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RESIDUAL-BASED A POSTERIORI ERROR ANALYSIS FOR THE COUPLING
OF THE NAVIER-STOKES AND DARCY-FORCHHEIMER EQUATIONS

SERGIO CAUCAOY*, GABRIEL N. GATICA?,
RICARDO OYARZUA2? AND FELIPE SANDOVAL?2

Abstract. In this paper we consider a mixed variational formulation that have been recently pro-
posed for the coupling of the Navier—Stokes and Darcy—Forchheimer equations, and derive, though in
a non-standard sense, a reliable and efficient residual-based a posteriori error estimator suitable for an
adaptive mesh-refinement method. For the reliability estimate, which holds with respect to the square
root of the error estimator, we make use of the inf-sup condition and the strict monotonicity of the
operators involved, a suitable Helmholtz decomposition in non-standard Banach spaces in the porous
medium, local approximation properties of the Clément interpolant and Raviart—Thomas operator,
and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based
on triangle-bubble and edge-bubble functions in local LP spaces, are the main tools for developing
the efficiency analysis, which is valid for the error estimator itself up to a suitable additional error
term. Finally, several numerical results confirming the properties of the estimator and illustrating the
performance of the associated adaptive algorithm are reported.
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1. INTRODUCTION

We have recently introduced in [11] a primal-mixed finite element method to numerically approximate the
fluid flow between porous media and free-flow zones described by the coupling of the Navier—Stokes and Darcy—
Forchheimer equations together with mass conservation, balance of normal forces, and the Beavers—Joseph—
Saffman condition on the interface. More precisely, a primal-mixed variational formulation was derived and
analyzed in [11], which consists in employing the standard velocity-pressure mixed formulation in the Navier—
Stokes domain and the dual-mixed one in the Darcy—Forchheimer region, which yields the introduction of the
trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem
is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the
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well-known Schauder and Banach fixed-point theorems. A feasible choice of finite element subspaces for the
formulation introduced in [11] is given by Bernardi-Raugel and Raviart-Thomas elements for the velocities,
and piecewise constant elements for the pressures and the Lagrange multiplier. Sub-optimal a priori error
estimates were also derived.

Now, it is well known that under the eventual presence of singularities, as well as when dealing with nonlinear
problems, as in the present case, most of the standard Galerkin procedures such as finite element and mixed
finite element methods inevitably lose accuracy, and hence one usually tries to recover it by applying an adaptive
algorithm based on a posteriori error estimates. For example, residual-based a posteriori error analyses for the
Stokes—Darcy and Navier—Stokes/Darcy coupled problems have been developed in [4,9] for the associated primal-
mixed and fully-mixed formulations, respectively. In fact, standard arguments relying on duality techniques,
suitable decompositions and classical approximation properties, are combined there with corresponding small
data assumptions to derive the reliability of the estimators. In turn, inverse inequalities and the usual localization
technique based on bubble functions are employed in both works to prove the corresponding efficiency estimates.
Now, concerning the Navier—Stokes problem, we begin by referring to [29,31], where the authors develop one
of the first a posteriori error analyses for the incompressible Navier—-Stokes problem in its classical velocity-
pressure formulation. Interestingly, several terms that are derived in Section 5.4 of [31] will also appear in the
estimator to be introduced in the present paper. Other recent and not so recent contributions on a posteriori
error estimates for Navier—Stokes and related models include, e.g. [2,15,19,23,28]. In particular, the evolutionary
problem is considered in [15] and a Newton-type linearization is employed there to reduce the corresponding
a posteriori error analysis to that of a linear steady problem. In addition, the stationary model with singular
sources is studied in [2], whereas a dual mixed-formulation and exactly divergence-free discontinuous Galerkin
methods are employed in [19, 28], respectively. Furthermore, an a posteriori error analysis for an augmented
mixed formulation of the Navier—Stokes-Brinkman problem is developed in [23]. On the other hand, for quasi-
Newtonian fluid flows obeying to the power law, as in the case of the Darcy—Forchheimer model, not much has
been done and we just refer to [13,17,18], where different contributions addressing this interesting issue can be
found. In particular, an a posteriori error estimator defined via a non-linear projection of the residues of the
variational equations for a three-field model of a generalized Stokes problem was proposed and analyzed in [17].
We remark that the non-linear projections do not need to be explicitly computed to construct the a posteriori
error estimates. In turn, a fully local residual-based a posteriori error estimator for the mixed formulation of the
p-Laplacian problem in a polygonal domain, was derived in [13]. In this case, the authors study the reliability
of the estimator defining two residues and then bounding the norm of the errors in terms of the norms of these
residues. Moreover, the discretized dual-mixed formulation is hybridized and it is provided several tests for
p = 1.8 and p = 3 to experimentally verify the reliability of the estimator. We remark that up to the authors’
knowledge, there are no works dealing with the a posteriori error analysis for the coupling of the Navier—Stokes
(or Stokes) and the Darcy—Forchheimer models.

According to the above discussion and aiming to complement previous results on the numerical analysis of the
coupled Navier—Stokes and Darcy—Forchheimer equations, in this paper we proceed similarly to [4,13,17,18,21,22]
and [9], and develop a residual-based a posteriori error estimator, say ©, for the primal-mixed finite element
method introduced and analyzed in [11]. Due to the nonlinear nature of the coupled problem, ©'/2 is shown to
be reliable, whereas © itself becomes efficient up to the error associated to a lifting of the trace of the porous
medium pressure, which we name “lifting-error”. More precisely, we basically prove that there exist positive
constants Cesr and Cre1, independent of the meshsizes, such that

[error|| < Crer ©Y2, and Ceogs © < |lerror| + |lifting-error|| 4+ h.o.t., (1.1)

where h.o.t. is a generic expression denoting one or several terms of higher order. Indeed, starting from the
inf-sup condition and the strict monotonicity of the operators involved, and employing suitable Helmholtz
decompositions in non-standard Banach spaces, we prove the reliability of the estimator under a smallness
condition on the data. In turn, the efficiency estimate is consequence of standard arguments such as inverse
inequalities and the localization technique based on triangle-bubble and edge-bubble functions in local L? spaces.
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The rest of this work is organized as follows. In the remainder of this section we introduce some standard
notations and definitions of functional spaces. In Section 2 we recall from [11] the model problem. Next, in
Section 3 we describe the continuous formulation and the corresponding primal-mixed finite element method,
whereas some preliminary results, necessary to the a posteriori error analysis, are established in Section 4. Then,
in Section 5 we introduce an a posteriori error indicator and, assuming small data, we derive the corresponding
theoretical bounds yielding reliability and efficiency of the estimator in the sense of (1.1). Finally, some numerical
results confirming the theoretical sub-optimal order of convergence, and at the same time suggesting an optimal
rate of convergence as in [11], are presented in Section 6. Additionally, these numerical essays illustrate the
efficiency and reliability of the a posteriori error estimator, and show the good performance of the associated
adaptive algorithm for the finite element method.

We end this section by introducing some definitions and fixing some notations. Let @ C R? be a domain
with Lipschitz-continuous boundary I'. For s > 0 and p € [1,4+o00] we denote by LP(O) and W*P(O) the usual
Lebesgue and Sobolev spaces endowed with the norms || - || z»(0y and || - || p;0, respectively. Also, we let |- |5 p.0
be the seminorm of W*P?(0). Note that W?(0) = LP(0O). In turn, when p = 2, we write H*(O) in place of
W#2(0), and denote the corresponding Lebesgue and Sobolev norms by || - [|o.0 and | - ||s,0, respectively, and
the seminorm by |- |5 0. In addition, we denote by W'/4P(T) the trace space of W?(Q), and let W~'/44(T') be
the dual space of W1/2P(T') endowed with the norms [|-||1 /4 and ||+ || /4,41, respectively, with p, ¢ € (1, +o00)
satisfying 1/p+1/¢ = 1. By M and M we will denote the corresponding vectorial and tensorial counterparts of
a generic scalar functional space M, and | - ||, with no subscripts, will stand for the natural norm of either an
element or an operator in any product functional space. Additionally, we recall that

H(div; 0) := {w cL2(0): divwe LQ(O)},

is a standard Hilbert space in the realm of mixed problems (see, e.g. [5]). On the other hand, the following
symbol for the L*(T") inner product

(€ Ny ::/Fﬁx\ VE N € LA(T),

will also be employed for their respective extension as the duality parity between W~/%4(T") and W/ 4»(T).
Hereafter, when no confusion arises, | - | will denote the Euclidean norm in R? or R?*2. Furthermore, given a
non-negative integer k and a subset S of R?, P (S) denotes the space of polynomial functions on S of degree
< k. In addition, and coherently with previous notations, we set

P (S) = [P(S)]? and Py(S) := [Pp(5)]**.

Finally, we employ 0 as a generic null vector, and use C and ¢, with or without subscripts, bars, tildes or hats, to
denote generic positive constants independent of the discretization parameters, which may take different values
at different places.

2. THE MODEL PROBLEM

In order to describe the geometry under consideration we let g and Qp be two bounded and simply
connected polygonal domains in R? such that 0025 N9Qp = ¥ # () and Qs N Qp = (. Then, let I's := Qs \ %,
I'p :=00p \ X, and denote by n the unit normal vector on the boundaries, which is chosen pointing outward
from Q := Qs UX UQp and Qg (and hence inward to Qp when seen on ). On X we also consider a unit
tangent vector t (see Fig. 1).

The problem we are interested in consists of the movement of an incompressible viscous fluid occupying Qg
which flows towards and from a porous medium Qp through 3, where Qp is saturated with the same fluid. The
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FIGURE 1. Sketch of a 2D geometry of our Navier—Stokes/Darcy—Forchheimer model.

mathematical model is defined by two separate groups of equations and by a set of coupling terms. In the free
fluid domain g, the motion of the fluid can be described by the incompressible Navier—Stokes equations:
os = —psl+2ue(ug) in Qg, —diveg+ p(Vug)us==£fs in g,

. . (2.1)
divug =0 in Qg, us=0 on Iy,

where the unknowns are the fluid velocity ug, the pressure pg, and the Cauchy stress tensor og. In addition,
1
e(ug) := §{Vus + (Vus)t} stands for the strain tensor of small deformations, p is the viscosity of the fluid,

p is the density, and fg € L2(fg) is a given external force.

