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THERMAL FLOWS IN FRACTURED POROUS MEDIA

Isabelle Gruais1,* and Dan Polǐsevski2

Abstract. We consider the thermal flow problem occuring in a fractured porous medium. The incom-
pressible filtration flow in the porous matrix and the viscous flow in the fractures obey the Boussinesq
approximation of Darcy-Forchheimer law and respectively, the Stokes system. They are coupled by the
Saffman’s variant of the Beavers–Joseph condition. Existence and uniqueness properties are presented.
The use of the energy norm in describing the Darcy-Forchheimer law proves to be appropriate. In
the 𝜀-periodic framework, we find the two-scale homogenized system which governs their asymptotic
behaviours when 𝜀 → 0 and the Forchheimer effect vanishes. The limit problem is mainly a model of
two coupled thermal flows, neither of them being incompressible.
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1. Introduction

Among the issues raised by the heat and mass transfer in fractured porous media, the requirement for further
construction and characterization of macroscopic models is of special interest. It is a difficult task because
the two components have highly constrasting behaviours. The models of flows through fractured porous media
(see [3, 4, 9, 25, 27]) are usually obtained by asymptotic methods, from the alteration of a homogeneous porous
medium by a distribution of microscopic fractures/fissures. In this context, the periodic homogenization, based
on the assumption of the 𝜀-periodicity of the structure properties, is an important modelling tool for a fractured
porous media process. Although it looks like an idealistic assumption, it usually authorizes a rigorous approach,
yielding many of the properties which must be taken into account at macroscopic level.

Here, we consider that the heat and mass transfer takes place in a periodically structured domain consisting of
two interwoven regions, separated by an interface. As the process at the microscopic scale takes place under the
assumption of 𝜀-periodicity, the study of its asymptotic behaviour (when 𝜀→ 0) is amenable to the procedures of
the homogenization theory. Regarding our subject, the homogenization of phenomena in fractured media could
be studied in a more realistic manner only when the non-connectedness assumption of one of the components
was dropped out (see [1, 23, 24]). We improve the properties of the 𝜀-periodic biphasic structure introduced in
[24], by attaching the so-called 𝜀-domes. They are placed in the last entire 𝜀-cells contained in the domain, near
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the boundary, and they complete the 𝜀-periodic interface such that it can be as smooth as it is needed, all the
properties of [24] remaining valid.

The first region, the only one reaching the boundary of the domain, represents a connected porous matrix,
where, disregarding its pore scale, we consider the movement of an incompressible average filtration fluid gov-
erned by the Boussinesq approximation of the Darcy-Forchheimer system. The linear Darcy’s law relating the
flow and the pressure gradient in the porous surrounding matrix relies on the assumption of laminar flow (see
[29]). Unfortunately, this assumption does not hold when high imposed pressure gradients and resistance from
fracture walls lead to reduced flow rates compared to the linear Darcy relation. The standard extended model
involves a Forchheimer correction term (see [10]) which introduces a non-linear coupling between pressure gra-
dient and flow rates. This Forchheimer term was proved to be valid at higher Reynolds number by Muskat (see
[21]). Exterior forces are present.

The second region, representing the fractures, which are not necessarily connected, is saturated by an incom-
pressible viscous fluid governed by the Boussinesq approximation of the Stokes system.

These two flows are coupled on the interface by the Saffman’s variant [26] of the Beavers–Joseph condition
(see [5, 16]) which was confirmed by Jäger and Mikelić [15] as the limit of a homogenization process. Besides
the continuity of the normal component of the velocity, it imposes the proportionality of the tangential velocity
with the tangential component of the viscous stress on the fluid-side of the interface.

The tensors of thermal diffusion of the two phases are 𝜀-periodic and not necessarily equal. At the interface,
the the temperature and the heat flux are continuous. Heat sources are present in each component and a
temperature distribution is imposed on the boundary of the domain.

We prove the existence and uniqueness properties of the velocity, pressure and temperature distribution,
solutions of the corresponding thermal flow boundary problem. An 𝐿∞-estimate of the temperature, uniform
with respect to 𝜀, is also presented (Thm. 3.1). The way of describing the Darcy-Forchheimer law by powers
of the energy norm of the inverse permeability tensor proves to be appropriate. These results have an intrinsic
interest, apart from the related homogenization result.

As the Forchheimer effect vanishes with the small period of the distribution shrinking to zero, we study
the asymptotic behaviour of the flow when the Rayleigh number is of unity order, the permeability of the
porous blocks of unity order and the Beavers–Joseph transfer coefficient of 𝜀-order, balancing the measure of
the interface. Our main result (Thm. 4.5) presents the two-scale system verified by the limits of the 𝜀-solutions,
the local problems and the effective coefficients of the leading homogenized system. Regarding the case of the
non-vanishing Forchheimer effect, the expression of its limit seems to us untraceable by the procedures of the
two-scale convergence theory.

The paper is organized as follows.
In Section 2 we present our fractured porous medium, the 𝜀-periodic structure provided with the useful

𝜀-domes. The direct form of the thermal flow problem is introduced.
In Section 3 we prove the existence and uniqueness properties. The weak solutions of our nonlinear problem

are found by means of the Browder-Minty and Schauder fixed-point theorems. The primary estimates are also
obtained.

Section 4 is devoted to the homogenization in the case when the Forchheimer effect is vanishing. We present
the a priori estimates which serve as departure point for adapting the compactness results of the two-scale
convergence theory (see [2, 19, 22]). Using the techniques of the two-scale convergence theory (see [2, 7, 22]), we
obtain the so-called two-scale homogenized problem and the solutions of the local problems which allow us to
define the effective coefficients of the homogenized system and to eliminate some of the oscillating unknowns. It
is a model of two coupled thermal flows, neither of them being incompressible. This macroscopic problem takes
a classic form in the case of non-oscillating permeability tensor.

At the end, in Appendix A, a usefull result of strict monotonicity is proved.
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Figure 1. The rhombic cell including domes (left) and the resulting modified periodic distri-
bution (right).

2. The fractured structure and the governing system

Let Ω be an open connected bounded set in R𝑁 , 𝑁 ∈ {2, 3}, a manifold of class C2 composed of a finite
number of connected components, locally located on one side of the boundary 𝜕Ω with 𝜈 its outward normal.

We describe now the geometric structure of our fractured porous medium, similar to that introduced in [14].
Let 𝐸 be the rhombic polyhedron obtained by affixing square pyramids of 1/2 height on each face of the cube

𝑌 =]− 1/2, 1/2[𝑁 , that is

𝐸 = int
(︂

Conv
(︂
𝑌 ∪

{︂
±1

2
𝑒𝑖, 𝑖 = 1, 2, . . . , 𝑁

}︂)︂)︂
, (2.1)

where 𝑒𝑖 are the unit vectors of the canonical basis in R𝑁 .
For 𝐷 ⊂⊂ 𝐸, an open set of class C2, and denoting 𝑌𝑓 := 𝑌 ∩ 𝐷 and Σ±𝑖 = {𝑦 ∈ 𝜕𝑌 : 𝑦𝑖 = ±1/2}, we

assume that for every 𝑖 ∈ {1, 2, . . . , 𝑁} it holds

𝑌 𝑓 ∩ Σ±𝑖 ⊂⊂ Σ±𝑖. (2.2)

We assume also that these intersections are reproduced identically on opposite faces of the cube 𝑌 , that is

𝑒𝑖 + 𝑌 𝑓 ∩ Σ−𝑖 = 𝑌 𝑓 ∩ Σ+𝑖, ∀𝑖 ∈ {1, 2, . . . , 𝑁}. (2.3)

