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FINITE VOLUME APPROXIMATION OF A TWO-PHASE TWO FLUXES
DEGENERATE CAHN–HILLIARD MODEL

Clément Cancès1,* and Flore Nabet2

Abstract. We study a time implicit Finite Volume scheme for degenerate Cahn–Hilliard model pro-
posed in [W. E and P. Palffy-Muhoray, Phys. Rev. E 55 (1997) R3844–R3846] and studied mathemat-
ically by the authors in [C. Cancès, D. Matthes and F. Nabet, Arch. Ration. Mech. Anal. 233 (2019)
837–866]. The scheme is shown to preserve the key properties of the continuous model, namely mass
conservation, positivity of the concentrations, the decay of the energy and the control of the entropy
dissipation rate. This allows to establish the existence of a solution to the nonlinear algebraic system
corresponding to the scheme. Further, we show thanks to compactness arguments that the approximate
solution converges towards a weak solution of the continuous problems as the discretization parameters
tend to 0. Numerical results illustrate the behavior of the numerical model.
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1. The two-phase two fluxes degenerate Cahn–Hilliard model

The goal of this paper is to propose a convergent finite volume discretization for a degenerate Cahn–Hilliard
model proposed by E and Palffy-Muhoray [32] and studied in [8] by the authors. Before considering the numerical
scheme, let us describe and discuss the continuous model.

1.1. The continuous model

We consider a mixture made of two incompressible phases evolving in a bounded and connected polygonal
open subset Ω of R2 and on a time interval [0, 𝑇 ], where 𝑇 is an arbitrary finite time horizon. The composition
of the fluid is described by the volume fractions 𝑐 = (𝑐1, 𝑐2) of the two phases. Since the whole volume Ω is
occupied by the two phases, the following constraint on the 𝑐𝑖 holds

𝑐1 + 𝑐2 = 1 in (0, 𝑇 )× Ω. (1.1)

The evolution of the volume fractions is prescribed by the following partial differential equations

𝜕𝑡𝑐𝑖 −∇ ·
(︂

𝑐𝑖

𝜂𝑖
∇ (𝜇𝑖 + Ψ𝑖)

)︂
= 𝜃𝑖∆𝑐𝑖 in 𝑄𝑇 := (0, 𝑇 )× Ω. (1.2)
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In the above equation, 𝜂𝑖 > 0 denotes the viscosity of the phase 𝑖, 𝜇𝑖 is its chemical potential (which is one of the
unknown of the problem), while Ψ𝑖 ∈ 𝐻1(Ω) is a given external potential acting on phase 𝑖 that is assumed be
independent on time for simplicity. For Ψ𝑖, one can typically think about gravity, that is Ψ𝑖(𝑥) = −𝜚𝑖g ·𝑥 with
𝜚𝑖 the density of phase 𝑖 and g the gravitational vector. The coefficient 𝜃𝑖 ≥ 0 is a given parameter quantifying
the thermal agitation of phase 𝑖. The limit case 𝜃𝑖 = 0 is called the deep-quench limit in the Cahn–Hilliard
literature.

The difference of the phase chemical potentials is given by the following expression

𝜇1 − 𝜇2 = −𝛼∆𝑐1 + 𝜅(1− 2𝑐1) in 𝑄𝑇 , (1.3)

where 𝛼 > 0 and 𝜅 > 0 are given coefficients governing the characteristic size of the transition layers between
patches of pure phases {𝑐1 = 0} and {𝑐1 = 1}. Typically, 𝛼 is assumed to be small in comparison to 𝜅.
Equation (1.3) is complemented by homogeneous Neumann boundary conditions

∇𝑐𝑖 · 𝑛 = 0 on (0, 𝑇 )× 𝜕Ω, (1.4)

whereas (1.2) is complemented by no-flux boundary conditions

𝑐𝑖

𝜂𝑖
∇ (𝜇𝑖 + Ψ𝑖) · 𝑛 = 0 on (0, 𝑇 )× 𝜕Ω. (1.5)

Up to now, the chemical potentials are defined up to a common constant. This degree of freedom is fixed by
imposing a zero mean condition on the mean chemical potential 𝜇, i.e.,∫︁

Ω

𝜇(𝑡, 𝑥) d𝑥 = 0, ∀𝑡 ≥ 0, where 𝜇 = 𝑐1𝜇1 + 𝑐2𝜇2. (1.6)

Finally to close the system, we impose an initial condition 𝑐0 = (𝑐0
1, 𝑐

0
2) on the volume fractions by setting

𝑐𝑖|𝑡=0 = 𝑐0
𝑖 in Ω. (1.7)

The initial profiles 𝑐0
𝑖 ∈ 𝐻1(Ω) are assumed to be nonnegative with 𝑐0

1 + 𝑐0
2 = 1 in Ω, and we assume that both

phases are present at initial time, i.e., ∫︁
Ω

𝑐0
𝑖 d𝑥 > 0, 𝑖 ∈ {1, 2}. (1.8)

1.2. Fundamental estimates and weak solutions

As a preliminary to the study of the numerical scheme, we derive formally at the continuous level some
a priori estimates. Their transposition at the discrete level will be key in the numerical analysis to be proposed
in what follows. Equation (1.2) can be rewritten under the form

𝜕𝑡𝑐𝑖 + ∇ · 𝐹 𝑖 = 0, with 𝐹 𝑖 = − 𝑐𝑖

𝜂𝑖
∇ (𝜇𝑖 + Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖)) . (1.9)

In view of the boundary conditions (1.4) and (1.5), this ensures that the volume occupied by each phase is
preserved along time, namely ∫︁

Ω

𝑐𝑖(𝑡, 𝑥) d𝑥 =
∫︁

Ω

𝑐0
𝑖 (𝑥) d𝑥, for all 𝑡 ≥ 0.

Moreover, it can be shown by testing (1.2) by −𝑐−𝑖 = min(𝑐𝑖, 0) that 𝑐𝑖 ≥ 0 in (0, 𝑇 ) × Ω. Thanks to the
constraint (1.1), this directly provides that

0 ≤ 𝑐𝑖 ≤ 1 in (0, 𝑇 )× Ω.
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Multiplying (1.2) by 𝜇𝑖 + Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖), integrating over Ω and summing over 𝑖 yields∑︁
𝑖∈{1,2}

∫︁
Ω

𝜕𝑡𝑐𝑖 (𝜇𝑖 + Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖)) d𝑥 + D(𝑐, 𝜇) = 0,

where the energy dissipation D(𝑐, 𝜇) is given by

D(𝑐, 𝜇) =
∑︁

𝑖∈{1,2}

∫︁
Ω

𝑐𝑖

𝜂𝑖
|∇ (𝜇𝑖 + Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖))|2 d𝑥 ≥ 0.

As a consequence of (1.1), 𝜕𝑡𝑐2 = −𝜕𝑡𝑐1, so that the first term in the previous inequality can be rewritten as∑︁
𝑖∈{1,2}

∫︁
Ω

𝜕𝑡𝑐𝑖 (𝜇𝑖 + Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖)) =
∫︁

Ω

𝜕𝑡𝑐1(𝜇1 − 𝜇2) d𝑥 +
∑︁

𝑖∈{1,2}

∫︁
Ω

𝜕𝑡𝑐𝑖 (Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖)) d𝑥.

The second term in the right-hand side can be rewritten as∫︁
Ω

𝜕𝑡𝑐𝑖 (Ψ𝑖 + 𝜂𝑖𝜃𝑖 log(𝑐𝑖)) d𝑥 =
d
d𝑡

∫︁
Ω

∑︁
𝑖∈{1,2}

[𝑐𝑖Ψ𝑖 + 𝜂𝑖𝜃𝑖𝐻(𝑐𝑖)] d𝑥

with
𝐻(𝑐) = 𝑐 log(𝑐)− 𝑐 + 1 ≥ 0, 𝑐 ≥ 0, (1.10)

while we can make use of (1.3) to rewrite the first term as∫︁
Ω

𝜕𝑡𝑐1(𝜇1 − 𝜇2) d𝑥 =
d
d𝑡

∫︁
Ω

(︁𝛼

2
|∇𝑐1|2 + 𝜅𝑐1(1− 𝑐1)

)︁
d𝑥.

Therefore, we obtain the energy/energy dissipation relation

d
d𝑡

E(𝑐) + D(𝑐, 𝜇) = 0 for all 𝑡 ≥ 0, (1.11)

where the energy functional E(𝑐) is defined by

E(𝑐) =
∫︁

Ω

⎛⎝𝛼

2
|∇𝑐1|2 + 𝜅𝑐1(1− 𝑐1) +

∑︁
𝑖∈{1,2}

[𝑐𝑖Ψ𝑖 + 𝜂𝑖𝜃𝑖𝐻(𝑐𝑖)]

⎞⎠ d𝑥. (1.12)

A straightforward consequence of (1.11) is that 𝑡 ↦→ E(𝑐(𝑡)) is non-increasing along time, and thus that

E(𝑐(𝑡)) +
∫︁ 𝑡

0

D(𝑐(𝜏), 𝜇(𝜏)) d𝜏 = E
(︀
𝑐0
)︀

< ∞ for all 𝑡 ≥ 0. (1.13)

We deduce from previous inequality that the energy is bounded, hence a 𝐿∞((0, 𝑇 ); 𝐻1(Ω)) estimate on 𝑐𝑖.
The energy/energy dissipation estimate (1.11) is not sufficient to carry out our mathematical study since it

only provides a weighted estimate on the chemical potentials∑︁
𝑖∈{1,2}

∫︁∫︁
𝑄𝑇

𝑐𝑖|∇𝜇𝑖|2 d𝑥 d𝑡 ≤ 𝐶. (1.14)

In order to bypass this difficulty, one needs to quantify the production of mixing entropy. Let us multiply (1.2)
by 𝜂𝑖 log(𝑐𝑖), integrate over 𝑄𝑇 and sum over 𝑖 ∈ {1, 2}, which using (1.1) leads to
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𝑖∈{1,2}

∫︁
Ω

𝜂𝑖(𝐻(𝑐𝑖(𝑇, ·))−𝐻(𝑐0
𝑖 )) d𝑥 +

∑︁
𝑖∈{1,2}

∫︁∫︁
𝑄𝑇

∇𝑐𝑖 ·∇Ψ𝑖 d𝑥 d𝑡

+
∑︁

𝑖∈{1,2}

𝜃𝑖𝜂𝑖

∫︁∫︁
𝑄𝑇

𝑐𝑖 |∇ log(𝑐𝑖)|2 d𝑥 d𝑡 +
∫︁∫︁

𝑄𝑇

∇𝑐1 ·∇(𝜇1 − 𝜇2) d𝑥 d𝑡 = 0.

The first two terms can be bounded thanks to the 𝐿∞(𝑄𝑇 ) and 𝐿∞((0, 𝑇 ); 𝐻1(Ω)) estimates on 𝑐𝑖. For the last
term of the left-hand side, one makes use of (1.3) and (1.4) to rewrite it as∫︁∫︁

𝑄𝑇

∇𝑐1 ·∇(𝜇1 − 𝜇2) d𝑥 d𝑡 =
∫︁∫︁

𝑄𝑇

(−∆𝑐1)(−𝛼∆𝑐1 + 𝜅(1− 2𝑐1)) d𝑥 d𝑡

≥ 𝛼

2

∫︁∫︁
𝑄𝑇

|∆𝑐1|2 d𝑥 d𝑡− 𝜅

2𝛼

∫︁∫︁
𝑄𝑇

(1− 2𝑐1)2 d𝑥 d𝑡.

The 𝐿∞(𝑄𝑇 ) estimate on 𝑐1 shows that the last term of the right-hand side is bounded. At the end of the day,
since 𝑐𝑖|∇ log(𝑐𝑖)|2 = 4

⃒⃒
∇√𝑐𝑖

⃒⃒2, one gets

𝛼

2

∫︁∫︁
𝑄𝑇

|∆𝑐1|2 d𝑥 d𝑡 +
∑︁

𝑖∈{1,2}

4𝜃𝑖𝜂𝑖

∫︁∫︁
𝑄𝑇

|∇
√

𝑐𝑖|2 d𝑥 d𝑡 ≤ 𝐶. (1.15)

Combining this estimate with relation (1.3), we obtain a 𝐿2(𝑄𝑇 ) estimate on 𝜇1 − 𝜇2.
The last step aims at obtaining an 𝐿2(𝑄𝑇 ) bound on each 𝜇𝑖 independently. The definition (1.6) of 𝜇 yields

∇𝜇 = (𝜇1 − 𝜇2)∇𝑐1 +
∑︁

𝑖∈{1,2}

𝑐𝑖∇𝜇𝑖.

The first term is in 𝐿2((0, 𝑇 ); 𝐿1(Ω)) as the product of an element of 𝐿2(𝑄𝑇 ) with an element of
𝐿∞((0, 𝑇 ); 𝐿2(Ω)), while the second term is in 𝐿2(𝑄𝑇 ) since 0 ≤ 𝑐𝑖 ≤ 1 and thanks to (1.14). As a conse-
quence, ∇𝜇 is bounded in 𝐿2((0, 𝑇 ); 𝐿1(Ω)). Making use of the Poincaré-Sobolev estimate (recall that 𝜇 has
zero mean for all time, cf. (1.6), and that Ω ⊂ R2), we obtain that 𝜇 is bounded in 𝐿2(𝑄𝑇 ). To get the desired
𝐿2(𝑄𝑇 ) estimate on 𝜇1, it only remains to check that

𝜇1 = (𝑐1 + 𝑐2)𝜇1 = 𝜇− 𝑐2(𝜇1 − 𝜇2)

belongs to 𝐿2(𝑄𝑇 ) thanks to the 𝐿2(𝑄𝑇 ) estimates on 𝜇 and 𝜇1 − 𝜇2 together with 0 ≤ 𝑐2 ≤ 1.
The interest of the above formal calculations is twofold. First, our scheme has been designed so that all

these calculations can be transposed to the discrete setting. The corresponding a priori estimates will be at the
basis of the numerical analysis proposed in this paper. Second, these estimates provide enough regularity on
the solution to give a proper notion of weak solution to the problem.

Definition 1.1. (𝑐, 𝜇) is said to be a weak solution to the problem (1.1)–(1.7) if

– 𝑐𝑖 ∈ 𝐿∞(𝑄𝑇 ) ∩ 𝐿∞((0, 𝑇 ); 𝐻1(Ω)) with 𝑐𝑖 ≥ 0 and 𝑐1 + 𝑐2 = 1 a.e. in 𝑄𝑇 ;
– 𝜇𝑖 ∈ 𝐿2(𝑄𝑇 ) with 𝑐𝑖∇𝜇𝑖 ∈ 𝐿2(𝑄𝑇 ) and

∫︀
Ω

𝜇(𝑡, 𝑥) d𝑥 = 0 for a.e. 𝑡 ∈ (0, 𝑇 );
– For all 𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 )× Ω), there holds∫︁∫︁

𝑄𝑇

𝑐𝑖𝜕𝑡𝜙 d𝑥 d𝑡 +
∫︁

Ω

𝑐0
𝑖 𝜙(0, ·) d𝑥−

∫︁∫︁
𝑄𝑇

(︂
𝑐𝑖

𝜂𝑖
∇(𝜇𝑖 + Ψ𝑖) + 𝜃𝑖∇𝑐𝑖

)︂
·∇𝜙 d𝑥 d𝑡 = 0, (1.16)

as well as ∫︁∫︁
𝑄𝑇

(𝜇1 − 𝜇2)𝜙 d𝑥 d𝑡 =
∫︁∫︁

𝑄𝑇

[𝛼∇𝑐1 ·∇𝜙 + 𝜅(1− 2𝑐1)𝜙] d𝑥 d𝑡. (1.17)
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The existence of a weak solution has been established in [8] by showing the convergence of a minimizing
movement scheme à la Jordan et al. [23]. Note that in [8], the case of a convex three-dimensional domain Ω is
also addressed, but it relies on the fact that the 𝐿2(𝑄𝑇 ) estimate on ∆𝑐1 yields a 𝐿2((0, 𝑇 ); 𝐻2(Ω)) estimate
on 𝑐𝑖 for which we don’t have an equivalent at the discrete level. This is why we restrict our attention on the
case Ω ⊂ R2 (but not necessarily convex) in this paper.

1.3. Some words about the model

Before entering the core of the paper, which is devoted to the convergence analysis of a finite volume scheme,
let us briefly discuss the model under consideration, and in particular its difference with respect to the usual
Cahn–Hilliard system. We refer to [8,29] for a more developed discussions on this purpose. The classical degen-
erate Cahn–Hilliard equation which is the closest one to our system (1.1)–(1.7) writes

𝜕𝑡𝑐1 −∇ · (𝜆(𝑐1)∇ (𝜇g + Ψ1 −Ψ2)) = ∆𝑟(𝑐1) in (0, 𝑇 )× Ω, (1.18)

where the degenerate mobility is given by 𝜆(𝑐) = 𝑐(1−𝑐)
𝜂1+𝑐(𝜂2−𝜂1)

, the function governing the nonlinear diffusion 𝑟

is such that 𝑟′(𝑐) = 𝜆(𝑐)
(︁

𝜃1𝜂1
𝑐 + 𝜃2𝜂2

1−𝑐

)︁
, and the generalized chemical potential

𝜇g = 𝜇1 − 𝜇2 = −𝛼∆𝑐1 + 𝜅(1− 2𝑐1) in (0, 𝑇 )× Ω. (1.19)

This system has to be completed with one initial condition on 𝑐0
1 and boundary conditions

−𝜆(𝑐1)∇ (𝜇g + Ψ1 −Ψ2) · 𝑛 = 0 and ∇𝑐1 · 𝑛 = 0 on (0, 𝑇 )× 𝜕Ω.

