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RESIDUAL-BASED A POSTERIORI ERROR ANALYSIS FOR THE COUPLING
OF THE NAVIER–STOKES AND DARCY–FORCHHEIMER EQUATIONS

Sergio Caucao1,*, Gabriel N. Gatica2,
Ricardo Oyarzúa2,3 and Felipe Sandoval2

Abstract. In this paper we consider a mixed variational formulation that have been recently pro-
posed for the coupling of the Navier–Stokes and Darcy–Forchheimer equations, and derive, though in
a non-standard sense, a reliable and efficient residual-based a posteriori error estimator suitable for an
adaptive mesh-refinement method. For the reliability estimate, which holds with respect to the square
root of the error estimator, we make use of the inf-sup condition and the strict monotonicity of the
operators involved, a suitable Helmholtz decomposition in non-standard Banach spaces in the porous
medium, local approximation properties of the Clément interpolant and Raviart–Thomas operator,
and a smallness assumption on the data. In turn, inverse inequalities, the localization technique based
on triangle-bubble and edge-bubble functions in local 𝐿𝑝 spaces, are the main tools for developing
the efficiency analysis, which is valid for the error estimator itself up to a suitable additional error
term. Finally, several numerical results confirming the properties of the estimator and illustrating the
performance of the associated adaptive algorithm are reported.
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1. Introduction

We have recently introduced in [11] a primal-mixed finite element method to numerically approximate the
fluid flow between porous media and free-flow zones described by the coupling of the Navier–Stokes and Darcy–
Forchheimer equations together with mass conservation, balance of normal forces, and the Beavers–Joseph–
Saffman condition on the interface. More precisely, a primal-mixed variational formulation was derived and
analyzed in [11], which consists in employing the standard velocity-pressure mixed formulation in the Navier–
Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which yields the introduction of the
trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem
is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the
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well-known Schauder and Banach fixed-point theorems. A feasible choice of finite element subspaces for the
formulation introduced in [11] is given by Bernardi–Raugel and Raviart–Thomas elements for the velocities,
and piecewise constant elements for the pressures and the Lagrange multiplier. Sub-optimal a priori error
estimates were also derived.

Now, it is well known that under the eventual presence of singularities, as well as when dealing with nonlinear
problems, as in the present case, most of the standard Galerkin procedures such as finite element and mixed
finite element methods inevitably lose accuracy, and hence one usually tries to recover it by applying an adaptive
algorithm based on a posteriori error estimates. For example, residual-based a posteriori error analyses for the
Stokes–Darcy and Navier–Stokes/Darcy coupled problems have been developed in [4,9] for the associated primal-
mixed and fully-mixed formulations, respectively. In fact, standard arguments relying on duality techniques,
suitable decompositions and classical approximation properties, are combined there with corresponding small
data assumptions to derive the reliability of the estimators. In turn, inverse inequalities and the usual localization
technique based on bubble functions are employed in both works to prove the corresponding efficiency estimates.
Now, concerning the Navier–Stokes problem, we begin by referring to [29, 31], where the authors develop one
of the first a posteriori error analyses for the incompressible Navier–Stokes problem in its classical velocity-
pressure formulation. Interestingly, several terms that are derived in Section 5.4 of [31] will also appear in the
estimator to be introduced in the present paper. Other recent and not so recent contributions on a posteriori
error estimates for Navier–Stokes and related models include, e.g. [2,15,19,23,28]. In particular, the evolutionary
problem is considered in [15] and a Newton-type linearization is employed there to reduce the corresponding
a posteriori error analysis to that of a linear steady problem. In addition, the stationary model with singular
sources is studied in [2], whereas a dual mixed-formulation and exactly divergence-free discontinuous Galerkin
methods are employed in [19, 28], respectively. Furthermore, an a posteriori error analysis for an augmented
mixed formulation of the Navier–Stokes-Brinkman problem is developed in [23]. On the other hand, for quasi-
Newtonian fluid flows obeying to the power law, as in the case of the Darcy–Forchheimer model, not much has
been done and we just refer to [13,17,18], where different contributions addressing this interesting issue can be
found. In particular, an a posteriori error estimator defined via a non-linear projection of the residues of the
variational equations for a three-field model of a generalized Stokes problem was proposed and analyzed in [17].
We remark that the non-linear projections do not need to be explicitly computed to construct the a posteriori
error estimates. In turn, a fully local residual-based a posteriori error estimator for the mixed formulation of the
𝑝-Laplacian problem in a polygonal domain, was derived in [13]. In this case, the authors study the reliability
of the estimator defining two residues and then bounding the norm of the errors in terms of the norms of these
residues. Moreover, the discretized dual-mixed formulation is hybridized and it is provided several tests for
𝑝 = 1.8 and 𝑝 = 3 to experimentally verify the reliability of the estimator. We remark that up to the authors’
knowledge, there are no works dealing with the a posteriori error analysis for the coupling of the Navier–Stokes
(or Stokes) and the Darcy–Forchheimer models.

According to the above discussion and aiming to complement previous results on the numerical analysis of the
coupled Navier–Stokes and Darcy–Forchheimer equations, in this paper we proceed similarly to [4,13,17,18,21,22]
and [9], and develop a residual-based a posteriori error estimator, say Θ, for the primal-mixed finite element
method introduced and analyzed in [11]. Due to the nonlinear nature of the coupled problem, Θ1/2 is shown to
be reliable, whereas Θ itself becomes efficient up to the error associated to a lifting of the trace of the porous
medium pressure, which we name “lifting-error”. More precisely, we basically prove that there exist positive
constants 𝐶eff and 𝐶rel, independent of the meshsizes, such that

‖error‖ ≤ 𝐶rel Θ1/2, and 𝐶eff Θ ≤ ‖error‖+ ‖lifting-error‖+ h.o.t., (1.1)

where h.o.t. is a generic expression denoting one or several terms of higher order. Indeed, starting from the
inf-sup condition and the strict monotonicity of the operators involved, and employing suitable Helmholtz
decompositions in non-standard Banach spaces, we prove the reliability of the estimator under a smallness
condition on the data. In turn, the efficiency estimate is consequence of standard arguments such as inverse
inequalities and the localization technique based on triangle-bubble and edge-bubble functions in local 𝐿𝑝 spaces.
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The rest of this work is organized as follows. In the remainder of this section we introduce some standard
notations and definitions of functional spaces. In Section 2 we recall from [11] the model problem. Next, in
Section 3 we describe the continuous formulation and the corresponding primal-mixed finite element method,
whereas some preliminary results, necessary to the a posteriori error analysis, are established in Section 4. Then,
in Section 5 we introduce an a posteriori error indicator and, assuming small data, we derive the corresponding
theoretical bounds yielding reliability and efficiency of the estimator in the sense of (1.1). Finally, some numerical
results confirming the theoretical sub-optimal order of convergence, and at the same time suggesting an optimal
rate of convergence as in [11], are presented in Section 6. Additionally, these numerical essays illustrate the
efficiency and reliability of the a posteriori error estimator, and show the good performance of the associated
adaptive algorithm for the finite element method.

We end this section by introducing some definitions and fixing some notations. Let 𝒪 ⊆ R2 be a domain
with Lipschitz-continuous boundary Γ. For 𝑠 ≥ 0 and 𝑝 ∈ [1,+∞] we denote by 𝐿𝑝(𝒪) and 𝑊 𝑠,𝑝(𝒪) the usual
Lebesgue and Sobolev spaces endowed with the norms ‖ · ‖𝐿𝑝(𝒪) and ‖ · ‖𝑠,𝑝;𝒪, respectively. Also, we let | · |𝑠,𝑝;𝒪
be the seminorm of 𝑊 𝑠,𝑝(𝒪). Note that 𝑊 0,𝑝(𝒪) = 𝐿𝑝(𝒪). In turn, when 𝑝 = 2, we write 𝐻𝑠(𝒪) in place of
𝑊 𝑠,2(𝒪), and denote the corresponding Lebesgue and Sobolev norms by ‖ · ‖0,𝒪 and ‖ · ‖𝑠,𝒪, respectively, and
the seminorm by | · |𝑠,𝒪. In addition, we denote by 𝑊 1/𝑞,𝑝(Γ) the trace space of 𝑊 1,𝑝(𝒪), and let 𝑊−1/𝑞,𝑞(Γ) be
the dual space of 𝑊 1/𝑞,𝑝(Γ) endowed with the norms ‖·‖1/𝑞,𝑝;Γ and ‖·‖−1/𝑞,𝑞;Γ, respectively, with 𝑝, 𝑞 ∈ (1,+∞)
satisfying 1/𝑝+ 1/𝑞 = 1. By M and M we will denote the corresponding vectorial and tensorial counterparts of
a generic scalar functional space 𝑀 , and ‖ · ‖, with no subscripts, will stand for the natural norm of either an
element or an operator in any product functional space. Additionally, we recall that

H(div ;𝒪) :=
{︁
w ∈ L2(𝒪) : div w ∈ 𝐿2(𝒪)

}︁
,

is a standard Hilbert space in the realm of mixed problems (see, e.g. [5]). On the other hand, the following
symbol for the 𝐿2(Γ) inner product

⟨𝜉, 𝜆⟩Γ :=
∫︁

Γ

𝜉𝜆 ∀ 𝜉, 𝜆 ∈ 𝐿2(Γ),

will also be employed for their respective extension as the duality parity between 𝑊−1/𝑞,𝑞(Γ) and 𝑊 1/𝑞,𝑝(Γ).
Hereafter, when no confusion arises, | · | will denote the Euclidean norm in R2 or R2×2. Furthermore, given a
non-negative integer 𝑘 and a subset 𝑆 of R2, 𝑃𝑘(𝑆) denotes the space of polynomial functions on 𝑆 of degree
≤ 𝑘. In addition, and coherently with previous notations, we set

P𝑘(𝑆) := [𝑃𝑘(𝑆)]2 and P𝑘(𝑆) := [𝑃𝑘(𝑆)]2×2.

Finally, we employ 0 as a generic null vector, and use 𝐶 and 𝑐, with or without subscripts, bars, tildes or hats, to
denote generic positive constants independent of the discretization parameters, which may take different values
at different places.

2. The model problem

In order to describe the geometry under consideration we let Ω𝑆 and Ω𝐷 be two bounded and simply
connected polygonal domains in R2 such that 𝜕Ω𝑆 ∩ 𝜕Ω𝐷 = Σ ̸= ∅ and Ω𝑆 ∩Ω𝐷 = ∅. Then, let Γ𝑆 := 𝜕Ω𝑆 ∖Σ,
Γ𝐷 := 𝜕Ω𝐷 ∖ Σ, and denote by n the unit normal vector on the boundaries, which is chosen pointing outward
from Ω := Ω𝑆 ∪ Σ ∪ Ω𝐷 and Ω𝑆 (and hence inward to Ω𝐷 when seen on Σ). On Σ we also consider a unit
tangent vector t (see Fig. 1).

The problem we are interested in consists of the movement of an incompressible viscous fluid occupying Ω𝑆
which flows towards and from a porous medium Ω𝐷 through Σ, where Ω𝐷 is saturated with the same fluid. The
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Figure 1. Sketch of a 2D geometry of our Navier–Stokes/Darcy–Forchheimer model.

mathematical model is defined by two separate groups of equations and by a set of coupling terms. In the free
fluid domain Ω𝑆 , the motion of the fluid can be described by the incompressible Navier–Stokes equations:

𝜎𝑆 = −𝑝𝑆I + 2𝜇e(u𝑆) in Ω𝑆 , −div𝜎𝑆 + 𝜌(∇u𝑆)u𝑆 = f𝑆 in Ω𝑆 ,

div u𝑆 = 0 in Ω𝑆 , u𝑆 = 0 on Γ𝑆 ,
(2.1)

where the unknowns are the fluid velocity u𝑆 , the pressure 𝑝𝑆 , and the Cauchy stress tensor 𝜎𝑆 . In addition,

e(u𝑆) :=
1
2

{︁
∇u𝑆 + (∇u𝑆)𝑡

}︁
stands for the strain tensor of small deformations, 𝜇 is the viscosity of the fluid,

𝜌 is the density, and f𝑆 ∈ L2(Ω𝑆) is a given external force.
On the other hand, as was explained in [11], given functions f𝐷 ∈ L3/2(Ω𝐷) and 𝑔𝐷 ∈ 𝐿2(Ω𝐷), in the porous

medium Ω𝐷 we consider the Darcy–Forchheimer equations to approximate the velocity u𝐷 and the pressure
𝑝𝐷:

𝜇

𝜌
K−1u𝐷 +

F

𝜌
|u𝐷|u𝐷 +∇𝑝𝐷 = f𝐷 in Ω𝐷, div u𝐷 = 𝑔𝐷 in Ω𝐷, u𝐷 · n = 0 on Γ𝐷, (2.2)

where F represents the Forchheimer number of the porous medium, and K ∈ L∞(Ω𝐷) is a symmetric tensor
in Ω𝐷 representing the intrinsic permeability 𝜅 of the porous medium divided by the viscosity 𝜇 of the fluid.
We assume that there exists 𝐶K > 0 such that w · K−1(x)w ≥ 𝐶K|w|2, for almost all x ∈ Ω𝐷, and for all
w ∈ R2. In addition, according to the compressibility conditions, the boundary conditions on u𝐷 and u𝑆 , and
the principle of mass conservation (cf. (2.3) below), 𝑔𝐷 must satisfy the compatibility condition:∫︁

Ω𝐷

𝑔𝐷 = 0.

Finally, the transmission conditions that couple the Navier–Stokes and the Darcy–Forchheimer models through
the interface Σ are given by

u𝑆 · n = u𝐷 · n on Σ and 𝜎𝑆n +
𝛼𝑑𝜇√
t · 𝜅t

(u𝑆 · t) t = −𝑝𝐷n on Σ, (2.3)

where 𝛼𝑑 is a dimensionless positive constant which depends only on the geometrical characteristics of the
porous medium and usually assumes values between 0.8 and 1.2. The first condition in (2.3) is a consequence of
the incompressibility of the fluid and of the conservation of mass across Σ, whereas the second one establishes
the balance of normal forces and a Beavers–Joseph–Saffman law.

3. The variational formulation

In this section we introduce the variational formulation for the coupling of the Navier–Stokes and Darcy–
Forchheimer equations proposed in Section 2.2 of [11], and recall the respective solvability results.
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3.1. Preliminaries

We first introduce further notations and definitions. In what follows, given ⋆ ∈ {𝑆,𝐷}, we set

(𝑢, 𝑣)⋆ :=
∫︁

Ω⋆

𝑢 𝑣, (u,v)⋆ :=
∫︁

Ω⋆

u · v, and (𝜎, 𝜏 )⋆ :=
∫︁

Ω⋆

𝜎 : 𝜏 .

Furthermore, given 𝑝 ∈ [2,+∞), in the sequel we will employ the following Banach space,

H𝑝(div ; Ω𝐷) :=
{︁
v𝐷 ∈ L𝑝(Ω𝐷) : div v𝐷 ∈ 𝐿2(Ω𝐷)

}︁
,

endowed with the norm

‖v𝐷‖H𝑝(div ;Ω𝐷) :=
(︁
‖v𝐷‖𝑝L𝑝(Ω𝐷) + ‖div v𝐷‖𝑝0,Ω𝐷

)︁1/𝑝

,

and the following subspaces of H𝑝(div ; Ω𝐷) and H1(Ω𝑆), respectively

H𝑝
Γ𝐷

(div ; Ω𝐷) :=
{︁
v𝐷 ∈ H𝑝(div ; Ω𝐷) : v𝐷 · n = 0 on Γ𝐷

}︁
,

𝐻1
Γ𝑆

(Ω𝑆) :=
{︁
𝑣𝑆 ∈ 𝐻1(Ω𝑆) : 𝑣𝑆 = 0 on Γ𝑆

}︁
, H1

Γ𝑆
(Ω𝑆) :=

[︀
𝐻1

Γ𝑆
(Ω𝑆)

]︀2
.

In addition, we write Ω := Ω𝑆∪Σ∪Ω𝐷, and define 𝑝 := 𝑝𝑆𝜒𝑆+𝑝𝐷𝜒𝐷, with 𝜒⋆ being the characteristic function:

𝜒⋆ :=

{︃
1 in Ω⋆,

0 in Ω ∖ Ω⋆,
for ⋆ ∈ {𝑆,𝐷},

and introduce the space 𝐿2
0(Ω) :=

{︁
𝑞 ∈ 𝐿2(Ω) :

∫︀
Ω
𝑞 = 0

}︁
.

