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VARIOUS CHOICES OF SOURCE TERMS FOR A CLASS OF TWO-FLUID
TWO-VELOCITY MODELS

Olivier Hurisse*

Abstract. The source terms of the Baer–Nunziato model involve highly non-linear return to equi-
librium terms. In order to perform numerical simulations of realistic situations, accounting for this
relaxation effects is mandatory. Unfortunately, with the classical forms retained for these source terms
in the literature, building efficient, robust and accurate numerical schemes is a tricky task. In this
paper, we propose different non-classical forms for these source terms. As for the classical ones, they
all agree with the second law of thermodynamics and they are thus associated with a growth of an
entropy. The great advantage of some of these new forms of source terms is that they are more linear
with respect to the conservative variables. Consequently, this allows to propose more robust, efficient
and accurate numerical schemes, in particular when considering fractional step approaches for which
source terms and convection terms are solved separately.
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1. Introduction

We consider here the class of the so-called Baer–Nunziato model [1]. In these two-fluid models, each fluid
is described by its own pressure, temperature and velocity. The physical coupling of the two fluids is ensured
by several ingredients. Firstly, the phasic variables (pressure, temperature and velocity) are supplemented by
a fraction. This variable is either a statistical void fraction (see [13, 22] for instance) or a volume fraction (see
[1] for instance), depending on the modeling processes used to build the model, and it describes the proportion
of each phase at a given point in space and at a given time. Secondly, several convective terms involving the
fraction appear in the set of partial derivative equations. These terms account for effects that can be seen as
interfacial forces due to the space variations of the fraction. They are expressed as non-conservative terms in
the momentum equations and in the energy equations of each phase. The modeling of these terms has been
widely studied for instance in [5, 7, 11, 12, 14, 18, 21, 22, 25]. Lastly, some source terms are defined in order to
account for all the relaxation processes between the phasic quantities: drag force, mass transfer, heat exchange
and pressure relaxation. The definition of these source terms relies on the second law of thermodynamics and
it thus requires a concave entropy for the mixture of the two-fluids.
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These two-fluid models have been used for several years in order to perform numerical simulations of unsteady
two-phase flows involving heat ant mass transfer [3, 9, 16, 17, 22]. The numerical schemes used for this kind of
simulations are very often based on fractional step approaches [28] that first account for the convective part
of the model and then take into account the source terms. Several efficient and robust numerical schemes have
been proposed for the numerical discretization of the convective part, see [4, 8, 24, 26, 27] among many others.
The second step of these approaches then deals with the numerical computation of the source terms, which is
associated with complex non-linear ordinary time-derivative equation (ODE) systems. Due to the form of the
classical source terms [1, 5, 12], these ODE systems are highly non-linear, even when dealing with very simple
equations of state. Moreover, since the relaxation effects may be very stiff, the numerical schemes have to be
both accurate and robust. In the numerical schemes proposed in the literature, the four different relaxation
effects (for the velocities, the pressures, the temperatures and the Gibbs free enthalpies) are treated separately
[6,15,16,22,23]. This strategy has two drawbacks. Firstly, the different effects are numerically decoupled which
may lead to predictions with a low accuracy for simulation on coarse meshes. Secondly, the numerical approx-
imation of each relaxation effect is associated with one non-linear ODE system. Hence four non-linear ODE
systems have to be solved which is CPU consuming. In the sequel, we therefore propose non-classical forms for
these source terms that are more easy to account for in a numerical point of view.

The model and the classical source terms are recalled respectively in Sections 2 and 4. The non-classical source
terms are directly inspired from the thermodynamical source terms that are classically used in two-phase flow
homogeneous models, for which it is assumed that both fluids have the same velocity. For the latter, the source
terms are often more linear and they can be discretized using very simple and efficient schemes as proposed in
[19, 20]. All the source terms of the sequel are built in order to fulfill the second law of thermodynamics, and
several concave entropies are thus defined in Section 3. Four different set of closures for the source terms are
proposed in Section 5 on the basis of these different entropies. The first set of closure laws and the second set
of closure laws (resp. in Sect. 5.1 and in Sect. 5.2) are presented for the sake of completeness, but they do not
seem to be of great interest in a practical point of view for numerical simulations. On the contrary, the third
set of closure laws (Sect. 5.3) and the forth set of closure laws (Sect. 5.4) can provide a way to build robust and
efficient simulation tools for two-fluid two-velocity models.

2. A two-fluid two-velocity model

The two-phase flow model considered here belongs to the so-called class of Baer–Nunziato model [1]. Each
phase, labeled by an under-script 𝑘 = {𝑙, 𝑔}, is described by its own specific volume 𝜏𝑘 ∈ R+

* , specific internal
energy 𝑒𝑘 ∈ R+

* and velocity 𝑈𝑘 ∈ R; and one Equation of State (EoS) is defined for each fluid in terms of the
specific entropy 𝑠𝑘:

(𝜏𝑘, 𝑒𝑘) ∈ R+
* × R+

* : (𝜏𝑘, 𝑒𝑘) ↦→ 𝑠𝑘(𝜏𝑘, 𝑒𝑘).

We assume the following properties for the specific entropy 𝑠𝑘.

Definition 2.1. The specific entropy 𝑠𝑘:

– belongs to 𝐶2 (R+
* × R+

* , R);
– is strictly concave with respect to (𝜏𝑘, 𝑒𝑘) ∈ R+

* × R+
* ;

– is such that its derivative with respect to the specific internal energy, (𝑠𝑘),𝑒𝑘
, is positive: ∀(𝜏𝑘, 𝑒𝑘) ∈ R+

* ×
R+
* , (𝑠𝑘),𝑒𝑘

> 0.

The following notations are introduced for each phase: the density 𝜌𝑘 = 1/𝜏𝑘, the total specific energy
𝐸𝑘 = 𝑒𝑘 + 𝑈2

𝑘/2, and (𝜏𝑘, 𝑒𝑘) ↦→ 𝑃𝑘(𝜏𝑘, 𝑒𝑘) the thermodynamical pressure that will be defined more precisely in
the following. The void fractions 𝛼𝑘 ∈ R+

* fulfill the constraint 𝛼𝑔 + 𝛼𝑙 = 1, the partial mass 𝑚𝑘 of the phase 𝑘
is denoted by 𝑚𝑘 = 𝛼𝑘𝜌𝑘, the internal energy per unit of volume 𝜀𝑘 of phase 𝑘 is denoted by 𝜀𝑘 = 𝑚𝑘𝑒𝑘, and
the total energy per unit of volume ℰ𝑘 is:

ℰ𝑘 = 𝜀𝑘 +
𝑄2

𝑘

2𝑚𝑘
,
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where 𝑄𝑘 = 𝑚𝑘𝑈𝑘 is the momentum of phase 𝑘 and 𝑈𝑘 its velocity.
The variable of description of the flow is 𝑋𝑔𝑙 = (𝛼𝑔, 𝜏𝑔, 𝑒𝑔, 𝑈𝑔, 𝜏𝑙, 𝑒𝑙, 𝑈𝑙) and the complete set of equations

that rules the time and space evolution of the variables 𝑋𝑔𝑙 is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡 (𝛼𝑔) + 𝑉𝐼𝜕𝑥 (𝛼𝑔) = 𝑆1,𝑔

𝜕𝑡 (𝛼𝑔𝜌𝑔) + 𝜕𝑥 (𝛼𝑔𝜌𝑔𝑈𝑔) = 𝑆2,𝑔

𝜕𝑡 (𝛼𝑔𝜌𝑔𝑈𝑔) + 𝜕𝑥

(︀
𝛼𝑔𝜌𝑔𝑈

2
𝑔 + 𝛼𝑔𝑃𝑔

)︀
− 𝑃𝐼𝜕𝑥 (𝛼𝑔) = 𝑆3,𝑔

𝜕𝑡 (𝛼𝑔𝜌𝑔𝐸𝑔) + 𝜕𝑥 (𝛼𝑔𝑈𝑔(𝜌𝑔𝐸𝑔 + 𝑃𝑔)) + 𝑃𝐼𝜕𝑡 (𝛼𝑔) = 𝑆4,𝑔

𝜕𝑡 (𝛼𝑙𝜌𝑙) + 𝜕𝑥 (𝛼𝑙𝜌𝑙𝑈𝑙) = 𝑆2,𝑙

𝜕𝑡 (𝛼𝑙𝜌𝑙𝑈𝑙) + 𝜕𝑥

(︀
𝛼𝑙𝜌𝑙𝑈

2
𝑙 + 𝛼𝑙𝑃𝑙

)︀
− 𝑃𝐼𝜕𝑥 (𝛼𝑙) = 𝑆3,𝑙

𝜕𝑡 (𝛼𝑙𝜌𝑙𝐸𝑙) + 𝜕𝑥 (𝛼𝑙𝑈𝑙(𝜌𝑙𝐸𝑙 + 𝑃𝑙)) + 𝑃𝐼𝜕𝑡 (𝛼𝑙) = 𝑆4,𝑙.

(2.1)

In system of equations (2.1) several terms still need to be closed in terms of the variable 𝑋𝑔𝑙. In this section,
we focus on the thermodynamical closure for the pressure 𝑃𝑘 and of the temperature 𝑇𝑘; and we recall some
classical closure relations for the velocity 𝑉𝐼 and the pressure term 𝑃𝐼 . The modeling choices for the source terms,
𝑆𝑖,𝑘, 𝑖 = {1, 2, 3, 4}, 𝑘 = {𝑙, 𝑔}, which are the aim of the present work, are discussed in detail in Sections 4 and 5.
We only mention that, for the sake of simplicity, we assume here that they correspond to mass, momentum,
and energy exchanges between the two phases. Even if the external exchanges between the two-phase mixture
and its surroundings can be taken into account, it is out of the scope of the present work. Hence, for an isolated
system, the mass of the mixture 𝛼𝑙𝜌𝑙 + 𝛼𝑔𝜌𝑔, the momentum of the mixture 𝛼𝑙𝜌𝑙𝑈𝑙 + 𝛼𝑔𝜌𝑔𝑈𝑔 and the total
energy of the mixture 𝛼𝑙𝜌𝑙𝐸𝑙 + 𝛼𝑔𝜌𝑔𝐸𝑔 must not be modified by these internal exchanges. As a consequence,
and adding the constraint 𝛼𝑔 + 𝛼𝑙 = 1, the source terms have to fulfill the relations:

∀𝑖 = {2, 3, 4}, 𝑆𝑖,𝑙 + 𝑆𝑖,𝑔 = 0. (2.2)

Let us now consider regular solutions of system (2.1). The specific entropy 𝑠𝑘 is a regular function of 𝜏𝑘 and
𝑒𝑘, see Definition 2.1, so that we have:

(𝜕𝑡 (𝑠𝑘) + 𝑈𝑘𝜕𝑥 (𝑠𝑘)) = (𝑠𝑘),𝜏𝑘
(𝜕𝑡 (𝜏𝑘) + 𝑈𝑘𝜕𝑥 (𝜏𝑘)) + (𝑠𝑘),𝑒𝑘

(𝜕𝑡 (𝑒𝑘) + 𝑈𝑘𝜕𝑥 (𝑒𝑘)) . (2.3)

Then, thanks to the third property of Definition 2.1 for the specific entropy 𝑠𝑘, we have (𝑠𝑘),𝑒𝑘
> 0 and equation

(2.3) can be turned to: (︁
(𝑠𝑘),𝑒𝑘

)︁−1

𝐷𝑘,𝑡(𝑠𝑘) = 𝐷𝑘,𝑡(𝑒𝑘) +
(︁

(𝑠𝑘),𝑒𝑘

)︁−1

(𝑠𝑘),𝜏𝑘
𝐷𝑘,𝑡(𝜏𝑘), (2.4)

where the operator 𝐷𝑘,𝑡(·) corresponds to the total derivative1: 𝐷𝑘,𝑡(·) = 𝜕𝑡 (·) + 𝑈𝑘𝜕𝑥 (·). It is assumed that
the classical Gibbs relation holds for each pure phase, that is we have the following relation between the
thermodynamical pressure 𝑃𝑘, the thermodynamical temperature 𝑇𝑘, and the total derivative of 𝑠𝑘, 𝜏𝑘 and 𝑒𝑘:

𝑇𝑘𝐷𝑘,𝑡(𝑠𝑘) = 𝐷𝑘,𝑡(𝑒𝑘) + 𝑃𝑘𝐷𝑘,𝑡(𝜏𝑘). (2.5)

By identifying the different terms of equations (2.4) and (2.5), we get the thermodynamical definitions of the
temperature:

𝑇𝑘 =
(︁

(𝑠𝑘),𝑒𝑘

)︁−1

, (2.6)

and of the pressure

𝑃𝑘 =
(︁

(𝑠𝑘),𝑒𝑘

)︁−1

(𝑠𝑘),𝜏𝑘
= 𝑇𝑘 (𝑠𝑘),𝜏𝑘

, (2.7)

1The total derivative gathers the contribution of local derivative of the quantity 𝜕𝑡 (·) and of the convective derivative 𝑈𝑘𝜕𝑥 (·),
it corresponds to the derivative along a streamline.
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inside each pure phase. The pressure law (𝜏𝑘, 𝑒𝑘) ↦→ 𝑃𝑘(𝜏𝑘, 𝑒𝑘) and the temperature law (𝜏𝑘, 𝑒𝑘) ↦→ 𝑇𝑘(𝜏𝑘, 𝑒𝑘) of
each phase are thus directly obtained from the specific entropy (𝜏𝑘, 𝑒𝑘) ↦→ 𝑠𝑘(𝜏𝑘, 𝑒𝑘).

The mass equations (i.e. the second equation and the fifth equation) of (2.1) can be written:

𝑚𝑘 (𝜕𝑡 (𝜏𝑘) + 𝑈𝑘𝜕𝑥 (𝜏𝑘))− 𝛼𝑘𝜕𝑥 (𝑈𝑘) + (𝑉𝐼 − 𝑈𝑘)𝜕𝑥 (𝛼𝑘) = 𝑆1,𝑘 − 𝜏𝑘𝑆2,𝑘. (2.8)

Furthermore, by combining the momentum equations (i.e. the third equation and the sixth equation) and the
mass equations, we obtain from the total energy equations (i.e. the forth equation and the seventh equation)
the following equation for the specific internal energy of phase 𝑘:

𝑚𝑘 (𝜕𝑡 (𝑒𝑘) + 𝑈𝑘𝜕𝑥 (𝑒𝑘))+𝛼𝑘𝑃𝑘𝜕𝑥 (𝑈𝑘)+𝑃𝐼(𝑈𝑘−𝑉𝐼)𝜕𝑥 (𝛼𝑘) = −𝑃𝐼𝑆1,𝑘−
(︀
𝑒𝑘 + 𝑈2

𝑘/2
)︀
𝑆2,𝑘−𝑈𝑘𝑆3,𝑘+𝑆4,𝑘. (2.9)

Then, using equations (2.8) and (2.9), one can easily write from (2.3) the following equation for the specific
entropy:

𝑚𝑘 (𝜕𝑡 (𝑠𝑘) + 𝑈𝑘𝜕𝑥 (𝑠𝑘)) = 𝛼𝑘

(︁
(𝑠𝑘),𝜏𝑘

− 𝑃𝑘 (𝑠𝑘),𝑒𝑘

)︁
𝜕𝑥 (𝑈𝑘)

+ (𝑈𝑘 − 𝑉𝐼)
(︁

(𝑠𝑘),𝜏𝑘
− 𝑃𝐼 (𝑠𝑘),𝑒𝑘

)︁
𝜕𝑥 (𝛼𝑘)

+
(︁

(𝑠𝑘),𝜏𝑘
− 𝑃𝐼 (𝑠𝑘),𝑒𝑘

)︁
𝑆1,𝑘 (2.10)

+
(︁
−𝜏𝑘 (𝑠𝑘),𝜏𝑘

−
(︀
𝑒𝑘 + 𝑈2

𝑘/2
)︀

(𝑠𝑘),𝑒𝑘

)︁
𝑆2,𝑘

− 𝑈𝑘 (𝑠𝑘),𝑒𝑘
𝑆3,𝑘

+ (𝑠𝑘),𝑒𝑘
𝑆4,𝑘.

