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FINITE VOLUME APPROXIMATION OF A TWO-PHASE TWO FLUXES
DEGENERATE CAHN-HILLIARD MODEL

CLEMENT CANCESY* AND FLORE NABET?

Abstract. We study a time implicit Finite Volume scheme for degenerate Cahn—Hilliard model pro-
posed in [W. E and P. Palffy-Muhoray, Phys. Rev. E 55 (1997) R3844-R3846] and studied mathemat-
ically by the authors in [C. Cances, D. Matthes and F. Nabet, Arch. Ration. Mech. Anal. 233 (2019)
837-866]. The scheme is shown to preserve the key properties of the continuous model, namely mass
conservation, positivity of the concentrations, the decay of the energy and the control of the entropy
dissipation rate. This allows to establish the existence of a solution to the nonlinear algebraic system
corresponding to the scheme. Further, we show thanks to compactness arguments that the approximate
solution converges towards a weak solution of the continuous problems as the discretization parameters
tend to 0. Numerical results illustrate the behavior of the numerical model.
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1. THE TWO-PHASE TWO FLUXES DEGENERATE CAHN—HILLIARD MODEL

The goal of this paper is to propose a convergent finite volume discretization for a degenerate Cahn—Hilliard
model proposed by E and Palffy-Muhoray [32] and studied in [8] by the authors. Before considering the numerical
scheme, let us describe and discuss the continuous model.

1.1. The continuous model

We consider a mixture made of two incompressible phases evolving in a bounded and connected polygonal
open subset Q of R? and on a time interval [0, T], where T is an arbitrary finite time horizon. The composition
of the fluid is described by the volume fractions ¢ = (¢1,c2) of the two phases. Since the whole volume 2 is
occupied by the two phases, the following constraint on the ¢; holds

cp1+ez=1 in(0,T) x Q. (1.1)
The evolution of the volume fractions is prescribed by the following partial differential equations
Oic; — V- <7C72V (,ui + \Ifl)> =60;Ac; inQr:= (O,T) x €. (12)
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In the above equation, 7; > 0 denotes the viscosity of the phase 7, y; is its chemical potential (which is one of the
unknown of the problem), while ¥; € H*(f) is a given external potential acting on phase i that is assumed be
independent on time for simplicity. For ¥;, one can typically think about gravity, that is ¥;(x) = —g;g - x with
0; the density of phase i and g the gravitational vector. The coefficient 8; > 0 is a given parameter quantifying
the thermal agitation of phase i. The limit case 6; = 0 is called the deep-quench limit in the Cahn—Hilliard
literature.

The difference of the phase chemical potentials is given by the following expression

1 — po = —alcr + k(1 —2¢1)  in Qr, (1.3)

where o« > 0 and k > 0 are given coefficients governing the characteristic size of the transition layers between
patches of pure phases {¢; = 0} and {¢; = 1}. Typically, « is assumed to be small in comparison to .
Equation (1.3) is complemented by homogeneous Neumann boundary conditions

Vei-n=0 on (0,T) x 09, (1.4)
whereas (1.2) is complemented by no-flux boundary conditions

UV (i + W) -m=0 on(0,T) x 9. (1.5)

?

Up to now, the chemical potentials are defined up to a common constant. This degree of freedom is fixed by
imposing a zero mean condition on the mean chemical potential 1, i.e.,

/ A(t,x)de =0, Vt>0, where@i=cipus + copo. (1.6)
Q

Finally to close the system, we impose an initial condition c® = (¢, c9) on the volume fractions by setting

(3

Cilpey = & inQ. (1.7)

The initial profiles ¢! € H*(Q) are assumed to be nonnegative with ¢{ + ¢ = 1 in €2, and we assume that both
phases are present at initial time, ¢.e.,

/c;’ dz > 0, i€ {1,2}. (1.8)
Q

1.2. Fundamental estimates and weak solutions

As a preliminary to the study of the numerical scheme, we derive formally at the continuous level some
a priori estimates. Their transposition at the discrete level will be key in the numerical analysis to be proposed
in what follows. Equation (1.2) can be rewritten under the form

Ub

In view of the boundary conditions (1.4) and (1.5), this ensures that the volume occupied by each phase is
preserved along time, namely

/ ci(t,x)de = / A(x) de, for allt > 0.
Q Q

Moreover, it can be shown by testing (1.2) by —¢; = min(e;, 0) that ¢; > 0 in (0,7) x Q. Thanks to the
constraint (1.1), this directly provides that

0<e¢; <1 in(0,T) x Q.
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Multiplying (1.2) by u; + ¥; + 1;0; log(c;), integrating over 2 and summing over i yields
/ Oei (s + U3 + m:0; log(c;)) de + D (e, ) = 0,
1€{1,2}
where the energy dissipation D(e, ) is given by
)= 3 [ LIV i+ it niiloge)) do > 0.
ie{1,2}
As a consequence of (1.1), 9yca = —cq, so that the first term in the previous inequality can be rewritten as
Z / Oei (i + Uy + n;60; log(c;)) / Ore1 (g — po) de + Z / Oei (V; + ;60 log(c;)) de.
i€{1,2} i€{1,2}

The second term in the right-hand side can be rewritten as

/ atcz W, + n;0; log Cz = */ Cz\Ili + 77197H(Cl)] dx
1€{1,2}
with
H(c)=clog(c) —c+120, ¢=0, (1.10)
while we can make use of (1.3) to rewrite the first term as
/80 1 — pe2)de d <8|Vc|2+mc(1—c))da:
i1 (p1 — p2 % 5 1 1 1 .

Therefore, we obtain the energy/energy dissipation relation

d

dt(‘f( c)+D(e,u) =0 forallt >0, (1.11)

where the energy functional &(c) is defined by

QE(C) = A %‘VCIP + 501(1 - Cl) + Z [Cl\:[/l + mQZH(cl)] dIB (112)

i€{1,2}

A straightforward consequence of (1.11) is that ¢t — &(¢(t)) is non-increasing along time, and thus that
¢
+/ D(e(r), u(r)) dr = € (?) < o for all ¢ > 0. (1.13)
0

We deduce from previous inequality that the energy is bounded, hence a L>°((0,T); H!(Q)) estimate on ¢;.
The energy/energy dissipation estimate (1.11) is not sufficient to carry out our mathematical study since it
only provides a weighted estimate on the chemical potentials

> // | Vpi)? dedt < C. (1.14)
i€{1,2}

In order to bypass this difficulty, one needs to quantify the production of mixing entropy. Let us multiply (1.2)
by n; log(c;), integrate over @7 and sum over ¢ € {1,2}, which using (1.1) leads to
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> m(H(e(T, ) - H())dew+ Y / Ve, VU dzdt
ie{1,2} 79 ie{1,2y7 7/ QT

+ Z 0;n; // ¢ |V10g(ci)|2 da dt —|—/ Ve - V(g — pe)dedt = 0.
ie{1,2} T Qr

The first two terms can be bounded thanks to the L>(Qr) and L>((0,T); H(Q)) estimates on ¢;. For the last
term of the left-hand side, one makes use of (1.3) and (1.4) to rewrite it as

/QT Ver - V(pr — po)dedt = //T(—Acl)(—aAcl + k(1 = 2¢1)) dedt

Zg// |Acl\2dwdtfi// (1 —2¢1)? da dt.
2 r 2a "

The L*(Qr) estimate on ¢; shows that the last term of the right-hand side is bounded. At the end of the day,

since ¢;|V log(c;)[> = 4|V /¢; ® one gets
%// AciPdadi+ S 40, // V. /E? dedt < C. (1.15)
Qr Qr

ie{1,2}

Combining this estimate with relation (1.3), we obtain a L?(Qr) estimate on j1 — pia.
The last step aims at obtaining an L?(Qr) bound on each u; independently. The definition (1.6) of 7z yields

Vi = (- p2)Ver+ eV
ie{1,2}

The first term is in L?((0,7); L*(2)) as the product of an element of L?(Qr) with an element of
L>((0,T); L?(£2)), while the second term is in L?(Qr) since 0 < ¢; < 1 and thanks to (1.14). As a conse-
quence, Vi is bounded in L?((0,7); L*(£2)). Making use of the Poincaré-Sobolev estimate (recall that 7z has
zero mean for all time, cf. (1.6), and that Q C R?), we obtain that 7 is bounded in L?(Qr). To get the desired
L?(Q7) estimate on pp, it only remains to check that

= (e1+ o) =i — capn — pio)

belongs to L?(Qr) thanks to the L?(Q7) estimates on 7 and p; — g together with 0 < ¢y < 1.

The interest of the above formal calculations is twofold. First, our scheme has been designed so that all
these calculations can be transposed to the discrete setting. The corresponding a priori estimates will be at the
basis of the numerical analysis proposed in this paper. Second, these estimates provide enough regularity on
the solution to give a proper notion of weak solution to the problem.

Definition 1.1. (¢, p) is said to be a weak solution to the problem (1.1)—(1.7) if

—¢; € L®(Qr) N L>®((0,T); HY(Q)) with ¢; > 0 and ¢1 + c2 = 1 a.e. in Qr;
— pi € L*(Qr) with ¢;Vu; € L*(Qr) and [, 7i(t, x) de = 0 for a.e. t € (0,T);
— For all ¢ € C([0,T) x Q), there holds

// c;0ppda dt —l—/ Ap(0,-)dz — // (?VQM +7,) + 9iV0i> -Vedzdt =0, (1.16)
T Q T i

as well as

//T(Hl — p2)pdedt = //T [aVer - Vo + k(1 — 2¢1)p] dee dt. (1.17)
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The existence of a weak solution has been established in [8] by showing the convergence of a minimizing
movement scheme ¢ la Jordan et al. [23]. Note that in [8], the case of a convex three-dimensional domain {2 is
also addressed, but it relies on the fact that the L?(Qr) estimate on Ac; yields a L2((0,T); H2(f2)) estimate
on ¢; for which we don’t have an equivalent at the discrete level. This is why we restrict our attention on the
case  C R? (but not necessarily convex) in this paper.