For every 𝑖 ∈ {1, 2, . . . , 𝑁} we define the corresponding two opposite domes of 𝑌𝑓 by

𝐷+
𝑖 =

(︂
𝑌 +

1
2
𝑒𝑖

)︂
∩𝐷 and 𝐷−𝑖 =

(︂
𝑌 − 1

2
𝑒𝑖

)︂
∩𝐷. (2.4)

Denoting 𝑌𝑠 := 𝑌 ∖𝑌 𝑓 , we assume that the reunion in R𝑁 of all the periodic replications of 𝑌 𝑠 parts, denoted
by R𝑁

𝑠 , has a C2 boundary; R𝑁
𝑓 is similarly defined. The characteristic functions of 𝑌𝑠 and 𝑌𝑓 are denoted by

𝜒𝑠 and 𝜒𝑓 , respectively; we also assume 𝑚 := |𝑌𝑓 | ∈]0, 1[ (Fig. 1).
Without loss of the generality, we set the origin of the coordinate system in such a way that there exists

𝑟 > 0 with the property 𝐵(0, 𝑟) ⊆ R𝑁
𝑠 .

For any 𝜀 ∈]0, 1[ we denote

Z𝜀 =
{︀
𝑘 ∈ Z𝑁 : 𝜀𝑘 + 𝜀𝑌 ⊆ Ω

}︀
, (2.5)

I𝜀 = {𝑘 ∈ Z𝜀 : 𝜀𝑘 ± 𝜀𝑒𝑖 + 𝜀𝑌 ⊆ Ω, ∀𝑖 ∈ {1, 2, . . . , 𝑁}}, (2.6)

Ω�
𝜀𝑓 = ∪𝑘∈I𝜀

(𝜀𝑘 + 𝜀𝑌𝑓 ). (2.7)
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For any 𝑘 ∈ Z𝜀 ∖ I𝜀, denoting by

J±𝜀𝑘 =
{︁
𝑖 ∈ {1, 2, . . . , 𝑁},

(︁
𝜀𝑘 + 𝜀𝐷

±
𝑖

)︁
∩ Ω�

𝜀𝑓 ̸= ∅
}︁
, (2.8)

we define the 𝜀-domes which have to be attached to Ω�
𝜀𝑓 in order to regularize the interface between the free

fluid saturating the fractures and the filtration fluid saturating the porous matrix, by

𝐷𝜀𝑘 =
(︁
∪𝑖∈J+

𝜀𝑘

(︀
𝜀𝑘 + 𝜀𝐷+

𝑖

)︀)︁
∪
(︁
∪𝑖∈J−𝜀𝑘

(︀
𝜀𝑘 + 𝜀𝐷−𝑖

)︀)︁
. (2.9)

We consider that the free fluid takes place in

Ω𝜀𝑓 = int
(︀(︀
∪𝑘∈I𝜀

(︀
𝜀𝑘 + 𝜀𝑌 𝑓

)︀)︀
∪
(︀
∪𝑘∈Z𝜀∖I𝜀

𝐷𝜀𝑘

)︀)︀
. (2.10)

Consequently, the porous matrix and the interface between the two components are defined by:

Ω𝜀𝑠 = Ω ∖ Ω𝜀𝑓 , (2.11)
Γ𝜀 = 𝜕Ω𝜀𝑓 ∩ 𝜕Ω𝜀𝑠 = 𝜕Ω𝜀𝑓 . (2.12)

We assume that Ω𝜀𝑠 is connected, which means that for 𝑁 = 2 we have the classical setup with 𝑌𝑓 = 𝐷 ⊂⊂ 𝑌
and the 𝜀-domes can be considered only when 𝑁 = 3. Also, for every 𝜀 > 0, there exist 𝑘𝜀 ∈ N, 𝑘𝜀 ≥ 1, such
that

Ω𝜀𝑓 = ∪𝑘𝜀

𝑘=1Ω𝑘
𝜀𝑓 (2.13)

where every Ω𝑘
𝜀𝑓 is a connected subdomain of Ω𝜀𝑓 with dist(Ω𝑖

𝜀𝑓 ,Ω
𝑗
𝜀𝑓 ) > 0 if 𝑖 ̸= 𝑗. The characteristic functions

of Ω𝜀𝑠 and Ω𝜀𝑓 are denoted by 𝜒𝜀𝑠 and 𝜒𝜀𝑓 , respectively.
Denoting Γ𝑘

𝜀 = 𝜕Ω𝑘
𝜀𝑓 , it follows that

Γ𝜀 = ∪𝑘𝜀

𝑘=1Γ𝑘
𝜀 . (2.14)

Denoting by Γ = 𝜕𝑌𝑓 ∩ 𝜕𝑌𝑠 ⊆ 𝜕𝐷, by 𝑛 the normal on 𝜕𝐷 (inward to D) and by 𝑛𝜀 the normal on Γ𝜀

(outward to Ω𝜀𝑠), we have

𝑛𝜀(𝑥) = 𝑛(𝑥/𝜀), for any 𝑥 ∈ (𝜀𝑘 + 𝜀Γ) with 𝑘 ∈ I𝜀, (2.15)

where the Y-periodic extension of 𝑛|Γ is still denoted by 𝑛.
The class of the connections between Ω�

𝜀𝑓 and the corresponding 𝜀-domes is similar to that between 𝑌𝑓 and
its domes, that is the class of D. This is an important advantage of the structures with 𝜀-domes: the class of Γ𝜀

is given by D and by the reunion of all the 𝑌 𝑠 parts in R𝑁 , which can be assumed as smooth as it is needed.
There is also an important feature of our periodic structure, provided with 𝜀-domes. As the (𝜀𝑘 + 𝜀𝑌 )-cells
containing 𝜀-domes are of at most (4𝑁 − 2) types and the distance between Γ𝜀 and 𝜕Ω is greater than 𝜀/2, they
do not affect the results obtained for the classical 𝜀-periodic structures. The present structure preserves many
specific properties (see [6, 9, 13,14,24]).

Now we can present the thermal flow problem which corresponds to our framework. If (𝑢𝜀𝑠, 𝑝𝜀𝑠, 𝜃𝜀𝑠) and
(𝑢𝜀𝑓 , 𝑝𝜀𝑓 , 𝜃𝜀𝑓 ) stand for the velocities, pressures and temperatures associated to the corresponding phase of our
structure, then they verify the following dimensionless system:

div 𝑢𝜀𝑠 = 0 in Ω𝜀𝑠, div 𝑢𝜀𝑓 = 0 in Ω𝜀𝑓 , 𝑢𝜀𝑠 · 𝑛𝜀 = 𝑢𝜀𝑓 · 𝑛𝜀 on Γ𝜀, (2.16)

∇𝑝𝜀𝑠 + (1 + 𝑑𝜀|𝑢𝜀𝑠|𝑟−2
𝐴𝜀 )𝐴𝜀𝑢𝜀𝑠 + 𝛼𝜀𝜃

𝜀𝑠𝑔 = 0, |𝑢𝜀𝑠|𝐴𝜀 = (𝐴𝜀
𝑖𝑗𝑢

𝜀𝑠
𝑖 𝑢

𝜀𝑠
𝑗 )1/2 in Ω𝜀𝑠, (2.17)

− div Σ𝜀𝑖 + 𝛼𝜀𝜃
𝜀𝑓𝑔𝑖 = 0 in Ω𝜀𝑓 , ∀𝑖 ∈ {1, 2, . . . , 𝑁}, (2.18)