Thanks to the definitions of the pressure 𝑃𝑘 (2.7) and of the temperature 𝑇𝑘 (2.6), equation (2.10) can be
written in conservative form:

𝜕𝑡 (𝑚𝑘𝑠𝑘) + 𝜕𝑥 (𝑚𝑘𝑈𝑘𝑠𝑘) =
(𝑈𝑘 − 𝑉𝐼)(𝑃𝑘 − 𝑃𝐼)

𝑇𝑘
𝜕𝑥 (𝛼𝑘)

+
(𝑃𝑘 − 𝑃𝐼)

𝑇𝑘
𝑆1,𝑘 +

−𝜇𝑘 − 𝑈2
𝑘/2

𝑇𝑘
𝑆2,𝑘 −

𝑈𝑘

𝑇𝑘
𝑆3,𝑘 +

1
𝑇𝑘

𝑆4,𝑘, (2.11)

where 𝜇𝑘 = 𝑒𝑘 + 𝜏𝑘𝑃𝑘 − 𝑠𝑘𝑇𝑘 is the Gibbs enthalpy of phase 𝑘. This equation for the entropy will be useful in
Section 4 in order to define admissible source terms 𝑆𝑖,𝑘 for the model.

We recall now some classical results for the convective part of the model associated with system of equations
(2.1). It can be noted that, as it has been done above for the specific entropy, an equation for the pressure
(𝜏𝑘, 𝑒𝑘) ↦→ 𝑃𝑘(𝜏𝑘, 𝑒𝑘) can be obtained by using equations (2.8) and (2.9). When the source terms are omitted,
𝑆𝑖,𝑘 = 0, the equation for the pressure reads:

𝜕𝑡 (𝑃𝑘) + 𝑈𝑘𝜕𝑥 (𝑃𝑘) + 𝜌𝑘𝐶2
𝑘𝜕𝑥 (𝑈𝑘)− (𝑈𝑘 − 𝑉𝐼)

𝑚𝑘

(︁
(𝑃𝑘),𝜏𝑘

− 𝑃𝐼 (𝑃𝑘),𝑒𝑘

)︁
𝜕𝑥 (𝛼𝑘) = 0, (2.12)

where the sound speed (𝜏𝑘, 𝑒𝑘) ↦→ 𝐶𝑘(𝜏𝑘, 𝑒𝑘) for phase 𝑘 has been introduced:

𝐶2
𝑘 = 𝜏2

𝑘

(︁
𝑃𝑘 (𝑃𝑘),𝑒𝑘

− (𝑃𝑘),𝜏𝑘

)︁
. (2.13)

Thanks to the definitions of the pressure 𝑃𝑘 (2.7) and of the temperature 𝑇𝑘 (2.6), relation (2.13) can also be
written:

𝐶2
𝑘

𝑇𝑘𝜏2
𝑘

= − (−1, 𝑃𝑘) · 𝑠′′𝑘 ·
(︂
−1
𝑃𝑘

)︂
. (2.14)

In relation (2.14), the matrix 𝑠′′𝑘 stands for the Hessian matrix of the phasic entropy (𝜏𝑘, 𝑒𝑘) ↦→ 𝑠𝑘(𝜏𝑘, 𝑒𝑘), which
is defined since 𝑠𝑘 belongs to 𝐶2 (R+

* × R+
* ) (see Def. 2.1). The following proposition then holds.
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Proposition 2.2. Under the assumptions of Definition 2.1, we have: ∀(𝜏𝑘, 𝑒𝑘) ∈ R+
* × R+

* , 𝐶𝑘(𝜏𝑘, 𝑒𝑘) ∈ R+
* .

Proof. Thanks to the properties of the specific entropy 𝑠𝑘 (see Def. 2.1), 𝑇𝑘 > 0 and −𝑠′′𝑘 is symmetric definite
strictly positive. Hence, equation (2.14) gives 𝐶2

𝑘 > 0 for all (𝜏𝑘, 𝑒𝑘) ∈ R+
* × R+

* , and thus 𝐶𝑘 is a positive real
quantity. �

Let us introduce now the classical choice proposed in [11] for the velocity 𝑉𝐼 which reads:

𝑉𝐼 = 𝛽𝑈𝑙 + (1− 𝛽)𝑈𝑔, (2.15)

and for the pressure 𝑃𝐼 :

𝑃𝐼 =
(1− 𝛽)((𝑠𝑙),𝜏𝑙

) + 𝛽((𝑠𝑔),𝜏𝑔
)

(1− 𝛽)((𝑠𝑙),𝑒𝑙
) + 𝛽((𝑠𝑔),𝑒𝑔

)
=

(1− 𝛽)𝑃𝑙/𝑇𝑙 + 𝛽𝑃𝑔/𝑇𝑔

(1− 𝛽)/𝑇𝑙 + 𝛽/𝑇𝑔
, (2.16)

where the parameter 𝛽 has three possible forms:

– 𝛽 = 0 or 𝛽 = 1, which corresponds to the classical Baer–Nunziato model [1];
– or 𝛽 = 𝑚𝑙/(𝑚𝑙 + 𝑚𝑔).

These different choices for 𝛽 have been studied with the help of numerical simulations in [14,23].
With the help of the closure laws (2.6), (2.7), (2.15), (2.16), the convective part of system (2.1) (i.e. with

𝑆𝑖,𝑘 = 0) is closed and several properties can be exhibited.

Proposition 2.3. With the velocity 𝑉𝐼 defined by (2.15) and the pressure 𝑃𝐼 defined by (2.16):

– (hyperbolicity) system (2.1) possesses seven real eigenvalues 𝑉𝐼 , 𝑈𝑘, 𝑈𝑘 − 𝐶𝑘, 𝑘 = {1, 2} and the associated
eigenvectors form a basis of R7, provided that resonance does not occur:

(𝑈𝑘 − 𝑉𝐼)2 ̸= 𝐶2
𝑘 , 𝑘 = {1, 2};

– the field 𝛼𝑔 is associated with the eigenvalue 𝑉𝐼 which is a linearly degenerate field;
– system (2.1) admits a symmetric form.

Proof. The proof of the items of Proposition 2.3 is based on the study of the eigenstructure of the convective
part of system (2.1). For the first item and the second item the detailed proof can be found for instance in [11].
The third item has been shown in [7]. �

Remark 2.4. It should be noted that 𝛼𝑘 = 0 or 𝑚𝑘 = 0 corresponds to single phase situations that can not
be handled properly through the set of PDE’s (2.1). Indeed, for the single phase situations system of equations
(2.1) does not allow to define uniquely all the quantities. We thus consider that these situations are out of the
scope of the two-phase flow model considered here.

The convective part has been closed thanks to relations (2.6), (2.7), (2.15), (2.16). The remaining of the paper
is dedicated to the closure relations for the source terms 𝑆𝑖,𝑘, 𝑖 = {1, 2, 3, 4}, 𝑘 = {𝑙, 𝑔}. For that purpose, we
first define in Section 3 several concave entropies for the mixture. These entropies will be used in Sections 4 and 5
in order to define sources terms that ensure an entropy inequality.

3. Definition of some entropies

In order to propose some closure laws for the source terms 𝑆𝑖,𝑘, 𝑖 = {1, 2, 3, 4}, 𝑘 = {𝑙, 𝑔}, we proceed here
following a classical approach, see [6,7,11,12,22] among many other references: admissible forms for the source
terms must agree with the second law of thermodynamics associated with a concave mixture entropy. For that
purpose, several entropies can be considered and in this section some of them are investigated. In Section 3.1
we focus on mixture entropies that only account for the thermodynamical aspects of the model, that is they
only depend on the thermodynamical quantities and not on the momentums. Whereas in Section 3.2, entropies
for the whole model are considered.
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3.1. Definition of thermodynamical entropies for the mixture

Let us define the thermodynamical mixture entropy 𝜂 as the weighted average of the phasic specific entropy:

𝜂 :

(︃
𝐻𝜂 → R
𝑍𝑔𝑙 ↦→ 𝑚𝑔𝑠𝑔

(︁
𝛼𝑔

𝑚𝑔
,

𝜀𝑔

𝑚𝑔

)︁
+ 𝑚𝑙𝑠𝑙

(︁
𝛼𝑙

𝑚𝑙
, 𝜀𝑙

𝑚𝑙

)︁)︃
, (3.1)

where 𝑍𝑔𝑙 = (𝛼𝑔, 𝑚𝑔, 𝜀𝑔, 𝛼𝑙, 𝑚𝑙, 𝜀𝑙) is a vector of variables belonging to the set: 𝐻𝜂 = (R+
* × R+

* × R+
* )2. It

should be noticed that the constraint (𝛼𝑔 + 𝛼𝑙) = 1 on the fraction is not yet accounted for in definition of the
entropy 𝜂 (3.1). It will be introduced latter. The entropy 𝜂 inherits from the phasic specific entropies 𝑠𝑘 several
properties.

Proposition 3.1. Under the assumptions of Definition 2.1, the mixture entropy 𝑍𝑔𝑙 ↦→ 𝜂(𝑍𝑔𝑙) has the following
properties:

– ∀𝑎 ∈ R+,∀𝑍 ∈ 𝐻𝜂, 𝜂(𝑎𝑍) = 𝑎𝜂(𝑍);
– 𝜂 belongs to 𝐶2 (𝐻𝜂, R);
– 𝑍𝑔𝑙 ↦→ 𝜂(𝑍𝑔𝑙) is concave on 𝐻𝜂, its degeneracy manifold is:

ℳ𝜂(𝑍𝑔𝑙) = {𝑎 (𝛼𝑔, 𝑚𝑔, 𝜀𝑔, 0, 0, 0) + 𝑏 (0, 0, 0, 𝛼𝑙, 𝑚𝑙, 𝜀𝑙), (𝑎, 𝑏) ∈ R2}. (3.2)

Proof. The first item of Proposition 3.1 is obvious, it simply arises from the definition of 𝜂. In order to prove
the second item and the third item, let us introduce two vectors that gather the phasic quantity of 𝑍𝑔𝑙: 𝑍𝑘 =
(𝛼𝑘, 𝑚𝑘, 𝜀𝑘); and the two phasic entropies 𝜂𝑘:

𝜂𝑘 :

(︃
𝐻𝜂,𝑘 → R
𝑍𝑘 ↦→ 𝑚𝑘𝑠𝑘

(︁
𝛼𝑘

𝑚𝑘
, 𝜀𝑘

𝑚𝑘

)︁)︃
, (3.3)

where 𝐻𝜂,𝑘 = R+
* ×R+

* ×R+
* . It follows from these definitions that the mixture entropy can be written using a

separation of variables:

𝜂 :
(︂

𝐻𝜂,𝑔 ×𝐻𝜂,𝑙 → R
(𝑍𝑔, 𝑍𝑙) ↦→ 𝜂𝑔(𝑍𝑔) + 𝜂𝑙(𝑍𝑙)

)︂
. (3.4)

As a consequence, since the phasic entropy (𝜏𝑘, 𝑒𝑘) ↦→ 𝑠𝑘(𝜏𝑘, 𝑒𝑘) belongs to 𝐶2 (R+
* × R+

* , R) and since 𝑚𝑘 > 0,
the phasic entropy 𝑍𝑘 ↦→ 𝜂𝑘(𝑍𝑘) defined by (3.3) belongs to 𝐶2 (𝐻𝜂,𝑘, R). Thanks to the separation of variables
(3.4) for 𝜂, one easily obtains the second item of Proposition 3.1. In order to prove the concavity of 𝜂, we
compute the Hessian matrix for each phasic entropy 𝜂𝑘. We first begin by computing the first derivatives of 𝜂𝑘:

𝜕𝛼𝑘
(𝜂𝑘)|𝑚𝑘,𝜀𝑘

(𝑍𝑘) = 𝜕𝜏𝑘
(𝑠𝑘)

(︂
𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
(3.5)

𝜕𝑚𝑘
(𝜂𝑘)|𝛼𝑘,𝜀𝑘

(𝑍𝑘) = 𝑠𝑘

(︂
𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
− 𝛼𝑘

𝑚𝑘
𝜕𝜏𝑘

(𝑠𝑘)
(︂

𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
− 𝜀𝑘

𝑚𝑘
𝜕𝑒𝑘

(𝑠𝑘)
(︂

𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
(3.6)

𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

(𝑍𝑘) = 𝜕𝑒𝑘
(𝑠𝑘)

(︂
𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
· (3.7)
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Then the second derivatives are computed and we find:

𝜕2
𝛼𝑘,𝛼𝑘

(𝜂𝑘) =
1

𝑚𝑘
𝜕2

𝜏𝑘,𝜏𝑘
(𝑠𝑘) (3.8)

𝜕2
𝛼𝑘,𝑚𝑘

(𝜂𝑘) = − 𝛼𝑘

𝑚2
𝑘

𝜕2
𝜏𝑘,𝜏𝑘

(𝑠𝑘)− 𝜀𝑘

𝑚2
𝑘

𝜕2
𝜏𝑘,𝑒𝑘

(𝑠𝑘) (3.9)

𝜕2
𝛼𝑘,𝜀𝑘

(𝜂𝑘) =
1

𝑚𝑘
𝜕2

𝜏𝑘,𝑒𝑘
(𝑠𝑘) (3.10)

𝜕2
𝜀𝑘,𝜀𝑘

(𝜂𝑘) =
1

𝑚𝑘
𝜕2

𝑒𝑘,𝑒𝑘
(𝑠𝑘) (3.11)

𝜕2
𝑚𝑘,𝜀𝑘

(𝜂𝑘) = − 𝛼𝑘

𝑚2
𝑘

𝜕2
𝜏𝑘,𝑒𝑘

(𝑠𝑘)− 𝜀𝑘

𝑚2
𝑘

𝜕2
𝑒𝑘,𝑒𝑘

(𝑠𝑘) (3.12)

𝜕2
𝑚𝑘,𝑚𝑘

(𝜂𝑘) =
1

𝑚𝑘

(︂
𝛼2

𝑘

𝑚2
𝑘

,
𝜀2

𝑘

𝑚2
𝑘

)︂
· 𝑠′′𝑘 ·

⎛⎝ 𝛼2
𝑘

𝑚2
𝑘

𝜀2
𝑘

𝑚2
𝑘

⎞⎠ (3.13)

In the second derivative term (3.13), 𝑠′′𝑘 stands for the Hessian matrix of the phasic entropy (𝜏𝑘, 𝑒𝑘) ↦→ 𝑠𝑘(𝜏𝑘, 𝑒𝑘).
It is worth noting that thanks to the strict concavity of 𝑠𝑘 on 𝐻𝜂,𝑘, 𝜕2

