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VARIOUS CHOICES OF SOURCE TERMS FOR A CLASS OF TWO-FLUID
TWO-VELOCITY MODELS

OLIVIER HURISSE*

Abstract. The source terms of the Baer—Nunziato model involve highly non-linear return to equi-
librium terms. In order to perform numerical simulations of realistic situations, accounting for this
relaxation effects is mandatory. Unfortunately, with the classical forms retained for these source terms
in the literature, building efficient, robust and accurate numerical schemes is a tricky task. In this
paper, we propose different non-classical forms for these source terms. As for the classical ones, they
all agree with the second law of thermodynamics and they are thus associated with a growth of an
entropy. The great advantage of some of these new forms of source terms is that they are more linear
with respect to the conservative variables. Consequently, this allows to propose more robust, efficient
and accurate numerical schemes, in particular when considering fractional step approaches for which
source terms and convection terms are solved separately.
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1. INTRODUCTION

We consider here the class of the so-called Baer—Nunziato model [1]. In these two-fluid models, each fluid
is described by its own pressure, temperature and velocity. The physical coupling of the two fluids is ensured
by several ingredients. Firstly, the phasic variables (pressure, temperature and velocity) are supplemented by
a fraction. This variable is either a statistical void fraction (see [13,22] for instance) or a volume fraction (see
[1] for instance), depending on the modeling processes used to build the model, and it describes the proportion
of each phase at a given point in space and at a given time. Secondly, several convective terms involving the
fraction appear in the set of partial derivative equations. These terms account for effects that can be seen as
interfacial forces due to the space variations of the fraction. They are expressed as non-conservative terms in
the momentum equations and in the energy equations of each phase. The modeling of these terms has been
widely studied for instance in [5,7,11,12,14, 18,21, 22, 25]. Lastly, some source terms are defined in order to
account for all the relaxation processes between the phasic quantities: drag force, mass transfer, heat exchange
and pressure relaxation. The definition of these source terms relies on the second law of thermodynamics and
it thus requires a concave entropy for the mixture of the two-fluids.
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These two-fluid models have been used for several years in order to perform numerical simulations of unsteady
two-phase flows involving heat ant mass transfer [3,9,16,17,22]. The numerical schemes used for this kind of
simulations are very often based on fractional step approaches [28] that first account for the convective part
of the model and then take into account the source terms. Several efficient and robust numerical schemes have
been proposed for the numerical discretization of the convective part, see [4,8,24,26,27] among many others.
The second step of these approaches then deals with the numerical computation of the source terms, which is
associated with complex non-linear ordinary time-derivative equation (ODE) systems. Due to the form of the
classical source terms [1,5,12], these ODE systems are highly non-linear, even when dealing with very simple
equations of state. Moreover, since the relaxation effects may be very stiff, the numerical schemes have to be
both accurate and robust. In the numerical schemes proposed in the literature, the four different relaxation
effects (for the velocities, the pressures, the temperatures and the Gibbs free enthalpies) are treated separately
[6,15,16,22,23]. This strategy has two drawbacks. Firstly, the different effects are numerically decoupled which
may lead to predictions with a low accuracy for simulation on coarse meshes. Secondly, the numerical approx-
imation of each relaxation effect is associated with one non-linear ODE system. Hence four non-linear ODE
systems have to be solved which is CPU consuming. In the sequel, we therefore propose non-classical forms for
these source terms that are more easy to account for in a numerical point of view.

The model and the classical source terms are recalled respectively in Sections 2 and 4. The non-classical source
terms are directly inspired from the thermodynamical source terms that are classically used in two-phase flow
homogeneous models, for which it is assumed that both fluids have the same velocity. For the latter, the source
terms are often more linear and they can be discretized using very simple and efficient schemes as proposed in
[19,20]. All the source terms of the sequel are built in order to fulfill the second law of thermodynamics, and
several concave entropies are thus defined in Section 3. Four different set of closures for the source terms are
proposed in Section 5 on the basis of these different entropies. The first set of closure laws and the second set
of closure laws (resp. in Sect. 5.1 and in Sect. 5.2) are presented for the sake of completeness, but they do not
seem to be of great interest in a practical point of view for numerical simulations. On the contrary, the third
set of closure laws (Sect. 5.3) and the forth set of closure laws (Sect. 5.4) can provide a way to build robust and
efficient simulation tools for two-fluid two-velocity models.

2. A TWO-FLUID TWO-VELOCITY MODEL

The two-phase flow model considered here belongs to the so-called class of Baer-Nunziato model [1]. Each
phase, labeled by an under-script k = {l, g}, is described by its own specific volume 7, € R}, specific internal
energy e € RS and velocity Uy € R; and one Equation of State (EoS) is defined for each fluid in terms of the
specific entropy si:

(Thyex) € RF x R« (11, ex) = sp(Tk, ex)-

We assume the following properties for the specific entropy sj.
Definition 2.1. The specific entropy s:

— belongs to C? (R} x RS, R);

— is strictly concave with respect to (1x, ex) € RY x Rf;

— is such that its derivative with respect to the specific internal energy, (sx)
Rj, (Sk)&k > 0.

is positive: V(7x, er) € Rf x

ek’

The following notations are introduced for each phase: the density pp = 1/7%, the total specific energy
Er=e,+U ,? /2, and (7, ex) — Pi(7k, ex) the thermodynamical pressure that will be defined more precisely in
the following. The void fractions ay, € R fulfill the constraint o, + o = 1, the partial mass my, of the phase k
is denoted by my = agpg, the internal energy per unit of volume e of phase k is denoted by ¢, = myeg, and

the total energy per unit of volume & is:
2
&k =cr+ &7
ka
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where Qi = mUj is the momentum of phase k and Uy its velocity.
The variable of description of the flow is Xy = (ay, 74, €4, Uy, 1, €1, U;) and the complete set of equations
that rules the time and space evolution of the variables X; is:

6,5 (Oé + VI ( ) = Sl g

9 (agpg) + Oz (agpgUg) = Sa g

O (agpgUy) + 0y (agng2 + agPy) — P10, (og) = S 4

Ot (agpgEg) + 0y (agUg(pgEg + Py)) + Proy (o) = Sug (2.1)
O (qupr) + O (OélplUl) = Sa2.

O (cuptUi) + 0y (upUE + auPy) — Pr8y, (i) = S3

O (upiEr) + On (uUy(pi By + Py)) + Proy (o) = Say.

In system of equations (2.1) several terms still need to be closed in terms of the variable X;. In this section,
we focus on the thermodynamical closure for the pressure P, and of the temperature Tj; and we recall some
classical closure relations for the velocity V; and the pressure term P;. The modeling choices for the source terms,
Sik, 1 =1{1,2,3,4}, k = {l, g}, which are the aim of the present work, are discussed in detail in Sections 4 and 5.
We only mention that, for the sake of simplicity, we assume here that they correspond to mass, momentum,
and energy exchanges between the two phases. Even if the external exchanges between the two-phase mixture
and its surroundings can be taken into account, it is out of the scope of the present work. Hence, for an isolated
system, the mass of the mixture ayp; + agpy, the momentum of the mixture aypU; + aypyU, and the total
energy of the mixture a;p;F; + agpeFy must not be modified by these internal exchanges. As a consequence,
and adding the constraint oy + oy = 1, the source terms have to fulfill the relations:

Vi = {27374}7 Si,l + Si,g =0. (22)

Let us now consider regular solutions of system (2.1). The specific entropy s is a regular function of 7 and
ek, see Definition 2.1, so that we have:

(O (sk) + UrOy (k) = (sk) ., (O¢ () + U0z (k) + (5k) ,, (O (€x) + UrOy (ex)) - (2.3)

Then, thanks to the third property of Definition 2.1 for the specific entropy sy, we have (sx) ., > 0 and equation
(2.3) can be turned to:
-1

