Various choices of source terms for a class of two-fluid two-velocity models
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 357-380

The source terms of the Baer–Nunziato model involve highly non-linear return to equilibrium terms. In order to perform numerical simulations of realistic situations, accounting for this relaxation effects is mandatory. Unfortunately, with the classical forms retained for these source terms in the literature, building efficient, robust and accurate numerical schemes is a tricky task. In this paper, we propose different non-classical forms for these source terms. As for the classical ones, they all agree with the second law of thermodynamics and they are thus associated with a growth of an entropy. The great advantage of some of these new forms of source terms is that they are more linear with respect to the conservative variables. Consequently, this allows to propose more robust, efficient and accurate numerical schemes, in particular when considering fractional step approaches for which source terms and convection terms are solved separately.

DOI : 10.1051/m2an/2020089
Classification : 76TL10, 35L40
Keywords: Two-fluid two-velocity models, thermodynamical equilibrium, source terms
@article{M2AN_2021__55_2_357_0,
     author = {Hurisse, Olivier},
     title = {Various choices of source terms for a class of two-fluid two-velocity models},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {357--380},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020089},
     mrnumber = {4229192},
     zbl = {1470.76103},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020089/}
}
TY  - JOUR
AU  - Hurisse, Olivier
TI  - Various choices of source terms for a class of two-fluid two-velocity models
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 357
EP  - 380
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020089/
DO  - 10.1051/m2an/2020089
LA  - en
ID  - M2AN_2021__55_2_357_0
ER  - 
%0 Journal Article
%A Hurisse, Olivier
%T Various choices of source terms for a class of two-fluid two-velocity models
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 357-380
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020089/
%R 10.1051/m2an/2020089
%G en
%F M2AN_2021__55_2_357_0
Hurisse, Olivier. Various choices of source terms for a class of two-fluid two-velocity models. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 357-380. doi: 10.1051/m2an/2020089

[1] M. Baer and J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | Zbl | DOI

[2] T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. | Zbl | DOI

[3] R. A. Berry, J. W. Peterson, H. Zhang, R. C. Martineau, H. Zhao, L. Zou and D. Andrs, Relap-7 theory manual. Technical report, Idaho National Laboratory, INL/EXT-14-31366.

[4] C. Chalons, A simple and accurate coupled HLL-type approximate Riemann solver for the two-fluid two-pressure model of compressible flows, Int. J. Finite Vol. (2016) https://hal.archives-ouvertes.fr/hal-01419932. | MR | Zbl

[5] F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C. R. Math. 334 (2002) 927–932. | MR | Zbl | DOI

[6] F. Coquel, T. Gallouët, P. Helluy, J.-M. Hérard, O. Hurisse and N. Seguin, Modelling compressible multiphase flows. ESAIM: Proc. Surv. 40 (2013) 34–50. | MR | Zbl | DOI

[7] F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12 (2014) 593–600. | MR | Zbl | DOI

[8] F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the baer–nunziato model. J. Comput. Phys. 330 (2017) 401–435. | MR | Zbl | DOI

[9] F. Crouzet, F. Daude, P. Galon, J.-M. Hérard, O. Hurisse and Y. Liu, Validation of a two-fluid model on unsteady liquid–vapor water flows. Comput. Fluids 119 (2015) 131–142. | MR | Zbl | DOI

[10] P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. | Zbl | DOI

[11] T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. | MR | Zbl | DOI

[12] S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. | MR | Zbl | DOI

[13] J. Glimm, D. Saltz and D. Sharp, Two-pressure two-phase flow. In: Advances In Nonlinear Partial Differential Equations and Related Areas: A Volume in Honor of Professor Xiaqi Ding. World Scientific (1998) 124–148. | MR | Zbl | DOI

[14] V. Guillemaud, Modelling and numerical simulation of two-phase flows using the two-fluid two-pressure approach. Theses, Université de Provence – Aix-Marseille I (2007) https://tel.archives-ouvertes.fr/tel-00169178

[15] J.-M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas–liquid flows. Comput. Fluids 55 (2012) 57–69. | MR | Zbl | DOI

[16] J.-M. Hérard and O. Hurisse, Computing two-fluid models of compressible water-vapour flows with mass transfer. In: 42nd AIAA Fluid Dynamics Conference and Exhibit (2012). DOI: . | DOI

[17] J.-M. Hérard, O. Hurisse, A. Morente and K. Saleh, Application of a two-fluid model to simulate the heating of two-phase flows. In: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems. Springer (2014) 857–864. | MR | Zbl | DOI

[18] M. Hillairet, On Baer-Nunziato multiphase flow models. ESAIM Proc. Surv. 66 (2019) 61–83. | MR | Zbl | DOI

[19] O. Hurisse, Application of an homogeneous model to simulate the heating of two-phase flows. Int. J. Finite 11 (2014) 1–37. | MR | Zbl

[20] O. Hurisse, Numerical simulations of steady and unsteady two-phase flows using a homogeneous model. Comput. Fluids 152 (2017) 88–103. | MR | Zbl | DOI

[21] H. Jin, J. Glimm and D. Sharp, Compressible two-pressure two-phase flow models. Phys. Lett. A 353 (2006) 469–474. | DOI

[22] Y. Liu, Contribution to the verification and the validation of an unsteady two-phase flow model. Theses, Aix-Marseille Université (2013). https://tel.archives-ouvertes.fr/tel-00864567.

[23] H. Lochon, Modelling and simulation of steam-water transients using the two-fluid approach. Theses, Aix Marseille Université (2016). https://tel.archives-ouvertes.fr/tel-01379453.

[24] H. Lochon, F. Daude, P. Galon and J.-M. Hérard, HLLC-type Riemann solver with approximated two-phase contact for the computation of the Baer–Nunziato two-fluid model. J. Comput. Phys. 326 (2016) 733–762. | MR | Zbl | DOI

[25] S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1189. | MR | Zbl | DOI

[26] D. W. Schwendeman, C. W. Wahle and A. K. Kapila, The riemann problem and a high-resolution godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. | MR | Zbl | DOI

[27] S. Tokareva and E. F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. | MR | Zbl | DOI

[28] N. Yanenko, Méthode à pas fractionnaires. Résolutions de problèmes polydimensionnels de physique mathématique. Armand Colin (1968). | Zbl

Cité par Sources :