𝑚𝑘,𝑚𝑘
(𝜂𝑘) < 0 on 𝐻𝜂,𝑘. As a consequence,

the function: (︂
R+
* → R

𝑚𝑘 ↦→ 𝜂𝑘 (𝛼𝑘, 𝑚𝑘, 𝜀𝑘)

)︂
, (3.14)

is strictly concave on R+
* . With the second derivatives (3.8)-(3.13), the Hessian matrix 𝜂′′𝑘 of 𝑍𝑘 ↦→ 𝜂𝑘(𝑍𝑘) can

be explicitly written. In particular, we have for any vector (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) ∈ R3:

(𝑥𝑘, 𝑦𝑘, 𝑧𝑘) · 𝜂′′𝑘 ·

⎛⎝𝑥𝑘

𝑦𝑘

𝑧𝑘

⎞⎠ =
(︁
𝑥𝑘 − 𝑦𝑘

𝛼𝑘

𝑚𝑘
, 𝑧𝑘 − 𝑦𝑘

𝜀𝑘

𝑚𝑘

)︁
· 𝑠′′𝑘 ·

(︂
𝑥𝑘 − 𝑦𝑘

𝛼𝑘

𝑚𝑘

𝑧𝑘 − 𝑦𝑘
𝜀𝑘

𝑚𝑘

)︂
. (3.15)

Then thanks to the variable separation (3.4) for 𝜂, one can obtain from the Hessian matrix 𝜂′′ of 𝑍𝑔𝑙 ↦→ 𝜂(𝑍𝑔𝑙)
and for any 𝒳 = (𝑥𝑔, 𝑦𝑔, 𝑧𝑔, 𝑥𝑙, 𝑦𝑙, 𝑧𝑙) ∈ R6:

𝒳 · 𝜂′′ · 𝒳⊤ =
∑︀

𝑘

(︁
𝑥𝑘 − 𝑦𝑘

𝛼𝑘

𝑚𝑘
, 𝑧𝑘 − 𝑦𝑘

𝜀𝑘

𝑚𝑘

)︁
· 𝑠′′𝑘 ·

(︂
𝑥𝑘 − 𝑦𝑘

𝛼𝑘

𝑚𝑘

𝑧𝑘 − 𝑦𝑘
𝜀𝑘

𝑚𝑘

)︂
. (3.16)

Since the phasic entropies 𝑠𝑘 are concave, we can conclude that

𝒳 · 𝜂′′ · 𝒳⊤ ≤ 0, (3.17)

and hence that 𝑍𝑔𝑙 ↦→ 𝜂(𝑍𝑔𝑙) is concave but not strictly concave. Indeed, the degeneracy manifold ℳ𝜂(𝑍𝑔𝑙) of
entropy 𝜂 at a point 𝑍𝑔𝑙 ∈ 𝐻𝜂 can be found as the set of vectors that are such that

𝒳 · 𝜂′′ · 𝒳⊤ = 0.

Due to the strict concavity of 𝑠𝑘, one can obtain from relation (3.16):

ℳ𝜂(𝑍𝑔𝑙) = {𝑎 (𝛼𝑔, 𝑚𝑔, 𝜀𝑔, 0, 0, 0) + 𝑏 (0, 0, 0, 𝛼𝑙, 𝑚𝑙, 𝜀𝑙), (𝑎, 𝑏) ∈ R2}.

Since 𝛼𝑘 > 0, 𝑚𝑘 > 0 and 𝜀𝑘 > 0, the degeneracy manifold ℳ𝜂(𝑍𝑔𝑙) is a vector subspace of dimension 2 of R6.
This ends the proof of Proposition 3.1. �

From the proof of Proposition 3.1, one can get an interesting auxillary result for the entropy 𝑚𝑘 ↦→ 𝜂𝑚,𝑘(𝑚𝑘)
defined by (3.14). This result will be used in Section 5.4. The properties of the entropy 𝑠𝑘 lead to the following
proposition.
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Proposition 3.2. The function 𝑚𝑘 ↦→ 𝜂𝑚,𝑘(𝑚𝑘) defined for given 𝛼𝑘 ∈ R+
* and 𝜀𝑘 ∈ R+

* by:

𝜂𝑚,𝑘 :
(︂

R+
* → R

𝑚𝑘 ↦→ 𝜂𝑘(𝛼𝑘, 𝑚𝑘, 𝜀𝑘)

)︂
, (3.18)

belongs to 𝐶2 (R+
* , R) and it is strictly concave on R+

* .

Proof. Since the entropy 𝜂𝑘 belongs to 𝐶2 (R+
* × R+

* , R), 𝑚𝑘 ↦→ 𝜂𝑚,𝑘(𝑚𝑘) obviously belongs to 𝐶2 (R+
* , R).

Thanks to equation (3.13), the second derivative of 𝑚𝑘 ↦→ 𝜂𝑚,𝑘(𝑚𝑘) reads:

𝜂′′𝑚,𝑘(𝑚𝑘) = 1
𝑚𝑘

(︁
𝛼2

𝑘

𝑚2
𝑘
,

𝜀2
𝑘

𝑚2
𝑘

)︁
· 𝑠′′𝑘 ·

⎛⎝ 𝛼2
𝑘

𝑚2
𝑘

𝜀2
𝑘

𝑚2
𝑘

⎞⎠ . (3.19)

Since the phasic entropies 𝑠𝑘 are strictly concave, we can conclude that:

∀𝑚𝑘 ∈ R+
* , 𝜂′′𝑚,𝑘(𝑚𝑘) < 0.

This ends the proof of Proposition 3.2. �

We define now the entropy ̃︀𝜂 that is the restriction of 𝜂 on ̃︀𝐻𝜂,0, a subset of 𝐻𝜂:

̃︀𝜂 :
(︂ ̃︀𝐻𝜂,0 → R

𝑍𝑔𝑙 ↦→ 𝜂(𝑍𝑔𝑙)

)︂
. (3.20)

The domain ̃︀𝐻𝜂,0 is the subset of 𝐻𝜂 that corresponds to a given sum for the fractions 𝛼𝑔 + 𝛼𝑙 = 𝛼0, for the
partial masses 𝑚𝑔 + 𝑚𝑙 = 𝑚0 and for the total energies ℰ𝑔 + ℰ𝑙 = ℰ0:

̃︀𝐻𝜂,0 = {𝑍𝑔𝑙 ∈ 𝐻𝜂; 𝛼𝑔 + 𝛼𝑙 = 𝛼0, 𝑚𝑔 + 𝑚𝑙 = 𝑚0, ℰ𝑔 + ℰ𝑙 = ℰ0} . (3.21)

It can easily be shown that this domain ̃︀𝐻𝜂,0 is a bounded convex subset of (R+)6. With this restriction of the
domain of definition, the entropy ̃︀𝜂 has the following property.

Theorem 3.3. The entropy 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) defined by (3.20) and (3.21) is strictly concave on ̃︀𝐻𝜂,0, except at
the points 𝑍𝑔𝑙 for which there exists 𝜅 ∈ R+

* such that:⎧⎨⎩𝜅 𝛼𝑔 = 𝛼𝑙

𝜅 𝑚𝑔 = 𝑚𝑙

𝜅 ℰ𝑔 = ℰ𝑙.

In such situations, the degeneracy manifold of 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) is the sub-space of R6:

ℳ𝜂(𝑍𝑔𝑙) ∩ ̃︀𝐻𝜂,0 = {(𝛼0, 𝑚0, ℰ0, 0, 0, 0) + 𝑏 (−𝛼𝑙,−𝑚𝑙,−ℰ𝑙, 𝛼𝑙, 𝑚𝑙, ℰ𝑙), 𝑏 ∈ R} . (3.22)

Proof. From Proposition 3.1, we can deduce that 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) is concave on ̃︀𝐻𝜂,0 ⊂ 𝐻𝜂. In order to exhibit
the form (3.22) of the manifold, let us define a point which belongs to the degeneracy manifold of ̃︀𝜂 at point
𝑍𝑔𝑙 defined by (3.2) and to ̃︀𝐻𝜂,0:

𝑍𝑔𝑙 = (𝛼𝑔, 𝑚𝑔, ℰ𝑔, 𝛼𝑙, 𝑚𝑙, ℰ𝑙) ∈ℳ𝜂(𝑍𝑔𝑙) ∩ ̃︀𝐻𝜂,0.

By definition of ℳ𝜂(𝑍𝑔𝑙) and ̃︀𝐻𝜂,0, there exist (𝑎, 𝑏) ∈ R2 such that:⎧⎨⎩𝛼𝑔 + 𝛼𝑙 = 𝑎𝛼𝑔 + 𝑏𝛼𝑙 = 𝛼0

𝑚𝑔 + 𝑚𝑙 = 𝑎𝑚𝑔 + 𝑏𝑚𝑙 = 𝑚0

ℰ𝑔 + ℰ𝑙 = 𝑎ℰ𝑔 + 𝑏ℰ𝑙 = ℰ0.
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These equations lead to the system: ⎧⎨⎩ (𝑎− 1)𝛼𝑔 + (𝑏− 1)𝛼𝑙 = 0
(𝑎− 1)𝑚𝑔 + (𝑏− 1)𝑚𝑙 = 0
(𝑎− 1)ℰ𝑔 + (𝑏− 1)ℰ𝑙 = 0.

(3.23)

If at least two among the three equations of system (3.23) are linearly independent, there exists a unique
solution (𝑎, 𝑏) to system (3.23): 𝑎 = 𝑏 = 1. Hence, in such a situation, the intersection of the degeneracy
manifold ℳ𝜂(𝑍𝑔𝑙) with the domain ̃︀𝐻𝜂,0 is restricted to a single point:

ℳ𝜂(𝑍𝑔𝑙) ∩ ̃︀𝐻𝜂,0 = {𝑍𝑔𝑙}.

The entropy 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) is then strictly concave. On the contrary, when the three equations of (3.23) are
equivalent, the solution (𝑎, 𝑏) is not unique. This situation occurs when there exists 𝜅 ∈ R+

* such that:⎧⎨⎩𝜅 𝛼𝑔 = 𝛼𝑙

𝜅 𝑚𝑔 = 𝑚𝑙

𝜅 ℰ𝑔 = ℰ𝑙,
(3.24)

and system (3.23) leads to the relation:
𝑎 = 1 + (1− 𝑏)𝜅.

In such a situation, the entropy 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) is not strictly concave and its degeneracy manifold is the sub-space
of R6:

ℳ𝜂(𝑍𝑔𝑙) ∩ ̃︀𝐻𝜂,0 =
{︀

(𝛼0, 𝑚0, ℰ0, 0, 0, 0) + 𝑏 (−𝛼𝑙,−𝑚𝑙,−ℰ𝑙, 𝛼𝑙, 𝑚𝑙, ℰ𝑙), 𝑏 ∈ R+
*
}︀

.

This ends the proof of Theorem 3.3. �

The entropy 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) is thus not strictly concave. Nonetheless, under additional assumptions on the pha-
sic entropies 𝑠𝑘, a stronger result can be stated. This result is given formally in Corollary 3.4. With Theorem 3.3,
it represents a key point in the non-classical formulation of the source terms of Section 5.

Corollary 3.4. If we assume that the two phasic entropies (𝜏𝑘, 𝑒𝑘) ↦→ 𝑠𝑘(𝜏𝑘, 𝑒𝑘) are such that for all (𝜏, 𝑒) ∈
R+
* × R+

* , we have:

𝑠𝑙(𝜏, 𝑒) ̸= 𝑠𝑔(𝜏, 𝑒) or 𝜕𝜏𝑙
(𝑠𝑙)|𝑒𝑙

(𝜏, 𝑒) ̸= 𝜕𝜏𝑔 (𝑠𝑔)|𝑒𝑔
(𝜏, 𝑒) or 𝜕𝑒𝑙

(𝑠𝑙)|𝜏𝑙
(𝜏, 𝑒) ̸= 𝜕𝑒𝑔 (𝑠𝑔)|𝜏𝑔

(𝜏, 𝑒), (3.25)

then the mixture entropy 𝑍𝑔𝑙 ↦→ ̃︀𝜂(𝑍𝑔𝑙) admits a unique maximum on its domain of definition ̃︀𝐻𝜂,0.

Proof. In order to prove Corollary 3.4, the results of Theorem 3.3 and some elements of its proof are used. From
the latter, we know that ̃︀𝜂 is concave on the bounded convex set ̃︀𝐻𝜂,0. But ̃︀𝜂 is not strictly concave and its

maximum may a priori be reached for several points in ̃︀𝐻𝜂,0. Since ̃︀𝜂 belongs to 𝐶2
(︁ ̃︀𝐻𝜂, R

)︁
(see Prop. 3.1),

the set of these points,
𝛩̃︀𝜂 =

{︁
𝑍 ′𝑔𝑙 ∈ ̃︀𝐻𝜂,0;∀𝑍𝑔𝑙 ∈ ̃︀𝐻𝜂,0, ̃︀𝜂 (︀𝑍 ′𝑔𝑙

)︀
≥ ̃︀𝜂 (𝑍𝑔𝑙)

}︁
,

is an open bounded convex subset of ̃︀𝐻𝜂,0 (which is also an open bounded convex set). From (3.20) and (3.21),
we know that the entropy ̃︀𝜂 is defined as the restriction of the entropy 𝜂 to the domain 𝐻𝜂 with the three linear
constraints: ⎧⎨⎩𝐺1(𝑍𝑔𝑙) = 𝛼𝑔 + 𝛼𝑙 − 1 = 0,

𝐺2(𝑍𝑔𝑙) = 𝑚𝑔 + 𝑚𝑙 −𝑚0 = 0,
𝐺3(𝑍𝑔𝑙) = ℰ𝑔 + ℰ𝑙 − ℰ0 = 0,

(3.26)
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whose gradients with respect to 𝑍𝑔𝑙 are independent and read:⎧⎨⎩∇𝑍𝑔𝑙
𝐺1 = (1, 0, 0, 1, 0, 0)⊤,

∇𝑍𝑔𝑙
𝐺2 = (0, 1, 0, 0, 1, 0)⊤,

∇𝑍𝑔𝑙
𝐺3 = (0, 0, 1, 0, 0, 1)⊤.