1.3. Some words about the model

Before entering the core of the paper, which is devoted to the convergence analysis of a finite volume scheme,
let us briefly discuss the model under consideration, and in particular its difference with respect to the usual
Cahn—Hilliard system. We refer to [8,29] for a more developed discussions on this purpose. The classical degen-
erate Cahn-Hilliard equation which is the closest one to our system (1.1)—(1.7) writes

drer — V- (M) V (g + U1 — Us)) = Ar(er) in (0,T) x ©, (1.18)

c(l—c)
n1+c(nz—mn)

is such that r’(c) = A(c) (91% + %), and the generalized chemical potential

where the degenerate mobility is given by A(c) = , the function governing the nonlinear diffusion r

He = p1 — po = —aAcy + £K(1 —2¢1) in (0,T) x Q. (1.19)
This system has to be completed with one initial condition on ¢ and boundary conditions

A1)V (pg + V1 —¥3) - n=0 and Ve -n=0 on(0,7) x 0.

The existence of a solution to this problem has been addressed in [14,25].
Let us come back to our system (1.1)—(1.7). Denote the total flux by Fio, = F'1 + F'5, then summing (1.9)
over i € {1,2} yields
V. Fi = —08i(ci +¢) =0 in(0,T) x Q (1.20)

owing to (1.1). After some elementary calculations, the conservation (1.2) for the phase 1 rewrites

Oic1 + V- (f(cl)Ftot - /\(Cl)v (,ug + U — \Ifg)) = AT(Cl) in (O,T) x €, (121)
where f(c) = m The equation (1.21) differs from (1.18) by the addition of a nonlinear transport term

driven by a divergence free vector field. Both systems can be reinterpreted as Wasserstein-type gradient flows [1]
of the energy &(c) for different geometries:

— the Wasserstein distance with quadratic cost with the constraint F'i,; = O for the classical Cahn—Hilliard
system, cf. [25];

— the Wasserstein distance with quadratic cost with the less stringent constraint V - Fyoy = 0 for the sys-
tem (1.1)—(1.7), cf. [8,29].

The additional degree of freedom F'. allows the energy €(c) to decrease faster along the trajectories,
as highlighted in [8]. Finally, let us point the recent contribution [7] where the convergence of a minimizing
movement scheme is addressed for a closely related model where the Cahn—Hilliard energy is replaced by the
singular de Gennes—Flory-Higgins energy.

2. FINITE VOLUME APPROXIMATION AND MAIN RESULTS

Prior to presenting the scheme and stating our main results, that are the existence of a discrete solution to
the scheme and the convergence of the corresponding approximate solutions towards a weak solution to the
problem (1.1)—(1.7), we introduce some notations and requirements concerning the mesh.
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2.1. (Super)-admissible mesh of 2 and time discretization
Let us first give a definition of what we call an admissible mesh.

Definition 2.1. An admissible mesh of () is a triplet (’T,E, (mK)KeT) such that the following conditions are
fulfilled.

(i) Each control volume (or cell) K € 7 is non-empty, open, polygonal and convex. We assume that

KNL=0 ifK,LeTwithK#L,  whie |JFKE=0
KeT

We denote by mg the 2-dimensional Lebesgue measure of K.

(i) Each edge o € & is closed and is contained in a hyperplane of R?, with positive 1-dimensional Hausdorff
(or Lebesgue) measure denoted by m, = H!(o) > 0. We assume that H'(c No’) = 0 for 0,0’ € € unless
o' = 0. For all K € 7T, we assume that there exists a subset £ of £ such that 0K = Uae$K o. Moreover,

we suppose that (., Ex = €. Given two distinct control volumes K, L € 7, the intersection KNL either
reduces to a single edge o € £ denoted by K|L, or its 1-dimensional Hausdorff measure is 0.

(iii) The cell-centers (k) k7 are pairwise distinct with @ € K, and are such that, if K, L € 7 share an edge
K|L, then the vector ngy, = Toe—aa7 is orthogonal to K|L.

(iv) Given two cells K, L € T sharing an edge 0 = K|L, we assume that the straight line joining xx and zy,
crosses the edge o in its midpoint x,.

Let us introduce some additional notations, some of them being depicted on Figure 1. The size of the mesh 7°
(which is intended to tend to 0 in the convergence proof) is defined by hr = maxger hi, with hy = diam(K).
Given two neighboring cells K, L € 7 sharing an edge ¢ = K|L, we denote by d, = |rx — x| whereas
drkos = |xx — 5| < dy. The transmissivities 7, and 7x, of the edge o are respectively defined by 7, = ’g—: and
TKe = ;”‘; . The diamond D, and half diamond D, cells are defined as the convex hulls of {xk,x},0} and
{x K, 0} respectively. Denoting by mp_ (resp. mp,. ) the 2-dimensional Lebesgue measure of D, (resp. Dk, ),
we will use many time the following elementary geometric properties: d,m, = 2mp_ and dx,ms = 2mp,, .
We also denote by €k int the subset of £x made of the internal edges o such that there exists L € 7 such that
o = K|L, and by &t = Uger Exint-

Even though this is absolutely not necessary, we choose to restrict our attention to the case of uniform time
discretizations in the mathematical proofs in order to reduce the amount of notations. In what follows, we set
At =T/N and t" = nAt for n € {0,..., N}. The integer N is intended to be large and even to tend to +oo in
the convergence proof.

Remark 2.2. Condition (iv) above enforces an additional restriction with respect to the classical definition
of finite volumes meshes with orthogonality condition (iii). Meshes satisfying this condition in addition to the
more classical assumptions (i)—(iii) is called super-admissible following the terminology introduced in [17]. It is
for instance satisfied by cartesian grids or by acute triangulations. However, (iv) is in general not satisfied by
Voronoi meshes. This condition appears for technical reasons related to the construction of a strongly convergent
SUSHI discrete gradient [17], see Proposition 4.2 later on. On the other hand, this condition was recently pushed
forward in [20] to show the consistency of the discrete optimal transportation geometry [26] hidden behind our
work with the continuous optimal transportation geometry [31] in which our system (1.1)—(1.7) has a gradient
flow structure [8].

2.2. A two-point flux approximation finite volume scheme

The scheme we propose is a cell-centered scheme based on two-point flux approximation (TPFA) finite vol-

umes. At each time step n € {1,..., N}, then unknowns are located at the centers xx of the cells K € 7.
Given discrete volume fractions ¢! = c{"}l, c??) . at time t" !, we look for updated volume fractions



FINITE VOLUME APPROXIMATION OF A TWO-PHASE TWO FLUXES DEGENERATE CAHN-HILLIARD MODEL 975

FiGURE 1. Illustration of an admissible mesh in the sense of Definition 2.1. Each point @y
belongs to the cell K for K € 7. For any 0 = K|L, the segment [z, x] intersects o at its
midpoint @, in an orthogonal way. This properties hold for meshes made of triangles with
acute angles if xx is chosen as the center of the circumcircle of the triangle K. On the right
figure, the dashed area is the diamond cell D, corresponding to the edge o = K|L. It is made
of Dk, =D, NK (in green), Dr, = D, N L (in red), and of the edge 0 = K|L (in blue), the
length of which is equal to m,-.

c' = (c’f K€, ) xer and chemical potentials p™ = (,u? Ko Mg %) Keg At time #" that are expected to approxi-
mate the mean values on K of their continuous counterparts ¢(t™) and w(t™). At time ¢t = 0, we initialize the
procedure by setting

A= i/ ddx, VKeT,iec{l,2}. (2.1)

; mr Jx

As highlighted in the formal calculations presented in Section 1.2, the analysis requires the use of the logarithm
of the volume fractions. To this end, the volume fractions ¢’ have to be strictly positive for n > 1. To ensure
this property, some thermal diffusion is needed, see Lemma 3.2. In the case where 6; = 0, then one needs to
introduce a small amount of numerical diffusion by setting

0;, 7 = max(0;, pht) > 0, i€ {1,2}, (2.2)
where p > 0 is a parameter that can be fixed by the user. Equation (1.2) is then discretized into
cﬂK — cn;(l ch
17 bl 3
mKTZ + Z Ty [ ij (i + Vi — iy — Vi) +0i7(cl g —p)| =0 (2.3)
0E€EK int i
o=K|L

for all K € T and i € {1,2}. In the above relation, we used the following discretization of the external potential:

1
\Iji,K = 7/ \I!Z(:c) dCE, VK € T, xS {1,2}
m Jk
Edge values ¢, of the discrete volume fractions also appear in (2.3). Rather than using upstream values of the
volume fractions as in our previous work [9], we make use of a logarithmic mean, i.e.,

i if ¢! g = ¢’ 20,
3 : n n
o= 0 if min(c g, ci'y) <0, (2.4)
1,0 N
' e — b
i, K~ GL .
otherwise,

log (CZK) — log(ch)
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for all 0 = K|L € &y and i € {1,2}. This particular choice of the edge value is closely related to the
one introduced in the early work [22] for the approximation of the thin film equation, and fits with the one
suggested in [26, 28] and used in a closely related context to ours in [27]. Equation (1.3) is discretized into

n n « n n n—
W= g = — S re (g —cpy) a1 -2, VKeT. (2.5)
0EEK int
oc=K|L

Note that the repulsive term (second in the right-hand side) is discretized in an explicit way for stability issues
that will appear clearly later on. The constraint (1.1) is discretized in a straightforward way by imposing

Sxtdg=1 VKeT. (2.6)

The last equation to be transposed in the discrete setting is (1.6), which is translated into

Z mg g =0, where [ = ¢f jopi) x + 5 g 15 k- (2.7)
KeT

2.3. Main results

Before addressing the convergence of the scheme, we focus first on the case of a fixed mesh and time dis-
cretization. The scheme (2.3)—(2.7) yields a nonlinear system on (¢, u™). The existence of a solution to this
nonlinear system is far from being obvious. The existence of such a solution and some important properties of
the discrete solution mimicking the properties highlighted in Section 1.2 are gathered in the first theorem of
this paper.