((Sk)’e,)il Dy i(sk) = Dri(ex) + ((Sk),ek) (8k) 7y, Dre,t(Th)s (2.4)

where the operator Dy ;(-) corresponds to the total derivative': Dy ;(-) = 8 (+) + U0y (-). It is assumed that
the classical Gibbs relation holds for each pure phase, that is we have the following relation between the
thermodynamical pressure Py, the thermodynamical temperature Ty, and the total derivative of s, 74 and ey:

Tka_’t(Sk) = Dk,t(ek) + Pka’t(Tk). (25)

By identifying the different terms of equations (2.4) and (2.5), we get the thermodynamical definitions of the
temperature:

-1
Ty, = ((Sk)@k) , (2.6)
and of the pressure

Py = ((Sk),ek)il (s%) . = Tk (5k) 7, » (2.7)

IThe total derivative gathers the contribution of local derivative of the quantity d; (-) and of the convective derivative Uydy (-),
it corresponds to the derivative along a streamline.
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inside each pure phase. The pressure law (7g, ex) — Pr(7k, ex) and the temperature law (73, ex) — Ty (7x, ex) of
each phase are thus directly obtained from the specific entropy (7%, ex) — Sk (7k, €x)-
The mass equations (i.e. the second equation and the fifth equation) of (2.1) can be written:

my (0¢ (1) + U0z (1)) — arOx (Ug) + (VI — Uk)0x (k) = Stk — TkS2 - (2.8)

Furthermore, by combining the momentum equations (i.e. the third equation and the sixth equation) and the
mass equations, we obtain from the total energy equations (i.e. the forth equation and the seventh equation)
the following equation for the specific internal energy of phase k:

mi (01 (ex) + UrOx (ex))+ e Pe0y (Uy)+ Pr(Ui—V1)0y (i) = —PrS1— (ex + UZ/2) S2.o—UrSs e +S1k. (2.9)

Then, using equations (2.8) and (2.9), one can easily write from (2.3) the following equation for the specific
entropy:

mi (0 (s1) + Urds (51)) = ((58) 5, = Pi(51) ., ) s (U)
(U = VD) (50, = Pr (50 ) O ()
+ ((8) 0, = Pr (0).0,) Stk (2.10)
(= k (58) = (0 +UE/2) (30),., ) S

— Uk (sk) o, S3.k
+ (Sk),ek S47k'
Thanks to the definitions of the pressure P, (2.7) and of the temperature T) (2.6), equation (2.10) can be
written in conservative form:
(U = Vi)(Px — Pr)
Ty
— — UR/2 Uk

(P — Pr) 1
- - — — 2.11
+ T Stk + T Sk T, Sz + T, Sa ks (2.11)

Oy (mksk) + Oy (mkUksk) = Oy (Ozk)

where pui = er + 7, Px — sxT) is the Gibbs enthalpy of phase k. This equation for the entropy will be useful in
Section 4 in order to define admissible source terms S;  for the model.

We recall now some classical results for the convective part of the model associated with system of equations
(2.1). It can be noted that, as it has been done above for the specific entropy, an equation for the pressure
(Tk, €er) — Pr(Tk,ex) can be obtained by using equations (2.8) and (2.9). When the source terms are omitted,
Sk =0, the equation for the pressure reads:

(Ux — V1)
my,

3y (Py) + Updy (Py) + puC20, (Uy,) — ((Pk)mv s (Pk)yek) 8, (ax) = 0, (2.12)

where the sound speed (73, e) — Ck(7k, ex) for phase k has been introduced:
2 =t (Pe (P, — (P, ) - (2.13)

Thanks to the definitions of the pressure Py, (2.7) and of the temperature T}, (2.6), relation (2.13) can also be
written:

C? 1
Tlﬂk';? =—(-1,P) sy (Pk) : (2.14)

In relation (2.14), the matrix s} stands for the Hessian matrix of the phasic entropy (7, ex) — sk (7%, ex), which
is defined since s, belongs to C? (R} x Rf) (see Def. 2.1). The following proposition then holds.
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Proposition 2.2. Under the assumptions of Definition 2.1, we have: ¥(7g, ex) € RF x RS, Ck(7x,exr) € R .

Proof. Thanks to the properties of the specific entropy sy (see Def. 2.1), Ty, > 0 and —s}, is symmetric definite
strictly positive. Hence, equation (2.14) gives C,f > 0 for all (1, ex) € R x R}, and thus Cj, is a positive real
quantity. O

Let us introduce now the classical choice proposed in [11] for the velocity V; which reads:
Vi = BU + (1 - B)U,, (2.15)
and for the pressure Pj :

P (1 =B)((s1) -,) +6((s4) -)) (1 —B)B/T, + BP,/T, (2.16)
T A=B)((s0)) +B((sg) )~ (1=B)/Ti+B/T, '

where the parameter 3 has three possible forms:

— 8=0or 8 =1, which corresponds to the classical Baer-Nunziato model [1];
—or B =my/(m +my).
These different choices for § have been studied with the help of numerical simulations in [14, 23].
With the help of the closure laws (2.6), (2.7), (2.15), (2.16), the convective part of system (2.1) (i.e. with
Si.k = 0) is closed and several properties can be exhibited.

Proposition 2.3. With the velocity Vi defined by (2.15) and the pressure Pr defined by (2.16):

— (hyperbolicity) system (2.1) possesses seven real eigenvalues Vi, Uy, Uy — Ci, k = {1,2} and the associated
eigenvectors form a basis of R7, provided that resonance does not occur:

(Ue = Vi)* # CF, k= {1,2};

— the field oy is associated with the eigenvalue Vi which is a linearly degenerate field;
— system (2.1) admits a symmetric form.

Proof. The proof of the items of Proposition 2.3 is based on the study of the eigenstructure of the convective
part of system (2.1). For the first item and the second item the detailed proof can be found for instance in [11].
The third item has been shown in [7]. O

Remark 2.4. It should be noted that a; = 0 or my = 0 corresponds to single phase situations that can not
be handled properly through the set of PDE’s (2.1). Indeed, for the single phase situations system of equations
(2.1) does not allow to define uniquely all the quantities. We thus consider that these situations are out of the
scope of the two-phase flow model considered here.

The convective part has been closed thanks to relations (2.6), (2.7), (2.15), (2.16). The remaining of the paper
is dedicated to the closure relations for the source terms S, x, @ = {1,2,3,4}, k = {l, g}. For that purpose, we
first define in Section 3 several concave entropies for the mixture. These entropies will be used in Sections 4 and 5
in order to define sources terms that ensure an entropy inequality.

3. DEFINITION OF SOME ENTROPIES

In order to propose some closure laws for the source terms S; , ¢ = {1,2,3,4}, k = {l, g}, we proceed here
following a classical approach, see [6,7,11,12,22] among many other references: admissible forms for the source
terms must agree with the second law of thermodynamics associated with a concave mixture entropy. For that
purpose, several entropies can be considered and in this section some of them are investigated. In Section 3.1
we focus on mixture entropies that only account for the thermodynamical aspects of the model, that is they
only depend on the thermodynamical quantities and not on the momentums. Whereas in Section 3.2, entropies
for the whole model are considered.
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3.1. Definition of thermodynamical entropies for the mixture

Let us define the thermodynamical mixture entropy 7 as the weighted average of the phasic specific entropy:

HTI — R
M\ Zo o mgsy (S22 ) s (2,2 ) (3.1)
where Zy = (ag,my, &4, 1,my,€;) is a vector of variables belonging to the set: H, = (R} x R} x Rj)z_ It

should be noticed that the constraint (g + «;) = 1 on the fraction is not yet accounted for in definition of the
entropy 7 (3.1). It will be introduced latter. The entropy 7 inherits from the phasic specific entropies sy, several
properties.

