In this paper we consider a mixed variational formulation that have been recently proposed for the coupling of the Navier–Stokes and Darcy–Forchheimer equations, and derive, though in a non-standard sense, a reliable and efficient residual-based a posteriori error estimator suitable for an adaptive mesh-refinement method. For the reliability estimate, which holds with respect to the square root of the error estimator, we make use of the inf-sup condition and the strict monotonicity of the operators involved, a suitable Helmholtz decomposition in non-standard Banach spaces in the porous medium, local approximation properties of the Clément interpolant and Raviart–Thomas operator, and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based on triangle-bubble and edge-bubble functions in local L$$ spaces, are the main tools for developing the efficiency analysis, which is valid for the error estimator itself up to a suitable additional error term. Finally, several numerical results confirming the properties of the estimator and illustrating the performance of the associated adaptive algorithm are reported.
Keywords: Navier–Stokes problem, Darcy–Forchheimer problem, primal-mixed finite element methods, $$ error analysis
@article{M2AN_2021__55_2_659_0,
author = {Caucao, Sergio and Gatica, Gabriel N. and Oyarz\'ua, Ricardo and Sandoval, Felipe},
title = {Residual-based \protect\emph{a posteriori} error analysis for the coupling of the {Navier{\textendash}Stokes} and {Darcy{\textendash}Forchheimer} equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {659--687},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {2},
doi = {10.1051/m2an/2021005},
mrnumber = {4238779},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2021005/}
}
TY - JOUR AU - Caucao, Sergio AU - Gatica, Gabriel N. AU - Oyarzúa, Ricardo AU - Sandoval, Felipe TI - Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 659 EP - 687 VL - 55 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2021005/ DO - 10.1051/m2an/2021005 LA - en ID - M2AN_2021__55_2_659_0 ER -
%0 Journal Article %A Caucao, Sergio %A Gatica, Gabriel N. %A Oyarzúa, Ricardo %A Sandoval, Felipe %T Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 659-687 %V 55 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2021005/ %R 10.1051/m2an/2021005 %G en %F M2AN_2021__55_2_659_0
Caucao, Sergio; Gatica, Gabriel N.; Oyarzúa, Ricardo; Sandoval, Felipe. Residual-based a posteriori error analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 659-687. doi: 10.1051/m2an/2021005
[1] , Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton, NJ (1965). | MR | Zbl
[2] , and , A posteriori error estimates for the stationary Navier-Stokes equations with Dirac measures. SIAM J. Sci. Comput. 42 (2020) A1860–A1884. | MR | DOI
[3] , and , A posteriori error analysis for a viscous flow-transport problem. ESAIM: M2AN 50 (2016) 1789–1816. | MR | Zbl | Numdam | DOI
[4] and , A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem. SIAM J. Numer. Anal. 48 (2010) 498–523. | MR | Zbl | DOI
[5] and , Mixed and Hybrid Finite Element Methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | MR | Zbl
[6] , and , Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem. To appear in: Numer. Meth. Partial Differ. Equ. (2021). | MR
[7] , A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465–476. | MR | Zbl | DOI
[8] , and , A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density. IMA J. Numer. Anal. 36 (2016) 947–983. | MR | DOI
[9] , and , A posteriori error analysis of a fully-mixed formulation for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. Comput. Methods Appl. Mech. Eng. 315 (2017) 943–971. | MR | DOI
[10] , , and , Residual-based A Posteriori Error Analysis for the Coupling of the Navier–Stokes and Darcy–Forchheimer Equations. Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, Chile. Preprint 2019-33 (2019). | MR | Numdam
[11] , , and , A conforming mixed finite element method for the Navier–Stokes/Darcy–Forchheimer coupled problem. ESAIM: M2AN 54 (2020) 1689–1723. | MR | DOI
[12] , Approximation by finite element functions using local regularisation. RAIRO Modél. Math. Anal. Numér. 9 (1975) 77–84. | MR | Zbl | Numdam
[13] , and , A posteriori error estimation for the dual mixed finite element method for the -Laplacian in a polygonal domain. Comput. Methods Appl. Mech. Eng. 196 (2007) 2570–2582. | MR | Zbl | DOI
[14] , and , A posteriori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem. J. Comput. Math. 33 (2015) 606–641. | MR | DOI
[15] and , A posteriori error estimations for mixed finite element approximations to the Navier–Stokes equations based on Newton-type linearization. J. Comput. Appl. Math. 367 (2020). | MR | DOI
[16] and , Theory and Practice of Finite Elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | MR | Zbl | DOI
[17] and , Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem. Comput. Methods Appl. Mech. Engrg. 195 (2006) 2599–2610. | MR | Zbl | DOI
[18] and , A posteriori error estimation for a dual mixed finite element approximation of non-Newtonian fluid flow problems. Int. J. Numer. Anal. Model. 5 (2008) 320–330. | MR | Zbl
[19] , and , A priori and a posteriori error estimations for the dual mixed finite element method of the Navier-Stokes problem. Numer. Methods Part. Differ. Equ. 25 (2009) 843–869. | MR | Zbl | DOI
[20] , A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). | MR | Zbl
[21] , and , A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem. Numer. Math. 114 (2009) 63–106. | MR | Zbl | DOI
[22] , and , A posteriori error analysis of an augmented mixed method for the Navier-Stokes equations with nonlinear viscosity. Comput. Math. Appl. 72 (2016) 2289–2310. | MR | DOI
[23] , and , A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier–Stokes–Brinkman problem. Comput. Math. Appl. 75 (2018) 2420–2444. | MR | DOI
[24] and , Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. In: Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). | MR | Zbl | DOI
[25] , Elliptic Problems in Nonsmooth Domains. In: Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). | MR | Zbl
[26] , New development in freefem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI
[27] , Freefem++, 3rd edition, Version 3.58-1. Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris (2018). [available in http://www.freefem.org/ff++].
[28] and , Energy norm a posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations. Inter. J. Numer. Methods Fluids 57 (2008) 1093–1113. | MR | Zbl | DOI
[29] , and , An a posteriori error estimate for finite element approximations of the Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 111 (1994) 185–202. | MR | Zbl | DOI
[30] , A Review of A-Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley Teubner, Chichester (1996). | Zbl
[31] , A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl | DOI
Cité par Sources :