Theorem 2.3. Assume that the inverse CFL condition (3.18) is fulfilled, then there exists (at least) one solution
(c",u"), > to the scheme (2.3)~(2.7). Moreover, this solution satisfies the following properties:

(i) mass conservation:
Z MEC i = / & de, n>0, 1€ {1,2};
KeT Q
(i) positivity:
0<cix<l, KeT,ie{l,2},n>1
(iii) energy decay:
Er (C") — C&r (cnfl)
At
where the discrete energy € (c™) is defined by

+D(c",pu") <0, Vn > 1,

(0%
€r(c) =3 S re (g -y (2.8)
JEam

+ Z mg { KCY €Y i + Z (CZK\IJLK + 0 H (C?K)) )
KeT i={1,2}

where H is given by (1.10), and the discrete dissipation is defined by

@T(cn,un): Z Z o

i€{1,2} 0€&nt
oc=K|L

2
C?O’ n n n n
77’_ (Hi,K + Wik — i, — Vir +0i1ni (log (Q‘,K) - 1Og(ci,L))> - (2.9)
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The existence of a solution to the scheme for each time step allows to reconstruct an approximate solution
(eT,at, 7 a¢) With e7 A = (c1,7,a1, C2,7,a¢) and pr oy = (01,7 A1, f12,7,A1) by setting

ciract,x) =l and  piz At T) = pig if (t,x) € ("1, t"] x K, i€ {1,2}. (2.10)

The approximate solutions are expected to approximate the continuous solution to (1.1)—(1.7). Our second
theorem gives a mathematical foundation to this statement. It requires the introduction of a suitable sequence

of discretizations of Q7. In what follows, we denote by (Tm, Em, (TxK) KeTm)m> | asequence of admissible meshes

of 2 is the sense of Definition 2.1. We assume that hy, tends to 0 as m — oo as well as the following regularity
requirements:

— shape regularity of the cells: there exists a finite ( > 1 such that
dy < <d[(07 Ym > 1, VK € Tm7 Yo € 5K,int,m7 (211)

and such that )
mg > E(hK)Q, Ym > 1, VK € T,,; (2.12)

— boundedness of the number of edges per element: there exists £* > 3 such that
#Ex <17, Ym > 1, VK € Tp; (2.13)
— control on the transmissivities: there exist 7%, 7, > 0 such that
T > 71, > 71 >0, Ym > 1, VYo € Eingm. (2.14)

The combination of a sequence (7., Epm, (a:K)KeTm)m>1 fulfilling (2.11)—(2.14) together with a time step At,, =

T/N,, and N,,, — 400 as m — oo is said to be a regular discretization of Qr if it moreover satisfies the inverse
CFL condition (3.18).

Theorem 2.4. Let (Tm,Sm,(wK)KeTm,Atm)m>l

Aty )m>1 be a corresponding sequence of approzximate solutions. Then there exists a weak solution

be a sequence of reqular discretizations of Qr, and let

(cTnL 7At1n ’ l'l’T

m

(e, ) to (1.1)—(1.7) in the sense of Definition 1.1 such that, up to a subsequence,
Ci T Aty — Ci a.e. in Qr and Wi T, At,, — i weakly in L*(Qr).
m—00 m—00

The convergence properties stated in Theorem 2.4 are weaker than what is practically proved in the paper.
The statement of optimal convergence properties would require the introduction of additional material that we
postpone to the proof in order to optimize the readability of the paper.

The remaining of the paper is organized as follows. In Section 3, we work at fixed mesh and time step.
We derive some a priori estimates and show the existence of (at least) one solution to the scheme thanks
to a topological degree argument. Next in Section 4, we show thanks to compactness arguments that the
approximate solution converge towards a weak solution to the scheme. Finally, we present in Section 5 some
numerical simulations.

3. A PRIORI ESTIMATES AND EXISTENCE OF A DISCRETE SOLUTION

In Section 3.1, we first derive some a priori estimates on the solutions to the scheme (2.3)—(2.7). These
estimates will be at the basis of the existence proof for a discrete solution to the scheme in Section 3.2, but also
of the convergence proof carried out in Section 4.
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3.1. A priori estimates

This section is devoted to the derivation to all the a priori estimates needed in the numerical analysis of the
scheme. The first of them is the global conservation of mass, which is a consequence of the local conservativity
of the scheme.

Lemma 3.1. For alln >0 and i € {1,2}, there holds

Z MEC) e = / & dx > 0. (3.1)
Q

KeT

Proof. Summing (2.3) over K € 7 and using the conservativity of the scheme leads to

ZchZK: Zch?’;{l, ie{l,2}, ne{l,...,N}.
KeT KeT

A straightforward induction and the definition (2.1) of ¢ - then provides (3.1). O

Our second lemma shows that the volume fractions are positive.

Lemma 3.2. Let n > 1, and let (", u™) be a solution to the scheme (2.3)~(2.7), then
0<clp<l,  VKeT,Vn>1,Vie{l,2}. (3.2)

Proof. Assume by induction that 0 < 02}1 and ), chZ;g > 0 (the later having been established for all
n > 1 in Lem. 3.1), and suppose for contradiction that

n : n
e =mincl; <0
i, K LeT L =

so that ¢i'; =0 for all ¢ € Ex int. Therefore, on this specific control volume K, the scheme (2.3) reduces to

n n—1
. —
i, K i, K 7 mn _
mKiAt +0; 7 g Tg(c“{ — ci)L) =0.
0€EK,int
o=K|L

The left-hand side is nonpositive, and even negative unless ¢j'; = ¢’ ) < 0 for all the neighbouring cells L of
K. We can thus iterate the argument and show that ¢j'; <0 for all L € T, which provides a contradiction with
the property >, mk¢;' g > 0 established in Lemma 3.1. O

As a consequence of Lemma 3.2, the quantities log (cf K) have a sense. They will be used many times along the
paper. Our next lemma consists in discrete counterparts of the energy /energy dissipation relations (1.11)—(1.13).

Lemma 3.3. Let (¢, ™) be a solution to the scheme (2.3)—(2.7), then the following discrete energy dissipation

relation holds
Er (Cn) — &7 (Cn_l)

At
where the discrete energy €1 and the discrete dissipation D1 are defined by (2.8) and (2.9) respectively.

+ 97 (c",u") <0, Vn > 1,

Proof. Multiplying (2.3) by uf'x + Wi i + 0; 7n:log (¢} ) and summing over i € {1,2} and K € T yields

A+ A+ A3+ D7 (c", pu") =0, (3.3)
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where
M ST S (et A TS () et
KeT ic{1,2} KeT ie{1,2}

and

Ag_me 3 (lK—c 1)%,,(. (3.4)

KeT ie{1,2}
It follows from a convexity inequality that
mg n n—1
>3 A 2 turn (# (ci) = 1 () (3.5)
KeT i€{1,2}
Using (2.6) and (2.5), the term A; rewrites
mK n n—1 n n
A= Z At (cl,K - Cl,K) (Wl k — 13 k) = A + Aua, (3.6)
KeT

with

(6%
_ n n n n n—1
An = At E o (lx — 1) <C1,K —cfp — K teor )

mg —
Ap ==k Z A (1 — 20?,}(1) (c’ﬁK c’le)
Using again elementary convexity inequalities, one gets that

« n 2
A > SAL Z To ((C?,K - C?,L)2 <C1 Kl -G Ll) > ) (3.7)

g€Eint
o=K|L

and

App > K Z {01 K C?,K) - C?}l (1 07111(1)}

KeT

The relation (2.6) allows to rewrite the right-hand side of the above inequality, so that

m —1.n
Az Y B e o - et} (3.8)
KeT
The combination of (3.4)—(3.8) in (3.3) concludes the proof of Lemma 3.3. O

The boundedness of the discrete energy € (") provides a discrete L>((0,7); H(£2)) estimate on the volume
fractions, as established in the next corollary.

Corollary 3.4. There exists Cy depending only on Q, a, r, ¥, 0;, ¢?, and ¢ such that

E Ty (CfK — (3?7L)2 < (. (3.9)
o€Eint
o=K|L
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Proof. As a straightforward consequence of Lemma 3.3, the energy is decaying along the time steps, so that

2

2 2
Z To (CfK — C?7L)2 + - Z Z mic; Wik < —€7r(c") < —€r (CO)
0EEint @ i€{1,2} KeT @ @
o=K|L
< Z Te c1 K~ ! L Z mr { k) K02 x+ Z ch?’K + 6 7miH (C?,K)]
0€Eint KGT i€{1,2}

o=K|L

Since 0(1),1( + cg’K =1, there holds

K
0 0

E mK,‘icl’K027K§Z|Q|.

KeT

Owing to Lemma 9.4 of [16], there exists Cy depending only on ¢ such that

> el - < [ [V,
o€Eint @
o=K|L
whereas Jensen’s inequality ensures that
> i rnH(e) ) < t‘)mm/ H(c})da < 0;,7mi €.

KeT Q

Finally, since 0 < cZ x <1 for n >0, we have

" n \2 2
Z To (Cl,K - CI,L) < 02/ |VC |2d33 + + 2 Z ( i, 71 + |Q|||‘I’i|L1(Q))
o€Eint 2 i€{1,2}
oc=K|L

O

Let us now focus on the quantification of the production of mixing entropy at the discrete level. Our next
lemma provides a discrete counterpart to Estimate (1.15).

Lemma 3.5. There exists C3 depending only on Q, o, k, T, W;, n;, 0;, ¢ and ¢ such that

2

Z At Z mg mi Z To (Crll,K - Crll,L)

n=1 KeT 0EEK int
oc=K|L
N
+ Z At Z 1 0i1 Z 7o (¢f i —ci'r) (log (¢ ) —log (') < Cs. (3.10)
n=1 ie{1,2} 0€E&int

oc=K|L

As a consequence, there exists Cy depending only on Q, o, k, T, W;, n;, 0;, ¢ and ¢ such that

ZAt > mi (p i — pb nx)’ < Cu. (3.11)

n=1 KeT
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Proof. Multiplying (2.3) by Atn;log (CZK) and summing over ¢ € {1,2}, n € {1,...,N} and K € 7 yields
A+ Ay + A3+ Ay =0, (312)
where we have set

e X iz e (e = e og ().

ie{1,2

Ar= ) ZN S el (uli — i) (log (e k) —log (c))

i€{1,2} n=1 0€Eint
oc=K|L

N
As= > ST At ST e, (Wik — Wig) (log (cf ) —log(cl,))

i€{1,2} n=1 0EEint
o=K|L

N
Ay = Z Z 1:i6i, 1 Z Ty (CZK — CZL) (log (CZK) — log (ch)) . (3.13)

n=1 1€{1,2} Uefh‘m
o=K|L

It follows from the convexity of H that

S 0 Y e ()~ () = X S e (8 () — B ()

i€{1,2} n=1KeT i€{1,2} KeT . (3.14)

Z niZmKZ—C-

i€{1,2} KeT
The particular choice (2.4) for ¢}, was fixed so that
iy (log (¢ x) —log (cfr)) = i — ¢Fp n>1, o = K|L.