Σ𝜀𝑖
𝑗 = −𝑝𝜀𝑓𝛿𝑖𝑗 + 𝑒𝑖𝑗(𝑢𝜀𝑓 ), 𝑒𝑖𝑗(𝑢𝜀𝑓 ) =

1
2

(︃
𝜕𝑢𝜀𝑓

𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝜀𝑓

𝑗

𝜕𝑥𝑖

)︃
in Ω𝜀𝑓 , (2.19)
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𝑝𝜀𝑠𝑛𝜀
𝑖 + Σ𝜀𝑖𝑛𝜀 + 𝜀𝛽𝜀(𝑢𝜀𝑓

𝑖 − (𝑢𝜀𝑓 · 𝑛𝜀)𝑛𝜀
𝑖 ) = 0 on Γ𝜀, ∀𝑖 ∈ {1, 2, . . . , 𝑁}, (2.20)

𝑢𝜀𝑓∇𝜃𝜀𝑓 − div(𝐵𝜀𝑓∇𝜃𝜀𝑓 ) = 𝑄𝑓 in Ω𝜀𝑓 , (2.21)
𝑢𝜀𝑠∇𝜃𝜀𝑠 − div(𝐵𝜀𝑠∇𝜃𝜀𝑠) = 𝑄𝑠 in Ω𝜀𝑠, (2.22)

𝐵𝜀𝑓
𝑖𝑗

𝜕𝜃𝜀𝑓

𝜕𝑥𝑗
𝑛𝜀

𝑖 = 𝐵𝜀𝑠
𝑖𝑗

𝜕𝜃𝜀𝑠

𝜕𝑥𝑗
𝑛𝜀

𝑖 , 𝜃𝜀𝑠 = 𝜃𝜀𝑓 on Γ𝜀 (2.23)

𝑢𝜀𝑠 · 𝜈 = 0 on 𝜕Ω, 𝜈 the outward normal, (2.24)
𝜃𝜀 = 𝜏 on 𝜕Ω, (2.25)

where 𝜏 ∈ 𝐻1(Ω) ∩ 𝐿∞(Ω) has the property that ∃𝜏0 > 0 for which

|𝜏 | ≤ 𝜏0 on 𝜕Ω in the sense of 𝐻1(Ω) (see [17]). (2.26)

The symmetric tensor 𝐴𝜀 ∈ 𝐿∞(Ω)𝑁×𝑁 , which stands for the inverse of the permeability tensor, the Beavers–
Joseph coefficient 𝛽𝜀 ∈ 𝐶1(Ω) and the symmetric conductivities 𝐵𝜀𝑓 , 𝐵𝜀𝑠 ∈ 𝐿∞(Ω)𝑁×𝑁 are given with the
property that there exist 𝑏2 and 𝑏1 > 0, 𝑏1 < 𝑏2, independent of 𝜀, such that for any 𝜀 > 0 we have

|𝐴𝜀|𝐿∞(Ω) ≤ 𝑏2, |𝐵𝜀𝑠|𝐿∞(Ω) ≤ 𝑏2, |𝐵𝜀𝑓 |𝐿∞(Ω) ≤ 𝑏2, a.e. in Ω, (2.27)

𝛽𝜀 ≥ 𝑏1,
(︁
𝐴𝜀

𝑖𝑗 , 𝐵
𝜀𝑠
𝑖𝑗 , 𝐵

𝜀𝑓
𝑖𝑗

)︁
𝜉𝑖𝜉𝑗 ≥ 𝑏1 𝜉𝑖𝜉𝑖, ∀𝜉 ∈ R𝑁 , a.e. in Ω. (2.28)

The rest of the data are the Forchheimer coefficient 𝑑𝜀 > 0, the Rayleigh number 𝛼𝜀 > 0, the exterior forces
𝑔 ∈ 𝐿2(Ω)𝑁 , the heat sources 𝑄𝑓 , 𝑄𝑠 ∈ 𝐿2(Ω) and the Forchheimer exponent 𝑟 ∈ R with the property:

𝑟 > 2 if 𝑁 = 2 and 3 ≤ 𝑟 < 6 if 𝑁 = 3. (2.29)

3. Existence and estimates of the weak solutions

We present in this section the existence and uniqueness properties of the weak solutions of the convection
problem (2.16)–(2.25), together with an 𝐿∞-estimate of the temperature.

Let us introduce the following spaces:

𝐻 =
{︀
𝑣 ∈ 𝐻(div,Ω), 𝑣 ∈ 𝐿𝑟(Ω)𝑁 , 𝑣𝜈 = 0 on 𝜕Ω

}︀
, (3.1)

𝑉 = {𝑣 ∈ 𝐻, div 𝑣 = 0 in Ω} , (3.2)

𝐻𝜀 =
{︀
𝑣 ∈ 𝐻, 𝑣|Ω𝜀𝑓

∈ 𝐻1(Ω𝜀𝑓 )𝑁
}︀
, (3.3)

𝑉𝜀 = {𝑣 ∈ 𝐻𝜀, div 𝑣 = 0 in Ω} , (3.4)

𝐿2
0(Ω) =

{︂
𝑝 ∈ 𝐿2(Ω),

∫︁
Ω

𝑝 = 0
}︂
, (3.5)

where 𝑣𝜈 stands for the normal trace on 𝜕Ω.
For any 𝑣 ∈ 𝐻𝜀 we denote the normal trace on Γ𝜀 in the 𝐻(div,Ω) sense by 𝑣𝑛𝜀 and the trace on Γ𝜀 in the

𝐻1(Ω𝜀𝑓 ) sense by 𝛾𝜀𝑓𝑣. As Γ𝜀 is of class 𝐶2, let us remark that

𝑣𝑛𝜀 = (𝛾𝜀𝑓𝑣)𝑛𝜀 ∈ 𝐻1/2(Γ𝜀). (3.6)

Introducing
𝑣𝑡𝜀 := 𝛾𝜀𝑓𝑣 − (𝑣𝑛𝜀)𝑛𝜀 ∈ 𝐻1/2(Γ𝜀)𝑁 , (3.7)

we obviously have
(𝛾𝜀𝑓𝑣)2 = (𝑣𝑛𝜀)2 + (𝑣𝑡𝜀)2 a.e. on Γ𝜀. (3.8)
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We see now that 𝐻 and 𝐻𝜀 are Banach spaces, endowed with the norms:

|𝑣|𝐻 = |𝑣|𝐿𝑟(Ω) + |div 𝑣|𝐿2(Ω), (3.9)

|𝑣|𝐻𝜀
= |𝑣|𝐿𝑟(Ω𝜀𝑠) + |div 𝑣|𝐿2(Ω𝜀𝑠) + |𝑒(𝑣)|𝐿2(Ω𝜀𝑓 ) + 𝜀1/2|𝑣𝑡𝜀 |Γ𝜀

. (3.10)

Moreover, by rescaling some inequalities valid in 𝑌 , 𝐸 ∖ 𝑌 and 𝑌𝑓 , we obtain:

|𝑣|𝐿2(Ω𝜀𝑓 ) ≤ 𝐶
(︁
|𝑣|𝐿2(Ω𝜀𝑠) + 𝜀|div 𝑣|𝐿2(Ω𝜀𝑠) + 𝜀|𝑒(𝑣)|𝐿2(Ω𝜀𝑓 ) + 𝜀1/2|𝑣𝑡𝜀 |𝐿2(Γ𝜀)