(3.27)

Therefore, there exists three Lagrange multipliers 𝑎1, 𝑎2 and 𝑎3 such that for a maximizer 𝑍𝑔𝑙 of ̃︀𝜂 we have:

∇𝑍𝑔𝑙
̃︀𝜂(𝑍𝑔𝑙) = 𝑎1∇𝑍𝑔𝑙

𝐺1(𝑍𝑔𝑙) + 𝑎2∇𝑍𝑔𝑙
𝐺2(𝑍𝑔𝑙) + 𝑎3∇𝑍𝑔𝑙

𝐺3(𝑍𝑔𝑙),

and thus the first order conditions for the existence of the maximum 𝑍𝑔𝑙 are:⎧⎨⎩𝜕𝛼𝑔
(̃︀𝜂) (𝑍𝑔𝑙) = 𝑎1 = 𝜕𝛼𝑙

(̃︀𝜂) (𝑍𝑔𝑙),
𝜕𝑚𝑔 (̃︀𝜂) (𝑍𝑔𝑙) = 𝑎2 = 𝜕𝑚𝑙

(̃︀𝜂) (𝑍𝑔𝑙),
𝜕ℰ𝑔

(̃︀𝜂) (𝑍𝑔𝑙) = 𝑎3 = 𝜕ℰ (̃︀𝜂) (𝑍𝑔𝑙).
(3.28)

Relations (3.28) can also be written in terms of the phasic entropies 𝑠𝑘, the phasic specific volumes 𝜏𝑘 and the
phasic specific energies 𝑒𝑘:⎧⎨⎩

𝜕𝜏𝑙
(𝑠𝑙)|𝑒𝑙

(𝜏𝑙, 𝑒𝑙) = 𝜕𝜏𝑔
(𝑠𝑔)|𝑒𝑔

(𝜏𝑔, 𝑒𝑔),
𝜕𝑒𝑙

(𝑠𝑙)|𝜏𝑙
(𝜏𝑙, 𝑒𝑙) = 𝜕𝑒𝑔

(𝑠𝑔)|𝜏𝑔
(𝜏𝑔, 𝑒𝑔),

𝑠𝑙(𝜏𝑙, 𝑒𝑙)− 𝜏𝜕𝑒𝑙
(𝑠𝑙)|𝜏𝑙

(𝜏𝑙, 𝑒𝑙)− 𝑒𝑙𝜕𝜏𝑙
(𝑠𝑙)|𝑒𝑙

(𝜏𝑙, 𝑒𝑙) = 𝑠𝑔(𝜏𝑔, 𝑒𝑔)− 𝜏𝜕𝑒𝑔
(𝑠𝑔)|𝜏𝑔

(𝜏𝑔, 𝑒𝑔)− 𝑒𝑔𝜕𝜏𝑔
(𝑠𝑔)|𝑒𝑔

(𝜏𝑔, 𝑒𝑔).
(3.29)

Moreover, if the maximizer 𝑍𝑔𝑙 belongs to the degeneracy manifold of ̃︀𝜂 condition (3.24) holds. When 𝛼𝑘 ̸= 0
and 𝑚𝑘 ̸= 0, this condition can be expressed in terms of the densities 𝜌𝑘 = 𝑚𝑘/𝛼𝑘 and the internal energies
𝑒𝑘 = 𝜀𝑙/𝑚𝑙: ⎧⎨⎩𝜅 𝛼𝑔 = 𝛼𝑙

𝜅 𝛼𝑔𝜌𝑔 = 𝛼𝑙𝜌𝑙

𝜅 𝛼𝑔𝜌𝑔𝑒𝑔 = 𝛼𝑙𝜌𝑙𝑒𝑙

⇐⇒

⎧⎨⎩𝜅 𝛼𝑔 = 𝛼𝑙

𝜌𝑔 = 𝜌𝑙

𝑒𝑔 = 𝑒𝑙

. (3.30)

Then, if we introduce in relations (3.29) the equalities 𝜏 = 𝜏𝑙 = 𝜏𝑔 and 𝑒 = 𝑒𝑙 = 𝑒𝑔 arising from (3.30), we get
the relations: ⎧⎨⎩

𝜕𝜏𝑙
(𝑠𝑙)|𝑒𝑙

(𝜏, 𝑒) = 𝜕𝜏𝑔
(𝑠𝑔)|𝑒𝑔

(𝜏, 𝑒),
𝜕𝑒𝑙

(𝑠𝑙)|𝜏𝑙
(𝜏, 𝑒) = 𝜕𝑒𝑔 (𝑠𝑔)|𝜏𝑔

(𝜏, 𝑒),
𝑠𝑙(𝜏, 𝑒) = 𝑠𝑔(𝜏, 𝑒).

(3.31)

Hence, if the phasic entropies are chosen so that condition (3.25) holds, relations (3.31) cannot be fulfilled. In
other words, when the first derivatives of ̃︀𝜂 vanish at a given point, the latter does not belong to the degeneracy
manifold. This means that even if the entropy ̃︀𝜂 is not strictly concave, it possesses a unique maximum on ̃︀𝐻𝜂,0.

In order to obtain this result, we have assumed that 𝛼𝑘 ̸= 0 and 𝑚𝑘 ̸= 0. This is the case thanks to the
definition of 𝐻𝜂 for which single phase situations have been excluded, see also the remark at the end of Section 2.
Finally, if single-phase flows situations do not occur, the entropy ̃︀𝜂 has a unique maximum on ̃︀𝐻𝜂,0. This ends
the proof of Corollary 3.4. �

Remark 3.5. It should be noticed that condition (3.25) on the phasic entropies is not too restrictive. In
practice, in order to enforce the system to avoid single-phase flow situations, the entropies could be chosen so
that:

∀𝑚𝑘 > 0,∀𝜀𝑘 > 0, 𝑚𝑘𝑠𝑘

(︂
𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
−→

𝛼𝑘→0+
−∞,

∀𝛼𝑘 > 0,∀𝜀𝑘 > 0, 𝑚𝑘𝑠𝑘

(︂
𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
−→

𝑚𝑘→0+
−∞, (3.32)

∀𝛼𝑘 > 0,∀𝑚𝑘 > 0, 𝑚𝑘𝑠𝑘

(︂
𝛼𝑘

𝑚𝑘
,

𝜀𝑘

𝑚𝑘

)︂
−→

𝜀𝑘→0+
−∞.
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The first and third conditions of (3.32) are classical, but in general the second one is not fulfilled (for instance
for perfect gas EOS). There is indeed no physical reason to prevent a phase to vanish when mass transfer is
accounted for. Vanishing phases treatment is a tricky problem for two-fluid models.

3.2. Definition of entropies for the complete model

Let us introduce the vectors of conservative variables 𝑊𝑘 = (𝛼𝑘, 𝑚𝑘, ℰ𝑘, 𝑄𝑘) ∈ 𝐻𝑠,𝑘 with the domain 𝐻𝑠,𝑘 =
(𝐻𝜂,𝑘 × R) and 𝑊𝑔𝑙 = (𝛼𝑔, 𝑚𝑔, ℰ𝑔, 𝑄𝑔, 𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙) ∈ 𝐻𝑠 with the domain 𝐻𝑠 = (𝐻𝜂,𝑔 × R × 𝐻𝜂,𝑙 × R). We
define the following entropies for the variables 𝑊𝑘 and 𝑊𝑔𝑙:

𝒮𝑘 :

(︃
𝐻𝑠,𝑘 → R
𝑊𝑘 ↦→ 𝜂𝑘

(︁
𝛼𝑘, 𝑚𝑘, ℰ𝑘 − 𝑄2

𝑘

2𝑚𝑘

)︁)︃
, (3.33)

and

𝒮𝑔𝑙 :
(︂

𝐻𝑠 → R
𝑊𝑔𝑙 ↦→ 𝒮𝑔(𝛼𝑔, 𝑚𝑔, ℰ𝑔, 𝑄𝑔) + 𝒮𝑙(𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙)

)︂
. (3.34)

The entropy 𝒮𝑔𝑙 is thus the sum of the phasic entropies 𝒮𝑘 and it accounts for the whole set of the conservative
variables 𝑊𝑔𝑙 of system (2.1).

Proposition 3.6. The mixture entropy 𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙) has the following properties.

– ∀𝑎 ∈ R+
* ,∀𝑊 ∈ 𝐻𝑠,𝒮(𝑎𝑊 ) = 𝑎𝒮(𝑊 );

– 𝒮 belongs to 𝐶2 (𝐻𝑠, R);
– 𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙) is concave on 𝐻𝑠, its degeneracy manifold is:

ℳ𝑆(𝑊𝑔𝑙) =
{︀
𝑎 (𝛼𝑔, 𝑚𝑔, ℰ𝑔, 𝑄𝑔, 0, 0, 0, 0) + 𝑏 (0, 0, 0, 0, 𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙), (𝑎, 𝑏) ∈ R2

}︀
. (3.35)

Proof. We proceed here using a separation of variables as in the proof of Proposition 3.1. The first and second
properties are directly inherited from the properties of the phasic entropies 𝜂𝑘. Let us focus on the third
property. For that purpose, we remark that for all (𝑤𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘) ∈ R4 we can obtain for 𝒮 ′′𝑘 , the Hessian
matrix of 𝑊𝑘 ↦→ 𝒮𝑘(𝑊𝑘), the relation:

(𝑤𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘) · 𝒮 ′′𝑘 ·

⎛⎜⎝𝑤𝑘

𝑥𝑘

𝑦𝑘

𝑧𝑘

⎞⎟⎠ =
(︂

𝑤𝑘, 𝑥𝑘, 𝑥𝑘
𝑄2

𝑘

2𝑚2
𝑘

+ 𝑦𝑘 − 𝑧𝑘
𝑄𝑘

𝑚𝑘

)︂
· 𝜂′′𝑘 ·

⎛⎜⎝ 𝑤𝑘

𝑥𝑘

𝑥𝑘
𝑄2

𝑘

2𝑚2
𝑘

+ 𝑦𝑘 − 𝑧𝑘
𝑄𝑘

𝑚𝑘

⎞⎟⎠

−

(︁
𝑥𝑘

𝑄𝑘

𝑚𝑘
− 𝑧𝑘

)︁2

𝑚𝑘
𝜕𝜀𝑘

(𝜂𝑘)|𝛼𝑘,𝑚𝑘
. (3.36)

For the sake of readability, the details of the derivatives are reported in Appendix A. Thanks to the third item
of Definition 2.1 and to relation (3.7), the second term on the right hand side of relation (3.36) is negative.
Moreover, the property of concavity of 𝜂𝑘 reported in Proposition 3.1 ensures that the first term on the right
hand side of relation (3.36) is also negative. Hence,

(𝑤𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘) ∈ R4, (𝑤𝑘, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘) · 𝒮 ′′𝑘 ·

⎛⎜⎝𝑤𝑘

𝑥𝑘

𝑦𝑘

𝑧𝑘

⎞⎟⎠ ≤ 0,

which means that the phasic entropy 𝑊𝑘 ↦→ 𝒮𝑘(𝑊𝑘) is concave on 𝐻𝑠,𝑘. Thanks to the separation of variables
in the definition of 𝒮, it is easily obtained that for 𝒴 = (𝑤𝑔, 𝑥𝑔, 𝑦𝑔, 𝑧𝑔, 𝑤𝑙, 𝑥𝑙, 𝑦𝑙, 𝑧𝑙) ∈ R8 the Hessian matrix 𝒮 ′′
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of the entropy 𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙) fulfills the relation:

𝒴 · 𝒮 ′′ · 𝒴⊤ =
∑︁

𝑘

⎛⎜⎝(︂𝑤𝑘, 𝑥𝑘, 𝑥𝑘
𝑄2

𝑘

2𝑚2
𝑘

+ 𝑦𝑘 − 𝑧𝑘
𝑄𝑘

𝑚𝑘

)︂
· 𝜂′′𝑘 ·

⎛⎜⎝ 𝑤𝑘

𝑥𝑘

𝑥𝑘
𝑄2

𝑘

2𝑚2
𝑘

+ 𝑦𝑘 − 𝑧𝑘
𝑄𝑘

𝑚𝑘

⎞⎟⎠
⎞⎟⎠

−
∑︁

𝑘

⎛⎜⎝
(︁
𝑥𝑘

𝑄𝑘

𝑚𝑘
− 𝑧𝑘

)︁2

𝑚𝑘
𝜕𝜀𝑘

(𝜂𝑘)|𝛼𝑘,𝑚𝑘

⎞⎟⎠ . (3.37)

All the terms on the right hand side of relation (3.37) are negative, we can thus conclude that 𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙)
is concave on 𝐻𝑠. Moreover, the degeneracy manifold ℳ𝑠(𝑊𝑔𝑙) of 𝒮 at a point 𝑊𝑔𝑙 ∈ 𝐻𝑠 can be obtained as
the set of vectors 𝒴 such that: 𝒴 · 𝒮 ′′ · 𝒴⊤ = 0. Since all the terms on the right hand side of relation (3.37) are
negative, this is equivalent to:⎧⎪⎪⎨⎪⎪⎩

(︁
𝑤𝑔, 𝑥𝑔, 𝑥𝑔

𝑄2
𝑔

2𝑚2
𝑔

+ 𝑦𝑔 − 𝑧𝑔
𝑄𝑔

𝑚𝑔
, 𝑤𝑙, 𝑥𝑙, 𝑥𝑙

𝑄2
𝑙

2𝑚2
𝑙

+ 𝑦𝑙 − 𝑧𝑙
𝑄𝑙

𝑚𝑙

)︁
∈ℳ𝜂

(︁(︁
𝛼𝑔, 𝑚𝑔, ℰ𝑔 −

𝑄2
𝑔

2𝑚𝑔
, 𝛼𝑙, 𝑚𝑙, ℰ𝑙 − 𝑄2

𝑙

2𝑚𝑙

)︁)︁
and

{︃
𝑥𝑔

𝑄𝑔

𝑚𝑔
− 𝑧𝑔 = 0

𝑥𝑙
𝑄𝑙

𝑚𝑙
− 𝑧𝑙 = 0

.

By using substitutions, this set of eight linear equations leads to:

ℳ𝑆(𝑊𝑔𝑙) = {𝑎 (𝛼𝑔, 𝑚𝑔, ℰ𝑔, 𝑄𝑔, 0, 0, 0, 0) + 𝑏 (0, 0, 0, 0, 𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙), (𝑎, 𝑏) ∈ R2}.

The degeneracy manifold ℳ𝑆(𝑊𝑔𝑙) is thus a subspace of dimension 2 of R8. This ends the proof of
Proposition 3.6. �

All the first and second derivatives of the entropy 𝒮𝑘 are reported in Appendix A. The second derivative of
𝒮𝑘 with respect to the mass 𝑚𝑘 is given by equation (A.14). Thanks to the properties of the entropies 𝜂𝑘 the
following proposition can be stated.

Proposition 3.7. The function 𝑚𝑘 ↦→ 𝒮𝑚,𝑘(𝑚𝑘) defined for given 𝛼𝑘 ∈ R+
* , ℰ𝑘 ∈ R+

* and 𝑄𝑘 ∈ R+
* by:

𝒮𝑚,𝑘 :
(︂

R+
* → R

𝑚𝑘 ↦→ 𝒮𝑘(𝛼𝑘, 𝑚𝑘, ℰ𝑘, 𝑄𝑘)

)︂
, (3.38)

belongs to 𝐶2 (R+
* , R) and it is strictly concave on R+

* .

Proof. Since the entropy 𝜂𝑘 belongs to 𝐶2 (𝐻𝜂,𝑘, R), 𝑚𝑘 ↦→ 𝒮𝑚,𝑘(𝑚𝑘) obviously belongs to 𝐶2 (R+
* , R). From

the Appendix A, the second derivative of 𝑚𝑘 ↦→ 𝒮𝑚,𝑘(𝑚𝑘) is given by equation (A.14). We then have:

𝒮 ′′𝑚,𝑘(𝑚𝑘) = −𝑄2
𝑘

𝑚3
𝑘
𝜕𝜀𝑘

(𝜂𝑘)|𝛼𝑘,𝑚𝑘
+
(︁

1,
𝑄2

𝑘

2𝑚𝑘

)︁
·
(︂

𝜕2
𝑚𝑘,𝑚𝑘

(𝜂𝑘) 𝜕2
𝑚𝑘,𝜀𝑘

(𝜂𝑘)
𝜕2

𝑚𝑘,𝜀𝑘
(𝜂𝑘) 𝜕2

𝜀𝑘,𝜀𝑘
(𝜂𝑘)

)︂
·

(︃
1

𝑄2
𝑘

2𝑚𝑘

)︃
. (3.39)

Thanks to equation (3.7) and to the property of 𝑠𝑘 (see Def. 2.1), we have 𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

= 1/𝑇𝑘 > 0, and
therefore the first term on the right hand side of relation (3.39) is non-positive. In the other hand, 𝑍𝑘 ↦→ 𝜂𝑘(𝑍𝑘)
is concave on 𝐻𝜂,𝑘, hence the function which for a given 𝛼𝑘 ∈ R+

* is defined by (𝑚𝑘, 𝜀) ↦→ 𝜂𝑘(𝛼𝑘, 𝑚𝑘, 𝜀) is also
concave. As a consequence, the matrix in the second term on the right hand side of equation (3.39) is symmetric
definite negative. This allows to conclude that:

∀𝑚𝑘 ∈ R+
* , 𝒮 ′′𝑚,𝑘(𝑚𝑘) < 0.