On the other hand, as was explained in [11], given functions fp € L3/2(Qp) and gp € L?*(Qp), in the porous
medium 2p we consider the Darcy—Forchheimer equations to approximate the velocity up and the pressure
pp:

F
EK_luD—l—f\uD|uD—&—VpD:fD in Qp, divup=gp in Qp, up-n=0 on I'p, (2.2)
p p

where F represents the Forchheimer number of the porous medium, and K € L°(2p) is a symmetric tensor
in Qp representing the intrinsic permeability £ of the porous medium divided by the viscosity p of the fluid.
We assume that there exists Cx > 0 such that w - K=} (x)w > Ck|w|?, for almost all x € Qp, and for all
w € R2. In addition, according to the compressibility conditions, the boundary conditions on up and ug, and
the principle of mass conservation (cf. (2.3) below), gp must satisfy the compatibility condition:

/ gp =0.
Qp

Finally, the transmission conditions that couple the Navier—-Stokes and the Darcy—Forchheimer models through
the interface ¥ are given by
Qg fi

Vvt -kt
where ag is a dimensionless positive constant which depends only on the geometrical characteristics of the
porous medium and usually assumes values between 0.8 and 1.2. The first condition in (2.3) is a consequence of
the incompressibility of the fluid and of the conservation of mass across ¥, whereas the second one establishes
the balance of normal forces and a Beavers—Joseph—Saffman law.

us-n=up-n on %X and ogn+ (ug-t)t=—ppn on 3, (2.3)

3. THE VARIATIONAL FORMULATION

In this section we introduce the variational formulation for the coupling of the Navier-Stokes and Darcy—
Forchheimer equations proposed in Section 2.2 of [11], and recall the respective solvability results.
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3.1. Preliminaries

We first introduce further notations and definitions. In what follows, given x € {S, D}, we set

(u,v)*:z/ uv, (u,v), ::/ u-v, and (0',7')*::/ o:T.
Q. o, Q.

Furthermore, given p € [2,400), in the sequel we will employ the following Banach space,

HP (div; Qp) = {vD eLP(Qp): divvp € L2(QD)},
endowed with the norm y
. p

Vb llse v = (IVDIEsap) + IdivvolEa,)

and the following subspaces of HP(div;Qp) and H*(Q25), respectively
H{:D(diV;QD) = {VD e H’(div;Qp): vp-n=0 on FD},
2
HE(Qg) = {vs € H'(Qs): ws=0 on rs}, HE_ () == [HE,(29)].

In addition, we write Q2 := QgUXUQp, and define p := pgxs+pp XD, with xx being the characteristic function:

1 in Q,, ; s D
= — or * € ) s
70 mo\q., 5.0}

and introduce the space LZ(Q) := {q eL?*(Q): [,q= 0}.

3.2. The continuous formulation

Now, we introduce the weak formulation derived for the coupled problem given by (2.1)—(2.3) (see [11],
Sect. 2.2 for details). In fact, we first group the spaces and unknowns as follows:

H = H} (Qs) x HY,, (diviQp), Q= L§(Q) x W/*3/2(3),
u:= (ug,up) € H, (p,A\) € Q,

where \ := pp|s, € W/3:3/2(%) is an additional unknown. Thus, we arrive at the mixed variational formulation:
Find (u, (p, \)) € H x Q, such that

[a(us)(u), v] + [b(v), (p, M)] = [f,v] Vv :=(vs,vp) € H,
[b(u), (¢,8)] = [8, (¢, 9] V(g,§) €Q,

where, given wg € H%S (Qs), the operator a(wg) : H — H’ is defined by

(3.1)

[a(ws)(u),v] = [As(us),vs] + [Bs(ws)(us), vs] + [Ap(up), vpl,
with
As(ug),vg] := e(ug),e(v Mu-,v- ,
[As(us).vs] i= 2u(e(us).e(vi))s + (S22 s tvs t>2
[Bs(ws)(us),vs] := p((Vus)ws, vs)s,
[Ap(up),vp] := %(K_IUD,VD)D + % (luplup,vp)p
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whereas the operator b : H — Q' is given by
[b(v),(g,8)] :== —(divvs,q)s — (divvp,q¢)p + (vs -n—vp -n,&)y.
In turn, the functionals f and g are defined by
[f,v] = (fs,vs)s + (fp,vp)p and [g,(¢,§)]:=—(9p,9)D-

In all the terms above, |-, -] denotes the duality pairing induced by the corresponding operators. Further details
for the solvability of (3.1) follows from the fixed-point strategy developed in Theorem 3.12 of [11].

3.3. The finite element method

Let ’Z;ls and ThD be respective triangulations of the domains Qg and 2p formed by shape-regular triangles of
diameter hr and denote by hg and hp their corresponding mesh sizes. Assume that they match on ¥ so that
Ty = ’];LS U ’Z;lD is a triangulation of 2 := Qg U X U Qp. Hereafter h := max{h&hp}. For each T € ’Z;lD we
consider the local Raviart—-Thomas space of the lowest order:

RT(T) := span{(l,o), (0,1), (xl,xg)}.
In addition, for each T € 7,;° we denote by BR(T) the local Bernardi-Raugel space:
BR(T) := P.(T) & Span{mﬁ:snl, 173N, 771772n3}7

where {771; N2, 773} are the barycentric coordinates of 7', and {nl, no, 1’13} are the unit outward normals to the
opposite sides of the corresponding vertices of 7. Hence, the finite element subspaces for the velocities and
pressure are, respectively,

Hy.r.(Qs) = {veH} (Qs): vir e BR(T), YT eT5},
Hy,r, () == {v € B}, (diviQp) s vir € RTo(T), VT TP},

Lino(Q) = {q €L2(Q): qlr e R(T), VT e Th}

Next, for introducing the finite element subspace of W1'/3:3/2(%), we denote by X, the partition of ¥ inherited
from T,” (or 7,%), which is formed by edges e of length he, and set hy := max {h. : e € X, }. Therefore, we
can define (see [11], Sect. 4 for details):

An(E) = {gh 'S SR &€ Pyle) Vedgeee zh}. (3.2)

In this way, grouping the discrete spaces and unknowns as follows:
Hy :=Hprs(Qs) X Hyr, (), Qn = Lpo(2) X Ap(¥),
uy, = (ug,n,up,n) € Hy, (Ph, An) € Qn,

where py, := psnxs + Pp.rXD, the Galerkin approximation of (3.1) reads: Find (up, (pn, Arn)) € Hp X Qp, such
that
[an(us,n)(un), vl + [b(vh), (pr, An)] = [£,va] - Vvi = (Vsn, VD) € Ha,

(3.3)
[b(ur), (qn,&n)] = [ (qn, &n)] v (qn,&n) € Qn.
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Here, a;(ws,;) : Hj, — Hj, is the discrete version of a(wg) (with ws, € Hj pg(€2s) in place of wg € H._(€s))
defined by

[an(ws,n)(un), vi] := [As(asn), vsn] + [Be(Wsn)(wsn), Vsl + [Ap(up.n), vo.nl, (3.4)

where B (wg ) is the well-known skew-symmetric convective form:

(B (wsn)(usn), venl = p(Vusn)Wsn, Vsn)s + g (divwg pus n, Vs,n)s,

for all ug p, vs n, wsn € Hp g (2s). Moreover, we recall from equation (4.4) of [11] that for all wg , us p, ven €
Hj, 1, (Qs) there holds

‘[Bg(ws,h)(us,h)vvs,h] < G lwsnllios uspllies Vsallias, (3.5)

with Cy = pC?(Qs) (1 + @), where C(Q2g) is the norm of the injection of H'(Qg) into L*(Qs) (cf. [11],
Eq. (2.19)). The inequality (3.5) will be employed later on to derive the estimate (5.21) within the proof of
Lemma 5.2, which is the starting point of the reliability analysis for the a posteriori error estimator to be
proposed in Section 5.

The solvability analysis and a priori error bounds for (3.3) are established in Theorems 4.9 and 5.2 of [11],
respectively.

4. PRELIMINARIES FOR THE a postertort ERROR ANALYSIS

Now we introduce a few useful notations for describing local information on elements and edges. First, given
T € T,PUTP, welet E(T) be the set of edges of T, and denote by &5, the set of all edges of 7, UT,P, subdivided
as follows:

En=EnTs)UELTD)UEL(Qs) UEL(D) UER(D),

where &,(Ty) == {e € &, 1 e C T}, En(Q) = {e € & 1 e C O}, for x € {9, D}, and the edges of £,(X) are
exactly those forming the previously defined partition ¥, that is &, (X) := {e €&, eC E}. Moreover, he
stands for the length of a given edge e. Also for each edge e € &, we fix a unit normal vector n, := (ny,n2)?,
and let t, := (—ng,n1)! be the corresponding fixed unit tangential vector along e. Now, let v € L?((2,) such
that v|p € C(T) on each T € 7;*. Then, given e € £(T) N (), we denote by [v - t.] the tangential jump
of v across e, that is, [v-te] := ((v|r)|e — (V]77)|e) - te, where T and T" are the triangles of 7;* having e as
a common edge. In addition, for 7 € L2(Q,) such that 7|r € C(T), we let [T n.] be the normal jump of 7
across e, that is, [t n.] := ((7|r)|e — (7]77)|¢)ne and we let [ t.] be the tangential jump of T across e, that
is, [T te] :== ((7|7)|e — (T]77)|)te. From now on, when no confusion arises, we simply write n and t instead of
n, and t., respectively. Finally, given scalar and vector valued fields ¢ and v = (vy,v2)?, respectively, we set

20 9o\ dvy O
curl (¢) := (83:2’ _(9xl> and rot (v) := 873:21 _ 8733;

where the derivatives involved are taken in the distributional sense.

Let us now recall the main properties of the Raviart-Thomas interpolator (see [20,24]) and the Clément
operator onto the space of continuous piecewise linear functions [12,31]. We begin with the former, denoted
Iy, : HY(Qp) — Hy 1, (Qp), which is characterized by the identity

/Hh(v)~n:/v-n V edge e of T;". (4.1)
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Moreover, as a straightforward consequence of (4.1), there holds:
div (I, (v)) = PP (divv), (4.2)

where P,? is the L?(Qp)-orthogonal projector onto the piecewise constant functions on 2p. The local approxi-
mation properties of Il are established in the following lemma. For the corresponding proof we refer the reader
to [20] (see also [5]).

Lemma 4.1. There exist constants c1,co > 0, independent of h, such that for all v.€ HY(Qp) there holds
v —pvlor < eihr|viir VT €T

and
[v-n—TIv-nlo. < chl?|vir. Ve€ &,

where T, is a triangle of ThD containing the edge e on its boundary.

In turn, given p € (1,400), we make use of the Clément interpolation operator I} : WhP(€,) — Xp (%),
with « € {S, D}, where

Xn(Q) = {v eC(): wvlreP(T) VTe Th*}.
The local approximation properties of this operator are established in the following lemma (see [30], Lem. 3.1
for details):

Lemma 4.2. For each x € {S, D} there exist constants cz,cy > 0, independent of h,, such that for all v €
WLP(Q,) there hold
[v— I;{U”LP(T) < cghr ||’U||17p;A*(T) VT €T,

and
[v=T5vllLee) < ca hi_l/p [0ll1psa.e) Ve €EEn,

where
AT = U{T €Ty T'NT#0} and Au(e):= L{T' € T : T'ne#0}.