Therefore, using (2.6) and Cauchy—Schwarz inequality, we deduce that

A3 = Z At Z To CI,K — CiL) (‘I’LK — \1117[/ — \1127[( + \IIQ,L) (315)
o€Eint
U€K|L
1/2 1/2
ol 2
> =Y At > (g —cry) > > re(Wik — L) > —C,
n=1 g€Eint i€{1,2} g€Eint
oc=K|L o=K|L

where the last inequality is a consequence of Corollary 3.4 and of estimate

Y 1 (Uik - Vi) <C, (3.16)
o€Eint
oc=K|L

which itself is a consequence of Lemma 9.4 from [16] and of the H!(2) regularity of the external potentials ¥,.
Similarly, one can rewrite

n n n n n
Az = ZAt Z To (I — L) (Wl x — Mo — H1,L + H3L),s
0€Eint
oc=K]|L
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Thanks to the relation (2.5), it turns to
2

N
AQZOZZAthK miK Z TG(C?,K_CT{,L)

n=1 KET O'EEK,int
oc=K|L

N
+/€ZAthK mLK Z TG(C?,K_C?,L) (1_20711,;{1)'

n=1 KeT 0EEK int
oc=K|L

£ b2, we obtain

Using the fact that 0 < c?;{l < 1 and the inequality ab > —5-a® — =

2
Ay > = ZAt > mk m— Yo mldx—c)| -C (3.17)
n=1 KeT c€EK int

o=K|L

The combination of (3.13)—(3.17) in (3.12) provides (3.10). Let us now focus on estimate (3.11). Equality (2.5)
gives

ZAthK MK — #21{) <20422Atzm1( - Z o (Tx —clL)
n=1

m
KeT KeT K eErint
o=K|L

N
2
+ 252 Z At Z mg (1 — 20?;{1)
n=1 KeT
Since 0 < c?’}l < 1 and the logarithmic function is increasing, estimate (3.10) concludes the proof. O

The following lemma is a transposition to the discrete setting of the weighted estimate (1.14) on the chemical
potentials.

Lemma 3.6. There ezists Cs depending only on o, k, ¢, ¥;, T, Q, n; and { such that

N
Z At Z Z ToCy (UK — UZL)z < Cs.
n=1

i€{1,2} 0€E&nt
o=K|L

Proof. Definition (2.9) of D7 (", p") together with inequality (a + b+ ¢)? < 3(a? + b? + ¢?) yield
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N N
1 STAt Y N el (uik - i) <3 AtDr(e”, pt)
n=1

max; 7;
iMoo i€{1,2} 0E€Ems
oc=K]|L

N
+32At Z Z To
n=1  e{1,2} Uelg(iTZ

o=

CUU n n 2
:7 ((\I’i,K - \I/i,L)2 + (0;.7m:)* (log (¢ i) — log(ci'r.)) ) )
Owing to Lemma 3.3, the first term of the right-hand side is bounded by

N
Z AtDr(c", u") < Er (co) — GT(CN) < 2¢4 (co) ,
n=1

which is bounded as already seen in the proof of Corollary 3.4. On the other hand, since 0 < ¢, <1, one has

N n
o 1
At > N T (Ui — U, 1)? < TCh > = ¥%lm o).
n=1  i€{1,2} 0€&m; i ie{1,2} "
oc=K]|L
Finally,
N
Z At Z 7 Z Tacﬁg(9i77)2 (log (CZK) - log(c?,L))2 < Csmaxb; 1
n=1 i€{1,2} o€Eint '
oc=K|L
thanks to Lemma 3.5. O

Relation (2.6) guarantees that the sum of the volume fractions is constant equal to 1 in the cells. But this is
no longer true on the edges. As shown in the following lemma, the sum of the edge volume fractions is always
lower or equal to 1. Assume for instance that for some o = K|[L, ¢ jr = 1 and ¢t ; = 0, then both ¢} , and c3 ,
are equal to 0. This degeneracy may lead to severe difficulties in the effective resolution of the nonlinear system
provided by the scheme. Next lemma shows that this situation can not be encountered provided the time step is
large enough with respect to the size of the mesh. The estimate we provide is based on the worst case scenario
and is thus extremely pessimistic. Practically, the inverse CFL condition (3.18) is not needed as soon as the
ratio a/k is large enough with respect to the size of the discretization.

Lemma 3.7. Assume that there exists v > 1 such that
>V VK €T, (3.18)
then there exists 6 € (0,1) depending on 7y, 7%, £* and v such that
leix —cip] <1=4, Vo =K|L € &, Yn e {1,...,N}, Vi e {1,2}. (3.19)
As a consequence, there ezists ¢, > 0 depending only on § such that

L>cl, +c5, > Ch Vo =K|L € &, Vne{l,...,N}. (3.20)
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Proof. Let us first establish (3.19). As a consequence of Lemma 3.5, there holds
2

C
o (G| < X"ZK, VK €T, ¥ne{l,... N}, Vie {1,2}. (3.21)
0E€EK int»
o=K|L
Let 0 = K|L € &Eng such that ¢! f — c'; > 1 — 0, then in particular ¢}’ > 1 — 4, so that ¢f' g — ¢}y, > —0 for
all M € Ek ing. Plugging it in ( 1) and using (2.14) yields
C
(—7 (#E€x — )3+ 7 (1-8) < =T

For 6 < this yields

T
ie T, — [ Cs maxgteT mk . Te (1 _ %)
- -1+ T =17+ 1%
thanks to (3.18). Thus (3.19) holds with

1
n ~(1- %)
(0 — D+ 7 (0= 1)1 +7)

6 = min

Let us now turn to the proof of (3.20). If ¢f', = ' = ', we have immediately ¢} , + ¢4 , = 1. Otherwise,
the inequality cf, + c5, < 1 follows dlrectly from the fact that the logarithmic mean is smaller than the
arithmetic one. Define the continuous function ¢ : [0,1)2 — [0,1] by

1 1
log(a/b)  log((1 —a)/(1 - b))
so that, in view of (2.4) and (2.6), one has

C?,O’ + Cg,a = @(C?,K’ C?,L)v Vo = K|L € &ing, Vn € {17 s 7N}' (322)

o(a,b) = (a—b) } ifa#b, and ¢(a,a)=1,

Note that ¢(a,b) = 0 if and only if {a,b} = {0,1}. In particular, ¢ is positive on the compact set
Ks ={(a,b) €[0,1* | la—b] < 1-6}.

Thus it remains bounded away from 0 by some ¢, depending only on d. Then (3.20) follows from (3.19) and
(3.22). O

With Lemma 3.7 at hand, we are in position to prove our next lemma, whose goal is to provide first a
L?((0,T); BV (9)) estimate on the approximate mean chemical potential fir A, and then a non-weighted L?(Qr)
estimates on the chemical potentials.

Lemma 3.8. Provided (3.20) holds, there exists Cs and C7 depending only on o, k, ¢, n;, V;, 0;, T, Q, ¢, ¢*

such that )

N
oAt > melpk —mEl | < Ce. (3.23)

n=1 o€Eint
o=K|L

and

ZAtZ (upg)? < C7 ie{1,2). (3.24)

n=1 KeT
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Proof. Let n > 1 and 0 = K|L € &y, then thanks to (3.20), either ¢ , > % or ¢y , > % Let us assume that

oy > %, the other case being similar. We can also assume without loss of generality that cg o > ¢y , > ¢ 1.
Then the triangle inequality ensures that

% —ip| < Z ciplmi e —pinl+ Z i i (CZLK - C?,L) .

ie€{1,2} i€{1,2}

Using relation (2.6), the second term of the right-hand side rewrites
Z M?,K (CZK - CZL) = }C?,K - C?,L’ |#7f,K - ,U'S,K| )
ie{1,2}

261“’, the first term can be estimated by

c*

while since ¢y , > ¢y and ¢f p <1<
Cﬂ|ﬂ_n|<3 Mol —
i, L /’I”L,K /’LZ,L = o 1,0 /’LZ,K :uz,L .
i{1,2} i€{1,2}

Therefore, using (a + b+ ¢)? < 3(a® + b% + ¢?), we get that
2

Z md‘ﬁ}l( - ﬁ2| < An + an (325)

0€E&int
o=K|L

where we have set

An = (0]-*2)2 Z Z mchU‘/U’zT'L,K 7NZL| )

i€{1,2} | o€&ns
oc=K]|L

_ n n n n
B, =3 E ma\CLK - C1,L| |:U'1,K — MoK
0€Eint
o=K|L

Using Cauchy—Schwarz inequality, we get that

<20 | S e (=) || medact,

()’
i€{1,2} | o€&ins 0 €E&int
oc=K|L o=K|L

We deduce from 0 < cZJ <1, from msd, = 2mp,_ and from Lemma 3.6 that

N

24|02
> At A, < | 2‘ Cs. (3.26)
n=1 C*)

Besides, Cauchy—Schwarz inequality yields

B, <3 Z To (Crll,K - 071L,L)2 Z mgds ((M?,K - #3,1()2 + (N?,L - NS,L)Q)
o€E&int 0€Eint
oc=K|L oc=K|L
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The first term in the right hand side is bounded uniformly w.r.t. n thanks to Corollary 3.4. Reorganizing the
second term, one gets that

B, <6C; Z Z mp, | (4 — Ng,K)2~
KeT \ o€k, int

Thanks to assumption (2.11) on the regularity of the mesh, one has
from Lemma 3.5 that

0 €Ex.am Do < {mg. Therefore, it follows

N
> At B, <6(C1Cy. (3.27)

n=1

Combining (3.26) and (3.27) in (3.25) provides (3.23).

