Finite Volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 969-1003

We study a time implicit Finite Volume scheme for degenerate Cahn–Hilliard model proposed in [W. E and P. Palffy-Muhoray, Phys. Rev. E 55 (1997) R3844–R3846] and studied mathematically by the authors in [C. Cancès, D. Matthes and F. Nabet, Arch. Ration. Mech. Anal. 233 (2019) 837–866]. The scheme is shown to preserve the key properties of the continuous model, namely mass conservation, positivity of the concentrations, the decay of the energy and the control of the entropy dissipation rate. This allows to establish the existence of a solution to the nonlinear algebraic system corresponding to the scheme. Further, we show thanks to compactness arguments that the approximate solution converges towards a weak solution of the continuous problems as the discretization parameters tend to 0. Numerical results illustrate the behavior of the numerical model.

DOI : 10.1051/m2an/2021002
Classification : 65M12, 65M08, 76T99, 35K52, 35K65
Keywords: two-phase flow, degenerate Cahn–Hilliard system, finite volumes, convergence
@article{M2AN_2021__55_3_969_0,
     author = {Canc\`es, Cl\'ement and Nabet, Flore},
     title = {Finite {Volume} approximation of a two-phase two fluxes degenerate {Cahn{\textendash}Hilliard} model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {969--1003},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2021002},
     mrnumber = {4253167},
     zbl = {1492.65250},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2021002/}
}
TY  - JOUR
AU  - Cancès, Clément
AU  - Nabet, Flore
TI  - Finite Volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 969
EP  - 1003
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2021002/
DO  - 10.1051/m2an/2021002
LA  - en
ID  - M2AN_2021__55_3_969_0
ER  - 
%0 Journal Article
%A Cancès, Clément
%A Nabet, Flore
%T Finite Volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 969-1003
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2021002/
%R 10.1051/m2an/2021002
%G en
%F M2AN_2021__55_3_969_0
Cancès, Clément; Nabet, Flore. Finite Volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 969-1003. doi: 10.1051/m2an/2021002

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008). | MR | Zbl

[2] B. Andreianov, Time compactness tools for discretized evolution equations and applications to degenerate parabolic PDEs, edited by J. Fořt, J. Fürst, J. Halama, R. Herbin and F. Hubert. In: Finite Volumes for Complex Applications. VI. Problems & Perspectives. Springer Proceedings in Mathematics. Springer, Berlin, Heidelberg (2011) 21–29. | MR | Zbl | DOI

[3] B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273 (2017) 3633–3670. | MR | Zbl | DOI

[4] J.-D. Benamou, Y. Brenier and K. Guittet, Numerical analysis of a multi-phasic mass transport problem. In: Recent Advances in the Theory and Applications of Mass Transport. Vol. 353 of Contemporary Mathematics Amer. Math. Soc., Providence, RI (2004) 1–17. | MR | Zbl | DOI

[5] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. | MR | Zbl | DOI

[6] C. Cancès and C. Guichard, Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17 (2017) 1525–1584. | MR | Zbl | DOI

[7] C. Cancès and D. Matthes, Construction of a two-phase flow with singular energy by gradient flow methods. HAL: hal-02510535 (2020). | Zbl

[8] C. Cancès, D. Matthes and F. Nabet, A two-phase two-fluxes degenerate Cahn-Hilliard model as constrained Wasserstein gradient flow. Arch. Ration. Mech. Anal. 233 (2019) 837–866. | MR | Zbl | DOI

[9] C. Cancès and F. Nabet, Finite volume approximation of a degenerate immiscible two-phase flow model of Cahn-Hilliard type, In: Finite Volumes for Complex Applications VIII –Methods and Theoretical Aspects: edited by C. Cancès and P. Omnes. FVCA 8, Lille, France, June 2017. number 199 in Proceedings in Mathematics and Statistics. Springer International Publishing, Cham (2017) 431–438. | MR | Zbl

[10] C. Chainais-Hillairet, J.-G. Liu and Y.-J. Peng, Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM: M2AN 37 (2003) 319–338. | MR | Zbl | Numdam | DOI

[11] X. Chen, A. Jüngel and J.-G. Liu, A note on Aubin-Lions-Dubinskii lemmas. Acta Appl. Math. 133 (2013) 33–43. | MR | Zbl | DOI

[12] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). | MR | Zbl | DOI

[13] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. In: Vol. 42 of Mathématiques et Applications. Springer International Publishing (2018). | MR

[14] C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404–423. | MR | Zbl | DOI

[15] R. Eymard and T. Gallouët, H -convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41 (2003) 539–562. | MR | Zbl | DOI

[16] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Handbook of numerical analysis. edited by P. G. Ciarlet, et al. North-Holland, Amsterdam (2000) 713–1020. | MR | Zbl

[17] R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | MR | Zbl | DOI

[18] T. Gallouët, Discrete functional analysis tools for some evolution equations. Comput. Methods Appl. Math. 18 (2018) 477–493. | MR | Zbl | DOI

[19] T. Gallouët and J.-C. Latché, Compactness of discrete approximate solutions to parabolic PDEs – application to a turbulence model Comm. Pure Appl. Anal. 11 (2012) 2371–2391. | MR | Zbl | DOI

[20] P. Gladbach, E. Kopfer and J. Maas, Scaling limits of discrete optimal transport. SIAM J. Math. Anal. 52 (2020) 2759–2802. | MR | Zbl | DOI

[21] A. Glitzky and J. A. Griepentrog, Discrete Sobolev-Poincaré inequalities for Voronoi finite volume approximations. SIAM J. Numer. Anal. 48 (2010) 372–391. | MR | Zbl | DOI

[22] G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. | MR | Zbl | DOI

[23] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | MR | Zbl | DOI

[24] J. Leray and J. Schauder, Topologie et équations fonctionnelles. Ann. Sci. École Norm. Sup. 51 (1934) 45–78. | MR | JFM | Numdam | DOI

[25] S. Lisini, D. Matthes and G. Savaré, Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253 (2012) 814–850. | MR | Zbl | DOI

[26] J. Maas, Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250–2292. | MR | Zbl | DOI

[27] J. Maas and D. Matthes, Long-time behavior of a finite volume discretization for a fourth order diffusion equation. Nonlinearity 29 (2016) 1992–2023. | MR | Zbl | DOI

[28] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329–1346. | MR | Zbl | DOI

[29] F. Otto and E. Weinan, Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1997) 10177–10184. | Zbl | DOI

[30] D. L. Scharfetter and H. K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev. 16 (1969) 64–77. | DOI

[31] C. Villani, Optimal transport. In: Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). Old and new. | MR | Zbl

[32] W. E and P. Palffy-Muhoray, Phase separation in incompressible systems. Phys. Rev. E 55 (1997) R3844–R3846. | MR | Zbl | DOI

Cité par Sources :