Proposition 3.1. Under the assumptions of Definition 2.1, the mizture entropy Zg — n(Zg) has the following
properties:

- VYaeR",VZ € Hy,n(aZ) = an(Z);
~ 1 belongs to C* (H,,R);
— Zg — n(Zgy) is concave on H,), its degeneracy manifold is:

My (Zg1) = {a (g, my,£4,0,0,0) +b (0,0,0,a;,my, 1), (a,b) € R?}. (3.2)

Proof. The first item of Proposition 3.1 is obvious, it simply arises from the definition of 7. In order to prove
the second item and the third item, let us introduce two vectors that gather the phasic quantity of Zy: Z) =
(ag, my, x); and the two phasic entropies n:

) Hn’kﬁR (33)
W\ 2o s (22, 26) ) :

mk’mk

where H, ;, = R x R x Rf. It follows from these definitions that the mixture entropy can be written using a
separation of variables:

ng X H777 — R
" (<ngzl) ’—’lﬁg(zg) +771(Zz)> : (3.4)

As a consequence, since the phasic entropy (71, ex) — si(7k, €x) belongs to C? (R} x R, R) and since my > 0,
the phasic entropy Zj — ny(Zj) defined by (3.3) belongs to C? (H,, j,R). Thanks to the separation of variables
(3.4) for n, one easily obtains the second item of Proposition 3.1. In order to prove the concavity of 7, we
compute the Hessian matrix for each phasic entropy 7. We first begin by computing the first derivatives of 7y:

Q. €k
Oa, (77k)|mk,gk (Zk) = Or, (Sk) (mk, mk) (3.5)
_ X k) %% X k) _ Ek Xk
O (), (21) = s <mk’ mk) my On (51) <mk7 mk) my, Oer (51) (mk’ mk) (3.6)

Q.  Eg

Oey (1) e (Z) = Do (58) ( ) ~ (3.7)

mk7mk
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Then the second derivatives are computed and we find:

O (00) = 702, (1) (3.8)
2, s (1) = —%’%aik,m (s1) — mf";%a? (s1) (3.9)
O () = 02, (51 (3.10)
ey (1) = 20, o, (51 (3.11)
02, ey (1) = —;—%azk,ek (s%) — %a (s1) (3.12)
P 1) = - (ﬁ; m) g (313)

In the second derivative term (3.13), s}’ stands for the Hessian matrix of the phasic entropy (74, ex) — sk (7%, €x).
It is worth noting that thanks to the strict concavity of sy on Hy g, 02, .. (m) < 0on Hy ;. As a consequence,

the function: N
R —R , (3.14)
my, — Nk (g, M, €x)

is strictly concave on R;. With the second derivatives (3.8)-(3.13), the Hessian matrix 7} of Z — ni(Z) can
be explicitly written. In particular, we have for any vector (xy, yx, 2x) € R3:

T T~ Yk
(ThsYrs2zi) e - | Uk | = (xk — Yok, 2 — yk%) sy T ) (3.15)
20 k k 2k~ Yk,

Then thanks to the variable separation (3.4) for 7, one can obtain from the Hessian matrix n” of Zy — n(Zg)
and for any X = (x,,Y,, 29, T1, Y1, 21) € RE:

X xT =% ok o) g [ FE T Yy 3.16
n =226 \ Pk = Yk 2k = Yk | Sk e — Y | (3.16)
my

Since the phasic entropies s; are concave, we can conclude that
X xT < 0, (3.17)

and hence that Zy — 1n(Zy) is concave but not strictly concave. Indeed, the degeneracy manifold M,,(Zy;) of
entropy 1 at a point Z, € H,, can be found as the set of vectors that are such that

X-n-xT=o.
Due to the strict concavity of sj, one can obtain from relation (3.16):
MTI(Zgl) = {a’ (Otg, Mg, Eg, 07 07 O) +b (07 07 07 ay, my, 51)7 (a7 b) € Rz}

Since ay, > 0, my > 0 and e, > 0, the degeneracy manifold M,,(Zy;) is a vector subspace of dimension 2 of RS.
This ends the proof of Proposition 3.1. (]

From the proof of Proposition 3.1, one can get an interesting auxillary result for the entropy my — 1, 1 (my)
defined by (3.14). This result will be used in Section 5.4. The properties of the entropy s lead to the following
proposition.
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Proposition 3.2. The function my — 0y, (my) defined for given oy, € Rf and e, € R} by:

Rf —R
m,k - * ) 3.18
.k (mk’—>77k(04k7mk75k)> (3.18)

belongs to C? (R}, R) and it is strictly concave on R} .

Proof. Since the entropy 7 belongs to C? (RS x R, R), my — 1 x(my) obviously belongs to C% (R, R).
Thanks to equation (3.13), the second derivative of my, — 7, 1 (my) reads:

2

X

2 2 2

" _ 1 ap  Ej 7 m
(i) = 7 (25, ) s | (3.19)

my

Since the phasic entropies sy are strictly concave, we can conclude that:
Vmy € RY, 0, x(mx) < 0.
This ends the proof of Proposition 3.2. ]

We define now the entropy 7 that is the restriction of 1 on ﬁl,,,o, a subset of H:

s (Hno— R 3.20
" (Zngﬂ(ZgZ)) (320)

The domain ﬁn,o is the subset of H,, that corresponds to a given sum for the fractions ay + oy = o, for the
partial masses my +m; = mg and for the total energies £, + & = &:

Hyo={Zg € Hy; ag+ =0, mg+my=mg, E,+E =&} . (3.21)

It can easily be shown that this domain flmo is a bounded convex subset of (R*)5. With this restriction of the
domain of definition, the entropy 7 has the following property.

Theorem 3.3. The entropy Zg — 1(Z4) defined by (3.20) and (3.21) is strictly concave on IA-L],O, except at
the points Zy for which there exists k € R} such that:

K Qg =
K Mg =my
Iigg:gl.

In such situations, the degeneracy manifold of Zg +— 1(Z4) is the sub-space of RS:
Mn(Zgl) n ﬁn,O = {(040, mo, o, 0,0, 0) +b (—Oll, —my, =&, oy, my, 5[), be R} . (322)

Proof. From Proposition 3.1, we can deduce that Zy +— 7(Zy) is concave on ﬁn,o C H,,. In order to exhibit
the form (3.22) of the manifold, let us define a point which belongs to the degeneracy manifold of 77 at point
Zg defined by (3.2) and to H,o:

Zg = (aga my, Eg, My, &) € Mn(Zgl) N ﬁn,0~
By definition of M,,(Zy;) and ﬁn,m there exist (a,b) € R? such that:
og +ap =aog +boy = ag

mg +my = amg +bm; = mg
(‘:g—i—gl :aé'g—i—b& =&.
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These equations lead to the system:

(a—Dag+(b—-1)a =0
(a—1)mg+ (b—1)m; =0 (3.23)
(a—1)& +(b—-1)& =0.

If at least two among the three equations of system (3.23) are linearly independent, there exists a unique
solution (a,b) to system (3.23): @ = b = 1. Hence, in such a situation, the intersection of the degeneracy
manifold M, (Z,;) with the domain H, ¢ is restricted to a single point:

My (Zg) N Hyo={Zy}.

The entropy Zg — 7(Z,) is then strictly concave. On the contrary, when the three equations of (3.23) are
equivalent, the solution (a,b) is not unique. This situation occurs when there exists x € R} such that:

K ag =0
K mg =my (3.24)
K 59 = gl,

and system (3.23) leads to the relation:
a=14(1-"b)k.

In such a situation, the entropy Zg; — 7(Z;) is not strictly concave and its degeneracy manifold is the sub-space
of RS:
Mn(Zgl) N ﬁn,o = {(QO; mo, 807 0,0, 0) +0b (_ah —my, _gla Qay, my, gl)? be Rj} .

This ends the proof of Theorem 3.3. O

The entropy Zg; — 1(Zy) is thus not strictly concave. Nonetheless, under additional assumptions on the pha-
sic entropies sy, a stronger result can be stated. This result is given formally in Corollary 3.4. With Theorem 3.3,
it represents a key point in the non-classical formulation of the source terms of Section 5.