The combination of the L2((0,7T); BV (Q)) estimate (3.23) with the zero mean condition (2.7) allows to make
use of a Poincaré-Sobolev inequality (see for instance [21], [17], Lem. 5.1 or [5]). This provides the following
uniform L?(Qr) estimate on the discrete global chemical potential (recall here that Q C R?):

ZAt Z my (y)? < C. (3.28)

= KeT
The definition (2.7) of @} and the equation (2.6) provide the following relations:
By e = e+ ey i (1] — 15 ) Wy e = i — o1 k(1] ¢ — 15 k)
As a result of Lemmas 3.2, 3.5 and Estimate (3.28), we recover (3.24). O

3.2. Existence of a discrete solution

We are now in position to finish the proof of Theorem 2.3 by showing the existence of (at least) one discrete
solution to the scheme (2.3)—(2.7).

Proposition 3.9. There exists at least one solution to the scheme (2.3)~(2.7) satisfying the a priori estimates
established in Section 3.1.

Proof. The proof relies on a topological degree argument [12,24]. Our goal is to pass continuously from a linear
problem for which the existence and uniqueness of the solution is known to the nonlinear system given by our
scheme. Since the construction of such an homotopy (which is parametrized by A € [0, 1]) is non-trivial, we give
here a description of it, as well as of the key estimates that allow us to use this machinery.

We assume that ¢! € [0, 1]#7 is given. For \ € [0, 1], we define the nondecreasing functions fy and py by

£1(¢) = min (”2A max <1 3 A,c)) . pae) = ﬁgg; da (3.29)

so that f(c) > 0 and fia(c) + fa(l —¢) =1 for all c € R.
We look for the solutions (c*, u*) = ((ci"K, cé\’K)KeT, (,ui\’K, MS’K)KGT) of the following modified system.
First, equation (2.3) is replaced by

A
mg + Z i, K — \IJ’L L)
0EEK int
o= K|L
+0ir Y, o (k) = fr(chr)) =0, VKEeT, (3.30)
0EEK int

o=K|L



FINITE VOLUME APPROXIMATION OF A TWO-PHASE TWO FLUXES DEGENERATE CAHN-HILLIARD MODEL 987

where for all 0 = K|L € &,y we have set

1

5 if e < 5% and iy, < 552,
e ity > 12 and oy > 10
Fo={f(@e) it =cdpe (515, (3.31)
;:i EZAI; g :Zi Ezki% otherwise.
Equation (2.5) is replaced for all K € T by
«@ 1 e
Ni\,K - NQ,K = pu— Z To (f/\ (Ci\,K) =/ (Ci\L)) +(1=2A) (Ci\,K - 2) + K (1 - 201,K1) . (3.32)
0E€EK int
U:IIE\L
We keep the linear relation (2.6), i.e., we impose that
Ax+dx=1  VKeT. (3.33)
Finally, equation (2.7) is replaced by
Z mihy =0, with % = fx (k) 10,k + (k) 12,k (3.34)

For A = 0, the system (3.30)—(3.34) reduces to the linear system

At e At .

MKe; g+ o Z To (1 — 151) = mrd ' — 2n; Z 7o (Wi — W), KeT,iec{l,2}, (3.35a)

0EEK int 0EEK int

o=K|L o=K|L
Ax+ax=1 KeT, (3.35b)

_ 1
1 — o — A e = (1 — 20?,;(1) ~ KeT, (3.35¢)
complemented with the condition

> mic (1 x + 1S i) = 0. (3.35d)

KeT

To this linear system correspond a matrix L € Mug7 11 427
To show that the system (3.35) admits one and only one solution, one first sets the right-hand side to 0, then
multiply (3.35a) by p; ;- and sum over K € 7 and i € {1,2}. Then using (3.35b) and (3.35c), this provides

A
S|+ S 2L S 0 -l P =0,

2
KeT ie{1,2} (=
K|L

o=

from which we infer that 0(1)7 x = 0—and thus cg, x = 0 because of (3.35b), the right-hand side having been set to
0 —for all K € 7 and that ,ua x does not depend on K. Moreover, we deduce from (3.35¢) with zero right-hand
side that p(l),K = u%K for all K € 7. Finally, (3.35d) shows that the discrete chemical potential [L?,K are all equal
to 0, hence Ker(LL) is trivial. Therefore, I has maximal rank and its span can be characterized as the orthogonal
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of one non-zero vector generating Ker(LT). Denote by 17 = (1,...,1)" € R#7, 07 = (0,...,0)" € R#¥7, and
by m7 = (mk)rer € R#*7, then one readily checks that

17 L

17
Im(]L) = —mT
07
0

since 17 belongs to the kernel of the discrete Laplacian operator with no-flux boundary Conditions The right-
hand side of (3.35) then belongs to Im(LL) since > e D vegw e To (Vix — Wi r) = 0and ¢} +02 & =1.The
o=K|L
linear system (3.35) is then well-posed, hence a topological deglree equal to 1 for any large enough set containing
its solution.
Let us now establish bounds on the solution to the system (3.30)—(3.34) that are uniform w.r.t. A € [0, 1].
Multiplying (3.30) by l% x + Vi + 00 7o (] K) and summing over K € 7 and i € {1,2} provides thanks
to the same calculations as in the proof of Lemma 3.3 that

TP+ To + T3 + Ty + T2 + AtDy (e, p) =0, (3.36)
where we have set

T1 =« Z (cl K—C K) Z To (f/\(CiK) - fA(C?,L))v

KeT 0EEK int
o=K|L
1
1 == % e (- ) (Ar - 3)
KeT
ng\:,'i Z my (011{ clK) (1—20’1’;{1),
KeT
e Y Y e (- ) W
i€{1,2} KeT
T5>\: ZHZTThZ (1}{_0 )pk()\)a
ie€{1,2} KeT

and

Z\ i+ Vi +nibiapa (i) — mip — Wi — mibsrpa (6) | > 0.

Or(w)= 2> X 7

ie€{1,2} ae&m
K|L

‘ 2

Elementary convexity inequalities yield

R
and, setting Hy(c) = [ pa(a)da > 0,

2 > Z 0,71 Z mg (H/\ (C?’K) — Hy (Cz}l)) '

1€{1,2} KeT

1
CL — 5
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On the other hand, using the boundedness of CZ;(l between 0 and 1, one gets that
22k ) milelx| -0
KeT

while the boundedness of U; g yields

T4/\ > = (1¥1]loo + [P2ll00) Z mg |Ci\,K| -C

KeT

Therefore, since Hy(c) < H(c) for ¢ € [0,1]

TP+ T+ T+ T2 > > miga () = C,

KeT

where C' depends only on &, , |U;]lco, 8i, i, p and hz (but not on A), and where we have set

1A 1\*
Q)= Q) + bomr(1 =)+ 23> (o= 3]~ (6t Wil + el e
with the convention that gx(c) = 400 if ¢ ¢ [0,1] and A = 1. As a consequence of the technical Lemma A 1
stated in appendix, there exists C' depending ounly 7;, 0;, p, hr, ||¥;||c and x such that gy(c) > 2 |c — ] —
Therefore,

TP+ T3+ TP +T3 > > Y mi|e
i€{1,2} KeT

1
- 2‘ -C. (3.37)

Besides, performing a discrete integration by parts on the term T} yields

T =a Y m|(@x-do) - (4= -4z (b (dr) = hd).

o€Eint
oc=K]|L

Since f) is 1-Lipschitz continuous, one has

T >« Z To {(f/\ (Ci\,K) = I (Ci\,L))Q - (C1 x4 L ) (£ (Ci\,K) —Ix (Ci\L))]

0€Eint
o=K|L
o 2 n— n— 2
25 Y o (@) - ) - (a4 -4n) .
JER
so that N )
725 Y ()~ (@) -C (3.38)
Uegint
oc=K]|L

where C only depends on 7 and «. Combining (3.38) with (3.37) in (3.36), one gets the existence of Cs not
depending on A such that, for all A € [0, 1], there holds

D D mk e

i€{1,2} KeT

ko345 2wl e - A ) P AR <G (339)
0€E&int
o=K|L
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This implies in particular that ¢y is bounded independently uniformly w.r.t. A, hence

5

KeT

2
<C,  YAe[0,1], ie{1,2},

by
Ci,K

for some C not depending on .

We can derive a control on pu* for A < 1 from the control of the energy dissipation D} in (3.39), but this
control degenerates as A tends to 1. To bypass this difficulty, we multiply (3.30) by 7;px (cf‘ K). Since fﬁg has
been designed so that

Fo (o (x) =pa () = (k) = M), Vo =K|L € &,
we can mimic the proof of Lemma 3.5 in order to get the existence of C' not depending on A such that
2

1

Z MK Z o (fa(cdx) = falein)) | <€ (3.40)
KeT K 0€EEK int
o=K]|L
together with
2
> (1 — i) < C. (3.41)
KeT

Thanks to (3.40), we can reproduce the proof of Lemma 3.7 to claim that
f1)\7r;+f2):¢72f*7 vaeginta

for some f* > 0 not depending on A. This provides a uniform in A discrete BV estimate on (ﬁ}‘() xer and
finally the existence of some Cy not depending on A following the path of Lemma 3.8 such that

SN ik (1d)” < Co. (3.42)

i€{1,2} KeT

Then the topological degree corresponding to system (3.30)—(3.34) on the compact set

1
Ci,K — 2‘ + (Mi,K)2> <Csg+Cy+1

K= ((CI,K7CQ,K)K677(Nl,K»NQ,K)KeT) Z Z my (

ie{1,2} KeT

is constant equal to 1 whatever A € [0,1]. In particular, there exists a solution to our scheme (2.3)—(2.7) which
corresponds to the case A = 1. O

The existence of a solution (¢, ™) to the scheme (2.3)—(2.7) for all n € {1,...,N} allows to define a
piecewise constant approximate solution (cr at, 7 a¢) by (2.10).