3.2. The continuous formulation

Now, we introduce the weak formulation derived for the coupled problem given by (2.1)–(2.3) (see [11],
Sect. 2.2 for details). In fact, we first group the spaces and unknowns as follows:

H := H1
Γ𝑆

(Ω𝑆)×H3
Γ𝐷

(div ; Ω𝐷), Q := 𝐿2
0(Ω)×𝑊 1/3,3/2(Σ),

u := (u𝑆 ,u𝐷) ∈ H, (𝑝, 𝜆) ∈ Q,

where 𝜆 := 𝑝𝐷|Σ ∈𝑊 1/3,3/2(Σ) is an additional unknown. Thus, we arrive at the mixed variational formulation:
Find (u, (𝑝, 𝜆)) ∈ H×Q, such that

[a(u𝑆)(u),v] + [b(v), (𝑝, 𝜆)] = [f ,v] ∀v := (v𝑆 ,v𝐷) ∈ H,

[b(u), (𝑞, 𝜉)] = [g, (𝑞, 𝜉)] ∀ (𝑞, 𝜉) ∈ Q,
(3.1)

where, given w𝑆 ∈ H1
Γ𝑆

(Ω𝑆), the operator a(w𝑆) : H → H′ is defined by

[a(w𝑆)(u),v] := [𝒜𝑆(u𝑆),v𝑆 ] + [ℬ𝑆(w𝑆)(u𝑆),v𝑆 ] + [𝒜𝐷(u𝐷),v𝐷],

with

[𝒜𝑆(u𝑆),v𝑆 ] := 2𝜇(e(u𝑆), e(v𝑆))𝑆 +
⟨

𝛼𝑑𝜇√
t · 𝜅t

u𝑆 · t,v𝑆 · t
⟩

Σ

,

[ℬ𝑆(w𝑆)(u𝑆),v𝑆 ] := 𝜌((∇u𝑆)w𝑆 ,v𝑆)𝑆 ,

[𝒜𝐷(u𝐷),v𝐷] :=
𝜇

𝜌

(︀
K−1u𝐷,v𝐷

)︀
𝐷

+
F

𝜌
(|u𝐷|u𝐷,v𝐷)𝐷 ,
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whereas the operator b : H → Q′ is given by

[b(v), (𝑞, 𝜉)] := −(div v𝑆 , 𝑞)𝑆 − (div v𝐷, 𝑞)𝐷 + ⟨v𝑆 · n− v𝐷 · n, 𝜉⟩Σ .

In turn, the functionals f and g are defined by

[f ,v] := (f𝑆 ,v𝑆)𝑆 + (f𝐷,v𝐷)𝐷 and [g, (𝑞, 𝜉)] := −(𝑔𝐷, 𝑞)𝐷.

In all the terms above, [ ·, · ] denotes the duality pairing induced by the corresponding operators. Further details
for the solvability of (3.1) follows from the fixed-point strategy developed in Theorem 3.12 of [11].

3.3. The finite element method

Let 𝒯 𝑆ℎ and 𝒯 𝐷ℎ be respective triangulations of the domains Ω𝑆 and Ω𝐷 formed by shape-regular triangles of
diameter ℎ𝑇 and denote by ℎ𝑆 and ℎ𝐷 their corresponding mesh sizes. Assume that they match on Σ so that
𝒯ℎ := 𝒯 𝑆ℎ ∪ 𝒯 𝐷ℎ is a triangulation of Ω := Ω𝑆 ∪ Σ ∪ Ω𝐷. Hereafter ℎ := max

{︀
ℎ𝑆 , ℎ𝐷

}︀
. For each 𝑇 ∈ 𝒯 𝐷ℎ we

consider the local Raviart–Thomas space of the lowest order:

RT0(𝑇 ) := span
{︁

(1, 0), (0, 1), (𝑥1, 𝑥2)
}︁
.

In addition, for each 𝑇 ∈ 𝒯 𝑆ℎ we denote by BR(𝑇 ) the local Bernardi–Raugel space:

BR(𝑇 ) := P1(𝑇 )⊕ span
{︁
𝜂2𝜂3n1, 𝜂1𝜂3n2, 𝜂1𝜂2n3

}︁
,

where
{︀
𝜂1, 𝜂2, 𝜂3

}︀
are the barycentric coordinates of 𝑇 , and

{︀
n1,n2,n3

}︀
are the unit outward normals to the

opposite sides of the corresponding vertices of 𝑇 . Hence, the finite element subspaces for the velocities and
pressure are, respectively,

Hℎ,Γ𝑆
(Ω𝑆) :=

{︁
v ∈ H1

Γ𝑆
(Ω𝑆) : v|𝑇 ∈ BR(𝑇 ), ∀𝑇 ∈ 𝒯 𝑆ℎ

}︁
,

Hℎ,Γ𝐷
(Ω𝐷) :=

{︁
v ∈ H3

Γ𝐷
(div ; Ω𝐷) : v|𝑇 ∈ RT0(𝑇 ), ∀𝑇 ∈ 𝒯 𝐷ℎ

}︁
,

𝐿ℎ,0(Ω) :=
{︁
𝑞 ∈ 𝐿2

0(Ω) : 𝑞|𝑇 ∈ 𝑃0(𝑇 ), ∀𝑇 ∈ 𝒯ℎ
}︁
.

Next, for introducing the finite element subspace of 𝑊 1/3,3/2(Σ), we denote by Σℎ the partition of Σ inherited
from 𝒯 𝐷ℎ (or 𝒯 𝑆ℎ ), which is formed by edges 𝑒 of length ℎ𝑒, and set ℎΣ := max

{︀
ℎ𝑒 : 𝑒 ∈ Σℎ

}︀
. Therefore, we

can define (see [11], Sect. 4 for details):

Λℎ(Σ) :=
{︁
𝜉ℎ : Σ → R : 𝜉ℎ|𝑒 ∈ 𝑃0(𝑒) ∀ edge 𝑒 ∈ Σℎ

}︁
. (3.2)

In this way, grouping the discrete spaces and unknowns as follows:

Hℎ := Hℎ,Γ𝑆
(Ω𝑆)×Hℎ,Γ𝐷

(Ω𝐷), Qℎ := 𝐿ℎ,0(Ω)× Λℎ(Σ),

uℎ := (u𝑆,ℎ,u𝐷,ℎ) ∈ Hℎ, (𝑝ℎ, 𝜆ℎ) ∈ Qℎ,

where 𝑝ℎ := 𝑝𝑆,ℎ𝜒𝑆 + 𝑝𝐷,ℎ𝜒𝐷, the Galerkin approximation of (3.1) reads: Find (uℎ, (𝑝ℎ, 𝜆ℎ)) ∈ Hℎ ×Qℎ, such
that

[aℎ(u𝑆,ℎ)(uℎ),vℎ] + [b(vℎ), (𝑝ℎ, 𝜆ℎ)] = [f ,vℎ] ∀vℎ := (v𝑆,ℎ,v𝐷,ℎ) ∈ Hℎ,

[b(uℎ), (𝑞ℎ, 𝜉ℎ)] = [g, (𝑞ℎ, 𝜉ℎ)] ∀ (𝑞ℎ, 𝜉ℎ) ∈ Qℎ.
(3.3)
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Here, aℎ(w𝑆,ℎ) : Hℎ → H′
ℎ is the discrete version of a(w𝑆) (with w𝑆,ℎ ∈ Hℎ,Γ𝑆

(Ω𝑆) in place of w𝑆 ∈ H1
Γ𝑆

(Ω𝑆))
defined by

[aℎ(w𝑆,ℎ)(uℎ),vℎ] := [𝒜𝑆(u𝑆,ℎ),v𝑆,ℎ] + [ℬℎ𝑆(w𝑆,ℎ)(u𝑆,ℎ),v𝑆,ℎ] + [𝒜𝐷(u𝐷,ℎ),v𝐷,ℎ], (3.4)

where ℬℎ𝑆(w𝑆,ℎ) is the well-known skew-symmetric convective form:

[ℬℎ𝑆(w𝑆,ℎ)(u𝑆,ℎ),v𝑆,ℎ] := 𝜌 ((∇u𝑆,ℎ)w𝑆,ℎ,v𝑆,ℎ)𝑆 +
𝜌

2
(div w𝑆,ℎu𝑆,ℎ,v𝑆,ℎ)𝑆 ,

for all u𝑆,ℎ,v𝑆,ℎ,w𝑆,ℎ ∈ Hℎ,Γ𝑆
(Ω𝑆). Moreover, we recall from equation (4.4) of [11] that for all w𝑆,ℎ,u𝑆,ℎ,v𝑆,ℎ ∈

Hℎ,Γ𝑆
(Ω𝑆) there holds ⃒⃒⃒

[ℬℎ𝑆(w𝑆,ℎ)(u𝑆,ℎ),v𝑆,ℎ]
⃒⃒⃒
≤ 𝐶sk ‖w𝑆,ℎ‖1,Ω𝑆

‖u𝑆,ℎ‖1,Ω𝑆
‖v𝑆,ℎ‖1,Ω𝑆

, (3.5)

with 𝐶sk := 𝜌𝐶2(Ω𝑆)
(︁

1 +
√

2
2

)︁
, where 𝐶(Ω𝑆) is the norm of the injection of 𝐻1(Ω𝑆) into 𝐿4(Ω𝑆) (cf. [11],

Eq. (2.19)). The inequality (3.5) will be employed later on to derive the estimate (5.21) within the proof of
Lemma 5.2, which is the starting point of the reliability analysis for the a posteriori error estimator to be
proposed in Section 5.

The solvability analysis and a priori error bounds for (3.3) are established in Theorems 4.9 and 5.2 of [11],
respectively.

4. Preliminaries for the a posteriori error analysis

Now we introduce a few useful notations for describing local information on elements and edges. First, given
𝑇 ∈ 𝒯 𝑆ℎ ∪𝒯 𝐷ℎ , we let ℰ(𝑇 ) be the set of edges of 𝑇 , and denote by ℰℎ the set of all edges of 𝒯 𝑆ℎ ∪𝒯 𝐷ℎ , subdivided
as follows:

ℰℎ = ℰℎ(Γ𝑆) ∪ ℰℎ(Γ𝐷) ∪ ℰℎ(Ω𝑆) ∪ ℰℎ(Ω𝐷) ∪ ℰℎ(Σ),

where ℰℎ(Γ⋆) :=
{︀
𝑒 ∈ ℰℎ : 𝑒 ⊆ Γ⋆

}︀
, ℰℎ(Ω⋆) :=

{︀
𝑒 ∈ ℰℎ : 𝑒 ⊆ Ω⋆

}︀
, for ⋆ ∈ {𝑆,𝐷}, and the edges of ℰℎ(Σ) are

exactly those forming the previously defined partition Σℎ, that is ℰℎ(Σ) :=
{︀
𝑒 ∈ ℰℎ : 𝑒 ⊆ Σ

}︀
. Moreover, ℎ𝑒

stands for the length of a given edge 𝑒. Also for each edge 𝑒 ∈ ℰℎ we fix a unit normal vector n𝑒 := (𝑛1, 𝑛2)𝑡,
and let t𝑒 := (−𝑛2, 𝑛1)𝑡 be the corresponding fixed unit tangential vector along 𝑒. Now, let v ∈ L2(Ω⋆) such
that v|𝑇 ∈ C(𝑇 ) on each 𝑇 ∈ 𝒯 ⋆ℎ . Then, given 𝑒 ∈ ℰ(𝑇 ) ∩ ℰℎ(Ω⋆), we denote by Jv · t𝑒K the tangential jump
of v across 𝑒, that is, Jv · t𝑒K :=

(︀
(v|𝑇 )|𝑒 − (v|𝑇 ′)|𝑒

)︀
· t𝑒, where 𝑇 and 𝑇 ′ are the triangles of 𝒯 ⋆ℎ having 𝑒 as

a common edge. In addition, for 𝜏 ∈ L2(Ω⋆) such that 𝜏 |𝑇 ∈ C(𝑇 ), we let J𝜏 n𝑒K be the normal jump of 𝜏
across 𝑒, that is, J𝜏 n𝑒K :=

(︀
(𝜏 |𝑇 )|𝑒 − (𝜏 |𝑇 ′)|𝑒

)︀
n𝑒 and we let J𝜏 t𝑒K be the tangential jump of 𝜏 across 𝑒, that

is, J𝜏 t𝑒K :=
(︀
(𝜏 |𝑇 )|𝑒 − (𝜏 |𝑇 ′)|𝑒

)︀
t𝑒. From now on, when no confusion arises, we simply write n and t instead of

n𝑒 and t𝑒, respectively. Finally, given scalar and vector valued fields 𝜑 and v = (𝑣1, 𝑣2)𝑡, respectively, we set

curl (𝜑) :=
(︂
𝜕𝜑

𝜕𝑥2
, − 𝜕𝜑

𝜕𝑥1

)︂𝑡
and rot (v) :=

𝜕𝑣2
𝜕𝑥1

− 𝜕𝑣1
𝜕𝑥2

,

where the derivatives involved are taken in the distributional sense.
Let us now recall the main properties of the Raviart–Thomas interpolator (see [20, 24]) and the Clément

operator onto the space of continuous piecewise linear functions [12, 31]. We begin with the former, denoted
Πℎ : H1(Ω𝐷) → Hℎ,Γ𝐷

(Ω𝐷), which is characterized by the identity∫︁
𝑒

Πℎ(v) · n =
∫︁
𝑒

v · n ∀ edge 𝑒 of 𝒯 ⋆ℎ . (4.1)
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Moreover, as a straightforward consequence of (4.1), there holds:

div (Πℎ(v)) = 𝒫𝐷ℎ (div v), (4.2)

where 𝒫𝐷ℎ is the 𝐿2(Ω𝐷)-orthogonal projector onto the piecewise constant functions on Ω𝐷. The local approxi-
mation properties of Πℎ are established in the following lemma. For the corresponding proof we refer the reader
to [20] (see also [5]).

Lemma 4.1. There exist constants 𝑐1, 𝑐2 > 0, independent of ℎ, such that for all v ∈ H1(Ω𝐷) there holds

‖v −Πℎv‖0,𝑇 ≤ 𝑐1 ℎ𝑇 ‖v‖1,𝑇 ∀𝑇 ∈ 𝒯 𝐷ℎ

and
‖v · n−Πℎv · n‖0,𝑒 ≤ 𝑐2 ℎ

1/2
𝑒 ‖v‖1,𝑇𝑒 ∀ 𝑒 ∈ ℰℎ,

where 𝑇𝑒 is a triangle of 𝒯 𝐷ℎ containing the edge 𝑒 on its boundary.

In turn, given 𝑝 ∈ (1,+∞), we make use of the Clément interpolation operator 𝐼⋆ℎ : 𝑊 1,𝑝(Ω⋆) → 𝑋ℎ(Ω⋆),
with ⋆ ∈ {𝑆,𝐷}, where

𝑋ℎ(Ω⋆) :=
{︁
𝑣 ∈ 𝒞(Ω⋆) : 𝑣|𝑇 ∈ 𝑃1(𝑇 ) ∀𝑇 ∈ 𝒯 ⋆ℎ

}︁
.

The local approximation properties of this operator are established in the following lemma (see [30], Lem. 3.1
for details):

Lemma 4.2. For each ⋆ ∈ {𝑆,𝐷} there exist constants 𝑐3, 𝑐4 > 0, independent of ℎ⋆, such that for all 𝑣 ∈
𝑊 1,𝑝(Ω⋆) there hold

‖𝑣 − 𝐼⋆ℎ𝑣‖𝐿𝑝(𝑇 ) ≤ 𝑐3 ℎ𝑇 ‖𝑣‖1,𝑝;Δ⋆(𝑇 ) ∀𝑇 ∈ 𝒯 ⋆ℎ ,
and

‖𝑣 − 𝐼⋆ℎ𝑣‖𝐿𝑝(𝑒) ≤ 𝑐4 ℎ
1−1/𝑝
𝑒 ‖𝑣‖1,𝑝;Δ⋆(𝑒) ∀ 𝑒 ∈ ℰℎ,

where
∆⋆(𝑇 ) := ∪

{︁
𝑇 ′ ∈ 𝒯 ⋆ℎ : 𝑇 ′ ∩ 𝑇 ̸= ∅

}︁
and ∆⋆(𝑒) := ∪

{︁
𝑇 ′ ∈ 𝒯 ⋆ℎ : 𝑇 ′ ∩ 𝑒 ̸= ∅

}︁
.

In particular, for 𝑝 = 2 a vector version of 𝐼𝑆ℎ , say I𝑆ℎ : H1(Ω𝑆) → Xℎ(Ω𝑆), which is defined component-wise by
𝐼𝑆ℎ , will be needed as well.

For the forthcoming analysis we will also utilize a stable Helmholtz decomposition for H3
Γ𝐷

(div ; Ω𝐷). In this
regard, and in order to analyze a more general result, given 𝑝 ∈ [2,+∞) we will consider the Banach space
H𝑝

Γ𝐷
(div ; Ω𝐷) introduced in Section 3.1, and analogously to [3] we remark in advance that the decomposition

for H𝑝
Γ𝐷

(div ; Ω𝐷) will require the boundary Γ𝐷 to lie in a “convex part” of Ω𝐷, which means that there exists
a convex domain containing Ω𝐷, and whose boundary contains Γ𝐷. We begin by introducing the following
subspaces of 𝑊 1,𝑝(Ω𝐷),

𝑊 1,𝑝
Γ𝐷

(Ω𝐷) :=
{︁
𝜂𝐷 ∈𝑊 1,𝑝(Ω𝐷) : 𝜂𝐷 = 0 on Γ𝐷

}︁
,

and establishing a suitable Helmholtz decomposition of our space H𝑝
Γ𝐷

(div ; Ω𝐷).