In particular, for p = 2 a vector version of I}, say Iy : H!(Q2g) — X,(Qs), which is defined component-wise by
I;f, will be needed as well.

For the forthcoming analysis we will also utilize a stable Helmholtz decomposition for H%D (div; Qp). In this
regard, and in order to analyze a more general result, given p € [2,400) we will consider the Banach space
HY. (div;Qp) introduced in Section 3.1, and analogously to [3] we remark in advance that the decomposition
for H, (div;Qp) will require the boundary I'p to lie in a “convex part’ of Qp, which means that there exists
a convex domain containing p, and whose boundary contains I'p. We begin by introducing the following
subspaces of WP (Qp),

Wllg)(QD) = {'fID S Wl’p(QD) : np = 0 on FD},

and establishing a suitable Helmholtz decomposition of our space HIED (div;Qp).

Lemma 4.3. Assume that Qp is a simply connected domain and that I'p is contained in the boundary of a
convex part of Qp, that is there exists a conver domain = such that Qp C = and T'p C d=. Then, for each
vp € HY. (div;Qp) with p € [2,400), there exist wp € H'(Qp) and fp € WEE(QD) such that

vp = wp+tcurlgp in Qp, (4.3)

and
Iwoll1.on + 18pll1p0p < Chel VD IlHer(diviap)s (4.4)

where Chel s a positive constant independent of all the foregoing variables.
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Proof. Since divvp € L?(Qp) for each vp € HfiD (div;Qp), the first part of the proof proceeds using similar
arguments to Section 4.8.4 of [31] (see also [3], Lem. 3.9). In fact, given vp € HY. (div;Qp), we let z € H*(Z)
be the unique weak solution of the boundary value problem:
div VD in QD
Az = 1
1=\ Q| Jap

Thanks to the elliptic regularity result of (4.5) we have that z € H*(Z) and

Vz-n=0 on 0=, z=0. (4.5)

o

diVVD inE\ﬁD ’

I2ll2,2 < ¢lldivvpllo.ap,

where ¢ > 0 is independent of z. In addition, it is clear that wp := (Vz)|q, € H(Qp), divwp = Az =divvp
in Qp, wp -n =0 on 0= (which implies wp -n =0 on I'p), and

Lop < [I2ll2.0p < 2ll2z < cfldivvp

lo.2p - (4.6)

On the other hand, let us set ¢, := vp —wp and notice that ¢, is a divergence-free vector field in p. Then,
using the continuous injection from H'(Qp) into LP(Qp) with p € [2,+00), and the estimate (4.6), we deduce
that ¢, € LP(Q2p) and

[wp

lépllLran) < 5{||VD||LP(QD) + lwp 1,%} <c|lvpllar(diviap)- (4.7)

In this way, as a consequence of Theorem 1.3.1 from [24], given ¢ € LP(2p) with p € [2,+00) satisfying
dive, = 0 in Qp, and Qp simply connected, there exists 3p € WP(Q2p) such that ¢, = curl p in Qp, or
equivalently

vp—wp=curlfp in Qp. (4.8)

In turn, noting that 0 = (vp — wp) -n = curlfp -n = dg% on I'p, we deduce that Bp is constant on I'p,

and therefore 3p can be chosen so that 8p € W;DP(Q D), which, together with (4.8), complete the Helmholtz
decomposition (4.3). Finally, as a consequence of the generalized Poincaré inequality, it is easy to see that

the norm [|8p||1,p;0, and the seminorm [Bplip0, = [|curl BpllLr (o, are equivalent in WEE(QD) (see [24],
Lem. 1.3.1 for details), so that employing (4.7), we obtain

1Bpll1.p:00 < clleurl BpllLrap) = ¢llépliLep) < Cllvollae @ivian)- (4.9)
Then, it is clear that (4.6) and (4.9) imply (4.4) and conclude the proof. O

Two very useful Green’s formulae are recalled next.

Lemma 4.4. Let p and q be two fized real numbers with p > 1 and 1/p+1/q = 1, and let Q be a bounded
domain with Lipschitz-continuous boundary 0X). Then there holds

/ odivv —|—/ v-Vo=(v-n,¢),, VveH(div,Q), Ve wha(Q), (4.10)
Q Q
and

/ protv — / veoeurlg = (v t,8) 5, VveEHI(rot,;Q),VoeWHP(Q), (4.11)

Q Q
where
HP (div ,; Q) = {v eLP(Q): divve LP(Q)}, (4.12)

and

H (1ot ; Q) == {v eLIQ): rotve Lq(Q)}. (4.13)



668 S. CAUCAO ET AL.

Proof. We refer to Corollaries B.57 and B.58 of [16] for details (see also [24], Eq. (2.17) and Thm. 1.2.11). O

Finally, we end this section with a lemma providing estimates in terms of local quantities for the W1/ 29(%)
norms of functions in particular subspaces of L?(X), with 1 < p < 2 and 1/p + 1/q = 1. More precisely, having
in mind the definition of Ay(X) (¢f. (3.2)), which is subspace of W'/9P(¥), we introduce the orthogonal-type
space

AL(D) = {A eW VIR NLUD) . (ME)g =0 V&, € Ah(E)}. (4.14)
Then, the announced result is stated as follows.

Lemma 4.5. Let p and q be two fized real numbers with 1 < p < 2 and 1/p+1/q = 1. Then, there exists C > 0,
independent of the meshsizes, such that

1/q

N “1/g05 < C D hellM%ae VA€ A (D). (4.15)
eESh(E)

Proof. Given A € Aj-(X), we first observe that A € W~1/%4(X) and that

A€
||/\||71/q,q;2 = sup ﬂ (416)
cewl/ 1P (x) 1€111/q.p:x
§#0

Then, since Px(£) € Ap(X) with Py being the L?(X)-orthogonal projection onto Ay (), it follows from (4.14),
(4.16), and Holder’s inequality, that

Z M za(ey 1§ = Pe(E)llzr(e)

A E— P e
H)‘Hfl/q,q;z — sup < 5 Z(f»E < sup e&n(®) ’ (417)
cewl/ar(s) H§||1/q,p;2 cewl/or(s) ||§||1/q,p;2
£#£0 £#£0

where P, (£) := Px(§)]e on each e € £,(X). In turn, from the local approximation estimates of P., we have

1€ = Pe(©)llzre) < chellélline) VEE€LP(e) and  [[§ = Pe(€)llr(e) < chelléllipe VEEWHP(e),

and then, by interpolation arguments, we find that
||§ - ’Pe(g)HLP(e) S Chtli/q||£||l/q,p;e vé. c Wl/q,p(6)7 (418)

with 1/p 4+ 1/q = 1. Thus, the estimate (4.18) combined with (4.17), yields

> Mza@llE = Pellrey < ¢ D hY UM Lo €]l /g,pe

eCEn (D) e€&p (%)
1/q 1/p 1/q
<C Z he||/\||%q(e) Z Hg”Zl)/q,p;e <C Z heH)‘Hqu(e) 1€111/,p:5-
e€€R (D) e€€R (D) e€&p (L)

Notice that in the last inequality we have used the fact that the space [[.c¢, (v W1/aP(e) coincides with

W1/ar(), without extra conditions when 1 < p < 2 ([25], Thm. 1.5.2.3-(a)), to obtain the norm |||/ s
which combined with (4.17) imply (4.15) and conclude the proof. O
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5. A POSTERIORI ERROR ANALYSIS

Let 4 := (u, (p,A)) € H x Q and up, := (up, (pn, An)) € Hp x Qp, be the unique solutions of problems (3.1)
and (3.3), respectively. In addition, let us denote pg = pnlas and ppp := prla,. Then, we define for each
Te Ths the local error indicator

2

@%',T = ||d1V us,h||87T + h% Hfg + diVO’SJL — p(Vu57h)u57h — gdlv us puUs K ot
) Qv 2 (5.1)
> hllosanllg, o DD heflosantant —E(us )t
c€E(T)NER(Qs) c€E(T)NER(S) vt -k O,e
where
osn = —psnl+2ue(usy) oneach T €77, (5.2)
Similarly, for each T' € T,” we set
) . 2 2 2
O©p,r = llgp —divup |y + 27 [If0 = Upally 1 (5.3)
and
~3 2
@ / . HfD_UDh_VQDhHLs/z T)7 (54)
where
F
UD,h = ﬁI(ilup,h + f|uD,h|uD,h oneach T € ’ThD, (55)
p p

and ¢y, is any function in wi3/2 (Qp) such that vploa, = Xh, where Xh is the extension of A, by the constant
values of pp on the corresponding edges of I'p. Finally, for each e € £, (X) we define

9%,8 = he HuS,h ‘Nl —Upn - nHiS(e)’ (56)

so that the global a posteriori error estimator is given by:

1/2 2/3 1/3

o= { Y 0t X Ohsy +{ X Oy +f Y el . 6

TeT? TeT,P TeTP ecn(X2)

Notice that the second term of GD > and the full expression defining @D ‘7, require that fp € L2(T) and
fp € L3/2(T), respectively, for each T' € 7,P, which is ensured by assuming in what follows that fp lives in
L2(Qp). Then, the main goal of the present section is to establish, under suitable assumptions, the existence of
positive constants Cre; and Cegs, independent of the meshsizes and the continuous and discrete solutions, such
that

||ﬁ*ﬁh||H><Q § Cvrel 61/27 and
Ceff (’“) S Hﬁ — ﬁhHHXQ + IpD — @h‘1,3/2;§2o + h.O.t., (58)
where h.o.t. stands, eventually, for one or several terms of higher order. The upper and lower bounds in (5.8),

which are known as the reliability of ©'/2 and efficiency of ©, are derived below in Sections 5.1 and 5.2,
respectively.
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5.1. Reliability

First, we recall from [11] the following notation
M(fs,fp, gp) = max {N(fs, fp.9p)"/*, N (£s,£p,9p), N (fs, fD,gD)Q},

where N (fs,fp, gp) := |/fs
this section.

lo.2s + IfpllLsr2(ap) + llgpllo.ap + ||9DH(%,QD- Then, we establish the main result of

Theorem 5.1. Assume that Qp is a simply connected domain and that I'p is contained in the boundary of a
convez part of Qp, that is there exists a convexr domain = such that Qp C = and I'p C 0=. In addition, assume
that the data fs € L?(Qg), fp € L2(Qp) and gp € L*(Qp), satisfy:

1
M(fs,fp,gp) < 3 min {r,?}, (5.9)

where r and T are the positive constants, independent of the data, provided by Lemma 3.11 and Theorem 4.9 of
[11], respectively. Then, there exists a constant Cre1 > 0, independent of h, such that

[0 — tnllaxq < Cre1 ©Y2 (5.10)

We stress here that the data assumption (5.9) is required, on one hand, to ensure that the continuous and
discrete problems, namely (3.1) and (3.3), are well-posed (see [11], Thms. 3.12 and 4.9 for details), and on the
other hand, to prove next Lemma 5.2, which constitutes the first reliability estimate yielding (5.10). Later on,
the same assumption is employed to establish the efficiency estimates given by (5.62), (5.63), and (5.64).