4. CONVERGENCE OF THE SCHEME

The goal of this section is to prove Theorem 2.4, i.e., that (er a¢, i1 ar) tends to a weak solution (c, p)
of (1.1)=(1.6) in a suitable topology as hy and At tend to 0 provided the mesh remains sufficiently regular.
Consider a sequence of regular meshes (7, &, (wK)KeTm)m>1 such that (2.11)—(2.14) hold for some uniform ¢,
¢, 7% and 7, w.r.t. m, and such that hz, tends to 0 as m tends to +o0, and a sequence of times steps (At),>1
with At,, = T/N,, with N,, tending to +oc with m. Then the a priori estimates derived in Section 3.1 are
satisfied uniformly provided (3.20) holds, as it is the case if the inverse CFL condition (3.18) is fulfilled.

The first lemma gathers some first consequences of the a priori estimates stated in Section 3.1.
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Lemma 4.1. There exist ¢; € L>(Qr;[0,1]) with ¢1 +ca = 1 and p; € L*(Qr), i € {1,2} such that, up to a
subsequence,

() ¢i1,.AL, — ¢ a.e in Qr and in the L (Qr) weak-* sense,
m—0o0

(i) pi, 1,6, — i weakly in L*(Qr).
m—0o0

Moreover, fQ n(t,x)de =0 for a.e. t > 0, where T = 141 + Ccafio.

Proof. Because of Lemma 3.2, the approximate solutions ¢; 7, at,, remain bounded a.e. in Q)7 between 0 and 1.
Therefore, there exists ¢; € L™ (Qr;[0,1]) such that, up to a subsequence, ¢; 7., a¢,, tends to ¢; in the L (Qr)-
weak-+ sense. This is enough to pass in the limit in the relation ¢ 7, A¢,, +¢2,7,, . at,, = 1 which directly follows
from (2.6). On the other hand, it follows from Lemma 3.8 that the sequences (p;,7,,,At,,),,~; are uniformly
bounded in L?(Qr), hence the weak convergence in L?(Q7) towards some p;. The almost everywilere convergence
of ¢; 7, At,, towards c¢; follows from the discrete Aubin-Lions lemma stated in Appendix B. Finally, given an

arbitrary ¢ € L°°(0,7T), then multiplying (2.7) by =7 f(ZAjSAt p(t)dt and summing over n € {1,..., Ny}

yields
/ / (€1, T30, At B, T, Aty + €C2,T,,0 A, H2,T,,0 At | p d dE = 0.
T

Since ¢; 7., .At,, converges a.e. towards ¢; while remaining uniformly bounded between 0 and 1, it converges
also in the strong L?(Qr) sense thanks to Lebesgue dominated convergence theorem. Together with the weak
convergence in L? (Qr) of w1, At, towards p;, we have enough compactness to pass to the limit m — +o0 in
the above expression, which gives that

/ / G, )p(t) dzdt = 0, Vo € L(Qr).

This of course implies that [, 7i(t, ) de = 0 for a.e. t > 0. 0

Before going further, we need to introduce some additional material concerning the construction of a strongly
consistent approximate gradient based on the SUSHI finite volume scheme [17]. We gather in the following
proposition the properties of this approximate gradient to be used in what follows. The super-admissibility
of the mesh is crucial at this point. We refer to [17] or to Chapter 13 of [13] for the proofs corresponding to
Proposition 4.2.

Proposition 4.2 ([17]). Define by Xz, au,, the space of bounded piecewise constant functions per control volume

and per time step as ¢; 7., At,, and [ T, At,., €.,
X1, At,, = {uTm,Atm S LOO(QT) ’ UT;, At (t,a:) =ufk € R, V(t,a:) € (tn_l,t"} X K} .

Then there exists a linear operator Vg, + X1 — L (QT)2 such that:

(i) for all ur,, At VT, At € X1, AL, and alln € {1,..., Ny}, one has

m

/ Vo ur, ae, (1 7) - V07 an, () dz = S 7 (uf — ) (0 — o)
Q Uegiut,nz
o=K|L

(i) if the sequence (ut,,,at,,) >y @ such that ||uz,, At ll2(Qr) and V1, uz, at,. |2(Qr)2 are bounded w.r.t.

m, then there exists u € L*((0,T); H'(Q)) such that ur, a:, converges weakly towards u in L*(Qr) and
V1, ur, At, converges weakly towards Vu in L*(Qr)?;

(iii) let p € C*°(Qr), and define 1., at,, by fizing % = o(t", k), then V1, @1, At converges towards Vi
in LP(Qr)? for all p € [1,00);
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(iv) for all K € T,, and alln € {1,..., Ny}, there holds

/ V., ur, at, (t" x) de = Z dr oTo (U —UR)MKL. (4.1)
K 0EEK int,m
o=K|L
Let us point out that we could have improved the convergence property in (iii) until obtaining the uniform
convergence at the price of adding some additional degrees of freedom on the boundary edges. However, the
convergence properties stated in Proposition 4.2 are sufficient to prove the convergence of our scheme. Therefore,
we avoid the introduction of additional material.

Next statement is a straightforward consequence of the combination of Proposition 4.2 together with Corol-
lary 3.4.

Corollary 4.3. Up to a subsequence, the approrimate gradient Vr, c; 1, A, converges towards Vc; in the
weak-x topology of L>=°((0,T); L*(Qr))? as m tends to +oo. In particular, c; belongs to L°((0,T); HY(Q)).

Moreover, V1, V; 1. converges weakly towards V¥;.

The purpose of next lemma is twofold. First, one shows that (1.3) and (1.4) are satisfied by the limits ¢;, ;.
Second, we deduce from this consistency property the approximate gradient of the volume fractions converges
strongly in L?(Qr).

Lemma 4.4. The weak formulation (1.17) holds for all ¢ € C°([0,T) x Q). Moreover, V1, ¢i T, At,, converges
strongly in L*(Q1) towards Ve; as m tends to +oo.

Proof. Let us first establish (1.17). As a preliminary, define the piecewise constant function
e 1, A, (L) =l if (tx) e ") x K, ne{l,...N,}, KcT,.

Then ¢ 7., At,, remains bounded between 0 and 1. Therefore,

// |élylzym,7At'm - Cl;EnyAt?n |2 dx dt S At‘Q| + // |Cl)T77L)At’HL (t + Atm’ x) - 0177;n7AtnL (t’ $)|2 dw dt
T Qr—Atm,

Following Lemma 4.1, (¢1,7,,,At,),,>; converges in L?(Qr). The reciprocal of the Riesz—Fréchet-Kolmogorov
theorems allows us to claim that the second term in the right-hand side tends to 0 as m tends to +o0o. Therefore,
€1,7,,,At,, tends to ¢; strongly in L? (Qr) together with ¢1,7,, At,, -

Given an arbitrary ¢ € C®°(Qr), we define % = @(t", zk) for all n € {1,...,N,,} and all K € Ty,.
Multiplying (2.5) by ¢’ and summing over n and K yields

/ / (11,7, Aty — H2,T,, At,,) T, AL, A dt
T

= a/ Vr1.¢1. .. At VT, 0T, At,, dx dt + H// (1 — Qél,Tm,Atm)SﬁTm,Atmdw dt. (4.2)
Qr T

We can pass to the limit m — +oo in the previous equality. Since p; 7., A¢,, converges weakly towards pi;
in L?(Qr) thanks to Lemma 4.1, since V1, c1.7, at, converges weakly in L?(Qr)? towards Ve; thanks to
Corollary 4.3, since ¢ 1, at,, converges in L?(Qr) towards c1, since o7, Az, converges uniformly towards ¢,
and since V7., o7, At converges towards Vi in L?(Q7)? thanks to Proposition 4.2, one recovers (1.17).

Thanks to a standard density arguments, one checks that (1.17) holds for ¢ € L?((0,T); H*(R)), thus in
particular for ¢ = ¢y, which yields

a// |Vcl|2d:cdt=// [ — p2 — k(1 — 2¢1)] 1 de dt.
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Choosing @71, At,, = C1.7,,.At,, 0 (4.2) and passing to the limit m — +oo shows that

1
lim // V7. 11, A, |dedt = — // (1 — p2 — k(1 —2¢1)] ¢y de dt = // |V |?de dt,
m—ee Qr @ T T

hence the strong convergence of V7, ci 7, A+, towards Vc;. O
Next lemma focuses on the term corresponding to ¢; V ;. For m > 1, we define

n n
Hi i — ML
ds

n o __ n
Vi,o - 2Ci,0

ngr, VO':K|L egint,ma Vn € {1,...,Nm}, (43)

and the corresponding piecewise constant vector field

Vi, if(t,@) € (t" 1 t"] X Dy, 0 € Eintim,

V. t = 4.4
0 1) {o it (1) € (107 x (K\U,ce,.,,, Dico) - .

Lemma 4.5. Let V; p,, A, be defined by (4.3) and (4.4), then, up to a subsequence, V;p,, At, converges
weakly towards —c;V; in L*(Qr) as m tends to +oo.