This ends the proof of Proposition 3.7. �
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The entropy 𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙) is concave on 𝐻𝑠 but it is not strictly concave since its degeneracy manifold
ℳ𝑆(𝑊𝑔𝑙) is a vector subspace of dimension 2 of R8. We define now the entropy ̃︀𝒮 that is the restriction of 𝒮
on ̃︀𝐻𝑠,0, a subset of 𝐻𝑠: ̃︀𝒮 :

(︂ ̃︀𝐻𝑠,0 → R
𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙)

)︂
. (3.40)

The domain ̃︀𝐻𝑠,0 is the subset of 𝐻𝑠 that corresponds to a given sum for the fractions 𝛼𝑔 + 𝛼𝑙 = 𝛼0, for the
partial masses 𝑚𝑔 + 𝑚𝑙 = 𝑚0, for the total energies ℰ𝑔 + ℰ𝑙 = ℰ0 and for the momentum 𝑄𝑔 + 𝑄𝑙 = 𝑄0:

̃︀𝐻𝑠,0 = {𝑊𝑔𝑙 ∈ 𝐻𝑠; 𝛼𝑔 + 𝛼𝑙 = 𝛼0, 𝑚𝑔 + 𝑚𝑙 = 𝑚0, ℰ𝑔 + ℰ𝑙 = ℰ0, 𝑄𝑔 + 𝑄𝑙 = 𝑄0} . (3.41)

It can easily be shown that this domain ̃︀𝐻𝑠,0 is a convex subset of ((R+)3 × R)2. With this restriction of the
domain of definition, the entropy ̃︀𝒮 has the following property.

Theorem 3.8. The entropy 𝑊𝑔𝑙 ↦→ ̃︀𝒮(𝑊𝑔𝑙) defined by (3.40) and (3.41) is strictly concave on ̃︀𝐻𝑠,0, except at
the points 𝑊𝑔𝑙 for which there exists 𝜅 ∈ R+

* such that:⎧⎪⎨⎪⎩
𝜅 𝛼𝑔 = 𝛼𝑙

𝜅 𝑚𝑔 = 𝑚𝑙

𝜅 ℰ𝑔 = ℰ𝑙

𝜅 𝑄𝑔 = 𝑄𝑙.

In such situations, the degeneracy manifold of 𝑊𝑔𝑙 ↦→ ̃︀𝒮(𝑊𝑔𝑙) is the sub-space of R8:

ℳ𝑆(𝑊𝑔𝑙) ∩ ̃︀𝐻𝑠,0 = {(𝛼0, 𝑚0, ℰ0, 𝑄0, 0, 0, 0, 0) + 𝑏 (−𝛼𝑙,−𝑚𝑙,−ℰ𝑙,−𝑄𝑙, 𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙), 𝑏 ∈ R} . (3.42)

Proof. From Proposition 3.6, we can deduce that 𝑊𝑔𝑙 ↦→ ̃︀𝒮(𝑊𝑔𝑙) is concave on ̃︀𝐻𝑠,0 ⊂ 𝐻𝑠. In order to exhibit
the form of the degeneracy manifold (3.42), let us choose a point which belongs to the degeneracy maniflod of̃︀𝒮 and to ̃︀𝐻𝑠,0:

𝑊𝑔𝑙 = (𝛼𝑔, 𝑚𝑔, ℰ𝑔, 𝑄𝑔, 𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙) ∈ ̃︀𝐻𝑠,0

By definition of ℳ𝑆(𝑊𝑔𝑙) and ̃︀𝐻𝑠,0, there exist (𝑎, 𝑏) ∈ R2 such that:⎧⎪⎨⎪⎩
𝛼𝑔 + 𝛼𝑙 = 𝑎𝛼𝑔 + 𝑏𝛼𝑙 = 𝛼0

𝑚𝑔 + 𝑚𝑙 = 𝑎𝑚𝑔 + 𝑏𝑚𝑙 = 𝑚0

ℰ𝑔 + ℰ𝑙 = 𝑎ℰ𝑔 + 𝑏ℰ𝑙 = ℰ0

𝑄𝑔 + 𝑄𝑙 = 𝑎𝑄𝑔 + 𝑏𝑄𝑙 = 𝑚0.

This system of equations leads to the system:⎧⎪⎨⎪⎩
(𝑎− 1)𝛼𝑔 + (𝑏− 1)𝛼𝑙 = 0
(𝑎− 1)𝑚𝑔 + (𝑏− 1)𝑚𝑙 = 0
(𝑎− 1)ℰ𝑔 + (𝑏− 1)ℰ𝑙 = 0
(𝑎− 1)𝑄𝑔 + (𝑏− 1)𝑄𝑙 = 0.

(3.43)

If at least two among the four equations of system (3.43) are linearly independent, there exists a unique solution
(𝑎, 𝑏) to system (3.43): 𝑎 = 𝑏 = 1. Hence, in such a situation, the intersection of the degeneracy manifold
ℳ𝑆(𝑊𝑔𝑙) with the domain ̃︀𝐻𝑠,0 is restricted to a single point:

ℳ𝑆(𝑊𝑔𝑙) ∩ ̃︀𝐻𝑠,0 = {𝑊𝑔𝑙}.
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The entropy 𝑊𝑔𝑙 ↦→ ̃︀𝒮(𝑊𝑔𝑙) is then strictly concave. On the contrary, when the four equations of (3.43) are
equivalent, the solution (𝑎, 𝑏) is not unique. This situation occurs when there exists 𝜅 ∈ R+

* such that:⎧⎪⎨⎪⎩
𝜅 𝛼𝑔 = 𝛼𝑙

𝜅 𝑚𝑔 = 𝑚𝑙

𝜅 ℰ𝑔 = ℰ𝑙

𝜅 𝑄𝑔 = 𝑄𝑙.

(3.44)

and system (3.43) leads to the relation:
𝑎 = 1 + (1− 𝑏)𝜅.

In such a situation, the entropy 𝑊𝑔𝑙 ↦→ ̃︀𝒮(𝑊𝑔𝑙) is not strictly concave and its degeneracy manifold is the
sub-space of R8:

ℳ𝑆(𝑊𝑔𝑙) ∩ ̃︀𝐻𝑠,0 =
{︀

(𝛼0, 𝑚0, ℰ0, 𝑄0, 0, 0, 0, 0) + 𝑏 (−𝛼𝑙,−𝑚𝑙,−ℰ𝑙,−𝑄𝑙, 𝛼𝑙, 𝑚𝑙, ℰ𝑙, 𝑄𝑙), 𝑏 ∈ R+
*
}︀

.

This ends the proof of Theorem 3.8. �

4. Classical closure laws for the source terms

In this section, we recall the classical approach used to build some admissible closure laws for the source
terms. The latter is widely used and several references deal with such source terms, see [1,5,6,12] among many
others. The source terms 𝑆𝑖,𝑘, 𝑖 = {1, 2, 3, 4}, 𝑘 = {𝑙, 𝑔}, are first decomposed into elementary effects. The
momentum exchange source term 𝑆3,𝑘 is split into a contribution due to the drag force 𝐷𝑢,𝑘 and a contribution
due to the mass exchange 𝑆2,𝑘:

𝑆3,𝑘 = 𝐷𝑢,𝑘 + ̃︀𝑉 (𝑊𝑔𝑙)𝑆2,𝑘,

with 𝐷𝑢,𝑔 = −𝐷𝑢,𝑙. In a similar way, its is assumed that the energy exchange source term 𝑆4,𝑘 gathers a “pure”
heat exchange term Ψ𝑘, a contribution due the exchange of energy associated with the drag force and the heat
exchange due to the mass transfer:

𝑆4,𝑘 = Ψ𝑘 + 𝑉 (𝑊𝑔𝑙)𝐷𝑢,𝑘 + 𝐻(𝑊𝑔𝑙)𝑆2,𝑘,

with Ψ𝑔 = −Ψ𝑙. The velocity terms (𝑊𝑔𝑙) ↦→ ̃︀𝑉 (𝑊𝑔𝑙) and (𝑊𝑔𝑙) ↦→ 𝑉 (𝑊𝑔𝑙), and the enthalpy term (𝑊𝑔𝑙) ↦→
𝐻(𝑊𝑔𝑙) have to be closed. These choices are in agreement with conservation constraint (2.2). Equation (2.11)
for the specific entropy can then be written:

𝜕𝑡 (𝑚𝑘𝑠𝑘) + 𝜕𝑥 (𝑚𝑘𝑈𝑘𝑠𝑘) =
(𝑈𝑘 − 𝑉𝐼)(𝑃𝑘 − 𝑃𝐼)

𝑇𝑘
𝜕𝑥 (𝛼𝑘)

+
(𝑃𝑘 − 𝑃𝐼)

𝑇𝑘
𝑆1,𝑘 +

−𝜇𝑘 + 𝐻 − 𝑈𝑘
̃︀𝑉 − 𝑈2

𝑘/2
𝑇𝑘

𝑆2,𝑘 +
𝑉 − 𝑈𝑘

𝑇𝑘
𝐷𝑢,𝑘 +

1
𝑇𝑘

Ψ𝑘. (4.1)

By summing the two equations (4.1), the terms of equation (4.1) that contain the derivative with respect to the
fraction 𝛼𝑘 vanish and we obtain:

𝜕𝑡 (𝑚𝑔𝑠𝑔 + 𝑚𝑙𝑠𝑙) + 𝜕𝑥 (𝑚𝑔𝑈𝑔𝑠𝑔 + 𝑚𝑙𝑈𝑙𝑠𝑙) =
(𝑃𝑔 − 𝑃𝑙)

(1− 𝛽)𝑇𝑔 + 𝛽𝑇𝑙
𝑆1,𝑔

+

(︃
𝜇𝑙

𝑇𝑙
− 𝜇𝑔

𝑇𝑔
+

𝐻 − 𝑈𝑔
̃︀𝑉 − 𝑈2

𝑔 /2
𝑇𝑔

− 𝐻 − 𝑈𝑙
̃︀𝑉 − 𝑈2

𝑙 /2
𝑇𝑙

)︃
𝑆2,𝑔

+
(︂

𝑉 − 𝑈𝑔

𝑇𝑔
− 𝑉 − 𝑈𝑙

𝑇𝑙

)︂
𝐷𝑢,𝑔 +

(︂
1
𝑇𝑔
− 1

𝑇𝑙

)︂
Ψ𝑔. (4.2)
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The classical approach then considers the thermodynamical entropy 𝜂 = (𝑚𝑔𝑠𝑔 + 𝑚𝑙𝑠𝑙) and the associated
entropy-flux 𝐹𝜂 = (𝜂𝑔𝑈𝑔 + 𝜂𝑙𝑈𝑙) (see definitions (3.1) and (3.3)). Since the entropy 𝜂 is concave (see Sect. 3),
and in order to agree with the second law of thermodynamics, the admissible closure laws for the source terms
𝑆1,𝑔, 𝑆2,𝑔, 𝐷𝑢,𝑔 and Ψ𝑔 must fulfill the entropy inequality:

𝜕𝑡 (𝜂) + 𝜕𝑥 (𝐹𝜂) ≥ 0.

The source terms 𝑆1,𝑔, 𝑆2,𝑔, 𝐷𝑢,𝑔 and Ψ𝑔 are thus not defined in a unique manner, but a classical choice is to
choose closures that ensure the positivity of each terms in the right hand side of (4.2):

(𝑃𝑔−𝑃𝑙)
(1−𝛽)𝑇𝑔+𝛽𝑇𝑙

𝑆1,𝑔 ≥ 0(︂
𝜇𝑙

𝑇𝑙
− 𝜇𝑔

𝑇𝑔
+ 𝐻−𝑈𝑔

̃︀𝑉−𝑈2
𝑔 /2

𝑇𝑔
− 𝐻−𝑈𝑙

̃︀𝑉−𝑈2
𝑙 /2

𝑇𝑙

)︂
𝑆2,𝑔 ≥ 0(︁

𝑉−𝑈𝑔

𝑇𝑔
− 𝑉−𝑈𝑙

𝑇𝑙

)︁
𝐷𝑢,𝑔 ≥ 0(︁

1
𝑇𝑔
− 1

𝑇𝑙

)︁
Ψ𝑔 ≥ 0.

(4.3)

A simple manner is then to write the following closure laws:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑆1,𝑔 = 𝐾1(𝑊𝑔𝑙)(𝑃𝑔 − 𝑃𝑙)

𝑆2,𝑔 = 𝐾2(𝑊𝑔𝑙)
(︂

𝜇𝑙

𝑇𝑙
− 𝜇𝑔

𝑇𝑔
+ 𝐻−𝑈𝑔

̃︀𝑉−𝑈2
𝑔 /2

𝑇𝑔
− 𝐻−𝑈𝑙

̃︀𝑉−𝑈2
𝑙 /2

𝑇𝑙

)︂
𝐷𝑢,𝑔 = 𝐾3(𝑊𝑔𝑙)

(︁
𝑉−𝑈𝑔

𝑇𝑔
− 𝑉−𝑈𝑙

𝑇𝑙

)︁
Ψ𝑔 = 𝐾4(𝑊𝑔𝑙)

(︁
1

𝑇𝑔
− 1

𝑇𝑙

)︁
,

(4.4)

where the functions 𝑊𝑔𝑙 ↦→ 𝐾𝑖(𝑊𝑔𝑙), 𝑖 = {1, 2, 3, 4}, can depend on the variable 𝑊𝑔𝑙 but they have to be
positive:

∀𝑖 = {1, 2, 3, 4}, ∀𝑊𝑔𝑙, 𝐾𝑖(𝑊𝑔𝑙) ≥ 0.

It should be noted that no constraint arises on the terms ̃︀𝑉 , 𝑉 and 𝐻. Nevertheless, the closure 𝑉 = (𝑈𝑔 +𝑈𝑙)/2
allows to retrieve a classical admissible form for the drag force based on the relative velocity:

𝐷𝑢,𝑔 = 𝐾3(𝑊𝑔𝑙)
(︂

1
2𝑇𝑔

+
1

2𝑇𝑙

)︂
(𝑈𝑙 − 𝑈𝑔) = 𝐾3,𝑢(𝑊𝑔𝑙)(𝑈𝑙 − 𝑈𝑔).

It can also be noted that with the choice ̃︀𝑉 = 𝑉 = (𝑈𝑔 + 𝑈𝑙)/2 and 𝐻 = 𝑈𝑔𝑈𝑙/2, the mass transfer term 𝑆2,𝑔

can be simplified in:

𝑆2,𝑔 = 𝐾2(𝑊𝑔𝑙)
(︂

𝜇𝑙

𝑇𝑙
− 𝜇𝑔

𝑇𝑔

)︂
·

Thus the mass transfer does not depend on the velocities of the phases, and is only related to the difference
between the chemical potentials 𝜇𝑘/𝑇𝑘. Obviously, other modeling choices can be considered.