We begin the proof of (5.10) with a preliminary estimate for the total error ||i— Uy ||uxq. In fact, proceeding
analogously to Section 1 of [13] (see also [17,18]), we first define two residues R¢ and Rg on H and Q, respectively,
by

Re(v) i= [£,v] = {[an(us,)(wn), v + (V). (i, Mn)]} Vv i= (vs, vp) € H, (5.11)

and
Re(q,€) = [8,(¢:9)] — [b(un), (¢,)] V(¢,§) € Q. (5.12)

Then we are able to establish the following preliminary a posteriori error estimate.

Lemma 5.2. Assume that the data fs, fp and gp, satisfy (5.9). Then, there exists a constant C' > 0, depending
only on parameters and other constants, all them independent of h, such that

— — 1/2 2/3 3/4 3/2
i~ dnlicq < € max{ IR q IR qy: IRIHqy: IRlaxay: IR .qy b (5.13)

where R : H x Q — R is the residual functional given by R(V) := Re(v) + Re(q,§) VV:i=(v,(q,8)) e HxQ
(cf. (5.11) and (5.12)), which satisfies

R(¥h) =0 YV = (vh,(qn,&r) € Hr X Qp. (5.14)

Proof. First, from the assumption (5.9) and the a priori estimates ([11] Thms. 3.12 and 4.9), we obtain

IA

maxc {[up w0 [uslhos f < er M(Es, £p.90).

(5.15)
max{”uD,hHH?’(div;QD)a HuS.,hHl,QS} < er M(fs,fp, 9p)-

In addition, since the exact solution ug € H%S (Qg) satisfies divug = 0 in Qg, we have

[B&(us)(us), ven) = [Bs(us)(us),vsnl Vvsn € Hyrg(Qs).
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Consequently, from the continuous problem (3.1), and the definition of the residual functionals R¢ and Rg (cf.
(5.11) and (5.12)), it is clear that

[an(ugp)(u) — an(usy)(un), vl + [b(v), (p — pr, A — An)] = Re(v) — [Bé(us — ug ) (us), vsl, (5.16)

and
[b(u - uh)7 (q7€)] = Rg(Q7 g)a (517)
for all v € H and (¢,&) € Q. Thus, from the inf-sup condition of b (¢f. [11], Lem. 3.5), the identity (5.16), and
the continuity of a;, and B% (cf. [11], Lem. 4.3 and (3.5)), we deduce that
b — A=A
sup [b(v), (p — pn, n)]

0#4veH [vea

[Rellmr + C1 (1 + [luslli,0s + HUS,hHl,Qs) [us — usnll1,0s

Bl®—pr, A= An)llq

IN

IA

+ C (1 + [[up (a3 aiv;05) + WD,k |13 (div ;szD)) lup — up.ullas@ivion),

which together with (5.15) and assumption (5.9), implies that there exists C' > 0, depending only on parameters
and other constants, all of them independent of h, such that

1= pn A= Mlle < C {IIRellw + Il — wnllar }. (5.18)
In turn, taking v =u —up, and (¢,&) = (p — pr, A — Ap) in (5.16) and (5.17), respectively, gives

[an (ug p) () — ap(ugn)(up), u —up] = Re(u —up) — Re(p — pr, A = An) — [Bé(us — ugp)(us), ug — ugy) .
(5.19)
Next, employing the trace inequality, the estimate from the second row of (5.15), and the assumption (5.9), we
get

~ - r
lusr-nlos < Cu [luspllios < Cuw ér M(fs,fp,9p) < Cy T 3 (5.20)

where Cj, is the norm of the usual trace operator from H'(Qg) into H'/?(0Qs). Then, using from Theorem 4.9
of [11] that

T 2pas min L !
= = 1 ) ’
crp C2(Qs)(2 +v2)  C*(90s)C5

where C(9€2s) is the norm of the Sobolev embedding from H'/2(0Qg) into L*(08s), we deduce from (5.20)

that
Has

pC%(005) C2~
This inequality shows that the assumption equation (4.15) of [11] is satisfied, and hence the operator aj(us,p)
is strictly monotone with a constant a(Q) (¢f. [11], Eq. (3.15)), which, together with (5.19), yield

[uss-nllos <

a(@) {Ilus = usnllf o, + b = upllisy | < IRelliu = wnlu + [Rglarl (0 = pn A = M)l
+ Cacllus|losllus —usallf o (5.21)

where in the last term of (5.21) we have used the continuity estimate of B% (cf. (3.5)). Moreover, using (5.15),

(5.9), and the definition of r in Lemma 3.11 of [11] to bound Cg|lus||1,o4 by Q%‘/EM ag, we deduce from (5.21)
and (5.18), the existence of a constant C' > 0, independent of meshsizes, such that

lus = usal?a + 1o = upalisa,) < C{IRI@ayln - il + [ Rel Rl |- (5:22)
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Furthermore, from the identity (5.17) and the definition of b we find that the term ||div (up —up)|lo,, can
be bounded by || Rg|lq’, which, combined with (5.22) and some algebraic manipulations, implies

1/2 2/3 3/4 3/2
Ju— il < € max {IRIGE g IRIF . qys IRI s IRIamcay: IRI gy} (5:23)

Therefore, the estimate (5.13) follows from (5.18) and (5.23). Finally, from the discrete problem (3.3) we deduce
that R¢ and Rg vanish on Hy, and Qy,, respectively, which clearly implies (5.14) and conclude the proof. O

We remark here that when ||R|/(rxq) — 0, the dominant term in (5.13) is ||RHEI/{2XQ>/.

remains now to estimate | R||(rxq) - To this end, we first observe that the functional R can be decomposed as:

In this way, it only

R(V) = R1(vs) + Ra(vp) + Ra(q) + Ra(€), (5.24)
for all vV := ((vs,vp), (¢,€)) € H x Q, where
Ri(vs) = (fs,vs)s — 2u(e(us ), e(vs))s — p((Vusp)usn, vs)s — g(div us, s h, VS)S

Qg
VvVt Kkt

Ra(vp) == (fp —Upns,vp)p + (divvp,pr)p + (VD -1, Ap)s

+ (divvg,pn)s — < ugp - t,vg - t> —(vs -, M)y,

¥ (5.25)
R3(q) = (divugn,q)s — (gp — divup n,q)p,
Ra(§) == —(usp -n—upy - -n§)y.

Notice here that the above expression for Ry makes use of the definition of Up j, given previously by (5.5). In
this way, it follows that

IRl Exq)y < {||R1||H}S @sy T IRallmg  @ivian)y + IRallcz@y + ||R4||W71/3,3(2)}, (5.26)

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the right-hand side
of (5.26). We start with the following lemma, which is a direct consequence of the Cauchy—Schwarz inequality.

Lemma 5.3. There holds

1/2
IRsllzzy < § D Idivusallgr+ Y lgn —divupalgr
Ter? Terp
We now adapt a result taken from [4] in order to obtain an upper bound for R;.
Lemma 5.4. There exists C > 0, independent of the meshsizes, such that
1/2
HR1||H;S(QS)' <C Z 0% 1 )
TeT’
where
A2 2 . P i 2
@S,T = hT Hfs + leUS,h, - p(VuS,h)usyh - idlv us7hu57hH0
2
2 Qg
+ h Ospn + he llospn + Apn + ugyp - t)t ,
Z eH [[ ) ]] Ho,e Z e s \/m( ) ) b

ecE(T)NEL(Qs) ecE(T)NER (D)

and o gy, is given by (5.2).
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Proof. We proceed similarly as in the proof of Lemma 3.4 from [4], by replacing f1,01 4, u1 5,1, and I's
in there by fs — p(Vusp)usn — §divus puss, osn, usn, Qs, and ¥, respectively, and employing the local
approximation properties of the Clément interpolation operator I : H!(Qg) — X},(Qs) provided by Lemma 4.2
with p = 2. We omit further details. O

Next, we derive the upper bound for Ry, the functional acting on the interface X.

Lemma 5.5. There exists C > 0, independent of the meshsizes, such that

1/3
[Rallw-1/58) < C Z hellug - —up - nll3s
c€ER(Y)
Proof. We recall from the definition of R4 (c¢f. (5.25)) that
Ri(€) = —(usp-n—upy-n,&),, VEeW332(x)
which certainly yields
[Rallw-1/53(s)y = [agn-n—upp-nf_; 5,5 (5.27)

In turn, taking &, € Ay (X) and then (0, (0,£,)) € Hy, x Qp, in (5.14), we deduce that
(usp-n—upp -0y =0 V& € Ay(X),

which says that ug -n—up, - n belongs to A;-(2) (c¢f. (4.14)). In this way, the proof follows from (5.27) and
a direct application of (4.15) with p = 3/2 and ¢ = 3 (¢f. Lem. 4.5). O

Finally, we focus on deriving the upper bound for Ry, for which, given vp € H%D (div;Qp), we consider
its Helmholtz decomposition provided by Lemma 4.3 with p = 3. More precisely, we let wp € H'(Qp) and
Op € W;DB(QD) be such that vp = wp + curl 8p in Qp, and

Iwplliep + 18pll13.00 < Che VD13 (@ivi0p)- (5.28)

In turn, similarly to [3], we consider the finite element subspace of ers(Q D) given by
Xprp = {v €C(@p): wlreP(T) YT eTP, v=0 on rD}, (5.29)

and introduce the Clément interpolator I : W;;’(Q p) — Xpr,. In addition, recalling the Raviart—Thomas
interpolator 11, : H(Qp) — Hyr, (2p) introduced in Section 4, we are able to define

VD,h = Hh(WD) + curl (IhDﬂD> € Hh,FD (QD),

which can be seen as a discrete Helmholtz decomposition of vp ;. Then, noting from (5.14) that Ra(vp ) =0,
we can write

RQ(VD) = RQ(VD — VD,h) = RQ(WD — H}L(WD)) + RQ(CUI’] (ﬁD — I}?ﬂp))

Next, in order to simplify the subsequent writing, we define wp := wp — Iy (wp) and BD == Bp — IPpBp.
In this way, according to the definition of Ro (¢f. (5.25)), and employing the properties (4.1) and (4.2) of the
Raviart-Thomas interpolator, which yield (Wp - n, A\s)y, = 0 and (divwp,pn)p = 0, respectively, we readily
find that