The existence of a solution to this problem has been addressed in [14,25].
Let us come back to our system (1.1)–(1.7). Denote the total flux by 𝐹 tot = 𝐹 1 + 𝐹 2, then summing (1.9)

over 𝑖 ∈ {1, 2} yields
∇ · 𝐹 tot = −𝜕𝑡(𝑐1 + 𝑐2) = 0 in (0, 𝑇 )× Ω (1.20)

owing to (1.1). After some elementary calculations, the conservation (1.2) for the phase 1 rewrites

𝜕𝑡𝑐1 + ∇ · (𝑓(𝑐1)𝐹 tot − 𝜆(𝑐1)∇ (𝜇g + Ψ1 −Ψ2)) = ∆𝑟(𝑐1) in (0, 𝑇 )× Ω, (1.21)

where 𝑓(𝑐) = 𝜂2𝑐
𝜂1+(𝜂2−𝜂1)𝑐

. The equation (1.21) differs from (1.18) by the addition of a nonlinear transport term
driven by a divergence free vector field. Both systems can be reinterpreted as Wasserstein-type gradient flows [1]
of the energy E(𝑐) for different geometries:

– the Wasserstein distance with quadratic cost with the constraint 𝐹 tot = 0 for the classical Cahn–Hilliard
system, cf. [25];

– the Wasserstein distance with quadratic cost with the less stringent constraint ∇ · 𝐹 tot = 0 for the sys-
tem (1.1)–(1.7), cf. [8, 29].

The additional degree of freedom 𝐹 tot allows the energy E(𝑐) to decrease faster along the trajectories,
as highlighted in [8]. Finally, let us point the recent contribution [7] where the convergence of a minimizing
movement scheme is addressed for a closely related model where the Cahn–Hilliard energy is replaced by the
singular de Gennes–Flory–Higgins energy.

2. Finite volume approximation and main results

Prior to presenting the scheme and stating our main results, that are the existence of a discrete solution to
the scheme and the convergence of the corresponding approximate solutions towards a weak solution to the
problem (1.1)–(1.7), we introduce some notations and requirements concerning the mesh.
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2.1. (Super)-admissible mesh of Ω and time discretization

Let us first give a definition of what we call an admissible mesh.

Definition 2.1. An admissible mesh of Ω is a triplet
(︀
𝒯 , ℰ , (𝑥𝐾)𝐾∈𝒯

)︀
such that the following conditions are

fulfilled.

(i) Each control volume (or cell) 𝐾 ∈ 𝒯 is non-empty, open, polygonal and convex. We assume that

𝐾 ∩ 𝐿 = ∅ if 𝐾, 𝐿 ∈ 𝒯 with 𝐾 ̸= 𝐿, while
⋃︁

𝐾∈𝒯
𝐾 = Ω.

We denote by 𝑚𝐾 the 2-dimensional Lebesgue measure of 𝐾.
(ii) Each edge 𝜎 ∈ ℰ is closed and is contained in a hyperplane of R2, with positive 1-dimensional Hausdorff

(or Lebesgue) measure denoted by 𝑚𝜎 = ℋ1(𝜎) > 0. We assume that ℋ1(𝜎 ∩ 𝜎′) = 0 for 𝜎, 𝜎′ ∈ ℰ unless
𝜎′ = 𝜎. For all 𝐾 ∈ 𝒯 , we assume that there exists a subset ℰ𝐾 of ℰ such that 𝜕𝐾 =

⋃︀
𝜎∈ℰ𝐾

𝜎. Moreover,
we suppose that

⋃︀
𝐾∈𝒯 ℰ𝐾 = ℰ . Given two distinct control volumes 𝐾, 𝐿 ∈ 𝒯 , the intersection 𝐾∩𝐿 either

reduces to a single edge 𝜎 ∈ ℰ denoted by 𝐾|𝐿, or its 1-dimensional Hausdorff measure is 0.
(iii) The cell-centers (𝑥𝐾)𝐾∈𝒯 are pairwise distinct with 𝑥𝐾 ∈ 𝐾, and are such that, if 𝐾, 𝐿 ∈ 𝒯 share an edge

𝐾|𝐿, then the vector 𝑛𝐾𝐿 = 𝑥𝐿−𝑥𝐾

|𝑥𝐾−𝑥𝐿| is orthogonal to 𝐾|𝐿.
(iv) Given two cells 𝐾, 𝐿 ∈ 𝒯 sharing an edge 𝜎 = 𝐾|𝐿, we assume that the straight line joining 𝑥𝐾 and 𝑥𝐿

crosses the edge 𝜎 in its midpoint 𝑥𝜎.

Let us introduce some additional notations, some of them being depicted on Figure 1. The size of the mesh 𝒯
(which is intended to tend to 0 in the convergence proof) is defined by ℎ𝒯 = max𝐾∈𝒯 ℎ𝐾 , with ℎ𝐾 = diam(𝐾).
Given two neighboring cells 𝐾, 𝐿 ∈ 𝒯 sharing an edge 𝜎 = 𝐾|𝐿, we denote by 𝑑𝜎 = |𝑥𝐾 − 𝑥𝐿| whereas
𝑑𝐾𝜎 = |𝑥𝐾 −𝑥𝜎| ≤ 𝑑𝜎. The transmissivities 𝜏𝜎 and 𝜏𝐾𝜎 of the edge 𝜎 are respectively defined by 𝜏𝜎 = 𝑚𝜎

𝑑𝜎
and

𝜏𝐾𝜎 = 𝑚𝜎

𝑑𝐾𝜎
. The diamond 𝐷𝜎 and half diamond 𝐷𝐾𝜎 cells are defined as the convex hulls of {𝑥𝐾 , 𝑥𝐿, 𝜎} and

{𝑥𝐾 , 𝜎} respectively. Denoting by 𝑚𝐷𝜎
(resp. 𝑚𝐷𝐾𝜎

) the 2-dimensional Lebesgue measure of 𝐷𝜎 (resp. 𝐷𝐾𝜎),
we will use many time the following elementary geometric properties: 𝑑𝜎𝑚𝜎 = 2𝑚𝐷𝜎 and 𝑑𝐾𝜎𝑚𝜎 = 2𝑚𝐷𝐾𝜎

.
We also denote by ℰ𝐾,int the subset of ℰ𝐾 made of the internal edges 𝜎 such that there exists 𝐿 ∈ 𝒯 such that
𝜎 = 𝐾|𝐿, and by ℰint =

⋃︀
𝐾∈𝒯 ℰ𝐾,int.

Even though this is absolutely not necessary, we choose to restrict our attention to the case of uniform time
discretizations in the mathematical proofs in order to reduce the amount of notations. In what follows, we set
∆𝑡 = 𝑇/𝑁 and 𝑡𝑛 = 𝑛∆𝑡 for 𝑛 ∈ {0, . . . , 𝑁}. The integer 𝑁 is intended to be large and even to tend to +∞ in
the convergence proof.

Remark 2.2. Condition (iv) above enforces an additional restriction with respect to the classical definition
of finite volumes meshes with orthogonality condition (iii). Meshes satisfying this condition in addition to the
more classical assumptions (i)–(iii) is called super-admissible following the terminology introduced in [17]. It is
for instance satisfied by cartesian grids or by acute triangulations. However, (iv) is in general not satisfied by
Voronöı meshes. This condition appears for technical reasons related to the construction of a strongly convergent
SUSHI discrete gradient [17], see Proposition 4.2 later on. On the other hand, this condition was recently pushed
forward in [20] to show the consistency of the discrete optimal transportation geometry [26] hidden behind our
work with the continuous optimal transportation geometry [31] in which our system (1.1)–(1.7) has a gradient
flow structure [8].

2.2. A two-point flux approximation finite volume scheme

The scheme we propose is a cell-centered scheme based on two-point flux approximation (TPFA) finite vol-
umes. At each time step 𝑛 ∈ {1, . . . , 𝑁}, then unknowns are located at the centers 𝑥𝐾 of the cells 𝐾 ∈ 𝒯 .
Given discrete volume fractions 𝑐𝑛−1 =

(︁
𝑐𝑛−1
1,𝐾 , 𝑐𝑛−1

2,𝐾

)︁
𝐾∈𝒯

at time 𝑡𝑛−1, we look for updated volume fractions
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Figure 1. Illustration of an admissible mesh in the sense of Definition 2.1. Each point 𝑥𝐾

belongs to the cell 𝐾 for 𝐾 ∈ 𝒯 . For any 𝜎 = 𝐾|𝐿, the segment [𝑥𝐾 , 𝑥𝐿] intersects 𝜎 at its
midpoint 𝑥𝜎 in an orthogonal way. This properties hold for meshes made of triangles with
acute angles if 𝑥𝐾 is chosen as the center of the circumcircle of the triangle 𝐾. On the right
figure, the dashed area is the diamond cell 𝐷𝜎 corresponding to the edge 𝜎 = 𝐾|𝐿. It is made
of 𝐷𝐾,𝜎 = 𝐷𝜎 ∩𝐾 (in green), 𝐷𝐿𝜎 = 𝐷𝜎 ∩ 𝐿 (in red), and of the edge 𝜎 = 𝐾|𝐿 (in blue), the
length of which is equal to 𝑚𝜎.

𝑐𝑛 =
(︀
𝑐𝑛
1,𝐾 , 𝑐𝑛

2,𝐾

)︀
𝐾∈𝒯 and chemical potentials 𝜇𝑛 =

(︀
𝜇𝑛

1,𝐾 , 𝜇𝑛
2,𝐾

)︀
𝐾∈𝒯 at time 𝑡𝑛 that are expected to approxi-

mate the mean values on 𝐾 of their continuous counterparts 𝑐(𝑡𝑛) and 𝜇(𝑡𝑛). At time 𝑡 = 0, we initialize the
procedure by setting

𝑐0
𝑖,𝐾 =

1
𝑚𝐾

∫︁
𝐾

𝑐0
𝑖 d𝑥, ∀𝐾 ∈ 𝒯 , 𝑖 ∈ {1, 2}. (2.1)

As highlighted in the formal calculations presented in Section 1.2, the analysis requires the use of the logarithm
of the volume fractions. To this end, the volume fractions 𝑐𝑛

𝑖,𝐾 have to be strictly positive for 𝑛 ≥ 1. To ensure
this property, some thermal diffusion is needed, see Lemma 3.2. In the case where 𝜃𝑖 = 0, then one needs to
introduce a small amount of numerical diffusion by setting

𝜃𝑖,𝒯 = max(𝜃𝑖, 𝜌ℎ𝒯 ) > 0, 𝑖 ∈ {1, 2}, (2.2)

where 𝜌 > 0 is a parameter that can be fixed by the user. Equation (1.2) is then discretized into

𝑚𝐾

𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

∆𝑡
+

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

[︂
𝑐𝑛
𝑖,𝜎

𝜂𝑖

(︀
𝜇𝑛

𝑖,𝐾 + Ψ𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿 −Ψ𝑖,𝐿

)︀
+ 𝜃𝑖,𝒯 (𝑐𝑛

𝑖,𝐾 − 𝑐𝑛
𝑖,𝐿)
]︂

= 0 (2.3)

for all 𝐾 ∈ 𝒯 and 𝑖 ∈ {1, 2}. In the above relation, we used the following discretization of the external potential:

Ψ𝑖,𝐾 =
1

𝑚𝐾

∫︁
𝐾

Ψ𝑖(𝑥) d𝑥, ∀𝐾 ∈ 𝒯 , 𝑖 ∈ {1, 2}.

Edge values 𝑐𝑛
𝑖,𝜎 of the discrete volume fractions also appear in (2.3). Rather than using upstream values of the

volume fractions as in our previous work [9], we make use of a logarithmic mean, i.e.,

𝑐𝑛
𝑖,𝜎 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑐𝑛
𝑖,𝐾 if 𝑐𝑛

𝑖,𝐾 = 𝑐𝑛
𝑖,𝐿 ≥ 0,

0 if min(𝑐𝑛
𝑖,𝐾 , 𝑐𝑛

𝑖,𝐿) ≤ 0,

𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

log
(︁
𝑐𝑛
𝑖,𝐾

)︁
− log(𝑐𝑛

𝑖,𝐿)
otherwise,

(2.4)
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for all 𝜎 = 𝐾|𝐿 ∈ ℰint and 𝑖 ∈ {1, 2}. This particular choice of the edge value is closely related to the
one introduced in the early work [22] for the approximation of the thin film equation, and fits with the one
suggested in [26,28] and used in a closely related context to ours in [27]. Equation (1.3) is discretized into

𝜇𝑛
1,𝐾 − 𝜇𝑛

2,𝐾 =
𝛼

𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀
+ 𝜅(1− 2𝑐𝑛−1

1,𝐾 ), ∀𝐾 ∈ 𝒯 . (2.5)

Note that the repulsive term (second in the right-hand side) is discretized in an explicit way for stability issues
that will appear clearly later on. The constraint (1.1) is discretized in a straightforward way by imposing

𝑐𝑛
1,𝐾 + 𝑐𝑛

2,𝐾 = 1, ∀𝐾 ∈ 𝒯 . (2.6)

The last equation to be transposed in the discrete setting is (1.6), which is translated into∑︁
𝐾∈𝒯

𝑚𝐾𝜇𝑛
𝐾 = 0, where 𝜇𝑛

𝐾 = 𝑐𝑛
1,𝐾𝜇𝑛

1,𝐾 + 𝑐𝑛
2,𝐾𝜇𝑛

2,𝐾 . (2.7)

2.3. Main results

Before addressing the convergence of the scheme, we focus first on the case of a fixed mesh and time dis-
cretization. The scheme (2.3)–(2.7) yields a nonlinear system on (𝑐𝑛, 𝜇𝑛). The existence of a solution to this
nonlinear system is far from being obvious. The existence of such a solution and some important properties of
the discrete solution mimicking the properties highlighted in Section 1.2 are gathered in the first theorem of
this paper.

Theorem 2.3. Assume that the inverse CFL condition (3.18) is fulfilled, then there exists (at least) one solution
(𝑐𝑛, 𝜇𝑛)𝑛≥1 to the scheme (2.3)–(2.7). Moreover, this solution satisfies the following properties:

(i) mass conservation: ∑︁
𝐾∈𝒯

𝑚𝐾𝑐𝑛
𝑖,𝐾 =

∫︁
Ω

𝑐0
𝑖 d𝑥, 𝑛 ≥ 0, 𝑖 ∈ {1, 2};

(ii) positivity:
0 < 𝑐𝑛

𝑖,𝐾 < 1, 𝐾 ∈ 𝒯 , 𝑖 ∈ {1, 2}, 𝑛 ≥ 1;

(iii) energy decay:
E𝒯 (𝑐𝑛)− E𝒯

(︀
𝑐𝑛−1

)︀
∆𝑡

+ D (𝑐𝑛, 𝜇𝑛) ≤ 0, ∀𝑛 ≥ 1,

where the discrete energy E (𝑐𝑛) is defined by

E𝒯 (𝑐𝑛) =
𝛼

2

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2 (2.8)

+
∑︁
𝐾∈𝒯

𝑚𝐾

⎧⎨⎩𝜅𝑐𝑛
1,𝐾𝑐𝑛

2,𝐾 +
∑︁

𝑖={1,2}

(︀
𝑐𝑛
𝑖,𝐾Ψ𝑖,𝐾 + 𝜃𝑖,𝒯 𝜂𝑖𝐻

(︀
𝑐𝑛
𝑖,𝐾

)︀)︀⎫⎬⎭ ,

where 𝐻 is given by (1.10), and the discrete dissipation is defined by

D𝒯 (𝑐𝑛, 𝜇𝑛) =
∑︁

𝑖∈{1,2}

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

𝑐𝑛
𝑖,𝜎

𝜂𝑖

(︃
𝜇𝑛

𝑖,𝐾 + Ψ𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿 − Ψ𝑖,𝐿 + 𝜃𝑖,𝒯 𝜂𝑖

(︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log(𝑐𝑛

𝑖,𝐿)
)︀)︃2

. (2.9)
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The existence of a solution to the scheme for each time step allows to reconstruct an approximate solution
(𝑐𝒯 ,Δ𝑡, 𝜇𝒯 ,Δ𝑡) with 𝑐𝒯 ,Δ𝑡 = (𝑐1,𝒯 ,Δ𝑡, 𝑐2,𝒯 ,Δ𝑡) and 𝜇𝒯 ,Δ𝑡 = (𝜇1,𝒯 ,Δ𝑡, 𝜇2,𝒯 ,Δ𝑡) by setting

𝑐𝑖,𝒯 ,Δ𝑡(𝑡, 𝑥) = 𝑐𝑛
𝑖,𝐾 and 𝜇𝑖,𝒯 ,Δ𝑡(𝑡, 𝑥) = 𝜇𝑛

𝑖,𝐾 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐾, 𝑖 ∈ {1, 2}. (2.10)

The approximate solutions are expected to approximate the continuous solution to (1.1)–(1.7). Our second
theorem gives a mathematical foundation to this statement. It requires the introduction of a suitable sequence
of discretizations of 𝑄𝑇 . In what follows, we denote by

(︀
𝒯𝑚, ℰ𝑚, (𝑥𝐾)𝐾∈𝒯𝑚

)︀
𝑚≥1

a sequence of admissible meshes
of Ω is the sense of Definition 2.1. We assume that ℎ𝒯𝑚

tends to 0 as 𝑚 →∞ as well as the following regularity
requirements:

– shape regularity of the cells: there exists a finite 𝜁 > 1 such that

𝑑𝜎 ≤ 𝜁𝑑𝐾𝜎, ∀𝑚 ≥ 1, ∀𝐾 ∈ 𝒯𝑚, ∀𝜎 ∈ ℰ𝐾,int,𝑚, (2.11)

and such that
𝑚𝐾 ≥ 1

𝜁
(ℎ𝐾)2, ∀𝑚 ≥ 1, ∀𝐾 ∈ 𝒯𝑚; (2.12)

– boundedness of the number of edges per element: there exists ℓ⋆ ≥ 3 such that

#ℰ𝐾 ≤ ℓ⋆, ∀𝑚 ≥ 1, ∀𝐾 ∈ 𝒯𝑚; (2.13)

– control on the transmissivities: there exist 𝜏⋆, 𝜏⋆ ≥ 0 such that

𝜏⋆ ≥ 𝜏𝜎 ≥ 𝜏⋆ > 0, ∀𝑚 ≥ 1, ∀𝜎 ∈ ℰint,𝑚. (2.14)

The combination of a sequence
(︀
𝒯𝑚, ℰ𝑚, (𝑥𝐾)𝐾∈𝒯𝑚

)︀
𝑚≥1

fulfilling (2.11)–(2.14) together with a time step ∆𝑡𝑚 =
𝑇/𝑁𝑚 and 𝑁𝑚 → +∞ as 𝑚 →∞ is said to be a regular discretization of 𝑄𝑇 if it moreover satisfies the inverse
CFL condition (3.18).