Proof. Since m,d, = 2mp_ and since 0 < C?,o— < 1, it results from Lemma 3.6 that

N,
Vit atn 220 =23 At S 75 () (i — i) < C.

n=1 oE€Eint,m
o=K|L

Therefore, up to a subsequence, V; p . A, converges weakly in LQ(QT)2 towards some V;. Let us identify V;
as —¢; V ;. To this end, we introduce an arbitrary smooth vector field ® € C2°(Qr)?, and, for all m > 1, we
denote by

1
P =® (" xx), B=— / ®(t" @) de, VK €T, Yo € Emm, ¥n € {1,..., Ny},
Mme Jo

and by
&1 A, (tx)=®% if (tx) € ("1 t"] x K,
o &7 if(t,x) € (t" 1, t"] X Dy, 0 € Eintms
t p—
D'nuAtwL( 7w> 0 if (t, :E) c (tn_l, tn] X (K \ UJGSK - DK7O') ,

for almost all (¢,x) € Qr. Thanks to the regularity of ®, it is easy to check that both ®1, A, and ®p,, As,,
converge uniformly towards ® as m tends to +oco. This implies in particular that

Bi,m(‘b) = / Vi,D,,,L,At,,L (t, iL‘) . (I)D,,L,Atm dedt — // VZ‘ - P dx dt.
Qr T

m—00
On the other hand, B; ,,,(®) can be decomposed into

B; . (®) = Bl (®) + B (®) + B (@) + B (@), (4.5)

i,m
where, denoting by

T T
_dgoClp +dLeck

1,0 d ’
o

Vo = K|L € Ent,m, Vn € {1,...,Nn},
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we have set

N
B (@)=Y Atw Y molcl, — ) (uf s — ple) 5 o,

€& nt,m
o=K|L
N
2
B’L(,Tl,(é) = ZAt Z :U’z KCZK Z mU *NKo,
n=1 KeT, 0EEK int
Ny, 1
BE (@)= > Aty > mgul @ - - ST e (@, — k) nico |

KeT, 0EEK int

Ny,
BO@) =3 Atn S ik S me (@ — k) (B - B%) ng
n=1

KeT, 0€EK int

Let us first focus on B,
fact that d, < 2h7:

(1
i,m

(@), which can be controled as follows thanks to Cauchy—Schwarz inequality and the

N, 2
2 m - 7C
0@ <ol [ Yoo, ¥ ol ) ”)
n=1

0€Eint,m
o=K|L
N’HL 2
n n n
E Atm, § ToCio (,u'v,K - :ui,L)
n=1 Uegint,'m
oc=K]|L

The second sum in the right-hand side is uniformly bounded thanks to Lemma 3.6, whereas since |c}, — ¢ | <
| i — ci'z |, Lemma 3.5 and the particular definition (2.4) of ¢f', ensure that

N

™ C
San, X g e T Z M o (e el (105 (che) —log (c2)) < o2
n=1 0EEint,m 17‘7 0EEint.m YT

o=K|L o=K|L
Since 6; 7 > phr, we finally obtain that
2
‘Bfﬁi(@)] <Chr — 0, VY®eC=@Qr). (4.6)

m——+00o

Let us now consider Bl(zm((I)) To this end, remark first that the definition of ® implies that

s

> me®) i, :/ V- ®(t" x)dx, VKecT, Ynec{l,. .., Ny}
o€fK K
As a consequence, since u; 7, At,, converges weakly towards p; and ¢; 7., A, converges strongly towards ¢; in

L*(Qr), we conclude that

B<2> — // 1ic;V - ® de dt, V@ € C(Qr). (4.7)
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Thanks to (4.1), the term Bl(g;)l(@) can be rewritten as

BY) (@) = // Wi, T, Aty V T, Ci T A, * P, A, T di.
T

The strong convergence of V. ¢; 7., At,,
1; and the uniform convergence of ®7 A

my m

BY) (@) —

Introducing the quantities

1 _
TZK = Z ma(C?,a - C;L,K) ('I’Z -

cEEK

and the corresponding functions r; 7., A¢,, in X1, A¢,.»

towards Ve¢; in L?(Qr)?, the weak convergence of 1, 7,, As,,
towards ® yield

// w; Ve - ®dedt,
m—>+oo .

@?{) ‘NKo,

towards

V& € C2(Qr). (4.8)

VK € T, Vn e {1,...,Nn},

the term Bi(i,)z('l') rewrites

(4
B i B SERVAN 28 T T, At dw dt
T

Since ;. 7., At,, is uniformly bounded in L?(Qr), proving that r; 7, Az, tends to 0in L?(Qr) is enough to show

that
BW (@) — o,

) m——+0oo

V@ € C2(Qr).

(4.9)

Thanks to the regularity of the mesh 7,,, and more precisely to (2.13), there holds

g* =n n
< (me)? Z (mo)?(cty — i

0EEK int

ikl )| @5 —

Using estimate
N
> au,
n=1

one infers from (2.12) that

2. 2. el -

KeT,, 0€EK, int

N
n=1

2
73, T At 120

KeT,,
* 2 il (h’K)4
SCIDR|Z Y Aty Y
n=1 KeT,,

so that r; 7, Az, tends to 0 in L?(Qr) and (4.9) holds.
Finally, we deduce from (4.5) to (4.9) that V,

L*(Qr)*.

k> < D22,

N,
2 = Z At,,
n=1

(hx)*
(mx)?

2 ol — i)

0EEK int

Z To(Ci i — CZL)2 <TC,

0E€Ent,m

> k(@ — k)P < TCLOC||D®|2 R,

0CEK int

= —¢;Vpu; in the distributional sense, hence also in

O

We have now all the necessary material to conclude the proof of Theorem 2.4. This is the purpose of our last

lemma.
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Lemma 4.6. The limit values (c;, ;) as m tends to +00 of (Ci T, At.,, i T, At ) Satisfy the weak formula-
tions (1.16) fori € {1,2}.

Proof. As a preliminary, let us first show that the functions ¢; p,, a+,, defined by

crif (t,x) € ("1 "] X Dy, 0 € Eintom,

1,0

CiD,, At,, (1, T) = ) _
' ’ A iif () € ("] x | K\ U Dks |,

0EEK int
converges strongly in L?(Qr) towards ¢;. Indeed, one has
N7YL 2
2
¢, D ALy, — Civa’Atm,”L?(QT) = E At, E E MDk » (CZK - C;L,a)
n=1 KeTn, UegK,int
N’IYL
2 TC
n n 2
< E Aty E mp, (cfx —cip)” < 5 (hT,,) et 0.
n=1 0€E&int,m
o=K|L

Since ¢; 7., at,, converges in L?(Qr) towards ¢; as m tends to oo, then so does ¢; p,, At,, -

Let ¢ € C2°([0,T) x ), then denote by ¢% = ¢o(t", ) for all K € 7,, and alln € {0,..., N,,}, m > 1. Note
that @% = 0 for all K € 7,,. Multiplying (2.3) by Atmgo?(_l and summing over K € 7 and n € {1,..., Ny}
leads to

Ai,m + Bi,’m + Ci,m + Di,m = 07 (410)
where we have set

N,
Ajm = Z Z MKC; K (@’I’(_l — <p’}<) — Z ch?,Kga(}(,

n=1KeT,, KeT,,

JRRALL
Bi,m - Z Atm Z Tacﬁa (M’?,K - :UZL) ((pr[z(—l - 902_1) )

i n=1 0€Eint,m

o=K|L

N.
1 <X _ _
Ci,m - T Z Atm Z TUC?;O' (\IILK - \Ilill) (SOTIL( t— SOT[L/ 1) ’
li n=1 0€Ent,m
o=K|L

N
2 n n—1 n—1
Dim = 0;r, E Aty E To (C;,K - Ci,L) (‘PK — YL ) :
n=1 0EEint,m
o=K|L

Classical arguments (see for instance [16]) allow to show that
Ain — 7// ciatcpd:cdtf/ (0, de, (4.11)
m—0o0 T Q
and, since 6; 7., tends to 0;, that

Qr

m—0o0
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Using Taylor expansions, one shows that

n o _ ,..n 1
Lk 2 7 — / Vo (t",2) nxpde| < Cdy, Yo = K|L € Emm. (4.13)
D, JD,

ds

Therefore,
Bim = S // Vip,. At, - Vededt + BLm
i -
with
C,
’Bz/m| < EhTm ZAtm Z mUC’?,o'““LZK - M?,L|

n=1 0E€Ent,m
oc=K|L

Nm tn
1
T 777 Z/ / (th(t,a:) - V@(tn_law)) -Vip,,.at,dedt].
P =1/t JQ

Cauchy—Schwarz inequality together with Lemma 3.6, the regularity of ¢ and the L?(Qr) bound of V; p, At
show that B}, tends to 0 as m tends to 400, while Lemma 4.5 ensures that

lim Bj :// V- Vda dt. (4.14)
m— o0 - ;i

Let us focus on the term C; ,,. Define the vectors

U,k — Y1

Wi =2
i,0 dg

ngr, Vo = K|L S 8int,ma Vn € {1, .. .,Nm}, (415)

and the corresponding piecewise constant vector field
Wip,.at,(tx) =W, if (t,x) € (t" ', t"] x Dy, 0 € Entm, (4.16)

then it is shown in [10, 15] that W;p A, converges weakly in L*(Qr) towards —VW,. Therefore,
Ci D,y Aty Wi D,, At,, converges weakly in LP(Qr) towards —¢; VU, for all p < 2. Proceeding as for B,
one shows that

lim ci,m:// %V\I’i-vwdwdt. (4.17)
M

Combining (4.11)—(4.17) in (4.10) provides that the limits ¢;, y; as m tends to oo of ¢; 7, At ; i, T, At,, fulfil
the weak formulation (1.16). O

Remark 4.7. A natural way to discretize (1.2) would have been to use a Scharfetter-Gummel scheme [30]
in (2.3). This scheme degenerates into the upstream mobility scheme proposed in [9] in the deep quench limit
0;,7 = 0. Almost all our analysis can be adapted to this scheme excepted Lemma 4.5. More precisely, we are
not able to prove that the term Bl(lrl(q)) appearing in the proof of Lemma 4.5 tends to 0 as m tends to +oo,
which possibly breaks the consistency of the scheme.

5. NUMERICAL RESULTS

In this section, we present different simulations to illustrate the behavior of the finite-volume scheme presented
in Section 2.2. To solve this nonlinear system we use a Newton-Raphson based iterative method. More precisely,
the unknowns (cg ) xer are eliminated thanks to the relation (2.6), so that the nonlinear system to be solved



998 C. CANCES AND F. NABET

(a)

FIGURE 2. Spinodal decomposition without external potential, ¢?(z) = 0.5 + r(z). [(A) t =
0.005. (B) ¢ = 0.01. (C) t = 0.02. (D) ¢ = 0.2.]
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FIGURE 3. Spinodal decomposition with external potentials, ¢{(x) = 0.5+7(x). [(A) t = 0.005.
(B) t = 0.0L. (C) t = 0.02. (D) ¢ = 0.2.]

at each time step involves 3 unknowns cf -, u7 i and pj ;- per cell K € 7. The iterative method stops as soon
as the £5 norm of the Newton increment is smaller than 1076, The updated concentration variables are projected
on the set [¢,1 — ¢]7, with ¢ = 1070, which is reasonable in view of Lemma 3.2.

In each case the domain (2 is the square (0, 1)2. The mesh is made of 23330 conforming triangles. The mesh size
is approximately equal to 0.017 and the time step is fixed to At = 10~%. We choose as parameters a = 0.0002,
k=1450, =0, =0.35 p=1and v; = v, = 1. We plot the concentration ¢; and we can observe in blue the

concentration ¢; = 0, in red ¢; = 1 and in white ¢; = 0.5.