R2(Wp) = (fp = Upn,Wpn)p - (5.30)
In turn, it follows straightforwardly from (5.25) as well that
Rg(curlﬁp) = (fD —Upn, curlﬁD)D + <curlED -n, )\h>2 . (5.31)

The following lemma establishes the estimate for R..
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—_

Lemma 5.6. Assume that there exists a convexr domain Z such that Qp C E and I'p C 0=. Assume further
that fp € L2(Qp). Then there exist Cy,Cy > 0, independent of the meshsizes, such that

1/2 2/3
~3/2
IRl pr < Cr§ D0 W llfp = Unallor e +Caq D0 OBy (5.32)
TeTP TeTP
where ©p 1 is defined in (5.4), and Up,, is given by (5.5).
Proof. We begin by observing that the Cauchy—-Schwarz inequality and the first approximation property of the
Raviart-Thomas interpolation operator II; in Lemma 4.1 imply
1/2

[R2(Wp)| < C1 ¢ D" W3 llfp — Upally 1 [wp
TeT,P

1,95 (5.33)

We stress here that the term on the right-hand side of (5.33) is well defined thanks to the assumption fp €
L2(2p). On the other hand, in order to bound Ra(curl 8p) (cf. (5.31)), we begin by noticing that

<curlB\D -n, )\h> = <curl§D -n, Eg()\h)> ,
= o2p

where By, : W1/33/2(%) — W1/33/2(9Qp) is any bounded extension operator. In particular, denoting by

Ap the extension of A, by the constant values of pp on the corresponding edges of I'p, and recalling from

Theorem 1.5.2.3-(a) of [25] that, under no extra conditions, the product space Heesh(E)ugh(rD)Wl/?”?’/Q(e)

coincides with W1/33/2(9Qp) through a linear isomorphism, we deduce that A, € W1/33/2(9Qp), so that we

can write

<cur1 ﬁD -, )\h>z = <curl BD - n, Xh>8 . (5.34)

Qp
Now, in virtue of the surjectivity of the trace operator from W13/2(Qp) onto W'/33/2(9Qp), we know that
there exists ¢, € W13/2(Qp) such that ¢n|oq, = An. In this way, applying the Green formula (4.10) to
v = curl 3p € H3(divs; Qp) and ¢ = ¢, € WH3/2(Qp), and recalling that n points towards inside Qp on X,
we get
<cur1 Bp - n,Xh> = <cur1 Bp - n, nph> = - Ve, - curl Bp, (5.35)
QD 29D ap
which, in conjunction with (5.34) and (5.31), yields
Ry(curl fp) = (fD —Up, — Vin, curl BD)D . (5.36)
Thus, applying Holder’s inequality in the right-hand side of (5.36), and then the boundedness of the Clément
interpolator IP : W13(Qp) — W13(Qp) (cf. [16], Lem. 1.127, p. 69), we obtain
2/3

|Ra(curl Bp)| < Co{ Y |fp—Upy — V‘PhHi/a?/z(T) 18pll1,3:05 - (5.37)

ey

Hence, as a direct consequence of estimates (5.33) and (5.37), and the stability estimate (5.28) for the Helmholtz
decomposition, we get (5.32) and conclude the proof. O

We end this section by stressing that the estimate (5.10) is a straightforward consequence of Lemmas 5.2-5.6,
and the definition of the global estimator © (cf. (5.7)), when h — 0.
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5.2. Efficiency
The following theorem is the main result of this section.

Theorem 5.7. Suppose that the data f5 € L?(Qg), fp € L*(Qp) and gp € L*(p) satisfy (5.9). Then, there
ezists a constant Cess > 0, independent of h, such that

Cess © < |ld —tpllHxq + [PD — @nl1,3/2:0, + hoot,, (5.38)

where h.o.t. stands for one or several terms of higher order.

Throughout this section we assume, without loss of generality, that K~ 'u D.hy £5, fp, and ¢y, are all piecewise
polynomials. Otherwise, if K, fg, fp, and ¢, are sufficiently smooth, and proceeding similarly as in Section 6.2
of [8], higher order terms given by the errors arising from suitable polynomial approximation of these expressions
and functions would appear in (5.38), which explains the eventual h.o.t. in this inequality. More precisely, let
us consider the L2(,)-orthogonal projector P} onto the vectorial piecewise polynomials of degree < £ on (1,
with x € {S, D}, which satisfies the following approximation property:

(AP3) there exists C' > 0, independent of h, such that for each v.€ W*+1P(Q,) there holds

IV =Pi(Vlkpr < Chr [Vlkprpr VT €T (5.39)

Then, the h.o.t. arise when in the efficiency estimates to be derived below in Lemmas 5.12-5.15, the non-
polynomial data fs and fp, and the given ¢y, are replaced by P¥ (fs), PP (fp), and P2 (), respectively, with
some k > 0, where PP is the scalar version of P. In particular, from the left hand side of (5.48) (c¢f. Lem. 5.12)
we observe that, doing the above with k = 0, the extra term h7 ||fs — P§(fs)||§ ; would appear, which can be
bounded, using (5.39), as

ht |lfs = P5(Es)3r < Cihzlfslie VT €T, (5.40)

under the assumption that fg|7 € HY(T) for all T € 7,°. Proceeding similarly with the left hand side of (5.52)
(¢f. Lem. 5.15), we are lead to the extra term h7 ||fp — P (fp)||§ 1, and the estimate

Wi |fp — PG (Ep)l5r < Cohyfplir VT €T,7, (5.41)

under the assumption that fp|r € H'(T) for all T € T,”. The respective terms in the other lemmas are handled
analogously. Therefore, summing up over all T € 7%, with x € {S,D}, in (5.40) and (5.41), the resulting
expressions on the corresponding right hand sides become the h.o.t., which have a higher order of convergence
than the rate of convergence O(h'/3) of the method (3.3) (see [11], Thm. 5.2 for details).

In order to prove (5.38) we need first to introduce the Banach space

H(div, 3; Qg) = {TS cL2(Qg): divrs € L4/3(QS)}.

Then, we state the following result, which basically follows by applying integration by parts backwardly in the
formulation (3.1), and proceeding as in Remark 2.1 of [6] for the Navier—Stokes terms.

Theorem 5.8. Let (u, (p,N\)) € H x Q be the unique solution of (3.1). Then divug = 0 in Qg, divup = gp

in Qp, and up -n = ug -n on X. In addition, defining ps := plas, Pp = Play, 0s = —psl + 2ue(ug), and
Up = %K‘lup + %|uD|uD, there hold pp € WH3/2(Qp) N L2(Qp), A = pp on ¥, dives = p(Vug)ug — fs
in Qs (which yields o5 € H(div,,3;Qs)), Up + Vpp = fp in Qp, and osn + An + %(us “t)t =0 on 3.

We begin the derivation of the efficiency estimates with the following result.

Lemma 5.9. There hold
|divuspllor < [us —uspir YT €T

and
lgp — divup pllor < |lup — uppllms@v.ry YT € TP
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Proof. Tt suffices to use from Theorem 5.8 that divug = 0 in Qg and divup = gp in Qp. Further details are
omitted. 0

In order to derive the upper bounds for the remaining terms defining the global a posteriori error estimator
O (cf. (5.7)), we proceed similarly as in [3,4,8,9,21], and apply results ultimately based on inverse inequalities
and the localization technique based on triangle-bubble and edge-buble functions. To this end, we now recall
some notation and introduce further preliminary results. Given T € 7, := 7,;° UT,?, and e € £(T), we let ¢r
and 1. be the usual triangle-bubble and edge-bubble functions, respectively (see [30], Egs. (1.5) and (1.6)),
which satisfy:

(i) ¥ € P3(T), supp(vr) €T, r =0 on 0T, and 0 < ¢ < 1in T,
(ii) We|r € Po(T), supp(ve) C we, e =0 0n 9T \ e, and 0 < ¢, < 1 in w, := U{T’ €Ty ec E(T’)}.

In addition, we also recall from [30] that, given k € NU{0}, there exists an extension operator L : C(e) — C(we)
that satisfies L(o) € P(T) and L(o)|. = 0 Yo € Pg(e). A corresponding vectorial version of L, that is, the
componentwise application of L, is denoted by L. Additional properties of 17, 1., and L are collected in the
following lemma. Regarding the corresponding proof we refer to Lemma 3.3 of [30] for details.

Lemma 5.10. Let p and q be two fized real numbers with p € [1,+00] and 1/p+1/q = 1. Given T € T;, and
e € &E(T), let Vp C L*°(T) and V., C L*(e) two arbitrary finite dimensional spaces. Then, there exist positive
constants ¢; with © € {1,...,7}, depending only on p, q, the spaces Vi and V., and the shape-regqularity of the
triangulations (minimum angle condition), such that for each uw € Vi and o € V., there hold

[ woro

C1 ||u||L1”(T) < Seu\y ||’UHLQ(T) < ||U||L1”(T)7 (542)
veVr

/awer
C2 ||U||LP(€) S SEV ||:_HL () S HUHLP(E)) (5.43)

T e (e
es hp ' [vrullpaery < IV(@prw)|| pary < cahpt lvrul| pacr), (5.44)
¢s hp e (o) Loy < IV (@eL(0)|ary < ¢6hg' [YeL(0)l Locry, (5.45)

and

e L(0) | Lacry < ez hl/ 9|0l Lace)- (5.46)

As stated in Remark 3.2 of [30], V7 and V. can be chosen as suitable spaces of polynomials. Thus, in what
follows we will choose Vi as P,(T) and V. as Py(e) for a given k € NU {0}. In addition, and coherently with
previous notations, we set Vo and V., respectively, as the corresponding vectorial counterpart. The following
inverse estimate will be also used. We refer the reader to Lemma 1.138 of [16] for its proof.

Lemma 5.11. Let k € NU {0}, n € {2,3}, I,m > 0 such that m <, and p,q € [1,4+00]. Then, there exists
¢ > 0, depending only on k,l,m and the shape regularity of the triangulations, such that, for each triangle
(tetrahedron) T' € Ty, there holds

[vllipr < chp™ T PTVD || Yo € PU(T). (5.47)

We point out that throughout this section each proof done in 2D can be easily extended to its three-
dimensional counterpart considering n = 3 when we apply (5.47). In that case, other positive power of the
meshsizes hr,, with x € {S, D}, will appear on the right-hand side of the efficiency estimates which anyway
are bounded. Next, we continue providing the corresponding efficiency estimates of our analysis with the upper
bounds for the remaining three terms defining @%’T (¢f. (5.1)). Since the corresponding proofs are adaptations
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to our configuration of those of Lemmas 4.4-4.6 from [4], we only mention the main tools employed and refer
to the preprint version of the present paper (cf. [10]) for details. However, for the sake of clearness and com-
pleteness, and because of some technicalities involved, we do provide full proofs for the estimates that include
terms arising from the Darcy—Forchheimer equation.