Corollary 3.4. If we assume that the two phasic entropies (Tx,ex) — sk(Tk, ex) are such that for all (1,¢€) €
R} x RS, we have:

si(t,e) # sq(7,€) or O (s1),, (7.€) # Or, (39)\% (r.€) or O (1), (1.€) # Oe, (sg)m (r,e),  (3.25)
then the mizture entropy Zg — 1(Zg) admits a unique mazimum on its domain of definition PNLLO,

Proof. In order to prove Corollary 3.4, the results of Theorem 3.3 and some elements of its proof are used. From
the latter, we know that 7 is concave on the bounded convex set H, . But 7 is not strictly concave and its

maximum may a priori be reached for several points in ﬁn,o- Since 7 belongs to C? (ﬁn,R) (see Prop. 3.1),
the set of these points,
O = { Zy € Hyo:¥Zg € Hyo, 7 (Z4) 2 (Za) }

is an open bounded convex subset of fIn,O (which is also an open bounded convex set). From (3.20) and (3.21),
we know that the entropy 7 is defined as the restriction of the entropy 1 to the domain H,, with the three linear
constraints:

Gl(Zgl) =ag+a —1=0,

GQ(Zgl) =My +m; —mg = 0, (326)

Gg(Zgl) = Sg + & —& =0,
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whose gradients with respect to Zg are independent and read:

Gl ( 707 1707O)T7
2,,Ga = (0,1,0,0,1,0), (3.27)
vZ Gs = (0,0,1,0,0,1)T

Therefore, there exists three Lagrange multipliers a;, az and a3 such that for a maximizer Zg of 1 we have:
Vz,1(Zg) = a1V z,,G1(Zg) + a2V z,,G2(Zg1) + a3V z,,G3(Zg1),

and thus the first order conditions for the existence of the maximum Z,; are:

ag (Tﬂ( 1) =a = O, (1) (Zgl)v
3mg () (Zy) = az = O, () (Zg). (3.28)
e, (1) (Zg1) = a3 = 0¢ () (Zg1)-

Relations (3.28) can also be written in terms of the phasic entropies si, the phasic specific volumes 7, and the
phasic specific energies ey:

Or (s1) ¢, (1, €1) = Or, (39) ., (Tg: €9),
e, (Sl)m (11, €1) = O, (59)|Tg (7g:€4),
si(1i,e1) — 7O, (Sl)m (11, €1) — €10y, (Sl)|el (T, €1) = Sg(fqaeg) - Taeg (59)|Tg (Tgaeg) - egafg (39)\60 (Tg’eg)-
(3.29)
Moreover, if the maximizer Z, belongs to the degeneracy manifold of 7 condition (3.24) holds. When aj, # 0
and my # 0, this condition can be expressed in terms of the densities pr = my/ax and the internal energies
[ €l/mlt

Koy =q K ag=aq
K Qgpg = Qqpj = pg=p . (3.30)
R Qgpg€qg = Q1€ €g = €]

Then, if we introduce in relations (3.29) the equalities 7 = 7, = 7, and e = ¢; = e, arising from (3.30), we get

the relations:

87'1 (Sl)|el (T7 6) = 67'9 (Sg)|eg (T’ 6),

Oe, (81) |7, (T,€) = Oe, (sq),,, (T:6€), (3.31)

Sl(Ta 6) = 38y (7—7 6).
Hence, if the phasic entropies are chosen so that condition (3.25) holds, relations (3.31) cannot be fulfilled. In
other words, when the first derivatives of 7 vanish at a given point, the latter does not belong to the degeneracy
manifold. This means that even if the entropy 7 is not strictly concave, it possesses a unique maximum on H, g.

In order to obtain this result, we have assumed that ap # 0 and my # 0. This is the case thanks to the

definition of H, for which single phase situations have been excluded, see also the remark at the end of Section 2.
Finally, if single-phase flows situations do not occur, the entropy 7 has a unique maximum on ﬁn,0~ This ends
the proof of Corollary 3.4. O

Remark 3.5. It should be noticed that condition (3.25) on the phasic entropies is not too restrictive. In
practice, in order to enforce the system to avoid single-phase flow situations, the entropies could be chosen so
that:

Vmy > 0,Ver > 0, mksk<ak Ek) — —00,

mr Mg ) ar—0*t
6] e

Yoy > 0, Ver >0, mysg < k k > — —0Q, (3.32)
mk; mi mp—0t

ak 5k
Vai > 0,Ymy > 0, mysg — —00.
mk myg ) ep—0t
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The first and third conditions of (3.32) are classical, but in general the second one is not fulfilled (for instance
for perfect gas EOS). There is indeed no physical reason to prevent a phase to vanish when mass transfer is
accounted for. Vanishing phases treatment is a tricky problem for two-fluid models.

3.2. Definition of entropies for the complete model

Let us introduce the vectors of conservative variables Wy, = (ag, my, Ek, Qr) € Hs , with the domain H, 5, =
(Hpx x R) and Wy = (g, mg, Eg, Qq, i, my, &1, Q1) € Hg with the domain Hy = (H, 4 x R x H,; x R). We
define the following entropies for the variables W, and Wy;:

Hyp — R
Sk : ( Q3 )) ) (3.33)

Wi = i (ak7mk75k ~ oy

and

H;, - R
: ; . .34
Sat <ng '—>5g(04g,mg75g,@g)+51(Oél,m175h@z)> (3:34)

The entropy Sy is thus the sum of the phasic entropies Sj and it accounts for the whole set of the conservative
variables Wy, of system (2.1).

Proposition 3.6. The mizture entropy Wy — S(Wy;) has the following properties.

- Va € RF,YW € Hs,S(aW) = aS(W);
— 8§ belongs to C? (Hg, R);
- Wa — S(Wy) is concave on H,, its degeneracy manifold is:

MS(ng) = {a’ (agamgagngg7O7070a0) + b (07070705alaml7517Ql)? (a7b) € RQ} . (335)

Proof. We proceed here using a separation of variables as in the proof of Proposition 3.1. The first and second
properties are directly inherited from the properties of the phasic entropies 7. Let us focus on the third
property. For that purpose, we remark that for all (wy,zk,yk, 2k) € R* we can obtain for S/, the Hessian
matrix of Wy — Si(Wy), the relation:

Wi Wk
1" Tk | _ i Qk " z
(Wis Ty Yr» 21) - Sy - ue | T (wkaxk7ka+yk_zkm) M- Q2 F 0
2k ; * Thgmz Yk = Fmy
(et =)
-~ 7 9, (nk?)\ak,mk' (3.36)

mp

For the sake of readability, the details of the derivatives are reported in Appendix A. Thanks to the third item
of Definition 2.1 and to relation (3.7), the second term on the right hand side of relation (3.36) is negative.
Moreover, the property of concavity of n; reported in Proposition 3.1 ensures that the first term on the right
hand side of relation (3.36) is also negative. Hence,

Wk
4 Tk

(w]wmkaykazk) eR ) (wk7xkaykazk) : S];/ : Yk S 0)
Zk

which means that the phasic entropy Wy — Si(W}) is concave on Hj . Thanks to the separation of variables
in the definition of S, it is easily obtained that for Y = (wy, 24, yg, 29, Wi, 21, Y1, 21) € R® the Hessian matrix S”
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of the entropy Wy, — S(Wy,) fulfills the relation:

2 Wk

Q Qk
y-§yr=>" (wk,xkﬂianngrykam M- 0 ¥ o
k k k T ez + Y — 2t

2
xk%’; — 2k

-y (3%(77:@)%% : (3.37)
k Mk

All the terms on the right hand side of relation (3.37) are negative, we can thus conclude that Wy — S(Wy)
is concave on Hy. Moreover, the degeneracy manifold My(W,;) of S at a point Wy, € H, can be obtained as
the set of vectors ) such that: YV -S” - YT = 0. Since all the terms on the right hand side of relation (3.37) are
negative, this is equivalent to:

Qg Qq Q7 Q M £ Q &
wg7xg>x92mg +yg - ngigawlaxhlem% +Zl/l - zlﬁl € n Qg,Mg,Cq — ngaabmla L™ 2m;

Qg _

Tgm, — 9 =

and { 0! _

By using substitutions, this set of eight linear equations leads to:

MS(ng) = {Cl (Oég,mg,gg,Qg,0,0,0,0) + b (Oa070707al7mla5lan)a (avb) € R2}

The degeneracy manifold Mg(W,;) is thus a subspace of dimension 2 of R®. This ends the proof of
Proposition 3.6. O

All the first and second derivatives of the entropy Sy are reported in Appendix A. The second derivative of
Sk with respect to the mass my, is given by equation (A.14). Thanks to the properties of the entropies 7 the
following proposition can be stated.