Theorem 2.4. Let
(︀
𝒯𝑚, ℰ𝑚, (𝑥𝐾)𝐾∈𝒯𝑚

, ∆𝑡𝑚
)︀
𝑚≥1

be a sequence of regular discretizations of 𝑄𝑇 , and let(︀
𝑐𝒯𝑚,Δ𝑡𝑚

, 𝜇𝒯𝑚,Δ𝑡𝑚

)︀
𝑚≥1

be a corresponding sequence of approximate solutions. Then there exists a weak solution
(𝑐, 𝜇) to (1.1)–(1.7) in the sense of Definition 1.1 such that, up to a subsequence,

𝑐𝑖,𝒯𝑚,Δ𝑡𝑚 −→
𝑚→∞

𝑐𝑖 a.e. in 𝑄𝑇 and 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚 −→
𝑚→∞

𝜇𝑖 weakly in 𝐿2(𝑄𝑇 ).

The convergence properties stated in Theorem 2.4 are weaker than what is practically proved in the paper.
The statement of optimal convergence properties would require the introduction of additional material that we
postpone to the proof in order to optimize the readability of the paper.

The remaining of the paper is organized as follows. In Section 3, we work at fixed mesh and time step.
We derive some a priori estimates and show the existence of (at least) one solution to the scheme thanks
to a topological degree argument. Next in Section 4, we show thanks to compactness arguments that the
approximate solution converge towards a weak solution to the scheme. Finally, we present in Section 5 some
numerical simulations.

3. A PRIORI estimates and existence of a discrete solution

In Section 3.1, we first derive some a priori estimates on the solutions to the scheme (2.3)–(2.7). These
estimates will be at the basis of the existence proof for a discrete solution to the scheme in Section 3.2, but also
of the convergence proof carried out in Section 4.
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3.1. A priori estimates

This section is devoted to the derivation to all the a priori estimates needed in the numerical analysis of the
scheme. The first of them is the global conservation of mass, which is a consequence of the local conservativity
of the scheme.

Lemma 3.1. For all 𝑛 ≥ 0 and 𝑖 ∈ {1, 2}, there holds∑︁
𝐾∈𝒯

𝑚𝐾𝑐𝑛
𝑖,𝐾 =

∫︁
Ω

𝑐0
𝑖 d𝑥 > 0. (3.1)

Proof. Summing (2.3) over 𝐾 ∈ 𝒯 and using the conservativity of the scheme leads to∑︁
𝐾∈𝒯

𝑚𝐾𝑐𝑛
𝑖,𝐾 =

∑︁
𝐾∈𝒯

𝑚𝐾𝑐𝑛−1
𝑖,𝐾 , 𝑖 ∈ {1, 2}, 𝑛 ∈ {1, . . . , 𝑁}.

A straightforward induction and the definition (2.1) of 𝑐0
𝑖,𝐾 then provides (3.1). �

Our second lemma shows that the volume fractions are positive.

Lemma 3.2. Let 𝑛 ≥ 1, and let (𝑐𝑛, 𝜇𝑛) be a solution to the scheme (2.3)–(2.7), then

0 < 𝑐𝑛
𝑖,𝐾 < 1, ∀𝐾 ∈ 𝒯 , ∀𝑛 ≥ 1, ∀𝑖 ∈ {1, 2}. (3.2)

Proof. Assume by induction that 0 ≤ 𝑐𝑛−1
𝑖,𝐾 and

∑︀
𝐾 𝑚𝐾𝑐𝑛−1

𝑖,𝐾 > 0 (the later having been established for all
𝑛 ≥ 1 in Lem. 3.1), and suppose for contradiction that

𝑐𝑛
𝑖,𝐾 = min

𝐿∈𝒯
𝑐𝑛
𝑖,𝐿 ≤ 0,

so that 𝑐𝑛
𝑖,𝜎 = 0 for all 𝜎 ∈ ℰ𝐾,int. Therefore, on this specific control volume 𝐾, the scheme (2.3) reduces to

𝑚𝐾

𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

∆𝑡
+ 𝜃𝑖,𝒯

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎(𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿) = 0.

The left-hand side is nonpositive, and even negative unless 𝑐𝑛
𝑖,𝐿 = 𝑐𝑛

𝑖,𝐾 ≤ 0 for all the neighbouring cells 𝐿 of
𝐾. We can thus iterate the argument and show that 𝑐𝑛

𝑖,𝐿≤0 for all 𝐿 ∈ 𝒯 , which provides a contradiction with
the property

∑︀
𝐾 𝑚𝐾𝑐𝑛

𝑖,𝐾 > 0 established in Lemma 3.1. �

As a consequence of Lemma 3.2, the quantities log
(︀
𝑐𝑛
𝑖,𝐾

)︀
have a sense. They will be used many times along the

paper. Our next lemma consists in discrete counterparts of the energy/energy dissipation relations (1.11)–(1.13).

Lemma 3.3. Let (𝑐𝑛, 𝜇𝑛) be a solution to the scheme (2.3)–(2.7), then the following discrete energy dissipation
relation holds

E𝒯 (𝑐𝑛)− E𝒯
(︀
𝑐𝑛−1

)︀
∆𝑡

+ D𝒯 (𝑐𝑛, 𝜇𝑛) ≤ 0, ∀𝑛 ≥ 1,

where the discrete energy E𝒯 and the discrete dissipation D𝒯 are defined by (2.8) and (2.9) respectively.

Proof. Multiplying (2.3) by 𝜇𝑛
𝑖,𝐾 + Ψ𝑖,𝐾 + 𝜃𝑖,𝒯 𝜂𝑖 log

(︀
𝑐𝑛
𝑖,𝐾

)︀
and summing over 𝑖 ∈ {1, 2} and 𝐾 ∈ 𝒯 yields

𝐴1 + 𝐴2 + 𝐴3 + D𝒯 (𝑐𝑛, 𝜇𝑛) = 0, (3.3)
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where

𝐴1 =
∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

∑︁
𝑖∈{1,2}

(︁
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
𝜇𝑛

𝑖,𝐾 , 𝐴2 =
∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

∑︁
𝑖∈{1,2}

(︁
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
𝜃𝑖,𝒯 𝜂𝑖 log

(︀
𝑐𝑛
𝑖,𝐾

)︀
,

and
𝐴3 =

∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

∑︁
𝑖∈{1,2}

(︁
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
Ψ𝑖,𝐾 . (3.4)

It follows from a convexity inequality that

𝐴2 ≥
∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

∑︁
𝑖∈{1,2}

𝜃𝑖,𝒯 𝜂𝑖

(︁
𝐻
(︀
𝑐𝑛
𝑖,𝐾

)︀
−𝐻

(︁
𝑐𝑛−1
𝑖,𝐾

)︁)︁
. (3.5)

Using (2.6) and (2.5), the term 𝐴1 rewrites

𝐴1 =
∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

(︁
𝑐𝑛
1,𝐾 − 𝑐𝑛−1

1,𝐾

)︁ (︀
𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾

)︀
= 𝐴11 + 𝐴12, (3.6)

with

𝐴11 =
𝛼

∆𝑡

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀ (︁
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿 − 𝑐𝑛−1
1,𝐾 + 𝑐𝑛−1

1,𝐿

)︁

𝐴12 = 𝜅
∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

(︁
1− 2𝑐𝑛−1

1,𝐾

)︁(︁
𝑐𝑛
1,𝐾 − 𝑐𝑛−1

1,𝐾

)︁
.

Using again elementary convexity inequalities, one gets that

𝐴11 ≥
𝛼

2∆𝑡

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︂(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2−(︁𝑐𝑛−1
1,𝐾 − 𝑐𝑛−1

1,𝐿

)︁2
)︂

, (3.7)

and
𝐴12 ≥ 𝜅

∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

{︁
𝑐𝑛
1,𝐾

(︀
1− 𝑐𝑛

1,𝐾

)︀
− 𝑐𝑛−1

1,𝐾

(︁
1− 𝑐𝑛−1

1,𝐾

)︁}︁
.

The relation (2.6) allows to rewrite the right-hand side of the above inequality, so that

𝐴12 ≥ 𝜅
∑︁
𝐾∈𝒯

𝑚𝐾

∆𝑡

{︁
𝑐𝑛
1,𝐾𝑐𝑛

2,𝐾 − 𝑐𝑛−1
1,𝐾 𝑐𝑛−1

2,𝐾

}︁
. (3.8)

The combination of (3.4)–(3.8) in (3.3) concludes the proof of Lemma 3.3. �

The boundedness of the discrete energy E (𝑐𝑛) provides a discrete 𝐿∞((0, 𝑇 ); 𝐻1(Ω)) estimate on the volume
fractions, as established in the next corollary.

Corollary 3.4. There exists 𝐶1 depending only on Ω, 𝛼, 𝜅, Ψ, 𝜃𝑖, 𝑐0
𝑖 , and 𝜁 such that∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2 ≤ 𝐶1. (3.9)
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Proof. As a straightforward consequence of Lemma 3.3, the energy is decaying along the time steps, so that

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2 +
2
𝛼

∑︁
𝑖∈{1,2}

∑︁
𝐾∈𝒯

𝑚𝐾𝑐𝑛
𝑖,𝐾Ψ𝑖,𝐾 ≤ 2

𝛼
E𝒯 (𝑐𝑛) ≤ 2

𝛼
E𝒯
(︀
𝑐0
)︀

≤
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐0
1,𝐾 − 𝑐0

1,𝐿

)︀2
+

2
𝛼

∑︁
𝐾∈𝒯

𝑚𝐾

⎧⎨⎩𝜅𝑐0
1,𝐾𝑐0

2,𝐾 +
∑︁

𝑖∈{1,2}

[︀
Ψ𝑖,𝐾𝑐0

𝑖,𝐾 + 𝜃𝑖,𝒯 𝜂𝑖𝐻
(︀
𝑐0
𝑖,𝐾

)︀]︀⎫⎬⎭ .

Since 𝑐0
1,𝐾 + 𝑐0

2,𝐾 = 1, there holds ∑︁
𝐾∈𝒯

𝑚𝐾𝜅𝑐0
1,𝐾𝑐0

2,𝐾 ≤ 𝜅

4
|Ω|.

Owing to Lemma 9.4 of [16], there exists 𝐶2 depending only on 𝜁 such that∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎(𝑐0
1,𝐾 − 𝑐0

1,𝐿)2 ≤ 𝐶2

∫︁
Ω

|∇𝑐0
1|2d𝑥,

whereas Jensen’s inequality ensures that∑︁
𝐾∈𝒯

𝑚𝐾𝜃𝑖,𝒯 𝜂𝑖𝐻(𝑐0
𝑖,𝐾) ≤ 𝜃𝑖,𝒯 𝜂𝑖

∫︁
Ω

𝐻(𝑐0
𝑖 ) d𝑥 ≤ 𝜃𝑖,𝒯 𝜂𝑖|Ω|.

Finally, since 0 ≤ 𝑐𝑛
𝑖,𝐾 ≤ 1 for 𝑛 ≥ 0, we have

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2 ≤ 𝐶2

∫︁
Ω

|∇𝑐0
1|2d𝑥 +

|Ω|
𝛼

⎛⎝𝜅

2
+ 2

∑︁
𝑖∈{1,2}

(︂
𝜃𝑖,𝒯 𝜂𝑖 +

2
|Ω|
‖Ψ𝑖‖𝐿1(Ω)

)︂⎞⎠ .

�

Let us now focus on the quantification of the production of mixing entropy at the discrete level. Our next
lemma provides a discrete counterpart to Estimate (1.15).

Lemma 3.5. There exists 𝐶3 depending only on Ω, 𝛼, 𝜅, 𝑇 , Ψ𝑖, 𝜂𝑖, 𝜃𝑖, 𝜁 and 𝑐0
1 such that

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀⎞⎟⎟⎠
2

+
𝑁∑︁

𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

𝜂𝑖 𝜃𝑖,𝒯
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀ (︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log

(︀
𝑐𝑛
𝑖,𝐿

)︀)︀
≤ 𝐶3. (3.10)

As a consequence, there exists 𝐶4 depending only on Ω, 𝛼, 𝜅, 𝑇 , Ψ𝑖, 𝜂𝑖, 𝜃𝑖, 𝜁 and 𝑐0
1 such that

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾

)︀2 ≤ 𝐶4. (3.11)
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Proof. Multiplying (2.3) by ∆𝑡𝜂𝑖 log
(︀
𝑐𝑛
𝑖,𝐾

)︀
and summing over 𝑖 ∈ {1, 2}, 𝑛 ∈ {1, . . . , 𝑁} and 𝐾 ∈ 𝒯 yields

𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 = 0, (3.12)

where we have set

𝐴1 =
∑︁

𝑖∈{1,2}

𝜂𝑖

𝑁∑︁
𝑛=1

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
,

𝐴2 =
∑︁

𝑖∈{1,2}

𝑁∑︁
𝑛=1

∆𝑡
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎

(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀ (︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log

(︀
𝑐𝑛
𝑖,𝐿

)︀)︀
,

𝐴3 =
∑︁

𝑖∈{1,2}

𝑁∑︁
𝑛=1

∆𝑡
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎 (Ψ𝑖,𝐾 −Ψ𝑖,𝐿)

(︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log(𝑐𝑛

𝑖,𝐿)
)︀
,

𝐴4 =
𝑁∑︁

𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

𝜂𝑖𝜃𝑖,𝒯
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀ (︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log

(︀
𝑐𝑛
𝑖,𝐿

)︀)︀
. (3.13)

It follows from the convexity of 𝐻 that

𝐴1 ≥
∑︁

𝑖∈{1,2}

𝜂𝑖

𝑁∑︁
𝑛=1

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝐻
(︀
𝑐𝑛
𝑖,𝐾

)︀
−𝐻

(︁
𝑐𝑛−1
𝑖,𝐾

)︁)︁
=

∑︁
𝑖∈{1,2}

𝜂𝑖

∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝐻
(︀
𝑐𝑁
𝑖,𝐾

)︀
−𝐻

(︀
𝑐0
𝑖,𝐾

)︀)︀
≥ −

∑︁
𝑖∈{1,2}

𝜂𝑖

∑︁
𝐾∈𝒯

𝑚𝐾 ≥ −𝐶.

. (3.14)

The particular choice (2.4) for 𝑐𝑛
𝑖,𝜎 was fixed so that

𝑐𝑛
𝑖,𝜎

(︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log

(︀
𝑐𝑛
𝑖,𝐿

)︀)︀
= 𝑐𝑛

𝑖,𝐾 − 𝑐𝑛
𝑖,𝐿, 𝑛 ≥ 1, 𝜎 = 𝐾|𝐿.

Therefore, using (2.6) and Cauchy–Schwarz inequality, we deduce that

𝐴3 =
𝑁∑︁

𝑛=1

∆𝑡
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀
(Ψ1,𝐾 −Ψ1,𝐿 −Ψ2,𝐾 + Ψ2,𝐿) (3.15)

≥ −
𝑁∑︁

𝑛=1

∆𝑡

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2
⎞⎟⎟⎠

1/2 ∑︁
𝑖∈{1,2}

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎(Ψ𝑖,𝐾 −Ψ𝑖,𝐿)2

⎞⎟⎟⎠
1/2

≥ −𝐶,

where the last inequality is a consequence of Corollary 3.4 and of estimate∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎 (Ψ𝑖,𝐾 −Ψ𝑖,𝐿)2 ≤ 𝐶, (3.16)

which itself is a consequence of Lemma 9.4 from [16] and of the 𝐻1(Ω) regularity of the external potentials Ψ𝑖.
Similarly, one can rewrite

𝐴2 =
𝑁∑︁

𝑛=1

∆𝑡
∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀
(𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾 − 𝜇𝑛

1,𝐿 + 𝜇𝑛
2,𝐿),
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=
𝑁∑︁

𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀⎞⎟⎟⎠(︀𝜇𝑛
1,𝐾 − 𝜇𝑛

2,𝐾

)︀
.

Thanks to the relation (2.5), it turns to

𝐴2 = 𝛼

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀⎞⎟⎟⎠
2

+ 𝜅

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀⎞⎟⎟⎠(︁1− 2𝑐𝑛−1
1,𝐾

)︁
.

Using the fact that 0 ≤ 𝑐𝑛−1
1,𝐾 ≤ 1 and the inequality 𝑎𝑏 ≥ − 𝛼

2𝜅𝑎2 − 𝜅
2𝛼𝑏2, we obtain

𝐴2 ≥
𝛼

2

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀⎞⎟⎟⎠
2

− 𝐶. (3.17)

The combination of (3.13)–(3.17) in (3.12) provides (3.10). Let us now focus on estimate (3.11). Equality (2.5)
gives

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾

)︀2 ≤ 2𝛼2
𝑁∑︁

𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀⎞⎟⎟⎠
2

+ 2𝜅2
𝑁∑︁

𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

(︁
1− 2𝑐𝑛−1

1,𝐾

)︁2

.