Lemma 5.12. There ezists ¢ > 0, independent of h, such that for each T € T, there holds

2
h% Hfs +dives, — p(Vusy)us,n — gdiv us,hus,hHO , < C{Hps —psulgr + lus —usulip

)

2 .
+ hel[(Vus)us — (Vus ) sy | Las ) + hrlldiv (s — us,h)us,h||i4/3(T)}~ (5.48)

Proof. Given T € T,°, it proceeds by applying first (5.42) to || x|lo,7, With X1 = fs+diveos s —p(Vug p)us,p —
gdiv ug pug,p, and then employing Cauchy—-Schwarz and Holder’s inequalities, (5.44), and the local inverse
estimate (5.47). For further details we refer to Lemma 5.12 of [10]. O

Lemma 5.13. There exists ¢ > 0, independent of h, such that for each e € E,(Qg) there holds

2
hell losand [lo, < e > {llps —psallyr + lus — usnlis
TCwe

+ hp

2 .
‘(VUS)US — (Vusah)uS»hHLMS(T) + hTHdIV (us — us7h)us7h||i4/3(T)}, (549)

where w, is the union of the two triangles in T,° having e as an edge.

Proof. Given e € &,(Q2g), it begins by applying (5.43) to || [os.nn] Ho .- The rest of the proof makes use of the

Cauchy—Schwarz and Hélder inequalities, and the estimates (5.45)—(5.47). We refer to Lemma 5.13 of [10] for
further details. O

Before establishing the following lemma, we need to recall a local trace inequality ([1], Thm. 3.10). Indeed,
there exists ¢ > 0, depending only on the shape regularity of the triangulations, such that for each T' € ’Ths Uzl
and e € £(T), there holds

hellol e < e{llolr + A3l r} Vo e BY(T). (5.50)

Lemma 5.14. There exists ¢ > 0, independent of h, such that for each e € E,(X) there holds

2

he Us7hn+)\hn+ (uS,h -t)t

< c{llps — psulldr + lus = usal 7+ helld = Al

gl
Vit -kt

0,e
2
+ hTH(VuS)uS - (vus’h)usvhHL‘l/S(T)
+ hT”le (US - uS,h)llS,hHiﬁ;/S(T)}a (551)

where T is the triangle of Ths having e as an edge.

Proof. Given e € &,(X) , we first apply (5.43) to || X.|lo.e, With X, := ogrn + Apn + ad

a (ug,p - t)t. Then,
Kt

the proof continues by applying again the Cauchy—Schwarz and Holder inequalities, and by using the estimates
(5.45)—(5.47), and (5.50). We refer to Lemma 5.14 of [10] for all the details. O

The second residual expression defining (:)%)’T (¢f. (5.3)), that is, the one containing the nonlinear Darcy—
Forchheimer term, is estimated now. To that end, we adapt the proof of Lemma 6.3 from [7] to our context.
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Lemma 5.15. There exists ¢ > 0, independent of h, such that for each T € T,P there holds
4/3 2
h |Ifp — UD,h\Ié,T < O{HPD —poaldr +b7lup —up pllisr + hy! |luplup — IuD,hluD,h||L3/2(T)}. (5.52)

Proof. Given T € T,P, we apply (5.42) to ||[fp — Up p|lo,r, that is

/ (fp —Upy) - rv
cllfp = Uppllgp < sup

, 5.53
kg Vlox (5.53)

from which, using the identity fp = Up + Vpp in Qp (¢f Thm. 5.8), noting that Vpp = 0 on T, and
integrating by parts, we find that

/T(fD —Upn) -Yrv = /T (V(PD —ppn)+ (Up — UD,h)) YTV

=- /T(pD — pp,n)div (Yrv) +/ (Up —Upy) - ¢rv.

T

In this way, from the definitions of Up and Upj (¢f. Thm. 5.8 and (5.5)), using the Cauchy-Schwarz and
Holder inequalities, applying (5.44) to ||V (¥rv)|o,r, and recalling that 0 < ¢p < 1, we get

/ (fo =Upn) - ¢Yrv<C {h%lﬂpD —po.nllor + llup — UD,hHo,T}HVHo,T
T
+ H'uD|uD - |uD,h|uD,hHL3/2(T)||VHL3(T)~ (5'54)

Then, replacing (5.54) back into (5.53), and then applying Holder’s inequality and the local inverse estimate
[vlLs(r) < ch;l/3 IVllor (cf (5.47)), we arrive at (5.52) and complete the proof. O

Now we turn to provide the upper bound for the term defining (:j?jj/QT (cf. (5.4)).

Lemma 5.16. There ezists ¢ > 0, independent of h, such that for each T € ’]}LD there holds

3/2 3/2 3/2 3/2
Ifo —Up — V@hHL/s/z(T) < C{HUD —up, \L/ax(T) +|pp — SOh|1,/3/2;T+ |luplup — |uD,h|uD,hHL3/2(T)}~ (5.55)

Proof. We first recall from Theorem 5.8 that fp = Up + Vpp in Qp. Then, replacing this identity in the
expression |[fp — Upj — VgthLg/z(T), employing the definitions of Up and Upp, (¢f. Thm. 5.8 and (5.5)),

and applying the triangle and Holder inequalities, we readily arrive at the estimate (5.55). Further details are
omitted. (]

Finally, we provide the upper bound for the term defining 9%@ (cf. (5.6)).

Lemma 5.17. There exists ¢ > 0, independent of h, such that for each e € E,(X) there holds

he lusn -n—upp-nlfjae) < C{Ilus — s nllRs(ry) + Prglus —usnl oy

+lup —up ulisr,) + by, Idiv (up = up p)[[5 7, }’ (5.56)

where Ts and Tp are the triangles of Ths and ’Z;ID, respectively, having e as an edge.
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Proof. Given e € &,(X), we let Ts and Tp be the triangles of Ths and 7,”, respectively, having e as an edge,
which means that w. := T's UTp, and define x, := us, -n—up - n on e. Then, applying (5.43) to ||xellz3(e)

we have
fe Xe YeT

) 5.57
7'||L3/2(e) ( )

e [[Xellz3(e) < sup
T e

Next, setting e « := e|r,, with x € {S, D}, using the identity up -n = ug -n on ¥ (¢f. Thm. 5.8), recalling
that 9. = 0 on 0T} \ e, and integrating by parts on T, we obtain

/ Xe er = /T (s — wsn) - V(o sL() + | tosL(r)div (us — us,)

Ts

+/ (up —upyp) - V(e pL(T)) + Ye,pL(7) div (up — up p).
Tp Tp

Thus, using the Cauchy—Schwarz and Hélder inequalities, applying (5.45) to ||V (ve « L(7))|lL3/2(1, ), and utilizing

the local inverse estimate ||1e L(7)|o0.1, < Ch;*l/gH'(/)e,*L(T)”LS./z(T*) (¢f. (5.47)), and the fact that 0 < ¢, <1
in we, we find that

/Xe Yt < C {h%sl\lus —usllLacry) + by lldiv (us — us,h)||o,Ts}||¢e,sL(T)||L3/2(TS)
+ C{nztllup = upaluscry) + ey 14iv (wp = wp oz flYe oL sy (5.58)

Finally, applying now (5.46) to ||[t¢)¢,« L(7)|| £3/2(r, ), combining the resulting estimate with (5.58) and (5.57), and
using that h. < hp, , we arrive at (5.56) and conclude the proof. O

In order to complete the global efficiency given by (5.38) (¢f. Thm. 5.7), we now need to estimate the terms

|[(Vus)us — (vuS,h>uS,hHi4/3(T)7 and ||[up|up —

A~ )‘h||(2),e7 us — lls,h||i3(T), [[div (us — uS,h)uS,h||i4/3(T),

lup p uD’h| i/32/2(T) appearing in the upper bounds provided by Lemmas 5.12-5.17. To this end, we first recall

that W1/33/2(%) is continuously embedded into L?(X), whence

Z A= )\hHae < A= )‘hHg,z < Clr- >\h||%/3,3/2;2- (5.59)
e€En(T)

In turn, we make use of the continuity of the injection i : H'(2s) — L3(Q2s) to obtain

> s —usallsry = llus —usallisqy < Cllus —usal? o, - (5.60)
TeTS

In addition, applying Holder’s inequality with p = 3/2 and ¢ = 3, we first obtain
Idiv (us — ws)usalZuscr < [salar Idiv (us — usa) 3. (5.61)

and then, bounding ||u57h||%4(T) by ”uS,h”%‘l(szs) for each T € 7,°, and employing the continuous injection
i:H'(Qg) — L*(Qs), and the a priori bounds of |lus|1.0s (¢f. (5.15)) combined with (5.9), we deduce that

N

> lldiv(us —usp)usalgsry < lusnllfses D Idiv(as —usu)llf
TeT? TeT?

IN

Cllusnllfggllus —usalliqs < Cllus —ushlf o, (5.62)
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Similarly, adding and subtracting (Vugs)ug,, (it also works with (Vug p)us), applying Hélder’s inequality as
in (5.61), and using again the continuous injection i: H'(Q2s) — L*(Q2g), and the a priori bounds of ||us||i,04
and |lusnll1,0s (c¢f (5.15)) combined with (5.9), we are able to show that

2
> [[(Vus)ug — (Vusp)usnllpasy < Cllus —usali o (5.63)
TeTs

Finally, thanks to the Cauchy-Schwarz inequality and the a priori bounds of |[upl|gsdiv;o,) and
lup,nllH3@iv;op) (cf (5.15)) combined with (5.9), we find that

> |luplup = [ups

3/2 3/2 3/2 3/2
wpllghay < C S0 {Iun P + o alFiir Hlup = upalfir,

TGThD TGThD
3/2 3/2 3/2
< C{Iunla,, + up 120, Mo —up e,
3/2
<C HuD - uDvh”H/“(div;QD)' (564)

Consequently, it is not difficult to see that (5.38) follows from the definition of © (¢f. (5.7)), Lemmas 5.9,
5.12-5.17, and the estimates (5.59)—(5.64).