)︁
, (3.11)

|𝑣|𝐻1(Ω𝜀𝑓 ) ≤ 𝐶|𝑣|𝐻𝜀
, ∀𝑣 ∈ 𝐻𝜀, (3.12)

where 𝐶 is independent of 𝜀.
Denoting 𝑇 𝜀 = 𝜃𝜀 − 𝜏 in (2.16)–(2.25), we are led to the following variational problem:
To find (𝑢𝜀, 𝑇 𝜀) ∈ 𝑉𝜀 ×𝐻1

0 (Ω) which verifies∫︁
Ω𝜀𝑠

(︀
1 + 𝑑𝜀|𝑢𝜀|𝑟−2

𝐴𝜀

)︀
𝐴𝜀𝑢𝜀𝑣 +

∫︁
Ω𝜀𝑓

𝑒𝑖𝑗(𝑢𝜀)𝑒𝑖𝑗(𝑣) + 𝜀𝛽𝜀

∫︁
Γ𝜀

𝑢𝜀
𝑡𝜀
𝑣 + 𝛼𝜀

∫︁
Ω

(𝑇 𝜀 + 𝜏)𝑔𝑣 = 0, ∀𝑣 ∈ 𝑉𝜀, (3.13)∫︁
Ω

𝐵𝜀∇𝑇 𝜀∇𝑆 +
∫︁

Ω

𝑢𝜀𝑆∇𝑇 𝜀 =
∫︁

Ω

𝑄𝑆 −
∫︁

Ω

𝑢𝜀𝑆∇𝜏 −
∫︁

Ω

𝐵𝜀∇𝜏∇𝑆, ∀𝑆 ∈ 𝐻1
0 (Ω), (3.14)

where we denoted

𝐵𝜀 =
{︂
𝐵𝜀𝑠 in Ω𝜀𝑠,
𝐵𝜀𝑓 in Ω𝜀𝑓

and 𝑄 =
{︂
𝑄𝑠 in Ω𝜀𝑠,
𝑄𝑓 in Ω𝜀𝑓 .

(3.15)

Theorem 3.1. There exists a solution of the problem (3.13) and (3.14). Any solution (𝑢𝜀, 𝑇 𝜀) of (3.13) and
(3.14) has the property that 𝑇 𝜀 ∈ 𝐿∞(Ω) and that for some 𝑐 > 0, independent of 𝜀, we have

|∇𝑇 𝜀|𝐿2(Ω) + |𝑇 𝜀 + 𝜏 |𝐿∞(Ω) ≤ 𝑐, (3.16)

|𝑢𝜀|𝐿2(Ω) + |𝑢𝜀|𝐻1(Ω𝜀𝑓 ) + 𝜀1/2|𝑢𝜀
𝑡𝜀 |𝐿2(Γ𝜀) ≤ 𝑐 𝛼𝜀, (3.17)

|𝑢𝜀|𝐿𝑟(Ω𝜀𝑠) ≤ 𝑐𝛼2/𝑟
𝜀 𝑑−1/𝑟

𝜀 . (3.18)

Proof. By splitting the system according to the two distinct types of nonlinearities involved, we expect to
complete the proof by the Schauder fixed-point theorem.

For 𝑤 ∈ 𝑉𝜀, we define 𝑇𝑤 ∈ 𝐻1
0 (Ω) to be the unique solution of the problem:∫︁

Ω

𝐵𝜀∇𝑇𝑤∇𝑆 +
∫︁

Ω

𝑤𝑆∇𝑇𝑤 =
∫︁

Ω

𝑄𝑆 −
∫︁

Ω

𝑤𝑆∇𝜏 −
∫︁

Ω

𝐵𝜀∇𝜏∇𝑆, ∀𝑆 ∈ 𝐻1
0 (Ω). (3.19)

First, let us examine the continuity of the convective term.⃒⃒⃒⃒∫︁
Ω

𝑤𝑆∇𝑇𝑤

⃒⃒⃒⃒
≤ |𝑤|𝐿𝑟(Ω)|𝑇𝑤|𝐿2𝑟/(𝑟−2)(Ω)|𝑆|𝐻1

0 (Ω). (3.20)

As 𝑟 ∈ (2,∞) if 𝑁 = 2 and 𝑟 ∈ [3, 6) if 𝑁 = 3, then by using the corresponding Sobolev inequalities we get

|𝑇𝑤|𝐿2𝑟/(𝑟−2)(Ω) ≤ 𝑐|𝑇𝑤|𝐻1
0 (Ω). (3.21)

|𝑤|𝐿𝑟(Ω𝜀𝑓 ) ≤ 𝑐|𝑤|𝐻1(Ω𝜀𝑓 ), (3.22)

which obviously imply ⃒⃒⃒⃒∫︁
Ω

𝑤𝑆∇𝑇𝑤

⃒⃒⃒⃒
≤ 𝑐|𝑤|𝐻𝜀

|𝑇𝑤|𝐻1
0 (Ω)|𝑆|𝐻1

0 (Ω). (3.23)
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Thus, using again that div 𝑤 = 0 in Ω, the existence and uniqueness results follow straightly from the Lax–
Milgram Theorem.

Moreover, acting like in [8, 14], we prove that 𝑇𝑤 ∈ 𝐿∞(Ω) and there exists 𝑐 > 0 (independent of 𝜀) such
that

|∇𝑇𝑤|𝐿2(Ω) + |𝑇𝑤 + 𝜏 |𝐿∞(Ω) ≤ 𝑐. (3.24)

Setting 𝑆 = 𝑇𝑤 in (3.19), we obtain

|∇𝑇𝑤|𝐿2(Ω) ≤ 𝑐
(︀
|𝑄|𝐿2(Ω) + |∇𝜏 |𝐿2(Ω) +

(︀
|𝑄|𝐿2(Ω) + 𝜏0

)︀
|𝑤|𝐿2(Ω)

)︀
, (3.25)

where 𝑐 > 0 is independent of 𝜀.
Now we introduce 𝐹 (𝑤) ∈ 𝑉𝜀 as the unique solution of the problem:∫︁
Ω𝜀𝑠

(︀
1 + 𝑑𝜀|𝐹 (𝑤)|𝑟−2

𝐴𝜀

)︀
𝐴𝜀𝐹 (𝑤)𝑣 +

∫︁
Ω𝜀𝑓

𝑒𝑖𝑗(𝐹 (𝑤))𝑒𝑖𝑗(𝑣) + 𝜀𝛽𝜀

∫︁
Γ𝜀

𝐹 (𝑤)𝑡𝜀𝑣 = −𝛼𝜀

∫︁
Ω

(𝑇𝑤 + 𝜏)𝑔𝑣, ∀𝑣 ∈ 𝑉𝜀.