Since 0 ≤ 𝑐𝑛−1
1,𝐾 ≤ 1 and the logarithmic function is increasing, estimate (3.10) concludes the proof. �

The following lemma is a transposition to the discrete setting of the weighted estimate (1.14) on the chemical
potentials.

Lemma 3.6. There exists 𝐶5 depending only on 𝛼, 𝜅, 𝑐0
𝑖 , Ψ𝑖, 𝑇 , Ω, 𝜂𝑖 and 𝜁 such that

𝑁∑︁
𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎

(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀2 ≤ 𝐶5.

Proof. Definition (2.9) of D𝒯 (𝑐𝑛, 𝜇𝑛) together with inequality (𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2) yield
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1
max𝑖 𝜂𝑖

𝑁∑︁
𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎

(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀2 ≤ 3
𝑁∑︁

𝑛=1

∆𝑡 D𝒯 (𝑐𝑛, 𝜇𝑛)

+ 3
𝑁∑︁

𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

𝑐𝑛
𝑖,𝜎

𝜂𝑖

(︁
(Ψ𝑖,𝐾 −Ψ𝑖,𝐿)2 + (𝜃𝑖,𝒯 𝜂𝑖)2

(︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log(𝑐𝑛

𝑖,𝐿)
)︀2)︁

.

Owing to Lemma 3.3, the first term of the right-hand side is bounded by

𝑁∑︁
𝑛=1

∆𝑡 D𝒯 (𝑐𝑛, 𝜇𝑛) ≤ E𝒯
(︀
𝑐0
)︀
− E𝒯 (𝑐𝑁 ) ≤ 2E𝒯

(︀
𝑐0
)︀
,

which is bounded as already seen in the proof of Corollary 3.4. On the other hand, since 0 ≤ 𝑐𝑛
𝑖,𝜎 ≤ 1, one has

𝑁∑︁
𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

𝑐𝑛
𝑖,𝜎

𝜂𝑖
(Ψ𝑖,𝐾 −Ψ𝑖,𝐿)2 ≤ 𝑇𝐶2

∑︁
𝑖∈{1,2}

1
𝜂𝑖
‖Ψ𝑖‖𝐻1(Ω).

Finally,
𝑁∑︁

𝑛=1

∆𝑡
∑︁

𝑖∈{1,2}

𝜂𝑖

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎(𝜃𝑖,𝒯 )2

(︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log(𝑐𝑛

𝑖,𝐿)
)︀2 ≤ 𝐶3 max

𝑖
𝜃𝑖,𝒯

thanks to Lemma 3.5. �

Relation (2.6) guarantees that the sum of the volume fractions is constant equal to 1 in the cells. But this is
no longer true on the edges. As shown in the following lemma, the sum of the edge volume fractions is always
lower or equal to 1. Assume for instance that for some 𝜎 = 𝐾|𝐿, 𝑐𝑛

1,𝐾 = 1 and 𝑐𝑛
1,𝐿 = 0, then both 𝑐𝑛

1,𝜎 and 𝑐𝑛
2,𝜎

are equal to 0. This degeneracy may lead to severe difficulties in the effective resolution of the nonlinear system
provided by the scheme. Next lemma shows that this situation can not be encountered provided the time step is
large enough with respect to the size of the mesh. The estimate we provide is based on the worst case scenario
and is thus extremely pessimistic. Practically, the inverse CFL condition (3.18) is not needed as soon as the
ratio 𝛼/𝜅 is large enough with respect to the size of the discretization.

Lemma 3.7. Assume that there exists 𝛾 > 1 such that

∆𝑡

𝑚𝐾
≥ 𝛾

𝐶3

𝜏2
⋆

, ∀𝐾 ∈ 𝒯 , (3.18)

then there exists 𝛿 ∈ (0, 1) depending on 𝜏⋆, 𝜏⋆, ℓ⋆ and 𝛾 such that

|𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿| ≤ 1− 𝛿, ∀𝜎 = 𝐾|𝐿 ∈ ℰint, ∀𝑛 ∈ {1, . . . , 𝑁}, ∀𝑖 ∈ {1, 2}. (3.19)

As a consequence, there exists 𝑐⋆ > 0 depending only on 𝛿 such that

1 ≥ 𝑐𝑛
1,𝜎 + 𝑐𝑛

2,𝜎 ≥ 𝑐⋆, ∀𝜎 = 𝐾|𝐿 ∈ ℰint, ∀𝑛 ∈ {1, . . . , 𝑁}. (3.20)
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Proof. Let us first establish (3.19). As a consequence of Lemma 3.5, there holds⎛⎜⎜⎝ ∑︁
𝜎∈ℰ𝐾,int,
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀⎞⎟⎟⎠
2

≤ 𝐶3𝑚𝐾

∆𝑡
, ∀𝐾 ∈ 𝒯 , ∀𝑛 ∈ {1, . . . , 𝑁}, ∀𝑖 ∈ {1, 2}. (3.21)

Let 𝜎 = 𝐾|𝐿 ∈ ℰint such that 𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿 ≥ 1− 𝛿, then in particular 𝑐𝑛
𝑖,𝐾 ≥ 1− 𝛿, so that 𝑐𝑛

𝑖,𝐾 − 𝑐𝑛
𝑖,𝑀 ≥ −𝛿 for

all 𝑀 ∈ ℰ𝐾,int. Plugging it in (3.21) and using (2.14) yields

(−𝜏⋆ (#ℰ𝐾 − 1) 𝛿 + 𝜏⋆(1− 𝛿))2 ≤ 𝐶3𝑚𝐾

∆𝑡
·

For 𝛿 ≤ 𝜏⋆

(ℓ⋆−1)𝜏⋆+𝜏⋆
, this yields

𝛿 ≥
𝜏⋆ −

√︁
𝐶3 max𝐾∈𝒯 𝑚𝐾

Δ𝑡

(ℓ⋆ − 1) 𝜏⋆ + 𝜏⋆
≥

𝜏⋆

(︁
1− 1√

𝛾

)︁
(ℓ⋆ − 1) 𝜏⋆ + 𝜏⋆

thanks to (3.18). Thus (3.19) holds with

𝛿 = min

⎧⎨⎩ 𝜏⋆

(ℓ⋆ − 1)𝜏⋆ + 𝜏⋆
,

𝜏⋆

(︁
1− 1√

𝛾

)︁
((ℓ⋆ − 1) 𝜏⋆ + 𝜏⋆)

⎫⎬⎭ ∈ (0, 1).

Let us now turn to the proof of (3.20). If 𝑐𝑛
𝑖,𝜎 = 𝑐𝑛

𝑖,𝐾 = 𝑐𝑛
𝑖,𝐿, we have immediately 𝑐𝑛

1,𝜎 + 𝑐𝑛
2,𝜎 = 1. Otherwise,

the inequality 𝑐𝑛
1,𝜎 + 𝑐𝑛

2,𝜎 ≤ 1 follows directly from the fact that the logarithmic mean is smaller than the
arithmetic one. Define the continuous function 𝜙 : [0, 1]2 → [0, 1] by

𝜙(𝑎, 𝑏) = (𝑎− 𝑏)
[︂

1
log(𝑎/𝑏)

− 1
log((1− 𝑎)/(1− 𝑏))

]︂
if 𝑎 ̸= 𝑏, and 𝜙(𝑎, 𝑎) = 1,

so that, in view of (2.4) and (2.6), one has

𝑐𝑛
1,𝜎 + 𝑐𝑛

2,𝜎 = 𝜙(𝑐𝑛
1,𝐾 , 𝑐𝑛

1,𝐿), ∀𝜎 = 𝐾|𝐿 ∈ ℰint, ∀𝑛 ∈ {1, . . . , 𝑁}. (3.22)

Note that 𝜙(𝑎, 𝑏) = 0 if and only if {𝑎, 𝑏} = {0, 1}. In particular, 𝜙 is positive on the compact set

𝒦𝛿 =
{︀

(𝑎, 𝑏) ∈ [0, 1]2
⃒⃒
|𝑎− 𝑏| ≤ 1− 𝛿

}︀
.

Thus it remains bounded away from 0 by some 𝑐⋆ depending only on 𝛿. Then (3.20) follows from (3.19) and
(3.22). �

With Lemma 3.7 at hand, we are in position to prove our next lemma, whose goal is to provide first a
𝐿2((0, 𝑇 ); 𝐵𝑉 (Ω)) estimate on the approximate mean chemical potential 𝜇𝒯 ,Δ𝑡, and then a non-weighted 𝐿2(𝑄𝑇 )
estimates on the chemical potentials.

Lemma 3.8. Provided (3.20) holds, there exists 𝐶6 and 𝐶7 depending only on 𝛼, 𝜅, 𝑐0
𝑖 , 𝜂𝑖, Ψ𝑖, 𝜃𝑖, 𝑇 , Ω, 𝜁, 𝑐⋆

such that

𝑁∑︁
𝑛=1

∆𝑡

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝑚𝜎 |𝜇𝑛
𝐾 − 𝜇𝑛

𝐿|

⎞⎟⎟⎠
2

≤ 𝐶6. (3.23)

and
𝑁∑︁

𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝜇𝑛

𝑖,𝐾

)︀2 ≤ 𝐶7, 𝑖 ∈ {1, 2}. (3.24)
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Proof. Let 𝑛 ≥ 1 and 𝜎 = 𝐾|𝐿 ∈ ℰint, then thanks to (3.20), either 𝑐𝑛
1,𝜎 ≥ 𝑐⋆

2 or 𝑐𝑛
2,𝜎 ≥ 𝑐⋆

2 . Let us assume that
𝑐𝑛
1,𝜎 ≥ 𝑐⋆

2 , the other case being similar. We can also assume without loss of generality that 𝑐𝑛
2,𝐾 ≥ 𝑐𝑛

2,𝜎 ≥ 𝑐𝑛
2,𝐿.

Then the triangle inequality ensures that

|𝜇𝑛
𝐾 − 𝜇𝑛

𝐿| ≤
∑︁

𝑖∈{1,2}

𝑐𝑛
𝑖,𝐿|𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿|+

⃒⃒⃒⃒
⃒⃒ ∑︁
𝑖∈{1,2}

𝜇𝑛
𝑖,𝐾

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀⃒⃒⃒⃒⃒⃒ .
Using relation (2.6), the second term of the right-hand side rewrites⃒⃒⃒⃒

⃒⃒ ∑︁
𝑖∈{1,2}

𝜇𝑛
𝑖,𝐾

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀⃒⃒⃒⃒⃒⃒ =
⃒⃒
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

⃒⃒ ⃒⃒
𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾

⃒⃒
,

while since 𝑐𝑛
2,𝜎 ≥ 𝑐𝑛

2,𝐿 and 𝑐𝑛
1,𝐿 ≤ 1 ≤ 2𝑐𝑛

1,𝜎

𝑐⋆ , the first term can be estimated by∑︁
𝑖∈{1,2}

𝑐𝑛
𝑖,𝐿|𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿| ≤

2
𝑐⋆

∑︁
𝑖∈{1,2}

𝑐𝑛
𝑖,𝜎|𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿|.

Therefore, using (𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2), we get that⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝑚𝜎|𝜇𝑛
𝐾 − 𝜇𝑛

𝐿|

⎞⎟⎟⎠
2

≤ 𝐴𝑛 + 𝐵𝑛, (3.25)

where we have set

𝐴𝑛 =
12

(𝑐⋆)2
∑︁

𝑖∈{1,2}

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝑚𝜎𝑐𝑛
𝑖,𝜎|𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿|

⎞⎟⎟⎠
2

,

𝐵𝑛 = 3

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝑚𝜎|𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿|
⃒⃒
𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾

⃒⃒⎞⎟⎟⎠
2

.

Using Cauchy–Schwarz inequality, we get that

𝐴𝑛 ≤
12

(𝑐⋆)2
∑︁

𝑖∈{1,2}

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎

(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀2
⎞⎟⎟⎠
⎛⎜⎜⎝ ∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝑚𝜎𝑑𝜎𝑐𝑛
𝑖,𝜎

⎞⎟⎟⎠ .

We deduce from 0 ≤ 𝑐𝑛
𝑖,𝜎 ≤ 1, from 𝑚𝜎𝑑𝜎 = 2𝑚𝐷𝜎 and from Lemma 3.6 that

𝑁∑︁
𝑛=1

∆𝑡 𝐴𝑛 ≤
24|Ω|
(𝑐⋆)2

𝐶5. (3.26)

Besides, Cauchy–Schwarz inequality yields

𝐵𝑛 ≤ 3

⎛⎜⎜⎝ ∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
1,𝐾 − 𝑐𝑛

1,𝐿

)︀2
⎞⎟⎟⎠
⎛⎜⎜⎝ ∑︁

𝜎∈ℰint
𝜎=𝐾|𝐿

𝑚𝜎𝑑𝜎

(︁(︀
𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾

)︀2 +
(︀
𝜇𝑛

1,𝐿 − 𝜇𝑛
2,𝐿

)︀2)︁
⎞⎟⎟⎠ .
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The first term in the right hand side is bounded uniformly w.r.t. 𝑛 thanks to Corollary 3.4. Reorganizing the
second term, one gets that

𝐵𝑛 ≤ 6𝐶1

∑︁
𝐾∈𝒯

⎛⎝ ∑︁
𝜎∈ℰ𝐾,int

𝑚𝐷𝜎

⎞⎠(︀𝜇𝑛
1,𝐾 − 𝜇𝑛

2,𝐾

)︀2
.

Thanks to assumption (2.11) on the regularity of the mesh, one has
∑︀

𝜎∈ℰ𝐾,int
𝑚𝐷𝜎

≤ 𝜁𝑚𝐾 . Therefore, it follows
from Lemma 3.5 that

𝑁∑︁
𝑛=1

∆𝑡 𝐵𝑛 ≤ 6𝜁𝐶1𝐶4. (3.27)

Combining (3.26) and (3.27) in (3.25) provides (3.23).
The combination of the 𝐿2((0, 𝑇 ); 𝐵𝑉 (Ω)) estimate (3.23) with the zero mean condition (2.7) allows to make

use of a Poincaré-Sobolev inequality (see for instance [21], [17], Lem. 5.1 or [5]). This provides the following
uniform 𝐿2(𝑄𝑇 ) estimate on the discrete global chemical potential (recall here that Ω ⊂ R2):

𝑁∑︁
𝑛=1

∆𝑡
∑︁
𝐾∈𝒯

𝑚𝐾 (𝜇𝑛
𝐾)2 ≤ 𝐶. (3.28)

The definition (2.7) of 𝜇𝑛
𝐾 and the equation (2.6) provide the following relations:

𝜇𝑛
1,𝐾 = 𝜇𝑛

𝐾 + 𝑐𝑛
2,𝐾(𝜇𝑛

1,𝐾 − 𝜇𝑛
2,𝐾), 𝜇𝑛

2,𝐾 = 𝜇𝑛
𝐾 − 𝑐𝑛

1,𝐾(𝜇𝑛
1,𝐾 − 𝜇𝑛

2,𝐾).

As a result of Lemmas 3.2, 3.5 and Estimate (3.28), we recover (3.24). �

3.2. Existence of a discrete solution

We are now in position to finish the proof of Theorem 2.3 by showing the existence of (at least) one discrete
solution to the scheme (2.3)–(2.7).

Proposition 3.9. There exists at least one solution to the scheme (2.3)–(2.7) satisfying the a priori estimates
established in Section 3.1.

Proof. The proof relies on a topological degree argument [12,24]. Our goal is to pass continuously from a linear
problem for which the existence and uniqueness of the solution is known to the nonlinear system given by our
scheme. Since the construction of such an homotopy (which is parametrized by 𝜆 ∈ [0, 1]) is non-trivial, we give
here a description of it, as well as of the key estimates that allow us to use this machinery.

We assume that 𝑐𝑛−1 ∈ [0, 1]#𝒯 is given. For 𝜆 ∈ [0, 1], we define the nondecreasing functions 𝑓𝜆 and 𝑝𝜆 by

𝑓𝜆(𝑐) = min
(︂

1 + 𝜆

2
, max

(︂
1− 𝜆

2
, 𝑐

)︂)︂
, 𝑝𝜆(𝑐) =

∫︁ 𝑐

1

𝑓 ′𝜆(𝑎)
𝑓𝜆(𝑎)

d𝑎 (3.29)

so that 𝑓𝜆(𝑐) ≥ 0 and 𝑓𝜆(𝑐) + 𝑓𝜆(1− 𝑐) = 1 for all 𝑐 ∈ R.
We look for the solutions (𝑐𝜆, 𝜇𝜆) =

(︁(︀
𝑐𝜆
1,𝐾 , 𝑐𝜆

2,𝐾

)︀
𝐾∈𝒯 ,

(︀
𝜇𝜆

1,𝐾 , 𝜇𝜆
2,𝐾

)︀
𝐾∈𝒯

)︁
of the following modified system.

First, equation (2.3) is replaced by

𝑚𝐾

𝑐𝜆
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

∆𝑡
+

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

𝑓𝜆
𝑖,𝜎

𝜂𝑖

(︀
𝜇𝜆

𝑖,𝐾 − 𝜇𝜆
𝑖,𝐿 + Ψ𝑖,𝐾 −Ψ𝑖,𝐿

)︀
+ 𝜃𝑖,𝒯

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑓𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
𝑖,𝐿

)︀)︀
= 0, ∀𝐾 ∈ 𝒯 , (3.30)
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where for all 𝜎 = 𝐾|𝐿 ∈ ℰint we have set

𝑓𝜆
𝑖,𝜎 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1−𝜆

2 if 𝑐𝜆
𝑖,𝐾 ≤ 1−𝜆

2 and 𝑐𝜆
𝑖,𝐿 ≤ 1−𝜆

2 ,
1+𝜆

2 if 𝑐𝜆
𝑖,𝐾 ≥ 1+𝜆

2 and 𝑐𝜆
𝑖,𝐿 ≥ 1+𝜆

2 ,

𝑓𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
if 𝑐𝜆

𝑖,𝐾 = 𝑐𝜆
𝑖,𝐿 ∈

(︀
1−𝜆

2 , 1+𝜆
2

)︀
,

𝑓𝜆(𝑐𝜆
𝑖,𝐾)−𝑓𝜆(𝑐𝜆

𝑖,𝐿)
𝑝𝜆(𝑐𝜆

𝑖,𝐾)−𝑝𝜆(𝑐𝜆
𝑖,𝐿) otherwise.