6. NUMERICAL RESULTS

This section serves to illustrate the performance and accuracy of our mixed finite element scheme (3.3) along
with the reliability and efficiency properties of the a posteriori error estimator © (c¢f. (5.7)) in 2D domains
derived in Section 5. Our implementation is based on a FreeFem++ code [26]. Regarding the implementation of
the Newton iterative method associated to (3.3) (see [11], Sect. 6 for details), the iterations are terminated once
the relative error of the entire coefficient vectors between two consecutive iterates, say coeff™ and coeff™*! | is
sufficiently small, i.e.

|coeff™ ! — coeff™ ||,
< tol
Fm+1 ||22 !

||coef

where || - ||¢2 is the standard ¢2-norm in RY, with N denoting the total number of degrees of freedom defining
the finite element subspaces Hy, and Qp, (cf. Sect. 3.3), and tol is a fixed tolerance chosen as tol = 1E — 06. As
usual, the individual errors are denoted by:

e(us) = ||us - uS,h| 1,Qs5 e(ps) = ||ps — Ps.h |0,957

e(up) = [lup —upnllusaivep), e®n) = lpp —poullogs, €)= A= AullLsrzs).

Note here that [|A—Ap||1/3,3/2;2 has been replaced by ||A—Au||ps/2(s) since ||+ [|1/3,3/2;5 is not easily computable.
Similarly, since it does not seem trivial to define an explicit lifting ¢y, in the numerical results reported below,
and more precisely in the definition of @SD/?T (c¢f. (5.4)), we replace @), by a computable approximation of it
denoted 1y In fact, observing that the efficiency estimate (5.38) suggests that ¢y, be as close as possible to pp,
we let 1)y, be the unique function in the finite element subspace X}, := {v €C(Qp): vlreP(T) VT € ThD},
whose value on each interior vertex x of the triangulation ’ThD is given by the average of the constant values
of pp,, on the triangles to which x belongs. Similarly, for each vertex x lying on 02p, ¥ (x) is defined as the
average of the constant values of A; on the edges to which x belongs. We stress here that, when replacing ¢y,
by 9y, in (5.35), the consistency error generated in the estimation of Ra(curl Gp) (¢f. (5.36)) is given by

<curl/§D -n, Xh — ¢h>

o0p
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which, according to the duality between W~1/33(90p) and W/33/2(90p), is first estimated as
‘ <CUP15D ‘0, A\ — ¢h>m ‘ < leurl Bp - _1/33.00, A0 — Vrlli/3.3/2:005- (6.1)
D

Then, employing the boundedness of the normal trace of H?(divs;Qp) (cf. (4.12) and [16], Cor. B.57), the
boundedness of the Clément interpolator I” : W13(Qp) — W3(Qp) (cf. [16], Lem. 1.127, p. 69), and the
stability estimate (5.28), we find that

A

curl Bp - nf|_1/3 300, < C |lcurl Bplas(divs;0p) = C lleurl Bpl|Ls @)

ClBpliza, < C

IN

1Bplliz0s, < Cllvpllas@ivian),

which, replaced back into (6.1), yields

’ <CUI'IBD 0, — ¢h>39 ‘ < Cllvpllasaiv:ap) An — Ynlli/3,.3/2:000- (6.2)
D

The foregoing inequality shows that our consistency error is under control as long as vy, constitutes a good
approximation of \,. Regarding this fact, in the examples reported below we provide numerical evidence that
this is indeed the case, at least in the L3/2(GQD)—norm, by computing

e(An) == || An = ¥nllLs/200,)

and its corresponding rate of convergence, which is observed to behave of O(h) in all cases. In turn, the global
error is computed as e(d) + e(¢y, ), where

e(d) := e(ug) +e(up) +e(ps) +e(pp) +e(A) and e(yp) := |pp — ¥n
whereas the efficiency and reliability indexes with respect to © are given by
e(d) + e(vn) 1/2y . e(d)
— e and rel(©Y/7) := o2
Regarding these indexes, and assuming that e(t) < e(d), which is attained in all the numerical essays below,

we observe from (5.8) (after discarding the higher order terms there) that

Cogr < eff(©) < 2Ce1 © /2 and %@1/2 < rel(0Y?) < Cpa, (6.3)

1,3/2,Qp

eff(©) =

which says that, while eff(©) and rel(©'/2) are below and above bounded, respectively, eff(©) could become
above unbounded whereas rel(@l/ 2) could very well approaches 0 as © goes to 0. Nevertheless, the numerical
results to be displayed below show that eff(©) remains always above bounded as well, whereas rel(©'/2) does
in fact decreases as © goes to 0.
In addition, we define the experimental rates of convergence
/
r(o) := W for each o € {us,up,ps,pp,/\,)\h,ﬁ},
where h and h' denote two consecutive mesh sizes, taken accordingly from {hs, hp, hg}, with their respective
errors e and e’. However, when the adaptive algorithm is applied, the expression log(h/h’) appearing in the
computation of the above rates is replaced by —% log(N/N’), where N and N’ denote the corresponding degrees
of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them, for the sake of simplicity, we
choose the parameters u =1, p=1,F =1, ag = 1, Kk = [, and K = I. Furthermore, the condition (pp,1)q =0
is imposed wvia a penalization strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator ©, whereas
Example 2 is utilized to illustrate the behavior of the associated adaptive algorithm, which applies the following
procedure from [30]:
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(1) Start with a coarse mesh 7j, := T,° U T,P.
(2) Solve the Newton iterative method associated to (3.3) for the current mesh 7.
(3) Compute the local indicator O for each T' € Tj, := T,° U T, and e € &,(X), where

~ /2 -
Or = {03, +0b,}  +Opr+0s. (. (51), (53), (54), (56)).

(4) Check the stopping criterion and decide whether to finish or go to next step.
(5) Use the automatic meshing algorithm adaptmesh from Section 9.1.9 of [27] to refine each T € T}, satisfying:

1
#T

Or > Cidm Z Or, for some Chgm € (0,1), (6.4)

TeT,

where # T denotes the number of triangles of the mesh 7},.
(6) Define resulting meshes as current meshes 7,° and 7,7, and go to step (2).

In particular, in Example 2 below we take Cygm = 0.8. In turn, if the refinement is with respect to the local

indicator @lT/ 2, then we simply replace ©7+ and O by @lT/,2 and @1T/ 2, respectively, in the criterion (6.4).

Example 1: Accuracy assessment with a smooth solution in a rectangular domain.

In our first example we consider a rectangle domain divided in two coupled squares, i.e. Qg := (0,1) x (1,2),
Qp = (0,1)? and ¥ := (0,1) x {1}. The data fs,fp, and gp are chosen so that the exact solution in the
rectangle domain 2 = Qg U X U Qp is given by the smooth functions

s (2 sin(wxl)cos(wa2)> Cup (Sin(ﬂ'l’l)exp(xg)) ,

cos(mxy) sin(2 ) sin(mze) exp(x1)

1
ps = g cos(mway) in Q,, with x€{S, D}.

Notice that this solution satisfies ug-n = up -n on . However, the Beavers—-Joseph—Saffman condition (2.3) is
not satisfied, whereas the Dirichlet boundary condition for the Navier—Stokes velocity on I'g and the Neumann
boundary condition for the Darcy—Forchheimer velocity on I'p are both non-homogeneous. In this way, the
right-hand side of the resulting system must be modified accordingly as well as the global estimator © (cf.
(5.7)). The results reported in Table 1 are in accordance with the theoretical sub-optimal rate of convergence

TABLE 1. EXaAMPLE 1, BR — RTy — Py — Py primal-mixed scheme with quasi-uniform refinement.

N hs hp  Tter e(us) r(us) e(ps) r(ps) e(up) r(up) e(pp) r(pp)
279 0.373 0.373 5 2.39e+00 — 9.05e—01 — 1.14e4+00 — 4.22e—02 —
1061 0.196 0.190 5 1.01e4+00 1.339 2.92e—01 1.766 5.31e—01 1.133 1.48e—02 1.557
3877 0.103 0.097 5 4.84e—01 1.135 1.44e—01 1.089 2.62e—01 1.043 4.95e—03 1.617
15057 0.051 0.057 5 2.52e—01 0.929 6.70e—02 1.090 1.35e—01 1.268 2.17e—03 1.579
50203 0.027  0.026 5 1.23e—01 1.144  3.81e—02 0.898  6.73¢—02 0.877 1.01e—03 0.967
236687 0.014  0.013 5 6.12e—02 1.004  1.79e—02 1.092  3.35e—02 1.068 4.93e—04 1.091
hs e(A) r(A)  e(Ap) r(An) e(d) r(d) e(vn) C) eff(©) rel(®1/2)
1/4 4.52e—02 — 6.84e—02 — 4.52e4+00 — 1.69e—01 2.38¢+01 0.1971 0.9267
1/8 1.38¢—02 1.712 2.20e—02 1.635 1.86e+00 1.382 8.51e—02 9.86e+00 0.1977 0.5938
1/16 4.94e—03 1.480 1.04e—02 1.085 9.00e—01 1.120 4.92e—02 5.04e+00 0.1884 0.4011
1/32 1.86e—03 1.414 5.04e—03 1.044 4.59e—01 1.160 4.28¢—02 2.56e+00 0.1956 0.2864
1/64 8.53e—04 1.121 2.49e—03 1.014 2.30e—01 0.921 4.00e—02 1.32e4+00 0.2040 0.2001

1/128 4.15e—04 1.041 1.24e—03 1.009 1.14e—01 1.018 3.84e—02 6.70e—01 0.2266 0.1386
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FIGURE 2. Example 2, Log—log plot of e(d) vs. N for quasi-uniform/adaptive primal-mixed scheme.

TABLE 2. EXAMPLE 2,

BR — RTy — Py — P, primal-mixed scheme with quasi-uniform refinement.

N hs hp Tter e(ug) r(ug) e(ps) r(ps) e(up) r(up) e(pp) r(pp)
975 0.188 0.200 4 2.90e+00 - 1.47e400 — 6.38e—01 — 2.80e—02 —
3803 0.100 0.095 5 2.13e+00 0.495 7.99¢—01 0.976 3.07e—01 0.984 1.36e—02 0.974
13907 0.050 0.049 5 1.56e+00 0.450 5.56e—01 0.523 1.56e—01 1.037 6.76e—03 1.065
55232 0.026 0.026 5 8.94e—01 0.837 3.84e—01 0.559 7.83e—02 1.081 3.38¢—03 1.089
214793 0.014 0.013 5 5.26e—01 0.907 1.94e—01 1.173 3.92e—02 0.968 1.70e—03 0.966
859813 0.007 0.007 5 2.76e—01 0.868 1.07e—01 0.799 1.96e—02 1.204 8.51e—04 1.202
hy e (N eGn) 0w e () «Wn) O f(©)  rel(©7)
1/8 1.45e—02 — 6.89e—02 — 5.06e+00 — 2.64e—01 2.84e+01 0.1873 0.9486
1/16 3.65e—03 1.993 3.26e—02 1.081 3.25e+00 0.650 2.14e—01 2.54e+4+01 0.1363 0.6447
1/32 8.87e—04 2.042 1.57e—02 1.053 2.28e+00 0.549 1.66e—01 1.32e¢e+401 0.1854 0.6269
1/64 4.78¢—04 0.893 7.85e—03 0.999 1.36e4+00 0.746 1.73e—01 8.13e+00 0.1885 0.4769
1/128  4.74e—05 3.334 3.88¢—03 1.018 7.61le—01 0.855 1.57e—01 4.78e+00 0.1920 0.3480
1/256 2.90e—05 0.705 1.94e—03 1.000 4.03e—01 0.917 1.56e—01 2.43e+00 0.2303 0.2584

O(hl/ 3) provided by Theorem 5.2 of [11]. Actually, they are better than expected since they suggest that only
technical difficulties stop us of proving an optimal rate of convergence O(h), which is in fact observed there. In
addition, we remark that the behaviors predicted by (6.3) and the comments right after it, are also illustrated
in the table, in the sense that the efficiency index remains above and below bounded and the reliability index,
while bounded as well, decreases as the estimators approach 0. Notice also that e(Ap) decreases with O(h),

which supports the choice of ¥}, as an approximation of Xh on Jp.

