Thermal flows in fractured porous media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 789-805

We consider the thermal flow problem occuring in a fractured porous medium. The incompressible filtration flow in the porous matrix and the viscous flow in the fractures obey the Boussinesq approximation of Darcy-Forchheimer law and respectively, the Stokes system. They are coupled by the Saffman’s variant of the Beavers–Joseph condition. Existence and uniqueness properties are presented. The use of the energy norm in describing the Darcy-Forchheimer law proves to be appropriate. In the ε-periodic framework, we find the two-scale homogenized system which governs their asymptotic behaviours when ε → 0 and the Forchheimer effect vanishes. The limit problem is mainly a model of two coupled thermal flows, neither of them being incompressible.

DOI : 10.1051/m2an/2020087
Classification : 35B27, 76M50, 76Rxx, 74F10, 74Q05
Keywords: Fractured porous media, $$-domes, two-scale homogenized system, Darcy-Forchheimer law, Boussinesq approximation, Beavers–Joseph condition
@article{M2AN_2021__55_3_789_0,
     author = {Gruais, Isabelle and Poli\v{s}evski, Dan},
     title = {Thermal flows in fractured porous media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {789--805},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2020087},
     mrnumber = {4253166},
     zbl = {1487.35317},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020087/}
}
TY  - JOUR
AU  - Gruais, Isabelle
AU  - Poliševski, Dan
TI  - Thermal flows in fractured porous media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 789
EP  - 805
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020087/
DO  - 10.1051/m2an/2020087
LA  - en
ID  - M2AN_2021__55_3_789_0
ER  - 
%0 Journal Article
%A Gruais, Isabelle
%A Poliševski, Dan
%T Thermal flows in fractured porous media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 789-805
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020087/
%R 10.1051/m2an/2020087
%G en
%F M2AN_2021__55_3_789_0
Gruais, Isabelle; Poliševski, Dan. Thermal flows in fractured porous media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 789-805. doi: 10.1051/m2an/2020087

[1] G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal. 2 (1989) 203–222. | MR | Zbl | DOI

[2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | MR | Zbl | DOI

[3] G. I. Barenblatt, Y. P. Zheltov and I. N. Kochina, On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks (in Russian). Prikl. Mat. i Mekh. 24 (1960) 852–864. | Zbl

[4] G. I. Barenblatt, V. M. Entov and V. M. Ryzhik, Theory of Fluid Flows Through Natural Rocks. Kluwer Acad. Pub., Dordrecht (1990). | Zbl | DOI

[5] G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197–207. | DOI

[6] D. Cioranescu and J. Saint-Jean-Paulin, Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590–607. | MR | Zbl | DOI

[7] D. Cioranescu and P. Donato, An introduction to homogenization. In: Vol. 17 of Oxford Lecture Series in Mathematics and Its Applications. Oxford Univ. Press, New York (1999). | MR | Zbl

[8] H. I. Ene and D. Poliševski, Thermal Flow in Porous Media. D. Reidel Pub. Co., Dordrecht (1987). | DOI

[9] H. I. Ene and D. Poliševski, Model of diffusion in partially fissured media. ZAMP 53 (2002) 1052–1059. | MR | Zbl

[10] P. Forchheimer, Wasserbewegung durch boden. Z. Ver. Dtsch. Ing. 45 (1901) 1782–1788.

[11] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle, Sér. Rouge Anal. Numér. 9 (1975) 41–76. | MR | Zbl | Numdam

[12] I. Gruais and D. Poliševski, Fluid flows through fractured porous media along Beavers-Joseph interfaces. J. Math. Pures Appl. 102 (2014) 482–497. | MR | Zbl | DOI

[13] I. Gruais and D. Poliševski, Heat transfer models for two-component media with interfacial jump. Appl. Anal. 96 (2017) 247–260. | MR | Zbl | DOI

[14] I. Gruais and D. Poliševski, Model of two-temperature convective transfer in porous media. Z. Angew. Math. Phys. 68 (2017) 11. | MR | Zbl | DOI

[15] W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization. Transp. Porous Med. 78 (2009) 489–508. | MR | DOI

[16] I. P. Jones, Low Reynolds number flow past a porous spherical shell. Proc Camb. Phil. Soc. 73 (1973) 231–238. | Zbl | DOI

[17] D. Kinderlehrer and G. Stampacchia, An introduction to Variational Inequalities and Their Applications. Academic Press, New-York (1980). | MR | Zbl

[18] R. Lipton and M. Avellaneda, Darcy’s law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71–79. | MR | Zbl | DOI

[19] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. | MR | Zbl

[20] V. P. Mikhailov, Partial Differential Equations. Mir Publishers, Moscow (1978). | MR

[21] M. Muskat, The Flow of Homogeneous Fluids through Porous Media. Edwards, MI (1946).

[22] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | MR | Zbl | DOI

[23] D. Poliševski, On the homogenization of fluid flows through periodic media. Rend. Sem. Mat. Univers. Politecn. Torino 45 (1987) 129–139. | MR | Zbl

[24] D. Poliševski, Basic homogenization results for a biconnected ε -periodic structure. Appl. Anal. 82 (2003) 301–309. | MR | Zbl | DOI

[25] D. Poliševski, The regularized diffusion in partially fractured porous media. In: Vol. 2 of Current Topics in Continuum Mechanics. Ed. Academiei, Bucharest (2003). | MR

[26] P. G. Saffman, On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 50 (1971) 93–101. | Zbl | DOI

[27] R. E. Showalter and N. J. Walkington, Micro-structure models of diffusion in fissured media. J. Math. Anal. Appl. 155 (1991) 1–20. | MR | Zbl | DOI

[28] J. Simon, Régularité de la solution d’une équation non linéaire dans N . Journées d’Analyse non linéaire. Proceedings, Besançon, France, 1977. In: Vol. 665 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1978) 205–227. | MR | Zbl | DOI

[29] S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Por. Med. 1 (1986) 3–25. | DOI

[30] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems. Springer-Verlag, New York (1986). | MR | Zbl

Cité par Sources :