Lemma 4.3. Assume that Ω𝐷 is a simply connected domain and that Γ𝐷 is contained in the boundary of a
convex part of Ω𝐷, that is there exists a convex domain Ξ such that Ω𝐷 ⊆ Ξ and Γ𝐷 ⊆ 𝜕Ξ. Then, for each
v𝐷 ∈ H𝑝

Γ𝐷
(div ; Ω𝐷) with 𝑝 ∈ [2,+∞), there exist w𝐷 ∈ H1(Ω𝐷) and 𝛽𝐷 ∈𝑊 1,𝑝

Γ𝐷
(Ω𝐷) such that

v𝐷 = w𝐷 + curl𝛽𝐷 in Ω𝐷, (4.3)

and
‖w𝐷‖1,Ω𝐷

+ ‖𝛽𝐷‖1,𝑝;Ω𝐷
≤ 𝐶hel ‖v𝐷‖H𝑝(div ;Ω𝐷), (4.4)

where 𝐶hel is a positive constant independent of all the foregoing variables.
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Proof. Since div v𝐷 ∈ 𝐿2(Ω𝐷) for each v𝐷 ∈ H𝑝
Γ𝐷

(div ; Ω𝐷), the first part of the proof proceeds using similar
arguments to Section 4.8.4 of [31] (see also [3], Lem. 3.9). In fact, given v𝐷 ∈ H𝑝

Γ𝐷
(div ; Ω𝐷), we let 𝑧 ∈ 𝐻2(Ξ)

be the unique weak solution of the boundary value problem:

∆𝑧 =

⎧⎨⎩
div v𝐷 in Ω𝐷

− 1
|Ξ ∖ Ω𝐷|

∫︁
Ω𝐷

div v𝐷 in Ξ ∖ Ω𝐷
, ∇𝑧 · n = 0 on 𝜕Ξ,

∫︁
Ξ

𝑧 = 0. (4.5)

Thanks to the elliptic regularity result of (4.5) we have that 𝑧 ∈ 𝐻2(Ξ) and

‖𝑧‖2,Ξ ≤ 𝑐 ‖div v𝐷‖0,Ω𝐷
,

where 𝑐 > 0 is independent of 𝑧. In addition, it is clear that w𝐷 := (∇𝑧)|Ω𝐷
∈ H1(Ω𝐷), div w𝐷 = ∆𝑧 = div v𝐷

in Ω𝐷, w𝐷 · n = 0 on 𝜕Ξ (which implies w𝐷 · n = 0 on Γ𝐷), and

‖w𝐷‖1,Ω𝐷
≤ ‖𝑧‖2,Ω𝐷

≤ ‖𝑧‖2,Ξ ≤ 𝑐 ‖div v𝐷‖0,Ω𝐷
. (4.6)

On the other hand, let us set 𝜑𝐷 := v𝐷 −w𝐷 and notice that 𝜑𝐷 is a divergence-free vector field in Ω𝐷. Then,
using the continuous injection from 𝐻1(Ω𝐷) into 𝐿𝑝(Ω𝐷) with 𝑝 ∈ [2,+∞), and the estimate (4.6), we deduce
that 𝜑𝐷 ∈ L𝑝(Ω𝐷) and

‖𝜑𝐷‖L𝑝(Ω𝐷) ≤ ̂︀𝑐{︁
‖v𝐷‖L𝑝(Ω𝐷) + ‖w𝐷‖1,Ω𝐷

}︁
≤ ̃︀𝑐 ‖v𝐷‖H𝑝(div ;Ω𝐷). (4.7)

In this way, as a consequence of Theorem I.3.1 from [24], given 𝜑𝐷 ∈ L𝑝(Ω𝐷) with 𝑝 ∈ [2,+∞) satisfying
div 𝜑𝐷 = 0 in Ω𝐷, and Ω𝐷 simply connected, there exists 𝛽𝐷 ∈ 𝑊 1,𝑝(Ω𝐷) such that 𝜑𝐷 = curl𝛽𝐷 in Ω𝐷, or
equivalently

v𝐷 −w𝐷 = curl𝛽𝐷 in Ω𝐷. (4.8)

In turn, noting that 0 = (v𝐷 − w𝐷) · n = curl𝛽𝐷 · n = d𝛽𝐷

dt on Γ𝐷, we deduce that 𝛽𝐷 is constant on Γ𝐷,
and therefore 𝛽𝐷 can be chosen so that 𝛽𝐷 ∈ 𝑊 1,𝑝

Γ𝐷
(Ω𝐷), which, together with (4.8), complete the Helmholtz

decomposition (4.3). Finally, as a consequence of the generalized Poincaré inequality, it is easy to see that
the norm ‖𝛽𝐷‖1,𝑝;Ω𝐷

and the seminorm |𝛽𝐷|1,𝑝;Ω𝐷
= ‖curl𝛽𝐷‖L𝑝(Ω𝐷) are equivalent in 𝑊 1,𝑝

Γ𝐷
(Ω𝐷) (see [24],

Lem. I.3.1 for details), so that employing (4.7), we obtain

‖𝛽𝐷‖1,𝑝;Ω𝐷
≤ 𝑐 ‖curl𝛽𝐷‖L𝑝(Ω𝐷) = 𝑐 ‖𝜑𝐷‖L𝑝(Ω𝐷) ≤ 𝐶 ‖v𝐷‖H𝑝(div ;Ω𝐷). (4.9)

Then, it is clear that (4.6) and (4.9) imply (4.4) and conclude the proof. �

Two very useful Green’s formulae are recalled next.

Lemma 4.4. Let 𝑝 and 𝑞 be two fixed real numbers with 𝑝 ≥ 1 and 1/𝑝 + 1/𝑞 = 1, and let Ω be a bounded
domain with Lipschitz-continuous boundary 𝜕Ω. Then there holds∫︁

Ω

𝜑div v +
∫︁

Ω

v · ∇𝜑 = ⟨v · n, 𝜑⟩𝜕Ω ∀v ∈ H𝑝(div 𝑝; Ω), ∀𝜑 ∈𝑊 1,𝑞(Ω), (4.10)

and ∫︁
Ω

𝜑 rot v −
∫︁

Ω

v · curl𝜑 = ⟨v · t, 𝜑⟩𝜕Ω ∀v ∈ H𝑞(rot 𝑞; Ω), ∀𝜑 ∈𝑊 1,𝑝(Ω), (4.11)

where
H𝑝(div 𝑝; Ω) :=

{︁
v ∈ L𝑝(Ω) : div v ∈ 𝐿𝑝(Ω)

}︁
, (4.12)

and
H𝑞(rot 𝑞; Ω) :=

{︁
v ∈ L𝑞(Ω) : rot v ∈ 𝐿𝑞(Ω)

}︁
. (4.13)
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Proof. We refer to Corollaries B.57 and B.58 of [16] for details (see also [24], Eq. (2.17) and Thm. I.2.11). �

Finally, we end this section with a lemma providing estimates in terms of local quantities for the 𝑊−1/𝑞,𝑞(Σ)
norms of functions in particular subspaces of 𝐿𝑞(Σ), with 1 < 𝑝 < 2 and 1/𝑝+ 1/𝑞 = 1. More precisely, having
in mind the definition of Λℎ(Σ) (cf. (3.2)), which is subspace of 𝑊 1/𝑞,𝑝(Σ), we introduce the orthogonal-type
space

Λ⊥ℎ (Σ) :=
{︁
𝜆 ∈𝑊−1/𝑞,𝑞(Σ) ∩ 𝐿𝑞(Σ) : ⟨𝜆, 𝜉ℎ⟩Σ = 0 ∀ 𝜉ℎ ∈ Λℎ(Σ)

}︁
. (4.14)

Then, the announced result is stated as follows.

Lemma 4.5. Let 𝑝 and 𝑞 be two fixed real numbers with 1 < 𝑝 < 2 and 1/𝑝+1/𝑞 = 1. Then, there exists 𝐶 > 0,
independent of the meshsizes, such that

‖𝜆‖−1/𝑞,𝑞;Σ ≤ 𝐶

⎧⎨⎩ ∑︁
𝑒∈ℰℎ(Σ)

ℎ𝑒‖𝜆‖𝑞𝐿𝑞(𝑒)

⎫⎬⎭
1/𝑞

∀𝜆 ∈ Λ⊥ℎ (Σ). (4.15)

Proof. Given 𝜆 ∈ Λ⊥ℎ (Σ), we first observe that 𝜆 ∈𝑊−1/𝑞,𝑞(Σ) and that

‖𝜆‖−1/𝑞,𝑞;Σ = sup
𝜉∈𝑊 1/𝑞,𝑝(Σ)

𝜉 ̸=0

⟨𝜆, 𝜉⟩Σ
‖𝜉‖1/𝑞,𝑝;Σ

· (4.16)

Then, since 𝒫Σ(𝜉) ∈ Λℎ(Σ) with 𝒫Σ being the 𝐿2(Σ)-orthogonal projection onto Λℎ(Σ), it follows from (4.14),
(4.16), and Hölder’s inequality, that

‖𝜆‖−1/𝑞,𝑞;Σ = sup
𝜉∈𝑊 1/𝑞,𝑝(Σ)

𝜉 ̸=0

⟨𝜆, 𝜉 − 𝒫Σ(𝜉)⟩Σ
‖𝜉‖1/𝑞,𝑝;Σ

≤ sup
𝜉∈𝑊 1/𝑞,𝑝(Σ)

𝜉 ̸=0

∑︁
𝑒∈ℰℎ(Σ)

‖𝜆‖𝐿𝑞(𝑒)‖𝜉 − 𝒫𝑒(𝜉)‖𝐿𝑝(𝑒)

‖𝜉‖1/𝑞,𝑝;Σ
, (4.17)

where 𝒫𝑒(𝜉) := 𝒫Σ(𝜉)|𝑒 on each 𝑒 ∈ ℰℎ(Σ). In turn, from the local approximation estimates of 𝒫𝑒, we have

‖𝜉 − 𝒫𝑒(𝜉)‖𝐿𝑝(𝑒) ≤ 𝑐ℎ0
𝑒‖𝜉‖𝐿𝑝(𝑒) ∀ 𝜉 ∈ 𝐿𝑝(𝑒) and ‖𝜉 − 𝒫𝑒(𝜉)‖𝐿𝑝(𝑒) ≤ 𝑐ℎ𝑒‖𝜉‖1,𝑝;𝑒 ∀ 𝜉 ∈𝑊 1,𝑝(𝑒),

and then, by interpolation arguments, we find that

‖𝜉 − 𝒫𝑒(𝜉)‖𝐿𝑝(𝑒) ≤ 𝑐ℎ1/𝑞
𝑒 ‖𝜉‖1/𝑞,𝑝;𝑒 ∀ 𝜉 ∈𝑊 1/𝑞,𝑝(𝑒), (4.18)

with 1/𝑝+ 1/𝑞 = 1. Thus, the estimate (4.18) combined with (4.17), yields∑︁
𝑒∈ℰℎ(Σ)

‖𝜆‖𝐿𝑞(𝑒)‖𝜉 − 𝒫𝑒(𝜉)‖𝐿𝑝(𝑒) ≤ 𝑐
∑︁

𝑒∈ℰℎ(Σ)

ℎ1/𝑞
𝑒 ‖𝜆‖𝐿𝑞(𝑒)‖𝜉‖1/𝑞,𝑝;𝑒

≤ 𝐶

⎧⎨⎩ ∑︁
𝑒∈ℰℎ(Σ)

ℎ𝑒‖𝜆‖𝑞𝐿𝑞(𝑒)

⎫⎬⎭
1/𝑞 ⎧⎨⎩ ∑︁

𝑒∈ℰℎ(Σ)

‖𝜉‖𝑝1/𝑞,𝑝;𝑒

⎫⎬⎭
1/𝑝

≤ 𝐶

⎧⎨⎩ ∑︁
𝑒∈ℰℎ(Σ)

ℎ𝑒‖𝜆‖𝑞𝐿𝑞(𝑒)

⎫⎬⎭
1/𝑞

‖𝜉‖1/𝑞,𝑝;Σ.

Notice that in the last inequality we have used the fact that the space
∏︀
𝑒∈ℰℎ(Σ)𝑊

1/𝑞,𝑝(𝑒) coincides with
𝑊 1/𝑞,𝑝(Σ), without extra conditions when 1 < 𝑝 < 2 ([25], Thm. 1.5.2.3-(a)), to obtain the norm ‖𝜉‖1/𝑞,𝑝;Σ,
which combined with (4.17) imply (4.15) and conclude the proof. �
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5. A POSTERIORI error analysis

Let u⃗ := (u, (𝑝, 𝜆)) ∈ H ×Q and u⃗ℎ := (uℎ, (𝑝ℎ, 𝜆ℎ)) ∈ Hℎ ×Qℎ be the unique solutions of problems (3.1)
and (3.3), respectively. In addition, let us denote 𝑝𝑆,ℎ := 𝑝ℎ|Ω𝑆

and 𝑝𝐷,ℎ := 𝑝ℎ|Ω𝐷
. Then, we define for each

𝑇 ∈ 𝒯 𝑆ℎ the local error indicator

Θ2
𝑆,𝑇 := ‖div u𝑆,ℎ‖20,𝑇 + ℎ2

𝑇

⃦⃦⃦
f𝑆 + div𝜎𝑆,ℎ − 𝜌(∇u𝑆,ℎ)u𝑆,ℎ −

𝜌

2
div u𝑆,ℎu𝑆,ℎ

⃦⃦⃦2

0,𝑇

+
∑︁

𝑒∈ℰ(𝑇 )∩ℰℎ(Ω𝑆)

ℎ𝑒
⃦⃦

J𝜎𝑆,ℎnK
⃦⃦2

0,𝑒
+

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Σ)

ℎ𝑒

⃦⃦⃦⃦
𝜎𝑆,ℎn + 𝜆ℎn +

𝛼𝑑𝜇√
t · 𝜅t

(u𝑆,ℎ · t)t
⃦⃦⃦⃦2

0,𝑒

,

(5.1)

where
𝜎𝑆,ℎ := − 𝑝𝑆,ℎI + 2𝜇e(u𝑆,ℎ) on each 𝑇 ∈ 𝒯 𝑆ℎ . (5.2)

Similarly, for each 𝑇 ∈ 𝒯 𝐷ℎ we set

̂︀Θ2
𝐷,𝑇 := ‖𝑔𝐷 − div u𝐷,ℎ‖20,𝑇 + ℎ2

𝑇 ‖f𝐷 −U𝐷,ℎ‖20,𝑇 , (5.3)

and ̃︀Θ3/2
𝐷,𝑇 :=

⃦⃦
f𝐷 −U𝐷,ℎ −∇𝜙ℎ

⃦⃦3/2

L3/2(𝑇 )
, (5.4)

where

U𝐷,ℎ :=
𝜇

𝜌
K−1u𝐷,ℎ +

F

𝜌
|u𝐷,ℎ|u𝐷,ℎ on each 𝑇 ∈ 𝒯 𝐷ℎ , (5.5)

and 𝜙ℎ is any function in 𝑊 1,3/2(Ω𝐷) such that 𝜙ℎ|𝜕Ω𝐷
= ̂︀𝜆ℎ, where ̂︀𝜆ℎ is the extension of 𝜆ℎ by the constant

values of 𝑝𝐷 on the corresponding edges of Γ𝐷. Finally, for each 𝑒 ∈ ℰℎ(Σ) we define

Θ3
Σ,𝑒 := ℎ𝑒

⃦⃦
u𝑆,ℎ · n− u𝐷,ℎ · n

⃦⃦3

𝐿3(𝑒)
, (5.6)

so that the global a posteriori error estimator is given by:

Θ :=

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝑆

ℎ

Θ2
𝑆,𝑇 +

∑︁
𝑇∈𝒯 𝐷

ℎ

̂︀Θ2
𝐷,𝑇

⎫⎬⎭
1/2

+

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝐷

ℎ

̃︀Θ3/2
𝐷,𝑇

⎫⎬⎭
2/3

+

⎧⎨⎩ ∑︁
𝑒∈ℰℎ(Σ)

Θ3
Σ,𝑒

⎫⎬⎭
1/3

. (5.7)

Notice that the second term of ̂︀Θ2
𝐷,𝑇 , and the full expression defining ̃︀Θ3/2

𝐷,𝑇 , require that f𝐷 ∈ L2(𝑇 ) and
f𝐷 ∈ L3/2(𝑇 ), respectively, for each 𝑇 ∈ 𝒯 𝐷ℎ , which is ensured by assuming in what follows that f𝐷 lives in
L2(Ω𝐷). Then, the main goal of the present section is to establish, under suitable assumptions, the existence of
positive constants 𝐶rel and 𝐶eff, independent of the meshsizes and the continuous and discrete solutions, such
that

‖u⃗− u⃗ℎ‖H×Q ≤ 𝐶rel Θ1/2, and

𝐶eff Θ ≤ ‖u⃗− u⃗ℎ‖H×Q + |𝑝𝐷 − 𝜙ℎ|1,3/2;Ω𝐷
+ h.o.t., (5.8)

where h.o.t. stands, eventually, for one or several terms of higher order. The upper and lower bounds in (5.8),
which are known as the reliability of Θ1/2 and efficiency of Θ, are derived below in Sections 5.1 and 5.2,
respectively.
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5.1. Reliability

First, we recall from [11] the following notation

ℳ(f𝑆 , f𝐷, 𝑔𝐷) := max
{︁
𝒩 (f𝑆 , f𝐷, 𝑔𝐷)1/2,𝒩 (f𝑆 , f𝐷, 𝑔𝐷),𝒩 (f𝑆 , f𝐷, 𝑔𝐷)2

}︁
,

where 𝒩 (f𝑆 , f𝐷, 𝑔𝐷) := ‖f𝑆‖0,Ω𝑆
+ ‖f𝐷‖L3/2(Ω𝐷) + ‖𝑔𝐷‖0,Ω𝐷

+ ‖𝑔𝐷‖20,Ω𝐷
. Then, we establish the main result of

this section.