(3.31)

Equation (2.5) is replaced for all 𝐾 ∈ 𝒯 by

𝜇𝜆
1,𝐾 − 𝜇𝜆

2,𝐾 =
𝛼

𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀
+ (1− 𝜆)

(︂
𝑐𝜆
1,𝐾 − 1

2

)︂
+ 𝜅

(︁
1− 2𝑐𝑛−1

1,𝐾

)︁
. (3.32)

We keep the linear relation (2.6), i.e., we impose that

𝑐𝜆
1,𝐾 + 𝑐𝜆

2,𝐾 = 1, ∀𝐾 ∈ 𝒯 . (3.33)

Finally, equation (2.7) is replaced by∑︁
𝐾∈𝒯

𝑚𝐾𝜇𝜆
𝐾 = 0, with 𝜇𝜆

𝐾 = 𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
𝜇𝜆

1,𝐾 + 𝑓𝜆

(︀
𝑐𝜆
2,𝐾

)︀
𝜇𝜆

2,𝐾 . (3.34)

For 𝜆 = 0, the system (3.30)–(3.34) reduces to the linear system

𝑚𝐾𝑐0
𝑖,𝐾 +

∆𝑡

2𝜂𝑖

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝜇0

𝑖,𝐾 − 𝜇0
𝑖,𝐿

)︀
= 𝑚𝐾𝑐𝑛−1

𝑖,𝐾 − ∆𝑡

2𝜂𝑖

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎 (Ψ𝑖,𝐾 −Ψ𝑖,𝐿) , 𝐾 ∈ 𝒯 , 𝑖 ∈ {1, 2}, (3.35a)

𝑐0
1,𝐾 + 𝑐0

2,𝐾 = 1, 𝐾 ∈ 𝒯 , (3.35b)

𝜇0
1,𝐾 − 𝜇0

2,𝐾 − 𝑐0
1,𝐾 = 𝜅(1− 2𝑐𝑛−1

1,𝐾 )− 1
2
, 𝐾 ∈ 𝒯 , (3.35c)

complemented with the condition ∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝜇0

1,𝐾 + 𝜇0
2,𝐾

)︀
= 0. (3.35d)

To this linear system correspond a matrix L ∈ℳ4#𝒯 +1,4#𝒯 .
To show that the system (3.35) admits one and only one solution, one first sets the right-hand side to 0, then

multiply (3.35a) by 𝜇0
𝑖,𝐾 and sum over 𝐾 ∈ 𝒯 and 𝑖 ∈ {1, 2}. Then using (3.35b) and (3.35c), this provides

∑︁
𝐾∈𝒯

𝑚𝐾

⃒⃒
𝑐0
1,𝐾

⃒⃒2
+

∑︁
𝑖∈{1,2}

∆𝑡

2𝜂𝑖

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

⃒⃒
𝜇0

𝑖,𝐾 − 𝜇0
𝑖,𝐿

⃒⃒2
= 0,

from which we infer that 𝑐0
1,𝐾 = 0 – and thus 𝑐0

2,𝐾 = 0 because of (3.35b), the right-hand side having been set to
0 – for all 𝐾 ∈ 𝒯 and that 𝜇0

𝑖,𝐾 does not depend on 𝐾. Moreover, we deduce from (3.35c) with zero right-hand
side that 𝜇0

1,𝐾 = 𝜇0
2,𝐾 for all 𝐾 ∈ 𝒯 . Finally, (3.35d) shows that the discrete chemical potential 𝜇0

𝑖,𝐾 are all equal
to 0, hence Ker(L) is trivial. Therefore, L has maximal rank and its span can be characterized as the orthogonal
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of one non-zero vector generating Ker(L𝑇 ). Denote by 1𝒯 = (1, . . . , 1)𝑇 ∈ R#𝒯 , 0𝒯 = (0, . . . , 0)𝑇 ∈ R#𝒯 , and
by 𝑚𝒯 = (𝑚𝐾)𝐾∈𝒯 ∈ R#𝒯 , then one readily checks that

Im(L) =

⎛⎜⎜⎜⎝
1𝒯
1𝒯
−𝑚𝒯
0𝒯
0

⎞⎟⎟⎟⎠
⊥

since 1𝒯 belongs to the kernel of the discrete Laplacian operator with no-flux boundary conditions. The right-
hand side of (3.35) then belongs to Im(L) since

∑︀
𝐾∈𝒯

∑︀
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎 (Ψ𝑖,𝐾 −Ψ𝑖,𝐿) = 0 and 𝑐𝑛−1
1,𝐾 +𝑐𝑛−1

2,𝐾 = 1. The

linear system (3.35) is then well-posed, hence a topological degree equal to 1 for any large enough set containing
its solution.

Let us now establish bounds on the solution to the system (3.30)–(3.34) that are uniform w.r.t. 𝜆 ∈ [0, 1].
Multiplying (3.30) by 𝜇𝜆

𝑖,𝐾 + Ψ𝑖,𝐾 + 𝜂𝑖𝜃𝑖,𝒯 𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
and summing over 𝐾 ∈ 𝒯 and 𝑖 ∈ {1, 2} provides thanks

to the same calculations as in the proof of Lemma 3.3 that

𝑇𝜆
1 + 𝑇𝜆

2 + 𝑇𝜆
3 + 𝑇𝜆

4 + 𝑇𝜆
5 + ∆𝑡D𝜆

𝒯 (𝑐𝜆, 𝜇𝜆) = 0, (3.36)

where we have set

𝑇𝜆
1 = 𝛼

∑︁
𝐾∈𝒯

(︁
𝑐𝜆
1,𝐾 − 𝑐𝑛−1

1,𝐾

)︁ ∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑓𝜆(𝑐𝑛

1,𝐾)− 𝑓𝜆(𝑐𝑛
1,𝐿)

)︀
,

𝑇𝜆
2 = (1− 𝜆)

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝑐𝜆
1,𝐾 − 𝑐𝑛−1

1,𝐾

)︁(︂
𝑐𝜆
1,𝐾 − 1

2

)︂
,

𝑇𝜆
3 = 𝜅

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝑐𝜆
1,𝐾 − 𝑐𝑛−1

1,𝐾

)︁(︁
1− 2𝑐𝑛−1

1,𝐾

)︁
,

𝑇𝜆
4 =

∑︁
𝑖∈{1,2}

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝑐𝜆
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
Ψ𝑖,𝐾 ,

𝑇𝜆
5 =

∑︁
𝑖∈{1,2}

𝜃𝑖,𝒯 𝜂𝑖

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝑐𝜆
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
,

and

D𝜆
𝒯
(︀
𝑐𝜆, 𝜇𝜆

)︀
=

∑︁
𝑖∈{1,2}

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

𝑓𝜆
𝑖,𝜎

𝜂𝑖

⃒⃒⃒
𝜇𝜆

𝑖,𝐾 + Ψ𝑖,𝐾 + 𝜂𝑖𝜃𝑖,𝒯 𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
− 𝜇𝜆

𝑖,𝐿 −Ψ𝑖,𝐿 − 𝜂𝑖𝜃𝑖,𝒯 𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐿

)︀ ⃒⃒⃒2
≥ 0.

Elementary convexity inequalities yield

𝑇𝜆
2 ≥

1− 𝜆

2

∑︁
𝐾∈𝒯

𝑚𝐾

(︃⃒⃒⃒⃒
𝑐𝜆
1,𝐾 − 1

2

⃒⃒⃒⃒2
−
⃒⃒⃒⃒
𝑐𝑛−1
1,𝐾 − 1

2

⃒⃒⃒⃒2)︃

and, setting 𝐻𝜆(𝑐) =
∫︀ 𝑐

1
𝑝𝜆(𝑎) d𝑎 ≥ 0,

𝑇𝜆
5 ≥

∑︁
𝑖∈{1,2}

𝜃𝑖,𝒯 𝜂𝑖

∑︁
𝐾∈𝒯

𝑚𝐾

(︁
𝐻𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
−𝐻𝜆

(︁
𝑐𝑛−1
𝑖,𝐾

)︁)︁
.
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On the other hand, using the boundedness of 𝑐𝑛−1
𝑖,𝐾 between 0 and 1, one gets that

𝑇𝜆
3 ≥ −𝜅

∑︁
𝐾∈𝒯

𝑚𝐾

⃒⃒
𝑐𝜆
1,𝐾

⃒⃒
− 𝐶,

while the boundedness of Ψ𝑖,𝐾 yields

𝑇𝜆
4 ≥ − (‖Ψ1‖∞ + ‖Ψ2‖∞)

∑︁
𝐾∈𝒯

𝑚𝐾

⃒⃒
𝑐𝜆
1,𝐾

⃒⃒
− 𝐶.

Therefore, since 𝐻𝜆(𝑐) ≤ 𝐻(𝑐) for 𝑐 ∈ [0, 1]

𝑇𝜆
2 + 𝑇𝜆

3 + 𝑇𝜆
4 + 𝑇𝜆

5 ≥
∑︁
𝐾∈𝒯

𝑚𝐾𝑔𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝐶,

where 𝐶 depends only on 𝜅, Ω, ‖Ψ𝑖‖∞, 𝜃𝑖, 𝜂𝑖, 𝜌 and ℎ𝒯 (but not on 𝜆), and where we have set

𝑔𝜆(𝑐) = 𝜃1,𝒯 𝜂1𝐻𝜆(𝑐) + 𝜃2,𝒯 𝜂2𝐻𝜆(1− 𝑐) +
1− 𝜆

2

(︂
𝑐− 1

2

)︂2

− (𝜅 + ‖Ψ1‖∞ + ‖Ψ2‖∞) |𝑐|, 𝑐 ∈ R,

with the convention that 𝑔𝜆(𝑐) = +∞ if 𝑐 /∈ [0, 1] and 𝜆 = 1. As a consequence of the technical Lemma A.1
stated in appendix, there exists 𝐶 depending only 𝜂𝑖, 𝜃𝑖, 𝜌, ℎ𝒯 , ‖Ψ𝑖‖∞ and 𝜅 such that 𝑔𝜆(𝑐) ≥ 2

⃒⃒
𝑐− 1

2

⃒⃒
− 𝐶.

Therefore,

𝑇𝜆
2 + 𝑇𝜆

3 + 𝑇𝜆
4 + 𝑇𝜆

5 ≥
∑︁

𝑖∈{1,2}

∑︁
𝐾∈𝒯

𝑚𝐾

⃒⃒⃒⃒
𝑐𝜆
𝑖,𝐾 − 1

2

⃒⃒⃒⃒
− 𝐶. (3.37)

Besides, performing a discrete integration by parts on the term 𝑇𝜆
1 yields

𝑇𝜆
1 = 𝛼

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

[︁(︀
𝑐𝜆
1,𝐾 − 𝑐𝜆

1,𝐿

)︀
−
(︁
𝑐𝑛−1
1,𝐾 − 𝑐𝑛−1

1,𝐿

)︁]︁ (︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀
.

Since 𝑓𝜆 is 1-Lipschitz continuous, one has

𝑇𝜆
1 ≥ 𝛼

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

[︁(︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀2 − (︁𝑐𝑛−1
1,𝐾 − 𝑐𝑛−1

1,𝐿

)︁ (︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀]︁

≥ 𝛼

2

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

[︂(︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀2 − (︁𝑐𝑛−1
1,𝐾 − 𝑐𝑛−1

1,𝐿

)︁2
]︂

,

so that
𝑇𝜆

1 ≥
𝛼

2

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀2 − 𝐶 (3.38)

where 𝐶 only depends on 𝒯 and 𝛼. Combining (3.38) with (3.37) in (3.36), one gets the existence of 𝐶8 not
depending on 𝜆 such that, for all 𝜆 ∈ [0, 1], there holds

∑︁
𝑖∈{1,2}

∑︁
𝐾∈𝒯

𝑚𝐾

⃒⃒⃒⃒
𝑐𝜆
𝑖,𝐾 − 1

2

⃒⃒⃒⃒
+

𝛼

2

∑︁
𝜎∈ℰint
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀2
+ ∆𝑡D𝜆

𝒯 (𝑐𝜆, 𝜇𝜆) ≤ 𝐶8. (3.39)
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This implies in particular that 𝑐𝜆 is bounded independently uniformly w.r.t. 𝜆, hence∑︁
𝐾∈𝒯

𝑚𝐾

⃒⃒⃒⃒
𝑐𝜆
𝑖,𝐾 − 1

2

⃒⃒⃒⃒2
≤ 𝐶, ∀𝜆 ∈ [0, 1], 𝑖 ∈ {1, 2},

for some 𝐶 not depending on 𝜆.
We can derive a control on 𝜇𝜆 for 𝜆 < 1 from the control of the energy dissipation D𝜆

𝒯 in (3.39), but this
control degenerates as 𝜆 tends to 1. To bypass this difficulty, we multiply (3.30) by 𝜂𝑖𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
. Since 𝑓𝜆

𝑖,𝜎 has
been designed so that

𝑓𝜆
𝑖,𝜎

(︀
𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
− 𝑝𝜆

(︀
𝑐𝜆
𝑖,𝐿

)︀)︀
= 𝑓𝜆

(︀
𝑐𝜆
𝑖,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
𝑖,𝐿

)︀
, ∀𝜎 = 𝐾|𝐿 ∈ ℰint,

we can mimic the proof of Lemma 3.5 in order to get the existence of 𝐶 not depending on 𝜆 such that

∑︁
𝐾∈𝒯

𝑚𝐾

⎛⎜⎜⎝ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int
𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑓𝜆

(︀
𝑐𝜆
1,𝐾

)︀
− 𝑓𝜆

(︀
𝑐𝜆
1,𝐿

)︀)︀⎞⎟⎟⎠
2

≤ 𝐶, (3.40)

together with ∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝜇𝜆

1,𝐾 − 𝜇𝜆
2,𝐾

)︀2 ≤ 𝐶. (3.41)

Thanks to (3.40), we can reproduce the proof of Lemma 3.7 to claim that

𝑓𝜆
1,𝜎 + 𝑓𝜆

2,𝜎 ≥ 𝑓⋆, ∀𝜎 ∈ ℰint,

for some 𝑓⋆ > 0 not depending on 𝜆. This provides a uniform in 𝜆 discrete 𝐵𝑉 estimate on
(︀
𝜇𝜆

𝐾

)︀
𝐾∈𝒯 and

finally the existence of some 𝐶9 not depending on 𝜆 following the path of Lemma 3.8 such that∑︁
𝑖∈{1,2}

∑︁
𝐾∈𝒯

𝑚𝐾

(︀
𝜇𝜆

𝑖,𝐾

)︀2 ≤ 𝐶9. (3.42)

Then the topological degree corresponding to system (3.30)–(3.34) on the compact set

𝒦 =

⎧⎨⎩(︀(𝑐1,𝐾 , 𝑐2,𝐾)𝐾∈𝒯 , (𝜇1,𝐾 , 𝜇2,𝐾)𝐾∈𝒯
)︀ ⃒⃒⃒⃒⃒⃒ ∑︁

𝑖∈{1,2}

∑︁
𝐾∈𝒯

𝑚𝐾

(︂⃒⃒⃒⃒
𝑐𝑖,𝐾 − 1

2

⃒⃒⃒⃒
+ (𝜇𝑖,𝐾)2

)︂
≤ 𝐶8 + 𝐶9 + 1

⎫⎬⎭
is constant equal to 1 whatever 𝜆 ∈ [0, 1]. In particular, there exists a solution to our scheme (2.3)–(2.7) which
corresponds to the case 𝜆 = 1. �

The existence of a solution (𝑐𝑛, 𝜇𝑛) to the scheme (2.3)–(2.7) for all 𝑛 ∈ {1, . . . , 𝑁} allows to define a
piecewise constant approximate solution (𝑐𝒯 ,Δ𝑡, 𝜇𝒯 ,Δ𝑡) by (2.10).

4. Convergence of the scheme

The goal of this section is to prove Theorem 2.4, i.e., that (𝑐𝒯 ,Δ𝑡, 𝜇𝒯 ,Δ𝑡) tends to a weak solution (𝑐, 𝜇)
of (1.1)–(1.6) in a suitable topology as ℎ𝒯 and ∆𝑡 tend to 0 provided the mesh remains sufficiently regular.
Consider a sequence of regular meshes

(︀
𝒯𝑚, ℰ𝑚, (𝑥𝐾)𝐾∈𝒯𝑚

)︀
𝑚≥1

such that (2.11)–(2.14) hold for some uniform 𝜁,
ℓ⋆, 𝜏⋆ and 𝜏⋆ w.r.t. 𝑚, and such that ℎ𝒯𝑚

tends to 0 as 𝑚 tends to +∞, and a sequence of times steps (∆𝑡𝑚)𝑚≥1

with ∆𝑡𝑚 = 𝑇/𝑁𝑚 with 𝑁𝑚 tending to +∞ with 𝑚. Then the a priori estimates derived in Section 3.1 are
satisfied uniformly provided (3.20) holds, as it is the case if the inverse CFL condition (3.18) is fulfilled.