Proposition 3.7. The function my — Sy, k(my) defined for given oy, € RY, & € RY and Qi € R by:

Rf - R
Sk (mk — Sk<ak7mk»gkan)> ’ (3:38)

belongs to C? (R}, R) and it is strictly concave on R} .

Proof. Since the entropy nx belongs to C? (H,, x, R), my — Sy x(my) obviously belongs to C? (R, R). From
the Appendix A, the second derivative of my, +— Sy, k(my) is given by equation (A.14). We then have:

: : O (M) O o (1) 1
S __Qy (1, &) | G GO e |- 3.39
m,k(mk) m3 Yek (nk)\ock,mk + 2my, arznk,ek (nk) afk’ak nk) QQT: ( )
Thanks to equation (3.7) and to the property of sj (see Def. 2.1), we have 9., (k) 4, m, = 1/Tk > 0, and

therefore the first term on the right hand side of relation (3.39) is non-positive. In the other hand, Z, — n(Z)
is concave on H), j, hence the function which for a given ay, € R} is defined by (myg,e) — ng(ag, my, €) is also
concave. As a consequence, the matrix in the second term on the right hand side of equation (3.39) is symmetric
definite negative. This allows to conclude that:

Ymy, € Rj, ;:L’k(mk) <0.

This ends the proof of Proposition 3.7. O
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The entropy Wy — S(Wy;) is concave on H, but it is not strictly concave since its degeneracy manifold
Mg (Wy) is a vector subspace of dimension 2 of R®. We define now the entropy S that is the restriction of S

on Hj g, a subset of Hy:

S ﬁ — R
S : 5,0 . 3.40
(Wgz - S(Wgo) (3.40)

The domain ﬁw is the subset of Hy that corresponds to a given sum for the fractions oy + oy = g, for the
partial masses my + my = my, for the total energies £, 4+ & = & and for the momentum Q4 + Q; = Qo:

ﬁs,O = {ng S Hs; Qg + a; = «ay, mgy + m; = my, gg +gl = 807 Qg +Ql = QO} ) (341)

It can easily be shown that this domain IA{T&O is a convex subset of ((R*)? x R)2. With this restriction of the

domain of definition, the entropy S has the following property.

Theorem 3.8. The entropy Wy — g(ng) defined by (3.40) and (3.41) is strictly concave on ﬁs,o, except at
the points W for which there exists k € R} such that:

K og =
K Mg =1y
K& =&

K Qg = Q.

In such situations, the degeneracy manifold of Wy — §(ng) is the sub-space of R8:
MS(ng) N ﬁs,O = {(QO; myo, 507 Q07 Oa Oa 0) O) + b (—Oél, —my, _gla _Qla ap,mp, gla Ql)a b S R} : (342)

Proof. From Proposition 3.6, we can deduce that Wy — S (Wyi) is concave on fNIs’O C H,. In order to exhibit
the form of the degeneracy manifold (3.42), let us choose a point which belongs to the degeneracy maniflod of
S and to Hjo:

ng = (Oég, Mg, 5_!]7 an Qp,mi, gl; Ql) S ﬁs,o
By definition of Mg(Wy;) and ITIS,O, there exist (a,b) € R? such that:

og +ap = aog +boy = g
mg +my = amg + bm; = mg
Eg+ & =aly+bE =&
Qg + Qi = aly + bQ = my.

This system of equations leads to the system:
(3.43)

If at least two among the four equations of system (3.43) are linearly independent, there exists a unique solution
(a,b) to system (3.43): @ = b = 1. Hence, in such a situation, the intersection of the degeneracy manifold

Mg(Wy;) with the domain Hj  is restricted to a single point:

Ms(Wy) N Hyp = {Wy}.
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The entropy Wy — S (Wgi) is then strictly concave. On the contrary, when the four equations of (3.43) are
equivalent, the solution (a,b) is not unique. This situation occurs when there exists £ € R} such that:

Koy =
K mg =my
K& =& (3.44)
K Qg = Q.

and system (3.43) leads to the relation:
a=14(1->b)k.

In such a situation, the entropy Wy +— §(ng) is not strictly concave and its degeneracy manifold is the
sub-space of R®:

MS(qu) N ﬁS,O = {(a07m0a50a QOa 07 07070) +b (_ala —my, _8l) _Ql7al7mlagl7 Ql)a be R:—} .
This ends the proof of Theorem 3.8. O

4. CLASSICAL CLOSURE LAWS FOR THE SOURCE TERMS

In this section, we recall the classical approach used to build some admissible closure laws for the source
terms. The latter is widely used and several references deal with such source terms, see [1,5,6,12] among many
others. The source terms S;x, @ = {1,2,3,4}, k = {l, g}, are first decomposed into elementary effects. The
momentum exchange source term S3 j, is split into a contribution due to the drag force D, ; and a contribution
due to the mass exchange Sj j:

Sse = Dy +V(Wy)So i,

with D, g = —D, ;. In a similar way, its is assumed that the energy exchange source term Sy gathers a “pure”
heat exchange term W, a contribution due the exchange of energy associated with the drag force and the heat
exchange due to the mass transfer:

Sup =V +V(Wy)Dyy + HWy)Sok,

with W, = —W¥;. The velocity terms (W) — V(ng) and (Wy;) — V(Wy;), and the enthalpy term (Wy;) —
H(Wy;) have to be closed. These choices are in agreement with conservation constraint (2.2). Equation (2.11)
for the specific entropy can then be written:

(U = Vi)(Px — Pr)
Tk

(Pr. — Pr)
T, Stk + T

Oy (mksk) + Oy (mkUksk) =

0y (o)

—uk+H - U,V —U2/2 V-U
i k k/ Soge + - k
k

1
+ Dy + =V (4.1)
Tk

By summing the two equations (4.1), the terms of equation (4.1) that contain the derivative with respect to the
fraction o, vanish and we obtain:

(Pg_PZ) Sl
(1_/8)Tg+6n 9
(Nz py  H—UV —U3/2 H—Ulf/—Uzz/?)
+ - Sa.g

O (mgsg + mysy) + 0y (mgUysg +myUss;) =

T, T, Ty T

Vv-u, V-U 11
- D — ) T, 4.2
+< Ty T ) "’g+(Tg Tz) ! “2)
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The classical approach then considers the thermodynamical entropy n = (mgsy + mys;) and the associated
entropy-flux F,, = (n,Uy + mU;) (see definitions (3.1) and (3.3)). Since the entropy 7 is concave (see Sect. 3),
and in order to agree with the second law of thermodynamics, the admissible closure laws for the source terms
S1,9, 52,9, Du,g and ¥, must fulfill the entropy inequality:

Oy (n) + 0y (Fy) > 0.

The source terms S1,4, S2,4, Du,y and ¥, are thus not defined in a unique manner, but a classical choice is to
choose closures that ensure the positivity of each terms in the right hand side of (4.2):

PP 81,9 >0

(1-B)T4+BT,
H-U,V-U2/2 H-UV-U2/2
(-t T TR ) 5, 2
(T%, %> v, > 0.
A simple manner is then to write the following closure laws:
— Ky (W,)(P, - P)
. H-U,V-U?2/2 H-UV-U?
= Ko(Wy) ll g + ng /2 _H Ul% % /2> o
4.4
u,g — KS(ng) V;lUl>
Yy = Ka(Wy1) %g - *) :

where the functions Wy, — K;(Wy), i = {1,2,3,4}, can depend on the variable Wy but they have to be
positive:
Vi={1,2,3,4}, YWy, K;(Wg) > 0.

It should be noted that no constraint arises on the terms V, V and H. Nevertheless, the closure V = (Uy+Uy)/2
allows to retrieve a classical admissible form for the drag force based on the relative velocity:

Doy = K3(Wy) (21T + 21Tz) (U = U,) = K3.,(Wy)(U, — U,).