First we consider the spinodal decomposition test case. The initial saturation ¢! is a random initial concen-

tration with a fluctuation, that is ¢?(z) = 0.5+ r(x) where r < 1 is a small random perturbation. We compare
the case without any external potential, that is ¥; = Wy = 0, in Figure 2 with the case where the external
potential are given by ¥;(x) = —p;g -  where the gravity is g = —0.98e,, and the densities py = 5 and po =1
in Figure 3. Note that in both cases we have exactly the same initial data. We want to observe the influence of
the gravity on the phase separation dynamics.

At the very beginning (see Figs. 2a and 3a), as the state ¢; = 0.5 is slightly disturbed, the two pure phases
c1 = 0 and ¢; = 1 quickly spontaneously separate. However in the second case, as the phase c; is heavier, we
can clearly observe in Figure 3a the influence of the external potentials at the bottom and the top. Then the
pure phases gradually come together to form larger patterns (see Figs. 2b-2d and Figs. 3b—3d). Furthermore, it
can be seen that even if the external potentials have a very strong influence on the phase separation dynamics
at the top and the bottom, in a short time, the phase separation dynamic is very similar at the center of the
domain (see Figs. 2a—2c and Figs. 3a—3c). But, in a longer time, the influence of external potentials on the entire
phase separation dynamics can be observed in Figures 2d and 3d.
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FIGURE 4. Spinodal decomposition without external potential, ¢ (z) = 0.3 + r(z). (A) ¢
0.011. (B) ¢ = 0.015. (C) ¢ = 0.05. (D) t = 0.2.

FIGURE 5. Spinodal decomposition with external potentials, ¢J(z) = 0.3+ r(z). (A) t = 0.011.
(B) t = 0.015. (C) t = 0.05. (D) t = 0.2.

(a) (5) (c) (0)

FIGURE 6. Cross as initial data without external potential. (A) ¢ = 0. (B) t = 0.02. (C) ¢t = 0.07.
(D) t=0.2.

Now we keep exactly the same data but we change the initial condition by favouring the pure phase ¢; = 0
and choosing ¢ (z) = 0.3 + r(x).

First of all we can see in Figures 4a and 5a that, as expected, the pure phase ¢; = 1, and thus, the phase
separation dynamics appears later than in Figures 2a and 3a. Moreover, since the phase ¢; = 0 is preponderant,
a collection of circular droplets of the pure phase ¢; = 1 can be observed over a long period of time (see Figs. 4c,
4d and 5¢, 5d). Our observations on Figures 2 and 3 concerning the influence of the external potentials are still
valid with this choice of initial profiles.

We consider now a second test case. The initial concentration is a cross in the middle of the domain presented
in Figure 6a.



1000 C. CANCES AND F. NABET

() (») (©) (0)

FIGURE 7. Cross as initial data with external potentials. (A) ¢ = 0.02. (B) ¢ = 0.07. (C)
t=0.15. (D) t = 0.5.

Here again we start with the case without external potentials. We know that in this case the Cahn—Hilliard
model preserves the volume while minimizing the perimeter and thus as seen in Figure 6 the cross evolves into
a circle.

Now, we want to observe the influence of the gravity when we add the external potentials ¥;(x) = —p;g - x.
Since p; =5 > 1 = po, as one might expect, we observe in Figure 7 that the cross, that is the pure phase ¢; = 1,
is drawn down. Thus, although the volume is still preserved, the final state is no longer a circle but a strip at
the bottom of the domain.

APPENDIX A. TECHNICAL LEMMA

For A € [0,1], let f) and py be defined as in (3.29), and let Hy : R — [0, 400] be the convex function defined
by

. clogﬁ—i—i—)\ ifcg%,
Hy(c) :/ pala)da = < clog ff)\ —c+ 2 ifce [L2, 2], (A1)
! 0 if e > 152
if A\ <1and
400 if ¢ <0,
Hi(c) = cloge—c+1 ifcel0,1], (A.2)
0 ife> 1.

One readily checks that
)1\1/mlH>\(c):H1(c), Ve e R.
Let us establish the following lemma, which is used in the proof of Proposition 3.9.

Lemma A.1. For all 3 > 0, there exists Cg depending only on B such that

1-A 1

1A <02>2+Hk(c)+HA(1c) >4

1
c— 2} - Cpg, VA€ [0,1], Ve e R. (A.3)

Proof. Assume that there exists a nonnegative super-linear function T : Ry — R4 such that

1-A 1

— <¢:2>2+HA(C)+H,\(1C) ZT(

1
c— QD , VA €[0,1], Ve e R, (A.4)

and "
lim X = +o00. (A.5)

u——+o0 u
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Then, we proceed as in the proof of Lemma 3.3 from [6] to establish (A.3). More precisely, we infer from (A.5)
that for all 8 > 0, there exists rg > 0 such that

u>rg = YT(u) > fu.
Since Y (u) is assumed to be nonnegative, one has
Y(u) > pu— Brg, Yu > 0,

so that (A.4) implies (A.3). Therefore, the problem reduces to show that such an T exists.
As a preliminary, we remark that the left-hand side of (A.4) is invariant by replacing ¢ by (1 — ¢), so that if
we establish (A.4) for ¢ > £, it will also hold true for ¢ < 1. Define

1-—X 1 1
Y(uw) = inf 24+ H = H | =- >0 Yu >0
(u) )\61%71){ 5 |u]® + ,\<u+2)+ ,\(2 U)}_ ; u =0,

then (A.4) automatically holds. It only remains to check that so does (A.5). The above definition of T can be
reformulated as
YT(u)= inf Z,(N), Yu > 0,

where, recalling the expression (A.1) of Hy, Z, is the C* function defined on [0,1) by

Z,(\) = PP+ (3 —u) log 173 + A if A < 2u,
202 + X —log(1+ A) + (% +u)log(1 + 2u) + (3 — u) log(1 — 2u) if A > 2u,

for all w > 0 and X € [0,1). An elementary study of this function shows that 2, reaches its minimum on [0, 1]

at
- 0 ifu <4,
W= -2 fuza

Using this expression in the above expression of Z,()), we can explicit T (u) as

Cil ifu<4
T(u) =1 2 =%
() { 1(u) + Tol(u) + A (u) ifu>4,

where we have set

2

Y (u) = % (1-M(w), and To(u)= (u_ 1) log LA (®).

2 1—2*(u)

Noticing that A*(u) ~ 1—2 as u tends to +00, one obtains that T1(u) ~ u behaves linearly at infinity. However,
Y (u) is super-linear, i.e. (A.5) holds since To(u) ~ ulogu as u — +o0. O

APPENDIX B. A DISCRETE AUBIN-SIMON LEMMA

The goal of this appendix is to state a ready to use discrete Aubin—Simon lemma adapted to our TPFA finite
volume framework. Several time-compactness results for the numerical approximations have been proposed in
the last decade, see for instance [2,3,11,18,19]. The statement we propose here is tailored for our application
rather than aiming at being general. It requires the introduction of a sequence of regular discretizations of Qr
as introduced before Theorem 2.4, the corresponding spaces X7, a¢,, and the approximate gradient operators
V r.. as in Proposition 4.2.

m
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Lemma B.1. Let (Tm,Em,(wK)KeTm ,Atm)m>1 be a sequence of reqular discretizations of Qr, and let
(uTmAtm)m>1 be a sequence of piecewise constant functions with ur, A+, € X7, At,, for all m > 1 such
that: B

(i) the sequences (uz,, at,),,>1 @A (VT Uz, Aty ) sy are bounded in L?(Qr) and L*(Qr)?* respectively;
(i) For all o7, At,, € X1, there holds B

D> mi (uk —ui ) ¢k < OV o1, a0l 20 (B.1)
n=1KeT,,

for some C not depending on m.

Then, up to a subsequence, ur,, at,, converges strongly in LE (Qr) towards u € L*((0,T); H'(Q)) as m tends
to +o00.

Proof. Let us first notice that, owing to Proposition 4.2, the properties (i) above ensures that uz,, a¢,, converges
weakly in L?(Qr) towards some u € L2((0,T); H'(Q)). Now, let us check that the assumptions of Proposition 3.8
from [3] are fulfilled. Assumption (A;) of [3] is automatically fulfilled for one-step time discretizations (including
the backwards Euler scheme). Besides, the condition (Ax1) of [3], which is about the compactness w.r.t. space
of sequences with bounded gradients holds, as established in [17] for SUSHI finite volume approximations. Since
the L?(Q7)? norm was used in the right-hand side of (B.1) (in opposition to the L°(Qr)? norm suggested
by [3]), it is sufficient to establish the relaxed version of condition (Ax3) of [3]: for any ¢ € C°(Q2), define

mg

1
@K:—/godw, VK € 1,,, Vm > 1,
K

and ¢, () = pg if & € K, then there exists some C > 0 such that
||VTm‘PTm||L2(QT)2 <C ||V‘PHL2(QT)2 5 vm > 1.

This constant C' is exactly the constant Cy introduced before, the inequality being established in Lemma 9.4 of
[16].
We are in position to make use of Proposition 3.8 from [3], which shows that for all ¢ € C*(Qr),

// |“Tm,Atm| @dmdt — // lul® ¢ da dt.

This allows in particular to show that

// lur, At., 7u|230dmdt — 0,
T m—0o0

hence the claimed L2 (Qr) convergence property. |

Lemma B.1 can be directly used on (¢;,7,, At,,),,>- Indeed, while ¢; 7,, a¢,, is uniformly bounded in L*>(Qr)
thus in L?(Q7) too, V1, ¢i 1, At, is uniformly bounded in L>((0,7); L?(2))?, thus in L*(Q7)? too. Moreover,

using (2.3), Cauchy—Schwarz inequality and 0 < ¢y <1, one gets that

Nm
n n—1
§ E mK (Q‘,K — G K )

n=1Ke7T,,

1/2
(Z At D1, ( ,;;,")) IV 1, 0T At 1202

n=1

< C||Vz, o1, At

m

L*(Qr)? -
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