Theorem 5.1. Assume that Ω𝐷 is a simply connected domain and that Γ𝐷 is contained in the boundary of a
convex part of Ω𝐷, that is there exists a convex domain Ξ such that Ω𝐷 ⊆ Ξ and Γ𝐷 ⊆ 𝜕Ξ. In addition, assume
that the data f𝑆 ∈ L2(Ω𝑆), f𝐷 ∈ L2(Ω𝐷) and 𝑔𝐷 ∈ 𝐿2(Ω𝐷), satisfy:

ℳ(f𝑆 , f𝐷, 𝑔𝐷) ≤ 1
2

min
{︀
𝑟, ̃︀𝑟}︀, (5.9)

where 𝑟 and ̃︀𝑟 are the positive constants, independent of the data, provided by Lemma 3.11 and Theorem 4.9 of
[11], respectively. Then, there exists a constant 𝐶rel > 0, independent of ℎ, such that

‖u⃗− u⃗ℎ‖H×Q ≤ 𝐶rel Θ1/2. (5.10)

We stress here that the data assumption (5.9) is required, on one hand, to ensure that the continuous and
discrete problems, namely (3.1) and (3.3), are well-posed (see [11], Thms. 3.12 and 4.9 for details), and on the
other hand, to prove next Lemma 5.2, which constitutes the first reliability estimate yielding (5.10). Later on,
the same assumption is employed to establish the efficiency estimates given by (5.62), (5.63), and (5.64).

We begin the proof of (5.10) with a preliminary estimate for the total error ‖u⃗− u⃗ℎ‖H×Q. In fact, proceeding
analogously to Section 1 of [13] (see also [17,18]), we first define two residuesℛf andℛg on H and Q, respectively,
by

ℛf (v) := [f ,v]−
{︁

[aℎ(u𝑆,ℎ)(uℎ),v] + [b(v), (𝑝ℎ, 𝜆ℎ)]
}︁

∀v := (v𝑆 ,v𝐷) ∈ H, (5.11)

and
ℛg(𝑞, 𝜉) := [g, (𝑞, 𝜉)]− [b(uℎ), (𝑞, 𝜉)] ∀ (𝑞, 𝜉) ∈ Q. (5.12)

Then we are able to establish the following preliminary a posteriori error estimate.

Lemma 5.2. Assume that the data f𝑆 , f𝐷 and 𝑔𝐷, satisfy (5.9). Then, there exists a constant 𝐶 > 0, depending
only on parameters and other constants, all them independent of ℎ, such that

‖u⃗− u⃗ℎ‖H×Q ≤ 𝐶 max
{︁
‖ℛ‖1/2(H×Q)′ , ‖ℛ‖

2/3
(H×Q)′ , ‖ℛ‖

3/4
(H×Q)′ , ‖ℛ‖(H×Q)′ , ‖ℛ‖

3/2
(H×Q)′

}︁
, (5.13)

where ℛ : H×Q → R is the residual functional given by ℛ(v⃗) := ℛf (v) +ℛg(𝑞, 𝜉) ∀ v⃗ := (v, (𝑞, 𝜉)) ∈ H×Q
(cf. (5.11) and (5.12)), which satisfies

ℛ(v⃗ℎ) = 0 ∀ v⃗ℎ := (vℎ, (𝑞ℎ, 𝜉ℎ)) ∈ Hℎ ×Qℎ. (5.14)

Proof. First, from the assumption (5.9) and the a priori estimates ([11] Thms. 3.12 and 4.9), we obtain

max
{︁
‖u𝐷‖H3(div ;Ω𝐷), ‖u𝑆‖1,Ω𝑆

}︁
≤ 𝑐Tℳ(f𝑆 , f𝐷, 𝑔𝐷),

max
{︁
‖u𝐷,ℎ‖H3(div ;Ω𝐷), ‖u𝑆,ℎ‖1,Ω𝑆

}︁
≤ ̃︀𝑐Tℳ(f𝑆 , f𝐷, 𝑔𝐷).

(5.15)

In addition, since the exact solution u𝑆 ∈ H1
Γ𝑆

(Ω𝑆) satisfies div u𝑆 = 0 in Ω𝑆 , we have

[ℬℎ𝑆(u𝑆)(u𝑆),v𝑆,ℎ] = [ℬ𝑆(u𝑆)(u𝑆),v𝑆,ℎ] ∀v𝑆,ℎ ∈ Hℎ,Γ𝑆
(Ω𝑆).
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Consequently, from the continuous problem (3.1), and the definition of the residual functionals ℛf and ℛg (cf.
(5.11) and (5.12)), it is clear that

[aℎ(u𝑆,ℎ)(u)− aℎ(u𝑆,ℎ)(uℎ),v] + [b(v), (𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ)] = ℛf (v)− [ℬℎ𝑆(u𝑆 − u𝑆,ℎ)(u𝑆),v𝑆 ], (5.16)

and
[b(u− uℎ), (𝑞, 𝜉)] = ℛg(𝑞, 𝜉), (5.17)

for all v ∈ H and (𝑞, 𝜉) ∈ Q. Thus, from the inf-sup condition of b (cf. [11], Lem. 3.5), the identity (5.16), and
the continuity of aℎ and ℬℎ𝑆 (cf. [11], Lem. 4.3 and (3.5)), we deduce that

𝛽 ‖(𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ)‖Q ≤ sup
0̸=v∈H

[b(v), (𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ)]
‖v‖H

≤ ‖ℛf‖H′ + 𝐶1

(︁
1 + ‖u𝑆‖1,Ω𝑆

+ ‖u𝑆,ℎ‖1,Ω𝑆

)︁
‖u𝑆 − u𝑆,ℎ‖1,Ω𝑆

+ 𝐶2

(︁
1 + ‖u𝐷‖H3(div ;Ω𝐷) + ‖u𝐷,ℎ‖H3(div ;Ω𝐷)

)︁
‖u𝐷 − u𝐷,ℎ‖H3(div ;Ω𝐷),

which together with (5.15) and assumption (5.9), implies that there exists 𝐶 > 0, depending only on parameters
and other constants, all of them independent of ℎ, such that

‖(𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ)‖Q ≤ 𝐶
{︁
‖ℛf‖H′ + ‖u− uℎ‖H

}︁
. (5.18)

In turn, taking v = u− uℎ and (𝑞, 𝜉) = (𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ) in (5.16) and (5.17), respectively, gives

[aℎ(u𝑆,ℎ)(u)− aℎ(u𝑆,ℎ)(uℎ),u− uℎ] = ℛf (u− uℎ)−ℛg(𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ)−
[︀
ℬℎ𝑆(u𝑆 − u𝑆,ℎ)(u𝑆),u𝑆 − u𝑆,ℎ

]︀
.

(5.19)
Next, employing the trace inequality, the estimate from the second row of (5.15), and the assumption (5.9), we
get

‖u𝑆,ℎ · n‖0,Σ ≤ 𝐶tr ‖u𝑆,ℎ‖1,Ω𝑆
≤ 𝐶tr ̃︀𝑐Tℳ(f𝑆 , f𝐷, 𝑔𝐷) ≤ 𝐶tr ̃︀𝑐T ̃︀𝑟

2
, (5.20)

where 𝐶tr is the norm of the usual trace operator from 𝐻1(Ω𝑆) into 𝐻1/2(𝜕Ω𝑆). Then, using from Theorem 4.9
of [11] that

̃︀𝑟 =
2𝜇𝛼𝑆̃︀𝑐T𝜌 min

{︃
1

𝐶2(Ω𝑆)(2 +
√

2)
,

1
𝐶2(𝜕Ω𝑆)𝐶3

tr

}︃
,

where 𝐶(𝜕Ω𝑆) is the norm of the Sobolev embedding from 𝐻1/2(𝜕Ω𝑆) into 𝐿4(𝜕Ω𝑆), we deduce from (5.20)
that

‖u𝑆,ℎ · n‖0,Σ ≤ 𝜇𝛼𝑆
𝜌𝐶2(𝜕Ω𝑆)𝐶2

tr

·

This inequality shows that the assumption equation (4.15) of [11] is satisfied, and hence the operator aℎ(u𝑆,ℎ)
is strictly monotone with a constant 𝛼(Ω) (cf. [11], Eq. (3.15)), which, together with (5.19), yield

𝛼(Ω)
{︁
‖u𝑆 − u𝑆,ℎ‖21,Ω𝑆

+ ‖u𝐷 − u𝐷,ℎ‖3L3(Ω𝐷)

}︁
≤ ‖ℛf‖H′‖u− uℎ‖H + ‖ℛg‖Q′‖(𝑝− 𝑝ℎ, 𝜆− 𝜆ℎ)‖Q

+ 𝐶sk‖u𝑆‖1,Ω𝑆
‖u𝑆 − u𝑆,ℎ‖21,Ω𝑆

, (5.21)

where in the last term of (5.21) we have used the continuity estimate of ℬℎ𝑆 (cf. (3.5)). Moreover, using (5.15),
(5.9), and the definition of 𝑟 in Lemma 3.11 of [11] to bound 𝐶sk‖u𝑆‖1,Ω𝑆

by 2+
√

2
4 𝜇𝛼𝑆 , we deduce from (5.21)

and (5.18), the existence of a constant 𝐶 > 0, independent of meshsizes, such that

‖u𝑆 − u𝑆,ℎ‖21,Ω𝑆
+ ‖u𝐷 − u𝐷,ℎ‖3L3(Ω𝐷) ≤ 𝐶

{︁
‖ℛ‖(H×Q)′‖u− uℎ‖H + ‖ℛf‖H′‖ℛg‖Q′

}︁
. (5.22)
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Furthermore, from the identity (5.17) and the definition of b we find that the term ‖div (u𝐷 − u𝐷,ℎ)‖0,Ω𝐷
can

be bounded by ‖ℛg‖Q′ , which, combined with (5.22) and some algebraic manipulations, implies

‖u− uℎ‖H ≤ 𝐶 max
{︁
‖ℛ‖1/2(H×Q)′ , ‖ℛ‖

2/3
(H×Q)′ , ‖ℛ‖

3/4
(H×Q)′ , ‖ℛ‖(H×Q)′ , ‖ℛ‖

3/2
(H×Q)′

}︁
. (5.23)

Therefore, the estimate (5.13) follows from (5.18) and (5.23). Finally, from the discrete problem (3.3) we deduce
that ℛf and ℛg vanish on Hℎ and Qℎ, respectively, which clearly implies (5.14) and conclude the proof. �

We remark here that when ‖ℛ‖(H×Q)′ → 0, the dominant term in (5.13) is ‖ℛ‖1/2(H×Q)′ . In this way, it only
remains now to estimate ‖ℛ‖(H×Q)′ . To this end, we first observe that the functional ℛ can be decomposed as:

ℛ(v⃗) = ℛ1(v𝑆) +ℛ2(v𝐷) +ℛ3(𝑞) +ℛ4(𝜉), (5.24)

for all v⃗ := ((v𝑆 ,v𝐷), (𝑞, 𝜉)) ∈ H×Q, where

ℛ1(v𝑆) := (f𝑆 ,v𝑆)𝑆 − 2𝜇(e(u𝑆,ℎ), e(v𝑆))𝑆 − 𝜌((∇u𝑆,ℎ)u𝑆,ℎ,v𝑆)𝑆 −
𝜌

2
(div u𝑆,ℎu𝑆,ℎ,v𝑆)𝑆

+ (div v𝑆 , 𝑝ℎ)𝑆 −
⟨

𝛼𝑑𝜇√
t · 𝜅t

u𝑆,ℎ · t,v𝑆 · t
⟩

Σ

− ⟨v𝑆 · n, 𝜆ℎ⟩Σ ,

ℛ2(v𝐷) := (f𝐷 −U𝐷,ℎ,v𝐷)𝐷 + (div v𝐷, 𝑝ℎ)𝐷 + ⟨v𝐷 · n, 𝜆ℎ⟩Σ ,

ℛ3(𝑞) := (div u𝑆,ℎ, 𝑞)𝑆 − (𝑔𝐷 − div u𝐷,ℎ, 𝑞)𝐷,

ℛ4(𝜉) := −⟨u𝑆,ℎ · n− u𝐷,ℎ · n, 𝜉⟩Σ .

(5.25)

Notice here that the above expression for ℛ2 makes use of the definition of U𝐷,ℎ given previously by (5.5). In
this way, it follows that

‖ℛ‖(H×Q)′ ≤
{︁
‖ℛ1‖H1

Γ𝑆
(Ω𝑆)′ + ‖ℛ2‖H3

Γ𝐷
(div ;Ω𝐷)′ + ‖ℛ3‖𝐿2

0(Ω)′ + ‖ℛ4‖𝑊−1/3,3(Σ)

}︁
, (5.26)

and hence our next purpose is to derive suitable upper bounds for each one of the terms on the right-hand side
of (5.26). We start with the following lemma, which is a direct consequence of the Cauchy–Schwarz inequality.

Lemma 5.3. There holds

‖ℛ3‖𝐿2
0(Ω)′ ≤

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝑆

ℎ

‖div u𝑆,ℎ‖20,𝑇 +
∑︁
𝑇∈𝒯 𝐷

ℎ

‖𝑔𝐷 − div u𝐷,ℎ‖20,𝑇

⎫⎬⎭
1/2

.

We now adapt a result taken from [4] in order to obtain an upper bound for ℛ1.

Lemma 5.4. There exists 𝐶 > 0, independent of the meshsizes, such that

‖ℛ1‖H1
Γ𝑆

(Ω𝑆)′ ≤ 𝐶

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝑆

ℎ

̂︀Θ2
𝑆,𝑇

⎫⎬⎭
1/2

,

where

̂︀Θ2
𝑆,𝑇 := ℎ2

𝑇

⃦⃦⃦
f𝑆 + div𝜎𝑆,ℎ − 𝜌(∇u𝑆,ℎ)u𝑆,ℎ −

𝜌

2
div u𝑆,ℎu𝑆,ℎ

⃦⃦⃦2

0,𝑇

+
∑︁

𝑒∈ℰ(𝑇 )∩ℰℎ(Ω𝑆)

ℎ𝑒
⃦⃦

J𝜎𝑆,ℎnK
⃦⃦2

0,𝑒
+

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Σ)

ℎ𝑒

⃦⃦⃦⃦
𝜎𝑆,ℎn + 𝜆ℎn +

𝛼𝑑𝜇√
t · 𝜅t

(u𝑆,ℎ · t)t
⃦⃦⃦⃦2

0,𝑒

,

and 𝜎𝑆,ℎ is given by (5.2).
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Proof. We proceed similarly as in the proof of Lemma 3.4 from [4], by replacing f1,𝜎1,ℎ,u1,ℎ,Ω1, and Γ2

in there by f𝑆 − 𝜌(∇u𝑆,ℎ)u𝑆,ℎ − 𝜌
2div u𝑆,ℎu𝑆,ℎ, 𝜎𝑆,ℎ, u𝑆,ℎ, Ω𝑆 , and Σ, respectively, and employing the local

approximation properties of the Clément interpolation operator I𝑆ℎ : H1(Ω𝑆) → Xℎ(Ω𝑆) provided by Lemma 4.2
with 𝑝 = 2. We omit further details. �

Next, we derive the upper bound for ℛ4, the functional acting on the interface Σ.

Lemma 5.5. There exists 𝐶 > 0, independent of the meshsizes, such that

‖ℛ4‖𝑊−1/3,3(Σ) ≤ 𝐶

⎧⎨⎩ ∑︁
𝑒∈ℰℎ(Σ)

ℎ𝑒‖u𝑆,ℎ · n− u𝐷,ℎ · n‖3𝐿3(𝑒)

⎫⎬⎭
1/3

.

Proof. We recall from the definition of ℛ4 (cf. (5.25)) that

ℛ4(𝜉) = −⟨u𝑆,ℎ · n− u𝐷,ℎ · n, 𝜉⟩Σ ∀ 𝜉 ∈𝑊 1/3,3/2(Σ),

which certainly yields
‖ℛ4‖𝑊−1/3,3(Σ) = ‖u𝑆,ℎ · n− u𝐷,ℎ · n‖−1/3,3;Σ . (5.27)

In turn, taking 𝜉ℎ ∈ Λℎ(Σ) and then (0, (0, 𝜉ℎ)) ∈ Hℎ ×Qℎ in (5.14), we deduce that

⟨u𝑆,ℎ · n− u𝐷,ℎ · n, 𝜉ℎ⟩Σ = 0 ∀ 𝜉ℎ ∈ Λℎ(Σ),

which says that u𝑆,ℎ · n− u𝐷,ℎ · n belongs to Λ⊥ℎ (Σ) (cf. (4.14)). In this way, the proof follows from (5.27) and
a direct application of (4.15) with 𝑝 = 3/2 and 𝑞 = 3 (cf. Lem. 4.5). �

Finally, we focus on deriving the upper bound for ℛ2, for which, given v𝐷 ∈ H3
Γ𝐷

(div ; Ω𝐷), we consider
its Helmholtz decomposition provided by Lemma 4.3 with 𝑝 = 3. More precisely, we let w𝐷 ∈ H1(Ω𝐷) and
𝛽𝐷 ∈𝑊 1,3

Γ𝐷
(Ω𝐷) be such that v𝐷 = w𝐷 + curl𝛽𝐷 in Ω𝐷, and

‖w𝐷‖1,Ω𝐷
+ ‖𝛽𝐷‖1,3;Ω𝐷

≤ 𝐶hel ‖v𝐷‖H3(div ;Ω𝐷). (5.28)

In turn, similarly to [3], we consider the finite element subspace of 𝑊 1,3
Γ𝐷

(Ω𝐷) given by

𝑋ℎ,Γ𝐷
:=

{︁
𝑣 ∈ 𝒞(Ω𝐷) : 𝑣|𝑇 ∈ 𝑃1(𝑇 ) ∀𝑇 ∈ 𝒯 𝐷ℎ , 𝑣 = 0 on Γ𝐷

}︁
, (5.29)

and introduce the Clément interpolator 𝐼𝐷ℎ : 𝑊 1,3
Γ𝐷

(Ω𝐷) → 𝑋ℎ,Γ𝐷
. In addition, recalling the Raviart–Thomas

interpolator Πℎ : H1(Ω𝐷) → Hℎ,Γ𝐷
(Ω𝐷) introduced in Section 4, we are able to define

v𝐷,ℎ := Πℎ(w𝐷) + curl (𝐼𝐷ℎ 𝛽𝐷) ∈ Hℎ,Γ𝐷
(Ω𝐷),

which can be seen as a discrete Helmholtz decomposition of v𝐷,ℎ. Then, noting from (5.14) that ℛ2(v𝐷,ℎ) = 0,
we can write

ℛ2(v𝐷) = ℛ2(v𝐷 − v𝐷,ℎ) = ℛ2(w𝐷 −Πℎ(w𝐷)) +ℛ2(curl (𝛽𝐷 − 𝐼𝐷ℎ 𝛽𝐷)).