It can also be noted that with the choice V =V = (U, + U;)/2 and H = U,U,; /2, the mass transfer term S ,

can be simplified in:
M Hyg
So. 4 = Ko(W — =2
2.9 = Ko (W) <Tz Tg)

Thus the mass transfer does not depend on the velocities of the phases, and is only related to the difference
between the chemical potentials py/T). Obviously, other modeling choices can be considered.

5. NON-CLASSICAL CLOSURE LAWS FOR THE SOURCE TERMS

The set of closure laws proposed in this section are based on the approach mainly used in the modeling of
multiphase flows using single-velocity models, as in [2,10,19,20] for instance. In Section 3, the different entropies
have been studied regardless of the set of partial derivative equations (2.1) that defines the paths followed by the
different variables. In order to reintroduce this information, let us first write system (2.1) in slightly different but
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equivalent form. The time derivative of the fraction ay in the energy equation is replaced by a space derivative
by using first equation of (2.1). This leads to the system of equations:

Ot (ag) + Vi0z (ag) = 57

O (agpg) + 0z (agpgUg) = S5 .g

i (agpgUq) + O (agng + oy P, ) — P10, (ag) = S3,

t (O‘gpg 9) + 0z (agUy(pgEg + Py)) — PrVi0; (o) = Sl/l,g (5.1)
(
(
(

D

Oy (aupr) + Ox (qupUp) = S
O CklplUl) + 0y (qulUlz + OélPl> — P;o, (Cvl) = Sé,l
O OélPlEl) + Oy (OélUl(plEl + Pl)) — P;Vi0, (Oél) = Szll,l'

The source terms are for k = {l, g} : Si,k = Si.k, 95 = S2.k, S:/’,,k = S3.1, but with S} ; = Sy — PrS1x. We
then also get the property conservation for an isolated system:

Vi={1,2,3,4}, Si; +S;,=0. (5.2)

All the properties that have been recalled in Section 2 for system (2.1) hold for system (5.1). In fact, system
(5.1) is just a more convenient form of the two-fluid model when considering the source terms of the present
section. Equation (2.11) on the phasic entropy s becomes for system (5.1):

(U = Vi)(Px — Pr)

O (mpsk) + 0y (mpUssy) = T

aw (Ock)

—mx — UE/2
Tk

Py / / Uk / 1 /
+ Tk. Sl,k‘ + SQ,k Tk, SS,k: + Tk S4,k:' (53)

The equation for the mixture entropy S is then obtained by summing equations (5.3) and by applying the
constraints oy + ag = 1 and Sil + S;)g = 0, which are associated with the domain H; (. If the closures for V;
(2.15) and Py (2.16) are retained, we get:

Qg . 9 Py R\ —pg —UJ/2  —p —U2/2 ,
a(s)+a< s) (Tg ) Stat T 7 Sh,

U U\ 11\ .,
(G5 %3

Let us now express the derivative of Wy — S( W) with respect to ay on Hso, where the fraction ag in
definition (3.41) is equal to 1:

aag (S) ‘al+ag:1)mk7gk7gk = 8049 (Sq) |mg)QJ7£ + aag (Sl) ‘al+ag:1,mz,Qz751
= Oa, (Sg) lmy. 04,8, T Oa, (1) lay+ay=1 Oay (S1) lmi,00.0 (5.5)
= aOég (89) |mgagg7‘€g - aaz (Sl) |m1,,Q1,,51
P, P
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The last formula of the set of relations above is obtained thanks to relation (A.5) of appendix A. In a similar
way, one can easily show that:

] E——— L R (56)
mg mi+mg=mo,ak,Qk,Er Tg T‘l
o~ Uu U
8Qg (S> |Q1+Qg:Q07ak,mk7£k = Tl - Tj (57)
~ 1 1
6&; (8) |€z+5g:50,ak,mk,Qk = ?g - ﬁ (5'8)

Equation (5.4) can thus be written

o (8) +o. (Ql S+ Qgs ) = 0, (S) larta,=tmeanen Sty + Oy (8) i tmymmo.cn 006 Sh

+ 0o, (5) |01+ Qy=00,ak,mx & S, 1 O, (5) 6146, =E0r00m1, 0x Sag- (5:9)

This form of equation (5.9) is the key point in the definition of the source terms proposed in the following.
Indeed, the concavity of the entropy can be used to propose source terms that are non-classical for a two-fluid
two-velocity approach, but that are classical for homogeneous one-velocity models.

5.1. First set of closure laws

Thanks to the form of equation (5.9), a first form for the source terms S,’C,g, k = 1..4 is proposed:

Qg Qg g _5

= Do g S4 g
AWgq) AW’

Sl 9 A(ng)

s, , S5

= A(Wl) (5.10)

where (W) — A(W,) is a positive function that represents a time-scale; and where the quantities W, =
(ay, My, Qq, &) still have to be defined. With these choices, equation (5.9) reads:

8t( )+6 (QlSlJr Qgs) A(VlVgl)VWgSg’ (W, — W,), (5.11)

where the entropy gg,O is introduced on the basis of the mixture entropy S. It is defined on
10, 1[x]0, mo[xRx]0, & [C Hs,g, with mg = my + my and E = & + &, by:

5 . (Wg €10, 1[x]0, mo[xRx]0, £[— R)

Se0 | g, = S(Wy, Wy — W,) (5.12)

In definition (5.12), the liquid variable W; is deduced from the gas variables W, by a conservation relation
W+ Wy, = Wy = (1,my, Qo,&). Hence (Wy, Wy — W) belongs to Hgo It can easily be shown that Sgo
inherits the concavity property from S.

Proposition 5.1. The entropy W, — Ng’o(Wg) defined by (5.12) is concave on ]0,1[x]0, mo[xRx]0, .
Proof. Let us choose W, and W, in 0, 1[x]0, mo[xRx]0, &, and let a be in [0, 1]. We then get:
Sg0 (aWy + (1 —a)W)) =S (aWy + (1 — a)W,, Wy — aW, — (1 — a)W})
=S (aWy + (1 — )W}, a(Wy — W,) — (1 — a) (Wo — W})).
It immediately arises from the concavity property of S that:

Sgo0(@Wy + (1= a)W)) < aS(Wy, Wo — W) + (1 — a)S(W,, Wo — W.) = aSy.0(Wy) + (1 — a)Sg,0(W));

and thus that "S‘Vg}o is concave on ]0, 1[x]0, mo[xRx]0, &y O
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Thanks to Proposition 5.1, we obtain from (5.11) that

0 (8) vou (S D2, ) » Sl ) -

Hence, in order to ensure the growth of the entropL§ associated to the entropy-flux (Q;/miS; + Qg/mySy), it
could be sufficient to choose an equilibrium state W, €]0, 1[x]0, mo[xRx]0, & | such that:

YW, €]0,1[x]0, mo[xRx]0,&[,  S,0(W,) > Sy0(Wy). (5.14)

Unfortunately, if the entropy W, — S, Q(W ) is concave with respect to Wy, the momentum component of W,
can not be signed and the domain of definition ]0, 1[x]0, mo[xRx]0, & [C Hs g of Wy — §g70(Wg) is thus not
bounded. As a consequence, the state Wg may itself be not bounded because of the momentum component. An
other treatment of the momentum is then proposed in the next section.