Example 2: Adaptivity in a 2D helmet-shaped domain.

In our second example, we consider a 2D helmet-shaped domain. More precisely, we consider the domain
Q=QsUXUQp, where Qg := (—1,—-0.75) x (0,1.25) U (—0.75,0.75) x (0,0.25) U (0.75,1) x (0,1.25), Qp :=
(—1,1) x (—=0.5,0) and ¥ := (—1,1) x {0}. The data fs,fp, and gp are chosen so that the exact solution in the
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TABLE 3. EXAMPLE 2, BR — RT(y — Py — Py primal-mixed scheme with adaptive refinement via ©.

N Iter e(ug) r(ug) e(ps) r(ps) e(up) r(up) e(pp) r(pp)
975 4 2.90e+4-00 — 1.47e4-00 — 6.38e—01 — 2.80e—02 —
1713 4 1.62e4-00 2.078 3.23e+00 - 6.07e—01 0.176 3.14e+00 -
3029 5 9.10e—01 2.013 4.61le—01 6.828 6.13e—01 — 7.59e—02 13.063
5137 5 4.42e—01 2.737 2.08e—01 3.008 6.09e—01 0.022 6.98e—02 0.316
8899 5 3.20e—01 1.173 1.31e—01 1.702 5.41e—01 0.429 4.05e—02 1.984
15622 5 2.38e—01 1.059 8.45e—02 1.549 3.90e—01 1.166 2.06e—02 2.398
26 868 5 1.80e—01 1.016 5.58e—02 1.528 2.84e—01 1.170 1.49e—02 1.204
45834 5 1.38e—01 1.000 4.33e—02 0.954 2.26e—01 0.859 1.20e—02 0.815
78490 5 1.04e—01 1.041 3.14e—02 1.195 1.70e—01 1.066 8.85e—03 1.121
134124 5 7.98e—02 1.002 2.30e—02 1.164 1.30e—01 0.984 6.49e—03 1.159
229268 5 6.09e—02 1.006 1.77e—02 0.980 1.00e—01 0.971 5.34e—03 0.727
394 144 5 4.67e—02 0.986 1.34e—02 1.023 7.49e—02 1.081 3.84e—03 1.215
e(N) r(\) e(An) r(An) e(d) r(d) e(yn) S) eff(©)
1.45e—02 - 6.89e—02 - 5.06e+-00 - 2.64e—01 2.84e+01 0.1873
4.98e+-00 — 6.48e—02 0.216 1.36e+01 - 2.44e—01 1.22e4-01 1.1288
1.04e—01 13.566 6.44e—02 0.017 2.16e+00 6.441 2.42e—01 6.21e+00 0.3875
1.11e—01 - 6.45e—02 - 1.44e4-00 1.542 2.37e—01 3.84e+00 0.4367
5.62e—02 2.478 6.39e—02 0.035 1.09e+-00 1.018 2.32e—01 2.93e+00 0.4508
6.53e—03 7.648 4.88e¢—02 0.956 7.39e—01 1.376 1.90e—01 2.16e+00 0.4298
4.67e—03 1.238 3.81le—02 0.910 5.40e—01 1.160 1.45e—01 1.64e4-00 0.4187
1.22e—03 5.016 3.10e—02 0.776 4.20e—01 0.936 1.41e—01 1.29e¢+4-00 0.4365
7.86e—04 1.643 2.10e—02 1.444 3.15e—01 1.074 1.20e—01 9.88e—01 0.4403
3.80e—04 2.710 1.52e—02 1.214 2.40e—01 1.016 1.02e—01 7.61le—01 0.4489
2.19e—04 2.060 1.24e—02 0.765 1.85e—01 0.978 8.94e—02 5.96e—01 0.4596
1.11e—04 2.524 9.04e—03 1.160 1.39¢e—01 1.049 8.55e—02 4.72e—01 0.4754

TABLE 4. ExaAMPLE 2, BR — RTy — Py — Py primal-mixed scheme with adaptive refinement
via ©'/2, we show results for the meshes 1-2-3-4, 11-12-13-14, 19-20-21-22.

N Tter e(ug) r(ug) e(ps) r(ps) e(up) r(up) e(pp) r(pp)
975 4 2.90e+00 - 1.47e4-00 - 6.38e—01 - 2.80e—02 -
1896 4 1.64e+4-00 1.711 3.73e+00 - 6.17e—01 0.099 3.72e+00 —
3191 5 9.04e—01 2.295 3.92e—-01 8.651 6.10e—01 0.046 5.08e—02 16.499
4685 5 4.70e—01 3.406 1.91e—01 3.750 5.90e—01 0.171 3.09e—02 2.590
24245 5 1.80e—01 1.104 5.93e—02 1.160 2.93e—01 1.368 1.48e—02 1.269
30562 5 1.60e—01 1.035 5.36e—02 0.876 2.67e—01 0.807 1.33e—02 0.931
37893 5 1.43e—01 1.017 4.72e—02 1.190 2.37e—01 1.107 1.18e—02 1.098
47209 5 1.29e—01 0.960 4.16e—02 1.143 2.18e—01 0.763 1.10e—02 0.674
145102 5 7.28e—02 0.990 2.30e—02 1.053 1.22e—01 0.999 6.32e—03 0.917
182543 5 6.45e—02 1.044 2.04e—02 1.028 1.09e¢—01 0.977 5.62e—03 1.014
229100 5 5.74e—02 1.027 1.82e—02 1.000 9.75e—02 1.005 4.93e—03 1.164
286931 5 5.11e—02 1.031 1.62e—02 1.033 8.67e—02 1.039 4.46e—03 0.889
e(N) r(X) e(An) r(An)  e(d) r(d) e(vn) et/ rel(©1/2)
1.45e—02 6.89e—02 5.06e+00 2.64e—01 5.33e+00 0.9486
5.90e+00 - 6.49e—02 0.179 1.56e+4-01 — 2.43e—01 3.53e+00 4.4162
7.72e—02 16.656 6.38e—02 0.067 2.03e+-00 7.829 2.34e—01 2.46e+00 0.8279
3.32e—02 4.393 6.37e—02 0.003 1.32e+4-00 2.270 2.33e—01 1.99e4-00 0.6603
1.98e—03 11.340 3.36e—02 1.737 5.49e—01 1.324 1.66e—01 1.29e¢+-00 0.4241
1.66e—03 1.568 3.07e—02 0.775 4.95e—01 0.895 1.58e—01 1.22e4-00 0.4043
1.30e—03 2.265 2.70e—02 1.190 4.40e—01 1.090 1.42e—01 1.16e+00 0.3794
9.74e—04 2.613 2.37e—02 1.197 4.00e—01 0.870 1.31e—01 1.10e+00 0.3622
3.24e—04 2.658 1.39e—02 1.130 2.25e—01 1.002 1.00e—01 8.46e—01 0.2654
2.54e—04 2.104 1.16e—02 1.599 2.00e—01 1.006 9.97e—02 8.06e—01 0.2482
1.92e—04 2.489 1.03e—02 0.998 1.78e—01 1.018 9.28e—02 7.63e—01 0.2335

1.68e—04  1.162 8.72e—03 1.506 1.59e—01 1.031 8.74e—02  7.26e—01 0.2188
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F1GURE 3. Example 2, domain configuration in the initial mesh, second velocity component
and pressure in the whole domain.

FI1GURE 4. Example 2, three snapshots of adapted meshes according to the indicators © and
©'/2 (top and bottom plots, respectively).

2D helmet-shaped domain 2 is given by the smooth functions

(23— 0.26) (22 — 0.26)

e r1(z1, z2) ro(x1,x2) I sin(mzy) cos(mxy) exp(xa)
5 (@1 +074) (2, -0.74) |7 D=\ sin(rxy) cos(mas) exp(xy) )
ri(z1, z2) r2(21, T2)

Py = xgsin(rxy) in Q., with x € {S, D},

685
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where

ri(x1, m2) = /(21 +0.74)2 + (x2 — 0.26)2 and  ro(z1,22) == /(x1 — 0.74)2 + (2 — 0.26)2.

Figure 2, summarizes the convergence history of the method applied to a sequence of quasi-uniformly and
adaptively refined triangulation of the domain. Sub-optimal rates are observed in the first case, whereas adaptive
refinements according to any of the a posteriori error indicators: © and ©'/2, yield optimal convergence. In
particular, Table 2 summarizes the errors, rates of convergence, efficiency and reliability indexes, and Newton
iterations of the method applied to a sequence of quasi-uniform refinement triangulation of the domain. In turn,
Tables 3 and 4 summarizes the convergence history of the primal-mixed scheme after © and ©'/2, respectively,
where for the sake of simplicity, we only show twelve rows of a total of twenty two for ©'/2. Notice that in
all the examples, when © < 1 and h — 0, the rate of convergence of the total error and the efficiency and
reliability indexes have the behavior that we expected. Notice also how the adaptive algorithms improves the
efficiency of the method by delivering quality solutions at a lower computational cost, to the point that it is
possible to get a better one (in terms of e(d)) with approximately only the 5.5% of the degrees of freedom
of the last quasi-uniform mesh for the primal-mixed scheme. In addition, and similarly to the first example,
we observe that e(\,) decreases with order O(h) as well, thus confirming again that A, is well approximated
by ¥, on 0Qp. On the other hand, in Figure 3 we show the domain configuration in the initial mesh, the
second component of velocity and the pressure field in the whole domain obtained through the primal-mixed
scheme (via the indicator ©). In particular, we notice that the Navier—Stokes velocity exhibit high gradients
near the vertices (—0.75,0.25) and (0.75,0.25). In turn, examples of some adapted meshes generated using ©
and ©1/2 are collected in Figure 4. We can observe a clear clustering of elements near the vertices in Qg of the
2D helmed-shaped domain as we expected. Notice also a clustering of elements on 3.
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