Next, in order to simplify the subsequent writing, we define ̂︀w𝐷 := w𝐷 − Πℎ(w𝐷) and ̂︀𝛽𝐷 := 𝛽𝐷 − 𝐼𝐷ℎ 𝛽𝐷.
In this way, according to the definition of ℛ2 (cf. (5.25)), and employing the properties (4.1) and (4.2) of the
Raviart-Thomas interpolator, which yield ⟨̂︀w𝐷 · n, 𝜆ℎ⟩Σ = 0 and (div ̂︀w𝐷, 𝑝ℎ)𝐷 = 0, respectively, we readily
find that

ℛ2(̂︀w𝐷) = (f𝐷 −U𝐷,ℎ, ̂︀w𝐷)𝐷 . (5.30)

In turn, it follows straightforwardly from (5.25) as well that

ℛ2(curl ̂︀𝛽𝐷) =
(︁
f𝐷 −U𝐷,ℎ, curl ̂︀𝛽𝐷)︁

𝐷
+

⟨
curl ̂︀𝛽𝐷 · n, 𝜆ℎ⟩

Σ
. (5.31)

The following lemma establishes the estimate for ℛ2.
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Lemma 5.6. Assume that there exists a convex domain Ξ such that Ω𝐷 ⊆ Ξ and Γ𝐷 ⊆ 𝜕Ξ. Assume further
that f𝐷 ∈ L2(Ω𝐷). Then there exist 𝐶1, 𝐶2 > 0, independent of the meshsizes, such that

‖ℛ2‖H3(div ;Ω𝐷)′ ≤ 𝐶1

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝐷

ℎ

ℎ2
𝑇 ‖f𝐷 −U𝐷,ℎ‖20,𝑇

⎫⎬⎭
1/2

+ 𝐶2

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝐷

ℎ

̃︀Θ3/2
𝐷,𝑇

⎫⎬⎭
2/3

, (5.32)

where ̃︀Θ𝐷,𝑇 is defined in (5.4), and U𝐷,ℎ is given by (5.5).

Proof. We begin by observing that the Cauchy–Schwarz inequality and the first approximation property of the
Raviart–Thomas interpolation operator Πℎ in Lemma 4.1 imply

⃒⃒
ℛ2(̂︀w𝐷)

⃒⃒
≤ ̂︀𝐶1

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝐷

ℎ

ℎ2
𝑇 ‖f𝐷 −U𝐷,ℎ‖20,𝑇

⎫⎬⎭
1/2

‖w𝐷‖1,Ω𝐷
. (5.33)

We stress here that the term on the right-hand side of (5.33) is well defined thanks to the assumption f𝐷 ∈
L2(Ω𝐷). On the other hand, in order to bound ℛ2(curl ̂︀𝛽𝐷) (cf. (5.31)), we begin by noticing that⟨

curl ̂︀𝛽𝐷 · n, 𝜆ℎ⟩
Σ

=
⟨
curl ̂︀𝛽𝐷 · n, 𝐸Σ(𝜆ℎ)

⟩
𝜕Ω𝐷

,

where 𝐸Σ : 𝑊 1/3,3/2(Σ) → 𝑊 1/3,3/2(𝜕Ω𝐷) is any bounded extension operator. In particular, denoting bŷ︀𝜆ℎ the extension of 𝜆ℎ by the constant values of 𝑝𝐷 on the corresponding edges of Γ𝐷, and recalling from
Theorem 1.5.2.3-(a) of [25] that, under no extra conditions, the product space

∏︀
𝑒∈ℰℎ(Σ)∪ℰℎ(Γ𝐷)𝑊

1/3,3/2(𝑒)

coincides with 𝑊 1/3,3/2(𝜕Ω𝐷) through a linear isomorphism, we deduce that ̂︀𝜆ℎ ∈ 𝑊 1/3,3/2(𝜕Ω𝐷), so that we
can write ⟨

curl ̂︀𝛽𝐷 · n, 𝜆ℎ⟩
Σ

=
⟨
curl ̂︀𝛽𝐷 · n, ̂︀𝜆ℎ⟩

𝜕Ω𝐷

. (5.34)

Now, in virtue of the surjectivity of the trace operator from 𝑊 1,3/2(Ω𝐷) onto 𝑊 1/3,3/2(𝜕Ω𝐷), we know that
there exists 𝜙ℎ ∈ 𝑊 1,3/2(Ω𝐷) such that 𝜙ℎ|𝜕Ω𝐷

= ̂︀𝜆ℎ. In this way, applying the Green formula (4.10) to
v = curl ̂︀𝛽𝐷 ∈ H3(div 3; Ω𝐷) and 𝜑 = 𝜙ℎ ∈ 𝑊 1,3/2(Ω𝐷), and recalling that n points towards inside Ω𝐷 on Σ,
we get ⟨

curl ̂︀𝛽𝐷 · n, ̂︀𝜆ℎ⟩
𝜕Ω𝐷

=
⟨
curl ̂︀𝛽𝐷 · n, 𝜙ℎ⟩

𝜕Ω𝐷

= −
∫︁

Ω𝐷

∇𝜙ℎ · curl ̂︀𝛽𝐷, (5.35)

which, in conjunction with (5.34) and (5.31), yields

ℛ2(curl ̂︀𝛽𝐷) =
(︁
f𝐷 −U𝐷,ℎ −∇𝜙ℎ, curl ̂︀𝛽𝐷)︁

𝐷
. (5.36)

Thus, applying Hölder’s inequality in the right-hand side of (5.36), and then the boundedness of the Clément
interpolator 𝐼𝐷ℎ : 𝑊 1,3(Ω𝐷) →𝑊 1,3(Ω𝐷) (cf. [16], Lem. 1.127, p. 69), we obtain

⃒⃒
ℛ2(curl ̂︀𝛽𝐷)

⃒⃒
≤ ̂︀𝐶2

⎧⎨⎩ ∑︁
𝑇∈𝒯 𝐷

ℎ

⃦⃦
f𝐷 −U𝐷,ℎ −∇𝜙ℎ

⃦⃦3/2

L3/2(𝑇 )

⎫⎬⎭
2/3

‖𝛽𝐷‖1,3;Ω𝐷
. (5.37)

Hence, as a direct consequence of estimates (5.33) and (5.37), and the stability estimate (5.28) for the Helmholtz
decomposition, we get (5.32) and conclude the proof. �

We end this section by stressing that the estimate (5.10) is a straightforward consequence of Lemmas 5.2–5.6,
and the definition of the global estimator Θ (cf. (5.7)), when ℎ→ 0.
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5.2. Efficiency

The following theorem is the main result of this section.

Theorem 5.7. Suppose that the data f𝑆 ∈ L2(Ω𝑆), f𝐷 ∈ L2(Ω𝐷) and 𝑔𝐷 ∈ 𝐿2(Ω𝐷) satisfy (5.9). Then, there
exists a constant 𝐶eff > 0, independent of ℎ, such that

𝐶eff Θ ≤ ‖u⃗− u⃗ℎ‖H×Q + |𝑝𝐷 − 𝜙ℎ|1,3/2;Ω𝐷
+ h.o.t., (5.38)

where h.o.t. stands for one or several terms of higher order.

Throughout this section we assume, without loss of generality, that K−1u𝐷,ℎ, f𝑆 , f𝐷, and 𝜙ℎ are all piecewise
polynomials. Otherwise, if K, f𝑆 , f𝐷, and 𝜙ℎ are sufficiently smooth, and proceeding similarly as in Section 6.2
of [8], higher order terms given by the errors arising from suitable polynomial approximation of these expressions
and functions would appear in (5.38), which explains the eventual h.o.t. in this inequality. More precisely, let
us consider the L2(Ω⋆)-orthogonal projector P⋆

𝑘 onto the vectorial piecewise polynomials of degree ≤ 𝑘 on Ω⋆,
with ⋆ ∈ {𝑆,𝐷}, which satisfies the following approximation property:

(AP⋆
𝑘) there exists 𝐶 > 0, independent of ℎ, such that for each v ∈ W𝑘+1,𝑝(Ω⋆) there holds

|v −P⋆
𝑘(v)|𝑘,𝑝;𝑇 ≤ 𝐶 ℎ𝑇 |v|𝑘+1,𝑝;𝑇 ∀𝑇 ∈ 𝒯 ⋆ℎ . (5.39)

Then, the h.o.t. arise when in the efficiency estimates to be derived below in Lemmas 5.12–5.15, the non-
polynomial data f𝑆 and f𝐷, and the given 𝜙ℎ, are replaced by P𝑆

𝑘 (f𝑆), P𝐷
𝑘 (f𝐷), and P𝐷𝑘 (𝜙ℎ), respectively, with

some 𝑘 ≥ 0, where P𝐷𝑘 is the scalar version of P𝐷
𝑘 . In particular, from the left hand side of (5.48) (cf. Lem. 5.12)

we observe that, doing the above with 𝑘 = 0, the extra term ℎ2
𝑇 ‖f𝑆 −P𝑆

0 (f𝑆)‖20,𝑇 would appear, which can be
bounded, using (5.39), as

ℎ2
𝑇 ‖f𝑆 −P𝑆

0 (f𝑆)‖20,𝑇 ≤ 𝐶1 ℎ
4
𝑇 |f𝑆 |21,𝑇 ∀𝑇 ∈ 𝒯 𝑆ℎ , (5.40)

under the assumption that f𝑆 |𝑇 ∈ H1(𝑇 ) for all 𝑇 ∈ 𝒯 𝑆ℎ . Proceeding similarly with the left hand side of (5.52)
(cf. Lem. 5.15), we are lead to the extra term ℎ2

𝑇 ‖f𝐷 −P𝐷
0 (f𝐷)‖20,𝑇 , and the estimate

ℎ2
𝑇 ‖f𝐷 −P𝐷

0 (f𝐷)‖20,𝑇 ≤ 𝐶2 ℎ
4
𝑇 |f𝐷|21,𝑇 ∀𝑇 ∈ 𝒯 𝐷ℎ , (5.41)

under the assumption that f𝐷|𝑇 ∈ H1(𝑇 ) for all 𝑇 ∈ 𝒯 𝐷ℎ . The respective terms in the other lemmas are handled
analogously. Therefore, summing up over all 𝑇 ∈ 𝒯 ⋆ℎ , with ⋆ ∈ {𝑆,𝐷}, in (5.40) and (5.41), the resulting
expressions on the corresponding right hand sides become the h.o.t., which have a higher order of convergence
than the rate of convergence 𝑂(ℎ1/3) of the method (3.3) (see [11], Thm. 5.2 for details).

In order to prove (5.38) we need first to introduce the Banach space

H(div4/3; Ω𝑆) :=
{︁

𝜏𝑆 ∈ L2(Ω𝑆) : div𝜏𝑆 ∈ L4/3(Ω𝑆)
}︁
.

Then, we state the following result, which basically follows by applying integration by parts backwardly in the
formulation (3.1), and proceeding as in Remark 2.1 of [6] for the Navier–Stokes terms.

Theorem 5.8. Let (u, (𝑝, 𝜆)) ∈ H ×Q be the unique solution of (3.1). Then div u𝑆 = 0 in Ω𝑆, div u𝐷 = 𝑔𝐷
in Ω𝐷, and u𝐷 · n = u𝑆 · n on Σ. In addition, defining 𝑝𝑆 := 𝑝|Ω𝑆

, 𝑝𝐷 := 𝑝|Ω𝐷
, 𝜎𝑆 := −𝑝𝑆I + 2𝜇e(u𝑆), and

U𝐷 := 𝜇
𝜌K

−1u𝐷 + F
𝜌 |u𝐷|u𝐷, there hold 𝑝𝐷 ∈ 𝑊 1,3/2(Ω𝐷) ∩ 𝐿2(Ω𝐷), 𝜆 = 𝑝𝐷 on Σ, div𝜎𝑆 = 𝜌(∇u𝑆)u𝑆 − f𝑆

in Ω𝑆 (which yields 𝜎𝑆 ∈ H(div4/3; Ω𝑆)), U𝐷 +∇𝑝𝐷 = f𝐷 in Ω𝐷, and 𝜎𝑆n + 𝜆n + 𝛼𝑑𝜇√
t·𝜅t

(u𝑆 · t)t = 0 on Σ.

We begin the derivation of the efficiency estimates with the following result.

Lemma 5.9. There hold
‖div u𝑆,ℎ‖0,𝑇 ≤ |u𝑆 − u𝑆,ℎ|1,𝑇 ∀𝑇 ∈ 𝒯 𝑆ℎ

and
‖𝑔𝐷 − div u𝐷,ℎ‖0,𝑇 ≤ ‖u𝐷 − u𝐷,ℎ‖H3(div ;𝑇 ) ∀𝑇 ∈ 𝒯 𝐷ℎ .
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Proof. It suffices to use from Theorem 5.8 that div u𝑆 = 0 in Ω𝑆 and div u𝐷 = 𝑔𝐷 in Ω𝐷. Further details are
omitted. �

In order to derive the upper bounds for the remaining terms defining the global a posteriori error estimator
Θ (cf. (5.7)), we proceed similarly as in [3,4,8,9,21], and apply results ultimately based on inverse inequalities
and the localization technique based on triangle-bubble and edge-buble functions. To this end, we now recall
some notation and introduce further preliminary results. Given 𝑇 ∈ 𝒯ℎ := 𝒯 𝑆ℎ ∪ 𝒯 𝐷ℎ , and 𝑒 ∈ ℰ(𝑇 ), we let 𝜓𝑇
and 𝜓𝑒 be the usual triangle-bubble and edge-bubble functions, respectively (see [30], Eqs. (1.5) and (1.6)),
which satisfy:

(i) 𝜓𝑇 ∈ 𝑃3(𝑇 ), supp(𝜓𝑇 ) ⊆ 𝑇, 𝜓𝑇 = 0 on 𝜕𝑇 , and 0 ≤ 𝜓𝑇 ≤ 1 in 𝑇 ,
(ii) 𝜓𝑒|𝑇 ∈ 𝑃2(𝑇 ), supp(𝜓𝑒) ⊆ 𝜔𝑒, 𝜓𝑒 = 0 on 𝜕𝑇 ∖ 𝑒, and 0 ≤ 𝜓𝑒 ≤ 1 in 𝜔𝑒 := ∪

{︀
𝑇 ′ ∈ 𝒯ℎ : 𝑒 ∈ ℰ(𝑇 ′)

}︀
.

In addition, we also recall from [30] that, given 𝑘 ∈ N∪{0}, there exists an extension operator 𝐿 : 𝒞(𝑒) → 𝒞(𝜔𝑒)
that satisfies 𝐿(𝜎) ∈ 𝑃𝑘(𝑇 ) and 𝐿(𝜎)|𝑒 = 𝜎 ∀𝜎 ∈ 𝑃𝑘(𝑒). A corresponding vectorial version of 𝐿, that is, the
componentwise application of 𝐿, is denoted by L. Additional properties of 𝜓𝑇 , 𝜓𝑒, and 𝐿 are collected in the
following lemma. Regarding the corresponding proof we refer to Lemma 3.3 of [30] for details.