5.2. Second set of closure laws

We propose here to treat the momentum component Q, of the variable W, differently in order to work with
an entropy whose domain of definition is bounded. For this purpose we define the variable Y, = (g, mg,&y) €
10, 1[x]0, mo[x]0, & [, with mg = m; + mgy and & = & + &4, and we consider the following source terms:

ay — My — u U, E,— €&
F /- Qg 0197 g’ :mg 7ng7 S = K'(W <g>7 1o g g, 5.15
BT A(W) 29 A(Wer) 9 s(W) T, BT A(Wy) (5.15)
where K35(Wy;) is a positive function. Equation 5.9 then becomes:
S Q Qq 1 / Uy Ui ?
Oy (8) + 0 ( S+ gS A(W )Vy Sgy() (Yg —Yg)+K3(ng) Tg — T (516)

where the entropy §g7y7o is defined for Yy, = (ag, myq, &) €0, 1[x]0,mo[x]0, & | for fixed phasic momentums:

. Y, €]0,1[x]0, mo[x]0, &[— R
( S 4,10,

Sgv0: Wy = (ag,mg, Qg,0,Eg) = S(Wy, W (5:17)

where Wy = (1,mo, Qg0 + Qi,0,&0). In the definition of Sg v,0, the momentums Qj o can take any bounded

value since only the derivatives with respect to Y, play a role. The entropy Sg v,o inherits from the entropy Sg 0
the following property.

Proposition 5.2. The entropy Yy, — Sg v,0(Yy) defined by (5.17) is concave on |0,1[x]0,mo[x]0, E|.
Proof. The proof mimics the proof of Proposition 5.1. (]

Using the concavity of Y, — gg’y’o(Yg), on can obtain the following inequality from equation (5.16):

Qe D Syxv0(Yy) = Syvo(Yy) 1 (U, )
o, (s)+a< mgsg>> m frwal\ o) (5.18)

On the contrary to the entropy gg,o, the entropy gg,;@o is concave on a bounded domain. Hence, if we exclude
the single-phase flow situations, there exists at least one equilibrium state Y, € [0, 1] x [0, mg] x [0, & ] such that

VY, € [0,1] x [0,mq] x [0, &), Syv0(Yy) = Syvo(Yy). (5.19)
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We can thus conclude that the choice of source terms (5.15) leads to an entropy inequality for the mixture
entropy S when associated with the entropy-flux (Q;/mS; + Q4/mySy):

8, (5) + 0, (Ql Si+ = QQ > > 0. (5.20)

Since gg,y’o is not strictly concave, the equilibrium state ?g may be non-unique, but it exists and it is defined
as a state such that:

Syvo (¥y) = Syvol¥y)) - (5.21)

max (
YQE[Ovl] X [Ovmo] X [0780]1Qg=Qg,O,Ql=Ql,O

Nevertheless, this proposition (5.15) leads to a drag force Sg’ o that is more than a mechanical effect. Indeed,
the classical form for the drag force as introduced in Section 4 by Definition 4.4 tends to decrease the relative
velocity independently of the thermodynamical quantities. This is not the case with the source terms Si/‘a,g
as proposed above. This is due to the fact that the source terms (5.15) have not been split into elementary
contributions, as in Section 4. In fact we have:

U, U, 1 1 1
= —— | =—=(U,-U, Ul =—= |-
(z-%)-gw-w+a(z-1)
In the third proposition, we introduce a splitting of the source terms that mimics the splitting presented in
Section 4.

5.3. Third set of closure laws

We modify S3 , and S} , while keeping S , and S5 , unchanged. These new choices mimic the splitting of

the source terms S3 4, and Sy 4 defined in Section 4. We then introduce two velocities V'’ and an energy E , that
will be defined in the following. Moreover, the momentums are not treated together with the thermodynamical
variables. We thus focus in this section on the entropy 1 and not on the entropy S as in the two previous
sections. The entropy 74,0 is then defined for the variable Z, = (ag, mg,€4) on the basis of the mixture entropy
n defined in Section 3.1 by definition (3.1):

- Zg €]0,1[x]0,mo[%]0,e0[— ]R)
: o : 5.22
19,0 (Zg = U(Zya Zo— Zg) ( )
with Zy = (o, mo, €0) = (1, my +my,e; + €4). We can then state the following property.

Proposition 5.3. The entropy Z; — 14.0(Zy) defined by (5.22) is concave on 0,1[x]0,mo[x]0,e0[ and it
possesses a unique mazimum Z, = (ag,mg,eg) on 10, 1[x]0, mo[x]0, €o].

Proof. The proof of the concavity of 74 is based on Theorem 3.3 and its proof mimics the proof of Proposi-
tion 5.1. The uniqueness of the maximum of 7, ¢ is inherited from the Corollary 3.4 of the entropy 7. Obviously,
as for Corollary 3.4, we exclude the single-phase flow situations. O

We introduce now the following splitting of the source terms:

Slvg = i‘}w%’
%o = TS (5.23)

S35 =Dug+V'Ssy,,

Siy= w5+ VDug+ E'Sh,,
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where the drag force D, 4 and the velocity V have been defined in Section 4 (through Def. 4.4). The equilibrium
state Z, = (ag,, My, &4) corresponds to the maximum of the entropy 7,0 on 0, 1[x]0, mo[x]0, go[. Its is unique
and it is defined as a state such that:

Tg.0(Zy) = (719.0(Zg)) - (5.24)

max
Z4€]0,1[x]0,mo[x]0,e0]

The function Wy, — A(Wy;) must be positive. When using relations (A.1)—(A.4), equation (5.4) can be written:

3 Q 9y 1 DU — u U, —(1 1
S0, (28 +248 )= ——vV Zo—Z+ (2L -2 v (=——=))D
at( ) O (mlSl mgS‘q> AWg) 2,790 (Zg 9) (Zl I, I, T 9

uz/2 U2 ~, (U U ~ /(1 1
gl Y N . ] = — !
+< 7, T +V (Tz Tg) +FE (Tg Tz) S 4- (5.25)

In order to get a entropy inequality, the three terms on the right hand side of (5.25) have to be positive. The
first terms is indeed positive since 74,0 is concave and thanks to the definition (5.24) of Z,. For the second and

third terms, we adopt the same choices than for the classical closures of Section 4: V=V = (U, +Uy)/2 and
E’ =UU,/2. The third term of the right hand side of the entropy equation (5.25) then vanishes, and we get:

0 (8) + 0. (281+ 28,) = 552,750 (Zy - Z9) + (3 + 7 ) (Ui = Ug)Duy. (5.26)

As for the drag force term of Section 4, we choose:

1 1

Du,g = Kg(ng) <271g + Tﬂ

) (U1~ Uy) = Ku (W)U — Uy).

where Wy, — K3, (W) is a positive function. With all these choices, we recover the entropy inequality (5.20)
for the mixture entropy S when associated with the entropy-flux (Q;/m;S; + Qg/mgSy).

The sources terms proposed in this section involve two parameters, whereas the classical closures involve four
parameters. The first parameter is the parameter K3, which rules the kinematic equilibrium, and which is the
same than in Section 4. Concerning the return to the thermodynamical equilibrium, the source terms of the
present section only involve one time-scale A whereas the classical source terms are ruled by three independent
parameters. But the great advantage of the present source terms is that they are far more easy to integrate
when dealing with numerical simulations. Indeed, using a fractional step approach for the discretization of the
whole model, the thermodynamical relaxation towards the equilibrium can be done using simple and robust
schemes, see [19,20] for instance.

5.4. Fourth set of closure laws

We focus now on the entropy my — 1, k(my) introduced in Section 3.1. On the contrary to the three previous
sections, we use here system (2.1) as for the classical source terms of Section 4. Thanks to Proposition 3.7, we
know that my — 7, k(my) is strictly concave. We then define the mixture entropy 7,0 as:

mgy €]0,mg[— R >
m.0 - : . 5.27
0 <m9 = Nt (o — Myg) + Nim,g (M) (5:27)

For the entropy 7,0, the fractions and the energies are fixed quantities. Then, Proposition 3.2 leads to the
following property for the mixture entropy mg — 1y,,0(1my).

Proposition 5.4. The entropy mg — nm0(mg) belongs to C% (]0,mo[,R) and it is strictly concave on ]0, mq|.
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Proof. The entropy mg +— 0m,o directly inherits its regularity property from the phasic entropies 7, (see
Prop. 3.2). In order to prove the concavity results, formula (A.11) and (A.14) from appendix A are used. We
then get the first derivative mg — 0, o:

T
771/71,0<mg) = ngvl,g(mg) - n;@,l(mo - mg) = Tl - ?Za (528)

and the second derivative of my — 1, 0;

a§ a?
" 1 ol e " mZ 1 af e? " (mo Lm )2
= =+ (=2 9. . l L . . e
nm,o(mg) T myg (mg’ mg) Sg igq + mo—myg ((mo—mg)27 (mo—mg)2) S e? : (529)
m2 (mo—myg)?