(3.26)

The existence and the uniqueness can be proved by the Browder-Minty Theorem (see [30]) applied to the strictly
monotone map (see Cor. A.3 in the Appendices) 𝐺𝜀 : 𝑉𝜀 → 𝑉 ′𝜀 defined by

⟨𝐺𝜀𝑢, 𝑣⟩𝑉𝜀,𝑉 ′𝜀
=
∫︁

Ω𝜀𝑠

(︀
1 + 𝑑𝜀|𝑢|𝑟−2

𝐴𝜀

)︀
𝐴𝜀𝑢𝑣 +

∫︁
Ω𝜀𝑓

𝑒𝑖𝑗(𝑢)𝑒𝑖𝑗(𝑣) + 𝜀𝛽𝜀

∫︁
Γ𝜀

𝑢𝑡𝜀𝑣, (3.27)

which is also bounded and hemicontinuous. As 𝑟 ≥ 2 and as for any 𝑢 ∈ 𝐻𝜀 we have

⟨𝐺𝜀𝑢, 𝑢⟩𝑉𝜀,𝑉 ′𝜀
≥ 𝑐𝜀

(︁
|𝑢|𝑟𝐿𝑟(Ω𝜀𝑠) + |𝑒(𝑢)|2𝐿2(Ω𝜀𝑓 ) + |𝑢𝑡𝜀 |2𝐿2(Γ𝜀)

)︁
, (3.28)

for some 𝑐𝜀 > 0 independent of 𝑢, the coercivity of 𝐺𝜀 follows.
Next, we estimate the range of 𝐹 (𝑤) with respect to 𝑤 ∈ 𝑉𝜀. Setting 𝑣 = 𝐹 (𝑤) in (3.26) and calling (3.16)

we get for some 𝑐 > 0 independent of 𝜀

𝑑𝜀|𝐹 (𝑤)|𝑟𝐿𝑟(Ω𝜀𝑠) + |𝐹 (𝑤)|2𝐿2(Ω𝜀𝑠) + |𝑒(𝐹 (𝑤))|2𝐿2(Ω𝜀𝑓 ) + 𝜀|𝐹 (𝑤)𝑡𝜀
|2𝐿2(Γ𝜀) ≤ 𝑐𝛼𝜀

(︀
𝜏0 + |𝑄|𝐿2(Ω)

)︀
|𝐹 (𝑤)|𝐿2(Ω). (3.29)

Using (3.11) we finally obtain:

|𝐹 (𝑤)|𝐿2(Ω𝜀𝑠) + |𝑒(𝐹 (𝑤))|𝐿2(Ω𝜀𝑓 ) + 𝜀1/2|𝐹 (𝑤)𝑡𝜀
|𝐿2(Γ𝜀) ≤ 𝑐𝛼𝜀

(︀
𝜏0 + |𝑄|𝐿2(Ω)

)︀
, (3.30)

|𝐹 (𝑤)|𝐿𝑟(Ω𝜀𝑠) ≤ 𝑐𝛼2/𝑟
𝜀

(︀
𝜏0 + |𝑄|𝐿2(Ω)

)︀2/𝑟
𝑑−1/𝑟

𝜀 , (3.31)

that is, there exists 𝑐𝐹 > 0 independent of 𝜀 such that

|𝐹 (𝑤)|𝐻𝜀
≤ 𝑐𝐹

(︁
𝛼𝜀 + 𝛼2/𝑟

𝜀 𝑑−1/𝑟
𝜀

)︁
. (3.32)

Thus we have defined a mapping 𝑤 ∈𝑀𝜀 ↦→ 𝐹 (𝑤) ∈𝑀𝜀, where

𝑀𝜀 =
{︁
𝑣 ∈ 𝑉𝜀, |𝑣|𝐻𝜀 ≤ 𝑐𝐹

(︁
𝛼𝜀 + 𝛼2/𝑟

𝜀 𝑑−1/𝑟
𝜀

)︁}︁
. (3.33)

We check now that 𝐹 is compact. Let (𝑤𝑘)𝑘∈N be bounded in 𝑉𝜀; then, using (3.25) and (3.11), we see that
(∇𝑇𝑤𝑘

)𝑘∈N is bounded in 𝐿2(Ω). As 𝐻1
0 (Ω) is compactly included in 𝐿𝑟(Ω), we find that there exists a subse-

quence (𝑇𝑤𝑘′ )𝑘′∈N which is a Cauchy sequence in 𝐿𝑟(Ω). Using the strict monotony of 𝐺𝜀, it follows from (3.26)
that (𝐹 (𝑤𝑘′))𝑘′∈N is a Cauchy sequence in 𝑉𝜀.

We see that the Schauder fixed-point theorem can be applied. Thus we obtain an element 𝑢 ∈ 𝑉𝜀 such that
𝑢 = 𝐹 (𝑢) and obviously (𝑢, 𝑇𝑢) ∈ 𝑉𝜀 ×𝐻1

0 (Ω) is a solution of the problem (3.13) and (3.14).
The rest of the proof is straightforward. �
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Remark 3.2. Problem (3.13) and (3.14) has a unique solution only if we assume the Rayleigh number 𝛼𝜀 > 0
to be small enough.

We proceed by recovering the pressure which was hidden by the (3.13) and (3.14) formulation. Let us introduce
the spaces

𝒱(Ω𝜀ℎ) =
{︀
𝑣 ∈ 𝒟(Ω𝜀ℎ)𝑁 , div 𝑣 = 0 in Ω𝜀ℎ

}︀
, ℎ = 𝑠 or 𝑓, (3.34)

𝐿𝜀 =
{︁
𝑞 ∈ 𝐿2

0(Ω), 𝑞|Ω𝜀𝑠 ∈𝑊 1,𝑟′(Ω𝜀𝑠)
}︁
,

1
𝑟′

+
1
𝑟

= 1. (3.35)

Remark 3.3. 𝑊 1,𝑟′(Ω𝜀𝑠) ⊂⊂ 𝐿2(Ω𝜀𝑠).

Theorem 3.4. Let (𝑢𝜀, 𝑇 𝜀) ∈ 𝑉𝜀 ×𝐻1
0 (Ω)) be a solution of (3.13) and (3.14). Then there exists 𝑝𝜀 ∈ 𝐿𝜀 such

that∫︁
Ω𝜀𝑠

(︀
1 + 𝑑𝜀|𝑢𝜀|𝑟−2

𝐴𝜀

)︀
𝐴𝜀𝑢𝜀𝑣+

∫︁
Ω𝜀𝑓

𝑒𝑖𝑗(𝑢𝜀)𝑒𝑖𝑗(𝑣)+𝜀𝛽𝜀

∫︁
Γ𝜀

𝑢𝜀
𝑡𝜀
𝑣+𝛼𝜀

∫︁
Ω

(𝑇 𝜀+𝜏)𝑔𝑣 =
∫︁

Ω

𝑝𝜀div 𝑣, ∀𝑣 ∈ 𝐻𝜀. (3.36)

Moreover, there exists 𝑐 > 0 independent of 𝜀 such that

|𝑝𝜀|𝐿2(Ω) ≤ 𝑐
(︁
𝑑1/𝑟

𝜀 𝛼2/𝑟′

𝜀 +𝛼𝜀+𝛼𝜀𝛽𝜀

)︁
and |∇𝑝𝜀|𝐿𝑟′ (Ω𝜀𝑠) ≤ 𝑐

(︁
𝛼𝜀 + 𝛼2/𝑟′

𝜀 𝑑1/𝑟′

𝜀

)︁
. (3.37)

Proof. For some 𝑤 ∈ 𝒱(Ω𝜀𝑠), we set in (3.13)

𝑣 =
{︂

0 in Ω𝜀𝑓

𝑤 in Ω𝜀𝑠
. (3.38)

Applying the corresponding version of the De Rham theorem we find that ∃𝑝𝜀𝑠 ∈ 𝑊 1,𝑟′(Ω𝜀𝑠), unique up to an
additive constant, such that

−∇𝑝𝜀𝑠 =
(︀
1 + 𝑑𝜀|𝑢𝜀𝑠|𝑟−2

𝐴𝜀

)︀
𝐴𝜀𝑢𝜀𝑠 + 𝛼𝜀(𝑇 𝜀 + 𝜏)𝑔 in 𝐿𝑟′(Ω𝜀𝑠). (3.39)