Lemma 5.10. Let 𝑝 and 𝑞 be two fixed real numbers with 𝑝 ∈ [1,+∞] and 1/𝑝 + 1/𝑞 = 1. Given 𝑇 ∈ 𝒯ℎ and
𝑒 ∈ ℰ(𝑇 ), let 𝑉𝑇 ⊂ 𝐿∞(𝑇 ) and 𝑉𝑒 ⊂ 𝐿∞(𝑒) two arbitrary finite dimensional spaces. Then, there exist positive
constants 𝑐𝑖 with 𝑖 ∈ {1, . . . , 7}, depending only on 𝑝, 𝑞, the spaces 𝑉𝑇 and 𝑉𝑒, and the shape-regularity of the
triangulations (minimum angle condition), such that for each 𝑢 ∈ 𝑉𝑇 and 𝜎 ∈ 𝑉𝑒, there hold

𝑐1 ‖𝑢‖𝐿𝑝(𝑇 ) ≤ sup
𝑣∈𝑉𝑇

∫︁
𝑇

𝑢𝜓𝑇 𝑣

‖𝑣‖𝐿𝑞(𝑇 )
≤ ‖𝑢‖𝐿𝑝(𝑇 ), (5.42)

𝑐2 ‖𝜎‖𝐿𝑝(𝑒) ≤ sup
𝜏∈𝑉𝑒

∫︁
𝑒

𝜎 𝜓𝑒𝜏

‖𝜏‖𝐿𝑞(𝑒)
≤ ‖𝜎‖𝐿𝑝(𝑒), (5.43)

𝑐3 ℎ
−1
𝑇 ‖𝜓𝑇𝑢‖𝐿𝑞(𝑇 ) ≤ ‖∇(𝜓𝑇𝑢)‖𝐿𝑞(𝑇 ) ≤ 𝑐4 ℎ

−1
𝑇 ‖𝜓𝑇𝑢‖𝐿𝑞(𝑇 ), (5.44)

𝑐5 ℎ
−1
𝑇 ‖𝜓𝑒𝐿(𝜎)‖𝐿𝑞(𝑇 ) ≤ ‖∇(𝜓𝑒𝐿(𝜎))‖𝐿𝑞(𝑇 ) ≤ 𝑐6 ℎ

−1
𝑇 ‖𝜓𝑒𝐿(𝜎)‖𝐿𝑞(𝑇 ), (5.45)

and
‖𝜓𝑒𝐿(𝜎)‖𝐿𝑞(𝑇 ) ≤ 𝑐7 ℎ

1/𝑞
𝑒 ‖𝜎‖𝐿𝑞(𝑒). (5.46)

As stated in Remark 3.2 of [30], 𝑉𝑇 and 𝑉𝑒 can be chosen as suitable spaces of polynomials. Thus, in what
follows we will choose 𝑉𝑇 as 𝑃𝑘(𝑇 ) and 𝑉𝑒 as 𝑃𝑘(𝑒) for a given 𝑘 ∈ N ∪ {0}. In addition, and coherently with
previous notations, we set V𝑇 and V𝑒, respectively, as the corresponding vectorial counterpart. The following
inverse estimate will be also used. We refer the reader to Lemma 1.138 of [16] for its proof.

Lemma 5.11. Let 𝑘 ∈ N ∪ {0}, 𝑛 ∈ {2, 3}, 𝑙,𝑚 ≥ 0 such that 𝑚 ≤ 𝑙, and 𝑝, 𝑞 ∈ [1,+∞]. Then, there exists
𝑐 > 0, depending only on 𝑘, 𝑙,𝑚 and the shape regularity of the triangulations, such that, for each triangle
(tetrahedron) 𝑇 ∈ 𝒯ℎ, there holds

‖𝑣‖𝑙,𝑝,𝑇 ≤ 𝑐 ℎ
𝑚−𝑙+𝑛(1/𝑝−1/𝑞)
𝑇 ‖𝑣‖𝑚,𝑞,𝑇 ∀ 𝑣 ∈ 𝑃𝑘(𝑇 ). (5.47)

We point out that throughout this section each proof done in 2D can be easily extended to its three-
dimensional counterpart considering 𝑛 = 3 when we apply (5.47). In that case, other positive power of the
meshsizes ℎ𝑇⋆ , with ⋆ ∈ {𝑆,𝐷}, will appear on the right-hand side of the efficiency estimates which anyway
are bounded. Next, we continue providing the corresponding efficiency estimates of our analysis with the upper
bounds for the remaining three terms defining Θ2

𝑆,𝑇 (cf. (5.1)). Since the corresponding proofs are adaptations
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to our configuration of those of Lemmas 4.4–4.6 from [4], we only mention the main tools employed and refer
to the preprint version of the present paper (cf. [10]) for details. However, for the sake of clearness and com-
pleteness, and because of some technicalities involved, we do provide full proofs for the estimates that include
terms arising from the Darcy–Forchheimer equation.

Lemma 5.12. There exists 𝑐 > 0, independent of ℎ, such that for each 𝑇 ∈ 𝒯 𝑆ℎ there holds

ℎ2
𝑇

⃦⃦⃦
f𝑆 + div𝜎𝑆,ℎ − 𝜌(∇u𝑆,ℎ)u𝑆,ℎ −

𝜌

2
div u𝑆,ℎu𝑆,ℎ

⃦⃦⃦2

0,𝑇
≤ 𝑐

{︁
‖𝑝𝑆 − 𝑝𝑆,ℎ‖20,𝑇 + |u𝑆 − u𝑆,ℎ|21,𝑇

+ ℎ𝑇
⃦⃦

(∇u𝑆)u𝑆 − (∇u𝑆,ℎ)u𝑆,ℎ
⃦⃦2

L4/3(𝑇 )
+ ℎ𝑇 ‖div (u𝑆 − u𝑆,ℎ)u𝑆,ℎ‖2L4/3(𝑇 )

}︁
. (5.48)

Proof. Given 𝑇 ∈ 𝒯 𝑆ℎ , it proceeds by applying first (5.42) to ‖𝜒𝑇 ‖0,𝑇 , with 𝜒𝑇 := f𝑆+div𝜎𝑆,ℎ−𝜌(∇u𝑆,ℎ)u𝑆,ℎ−
𝜌

2
div u𝑆,ℎu𝑆,ℎ, and then employing Cauchy–Schwarz and Hölder’s inequalities, (5.44), and the local inverse

estimate (5.47). For further details we refer to Lemma 5.12 of [10]. �

Lemma 5.13. There exists 𝑐 > 0, independent of ℎ, such that for each 𝑒 ∈ ℰℎ(Ω𝑆) there holds

ℎ𝑒
⃦⃦

J𝜎𝑆,ℎnK
⃦⃦2

0,𝑒
≤ 𝑐

∑︁
𝑇⊆𝜔𝑒

{︁
‖𝑝𝑆 − 𝑝𝑆,ℎ‖20,𝑇 + |u𝑆 − u𝑆,ℎ|21,𝑇

+ ℎ𝑇
⃦⃦

(∇u𝑆)u𝑆 − (∇u𝑆,ℎ)u𝑆,ℎ
⃦⃦2

L4/3(𝑇 )
+ ℎ𝑇 ‖div (u𝑆 − u𝑆,ℎ)u𝑆,ℎ‖2L4/3(𝑇 )

}︁
, (5.49)

where 𝜔𝑒 is the union of the two triangles in 𝒯 𝑆ℎ having 𝑒 as an edge.

Proof. Given 𝑒 ∈ ℰℎ(Ω𝑆), it begins by applying (5.43) to
⃦⃦

J𝜎𝑆,ℎnK
⃦⃦

0,𝑒
. The rest of the proof makes use of the

Cauchy–Schwarz and Hölder inequalities, and the estimates (5.45)–(5.47). We refer to Lemma 5.13 of [10] for
further details. �

Before establishing the following lemma, we need to recall a local trace inequality ([1], Thm. 3.10). Indeed,
there exists 𝑐 > 0, depending only on the shape regularity of the triangulations, such that for each 𝑇 ∈ 𝒯 𝑆ℎ ∪𝒯 𝐷ℎ
and 𝑒 ∈ ℰ(𝑇 ), there holds

ℎ𝑒‖𝑣‖20,𝑒 ≤ 𝑐
{︁
‖𝑣‖20,𝑇 + ℎ2

𝑇 |𝑣|21,𝑇
}︁

∀ 𝑣 ∈ 𝐻1(𝑇 ). (5.50)

Lemma 5.14. There exists 𝑐 > 0, independent of ℎ, such that for each 𝑒 ∈ ℰℎ(Σ) there holds

ℎ𝑒

⃦⃦⃦⃦
𝜎𝑆,ℎn + 𝜆ℎn +

𝛼𝑑𝜇√
t · 𝜅t

(u𝑆,ℎ · t)t
⃦⃦⃦⃦2

0,𝑒

≤ 𝑐
{︁
‖𝑝𝑆 − 𝑝𝑆,ℎ‖20,𝑇 + ‖u𝑆 − u𝑆,ℎ‖21,𝑇 + ℎ𝑒‖𝜆− 𝜆ℎ‖20,𝑒

+ ℎ𝑇
⃦⃦

(∇u𝑆)u𝑆 − (∇u𝑆,ℎ)u𝑆,ℎ
⃦⃦2

L4/3(𝑇 )

+ ℎ𝑇 ‖div (u𝑆 − u𝑆,ℎ)u𝑆,ℎ‖2L4/3(𝑇 )

}︁
, (5.51)

where 𝑇 is the triangle of 𝒯 𝑆ℎ having 𝑒 as an edge.

Proof. Given 𝑒 ∈ ℰℎ(Σ) , we first apply (5.43) to ‖𝜒𝑒‖0,𝑒, with 𝜒𝑒 := 𝜎𝑆,ℎn + 𝜆ℎn +
𝛼𝑑𝜇√
t · 𝜅t

(u𝑆,ℎ · t)t. Then,

the proof continues by applying again the Cauchy–Schwarz and Hölder inequalities, and by using the estimates
(5.45)–(5.47), and (5.50). We refer to Lemma 5.14 of [10] for all the details. �

The second residual expression defining ̂︀Θ2
𝐷,𝑇 (cf. (5.3)), that is, the one containing the nonlinear Darcy–

Forchheimer term, is estimated now. To that end, we adapt the proof of Lemma 6.3 from [7] to our context.
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Lemma 5.15. There exists 𝑐 > 0, independent of ℎ, such that for each 𝑇 ∈ 𝒯 𝐷ℎ there holds

ℎ2
𝑇 ‖f𝐷 −U𝐷,ℎ‖20,𝑇 ≤ 𝑐

{︁
‖𝑝𝐷 − 𝑝𝐷,ℎ‖20,𝑇 + ℎ2

𝑇 ‖u𝐷 − u𝐷,ℎ‖2L3(𝑇 ) + ℎ
4/3
𝑇

⃦⃦
|u𝐷|u𝐷 − |u𝐷,ℎ|u𝐷,ℎ

⃦⃦2

L3/2(𝑇 )

}︁
. (5.52)

Proof. Given 𝑇 ∈ 𝒯 𝐷ℎ , we apply (5.42) to ‖f𝐷 −U𝐷,ℎ‖0,𝑇 , that is

𝑐1 ‖f𝐷 −U𝐷,ℎ‖0,𝑇 ≤ sup
v∈V𝑇

∫︁
𝑇

(f𝐷 −U𝐷,ℎ) · 𝜓𝑇v

‖v‖0,𝑇
, (5.53)

from which, using the identity f𝐷 = U𝐷 + ∇𝑝𝐷 in Ω𝐷 (cf. Thm. 5.8), noting that ∇𝑝𝐷,ℎ = 0 on 𝑇 , and
integrating by parts, we find that∫︁

𝑇

(f𝐷 −U𝐷,ℎ) · 𝜓𝑇v =
∫︁
𝑇

(︁
∇(𝑝𝐷 − 𝑝𝐷,ℎ) + (U𝐷 −U𝐷,ℎ)

)︁
· 𝜓𝑇v

= −
∫︁
𝑇

(𝑝𝐷 − 𝑝𝐷,ℎ)div (𝜓𝑇v) +
∫︁
𝑇

(U𝐷 −U𝐷,ℎ) · 𝜓𝑇v.

In this way, from the definitions of U𝐷 and U𝐷,ℎ (cf. Thm. 5.8 and (5.5)), using the Cauchy–Schwarz and
Hölder inequalities, applying (5.44) to ‖∇(𝜓𝑇v)‖0,𝑇 , and recalling that 0 ≤ 𝜓𝑇 ≤ 1, we get∫︁

𝑇

(f𝐷 −U𝐷,ℎ) · 𝜓𝑇v ≤ 𝐶
{︁
ℎ−1
𝑇 ‖𝑝𝐷 − 𝑝𝐷,ℎ‖0,𝑇 + ‖u𝐷 − u𝐷,ℎ‖0,𝑇

}︁
‖v‖0,𝑇

+
⃦⃦
|u𝐷|u𝐷 − |u𝐷,ℎ|u𝐷,ℎ

⃦⃦
L3/2(𝑇 )

‖v‖L3(𝑇 ). (5.54)

Then, replacing (5.54) back into (5.53), and then applying Hölder’s inequality and the local inverse estimate
‖v‖L3(𝑇 ) ≤ 𝑐 ℎ

−1/3
𝑇 ‖v‖0,𝑇 (cf. (5.47)), we arrive at (5.52) and complete the proof. �

Now we turn to provide the upper bound for the term defining ̃︀Θ3/2
𝐷,𝑇 (cf. (5.4)).

Lemma 5.16. There exists 𝑐 > 0, independent of ℎ, such that for each 𝑇 ∈ 𝒯 𝐷ℎ there holds

‖f𝐷 −U𝐷,ℎ −∇𝜙ℎ‖3/2L3/2(𝑇 )
≤ 𝑐

{︁
‖u𝐷−u𝐷,ℎ‖3/2L3(𝑇 ) + |𝑝𝐷−𝜙ℎ|3/21,3/2;𝑇 +

⃦⃦
|u𝐷|u𝐷−|u𝐷,ℎ|u𝐷,ℎ

⃦⃦3/2

L3/2(𝑇 )

}︁
. (5.55)

Proof. We first recall from Theorem 5.8 that f𝐷 = U𝐷 + ∇𝑝𝐷 in Ω𝐷. Then, replacing this identity in the
expression ‖f𝐷 − U𝐷,ℎ − ∇𝜙ℎ‖L3/2(𝑇 ), employing the definitions of U𝐷 and U𝐷,ℎ (cf. Thm. 5.8 and (5.5)),
and applying the triangle and Hölder inequalities, we readily arrive at the estimate (5.55). Further details are
omitted. �

Finally, we provide the upper bound for the term defining Θ3
Σ,𝑒 (cf. (5.6)).

Lemma 5.17. There exists 𝑐 > 0, independent of ℎ, such that for each 𝑒 ∈ ℰℎ(Σ) there holds

ℎ𝑒 ‖u𝑆,ℎ · n− u𝐷,ℎ · n‖3𝐿3(𝑒) ≤ 𝑐
{︁
‖u𝑆 − u𝑆,ℎ‖3L3(𝑇𝑆) + ℎ2

𝑇𝑆
|u𝑆 − u𝑆,ℎ|31,𝑇𝑆

+ ‖u𝐷 − u𝐷,ℎ‖3L3(𝑇𝐷) + ℎ2
𝑇𝐷
‖div (u𝐷 − u𝐷,ℎ)‖30,𝑇𝐷

}︁
, (5.56)

where 𝑇𝑆 and 𝑇𝐷 are the triangles of 𝒯 𝑆ℎ and 𝒯 𝐷ℎ , respectively, having 𝑒 as an edge.
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Proof. Given 𝑒 ∈ ℰℎ(Σ), we let 𝑇𝑆 and 𝑇𝐷 be the triangles of 𝒯 𝑆ℎ and 𝒯 𝐷ℎ , respectively, having 𝑒 as an edge,
which means that 𝜔𝑒 := 𝑇𝑆 ∪ 𝑇𝐷, and define 𝜒𝑒 := u𝑆,ℎ · n− u𝐷,ℎ · n on 𝑒. Then, applying (5.43) to ‖𝜒𝑒‖𝐿3(𝑒),
we have

𝑐2 ‖𝜒𝑒‖𝐿3(𝑒) ≤ sup
𝜏∈𝑉𝑒

∫︀
𝑒
𝜒𝑒 𝜓𝑒𝜏

‖𝜏‖𝐿3/2(𝑒)

. (5.57)

Next, setting 𝜓𝑒,⋆ := 𝜓𝑒|𝑇⋆
, with ⋆ ∈ {𝑆,𝐷}, using the identity u𝐷 · n = u𝑆 · n on Σ (cf. Thm. 5.8), recalling

that 𝜓𝑒,⋆ = 0 on 𝜕𝑇⋆ ∖ 𝑒, and integrating by parts on 𝑇⋆, we obtain∫︁
𝑒

𝜒𝑒 𝜓𝑒𝜏 =
∫︁
𝑇𝑆

(u𝑆 − u𝑆,ℎ) · ∇(𝜓𝑒,𝑆𝐿(𝜏)) +
∫︁
𝑇𝑆

𝜓𝑒,𝑆𝐿(𝜏) div (u𝑆 − u𝑆,ℎ)

+
∫︁
𝑇𝐷

(u𝐷 − u𝐷,ℎ) · ∇(𝜓𝑒,𝐷𝐿(𝜏)) +
∫︁
𝑇𝐷

𝜓𝑒,𝐷𝐿(𝜏) div (u𝐷 − u𝐷,ℎ).