The first lemma gathers some first consequences of the a priori estimates stated in Section 3.1.
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Lemma 4.1. There exist 𝑐𝑖 ∈ 𝐿∞(𝑄𝑇 ; [0, 1]) with 𝑐1 + 𝑐2 = 1 and 𝜇𝑖 ∈ 𝐿2(𝑄𝑇 ), 𝑖 ∈ {1, 2} such that, up to a
subsequence,

(i) 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
−→

𝑚→∞
𝑐𝑖 a.e. in 𝑄𝑇 and in the 𝐿∞(𝑄𝑇 ) weak-⋆ sense,

(ii) 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
−→

𝑚→∞
𝜇𝑖 weakly in 𝐿2(𝑄𝑇 ).

Moreover,
∫︀
Ω

𝜇(𝑡, 𝑥) d𝑥 = 0 for a.e. 𝑡 ≥ 0, where 𝜇 = 𝑐1𝜇1 + 𝑐2𝜇2.

Proof. Because of Lemma 3.2, the approximate solutions 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
remain bounded a.e. in 𝑄𝑇 between 0 and 1.

Therefore, there exists 𝑐𝑖 ∈ 𝐿∞(𝑄𝑇 ; [0, 1]) such that, up to a subsequence, 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚 tends to 𝑐𝑖 in the 𝐿∞(𝑄𝑇 )-
weak-⋆ sense. This is enough to pass in the limit in the relation 𝑐1,𝒯𝑚,Δ𝑡𝑚

+ 𝑐2,𝒯𝑚,Δ𝑡𝑚
= 1 which directly follows

from (2.6). On the other hand, it follows from Lemma 3.8 that the sequences (𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
)𝑚≥1 are uniformly

bounded in 𝐿2(𝑄𝑇 ), hence the weak convergence in 𝐿2(𝑄𝑇 ) towards some 𝜇𝑖. The almost everywhere convergence
of 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

towards 𝑐𝑖 follows from the discrete Aubin-Lions lemma stated in Appendix B. Finally, given an
arbitrary 𝜙 ∈ 𝐿∞(0, 𝑇 ), then multiplying (2.7) by 1

Δ𝑡

∫︀ 𝑛Δ𝑡𝑚

(𝑛−1)Δ𝑡𝑚
𝜙(𝑡)d𝑡 and summing over 𝑛 ∈ {1, . . . , 𝑁𝑚}

yields ∫︁∫︁
𝑄𝑇

[𝑐1,𝒯𝑚,Δ𝑡𝑚
𝜇1,𝒯𝑚,Δ𝑡𝑚

+ 𝑐2,𝒯𝑚,Δ𝑡𝑚
𝜇2,𝒯𝑚,Δ𝑡𝑚

] 𝜙 d𝑥 d𝑡 = 0.

Since 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
converges a.e. towards 𝑐𝑖 while remaining uniformly bounded between 0 and 1, it converges

also in the strong 𝐿2(𝑄𝑇 ) sense thanks to Lebesgue dominated convergence theorem. Together with the weak
convergence in 𝐿2(𝑄𝑇 ) of 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚

towards 𝜇𝑖, we have enough compactness to pass to the limit 𝑚 → +∞ in
the above expression, which gives that∫︁∫︁

𝑄𝑇

𝜇(𝑡, 𝑥)𝜙(𝑡) d𝑥 d𝑡 = 0, ∀𝜙 ∈ 𝐿∞(𝑄𝑇 ).

This of course implies that
∫︀
Ω

𝜇(𝑡, 𝑥) d𝑥 = 0 for a.e. 𝑡 ≥ 0. �

Before going further, we need to introduce some additional material concerning the construction of a strongly
consistent approximate gradient based on the SUSHI finite volume scheme [17]. We gather in the following
proposition the properties of this approximate gradient to be used in what follows. The super-admissibility
of the mesh is crucial at this point. We refer to [17] or to Chapter 13 of [13] for the proofs corresponding to
Proposition 4.2.

Proposition 4.2 ([17]). Define by 𝒳𝒯𝑚,Δ𝑡𝑚
the space of bounded piecewise constant functions per control volume

and per time step as 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚 and 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚 , i.e.,

𝒳𝒯𝑚,Δ𝑡𝑚
=
{︀
𝑢𝒯𝑚,Δ𝑡𝑚

∈ 𝐿∞(𝑄𝑇 )
⃒⃒
𝑢𝒯𝑚,Δ𝑡𝑚

(𝑡, 𝑥) = 𝑢𝑛
𝐾 ∈ R, ∀(𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐾

}︀
.

Then there exists a linear operator ∇𝒯𝑚
: 𝒳𝒯𝑚

→ 𝐿∞(𝑄𝑇 )2 such that:

(i) for all 𝑢𝒯𝑚,Δ𝑡𝑚 , 𝑣𝒯𝑚,Δ𝑡𝑚 ∈ 𝒳𝒯𝑚,Δ𝑡𝑚 and all 𝑛 ∈ {1, . . . , 𝑁𝑚}, one has∫︁
Ω

∇𝒯𝑚𝑢𝒯𝑚,Δ𝑡𝑚 (𝑡𝑛, 𝑥) ·∇𝒯𝑚𝑣𝒯𝑚,Δ𝑡𝑚 (𝑡𝑛, 𝑥) d𝑥 =
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎 (𝑢𝑛
𝐾 − 𝑢𝑛

𝐿) (𝑣𝑛
𝐾 − 𝑣𝑛

𝐿) ;

(ii) if the sequence (𝑢𝒯𝑚,Δ𝑡𝑚
)𝑚≥1 is such that ‖𝑢𝒯𝑚,Δ𝑡𝑚

‖𝐿2(𝑄𝑇 ) and ‖∇𝒯𝑚
𝑢𝒯𝑚,Δ𝑡𝑚

‖𝐿2(𝑄𝑇 )2 are bounded w.r.t.
𝑚, then there exists 𝑢 ∈ 𝐿2((0, 𝑇 ); 𝐻1(Ω)) such that 𝑢𝒯𝑚,Δ𝑡𝑚

converges weakly towards 𝑢 in 𝐿2(𝑄𝑇 ) and
∇𝒯𝑚𝑢𝒯𝑚,Δ𝑡𝑚 converges weakly towards ∇𝑢 in 𝐿2(𝑄𝑇 )2;

(iii) let 𝜙 ∈ 𝐶∞(𝑄𝑇 ), and define 𝜙𝒯𝑚,Δ𝑡𝑚
by fixing 𝜙𝑛

𝐾 = 𝜙(𝑡𝑛, 𝑥𝐾), then ∇𝒯𝑚
𝜙𝒯𝑚,Δ𝑡𝑚

converges towards ∇𝜙
in 𝐿𝑝(𝑄𝑇 )2 for all 𝑝 ∈ [1,∞);
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(iv) for all 𝐾 ∈ 𝒯𝑚 and all 𝑛 ∈ {1, . . . , 𝑁𝑚}, there holds∫︁
𝐾

∇𝒯𝑚𝑢𝒯𝑚,Δ𝑡𝑚 (𝑡𝑛, 𝑥) d𝑥 =
∑︁

𝜎∈ℰ𝐾,int,𝑚

𝜎=𝐾|𝐿

𝑑𝐾,𝜎𝜏𝜎 (𝑢𝑛
𝐿 − 𝑢𝑛

𝐾) 𝑛𝐾𝐿. (4.1)

Let us point out that we could have improved the convergence property in (iii) until obtaining the uniform
convergence at the price of adding some additional degrees of freedom on the boundary edges. However, the
convergence properties stated in Proposition 4.2 are sufficient to prove the convergence of our scheme. Therefore,
we avoid the introduction of additional material.

Next statement is a straightforward consequence of the combination of Proposition 4.2 together with Corol-
lary 3.4.

Corollary 4.3. Up to a subsequence, the approximate gradient ∇𝒯𝑚
𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

converges towards ∇𝑐𝑖 in the
weak-⋆ topology of 𝐿∞((0, 𝑇 ); 𝐿2(𝑄𝑇 ))2 as 𝑚 tends to +∞. In particular, 𝑐𝑖 belongs to 𝐿∞((0, 𝑇 ); 𝐻1(Ω)).
Moreover, ∇𝒯𝑚Ψ𝑖,𝒯𝑚 converges weakly towards ∇Ψ𝑖.

The purpose of next lemma is twofold. First, one shows that (1.3) and (1.4) are satisfied by the limits 𝑐𝑖, 𝜇𝑖.
Second, we deduce from this consistency property the approximate gradient of the volume fractions converges
strongly in 𝐿2(𝑄𝑇 ).

Lemma 4.4. The weak formulation (1.17) holds for all 𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 )×Ω). Moreover, ∇𝒯𝑚
𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

converges
strongly in 𝐿2(𝑄𝑇 ) towards ∇𝑐𝑖 as 𝑚 tends to +∞.

Proof. Let us first establish (1.17). As a preliminary, define the piecewise constant function

𝑐1,𝒯𝑚,Δ𝑡𝑚
(𝑡, 𝑥) = 𝑐𝑛−1

1,𝐾 if (𝑡, 𝑥) ∈ [𝑡𝑛−1, 𝑡𝑛)×𝐾, 𝑛 ∈ {1, . . . 𝑁𝑚}, 𝐾 ∈ 𝒯𝑚.

Then 𝑐1,𝒯𝑚,Δ𝑡𝑚 remains bounded between 0 and 1. Therefore,∫︁∫︁
𝑄𝑇

|𝑐1,𝒯𝑚,Δ𝑡𝑚 − 𝑐1,𝒯𝑚,Δ𝑡𝑚 |
2 d𝑥 d𝑡 ≤ ∆𝑡|Ω| +

∫︁∫︁
𝑄𝑇−Δ𝑡𝑚

|𝑐1,𝒯𝑚,Δ𝑡𝑚(𝑡 + ∆𝑡𝑚, 𝑥)− 𝑐1,𝒯𝑚,Δ𝑡𝑚(𝑡, 𝑥)|2 d𝑥 d𝑡.

Following Lemma 4.1, (𝑐1,𝒯𝑚,Δ𝑡𝑚)𝑚≥1 converges in 𝐿2(𝑄𝑇 ). The reciprocal of the Riesz–Fréchet–Kolmogorov
theorems allows us to claim that the second term in the right-hand side tends to 0 as 𝑚 tends to +∞. Therefore,
𝑐1,𝒯𝑚,Δ𝑡𝑚

tends to 𝑐1 strongly in 𝐿2(𝑄𝑇 ) together with 𝑐1,𝒯𝑚,Δ𝑡𝑚
.

Given an arbitrary 𝜙 ∈ 𝐶∞(𝑄𝑇 ), we define 𝜙𝑛
𝐾 = 𝜙(𝑡𝑛, 𝑥𝐾) for all 𝑛 ∈ {1, . . . , 𝑁𝑚} and all 𝐾 ∈ 𝒯𝑚.

Multiplying (2.5) by 𝜙𝑛
𝐾 and summing over 𝑛 and 𝐾 yields∫︁∫︁

𝑄𝑇

(𝜇1,𝒯𝑚,Δ𝑡𝑚 − 𝜇2,𝒯𝑚,Δ𝑡𝑚) 𝜙𝒯𝑚,Δ𝑡𝑚 d𝑥 d𝑡

= 𝛼

∫︁∫︁
𝑄𝑇

∇𝒯𝑚
𝑐1,𝒯𝑚,Δ𝑡𝑚

·∇𝒯𝑚
𝜙𝒯𝑚,Δ𝑡𝑚

d𝑥 d𝑡 + 𝜅

∫︁∫︁
𝑄𝑇

(1− 2𝑐1,𝒯𝑚,Δ𝑡𝑚
)𝜙𝒯𝑚,Δ𝑡𝑚

d𝑥 d𝑡. (4.2)

We can pass to the limit 𝑚 → +∞ in the previous equality. Since 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
converges weakly towards 𝜇𝑖

in 𝐿2(𝑄𝑇 ) thanks to Lemma 4.1, since ∇𝒯𝑚
𝑐1,𝒯𝑚,Δ𝑡𝑚

converges weakly in 𝐿2(𝑄𝑇 )2 towards ∇𝑐1 thanks to
Corollary 4.3, since 𝑐1,𝒯𝑚,Δ𝑡𝑚 converges in 𝐿2(𝑄𝑇 ) towards 𝑐1, since 𝜙𝒯𝑚,Δ𝑡𝑚 converges uniformly towards 𝜙,
and since ∇𝒯𝑚

𝜙𝒯𝑚,Δ𝑡𝑚
converges towards ∇𝜙 in 𝐿2(𝑄𝑇 )2 thanks to Proposition 4.2, one recovers (1.17).

Thanks to a standard density arguments, one checks that (1.17) holds for 𝜙 ∈ 𝐿2((0, 𝑇 ); 𝐻1(Ω)), thus in
particular for 𝜙 = 𝑐1, which yields

𝛼

∫︁∫︁
𝑄𝑇

|∇𝑐1|2d𝑥 d𝑡 =
∫︁∫︁

𝑄𝑇

[𝜇1 − 𝜇2 − 𝜅(1− 2𝑐1)] 𝑐1 d𝑥 d𝑡.
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Choosing 𝜙𝒯𝑚,Δ𝑡𝑚
= 𝑐1,𝒯𝑚,Δ𝑡𝑚

in (4.2) and passing to the limit 𝑚 → +∞ shows that

lim
𝑚→∞

∫︁∫︁
𝑄𝑇

|∇𝒯𝑚
𝑐1,𝒯𝑚,Δ𝑡𝑚

|2d𝑥 d𝑡 =
1
𝛼

∫︁∫︁
𝑄𝑇

[𝜇1 − 𝜇2 − 𝜅(1− 2𝑐1)] 𝑐1 d𝑥 d𝑡 =
∫︁∫︁

𝑄𝑇

|∇𝑐1|2d𝑥 d𝑡,

hence the strong convergence of ∇𝒯𝑚
𝑐1,𝒯𝑚,Δ𝑡𝑚

towards ∇𝑐1. �

Next lemma focuses on the term corresponding to 𝑐𝑖∇𝜇𝑖. For 𝑚 ≥ 1, we define

𝑉 𝑛
𝑖,𝜎 = 2𝑐𝑛

𝑖,𝜎

𝜇𝑛
𝑖,𝐾 − 𝜇𝑛

𝑖,𝐿

𝑑𝜎
𝑛𝐾𝐿, ∀𝜎 = 𝐾|𝐿 ∈ ℰint,𝑚, ∀𝑛 ∈ {1, . . . , 𝑁𝑚}, (4.3)

and the corresponding piecewise constant vector field

𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚
(𝑡, 𝑥) =

{︃
𝑉 𝑛

𝑖,𝜎 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐷𝜎, 𝜎 ∈ ℰint,𝑚,

0 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×
(︁
𝐾 ∖

⋃︀
𝜎∈ℰ𝐾,int

𝐷𝐾,𝜎

)︁
.

(4.4)

Lemma 4.5. Let 𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚
be defined by (4.3) and (4.4), then, up to a subsequence, 𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚

converges
weakly towards −𝑐𝑖∇𝜇𝑖 in 𝐿2(𝑄𝑇 ) as 𝑚 tends to +∞.

Proof. Since 𝑚𝜎𝑑𝜎 = 2𝑚𝐷𝜎
and since 0 ≤ 𝑐𝑛

𝑖,𝜎 ≤ 1, it results from Lemma 3.6 that

‖𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚‖2𝐿2(𝑄𝑇 )2 = 2
𝑁𝑚∑︁
𝑛=1

∆𝑡
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝜎

)︀2 (︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀2 ≤ 𝐶.

Therefore, up to a subsequence, 𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚
converges weakly in 𝐿2(𝑄𝑇 )2 towards some 𝑉 𝑖. Let us identify 𝑉 𝑖

as −𝑐𝑖∇𝜇𝑖. To this end, we introduce an arbitrary smooth vector field Φ ∈ 𝐶∞𝑐 (𝑄𝑇 )2, and, for all 𝑚 ≥ 1, we
denote by

Φ𝑛
𝐾 = Φ (𝑡𝑛, 𝑥𝐾) , Φ𝑛

𝜎 =
1

𝑚𝜎

∫︁
𝜎

Φ (𝑡𝑛, 𝑥) d𝑥, ∀𝐾 ∈ 𝒯𝑚, ∀𝜎 ∈ ℰint,𝑚, ∀𝑛 ∈ {1, . . . , 𝑁𝑚},

and by

Φ𝒯𝑚,Δ𝑡𝑚
(𝑡, 𝑥) = Φ𝑛

𝐾 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐾,

Φ𝒟𝑚,Δ𝑡𝑚
(𝑡, 𝑥) =

{︃
Φ𝑛

𝜎 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐷𝜎, 𝜎 ∈ ℰint,𝑚,

0 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×
(︁
𝐾 ∖

⋃︀
𝜎∈ℰ𝐾,int

𝐷𝐾,𝜎

)︁
,

for almost all (𝑡, 𝑥) ∈ 𝑄𝑇 . Thanks to the regularity of Φ, it is easy to check that both Φ𝒯𝑚,Δ𝑡𝑚
and Φ𝒟𝑚,Δ𝑡𝑚

converge uniformly towards Φ as 𝑚 tends to +∞. This implies in particular that

𝐵𝑖,𝑚(Φ) =
∫︁∫︁

𝑄𝑇

𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚
(𝑡, 𝑥) ·Φ𝒟𝑚,Δ𝑡𝑚

d𝑥 d𝑡 −→
𝑚→∞

∫︁∫︁
𝑄𝑇

𝑉 𝑖 ·Φ d𝑥 d𝑡.

