numerical dissipation, local speeds of propagation, Euler equations of gas dynamics, thermal rotating shallow water equations
@article{M2AN_2021__55_3_713_0,
     author = {Kurganov, Alexander and Liu, Yongle and Zeitlin, Vladimir},
     title = {Numerical dissipation switch for two-dimensional central-upwind schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {713--734},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021009},
     mrnumber = {4253170},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021009/}
}
TY  - JOUR
AU  - Kurganov, Alexander
AU  - Liu, Yongle
AU  - Zeitlin, Vladimir
TI  - Numerical dissipation switch for two-dimensional central-upwind schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 713
EP  - 734
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021009/
DO  - 10.1051/m2an/2021009
LA  - en
ID  - M2AN_2021__55_3_713_0
ER  - 
%0 Journal Article
%A Kurganov, Alexander
%A Liu, Yongle
%A Zeitlin, Vladimir
%T Numerical dissipation switch for two-dimensional central-upwind schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 713-734
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021009/
%R 10.1051/m2an/2021009
%G en
%F M2AN_2021__55_3_713_0
Kurganov, Alexander; Liu, Yongle; Zeitlin, Vladimir. Numerical dissipation switch for two-dimensional central-upwind schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 713-734. doi: 10.1051/m2an/2021009

[1] P. Arminjon, M.-C. Viallon and A. Madrane, A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1–22. | MR | Zbl | DOI

[2] D. S. Balsara and B. Nkonga, Multidimensional Riemann problem with self-similar internal structure – part III – a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346 (2017) 25–48. | MR | DOI

[3] J. Cheng and C.-W. Shu, A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J. Comput. Phys. 227 (2007) 1567–1596. | MR | Zbl | DOI

[4] J. Cheng and C.-W. Shu, A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations. Commun. Comput. Phys. 4 (2008) 1008–1024. | Zbl

[5] A. Chertock, S. Cui, A. Kurganov, S. N. Özcan and E. Tadmor, Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes. J. Comput. Phys. 358 (2018) 36–52. | MR | DOI

[6] D. P. Dempsey and R. Rotunno, Topographic generation of mesoscale vortices in mixed-layer models. J. Atmos. Sci. 45 (1988) 2961–2978. | DOI

[7] J. Dewar, A. Kurganov and M. Leopold, Pressure-based adaption indicator for compressible Euler equations. Numer. Methods Part. Differ. Equ. 31 (2015) 1844–1874. | MR | DOI

[8] U. S. Fjordholm, S. Mishra and E. Tadmor, On the computation of measure-valued solutions. Acta Numer. 25 (2016) 567–679. | MR | DOI

[9] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. In: Vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (1996). | MR | Zbl | DOI

[10] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47 (1959) 271–306. | MR | Zbl

[11] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | MR | Zbl | DOI

[12] S. Gottlieb, D. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011). | MR | Zbl | DOI

[13] E. Gouzien, N. Lahaye, V. Zeitlin and T. Dubos, Thermal instability in rotating shallow water with horizontal temperature/density gradients. Phys. Fluids 29 (2017) 101702. | DOI

[14] J.-L. Guermond and B. Popov, Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. J. Comput. Phys. 321 (2016) 908–926. | MR | DOI

[15] A. Harten, P. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. | MR | Zbl | DOI

[16] J. S. Hesthaven, Numerical methods for conservation laws. From analysis to algorithms. In: Vol. 18 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2018). | MR

[17] G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892–1917. | MR | Zbl | DOI

[18] D. Kröner, Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. John Wiley & Sons Ltd., Chichester (1997). | MR | Zbl

[19] A. Kurganov, Central schemes: a powerful black-box solver for nonlinear hyperbolic PDEs. In: Vol. 17 of Handbook of Numerical Methods for Hyperbolic Problems. Elsevier/North-Holland, Amsterdam (2016) 525–548. | MR

[20] A. Kurganov, Finite-volume schemes for shallow-water equations. Acta Numer. 27 (2018) 289–351. | MR | DOI

[21] A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141–163. | MR | Zbl

[22] A. Kurganov and G. Petrova, A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. 88 (2001) 683–729. | MR | Zbl | DOI