Thus, using the Cauchy–Schwarz and Hölder inequalities, applying (5.45) to ‖∇(𝜓𝑒,⋆𝐿(𝜏))‖L3/2(𝑇⋆), and utilizing

the local inverse estimate ‖𝜓𝑒,⋆𝐿(𝜏)‖0,𝑇⋆
≤ 𝑐 ℎ

−1/3
𝑇⋆

‖𝜓𝑒,⋆𝐿(𝜏)‖𝐿3/2(𝑇⋆) (cf. (5.47)), and the fact that 0 ≤ 𝜓𝑒 ≤ 1
in 𝜔𝑒, we find that∫︁

𝑒

𝜒𝑒 𝜓𝑒𝜏 ≤ 𝐶
{︁
ℎ−1
𝑇𝑆
‖u𝑆 − u𝑆,ℎ‖L3(𝑇𝑆) + ℎ

−1/3
𝑇𝑆

‖div (u𝑆 − u𝑆,ℎ)‖0,𝑇𝑆

}︁
‖𝜓𝑒,𝑆𝐿(𝜏)‖𝐿3/2(𝑇𝑆)

+ 𝐶
{︁
ℎ−1
𝑇𝐷
‖u𝐷 − u𝐷,ℎ‖L3(𝑇𝐷) + ℎ

−1/3
𝑇𝐷

‖div (u𝐷 − u𝐷,ℎ)‖0,𝑇𝐷

}︁
‖𝜓𝑒,𝐷𝐿(𝜏)‖𝐿3/2(𝑇𝐷). (5.58)

Finally, applying now (5.46) to ‖𝜓𝑒,⋆𝐿(𝜏)‖𝐿3/2(𝑇⋆), combining the resulting estimate with (5.58) and (5.57), and
using that ℎ𝑒 ≤ ℎ𝑇⋆

, we arrive at (5.56) and conclude the proof. �

In order to complete the global efficiency given by (5.38) (cf. Thm. 5.7), we now need to estimate the terms
‖𝜆− 𝜆ℎ‖20,𝑒, ‖u𝑆 −u𝑆,ℎ‖3L3(𝑇 ), ‖div (u𝑆 −u𝑆,ℎ)u𝑆,ℎ‖2L4/3(𝑇 )

,
⃦⃦

(∇u𝑆)u𝑆 − (∇u𝑆,ℎ)u𝑆,ℎ
⃦⃦2

L4/3(𝑇 )
, and

⃦⃦
|u𝐷|u𝐷 −

|u𝐷,ℎ|u𝐷,ℎ
⃦⃦3/2

L3/2(𝑇 )
appearing in the upper bounds provided by Lemmas 5.12–5.17. To this end, we first recall

that 𝑊 1/3,3/2(Σ) is continuously embedded into 𝐿2(Σ), whence∑︁
𝑒∈ℰℎ(Σ)

‖𝜆− 𝜆ℎ‖20,𝑒 ≤ ‖𝜆− 𝜆ℎ‖20,Σ ≤ 𝐶 ‖𝜆− 𝜆ℎ‖21/3,3/2;Σ. (5.59)

In turn, we make use of the continuity of the injection i : H1(Ω𝑆) → L3(Ω𝑆) to obtain∑︁
𝑇∈𝒯 𝑆

ℎ

‖u𝑆 − u𝑆,ℎ‖3L3(𝑇 ) = ‖u𝑆 − u𝑆,ℎ‖3L3(Ω𝑆) ≤ 𝐶 ‖u𝑆 − u𝑆,ℎ‖31,Ω𝑆
. (5.60)

In addition, applying Hölder’s inequality with 𝑝 = 3/2 and 𝑞 = 3, we first obtain

‖div (u𝑆 − u𝑆,ℎ)u𝑆,ℎ‖2L4/3(𝑇 ) ≤ ‖u𝑆,ℎ‖2L4(𝑇 ) ‖div (u𝑆 − u𝑆,ℎ)‖20,𝑇 , (5.61)

and then, bounding ‖u𝑆,ℎ‖2L4(𝑇 ) by ‖u𝑆,ℎ‖2L4(Ω𝑆) for each 𝑇 ∈ 𝒯 𝑆ℎ , and employing the continuous injection
i : H1(Ω𝑆) → L4(Ω𝑆), and the a priori bounds of ‖u𝑆,ℎ‖1,Ω𝑆

(cf. (5.15)) combined with (5.9), we deduce that∑︁
𝑇∈𝒯 𝑆

ℎ

‖div (u𝑆 − u𝑆,ℎ)u𝑆,ℎ‖2L4/3(𝑇 ) ≤ ‖u𝑆,ℎ‖2L4(Ω𝑆)

∑︁
𝑇∈𝒯 𝑆

ℎ

‖div (u𝑆 − u𝑆,ℎ)‖20,𝑇

≤ 𝐶 ‖u𝑆,ℎ‖21,Ω𝑆
‖u𝑆 − u𝑆,ℎ‖21,Ω𝑆

≤ 𝐶 ‖u𝑆 − u𝑆,ℎ‖21,Ω𝑆
. (5.62)
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Similarly, adding and subtracting (∇u𝑆)u𝑆,ℎ (it also works with (∇u𝑆,ℎ)u𝑆), applying Hölder’s inequality as
in (5.61), and using again the continuous injection i : H1(Ω𝑆) → L4(Ω𝑆), and the a priori bounds of ‖u𝑆‖1,Ω𝑆

and ‖u𝑆,ℎ‖1,Ω𝑆
(cf. (5.15)) combined with (5.9), we are able to show that∑︁

𝑇∈𝒯 𝑆
ℎ

⃦⃦
(∇u𝑆)u𝑆 − (∇u𝑆,ℎ)u𝑆,ℎ

⃦⃦2

L4/3(𝑇 )
≤ 𝐶 ‖u𝑆 − u𝑆,ℎ‖21,Ω𝑆

. (5.63)

Finally, thanks to the Cauchy–Schwarz inequality and the a priori bounds of ‖u𝐷‖H3(div ;Ω𝐷) and
‖u𝐷,ℎ‖H3(div ;Ω𝐷) (cf. (5.15)) combined with (5.9), we find that∑︁

𝑇∈𝒯 𝐷
ℎ

⃦⃦
|u𝐷|u𝐷 − |u𝐷,ℎ|u𝐷,ℎ

⃦⃦3/2

L3/2(𝑇 )
≤ 𝐶

∑︁
𝑇∈𝒯 𝐷

ℎ

{︁
‖u𝐷‖3/2L3(𝑇 ) + ‖u𝐷,ℎ‖3/2L3(𝑇 )

}︁
‖u𝐷 − u𝐷,ℎ‖3/2L3(𝑇 )

≤ 𝐶
{︁
‖u𝐷‖3/2L3(Ω𝐷) + ‖u𝐷,ℎ‖3/2L3(Ω𝐷)

}︁
‖u𝐷 − u𝐷,ℎ‖3/2L3(Ω𝐷)

≤ 𝐶 ‖u𝐷 − u𝐷,ℎ‖3/2H3(div ;Ω𝐷). (5.64)

Consequently, it is not difficult to see that (5.38) follows from the definition of Θ (cf. (5.7)), Lemmas 5.9,
5.12–5.17, and the estimates (5.59)–(5.64).

6. Numerical results

This section serves to illustrate the performance and accuracy of our mixed finite element scheme (3.3) along
with the reliability and efficiency properties of the a posteriori error estimator Θ (cf. (5.7)) in 2D domains
derived in Section 5. Our implementation is based on a FreeFem++ code [26]. Regarding the implementation of
the Newton iterative method associated to (3.3) (see [11], Sect. 6 for details), the iterations are terminated once
the relative error of the entire coefficient vectors between two consecutive iterates, say coeff𝑚 and coeff𝑚+1, is
sufficiently small, i.e.

‖coeff𝑚+1 − coeff𝑚‖ℓ2
‖coeff𝑚+1‖ℓ2

≤ tol,

where ‖ · ‖ℓ2 is the standard ℓ2-norm in R𝑁 , with 𝑁 denoting the total number of degrees of freedom defining
the finite element subspaces Hℎ and Qℎ (cf. Sect. 3.3), and tol is a fixed tolerance chosen as tol = 1𝐸 − 06. As
usual, the individual errors are denoted by:

e(u𝑆) := ‖u𝑆 − u𝑆,ℎ‖1,Ω𝑆
, e(𝑝𝑆) := ‖𝑝𝑆 − 𝑝𝑆,ℎ‖0,Ω𝑆

,

e(u𝐷) := ‖u𝐷 − u𝐷,ℎ‖H3(div ;Ω𝐷), e(𝑝𝐷) := ‖𝑝𝐷 − 𝑝𝐷,ℎ‖0,Ω𝐷
, e(𝜆) := ‖𝜆− 𝜆ℎ‖𝐿3/2(Σ).

Note here that ‖𝜆−𝜆ℎ‖1/3,3/2;Σ has been replaced by ‖𝜆−𝜆ℎ‖𝐿3/2(Σ) since ‖·‖1/3,3/2;Σ is not easily computable.
Similarly, since it does not seem trivial to define an explicit lifting 𝜙ℎ, in the numerical results reported below,
and more precisely in the definition of ̃︀Θ3/2

𝐷,𝑇 (cf. (5.4)), we replace 𝜙ℎ by a computable approximation of it
denoted 𝜓ℎ. In fact, observing that the efficiency estimate (5.38) suggests that 𝜙ℎ be as close as possible to 𝑝𝐷,
we let 𝜓ℎ be the unique function in the finite element subspace 𝑋ℎ :=

{︁
𝑣 ∈ 𝒞(Ω𝐷) : 𝑣|𝑇 ∈ 𝑃1(𝑇 ) ∀𝑇 ∈ 𝒯 𝐷ℎ

}︁
,

whose value on each interior vertex x of the triangulation 𝒯 𝐷ℎ is given by the average of the constant values
of 𝑝𝐷,ℎ on the triangles to which x belongs. Similarly, for each vertex x lying on 𝜕Ω𝐷, 𝜓ℎ(x) is defined as the
average of the constant values of ̂︀𝜆ℎ on the edges to which x belongs. We stress here that, when replacing 𝜙ℎ
by 𝜓ℎ in (5.35), the consistency error generated in the estimation of ℛ2(curl ̂︀𝛽𝐷) (cf. (5.36)) is given by⟨

curl ̂︀𝛽𝐷 · n, ̂︀𝜆ℎ − 𝜓ℎ

⟩
𝜕Ω𝐷

,
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which, according to the duality between 𝑊−1/3,3(𝜕Ω𝐷) and 𝑊 1/3,3/2(𝜕Ω𝐷), is first estimated as⃒⃒⃒ ⟨
curl ̂︀𝛽𝐷 · n, ̂︀𝜆ℎ − 𝜓ℎ

⟩
𝜕Ω𝐷

⃒⃒⃒
≤ ‖curl ̂︀𝛽𝐷 · n‖−1/3,3;𝜕Ω𝐷

‖̂︀𝜆ℎ − 𝜓ℎ‖1/3,3/2;𝜕Ω𝐷
. (6.1)

Then, employing the boundedness of the normal trace of H3(div 3; Ω𝐷) (cf. (4.12) and [16], Cor. B.57), the
boundedness of the Clément interpolator 𝐼𝐷ℎ : 𝑊 1,3(Ω𝐷) → 𝑊 1,3(Ω𝐷) (cf. [16], Lem. 1.127, p. 69), and the
stability estimate (5.28), we find that

‖curl ̂︀𝛽𝐷 · n‖−1/3,3;𝜕Ω𝐷
≤ 𝐶 ‖curl ̂︀𝛽𝐷‖H3(div 3;Ω𝐷) = 𝐶 ‖curl ̂︀𝛽𝐷‖𝐿3(Ω𝐷)

≤ 𝐶 ‖̂︀𝛽𝐷‖1,3;Ω𝐷
≤ 𝐶 ‖𝛽𝐷‖1,3;Ω𝐷

≤ 𝐶 ‖v𝐷‖H3(div ;Ω𝐷),

which, replaced back into (6.1), yields⃒⃒⃒ ⟨
curl ̂︀𝛽𝐷 · n, ̂︀𝜆ℎ − 𝜓ℎ

⟩
𝜕Ω𝐷

⃒⃒⃒
≤ 𝐶 ‖v𝐷‖H3(div ;Ω𝐷) ‖̂︀𝜆ℎ − 𝜓ℎ‖1/3,3/2;𝜕Ω𝐷

. (6.2)

The foregoing inequality shows that our consistency error is under control as long as 𝜓ℎ constitutes a good
approximation of ̂︀𝜆ℎ. Regarding this fact, in the examples reported below we provide numerical evidence that
this is indeed the case, at least in the 𝐿3/2(𝜕Ω𝐷)-norm, by computing

e(̂︀𝜆ℎ) := ‖̂︀𝜆ℎ − 𝜓ℎ‖𝐿3/2(𝜕Ω𝐷)

and its corresponding rate of convergence, which is observed to behave of 𝑂(ℎ) in all cases. In turn, the global
error is computed as e(u⃗) + e(𝜓ℎ), where

e(u⃗) := e(u𝑆) + e(u𝐷) + e(𝑝𝑆) + e(𝑝𝐷) + e(𝜆) and e(𝜓ℎ) := |𝑝𝐷 − 𝜓ℎ|1,3/2;Ω𝐷
,

whereas the efficiency and reliability indexes with respect to Θ are given by

eff(Θ) :=
e(u⃗) + e(𝜓ℎ)

Θ
and rel(Θ1/2) :=

e(u⃗)
Θ1/2

·

Regarding these indexes, and assuming that e(𝜓ℎ) ≤ e(u⃗), which is attained in all the numerical essays below,
we observe from (5.8) (after discarding the higher order terms there) that

𝐶eff ≤ eff(Θ) ≤ 2𝐶rel Θ−1/2 and
𝐶eff

2
Θ1/2 ≤ rel(Θ1/2) ≤ 𝐶rel, (6.3)

which says that, while eff(Θ) and rel(Θ1/2) are below and above bounded, respectively, eff(Θ) could become
above unbounded whereas rel(Θ1/2) could very well approaches 0 as Θ goes to 0. Nevertheless, the numerical
results to be displayed below show that eff(Θ) remains always above bounded as well, whereas rel(Θ1/2) does
in fact decreases as Θ goes to 0.

In addition, we define the experimental rates of convergence

r(◇) :=
log(e(◇)/e′(◇))

log(ℎ/ℎ′)
for each ◇ ∈

{︁
u𝑆 ,u𝐷, 𝑝𝑆 , 𝑝𝐷, 𝜆, ̂︀𝜆ℎ, u⃗}︁

,

where ℎ and ℎ′ denote two consecutive mesh sizes, taken accordingly from
{︀
ℎ𝑆 , ℎ𝐷, ℎΣ

}︀
, with their respective

errors 𝑒 and 𝑒′. However, when the adaptive algorithm is applied, the expression log(ℎ/ℎ′) appearing in the
computation of the above rates is replaced by − 1

2 log(𝑁/𝑁 ′), where 𝑁 and 𝑁 ′ denote the corresponding degrees
of freedom of each triangulation.

The examples to be considered in this section are described next. In all of them, for the sake of simplicity, we
choose the parameters 𝜇 = 1, 𝜌 = 1, F = 1, 𝛼𝑑 = 1, 𝜅 = I, and K = I. Furthermore, the condition (𝑝ℎ, 1)Ω = 0
is imposed via a penalization strategy.

Example 1 is used to corroborate the reliability and efficiency of the a posteriori error estimator Θ, whereas
Example 2 is utilized to illustrate the behavior of the associated adaptive algorithm, which applies the following
procedure from [30]:
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(1) Start with a coarse mesh 𝒯ℎ := 𝒯 𝑆ℎ ∪ 𝒯 𝐷ℎ .
(2) Solve the Newton iterative method associated to (3.3) for the current mesh 𝒯ℎ.
(3) Compute the local indicator Θ𝑇 for each 𝑇 ∈ 𝒯ℎ := 𝒯 𝑆ℎ ∪ 𝒯 𝐷ℎ and 𝑒 ∈ ℰℎ(Σ), where

Θ𝑇 :=
{︁

Θ2
𝑆,𝑇 + ̂︀Θ2

𝐷,𝑇

}︁1/2

+ ̃︀Θ𝐷,𝑇 + ΘΣ,𝑒, (cf. (5.1), (5.3), (5.4), (5.6)).

(4) Check the stopping criterion and decide whether to finish or go to next step.
(5) Use the automatic meshing algorithm adaptmesh from Section 9.1.9 of [27] to refine each 𝑇 ′ ∈ 𝒯ℎ satisfying:

Θ𝑇 ′ ≥ 𝐶adm
1

#𝑇

∑︁
𝑇∈𝒯ℎ

Θ𝑇 , for some 𝐶adm ∈ (0, 1), (6.4)

where #𝑇 denotes the number of triangles of the mesh 𝒯ℎ.
(6) Define resulting meshes as current meshes 𝒯 𝑆ℎ and 𝒯 𝐷ℎ , and go to step (2).

In particular, in Example 2 below we take 𝐶adm = 0.8. In turn, if the refinement is with respect to the local
indicator Θ1/2

𝑇 , then we simply replace Θ𝑇 ′ and Θ𝑇 by Θ1/2
𝑇 ′ and Θ1/2

𝑇 , respectively, in the criterion (6.4).

Example 1: Accuracy assessment with a smooth solution in a rectangular domain.

In our first example we consider a rectangle domain divided in two coupled squares, i.e. Ω𝑆 := (0, 1)× (1, 2),
Ω𝐷 := (0, 1)2 and Σ := (0, 1) × {1}. The data f𝑆 , f𝐷, and 𝑔𝐷 are chosen so that the exact solution in the
rectangle domain Ω = Ω𝑆 ∪ Σ ∪ Ω𝐷 is given by the smooth functions

u𝑆 :=
(︂
−2 sin(𝜋𝑥1) cos(2𝜋𝑥2)

cos(𝜋𝑥1) sin(2𝜋𝑥2)

)︂
, u𝐷 :=

(︂
sin(𝜋𝑥1) exp(𝑥2)
sin(𝜋𝑥2) exp(𝑥1)

)︂
,

𝑝⋆ :=
1
5
𝑥1 cos(𝜋𝑥2) in Ω⋆, with ⋆ ∈ {𝑆,𝐷}.