5. Non-classical closure laws for the source terms

The set of closure laws proposed in this section are based on the approach mainly used in the modeling of
multiphase flows using single-velocity models, as in [2,10,19,20] for instance. In Section 3, the different entropies
have been studied regardless of the set of partial derivative equations (2.1) that defines the paths followed by the
different variables. In order to reintroduce this information, let us first write system (2.1) in slightly different but
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equivalent form. The time derivative of the fraction 𝛼𝑘 in the energy equation is replaced by a space derivative
by using first equation of (2.1). This leads to the system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡 (𝛼𝑔) + 𝑉𝐼𝜕𝑥 (𝛼𝑔) = 𝑆′1,𝑔

𝜕𝑡 (𝛼𝑔𝜌𝑔) + 𝜕𝑥 (𝛼𝑔𝜌𝑔𝑈𝑔) = 𝑆′2,𝑔

𝜕𝑡 (𝛼𝑔𝜌𝑔𝑈𝑔) + 𝜕𝑥

(︀
𝛼𝑔𝜌𝑔𝑈

2
𝑔 + 𝛼𝑔𝑃𝑔

)︀
− 𝑃𝐼𝜕𝑥 (𝛼𝑔) = 𝑆′3,𝑔

𝜕𝑡 (𝛼𝑔𝜌𝑔𝐸𝑔) + 𝜕𝑥 (𝛼𝑔𝑈𝑔(𝜌𝑔𝐸𝑔 + 𝑃𝑔))− 𝑃𝐼𝑉𝐼𝜕𝑥 (𝛼𝑔) = 𝑆′4,𝑔

𝜕𝑡 (𝛼𝑙𝜌𝑙) + 𝜕𝑥 (𝛼𝑙𝜌𝑙𝑈𝑙) = 𝑆2,𝑙

𝜕𝑡 (𝛼𝑙𝜌𝑙𝑈𝑙) + 𝜕𝑥

(︀
𝛼𝑙𝜌𝑙𝑈

2
𝑙 + 𝛼𝑙𝑃𝑙

)︀
− 𝑃𝐼𝜕𝑥 (𝛼𝑙) = 𝑆′3,𝑙

𝜕𝑡 (𝛼𝑙𝜌𝑙𝐸𝑙) + 𝜕𝑥 (𝛼𝑙𝑈𝑙(𝜌𝑙𝐸𝑙 + 𝑃𝑙))− 𝑃𝐼𝑉𝐼𝜕𝑥 (𝛼𝑙) = 𝑆′4,𝑙.

(5.1)

The source terms are for 𝑘 = {𝑙, 𝑔} : 𝑆′1,𝑘 = 𝑆1,𝑘, 𝑆′2,𝑘 = 𝑆2,𝑘, 𝑆′3,𝑘 = 𝑆3,𝑘, but with 𝑆′4,𝑘 = 𝑆4,𝑘 − 𝑃𝐼𝑆1,𝑘. We
then also get the property conservation for an isolated system:

∀𝑖 = {1, 2, 3, 4}, 𝑆′𝑖,𝑙 + 𝑆′𝑖,𝑔 = 0. (5.2)

All the properties that have been recalled in Section 2 for system (2.1) hold for system (5.1). In fact, system
(5.1) is just a more convenient form of the two-fluid model when considering the source terms of the present
section. Equation (2.11) on the phasic entropy 𝑠𝑘 becomes for system (5.1):

𝜕𝑡 (𝑚𝑘𝑠𝑘) + 𝜕𝑥 (𝑚𝑘𝑈𝑘𝑠𝑘) =
(𝑈𝑘 − 𝑉𝐼)(𝑃𝑘 − 𝑃𝐼)

𝑇𝑘
𝜕𝑥 (𝛼𝑘)

+
𝑃𝑘

𝑇𝑘
𝑆′1,𝑘 +

−𝜇𝑘 − 𝑈2
𝑘/2

𝑇𝑘
𝑆′2,𝑘 −

𝑈𝑘

𝑇𝑘
𝑆′3,𝑘 +

1
𝑇𝑘

𝑆′4,𝑘. (5.3)

The equation for the mixture entropy ̃︀𝒮 is then obtained by summing equations (5.3) and by applying the
constraints 𝛼𝑙 + 𝛼𝑔 = 1 and 𝑆′𝑖,𝑙 + 𝑆′𝑖,𝑔 = 0, which are associated with the domain ̃︀𝐻𝑠,0. If the closures for 𝑉𝐼

(2.15) and 𝑃𝐼 (2.16) are retained, we get:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
=
(︂

𝑃𝑔

𝑇𝑔
− 𝑃𝑙

𝑇𝑙

)︂
𝑆′1,𝑔 +

(︃
−𝜇𝑔 − 𝑈2

𝑔 /2
𝑇𝑔

− −𝜇𝑙 − 𝑈2
𝑙 /2

𝑇𝑙

)︃
𝑆′2,𝑔

+
(︂

𝑈𝑙

𝑇𝑙
− 𝑈𝑔

𝑇𝑔

)︂
𝑆′3,𝑔 +

(︂
1
𝑇𝑔
− 1

𝑇𝑙

)︂
𝑆′4,𝑔. (5.4)

Let us now express the derivative of 𝑊𝑔𝑙 ↦→ ̃︀𝒮(𝑊𝑔𝑙) with respect to 𝛼𝑔 on ̃︀𝐻𝑠,0, where the fraction 𝛼0 in
definition (3.41) is equal to 1:

𝜕𝛼𝑔

(︁ ̃︀𝒮)︁ |𝛼𝑙+𝛼𝑔=1,𝑚𝑘,𝒬𝑘,ℰ𝑘
= 𝜕𝛼𝑔

(𝒮𝑔) |𝑚𝑔,𝒬𝑔,ℰ𝑔
+ 𝜕𝛼𝑔

(𝒮𝑙) |𝛼𝑙+𝛼𝑔=1,𝑚𝑙,𝒬𝑙,ℰ𝑙

= 𝜕𝛼𝑔
(𝒮𝑔) |𝑚𝑔,𝒬𝑔,ℰ𝑔

+ 𝜕𝛼𝑔
(𝛼𝑙) |𝛼𝑙+𝛼𝑔=1 𝜕𝛼𝑙

(𝒮𝑙) |𝑚𝑙,𝒬𝑙,ℰ𝑙
(5.5)

= 𝜕𝛼𝑔 (𝒮𝑔) |𝑚𝑔,𝒬𝑔,ℰ𝑔 − 𝜕𝛼𝑙
(𝒮𝑙) |𝑚𝑙,𝒬𝑙,ℰ𝑙

=
𝑃𝑔

𝑇𝑔
− 𝑃𝑙

𝑇𝑙
·
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The last formula of the set of relations above is obtained thanks to relation (A.5) of appendix A. In a similar
way, one can easily show that:

𝜕𝑚𝑔

(︁ ̃︀𝒮)︁ |𝑚𝑙+𝑚𝑔=𝑚0,𝛼𝑘,𝒬𝑘,ℰ𝑘
=
−𝜇𝑔 − 𝑈2

𝑔 /2
𝑇𝑔

− −𝜇𝑙 − 𝑈2
𝑙 /2

𝑇𝑙
(5.6)

𝜕𝒬𝑔

(︁ ̃︀𝒮)︁ |𝒬𝑙+𝒬𝑔=𝒬0,𝛼𝑘,𝑚𝑘,ℰ𝑘
=

𝑈𝑙

𝑇𝑙
− 𝑈𝑔

𝑇𝑔
(5.7)

𝜕ℰ𝑔

(︁ ̃︀𝒮)︁ |ℰ𝑙+ℰ𝑔=ℰ0,𝛼𝑘,𝑚𝑘,𝒬𝑘
=

1
𝑇𝑔
− 1

𝑇𝑙
· (5.8)

Equation (5.4) can thus be written

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
= 𝜕𝛼𝑔

(︁ ̃︀𝒮)︁ |𝛼𝑙+𝛼𝑔=1,𝑚𝑘,𝒬𝑘,ℰ𝑘
𝑆′1,𝑔 + 𝜕𝑚𝑔

(︁ ̃︀𝒮)︁ |𝑚𝑙+𝑚𝑔=𝑚0,𝛼𝑘,𝒬𝑘,ℰ𝑘
𝑆′2,𝑔

+ 𝜕𝒬𝑔

(︁ ̃︀𝒮)︁ |𝒬𝑙+𝒬𝑔=𝒬0,𝛼𝑘,𝑚𝑘,ℰ𝑘
𝑆′3,𝑔 + 𝜕ℰ𝑔

(︁ ̃︀𝒮)︁ |ℰ𝑙+ℰ𝑔=ℰ0,𝛼𝑘,𝑚𝑘,𝒬𝑘
𝑆′4,𝑔. (5.9)

This form of equation (5.9) is the key point in the definition of the source terms proposed in the following.
Indeed, the concavity of the entropy can be used to propose source terms that are non-classical for a two-fluid
two-velocity approach, but that are classical for homogeneous one-velocity models.

5.1. First set of closure laws

Thanks to the form of equation (5.9), a first form for the source terms 𝑆′𝑘,𝑔, 𝑘 = 1..4 is proposed:

𝑆′1,𝑔 =
𝛼𝑔 − 𝛼𝑔

Λ(𝑊𝑔𝑙)
, 𝑆′2,𝑔 =

𝑚𝑔 −𝑚𝑔

Λ(𝑊𝑔𝑙)
, 𝑆′3,𝑔 =

𝒬𝑔 −𝒬𝑔

Λ(𝑊𝑔𝑙)
, 𝑆′4,𝑔 =

ℰ𝑔 − ℰ𝑔

Λ(𝑊𝑔𝑙)
; (5.10)

where (𝑊𝑔𝑙) ↦→ Λ(𝑊𝑔𝑙) is a positive function that represents a time-scale; and where the quantities 𝑊𝑔 =
(𝛼𝑔, 𝑚𝑔,𝒬𝑔, ℰ𝑔) still have to be defined. With these choices, equation (5.9) reads:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
=

1
Λ(𝑊𝑔𝑙)

∇𝑊𝑔
̃︀𝒮𝑔,0 · (𝑊𝑔 −𝑊𝑔), (5.11)

where the entropy ̃︀𝒮𝑔,0 is introduced on the basis of the mixture entropy ̃︀𝒮. It is defined on
]0, 1[×]0, 𝑚0[×R×]0, ℰ0[⊂ ℋ𝑠,𝑔, with 𝑚0 = 𝑚𝑙 + 𝑚𝑔 and ℰ0 = ℰ𝑙 + ℰ𝑔 by:

̃︀𝒮𝑔,0 :
(︂

𝑊𝑔 ∈]0, 1[×]0, 𝑚0[×R×]0, ℰ0[→ R
𝑊𝑔 ↦→ ̃︀𝒮(𝑊𝑔, 𝑊0 −𝑊𝑔)

)︂
. (5.12)

In definition (5.12), the liquid variable 𝑊𝑙 is deduced from the gas variables 𝑊𝑔 by a conservation relation
𝑊𝑙 + 𝑊𝑔 = 𝑊0 = (1, 𝑚0,𝒬0, ℰ0). Hence (𝑊𝑔, 𝑊0 − 𝑊𝑔) belongs to ̃︀𝐻𝑠,0. It can easily be shown that ̃︀𝒮𝑔,0

inherits the concavity property from ̃︀𝒮.

Proposition 5.1. The entropy 𝑊𝑔 ↦→ ̃︀𝒮𝑔,0(𝑊𝑔) defined by (5.12) is concave on ]0, 1[×]0, 𝑚0[×R×]0, ℰ0[.

Proof. Let us choose 𝑊𝑔 and 𝑊 ′
𝑔 in ]0, 1[×]0, 𝑚0[×R×]0, ℰ0[, and let 𝑎 be in [0, 1]. We then get:̃︀𝒮𝑔,0

(︀
𝑎𝑊𝑔 + (1− 𝑎)𝑊 ′

𝑔

)︀
= ̃︀𝒮 (︀𝑎𝑊𝑔 + (1− 𝑎)𝑊 ′

𝑔, 𝑊0 − 𝑎𝑊𝑔 − (1− 𝑎)𝑊 ′
𝑔

)︀
= ̃︀𝒮 (︀𝑎𝑊𝑔 + (1− 𝑎)𝑊 ′

𝑔, 𝑎(𝑊0 −𝑊𝑔)− (1− 𝑎)
(︀
𝑊0 −𝑊 ′

𝑔

)︀)︀
.

It immediately arises from the concavity property of ̃︀𝒮 that:̃︀𝒮𝑔,0(𝑎𝑊𝑔 + (1− 𝑎)𝑊 ′
𝑔) ≤ 𝑎 ̃︀𝒮(𝑊𝑔, 𝑊0 −𝑊𝑔) + (1− 𝑎) ̃︀𝒮(𝑊 ′

𝑔, 𝑊0 −𝑊 ′
𝑔) = 𝑎 ̃︀𝒮𝑔,0(𝑊𝑔) + (1− 𝑎) ̃︀𝒮𝑔,0(𝑊 ′

𝑔);

and thus that ̃︀𝒮𝑔,0 is concave on ]0, 1[×]0, 𝑚0[×R×]0, ℰ0[. �
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Thanks to Proposition 5.1, we obtain from (5.11) that

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
≥
̃︀𝒮𝑔,0(𝑊𝑔)− ̃︀𝒮𝑔,0(𝑊𝑔)

Λ(𝑊𝑔𝑙)
· (5.13)

Hence, in order to ensure the growth of the entropy ̃︀𝒮 associated to the entropy-flux (𝒬𝑙/𝑚𝑙𝒮𝑙 +𝒬𝑔/𝑚𝑔𝒮𝑔), it
could be sufficient to choose an equilibrium state 𝑊𝑔 ∈]0, 1[×]0, 𝑚0[×R×]0, ℰ0[ such that:

∀𝑊𝑔 ∈]0, 1[×]0, 𝑚0[×R×]0, ℰ0[, ̃︀𝒮𝑔,0(𝑊𝑔) ≥ ̃︀𝒮𝑔,0(𝑊𝑔). (5.14)

Unfortunately, if the entropy 𝑊𝑔 ↦→ ̃︀𝒮𝑔,0(𝑊𝑔) is concave with respect to 𝑊𝑔, the momentum component of 𝑊𝑔

can not be signed and the domain of definition ]0, 1[×]0, 𝑚0[×R×]0, ℰ0[⊂ ℋ𝑠,𝑔 of 𝑊𝑔 ↦→ ̃︀𝒮𝑔,0(𝑊𝑔) is thus not
bounded. As a consequence, the state 𝑊𝑔 may itself be not bounded because of the momentum component. An
other treatment of the momentum is then proposed in the next section.