The corresponding Green formula follows:∫︁
Ω𝜀𝑠

(︀
1 + 𝑑𝜀|𝑢𝜀|𝑟−2

𝐴𝜀

)︀
𝐴𝜀𝑢𝜀𝑣 + 𝛼𝜀

∫︁
Ω𝜀𝑠

(𝑇 𝜀 + 𝜏)𝑔𝑣 =
∫︁

Ω𝜀𝑠

𝑝𝜀𝑠div 𝑣 +
∫︁

Γ𝜀

𝑝𝜀𝑠𝑣𝑛𝜀 , ∀𝑣 ∈ 𝐻𝜀. (3.40)

Next, let 𝑤 ∈ 𝒱(Ω𝜀𝑓 ) and set in (3.13)

𝑣 =
{︂

0 in Ω𝜀𝑠

𝑤 in Ω𝜀𝑓
. (3.41)

Using again De Rham theorem, we find that ∃𝑝𝜀𝑓 ∈ 𝐿2(Ω𝜀𝑓 ), unique up to additive constants corresponding to
each connected component of Ω𝜀𝑓 , and such that

−𝜕𝑝
𝜀𝑓

𝜕𝑥𝑖
= 𝛼𝜀 (𝑇 𝜀 + 𝜏) 𝑔𝑖 −

𝜕𝑒𝑖𝑗 (𝑢𝜀)
𝜕𝑥𝑗

in 𝐻−1 (Ω𝜀𝑓 ) . (3.42)

Defining Σ𝜀𝑖 ∈ 𝐿2(Ω𝜀𝑓 )𝑁 by
Σ𝜀𝑖

𝑗 = −𝑝𝜀𝑓𝛿𝑖𝑗 + 𝑒𝑖𝑗 (𝑢𝜀) (3.43)

we see that div
(︀
Σ𝜀𝑖
)︀

= 𝛼𝜀 (𝑇 𝜀 + 𝜏) 𝑔𝑖 ∈ 𝐿2(Ω𝜀𝑓 ) and the Green formula follows:∫︁
Ω𝜀𝑓

𝑒𝑖𝑗(𝑢𝜀)𝑒𝑖𝑗(𝑣) + 𝛼𝜀

∫︁
Ω𝜀𝑓

(𝑇 𝜀 + 𝜏) 𝑔𝑣 =
∫︁

Ω𝜀𝑓

𝑝𝜀𝑓 div 𝑣 + ⟨Σ𝜀𝑖
𝑛𝜀 , 𝑣𝑖⟩𝐻−1/2,𝐻1/2(Γ𝜀), ∀𝑣 ∈ 𝐻𝜀. (3.44)
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From (3.40) and (3.44) we deduce that

⟨Σ𝜀𝑖
𝑛𝜀 , 𝑣𝑖⟩𝐻−1/2,𝐻1/2(Γ𝜀) +

∫︁
Γ𝜀

𝑝𝜀𝑠𝑣𝑛𝜀 + 𝜀𝛽𝜀

∫︁
Γ𝜀

𝑢𝜀
𝑡𝜀𝑣 = 0, ∀𝑣 ∈ 𝑉𝜀. (3.45)

We shall prove now that for a certain choice of the free constants, (3.45) holds for any 𝑣 ∈ 𝐻𝜀.
As Ω𝜀

𝑓 is of class 𝐶2, we can introduce Σ𝜀
𝑛𝜀𝑛𝜀 ∈ 𝐻−1/2(Γ𝜀) by

⟨Σ𝜀
𝑛𝜀𝑛𝜀 , 𝑢⟩𝐻−1/2,𝐻1/2(Γ𝜀) = ⟨Σ𝜀𝑖

𝑛𝜀 , 𝑢 𝑛𝜀
𝑖 ⟩𝐻−1/2,𝐻1/2(Γ𝜀), ∀𝑢 ∈ 𝐻1/2(Γ𝜀). (3.46)

Also, for 𝑘 ∈ {1, 2, . . . , 𝑘𝜀}, we define 𝑄𝑘
𝜀 : 𝐻1/2(Γ𝑘

𝜀) → 𝐻1/2(Γ𝜀) as the natural extension with zero:

𝑄𝑘
𝜀𝑤(𝑥) =

{︂
𝑤(𝑥), 𝑥 ∈ Γ𝑘

𝜀

0, 𝑥 ∈ Γ𝑖
𝜀, 𝑖 ̸= 𝑘.

(3.47)

First, let 𝑤 ∈ 𝐻1/2(Γ𝜀)𝑁 ; we set in (3.45) 𝑣 ∈ 𝑉𝜀 with the properties

𝑣 = 0 in Ω𝜀𝑠 and 𝑣 = 𝑤 − 𝑤𝑛𝜀𝑛𝜀 on Γ𝜀. (3.48)

Thus we obtain

⟨Σ𝜀𝑖
𝑛𝜀 , 𝑤𝑖⟩𝐻−1/2,𝐻1/2(Γ𝜀) − ⟨Σ𝜀

𝑛𝜀𝑛𝜀 , 𝑤𝑛𝜀⟩𝐻−1/2,𝐻1/2(Γ𝜀) + 𝜀𝛽𝜀

∫︁
Γ𝜀

𝑢𝜀
𝑡𝜀𝑤 = 0, ∀𝑤 ∈ 𝑉𝜀. (3.49)

Next, let 𝑤 ∈ 𝐻1/2(Γ𝑘
𝜀) with

∫︀
Γ𝑘

𝜀
𝑤 = 0; obviously, there exists 𝑣 ∈ 𝑉𝜀 such that 𝑣 = 𝑤𝑛𝜀 on Γ𝑘

𝜀 and 𝑣 = 0 in
Ω ∖ Ω𝑘

𝜀 . By setting such a 𝑣 in (3.45) we get

⟨Σ𝜀𝑘
𝑛𝜀𝑛𝜀 , 𝑤⟩𝐻−1/2,𝐻1/2(Γ𝑘

𝜀 ) +
∫︁

Γ𝑘
𝜀

𝑝𝜀𝑠𝑤 = 0, (3.50)

where Σ𝜀𝑘
𝑛𝜀𝑛𝜀 ∈ 𝐻−1/2(Γ𝑘

𝜀) is defined by

⟨Σ𝜀𝑘
𝑛𝜀𝑛𝜀 , 𝑣⟩𝐻−1/2,𝐻1/2(Γ𝑘

𝜀 ) = ⟨Σ𝜀
𝑛𝜀𝑛𝜀 , 𝑄𝑘

𝜀𝑣⟩𝐻−1/2,𝐻1/2(Γ𝜀), ∀𝑣 ∈ 𝐻1/2(Γ𝑘
𝜀). (3.51)

Classic manipulations of (3.50) yield

Σ𝜀𝑘
𝑛𝜀𝑛𝜀 + 𝑝𝜀𝑠 =

1
|Γ𝑘

𝜀 |

(︃
⟨Σ𝜀

𝑛𝜀𝑛𝜀 , 𝑄𝑘
𝜀1⟩𝐻−1/2,𝐻1/2(Γ𝜀) +

∫︁
Γ𝑘

𝜀

𝑝𝜀𝑠

)︃
in 𝐻−1/2(Γ𝑘

𝜀). (3.52)