Notice that this solution satisfies u𝑆 ·n = u𝐷 ·n on Σ. However, the Beavers–Joseph–Saffman condition (2.3) is
not satisfied, whereas the Dirichlet boundary condition for the Navier–Stokes velocity on Γ𝑆 and the Neumann
boundary condition for the Darcy–Forchheimer velocity on Γ𝐷 are both non-homogeneous. In this way, the
right-hand side of the resulting system must be modified accordingly as well as the global estimator Θ (cf.
(5.7)). The results reported in Table 1 are in accordance with the theoretical sub-optimal rate of convergence

Table 1. Example 1, BR−RT0 − 𝑃0 − 𝑃0 primal-mixed scheme with quasi-uniform refinement.

𝑁 ℎ𝑆 ℎ𝐷 Iter e(u𝑆) r(u𝑆) e(𝑝𝑆) r(𝑝𝑆) e(u𝐷) r(u𝐷) e(𝑝𝐷) r(𝑝𝐷)

279 0.373 0.373 5 2.39e+00 – 9.05e−01 – 1.14e+00 – 4.22e−02 –

1061 0.196 0.190 5 1.01e+00 1.339 2.92e−01 1.766 5.31e−01 1.133 1.48e−02 1.557
3877 0.103 0.097 5 4.84e−01 1.135 1.44e−01 1.089 2.62e−01 1.043 4.95e−03 1.617
15 057 0.051 0.057 5 2.52e−01 0.929 6.70e−02 1.090 1.35e−01 1.268 2.17e−03 1.579

59 203 0.027 0.026 5 1.23e−01 1.144 3.81e−02 0.898 6.73e−02 0.877 1.01e−03 0.967

236 687 0.014 0.013 5 6.12e−02 1.004 1.79e−02 1.092 3.35e−02 1.068 4.93e−04 1.091

ℎΣ e(𝜆) r(𝜆) e(̂︀𝜆ℎ) r(̂︀𝜆ℎ) e(u⃗) r(u⃗) e(𝜓ℎ) Θ eff(Θ) rel(Θ1/2)

1/4 4.52e−02 – 6.84e−02 – 4.52e+00 – 1.69e−01 2.38e+01 0.1971 0.9267
1/8 1.38e−02 1.712 2.20e−02 1.635 1.86e+00 1.382 8.51e−02 9.86e+00 0.1977 0.5938
1/16 4.94e−03 1.480 1.04e−02 1.085 9.00e−01 1.120 4.92e−02 5.04e+00 0.1884 0.4011
1/32 1.86e−03 1.414 5.04e−03 1.044 4.59e−01 1.160 4.28e−02 2.56e+00 0.1956 0.2864

1/64 8.53e−04 1.121 2.49e−03 1.014 2.30e−01 0.921 4.00e−02 1.32e+00 0.2040 0.2001
1/128 4.15e−04 1.041 1.24e−03 1.009 1.14e−01 1.018 3.84e−02 6.70e−01 0.2266 0.1386
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Figure 2. Example 2, Log–log plot of e(u⃗) vs. 𝑁 for quasi-uniform/adaptive primal-mixed scheme.

Table 2. Example 2, BR−RT0 − 𝑃0 − 𝑃0 primal-mixed scheme with quasi-uniform refinement.

𝑁 ℎ𝑆 ℎ𝐷 Iter e(u𝑆) r(u𝑆) e(𝑝𝑆) r(𝑝𝑆) e(u𝐷) r(u𝐷) e(𝑝𝐷) r(𝑝𝐷)

975 0.188 0.200 4 2.90e+00 – 1.47e+00 – 6.38e−01 – 2.80e−02 –

3803 0.100 0.095 5 2.13e+00 0.495 7.99e−01 0.976 3.07e−01 0.984 1.36e−02 0.974

13 907 0.050 0.049 5 1.56e+00 0.450 5.56e−01 0.523 1.56e−01 1.037 6.76e−03 1.065

55 232 0.026 0.026 5 8.94e−01 0.837 3.84e−01 0.559 7.83e−02 1.081 3.38e−03 1.089

214 793 0.014 0.013 5 5.26e−01 0.907 1.94e−01 1.173 3.92e−02 0.968 1.70e−03 0.966

859 813 0.007 0.007 5 2.76e−01 0.868 1.07e−01 0.799 1.96e−02 1.204 8.51e−04 1.202

ℎΣ e(𝜆) r(𝜆) e(̂︀𝜆ℎ) r(̂︀𝜆ℎ) e(u⃗) r(u⃗) e(𝜓ℎ) Θ eff(Θ) rel(Θ1/2)

1/8 1.45e−02 – 6.89e−02 – 5.06e+00 – 2.64e−01 2.84e+01 0.1873 0.9486

1/16 3.65e−03 1.993 3.26e−02 1.081 3.25e+00 0.650 2.14e−01 2.54e+01 0.1363 0.6447

1/32 8.87e−04 2.042 1.57e−02 1.053 2.28e+00 0.549 1.66e−01 1.32e+01 0.1854 0.6269

1/64 4.78e−04 0.893 7.85e−03 0.999 1.36e+00 0.746 1.73e−01 8.13e+00 0.1885 0.4769

1/128 4.74e−05 3.334 3.88e−03 1.018 7.61e−01 0.855 1.57e−01 4.78e+00 0.1920 0.3480

1/256 2.90e−05 0.705 1.94e−03 1.000 4.03e−01 0.917 1.56e−01 2.43e+00 0.2303 0.2584

𝑂(ℎ1/3) provided by Theorem 5.2 of [11]. Actually, they are better than expected since they suggest that only
technical difficulties stop us of proving an optimal rate of convergence 𝑂(ℎ), which is in fact observed there. In
addition, we remark that the behaviors predicted by (6.3) and the comments right after it, are also illustrated
in the table, in the sense that the efficiency index remains above and below bounded and the reliability index,
while bounded as well, decreases as the estimators approach 0. Notice also that e(̂︀𝜆ℎ) decreases with 𝑂(ℎ),
which supports the choice of 𝜓ℎ as an approximation of ̂︀𝜆ℎ on 𝜕Ω𝐷.

Example 2: Adaptivity in a 2D helmet-shaped domain.

In our second example, we consider a 2D helmet-shaped domain. More precisely, we consider the domain
Ω = Ω𝑆 ∪ Σ ∪ Ω𝐷, where Ω𝑆 := (−1,−0.75)× (0, 1.25) ∪ (−0.75, 0.75)× (0, 0.25) ∪ (0.75, 1)× (0, 1.25), Ω𝐷 :=
(−1, 1)× (−0.5, 0) and Σ := (−1, 1)×{0}. The data f𝑆 , f𝐷, and 𝑔𝐷 are chosen so that the exact solution in the
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Table 3. Example 2, BR−RT0 − 𝑃0 − 𝑃0 primal-mixed scheme with adaptive refinement via Θ.

𝑁 Iter e(u𝑆) r(u𝑆) e(𝑝𝑆) r(𝑝𝑆) e(u𝐷) r(u𝐷) e(𝑝𝐷) r(𝑝𝐷)

975 4 2.90e+00 – 1.47e+00 – 6.38e−01 – 2.80e−02 –

1713 4 1.62e+00 2.078 3.23e+00 – 6.07e−01 0.176 3.14e+00 –

3029 5 9.10e−01 2.013 4.61e−01 6.828 6.13e−01 – 7.59e−02 13.063

5137 5 4.42e−01 2.737 2.08e−01 3.008 6.09e−01 0.022 6.98e−02 0.316

8899 5 3.20e−01 1.173 1.31e−01 1.702 5.41e−01 0.429 4.05e−02 1.984

15 622 5 2.38e−01 1.059 8.45e−02 1.549 3.90e−01 1.166 2.06e−02 2.398

26 868 5 1.80e−01 1.016 5.58e−02 1.528 2.84e−01 1.170 1.49e−02 1.204

45 834 5 1.38e−01 1.000 4.33e−02 0.954 2.26e−01 0.859 1.20e−02 0.815

78 490 5 1.04e−01 1.041 3.14e−02 1.195 1.70e−01 1.066 8.85e−03 1.121

134 124 5 7.98e−02 1.002 2.30e−02 1.164 1.30e−01 0.984 6.49e−03 1.159

229 268 5 6.09e−02 1.006 1.77e−02 0.980 1.00e−01 0.971 5.34e−03 0.727

394 144 5 4.67e−02 0.986 1.34e−02 1.023 7.49e−02 1.081 3.84e−03 1.215

e(𝜆) r(𝜆) e(̂︀𝜆ℎ) r(̂︀𝜆ℎ) e(u⃗) r(u⃗) e(𝜓ℎ) Θ eff(Θ)

1.45e−02 – 6.89e−02 – 5.06e+00 – 2.64e−01 2.84e+01 0.1873

4.98e+00 – 6.48e−02 0.216 1.36e+01 – 2.44e−01 1.22e+01 1.1288

1.04e−01 13.566 6.44e−02 0.017 2.16e+00 6.441 2.42e−01 6.21e+00 0.3875

1.11e−01 – 6.45e−02 – 1.44e+00 1.542 2.37e−01 3.84e+00 0.4367

5.62e−02 2.478 6.39e−02 0.035 1.09e+00 1.018 2.32e−01 2.93e+00 0.4508

6.53e−03 7.648 4.88e−02 0.956 7.39e−01 1.376 1.90e−01 2.16e+00 0.4298

4.67e−03 1.238 3.81e−02 0.910 5.40e−01 1.160 1.45e−01 1.64e+00 0.4187

1.22e−03 5.016 3.10e−02 0.776 4.20e−01 0.936 1.41e−01 1.29e+00 0.4365

7.86e−04 1.643 2.10e−02 1.444 3.15e−01 1.074 1.20e−01 9.88e−01 0.4403

3.80e−04 2.710 1.52e−02 1.214 2.40e−01 1.016 1.02e−01 7.61e−01 0.4489

2.19e−04 2.060 1.24e−02 0.765 1.85e−01 0.978 8.94e−02 5.96e−01 0.4596

1.11e−04 2.524 9.04e−03 1.160 1.39e−01 1.049 8.55e−02 4.72e−01 0.4754

Table 4. Example 2, BR −RT0 − 𝑃0 − 𝑃0 primal-mixed scheme with adaptive refinement
via Θ1/2, we show results for the meshes 1-2-3-4, 11-12-13-14, 19-20-21-22.

𝑁 Iter e(u𝑆) r(u𝑆) e(𝑝𝑆) r(𝑝𝑆) e(u𝐷) r(u𝐷) e(𝑝𝐷) r(𝑝𝐷)

975 4 2.90e+00 – 1.47e+00 – 6.38e−01 – 2.80e−02 –

1896 4 1.64e+00 1.711 3.73e+00 – 6.17e−01 0.099 3.72e+00 –

3191 5 9.04e−01 2.295 3.92e−01 8.651 6.10e−01 0.046 5.08e−02 16.499

4685 5 4.70e−01 3.406 1.91e−01 3.750 5.90e−01 0.171 3.09e−02 2.590

24 245 5 1.80e−01 1.104 5.93e−02 1.160 2.93e−01 1.368 1.48e−02 1.269

30 562 5 1.60e−01 1.035 5.36e−02 0.876 2.67e−01 0.807 1.33e−02 0.931

37 893 5 1.43e−01 1.017 4.72e−02 1.190 2.37e−01 1.107 1.18e−02 1.098

47 209 5 1.29e−01 0.960 4.16e−02 1.143 2.18e−01 0.763 1.10e−02 0.674

145 102 5 7.28e−02 0.990 2.30e−02 1.053 1.22e−01 0.999 6.32e−03 0.917

182 543 5 6.45e−02 1.044 2.04e−02 1.028 1.09e−01 0.977 5.62e−03 1.014

229 100 5 5.74e−02 1.027 1.82e−02 1.000 9.75e−02 1.005 4.93e−03 1.164

286 931 5 5.11e−02 1.031 1.62e−02 1.033 8.67e−02 1.039 4.46e−03 0.889

e(𝜆) r(𝜆) e(̂︀𝜆ℎ) r(̂︀𝜆ℎ) e(u⃗) r(u⃗) e(𝜓ℎ) Θ1/2 rel(Θ1/2)

1.45e−02 – 6.89e−02 – 5.06e+00 – 2.64e−01 5.33e+00 0.9486

5.90e+00 – 6.49e−02 0.179 1.56e+01 – 2.43e−01 3.53e+00 4.4162

7.72e−02 16.656 6.38e−02 0.067 2.03e+00 7.829 2.34e−01 2.46e+00 0.8279

3.32e−02 4.393 6.37e−02 0.003 1.32e+00 2.270 2.33e−01 1.99e+00 0.6603

1.98e−03 11.340 3.36e−02 1.737 5.49e−01 1.324 1.66e−01 1.29e+00 0.4241

1.66e−03 1.568 3.07e−02 0.775 4.95e−01 0.895 1.58e−01 1.22e+00 0.4043

1.30e−03 2.265 2.70e−02 1.190 4.40e−01 1.090 1.42e−01 1.16e+00 0.3794

9.74e−04 2.613 2.37e−02 1.197 4.00e−01 0.870 1.31e−01 1.10e+00 0.3622

3.24e−04 2.658 1.39e−02 1.130 2.25e−01 1.002 1.00e−01 8.46e−01 0.2654

2.54e−04 2.104 1.16e−02 1.599 2.00e−01 1.006 9.97e−02 8.06e−01 0.2482

1.92e−04 2.489 1.03e−02 0.998 1.78e−01 1.018 9.28e−02 7.63e−01 0.2335

1.68e−04 1.162 8.72e−03 1.506 1.59e−01 1.031 8.74e−02 7.26e−01 0.2188
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Figure 3. Example 2, domain configuration in the initial mesh, second velocity component
and pressure in the whole domain.

Figure 4. Example 2, three snapshots of adapted meshes according to the indicators Θ and
Θ1/2 (top and bottom plots, respectively).

2D helmet-shaped domain Ω is given by the smooth functions

u𝑆 :=

⎛⎜⎜⎝
(𝑥2 − 0.26)
𝑟1(𝑥1, 𝑥2)

+
(𝑥2 − 0.26)
𝑟2(𝑥1, 𝑥2)

− (𝑥1 + 0.74)
𝑟1(𝑥1, 𝑥2)

− (𝑥1 − 0.74)
𝑟2(𝑥1, 𝑥2)

⎞⎟⎟⎠ , u𝐷 :=
(︂

sin(𝜋𝑥1) cos(𝜋𝑥1) exp(𝑥2)
sin(𝜋𝑥2) cos(𝜋𝑥2) exp(𝑥1)

)︂
,

𝑝⋆ := 𝑥2 sin(𝜋𝑥1) in Ω⋆, with ⋆ ∈ {𝑆,𝐷},
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where

𝑟1(𝑥1, 𝑥2) :=
√︀

(𝑥1 + 0.74)2 + (𝑥2 − 0.26)2 and 𝑟2(𝑥1, 𝑥2) :=
√︀

(𝑥1 − 0.74)2 + (𝑥2 − 0.26)2.

Figure 2, summarizes the convergence history of the method applied to a sequence of quasi-uniformly and
adaptively refined triangulation of the domain. Sub-optimal rates are observed in the first case, whereas adaptive
refinements according to any of the a posteriori error indicators: Θ and Θ1/2, yield optimal convergence. In
particular, Table 2 summarizes the errors, rates of convergence, efficiency and reliability indexes, and Newton
iterations of the method applied to a sequence of quasi-uniform refinement triangulation of the domain. In turn,
Tables 3 and 4 summarizes the convergence history of the primal-mixed scheme after Θ and Θ1/2, respectively,
where for the sake of simplicity, we only show twelve rows of a total of twenty two for Θ1/2. Notice that in
all the examples, when Θ < 1 and ℎ → 0, the rate of convergence of the total error and the efficiency and
reliability indexes have the behavior that we expected. Notice also how the adaptive algorithms improves the
efficiency of the method by delivering quality solutions at a lower computational cost, to the point that it is
possible to get a better one (in terms of e(u⃗)) with approximately only the 5.5% of the degrees of freedom
of the last quasi-uniform mesh for the primal-mixed scheme. In addition, and similarly to the first example,
we observe that e(̂︀𝜆ℎ) decreases with order 𝑂(ℎ) as well, thus confirming again that ̂︀𝜆ℎ is well approximated
by 𝜓ℎ on 𝜕Ω𝐷. On the other hand, in Figure 3 we show the domain configuration in the initial mesh, the
second component of velocity and the pressure field in the whole domain obtained through the primal-mixed
scheme (via the indicator Θ). In particular, we notice that the Navier–Stokes velocity exhibit high gradients
near the vertices (−0.75, 0.25) and (0.75, 0.25). In turn, examples of some adapted meshes generated using Θ
and Θ1/2 are collected in Figure 4. We can observe a clear clustering of elements near the vertices in Ω𝑆 of the
2D helmed-shaped domain as we expected. Notice also a clustering of elements on Σ.
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