5.2. Second set of closure laws

We propose here to treat the momentum component 𝒬𝑔 of the variable 𝑊𝑔 differently in order to work with
an entropy whose domain of definition is bounded. For this purpose we define the variable 𝑌𝑔 = (𝛼𝑔, 𝑚𝑔, ℰ𝑔) ∈
]0, 1[×]0, 𝑚0[×]0, ℰ0[, with 𝑚0 = 𝑚𝑙 + 𝑚𝑔 and ℰ0 = ℰ𝑙 + ℰ𝑔, and we consider the following source terms:

𝑆′1,𝑔 =
𝛼𝑔 − 𝛼𝑔

Λ(𝑊𝑔𝑙)
, 𝑆′2,𝑔 =

𝑚𝑔 −𝑚𝑔

Λ(𝑊𝑔𝑙)
, 𝑆′3,𝑔 = 𝐾 ′

3(𝑊𝑔𝑙)
(︂

𝑈𝑙

𝑇𝑙
− 𝑈𝑔

𝑇𝑔

)︂
, 𝑆′4,𝑔 =

ℰ𝑔 − ℰ𝑔

Λ(𝑊𝑔𝑙)
, (5.15)

where 𝐾 ′
3(𝑊𝑔𝑙) is a positive function. Equation 5.9 then becomes:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
=

1
Λ(𝑊𝑔𝑙)

∇𝑌𝑔
̃︀𝒮𝑔,𝑌,0 · (𝑌𝑔 − 𝑌 𝑔) + 𝐾 ′

3(𝑊𝑔𝑙)
(︂

𝑈𝑔

𝑇𝑔
− 𝑈𝑙

𝑇𝑙

)︂2

(5.16)

where the entropy ̃︀𝒮𝑔,𝑌,0 is defined for 𝑌𝑔 = (𝛼𝑔, 𝑚𝑔, ℰ𝑔) ∈]0, 1[×]0, 𝑚0[×]0, ℰ0[ for fixed phasic momentums:

̃︀𝒮𝑔,𝑌,0 :
(︂

𝑌𝑔 ∈]0, 1[×]0, 𝑚0[×]0, ℰ0[→ R
𝑊𝑔 = (𝛼𝑔, 𝑚𝑔,𝒬𝑔,0, ℰ𝑔) ↦→ ̃︀𝒮(𝑊𝑔, 𝑊0 −𝑊𝑔)

)︂
, (5.17)

where 𝑊0 = (1, 𝑚0,𝒬𝑔,0 + 𝒬𝑙,0, ℰ0). In the definition of ̃︀𝒮𝑔,𝑌,0, the momentums 𝒬𝑘,0 can take any bounded
value since only the derivatives with respect to 𝑌𝑔 play a role. The entropy ̃︀𝒮𝑔,𝑌,0 inherits from the entropy ̃︀𝒮𝑔,0

the following property.

Proposition 5.2. The entropy 𝑌𝑔 ↦→ ̃︀𝒮𝑔,𝑌,0(𝑌𝑔) defined by (5.17) is concave on ]0, 1[×]0, 𝑚0[×]0, ℰ0[.

Proof. The proof mimics the proof of Proposition 5.1. �

Using the concavity of 𝑌𝑔 ↦→ ̃︀𝒮𝑔,𝑌,0(𝑌𝑔), on can obtain the following inequality from equation (5.16):

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
≥
̃︀𝒮𝑔,𝑌,0(𝑌𝑔)− ̃︀𝒮𝑔,𝑌,0(𝑌𝑔)

Λ(𝑊𝑔𝑙)
+

1
Λ𝑢(𝑊𝑔𝑙)

(︂
𝑈𝑔

𝑇𝑔
− 𝑈𝑙

𝑇𝑙

)︂2

, (5.18)

On the contrary to the entropy ̃︀𝒮𝑔,0, the entropy ̃︀𝒮𝑔,𝑌,0 is concave on a bounded domain. Hence, if we exclude
the single-phase flow situations, there exists at least one equilibrium state 𝑌𝑔 ∈ [0, 1]× [0, 𝑚0]× [0, ℰ0] such that

∀𝑌𝑔 ∈ [0, 1]× [0, 𝑚0]× [0, ℰ0], ̃︀𝒮𝑔,𝑌,0(𝑌𝑔) ≥ ̃︀𝒮𝑔,𝑌,0(𝑌𝑔). (5.19)
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We can thus conclude that the choice of source terms (5.15) leads to an entropy inequality for the mixture
entropy ̃︀𝒮 when associated with the entropy-flux (𝒬𝑙/𝑚𝑙𝒮𝑙 +𝒬𝑔/𝑚𝑔𝒮𝑔):

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
≥ 0. (5.20)

Since ̃︀𝒮𝑔,𝑌,0 is not strictly concave, the equilibrium state 𝑌𝑔 may be non-unique, but it exists and it is defined
as a state such that:

̃︀𝒮𝑔,𝑌,0

(︀
𝑌𝑔

)︀
= max

𝑌𝑔∈[0,1]×[0,𝑚0]×[0,ℰ0],𝒬𝑔=𝒬𝑔,0,𝒬𝑙=𝒬𝑙,0

(︁ ̃︀𝒮𝑔,𝑌,0(𝑌𝑔)
)︁

. (5.21)

Nevertheless, this proposition (5.15) leads to a drag force 𝑆′3,𝑔 that is more than a mechanical effect. Indeed,
the classical form for the drag force as introduced in Section 4 by Definition 4.4 tends to decrease the relative
velocity independently of the thermodynamical quantities. This is not the case with the source terms 𝑆′3,𝑔

as proposed above. This is due to the fact that the source terms (5.15) have not been split into elementary
contributions, as in Section 4. In fact we have:(︂

𝑈𝑔

𝑇𝑔
− 𝑈𝑙

𝑇𝑙

)︂
=

1
𝑇𝑔

(𝑈𝑔 − 𝑈𝑙) + 𝑈𝑙

(︂
1
𝑇𝑙
− 1

𝑇𝑔

)︂
·

In the third proposition, we introduce a splitting of the source terms that mimics the splitting presented in
Section 4.

5.3. Third set of closure laws

We modify 𝑆′3,𝑔 and 𝑆′4,𝑔 while keeping 𝑆′1,𝑔 and 𝑆′2,𝑔 unchanged. These new choices mimic the splitting of
the source terms 𝑆3,𝑔 and 𝑆4,𝑔 defined in Section 4. We then introduce two velocities ̃︀𝑉 ′ and an energy ̃︀𝐸′, that
will be defined in the following. Moreover, the momentums are not treated together with the thermodynamical
variables. We thus focus in this section on the entropy 𝜂 and not on the entropy 𝒮 as in the two previous
sections. The entropy ̃︀𝜂𝑔,0 is then defined for the variable 𝑍𝑔 = (𝛼𝑔, 𝑚𝑔, 𝜀𝑔) on the basis of the mixture entropy
𝜂 defined in Section 3.1 by definition (3.1):

̃︀𝜂𝑔,0 :
(︂

𝑍𝑔 ∈]0, 1[×]0, 𝑚0[×]0, 𝜀0[→ R
𝑍𝑔 ↦→ ̃︀𝜂(𝑍𝑔, 𝑍0 − 𝑍𝑔)

)︂
, (5.22)

with 𝑍0 = (𝛼0, 𝑚0, 𝜀0) = (1, 𝑚𝑙 + 𝑚𝑔, 𝜀𝑙 + 𝜀𝑔). We can then state the following property.

Proposition 5.3. The entropy 𝑍𝑔 ↦→ ̃︀𝜂𝑔,0(𝑍𝑔) defined by (5.22) is concave on ]0, 1[×]0, 𝑚0[×]0, 𝜀0[ and it
possesses a unique maximum 𝑍𝑔 = (𝛼𝑔, 𝑚𝑔, 𝜀𝑔) on ]0, 1[×]0, 𝑚0[×]0, 𝜀0[.

Proof. The proof of the concavity of ̃︀𝜂𝑔,0 is based on Theorem 3.3 and its proof mimics the proof of Proposi-
tion 5.1. The uniqueness of the maximum of ̃︀𝜂𝑔,0 is inherited from the Corollary 3.4 of the entropy ̃︀𝜂. Obviously,
as for Corollary 3.4, we exclude the single-phase flow situations. �

We introduce now the following splitting of the source terms:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑆′1,𝑔 = 𝛼𝑔−𝛼𝑔

Λ(𝑊𝑔𝑙)
,

𝑆′2,𝑔 = 𝑚𝑔−𝑚𝑔

Λ(𝑊𝑔𝑙)
,

𝑆′3,𝑔 = 𝐷𝑢,𝑔 + ̃︀𝑉 ′𝑆′2,𝑔,

𝑆′4,𝑔 = 𝜀𝑔−𝜀𝑔

Λ(𝑊𝑔𝑙)
+ 𝑉 𝐷𝑢,𝑔 + ̃︀𝐸′𝑆′2,𝑔,

(5.23)
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where the drag force 𝐷𝑢,𝑔 and the velocity 𝑉 have been defined in Section 4 (through Def. 4.4). The equilibrium
state 𝑍𝑔 = (𝛼𝑔, 𝑚𝑔, 𝜀𝑔) corresponds to the maximum of the entropy ̃︀𝜂𝑔,0 on ]0, 1[×]0, 𝑚0[×]0, 𝜀0[. Its is unique
and it is defined as a state such that:

̃︀𝜂𝑔,0(𝑍𝑔) = max
𝑍𝑔∈]0,1[×]0,𝑚0[×]0,𝜀0[

(̃︀𝜂𝑔,0(𝑍𝑔)) . (5.24)

The function 𝑊𝑔𝑙 ↦→ Λ(𝑊𝑔𝑙) must be positive. When using relations (A.1)–(A.4), equation (5.4) can be written:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
=

1
Λ(𝑊𝑔𝑙)

∇𝑍𝑔
̃︀𝜂𝑔,0 · (𝑍𝑔 − 𝑍𝑔) +

(︂
𝑈𝑙

𝑇𝑙
− 𝑈𝑔

𝑇𝑔
+ 𝑉

(︂
1
𝑇𝑔
− 1

𝑇𝑙

)︂)︂
𝐷𝑢,𝑔

+

(︃
𝑈2

𝑔 /2
𝑇𝑔

− 𝑈2
𝑙 /2
𝑇𝑙

+ ̃︀𝑉 ′
(︂

𝑈𝑙

𝑇𝑙
− 𝑈𝑔

𝑇𝑔

)︂
+ ̃︀𝐸′(︂ 1

𝑇𝑔
− 1

𝑇𝑙

)︂)︃
𝑆′2,𝑔. (5.25)

In order to get a entropy inequality, the three terms on the right hand side of (5.25) have to be positive. The
first terms is indeed positive since ̃︀𝜂𝑔,0 is concave and thanks to the definition (5.24) of 𝑍𝑔. For the second and
third terms, we adopt the same choices than for the classical closures of Section 4: ̃︀𝑉 ′ = 𝑉 = (𝑈𝑙 + 𝑈𝑔)/2 and̃︀𝐸′ = 𝑈𝑙𝑈𝑔/2. The third term of the right hand side of the entropy equation (5.25) then vanishes, and we get:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︁
𝒬𝑙

𝑚𝑙
𝒮𝑙 + 𝒬𝑔

𝑚𝑔
𝒮𝑔

)︁
= 1

Λ(𝑊𝑔𝑙)
∇𝑍𝑔

̃︀𝜂𝑔,0 · (𝑍𝑔 − 𝑍𝑔) +
(︁

1
2𝑇𝑙

+ 1
2𝑇𝑔

)︁
(𝑈𝑙 − 𝑈𝑔)𝐷𝑢,𝑔. (5.26)

As for the drag force term of Section 4, we choose:

𝐷𝑢,𝑔 = 𝐾3(𝑊𝑔𝑙)
(︂

1
2𝑇𝑔

+
1

2𝑇𝑙

)︂
(𝑈𝑙 − 𝑈𝑔) = 𝐾3,𝑢(𝑊𝑔𝑙)(𝑈𝑙 − 𝑈𝑔),

where 𝑊𝑔𝑙 ↦→ 𝐾3,𝑢(𝑊𝑔𝑙) is a positive function. With all these choices, we recover the entropy inequality (5.20)
for the mixture entropy ̃︀𝒮 when associated with the entropy-flux (𝒬𝑙/𝑚𝑙𝒮𝑙 +𝒬𝑔/𝑚𝑔𝒮𝑔).

The sources terms proposed in this section involve two parameters, whereas the classical closures involve four
parameters. The first parameter is the parameter 𝐾3,𝑢 which rules the kinematic equilibrium, and which is the
same than in Section 4. Concerning the return to the thermodynamical equilibrium, the source terms of the
present section only involve one time-scale Λ whereas the classical source terms are ruled by three independent
parameters. But the great advantage of the present source terms is that they are far more easy to integrate
when dealing with numerical simulations. Indeed, using a fractional step approach for the discretization of the
whole model, the thermodynamical relaxation towards the equilibrium can be done using simple and robust
schemes, see [19,20] for instance.

5.4. Fourth set of closure laws

We focus now on the entropy 𝑚𝑘 ↦→ 𝜂𝑚,𝑘(𝑚𝑘) introduced in Section 3.1. On the contrary to the three previous
sections, we use here system (2.1) as for the classical source terms of Section 4. Thanks to Proposition 3.7, we
know that 𝑚𝑘 ↦→ 𝜂𝑚,𝑘(𝑚𝑘) is strictly concave. We then define the mixture entropy 𝜂𝑚,0 as:

𝜂𝑚,0 :
(︂

𝑚𝑔 ∈]0, 𝑚0[→ R
𝑚𝑔 ↦→ 𝜂𝑚,𝑙(𝑚0 −𝑚𝑔) + 𝜂𝑚,𝑔(𝑚𝑔)

)︂
. (5.27)

For the entropy 𝜂𝑚,0, the fractions and the energies are fixed quantities. Then, Proposition 3.2 leads to the
following property for the mixture entropy 𝑚𝑔 ↦→ 𝜂𝑚,0(𝑚𝑔).