[23] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. | MR | Zbl | DOI

[24] A. Kurganov and E. Tadmor, Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Part. Differ. Equ. 18 (2002) 584–608. | MR | Zbl | DOI

[25] A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. | MR | Zbl | DOI

[26] A. Kurganov, M. Prugger and T. Wu, Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39 (2017) A947–A965. | MR | DOI

[27] A. Kurganov, Y. Liu and V. Zeitlin, Thermal vs isothermal rotating shallow water equations: comparison of dynamical processes in two models by simulations with a novel well-balanced central-upwind scheme. To appear in: Geophys. Astro. Fluid Dyn. (2020) DOI: . | DOI | MR

[28] A. Kurganov, Y. Liu and V. Zeitlin, A well-balanced central-upwind scheme for the thermal rotating shallow water equations. J. Comput. Phys. 411 (2020) 109414. | MR | DOI

[29] R. L. Lavoie, A mesoscale numerical model of lake-effect storms. J. Atmos. Sci. 29 (1972) 1025–1040. | DOI

[30] P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19 (1998) 319–340 (electronic). | MR | Zbl | DOI

[31] R. J. Leveque, High resolution finite volume methods on arbitrary grids via wave propagation. J. Comput. Phys. 78 (1988) 36–63. | MR | Zbl | DOI

[32] R. J. Leveque, Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131 (1997) 327–353. | Zbl | DOI

[33] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | MR | Zbl

[34] D. Levy, G. Puppo and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws. ESAIM: M2AN 33 (1999) 547–571. | MR | Zbl | Numdam | DOI

[35] D. Levy, G. Puppo and G. Russo, Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2000) 656–672. | MR | Zbl | DOI

[36] D. Levy, G. Puppo and G. Russo, A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24 (2002) 480–506. | MR | Zbl | DOI

[37] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157–1174. | MR | Zbl | DOI

[38] R. Liska and B. Wendroff, Comparison of several difference schemes on 1D and 2D test problems for the euler equations. SIAM J. Sci. Comput. 25 (2003) 995–1017. | MR | Zbl | DOI

[39] W. Liu, J. Cheng and C.-W. Shu, High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228 (2009) 8872–8891. | MR | Zbl | DOI

[40] M. Lukáčová-Medviová, K. W. Morton and G. Warnecke, Finite volume evolution Galerkin methods for hyperbolic systems. SIAM J. Sci. Comput. 26 (2004) 1–30. | MR | Zbl | DOI

[41] J. P. Mccreary, P. K. Kundu and R. L. Molinari, A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanog. 31 (1993) 181–244. | DOI

[42] H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. | MR | Zbl | DOI

[43] J. Panuelos, J. Wadsley and N. Kevlahan, Low shear diffusion central schemes for particle methods. J. Comput. Phys. 414 (2020). | MR | DOI

[44] P. Ripa, On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303 (1995) 169–201. | MR | Zbl | DOI

[45] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. | MR | Zbl | DOI

[46] M. L. Salby, Deep circulations under simple classes of stratification. Tellus 41A (1989) 48–65. | DOI

[47] C. W. Schulz-Rinne, Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24 (1993) 76–88. | MR | Zbl | DOI

[48] C. W. Schulz-Rinne, J. P. Collins and H. M. Glaz, Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14 (1993) 1394–1394. | MR | Zbl | DOI

[49] J. Shi, Y.-T. Zhang and C.-W. Shu, Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186 (2003) 690–696. | Zbl | MR | DOI

[50] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995–1011. | MR | Zbl | DOI

[51] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edition. Springer-Verlag, Berlin, Heidelberg (2009). | MR | Zbl

[52] B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1979) 101–136. | Zbl | DOI

[53] W. R. Young, The subinertial mixed layer approximation. J. Phys. Oceanogr. 24 (1994) 1812–1826. | DOI

[54] V. Zeitlin, Geophysical Fluid Dynamics: Understanding (almost) Everything with Rotating Shallow Water Models. Oxford University Press, Oxford (2018). | DOI

[55] Y. Zheng, Systems of conservation laws: Two-dimensional Riemann Problems. In: Vol. 38 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (2001). | MR | Zbl

Cité par Sources :