Choosing the free constants of 𝑝𝜀𝑓 and 𝑝𝜀𝑠 such that

⟨Σ𝜀
𝑛𝜀𝑛𝜀 , 𝑄𝑘

𝜀1⟩𝐻−1/2,𝐻1/2(Γ𝜀) +
∫︁

Γ𝑘
𝜀

𝑝𝜀𝑠 = 0, ∀𝑘 ∈ {1, 2, . . . , 𝑘𝜀}, (3.53)∫︁
Ω𝜀𝑓

𝑝𝜀𝑓 +
∫︁

Ω𝜀𝑠

𝑝𝜀𝑠 = 0 (3.54)

we find that

⟨Σ𝜀
𝑛𝜀𝑛𝜀 , 𝑤𝑛𝜀⟩𝐻−1/2,𝐻1/2(Γ𝜀) =

𝑘𝜀∑︁
𝑘=1

⟨︀
Σ𝜀

𝑛𝜀𝑛𝜀 , 𝑄𝑘
𝜀

(︀
𝑤𝑛𝜀 |Γ𝑘

𝜀

)︀⟩︀
𝐻−1/2,𝐻1/2(Γ𝜀)

=
𝑘𝜀∑︁

𝑘=1

⟨︀
Σ𝜀𝑘

𝑛𝜀𝑛𝜀 , 𝑤𝑛𝜀 |Γ𝑘
𝜀

⟩︀
𝐻−1/2,𝐻1/2(Γ𝑘

𝜀 )
= −

𝑘𝜀∑︁
𝑘=1

⟨︀
𝑝𝜀𝑠, 𝑤𝑛𝜀 |Γ𝑘

𝜀

⟩︀
𝐻−1/2,𝐻1/2(Γ𝑘

𝜀 )
(3.55)

= −
𝑘𝜀∑︁

𝑘=1

∫︁
Γ𝑘

𝜀

𝑝𝜀𝑠
(︀
𝑤𝑛𝜀 |Γ𝑘

𝜀

)︀
= −

∫︁
Γ𝜀

𝑝𝜀𝑠𝑤𝑛𝜀 , ∀𝑤 ∈ 𝐻𝜀 (3.56)
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and hence (3.45) holds for any 𝑣 ∈ 𝐻𝜀.
Also, by adding (3.40) and (3.44), it follows that 𝑝𝜀 ∈ 𝐿𝜀, defined by

𝑝𝜀 =
{︂
𝑝𝜀𝑓 in Ω𝜀𝑓 ,
𝑝𝜀𝑠 in Ω𝜀𝑠,

(3.57)

satisfies (3.36).
As Ω is of class 𝐶2 and 𝑝𝜀 ∈ 𝐿0(Ω), the unique solution of the following Laplace equation with Neumann

boundary condition which has zero mean value belongs to 𝐻2(Ω); we denote it by 𝑣𝜀:

∆𝑣𝜀 = 𝑝𝜀 in Ω, (3.58)
𝜕𝑣𝜀

𝜕𝑛𝜀
= 0 on 𝜕Ω. (3.59)

Moreover (see [20] Chap. 4, Sect. 2.3), that there exists 𝐶 > 0, independent of 𝑝𝜀, such that

|𝑣𝜀|𝐻2(Ω ≤ 𝐶|𝑝𝜀|𝐿2(Ω). (3.60)

Setting 𝑣 = ∇𝑣𝜀 ∈ 𝐻𝜀 in (3.36), we prove the estimate (3.37) by using (3.16)–(3.18) and (3.60) in a straightfor-
ward manner. �

4. Homogenizing the case of negligeable Forchheimer effect

In this section we shall study the asymptotic behaviour (when 𝜀 → 0) of (𝑢𝜀, 𝑝𝜀, 𝑇 𝜀) ∈ 𝑉𝜀 × 𝐿𝜀 × 𝐻1
0 (Ω)

verifying (3.14) and (3.36), as the Forchheimer effect is vanishing, that is,

𝑑𝜀 → 0. (4.1)

In the framework of the homogenization procedure, we assume that there exist 𝐴 ∈𝐿∞(Ω, 𝐿∞per(𝑌 ))𝑁×𝑁 , 𝛽 ∈
𝐶1

per(𝑌 ), 𝐵𝑓 and 𝐵𝑠 ∈ 𝐿∞per(𝑌 )𝑁×𝑁 such that(︀
𝛽𝜀, 𝐵𝜀𝑠, 𝐵𝜀𝑓

)︀
(𝑥) =

(︀
𝛽,𝐵𝑠, 𝐵𝑓

)︀ (︁𝑥
𝜀

)︁
, 𝐴𝜀(𝑥) = 𝐴

(︁
𝑥,
𝑥

𝜀

)︁
, for a.a. 𝑥 ∈ Ω, (4.2)

𝛽 ≥ 𝑏1,
(︀
𝐴,𝐵𝑠, 𝐵𝑓

)︀
𝜉𝑖𝜉𝑗 ≥ 𝑏1 𝜉𝑖𝜉𝑖, ∀𝜉 ∈ R𝑁 , a.e. in Ω× 𝑌. (4.3)

Also, there exists 𝛼 > 0 such that
𝛼𝜀 → 𝛼 when 𝜀→ 0. (4.4)

Under these conditions, the estimates (3.16), (3.18), (3.37) and the relation (3.39) yield

|𝑢𝜀|𝐿𝑟(Ω𝜀𝑠) ≤ 𝐶𝑑−1/𝑟
𝜀 , (4.5)

|𝑢𝜀|𝐿2(Ω) + |∇𝑢𝜀|𝐿2(Ω𝜀𝑓 ) + 𝜀|𝑢𝜀
𝑡𝜀 |𝐿2(Γ𝜀) ≤ 𝐶, (4.6)

|∇𝑇 𝜀|𝐿2(Ω) + |𝑇 𝜀|𝐿∞(Ω) ≤ 𝐶, (4.7)
|𝑝𝜀|𝐿2(Ω) + |∇𝑝𝜀|𝐿𝑟′ (Ω𝜀𝑠) ≤ 𝐶, (4.8)

for some 𝐶 > 0 independent of 𝜀.
From (4.5) we obtain immediately∫︁

Ω𝜀𝑠

𝑑𝜀|𝑢𝜀|𝑟−2𝐴𝜀𝑢𝜀𝑣 → 0, ∀𝑣 ∈ 𝐻𝜀, (4.9)

that is, the Forchheimer term has no macroscopic influence in this case.



THERMAL FLOWS IN FRACTURED POROUS MEDIA 799

For any ℎ ∈ {𝑠, 𝑓} and for any function 𝜙 defined on Ω× 𝑌 , let us introduce the following notations.

𝐻per(div, 𝑌 ) =
{︀
𝜙 ∈ 𝐻loc

(︀
div,R𝑁

)︀
, 𝜙 is 𝑌 -periodic

}︀
, (4.10)

𝑉per (div, 𝑌 ) = {𝜙 ∈ 𝐻per(div, 𝑌 ), div𝑦𝜙 = 0 in 𝑌 } , (4.11)

𝜙ℎ = 𝜙|Ω×𝑌ℎ
, 𝜙ℎ =

1
|𝑌ℎ|

∫︁
𝑌ℎ

𝜙(·, 𝑦)d𝑦, ℎ ∈ {𝑠, 𝑓}, (4.12)

𝜙 =
∫︁

𝑌

𝜙(·, 𝑦)d𝑦, that is 𝜙 = (1−𝑚)𝜙𝑠 +𝑚𝜙𝑓 . (4.13)

𝐻1
per (𝑌ℎ) =

{︀
𝜙 ∈ 𝐻1

loc

(︀
R𝑁

ℎ

)︀
, 𝜙 is 𝑌 -periodic

}︀
, (4.14)

𝐻̃1
per(𝑌ℎ) =

{︀
𝜙 ∈ 𝐻1

per(𝑌ℎ), 𝜙 = 0
}︀
. (4.15)