On the other hand, 𝐵𝑖,𝑚(Φ) can be decomposed into

𝐵𝑖,𝑚(Φ) = 𝐵
(1)
𝑖,𝑚(Φ) + 𝐵

(2)
𝑖,𝑚(Φ) + 𝐵

(3)
𝑖,𝑚(Φ) + 𝐵

(4)
𝑖,𝑚(Φ), (4.5)

where, denoting by

𝑐𝑛
𝑖,𝜎 =

𝑑𝐾,𝜎𝑐𝑛
𝑖,𝐿 + 𝑑𝐿,𝜎𝑐𝑛

𝑖,𝐾

𝑑𝜎
, ∀𝜎 = 𝐾|𝐿 ∈ ℰint,𝑚, ∀𝑛 ∈ {1, . . . , 𝑁𝑚},
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we have set

𝐵
(1)
𝑖,𝑚(Φ) =

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝑚𝜎(𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝜎)
(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀
Φ𝑛

𝜎 · 𝑛𝐾𝜎,

𝐵
(2)
𝑖,𝑚(Φ) =

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝐾∈𝒯𝑚

𝜇𝑛
𝑖,𝐾𝑐𝑛

𝑖,𝐾

∑︁
𝜎∈ℰ𝐾,int

𝑚𝜎Φ𝑛
𝜎 · 𝑛𝐾𝜎,

𝐵
(3)
𝑖,𝑚(Φ) =

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝐾∈𝒯𝑚

𝑚𝐾𝜇𝑛
𝑖,𝐾Φ𝑛

𝐾 ·

⎡⎣ 1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int

𝑚𝜎

(︀
𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾

)︀
𝑛𝐾𝜎

⎤⎦ ,

𝐵
(4)
𝑖,𝑚(Φ) =

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝐾∈𝒯𝑚

𝜇𝑛
𝑖,𝐾

∑︁
𝜎∈ℰ𝐾,int

𝑚𝜎

(︀
𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾

)︀
(Φ𝑛

𝜎 −Φ𝑛
𝐾) · 𝑛𝐾𝜎.

Let us first focus on 𝐵
(1)
𝑖,𝑚(Φ), which can be controled as follows thanks to Cauchy–Schwarz inequality and the

fact that 𝑑𝜎 ≤ 2ℎ𝒯 :

⃒⃒⃒
𝐵

(1)
𝑖,𝑚(Φ)

⃒⃒⃒2
≤ 4ℎ2

𝒯 ‖Φ‖
2
∞

⎛⎜⎜⎝𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝜎

)︀2
𝑐𝑛
𝑖,𝜎

⎞⎟⎟⎠

×

⎛⎜⎜⎝𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎

(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀2
⎞⎟⎟⎠ .

The second sum in the right-hand side is uniformly bounded thanks to Lemma 3.6, whereas since |𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝜎| ≤
|𝑐𝑛

𝑖,𝐾 − 𝑐𝑛
𝑖,𝐿|, Lemma 3.5 and the particular definition (2.4) of 𝑐𝑛

𝑖,𝜎 ensure that

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝜎

)︀2
𝑐𝑛
𝑖,𝜎

≤
𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀ (︀
log
(︀
𝑐𝑛
𝑖,𝐾

)︀
− log

(︀
𝑐𝑛
𝑖,𝐿

)︀)︀
≤ 𝐶3

𝜂𝑖𝜃𝑖,𝒯
·

Since 𝜃𝑖,𝒯 ≥ 𝜌ℎ𝒯 , we finally obtain that⃒⃒⃒
𝐵

(1)
𝑖,𝑚(Φ)

⃒⃒⃒2
≤ 𝐶ℎ𝒯 −→

𝑚→+∞
0, ∀Φ ∈ 𝐶∞𝑐 (𝑄𝑇 ). (4.6)

Let us now consider 𝐵
(2)
𝑖,𝑚(Φ). To this end, remark first that the definition of Φ𝑛

𝜎 implies that

∑︁
𝜎∈ℰ𝐾

𝑚𝜎Φ𝑛
𝜎 · 𝑛𝐾𝜎 =

∫︁
𝐾

∇ ·Φ(𝑡𝑛, 𝑥) d𝑥, ∀𝐾 ∈ 𝒯𝑚, ∀𝑛 ∈ {1, . . . , 𝑁𝑚}.

As a consequence, since 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
converges weakly towards 𝜇𝑖 and 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

converges strongly towards 𝑐𝑖 in
𝐿2(𝑄𝑇 ), we conclude that

𝐵
(2)
𝑖,𝑚(Φ) −→

𝑚→+∞

∫︁∫︁
𝑄𝑇

𝜇𝑖𝑐𝑖∇ ·Φ d𝑥 d𝑡, ∀Φ ∈ 𝐶∞𝑐 (𝑄𝑇 ). (4.7)
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Thanks to (4.1), the term 𝐵
(3)
𝑖,𝑚(Φ) can be rewritten as

𝐵
(3)
𝑖,𝑚(Φ) =

∫︁∫︁
𝑄𝑇

𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
∇𝒯𝑚

𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
·Φ𝒯𝑚,Δ𝑡𝑚

d𝑥 d𝑡.

The strong convergence of ∇𝒯𝑚
𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

towards ∇𝑐𝑖 in 𝐿2(𝑄𝑇 )2, the weak convergence of 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
towards

𝜇𝑖 and the uniform convergence of Φ𝒯𝑚,Δ𝑡𝑚
towards Φ yield

𝐵
(3)
𝑖,𝑚(Φ) −→

𝑚→+∞

∫︁∫︁
𝑄𝑇

𝜇𝑖∇𝑐𝑖 ·Φ d𝑥 d𝑡, ∀Φ ∈ 𝐶∞𝑐 (𝑄𝑇 ). (4.8)

Introducing the quantities

𝑟𝑛
𝑖,𝐾 =

1
𝑚𝐾

∑︁
𝜎∈ℰ𝐾

𝑚𝜎(𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾) (Φ𝑛
𝜎 −Φ𝑛

𝐾) · 𝑛𝐾𝜎, ∀𝐾 ∈ 𝒯𝑚, ∀𝑛 ∈ {1, . . . , 𝑁𝑚},

and the corresponding functions 𝑟𝑖,𝒯𝑚,Δ𝑡𝑚
in 𝒳𝒯𝑚,Δ𝑡𝑚

, the term 𝐵
(4)
𝑖,𝑚(Φ) rewrites

𝐵
(4)
𝑖,𝑚(Φ) =

∫︁∫︁
𝑄𝑇

𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
𝑟𝑖,𝒯𝑚,Δ𝑡𝑚

d𝑥 d𝑡.

Since 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚
is uniformly bounded in 𝐿2(𝑄𝑇 ), proving that 𝑟𝑖,𝒯𝑚,Δ𝑡𝑚

tends to 0 in 𝐿2(𝑄𝑇 ) is enough to show
that

𝐵
(4)
𝑖,𝑚(Φ) −→

𝑚→+∞
0, ∀Φ ∈ 𝐶∞𝑐 (𝑄𝑇 ). (4.9)

Thanks to the regularity of the mesh 𝒯𝑚, and more precisely to (2.13), there holds

|𝑟𝑛
𝑖,𝐾 |2 ≤

ℓ⋆

(𝑚𝐾)2
∑︁

𝜎∈ℰ𝐾,int

(𝑚𝜎)2(𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾)2|Φ𝑛
𝜎 −Φ𝑛

𝐾 |2 ≤ ℓ⋆‖𝐷Φ‖2∞
(ℎ𝐾)4

(𝑚𝐾)2
∑︁

𝜎∈ℰ𝐾,int

𝜏𝐾𝜎(𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾)2.

Using estimate

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝐾∈𝒯𝑚

∑︁
𝜎∈ℰ𝐾,int

𝜏𝐾𝜎(𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾)2 =
𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜏𝜎(𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿)2 ≤ 𝑇𝐶1,

one infers from (2.12) that

‖𝑟𝑖,𝒯𝑚,Δ𝑡𝑚‖
2
𝐿2(𝑄𝑇 ) =

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝐾∈𝒯𝑚

𝑚𝐾 |𝑟𝑛
𝑖,𝐾 |2

≤ ℓ⋆‖𝐷Φ‖2∞
𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝐾∈𝒯𝑚

(ℎ𝐾)4

𝑚𝐾

∑︁
𝜎∈ℰ𝐾,int

𝜏𝐾𝜎(𝑐𝑛
𝑖,𝜎 − 𝑐𝑛

𝑖,𝐾)2 ≤ 𝑇𝐶1ℓ
⋆𝜁‖𝐷Φ‖2∞ℎ2

𝒯𝑚
,

so that 𝑟𝑖,𝒯𝑚,Δ𝑡𝑚 tends to 0 in 𝐿2(𝑄𝑇 ) and (4.9) holds.
Finally, we deduce from (4.5) to (4.9) that 𝑉 𝑖 = −𝑐𝑖∇𝜇𝑖 in the distributional sense, hence also in

𝐿2(𝑄𝑇 )2. �

We have now all the necessary material to conclude the proof of Theorem 2.4. This is the purpose of our last
lemma.
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Lemma 4.6. The limit values (𝑐𝑖, 𝜇𝑖) as 𝑚 tends to +∞ of (𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
, 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚

) satisfy the weak formula-
tions (1.16) for 𝑖 ∈ {1, 2}.

Proof. As a preliminary, let us first show that the functions 𝑐𝑖,𝒟𝑚,Δ𝑡𝑚 defined by

𝑐𝑖,𝒟𝑚,Δ𝑡𝑚(𝑡, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
𝑐𝑛
𝑖,𝜎if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐷𝜎, 𝜎 ∈ ℰint,𝑚,

𝑐𝑛
𝑖,𝐾 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×

⎛⎝𝐾 ∖
⋃︁

𝜎∈ℰ𝐾,int

𝐷𝐾,𝜎

⎞⎠ ,

converges strongly in 𝐿2(𝑄𝑇 ) towards 𝑐𝑖. Indeed, one has

‖𝑐𝑖,𝒟𝑚,Δ𝑡𝑚
− 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

‖2𝐿2(𝑄𝑇 ) =
𝑁𝑚∑︁
𝑛=1

∆𝑡𝑛
∑︁

𝐾∈𝒯𝑚

∑︁
𝜎∈ℰ𝐾,int

𝑚𝐷𝐾,𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝜎

)︀2
≤

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑛
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝑚𝐷𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀2 ≤ 𝑇𝐶1

2
(ℎ𝒯𝑚

)2 −→
𝑚→∞

0.

Since 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
converges in 𝐿2(𝑄𝑇 ) towards 𝑐𝑖 as 𝑚 tends to ∞, then so does 𝑐𝑖,𝒟𝑚,Δ𝑡𝑚

.
Let 𝜙 ∈ 𝐶∞𝑐 ([0, 𝑇 )×Ω), then denote by 𝜙𝑛

𝐾 = 𝜙(𝑡𝑛, 𝑥𝐾) for all 𝐾 ∈ 𝒯𝑚 and all 𝑛 ∈ {0, . . . , 𝑁𝑚}, 𝑚 ≥ 1. Note
that 𝜙𝑁𝑚

𝐾 = 0 for all 𝐾 ∈ 𝒯𝑚. Multiplying (2.3) by ∆𝑡𝑚𝜙𝑛−1
𝐾 and summing over 𝐾 ∈ 𝒯 and 𝑛 ∈ {1, . . . , 𝑁𝑚}

leads to
𝐴𝑖,𝑚 + 𝐵𝑖,𝑚 + 𝐶𝑖,𝑚 + 𝐷𝑖,𝑚 = 0, (4.10)

where we have set

𝐴𝑖,𝑚 =
𝑁𝑚∑︁
𝑛=1

∑︁
𝐾∈𝒯𝑚

𝑚𝐾𝑐𝑛
𝑖,𝐾

(︀
𝜙𝑛−1

𝐾 − 𝜙𝑛
𝐾

)︀
−
∑︁

𝐾∈𝒯𝑚

𝑚𝐾𝑐0
𝑖,𝐾𝜙0

𝐾 ,

𝐵𝑖,𝑚 =
1
𝜂𝑖

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎

(︀
𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿

)︀ (︀
𝜙𝑛−1

𝐾 − 𝜙𝑛−1
𝐿

)︀
,

𝐶𝑖,𝑚 =
1
𝜂𝑖

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎𝑐𝑛
𝑖,𝜎 (Ψ𝑖,𝐾 −Ψ𝑖,𝐿)

(︀
𝜙𝑛−1

𝐾 − 𝜙𝑛−1
𝐿

)︀
,

𝐷𝑖,𝑚 = 𝜃𝑖,𝒯𝑚

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝜏𝜎

(︀
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛

𝑖,𝐿

)︀ (︀
𝜙𝑛−1

𝐾 − 𝜙𝑛−1
𝐿

)︀
.

Classical arguments (see for instance [16]) allow to show that

𝐴𝑖,𝑚 −→
𝑚→∞

−
∫︁∫︁

𝑄𝑇

𝑐𝑖𝜕𝑡𝜙 d𝑥 d𝑡−
∫︁

Ω

𝑐0
𝑖 𝜙(0, ·) d𝑥, (4.11)

and, since 𝜃𝑖,𝒯𝑚
tends to 𝜃𝑖, that

𝐷𝑖,𝑚 −→
𝑚→∞

𝜃𝑖

∫︁∫︁
𝑄𝑇

∇𝑐𝑖 ·∇𝜙 d𝑥 d𝑡. (4.12)
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Using Taylor expansions, one shows that⃒⃒⃒⃒
𝜙𝑛

𝐾 − 𝜙𝑛
𝐿

𝑑𝜎
+

1
𝑚𝐷𝜎

∫︁
𝐷𝜎

∇𝜙 (𝑡𝑛, 𝑥) · 𝑛𝐾𝐿 d𝑥

⃒⃒⃒⃒
≤ 𝐶𝑑𝜎, ∀𝜎 = 𝐾|𝐿 ∈ ℰint,𝑚. (4.13)

Therefore,

𝐵𝑖,𝑚 = − 1
𝜂𝑖

∫︁∫︁
𝑄𝑇

𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚 ·∇𝜙 d𝑥 d𝑡 + 𝐵′
𝑖,𝑚

with

⃒⃒
𝐵′

𝑖,𝑚

⃒⃒
≤ 𝐶

𝜂𝑖
ℎ𝒯𝑚

𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚
∑︁

𝜎∈ℰint,𝑚

𝜎=𝐾|𝐿

𝑚𝜎𝑐𝑛
𝑖,𝜎|𝜇𝑛

𝑖,𝐾 − 𝜇𝑛
𝑖,𝐿|

+
1
𝜂𝑖

⃒⃒⃒⃒
⃒
𝑁𝑚∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1

∫︁
Ω

(︀
∇𝜙(𝑡, 𝑥)−∇𝜙(𝑡𝑛−1, 𝑥)

)︀
· 𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚d𝑥 d𝑡

⃒⃒⃒⃒
⃒ .

Cauchy–Schwarz inequality together with Lemma 3.6, the regularity of 𝜙 and the 𝐿2(𝑄𝑇 ) bound of 𝑉 𝑖,𝒟𝑚,Δ𝑡𝑚

show that 𝐵′
𝑖,𝑚 tends to 0 as 𝑚 tends to +∞, while Lemma 4.5 ensures that

lim
𝑚→∞

𝐵𝑖,𝑚 =
∫︁∫︁

𝑄𝑇

𝑐𝑖

𝜂𝑖
∇𝜇𝑖 ·∇𝜙 d𝑥 d𝑡. (4.14)

Let us focus on the term 𝐶𝑖,𝑚. Define the vectors

𝑊 𝑛
𝑖,𝜎 = 2

Ψ𝑖,𝐾 −Ψ𝑖,𝐿

𝑑𝜎
𝑛𝐾𝐿, ∀𝜎 = 𝐾|𝐿 ∈ ℰint,𝑚, ∀𝑛 ∈ {1, . . . , 𝑁𝑚}, (4.15)

and the corresponding piecewise constant vector field

𝑊 𝑖,𝒟𝑚,Δ𝑡𝑚(𝑡, 𝑥) = 𝑊 𝑛
𝑖,𝜎 if (𝑡, 𝑥) ∈ (𝑡𝑛−1, 𝑡𝑛]×𝐷𝜎, 𝜎 ∈ ℰint,𝑚, (4.16)

then it is shown in [10, 15] that 𝑊 𝑖,𝒟𝑚,Δ𝑡𝑚
converges weakly in 𝐿2(𝑄𝑇 ) towards −∇Ψ𝑖. Therefore,

𝑐𝑖,𝒟𝑚,Δ𝑡𝑚
𝑊 𝑖,𝒟𝑚,Δ𝑡𝑚

converges weakly in 𝐿𝑝(𝑄𝑇 ) towards −𝑐𝑖∇Ψ𝑖 for all 𝑝 < 2. Proceeding as for 𝐵𝑖,𝑚,
one shows that

lim
𝑚→∞

𝐶𝑖,𝑚 =
∫︁∫︁

𝑄𝑇

𝑐𝑖

𝜂𝑖
∇Ψ𝑖 ·∇𝜙 d𝑥 d𝑡. (4.17)

Combining (4.11)–(4.17) in (4.10) provides that the limits 𝑐𝑖, 𝜇𝑖 as 𝑚 tends to ∞ of 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
, 𝜇𝑖,𝒯𝑚,Δ𝑡𝑚

fulfil
the weak formulation (1.16). �

Remark 4.7. A natural way to discretize (1.2) would have been to use a Scharfetter-Gummel scheme [30]
in (2.3). This scheme degenerates into the upstream mobility scheme proposed in [9] in the deep quench limit
𝜃𝑖,𝒯 = 0. Almost all our analysis can be adapted to this scheme excepted Lemma 4.5. More precisely, we are
not able to prove that the term 𝐵

(1)
𝑖,𝑚(Φ) appearing in the proof of Lemma 4.5 tends to 0 as 𝑚 tends to +∞,

which possibly breaks the consistency of the scheme.