Proposition 5.4. The entropy 𝑚𝑔 ↦→ 𝜂𝑚,0(𝑚𝑔) belongs to 𝐶2 (]0, 𝑚0[, R) and it is strictly concave on ]0, 𝑚0[.
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Proof. The entropy 𝑚𝑔 ↦→ 𝜂𝑚,0 directly inherits its regularity property from the phasic entropies 𝜂𝑚,𝑘 (see
Prop. 3.2). In order to prove the concavity results, formula (A.11) and (A.14) from appendix A are used. We
then get the first derivative 𝑚𝑔 ↦→ 𝜂𝑚,0:

𝜂′𝑚,0(𝑚𝑔) = 𝜂′𝑚,𝑔(𝑚𝑔)− 𝜂′𝑚,𝑙(𝑚0 −𝑚𝑔) =
𝜇𝑙

𝑇𝑙
− 𝜇𝑔

𝑇𝑔
, (5.28)

and the second derivative of 𝑚𝑔 ↦→ 𝜂𝑚,0;

𝜂′′𝑚,0(𝑚𝑔) = 1
𝑚𝑔

(︁
𝛼2

𝑔

𝑚2
𝑔
,

𝜀2
𝑔

𝑚2
𝑔

)︁
· 𝑠′′𝑔 ·

⎛⎝ 𝛼2
𝑔

𝑚2
𝑔

𝜀2
𝑔

𝑚2
𝑔

⎞⎠+ 1
𝑚0−𝑚𝑔

(︁
𝛼2

𝑙

(𝑚0−𝑚𝑔)2 ,
𝜀2

𝑙

(𝑚0−𝑚𝑔)2

)︁
· 𝑠′′𝑙 ·

⎛⎝ 𝛼2
𝑙

(𝑚0−𝑚𝑔)2

𝜀2
𝑙

(𝑚0−𝑚𝑔)2

⎞⎠ . (5.29)

Since 𝑚𝑔 ∈]0, 𝑚0[ and since the phasic entropies 𝑠𝑘 are strictly concave, we finally get that,

∀𝑚𝑔 ∈]0, 𝑚0[, 𝜂′′𝑚,0(𝑚𝑔) < 0,

which prove that 𝑚𝑔 ↦→ 𝜂𝑚,0 is strictly concave on ]0, 𝑚0[. This ends the proof of Proposition 5.4. �

In order to take advantage of this property, we define the source terms:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑆1,𝑔 = 𝐾1(𝑊𝑔𝑙)(𝑃𝑔 − 𝑃𝑙),

𝑆2,𝑔 = 𝑚𝑔−𝑚𝑔

Λ𝑚(𝑊𝑔𝑙)
,

𝑆3,𝑔 = 𝐷𝑢,𝑔 + ̃︀𝑉 𝑆′2,𝑔,

𝑆4,𝑔 = Ψ𝑔 + 𝑉 𝐷𝑢,𝑔 + 𝐻𝑆′2,𝑔,

(5.30)

where 𝑊𝑔𝑙 ↦→ Λ𝑚(𝑊𝑔𝑙) is a positive function. For these source terms, only the mass transfer term 𝑆2,𝑔 differs
from the classical source terms of Section 4. The equilibrium mass 𝑚𝑔 involved in the mass transfer term 𝑆2,𝑔 is
defined as the point that maximizes the entropy 𝜂𝑚,0, for given fractions 𝛼𝑘 and for given internal energies 𝜀𝑘:

𝜂𝑚,0(𝑚𝑔) = max
𝑚𝑔∈]0,𝑚0[

(𝜂𝑚,0(𝑚𝑔)) . (5.31)

As in previous sections, we assume that single-phase flows are not reached. Therefore the maximum for 𝜂𝑚,0 can
not be reached for 𝑚𝑔 → 0+ or 𝑚𝑔 → 𝑚−

0 . If we still retain the closures ̃︀𝑉 = 𝑉 = (𝑈𝑙 +𝑈𝑔)/2 and 𝐻 = 𝑈𝑙𝑈𝑔/2,
the entropy equation (4.2) then becomes:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
=

(𝑃𝑔 − 𝑃𝑙)
(1− 𝛽)𝑇𝑔 + 𝛽𝑇𝑙

𝑆1,𝑔 +
(︂

𝜇𝑙

𝑇𝑙
− 𝜇𝑔

𝑇𝑔

)︂
𝑆2,𝑔

+
(︂

1
2𝑇𝑙

+
1

2𝑇𝑔

)︂
(𝑈𝑙 − 𝑈𝑔) 𝐷𝑢,𝑔 +

(︂
1
𝑇𝑔
− 1

𝑇𝑙

)︂
Ψ𝑔. (5.32)

If the derivative of 𝜂𝑚,0 given by (5.28) is introduced in (5.32), we get:

𝜕𝑡

(︁ ̃︀𝒮)︁+ 𝜕𝑥

(︂
𝒬𝑙

𝑚𝑙
𝒮𝑙 +

𝒬𝑔

𝑚𝑔
𝒮𝑔

)︂
=

1
Λ𝑚(𝑊𝑔𝑙)

∇𝑚𝑔𝜂𝑚,0 · (𝑚𝑔 −𝑚𝑔) +
(𝑃𝑔 − 𝑃𝑙)

(1− 𝛽)𝑇𝑔 + 𝛽𝑇𝑙
𝑆1,𝑔

+
(︂

1
2𝑇𝑙

+
1

2𝑇𝑔

)︂
(𝑈𝑙 − 𝑈𝑔) 𝐷𝑢,𝑔 +

(︂
1
𝑇𝑔
− 1

𝑇𝑙

)︂
Ψ𝑔. (5.33)

The first term of he right hand side of (5.33) is non-negative thanks to the concavity of 𝜂𝑚,0 and thanks to the
definition of 𝑚𝑔. Therefore, in order to get an entropy inequality from (5.33), we can then choose Ψ𝑔 and 𝐷𝑢,𝑔

as in Section 4:

𝐷𝑢,𝑔 = 𝐾3,𝑢(𝑊𝑔𝑙)(𝑈𝑙 − 𝑈𝑔), and Ψ𝑔 = 𝐾4(𝑊𝑔𝑙)
(︂

1
𝑇𝑔
− 1

𝑇𝑙

)︂
·
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We recover the entropy inequality (5.20) for the mixture entropy ̃︀𝒮 when associated with the entropy-flux
(𝒬𝑙/𝑚𝑙𝒮𝑙 +𝒬𝑔/𝑚𝑔𝒮𝑔).

As in the previous section, this fourth set of closure laws presents an advantage for the numerical simulation
because it allows to simplify the numerical integration of the mass transfer using fractional step approach. But,
on the contrary to the source terms of the previous section, we keep here four parameters for the definition of
relaxation paths: 𝐾1(𝑊𝑔𝑙), 𝐾3,𝑢(𝑊𝑔𝑙), 𝐾4(𝑊𝑔𝑙) and Λ𝑚(𝑊𝑔𝑙).

Remark 5.5. The same idea can be applied to system (5.1), and it would lead to a different source term for
the fraction:

𝑆1,𝑔 = 𝐾1(𝑊𝑔𝑙)(𝑃𝑔/𝑇𝑔 − 𝑃𝑙/𝑇𝑙)

nevertheless, in this fourth set of closure laws we intend to keep a formulation close to the classical source terms
of Section 4, that is why we have preferred system (2.1).

6. Conclusion

Four non-classical sets of source terms have been proposed for the two-fluid two-pressure Baer–Nunziato type
model. It should be quoted that the approach proposed in the sequel is not restricted to two-velocity models.
It can also be applied to a wide range of multi-fluid multi-velocity models, and even to homogeneous models.

The set of closure laws of Section 5.3 is very similar to the form of the source terms of the homogeneous models.
From a numerical point of view, efficient numerical schemes for instance based on those proposed in [19,20] can
thus be used. This kind of source terms and the associated numerical schemes have several advantages:

– the pressure, temperature and chemical potential relaxation effects are solved simultaneously, whatever the
stiffness of the relaxation effects may be;

– the numerical integration relies on an almost exact integration, which provides a good accuracy and robust-
ness of the scheme;

– there is no restriction on the complexity of the form of the EOS used for each phase;
– this scheme is rather efficient in terms of CPU-time because it only requires to solve one non-linear equation

(to compute the equilibrium state).

However, when turning to the physical point of view, the pressure, temperature and chemical potential relax-
ations are driven by a unique time-scale, which may sometimes be too restrictive. The set of closure laws of
Section 5.4 overtakes this limitation, since each relaxation effect is associated with its own time-scale. Never-
theless, this choice also presents drawbacks:

– in order to discretize the pressure, temperature and chemical potential relaxation in a coupled manner a
complex numerical scheme is required;

– moreover, if the three relaxation effects are solved separately, each one is associated with at least one
computation of the solution of a non-linear equation, which may be CPU-consuming for complex EOS.

Hence, the set of closure laws of Sections 5.3 and 5.4 have both drawbacks and advantages. The choice between
these two sets of source terms should be driven by the physical configuration to be simulated and by the
informations that have to be collected with the numerical simulations.

Appendix A. Derivative terms of the mixture entropy 𝒮

We report here the derivatives of the entropy 𝑊𝑔𝑙 ↦→ 𝒮(𝑊𝑔𝑙) defined in Section 3 by (3.34). The first
derivatives of 𝒮 are obviously the basis of the computation of the second derivatives, but they also play an
important role in the definition of admissible source terms in Section 5. In the following, for the sake of readability
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𝜂𝑘

(︁
𝛼𝑘, 𝑚𝑘, ℰ𝑘 − 𝑄2

𝑘

2𝑚𝑘

)︁
will be replaced by 𝜂𝑘 (we omit the arguments). The first derivative terms for the phasic

entropies 𝒮𝑘 read:

𝜕𝛼𝑘
(𝒮𝑘)|𝑚𝑘,ℰ𝑘,𝑄𝑘

(𝑊𝑘) = 𝜕𝛼𝑘
(𝜂𝑘)|𝑚𝑘,𝜀𝑘

(A.1)

𝜕𝑚𝑘
(𝒮𝑘)|𝛼𝑘,ℰ𝑘,𝑄𝑘

(𝑊𝑘) = 𝜕𝑚𝑘
(𝜂𝑘)|𝛼𝑘,𝜀𝑘

+
𝑄2

𝑘

2𝑚2
𝑘

𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

(A.2)

𝜕ℰ𝑘
(𝒮𝑘)|𝛼𝑘,𝑚𝑘,𝑄𝑘

(𝑊𝑘) = 𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

(A.3)

𝜕𝑄𝑘
(𝒮𝑘)|𝛼𝑘,𝑚𝑘,ℰ𝑘

(𝑊𝑘) = −𝑄𝑘

𝑚𝑘
𝜕𝜀𝑘

(𝜂𝑘)|𝛼𝑘,𝑚𝑘
. (A.4)

If we introduce the first derivatives of 𝜂𝑘 with respect to 𝛼𝑘, 𝑚𝑘 and 𝜀𝑘, as expressed by equations (3.5)–(3.7),
we have:

𝜕𝛼𝑘
(𝒮𝑘)|𝑚𝑘,ℰ𝑘,𝑄𝑘

(𝑊𝑘) =
𝑃𝑘(𝜏𝑘, 𝑒𝑘)
𝑇𝑘(𝜏𝑘, 𝑒𝑘)

, (A.5)

𝜕𝑚𝑘
(𝒮𝑘)|𝛼𝑘,ℰ𝑘,𝑄𝑘

(𝑊𝑘) =
𝑄2

𝑘

2𝑚2
𝑘
− 𝜇𝑘(𝜏𝑘, 𝑒𝑘)

𝑇𝑘(𝜏𝑘, 𝑒𝑘)
, (A.6)

𝜕ℰ𝑘
(𝒮𝑘)|𝛼𝑘,𝑚𝑘,𝑄𝑘

(𝑊𝑘) =
1

𝑇𝑘(𝜏𝑘, 𝑒𝑘)
, (A.7)

𝜕𝑄𝑘
(𝒮𝑘)|𝛼𝑘,𝑚𝑘,ℰ𝑘

(𝑊𝑘) = −𝑄𝑘

𝑚𝑘

1
𝑇𝑘(𝜏𝑘, 𝑒𝑘)

, (A.8)

where 𝜏𝑘 = 𝛼𝑘/𝑚𝑘 and 𝑒𝑘 = ℰ𝑘/𝑚𝑘 − 𝑄2
𝑘/(2𝑚2

𝑘). It can be noticed that the entropy 𝑊𝑘 ↦→ 𝒮𝑘(𝑊𝑘) can thus
be written:

𝒮𝑘(𝛼𝑘, 𝑚𝑘, ℰ𝑘, 𝑄𝑘) = 𝛼𝑘 𝜕𝛼𝑘
(𝒮𝑘)|𝑚𝑘,ℰ𝑘,𝑄𝑘

(𝑊𝑘) + 𝑚𝑘 𝜕𝑚𝑘
(𝒮𝑘)|𝛼𝑘,ℰ𝑘,𝑄𝑘

(𝑊𝑘)

+ ℰ𝑘 𝜕ℰ𝑘
(𝒮𝑘)|𝛼𝑘,𝑚𝑘,𝑄𝑘

(𝑊𝑘) + 𝑄𝑘 𝜕𝑄𝑘
(𝒮𝑘)|𝛼𝑘,𝑚𝑘,ℰ𝑘

(𝑊𝑘). (A.9)

In order to compute the second derivatives of 𝒮𝑘, we use equations (A.1)–(A.4) and we get:

𝜕2
𝛼𝑘,𝛼𝑘

(𝒮𝑘) (𝑊𝑘) = 𝜕2
𝛼𝑘,𝛼𝑘

(𝜂𝑘) (A.10)

𝜕2
𝛼𝑘,𝑚𝑘

(𝒮𝑘) (𝑊𝑘) = 𝜕2
𝛼𝑘,𝑚𝑘

(𝜂𝑘) +
𝑄2

𝑘

2𝑚𝑘
𝜕2

𝛼𝑘,𝜀𝑘
(𝜂𝑘) (A.11)

𝜕2
𝛼𝑘,ℰ𝑘

(𝒮𝑘) (𝑊𝑘) = 𝜕2
𝛼𝑘,𝜀𝑘

(𝜂𝑘) (A.12)

𝜕2
𝛼𝑘,𝑄𝑘

(𝒮𝑘) (𝑊𝑘) = −𝑄𝑘

𝑚𝑘
𝜕2

𝛼𝑘,𝜀𝑘
(𝜂𝑘) (A.13)

𝜕2
𝑚𝑘,𝑚𝑘

(𝒮𝑘) (𝑊𝑘) = −𝑄2
𝑘

𝑚3
𝑘

𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

+
(︂

1,
𝑄2

𝑘

2𝑚𝑘

)︂
·
(︂

𝜕2
𝑚𝑘,𝑚𝑘

(𝜂𝑘) 𝜕2
𝑚𝑘,𝜀𝑘

(𝜂𝑘)
𝜕2

𝑚𝑘,𝜀𝑘
(𝜂𝑘) 𝜕2

𝜀𝑘,𝜀𝑘
(𝜂𝑘)

)︂
·

(︃
1

𝑄2
𝑘

2𝑚𝑘

)︃
(A.14)

𝜕2
𝑚𝑘,ℰ𝑘

(𝒮𝑘) (𝑊𝑘) = 𝜕2
𝑚𝑘,𝜀𝑘

(𝜂𝑘) +
𝑄2

𝑘

2𝑚𝑘
𝜕2

𝜀𝑘,𝜀𝑘
(𝜂𝑘) (A.15)

𝜕2
𝑚𝑘,𝑄𝑘

(𝒮𝑘) (𝑊𝑘) =
𝑄𝑘

𝑚2
𝑘

𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

− 𝑄𝑘

𝑚𝑘

(︂
𝜕2

𝑚𝑘,𝜀𝑘
(𝜂𝑘) +

𝑄2
𝑘

2𝑚𝑘
𝜕2

𝜀𝑘,𝜀𝑘
(𝜂𝑘)

)︂
(A.16)

𝜕2
ℰ𝑘,ℰ𝑘

(𝒮𝑘) (𝑊𝑘) = 𝜕2
𝜀𝑘,𝜀𝑘

(𝜂𝑘) (A.17)

𝜕2
ℰ𝑘,𝑄𝑘

(𝒮𝑘) (𝑊𝑘) = −𝑄𝑘

𝑚𝑘
𝜕2

𝜀𝑘,𝜀𝑘
(𝜂𝑘) (A.18)

𝜕2
𝑄𝑘,𝑄𝑘

(𝒮𝑘) (𝑊𝑘) = − 1
𝑚𝑘

𝜕𝜀𝑘
(𝜂𝑘)|𝛼𝑘,𝑚𝑘

+
𝑄2

𝑘

𝑚2
𝑘

𝜕2
𝜀𝑘,𝜀𝑘

(𝜂𝑘) . (A.19)



380 O. HURISSE

Once the derivatives of the phasic entropies 𝒮𝑘 have been written, it is easy to get the derivatives of the mixture
entropy 𝒮 thanks to the definition (3.34) for 𝒮.
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