Since my €]0, mo[ and since the phasic entropies sy, are strictly concave, we finally get that,
v7719 E]O,mo[, T];‘:‘L,O(mf]) < 07
which prove that my +— 7, 0 is strictly concave on ]0, mg[. This ends the proof of Proposition 5.4. O

In order to take advantage of this property, we define the source terms:

S1,9 = Ki(Wy)(Py — P),

Mg —My

SZ,g = Am,(ng)a
SS,g = Du,g + VSé,g?
54,9 = \I/g =+ VD%g + ﬁsé,g’

(5.30)

where Wy, — A, (Wy) is a positive function. For these source terms, only the mass transfer term S; , differs
from the classical source terms of Section 4. The equilibrium mass M, involved in the mass transfer term S, ;4 is
defined as the point that maximizes the entropy 7,0, for given fractions a;, and for given internal energies ¢y:

Nm,o(Mg) = max  (1m,0(mg)). (5.31)

mg€]0,mol

As in previous sections, we assume that single-phase flows are not reached. Therefore the maximum for 7, ¢ can
not be reached for m, — 0% or my, — mg . If we still retain the closures V =V = (U;+U,)/2 and H = U,;U, /2,
the entropy equation (4.2) then becomes:

S Qg Lo\ B-P) b by
at(5)+a’”<ml8l+mg39>_(1—ﬁ)Tg+ﬁTl St 7~ 1) S

1 1 1 1
— +—)) W, -U,) D, 2w, 5.32
(gmram) G-V Dot (5 -5) W 63

If the derivative of 1, o given by (5.28) is introduced in (5.32), we get:

S ron (L QgL 1 v I
Oy (S) + 0y (ml S+ mg5g> = Am(ng)vmgnm,O (mg mg) + (1 — ﬁ)Tg BT Sl,g

1 1 11
— -U,) D —— ) T, .
+ (2Tl + 2Tg> (U —U,) Dug + (Tg Tl) g (5.33)

The first term of he right hand side of (5.33) is non-negative thanks to the concavity of 7, ¢ and thanks to the
definition of 7i,. Therefore, in order to get an entropy inequality from (5.33), we can then choose ¥, and D,, 4
as in Section 4:

1 1
Dy = KSyu(ng)(Ul - Ug)a and VU, = K4(ng) (T - Tl) :
g
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We recover the entropy inequality (5.20) for the mixture entropy S when associated with the entropy-flux
(Qi/muS; + Qq/mySy).

As in the previous section, this fourth set of closure laws presents an advantage for the numerical simulation
because it allows to simplify the numerical integration of the mass transfer using fractional step approach. But,
on the contrary to the source terms of the previous section, we keep here four parameters for the definition of
relaxation paths: K1(Wy;), K3..(Wgi), Ka(Wy) and Ay, (Wr).

Remark 5.5. The same idea can be applied to system (5.1), and it would lead to a different source term for
the fraction:

Slyg = Kl(ng)(Pg/Tg - P/T))

nevertheless, in this fourth set of closure laws we intend to keep a formulation close to the classical source terms
of Section 4, that is why we have preferred system (2.1).

6. CONCLUSION

Four non-classical sets of source terms have been proposed for the two-fluid two-pressure Baer—Nunziato type
model. It should be quoted that the approach proposed in the sequel is not restricted to two-velocity models.
It can also be applied to a wide range of multi-fluid multi-velocity models, and even to homogeneous models.

The set of closure laws of Section 5.3 is very similar to the form of the source terms of the homogeneous models.
From a numerical point of view, efficient numerical schemes for instance based on those proposed in [19,20] can
thus be used. This kind of source terms and the associated numerical schemes have several advantages:

— the pressure, temperature and chemical potential relaxation effects are solved simultaneously, whatever the

stiffness of the relaxation effects may be;

the numerical integration relies on an almost exact integration, which provides a good accuracy and robust-

ness of the scheme;

— there is no restriction on the complexity of the form of the EOS used for each phase;

— this scheme is rather efficient in terms of CPU-time because it only requires to solve one non-linear equation
(to compute the equilibrium state).

However, when turning to the physical point of view, the pressure, temperature and chemical potential relax-
ations are driven by a unique time-scale, which may sometimes be too restrictive. The set of closure laws of
Section 5.4 overtakes this limitation, since each relaxation effect is associated with its own time-scale. Never-
theless, this choice also presents drawbacks:

— in order to discretize the pressure, temperature and chemical potential relaxation in a coupled manner a
complex numerical scheme is required;

— moreover, if the three relaxation effects are solved separately, each one is associated with at least one
computation of the solution of a non-linear equation, which may be CPU-consuming for complex EOS.

Hence, the set of closure laws of Sections 5.3 and 5.4 have both drawbacks and advantages. The choice between
these two sets of source terms should be driven by the physical configuration to be simulated and by the
informations that have to be collected with the numerical simulations.

APPENDIX A. DERIVATIVE TERMS OF THE MIXTURE ENTROPY S

We report here the derivatives of the entropy W, — S(Wy;) defined in Section 3 by (3.34). The first
derivatives of S are obviously the basis of the computation of the second derivatives, but they also play an
important role in the definition of admissible source terms in Section 5. In the following, for the sake of readability
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2
Nk (ak, my, & — 2%’1) will be replaced by 7, (we omit the arguments). The first derivative terms for the phasic

entropies Sy read:

80% (Sk)|mk78k,Qk (Wk) = 8Olk (Uk)|mk,5k (A~1)
O (S0)0s 21 (W) = B ()0, + fﬂi%aek )y (A2)
e, (k) agmu,0r Wi) = Ocp (T6) 0y s (A.3)
00, (W) (W) = =220, () - (A1)

If we introduce the first derivatives of 7 with respect to ag, my and e, as expressed by equations (3.5)—(3.7),
we have:

Ban (S)my 100 (Wi) = M (A.5)
z?n’“ — w7k, ex)

O (S0 00 (W) = s (A.6)

De (S1) . (Wi) = ﬁ (A7)

Dy (1) oy e (Wi) = 251 (A.8)

mi T Tk, ex)’

where 7, = a/my and e, = E/my — Qi/(Qm%) It can be noticed that the entropy Wy — Si(W}) can thus
be written:

Sk, my, &, Qr) = e Oay (Sk) iy .00 (Wr) T Oy (Sk) 0y .00 (Wh)

+ gk 8gk (Sk)|ak,mk7Qk (Wk) + Qk a@k (Sk)\(xk,mk,gk (Wk) (Ag)
In order to compute the second derivatives of Sy, we use equations (A.1)—(A.4) and we get:
agck,ak (Sk) ( ) aik (657 (nk) (A.lO)
Q2
Oavme (S) (W) = 05y () + ﬁaﬁk,ek (k) (A.11)
O (Sk) (W) = 05, ., (k) (A12)
92, qu (Sk) (Wi) = —%5§k,ak (1) (A.13)
e () (0 5280 (4
9?2 Sp) (W) = —=2kg, 1, <k ). Mk, Mk "k Sk . 2 A4
e (50 03 = =80 00w+ (o ) (™ o om0 )\ 2 A
2 Qk g2
amk Ek (Sk) ( ) amk €k (nk) + maskﬁk (nk) (A’15)
Q Q
0 80) (1) = 220, (), = 22 (O ) + 3202, () (A16)
k
0., (Sk) (Wy) = 02, ., (k) (A.17)
Q
0%, qy (Sk) (W) = —m*:@i@k (k) (A.18)

1 2
2 _ k 92
an,Qk- (Sk) (Wk) - _mikaﬁk (nk)|ak,mk + miiaEk,Ek (77k) . (Alg)
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Once the derivatives of the phasic entropies S have been written, it is easy to get the derivatives of the mixture
entropy S thanks to the definition (3.34) for S.
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