5. Numerical results

In this section, we present different simulations to illustrate the behavior of the finite-volume scheme presented
in Section 2.2. To solve this nonlinear system we use a Newton-Raphson based iterative method. More precisely,
the unknowns

(︀
𝑐𝑛
2,𝐾

)︀
𝐾∈𝒯 are eliminated thanks to the relation (2.6), so that the nonlinear system to be solved
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Figure 2. Spinodal decomposition without external potential, 𝑐0
1(𝑥) = 0.5 + 𝑟(𝑥). [(A) 𝑡 =

0.005. (B) 𝑡 = 0.01. (C) 𝑡 = 0.02. (D) 𝑡 = 0.2.]

Figure 3. Spinodal decomposition with external potentials, 𝑐0
1(𝑥) = 0.5+𝑟(𝑥). [(A) 𝑡 = 0.005.

(B) 𝑡 = 0.01. (C) 𝑡 = 0.02. (D) 𝑡 = 0.2.]

at each time step involves 3 unknowns 𝑐𝑛
1,𝐾 , 𝜇𝑛

1,𝐾 and 𝜇𝑛
2,𝐾 per cell 𝐾 ∈ 𝒯 . The iterative method stops as soon

as the ℓ2 norm of the Newton increment is smaller than 10−6. The updated concentration variables are projected
on the set [𝜖, 1− 𝜖]𝒯 , with 𝜖 = 10−10, which is reasonable in view of Lemma 3.2.

In each case the domain Ω is the square (0, 1)2. The mesh is made of 23330 conforming triangles. The mesh size
is approximately equal to 0.017 and the time step is fixed to ∆𝑡 = 10−4. We choose as parameters 𝛼 = 0.0002,
𝜅 = 1.45, 𝜃1 = 𝜃2 = 0.35, 𝜌 = 1 and 𝜈1 = 𝜈2 = 1. We plot the concentration 𝑐1 and we can observe in blue the
concentration 𝑐1 = 0, in red 𝑐1 = 1 and in white 𝑐1 = 0.5.

First we consider the spinodal decomposition test case. The initial saturation 𝑐0
1 is a random initial concen-

tration with a fluctuation, that is 𝑐0
1(𝑥) = 0.5 + 𝑟(𝑥) where 𝑟 ≪ 1 is a small random perturbation. We compare

the case without any external potential, that is Ψ1 = Ψ2 = 0, in Figure 2 with the case where the external
potential are given by Ψ𝑖(𝑥) = −𝜌𝑖𝑔 · 𝑥 where the gravity is 𝑔 = −0.98𝑒𝑦 and the densities 𝜌1 = 5 and 𝜌2 = 1
in Figure 3. Note that in both cases we have exactly the same initial data. We want to observe the influence of
the gravity on the phase separation dynamics.

At the very beginning (see Figs. 2a and 3a), as the state 𝑐1 = 0.5 is slightly disturbed, the two pure phases
𝑐1 = 0 and 𝑐1 = 1 quickly spontaneously separate. However in the second case, as the phase 𝑐1 is heavier, we
can clearly observe in Figure 3a the influence of the external potentials at the bottom and the top. Then the
pure phases gradually come together to form larger patterns (see Figs. 2b–2d and Figs. 3b–3d). Furthermore, it
can be seen that even if the external potentials have a very strong influence on the phase separation dynamics
at the top and the bottom, in a short time, the phase separation dynamic is very similar at the center of the
domain (see Figs. 2a–2c and Figs. 3a–3c). But, in a longer time, the influence of external potentials on the entire
phase separation dynamics can be observed in Figures 2d and 3d.
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Figure 4. Spinodal decomposition without external potential, 𝑐0
1(𝑥) = 0.3 + 𝑟(𝑥). (A) 𝑡 =

0.011. (B) 𝑡 = 0.015. (C) 𝑡 = 0.05. (D) 𝑡 = 0.2.

Figure 5. Spinodal decomposition with external potentials, 𝑐0
1(𝑥) = 0.3 + 𝑟(𝑥). (A) 𝑡 = 0.011.

(B) 𝑡 = 0.015. (C) 𝑡 = 0.05. (D) 𝑡 = 0.2.

Figure 6. Cross as initial data without external potential. (A) 𝑡 = 0. (B) 𝑡 = 0.02. (C) 𝑡 = 0.07.
(D) 𝑡 = 0.2.

Now we keep exactly the same data but we change the initial condition by favouring the pure phase 𝑐1 = 0
and choosing 𝑐0

1(𝑥) = 0.3 + 𝑟(𝑥).
First of all we can see in Figures 4a and 5a that, as expected, the pure phase 𝑐1 = 1, and thus, the phase

separation dynamics appears later than in Figures 2a and 3a. Moreover, since the phase 𝑐1 = 0 is preponderant,
a collection of circular droplets of the pure phase 𝑐1 = 1 can be observed over a long period of time (see Figs. 4c,
4d and 5c, 5d). Our observations on Figures 2 and 3 concerning the influence of the external potentials are still
valid with this choice of initial profiles.

We consider now a second test case. The initial concentration is a cross in the middle of the domain presented
in Figure 6a.



1000 C. CANCÈS AND F. NABET

Figure 7. Cross as initial data with external potentials. (A) 𝑡 = 0.02. (B) 𝑡 = 0.07. (C)
𝑡 = 0.15. (D) 𝑡 = 0.5.

Here again we start with the case without external potentials. We know that in this case the Cahn–Hilliard
model preserves the volume while minimizing the perimeter and thus as seen in Figure 6 the cross evolves into
a circle.

Now, we want to observe the influence of the gravity when we add the external potentials Ψ𝑖(𝑥) = −𝜌𝑖𝑔 · 𝑥.
Since 𝜌1 = 5 > 1 = 𝜌2, as one might expect, we observe in Figure 7 that the cross, that is the pure phase 𝑐1 = 1,
is drawn down. Thus, although the volume is still preserved, the final state is no longer a circle but a strip at
the bottom of the domain.

Appendix A. Technical lemma

For 𝜆 ∈ [0, 1], let 𝑓𝜆 and 𝑝𝜆 be defined as in (3.29), and let 𝐻𝜆 : R → [0, +∞] be the convex function defined
by

𝐻𝜆(𝑐) =
∫︁ 𝑐

1

𝑝𝜆(𝑎) d𝑎 =

⎧⎪⎨⎪⎩
𝑐 log 1−𝜆

1+𝜆 + 𝜆 if 𝑐 ≤ 1−𝜆
2 ,

𝑐 log 2𝑐
1+𝜆 − 𝑐 + 1+𝜆

2 if 𝑐 ∈
[︀
1−𝜆

2 , 1+𝜆
2

]︀
,

0 if 𝑐 ≥ 1+𝜆
2

(A.1)

if 𝜆 < 1 and

𝐻1(𝑐) =

⎧⎪⎨⎪⎩
+∞ if 𝑐 < 0,

𝑐 log 𝑐− 𝑐 + 1 if 𝑐 ∈ [0, 1],
0 if 𝑐 ≥ 1.

(A.2)

One readily checks that
lim
𝜆↗1

𝐻𝜆(𝑐) = 𝐻1(𝑐), ∀𝑐 ∈ R.

Let us establish the following lemma, which is used in the proof of Proposition 3.9.

Lemma A.1. For all 𝛽 > 0, there exists 𝐶𝛽 depending only on 𝛽 such that

1− 𝜆

2

(︂
𝑐− 1

2

)︂2

+ 𝐻𝜆(𝑐) + 𝐻𝜆(1− 𝑐) ≥ 𝛽

⃒⃒⃒⃒
𝑐− 1

2

⃒⃒⃒⃒
− 𝐶𝛽 , ∀𝜆 ∈ [0, 1], ∀𝑐 ∈ R. (A.3)

Proof. Assume that there exists a nonnegative super-linear function Υ : R+ → R+ such that

1− 𝜆

2

(︂
𝑐− 1

2

)︂2

+ 𝐻𝜆(𝑐) + 𝐻𝜆(1− 𝑐) ≥ Υ
(︂⃒⃒⃒⃒

𝑐− 1
2

⃒⃒⃒⃒)︂
, ∀𝜆 ∈ [0, 1], ∀𝑐 ∈ R, (A.4)

and

lim
𝑢→+∞

Υ(𝑢)
𝑢

= +∞. (A.5)
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Then, we proceed as in the proof of Lemma 3.3 from [6] to establish (A.3). More precisely, we infer from (A.5)
that for all 𝛽 > 0, there exists 𝑟𝛽 > 0 such that

𝑢 ≥ 𝑟𝛽 =⇒ Υ(𝑢) ≥ 𝛽𝑢.

Since Υ(𝑢) is assumed to be nonnegative, one has

Υ(𝑢) ≥ 𝛽𝑢− 𝛽𝑟𝛽 , ∀𝑢 ≥ 0,

so that (A.4) implies (A.3). Therefore, the problem reduces to show that such an Υ exists.
As a preliminary, we remark that the left-hand side of (A.4) is invariant by replacing 𝑐 by (1− 𝑐), so that if

we establish (A.4) for 𝑐 ≥ 1
2 , it will also hold true for 𝑐 ≤ 1

2 . Define

Υ(𝑢) = inf
𝜆∈[0,1)

{︂
1− 𝜆

2
|𝑢|2 + 𝐻𝜆

(︂
𝑢 +

1
2

)︂
+ 𝐻𝜆

(︂
1
2
− 𝑢

)︂}︂
≥ 0, ∀𝑢 ≥ 0,

then (A.4) automatically holds. It only remains to check that so does (A.5). The above definition of Υ can be
reformulated as

Υ(𝑢) = inf
𝜆∈[0,1)

𝒵𝑢(𝜆), ∀𝑢 ≥ 0,

where, recalling the expression (A.1) of 𝐻𝜆, 𝒵𝑢 is the 𝐶1 function defined on [0, 1) by

𝒵𝑢(𝜆) =

{︃
1−𝜆

2 𝑢2 +
(︀

1
2 − 𝑢

)︀
log 1−𝜆

1+𝜆 + 𝜆 if 𝜆 ≤ 2𝑢,
1−𝜆

2 𝑢2 + 𝜆− log(1 + 𝜆) +
(︀

1
2 + 𝑢

)︀
log(1 + 2𝑢) +

(︀
1
2 − 𝑢

)︀
log(1− 2𝑢) if 𝜆 ≥ 2𝑢,

for all 𝑢 ≥ 0 and 𝜆 ∈ [0, 1). An elementary study of this function shows that 𝒵𝑢 reaches its minimum on [0, 1]
at

𝜆⋆(𝑢) =

{︃
0 if 𝑢 ≤ 4,√︁

1− 4𝑢−2
𝑢2−2 if 𝑢 ≥ 4.

Using this expression in the above expression of 𝒵𝑢(𝜆), we can explicit Υ(𝑢) as

Υ(𝑢) =

{︃
𝑢2

2 if 𝑢 ≤ 4,

Υ1(𝑢) + Υ2(𝑢) + 𝜆⋆(𝑢) if 𝑢 ≥ 4,

where we have set

Υ1(𝑢) =
𝑢2

2
(1− 𝜆⋆(𝑢)) , and Υ2(𝑢) =

(︂
𝑢− 1

2

)︂
log

1 + 𝜆⋆(𝑢)
1− 𝜆⋆(𝑢)

·

Noticing that 𝜆⋆(𝑢) ∼ 1− 2
𝑢 as 𝑢 tends to +∞, one obtains that Υ1(𝑢) ∼ 𝑢 behaves linearly at infinity. However,

Υ(𝑢) is super-linear, i.e. (A.5) holds since Υ2(𝑢) ∼ 𝑢 log 𝑢 as 𝑢 → +∞. �

Appendix B. A discrete Aubin–Simon lemma

The goal of this appendix is to state a ready to use discrete Aubin–Simon lemma adapted to our TPFA finite
volume framework. Several time-compactness results for the numerical approximations have been proposed in
the last decade, see for instance [2, 3, 11, 18, 19]. The statement we propose here is tailored for our application
rather than aiming at being general. It requires the introduction of a sequence of regular discretizations of 𝑄𝑇

as introduced before Theorem 2.4, the corresponding spaces 𝒳𝒯𝑚,Δ𝑡𝑚
and the approximate gradient operators

∇𝒯𝑚
as in Proposition 4.2.
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Lemma B.1. Let
(︀
𝒯𝑚, ℰ𝑚, (𝑥𝐾)𝐾∈𝒯𝑚

, ∆𝑡𝑚
)︀
𝑚≥1

be a sequence of regular discretizations of 𝑄𝑇 , and let
(𝑢𝒯𝑚,Δ𝑡𝑚

)𝑚≥1 be a sequence of piecewise constant functions with 𝑢𝒯𝑚,Δ𝑡𝑚
∈ 𝒳𝒯𝑚,Δ𝑡𝑚

for all 𝑚 ≥ 1 such
that:
(i) the sequences (𝑢𝒯𝑚,Δ𝑡𝑚)𝑚≥1 and (∇𝒯𝑚𝑢𝒯𝑚,Δ𝑡𝑚)𝑚≥1 are bounded in 𝐿2(𝑄𝑇 ) and 𝐿2(𝑄𝑇 )2 respectively;
(ii) For all 𝜙𝒯𝑚,Δ𝑡𝑚

∈ 𝒳𝒯𝑚
, there holds

𝑁𝑚∑︁
𝑛=1

∑︁
𝐾∈𝒯𝑚

𝑚𝐾

(︀
𝑢𝑛

𝐾 − 𝑢𝑛−1
𝐾

)︀
𝜙𝑛

𝐾 ≤ 𝐶 ‖∇𝒯𝑚
𝜙𝒯𝑚,Δ𝑡𝑚

‖𝐿2(𝑄𝑇 )2 , (B.1)

for some 𝐶 not depending on 𝑚.
Then, up to a subsequence, 𝑢𝒯𝑚,Δ𝑡𝑚

converges strongly in 𝐿2
loc(𝑄𝑇 ) towards 𝑢 ∈ 𝐿2((0, 𝑇 ); 𝐻1(Ω)) as 𝑚 tends

to +∞.

Proof. Let us first notice that, owing to Proposition 4.2, the properties (i) above ensures that 𝑢𝒯𝑚,Δ𝑡𝑚
converges

weakly in 𝐿2(𝑄𝑇 ) towards some 𝑢 ∈ 𝐿2((0, 𝑇 ); 𝐻1(Ω)). Now, let us check that the assumptions of Proposition 3.8
from [3] are fulfilled. Assumption (A𝑡) of [3] is automatically fulfilled for one-step time discretizations (including
the backwards Euler scheme). Besides, the condition (Ax1) of [3], which is about the compactness w.r.t. space
of sequences with bounded gradients holds, as established in [17] for SUSHI finite volume approximations. Since
the 𝐿2(𝑄𝑇 )2 norm was used in the right-hand side of (B.1) (in opposition to the 𝐿∞(𝑄𝑇 )2 norm suggested
by [3]), it is sufficient to establish the relaxed version of condition (Ax3) of [3]: for any 𝜙 ∈ 𝐶∞𝑐 (Ω), define

𝜙𝐾 =
1

𝑚𝐾

∫︁
𝐾

𝜙 d𝑥, ∀𝐾 ∈ 𝒯𝑚, ∀𝑚 ≥ 1,

and 𝜙𝒯𝑚
(𝑥) = 𝜙𝐾 if 𝑥 ∈ 𝐾, then there exists some 𝐶 > 0 such that

‖∇𝒯𝑚
𝜙𝒯𝑚

‖𝐿2(𝑄𝑇 )2 ≤ 𝐶 ‖∇𝜙‖𝐿2(𝑄𝑇 )2 , ∀𝑚 ≥ 1.

This constant 𝐶 is exactly the constant 𝐶2 introduced before, the inequality being established in Lemma 9.4 of
[16].

We are in position to make use of Proposition 3.8 from [3], which shows that for all 𝜙 ∈ 𝐶∞𝑐 (𝑄𝑇 ),∫︁∫︁
𝑄𝑇

|𝑢𝒯𝑚,Δ𝑡𝑚 |
2
𝜙 d𝑥 d𝑡 −→

𝑚→∞

∫︁∫︁
𝑄𝑇

|𝑢|2 𝜙 d𝑥 d𝑡.

This allows in particular to show that∫︁∫︁
𝑄𝑇

|𝑢𝒯𝑚,Δ𝑡𝑚 − 𝑢|2 𝜙 d𝑥 d𝑡 −→
𝑚→∞

0,

hence the claimed 𝐿2
loc(𝑄𝑇 ) convergence property. �

Lemma B.1 can be directly used on (𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
)𝑚≥1. Indeed, while 𝑐𝑖,𝒯𝑚,Δ𝑡𝑚

is uniformly bounded in 𝐿∞(𝑄𝑇 )
thus in 𝐿2(𝑄𝑇 ) too, ∇𝒯𝑚

𝑐𝑖,𝒯𝑚,Δ𝑡𝑚
is uniformly bounded in 𝐿∞((0, 𝑇 ); 𝐿2(Ω))2, thus in 𝐿2(𝑄𝑇 )2 too. Moreover,

using (2.3), Cauchy–Schwarz inequality and 0 ≤ 𝑐𝑛
𝑖,𝜎 ≤ 1, one gets that

𝑁𝑚∑︁
𝑛=1

∑︁
𝐾∈𝒯𝑚

𝑚𝐾

(︁
𝑐𝑛
𝑖,𝐾 − 𝑐𝑛−1

𝑖,𝐾

)︁
𝜙𝑛

𝐾 ≤ 1
√

𝜂𝑖

(︃
𝑁𝑚∑︁
𝑛=1

∆𝑡𝑚D𝒯𝑚
(𝑐𝑛, 𝜇𝑛)

)︃1/2

‖∇𝒯𝑚
𝜙𝒯𝑚,Δ𝑡𝑚

‖𝐿2(𝑄𝑇 )2

≤ 𝐶 ‖∇𝒯𝑚
𝜙𝒯𝑚,Δ𝑡𝑚

‖𝐿2(𝑄𝑇 )2 .
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