Also, for any sequence (𝜙𝜀)𝜀, bounded in 𝐿𝑝(Ω× 𝑌 ), 1 < 𝑝 <∞, we denote

𝜙𝜀 𝑝
⇀ 𝜙

when 𝜙𝜀 is two-scale convergent to 𝜙 ∈ 𝐿𝑝(Ω× 𝑌 ) in the sense of [19] and as usual

𝐻0(div,Ω) = {𝑣 ∈ 𝐻(div,Ω), 𝑣𝜈 = 0 on 𝜕Ω} , (4.16)
𝑉0(div,Ω) = {𝑣 ∈ 𝐻0(div,Ω), div 𝑣 = 0 in Ω} . (4.17)

From (4.6), it follows that ∃𝑢 ∈ 𝐿2(Ω× 𝑌 )𝑁 such that, on some subsequence

𝑢𝜀 2
⇀ 𝑢, (4.18)

𝑢𝜀 ⇀

∫︁
𝑌

𝑢(·, 𝑦)d𝑦 ∈ 𝑉0(div,Ω) weakly in 𝐿2(Ω)𝑁 . (4.19)

Also, we see that (𝜒𝜀𝑠𝑢
𝜀)𝜀, (𝜒𝜀𝑓𝑢

𝜀)𝜀 and
(︂
𝜒𝜀𝑓

𝜕𝑢𝜀

𝜕𝑥𝑖

)︂
𝜀

are bounded in (𝐿2(Ω))𝑁 , ∀𝑖 ∈ {1, 2, . . . , 𝑁}. This

situation was already studied in [12] and we recall the results proved there.

Theorem 4.1. There exist 𝑢 ∈ 𝐿2 (Ω, 𝑉per(div, 𝑌 )), 𝑤 ∈ 𝐿2
(︀
Ω, (𝐻1

per(𝑌𝑓 )/R)𝑁
)︀

such that the following con-
vergences hold on some subsequence:

𝑢𝜀 2
⇀ 𝑢, (4.20)

𝜒𝜀𝑓∇𝑢𝜀
𝑖

2
⇀ 𝜒𝑓

(︁
∇𝑢𝑓

𝑖 +∇𝑦𝑤𝑖

)︁
, ∀𝑖 ∈ {1, 2, . . . , 𝑁}. (4.21)

Moreover, 𝑢𝑓 is independent of the microscopic variable, namely:

𝑢𝑓 = 𝑢̃𝑓 ∈ 𝐻1
0 (Ω), (4.22)

𝑢̃ ∈ 𝑉0(div,Ω), (4.23)

div𝑦𝑤 + div 𝑢𝑓 = 0 in Ω× 𝑌𝑓 . (4.24)

Concerning the temperature behaviour, from (4.7), and using the compactness result of [2], we get

Theorem 4.2. There exist 𝑇 ∈ 𝐻1
0 (Ω) and 𝑅 ∈ 𝐿2

(︀
Ω, 𝐻1

per(𝑌 )/R
)︀

such that

𝑇 𝜀 2
⇀ 𝑇, (4.25)

𝜕𝑇 𝜀

𝜕𝑥𝑖

2
⇀

(︂
𝜕𝑇

𝜕𝑥𝑖
+
𝜕𝑅

𝜕𝑦𝑖

)︂
, ∀𝑖 ∈ {1, 2, . . . , 𝑁}. (4.26)

Moreover, 𝑇 ∈ 𝐿∞(Ω) and we have

𝑇 𝜀 ⇀ 𝑇 weakly in 𝐻1
0 (Ω) and weakly star in 𝐿∞(Ω). (4.27)
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Theorem 4.3. There exists 𝑝 ∈ 𝐿2
0(Ω× 𝑌 ) with 𝑝𝑠 = 𝑝𝑠 ∈𝑊 1,𝑟′(Ω), such that on some subsequence we have

𝑝𝜀 2
⇀ 𝑝. (4.28)

Proof. Calling (4.8), the compactness result of [2] implies the existence of some 𝑝 ∈ 𝐿2
0(Ω× 𝑌 ) such that (4.28)

holds on some subsequence.
By rescaling the corresponding Rellich-Kondrachov inequality in 𝑌𝑠, we have

|𝑞|𝐿𝑟(Ω𝜀𝑠) ≤ 𝐶 𝜀 |𝑞|𝑊 1,𝑟
0 (Ω𝜀𝑠), ∀𝑞 ∈𝑊 1,𝑟

0 (Ω𝜀𝑠). (4.29)

Thus, taking (3.39) into account, we obtain⃒⃒⃒
⟨∇𝑝𝜀𝑠, 𝑞⟩𝑊−1,𝑟′ ,𝑊 1,𝑟

0 (Ω𝜀𝑠)

⃒⃒⃒
=
⃒⃒⃒⃒∫︁

Ω𝜀𝑠

𝑞∇𝑝𝜀𝑠

⃒⃒⃒⃒
≤ |𝑞|𝐿𝑟(Ω𝜀𝑠)|∇𝑝𝜀𝑠|𝐿𝑟′ (Ω𝜀𝑠) ≤ 𝐶𝜀|𝑞|𝑊 1,𝑟

0 (Ω𝜀𝑠), (4.30)

that is,
|∇𝑝𝜀𝑠|𝑊−1,𝑟′ (Ω𝜀𝑠) ≤ 𝐶𝜀. (4.31)

Then, using the extension operator 𝑄𝜀𝑠 ∈ ℒ
(︀
𝐿2(Ω𝜀𝑠), 𝐿2(Ω)

)︀
of Lipton–Avellaneda (see [18]), defined by

𝑄𝜀𝑠𝜋 =

⎧⎨⎩𝜋(𝑥) in Ω𝜀𝑠,
1

|𝜀𝑌𝑠|

∫︁
𝜀𝑘+𝜀𝑌𝑠

𝜋(𝑦) d𝑦 in Ω𝜀𝑓 ,
(4.32)

Theorem 3.2 of [24] implies that there exists 𝑞𝑠 ∈ 𝐿2(Ω) such that

𝑄𝜀𝑠𝑝
𝜀𝑠 → 𝑞𝑠 in 𝐿2(Ω), (4.33)

𝜒𝜀𝑠𝑝
𝜀𝑠 2
⇀ 𝜒𝑠(𝑦)𝑞𝑠(𝑥) in 𝐿2(Ω× 𝑌 ). (4.34)

Passing the equality
𝜒𝜀𝑠𝑄𝜀𝑠𝑝

𝜀𝑠 = 𝜒𝜀𝑠𝑝
𝜀 in 𝐿2(Ω), (4.35)

at the two-scale limit, we obtain

𝜒𝑠(𝑦)𝑞𝑠(𝑥) = 𝜒𝑠(𝑦)𝑝(𝑥, 𝑦) for a.a. (𝑥, 𝑦) ∈ Ω× 𝑌, (4.36)

that is, 𝑝𝑠 = 𝑝𝑠 ∈ 𝐿2(Ω).
Moreover, (3.20)–(3.21) of [24] reads:

𝑄𝜀𝑠𝑝
𝜀𝑠 → 𝑝𝑠 in 𝐿𝑟(Ω)/R, (4.37)

∇(𝑄𝜀𝑠𝑝
𝜀𝑠) → ∇𝑝𝑠 in 𝑊−1,𝑟′(Ω). (4.38)

Noticing that
|∇(𝑄𝜀𝑠𝑝

𝜀𝑠)|𝐿𝑟′ (Ω) + |∇𝑝𝜀𝑠|𝐿𝑟′ (Ω) ≤ 𝐶, (4.39)

we infer that (4.38) implies

∇(𝑄𝜀𝑠𝑝
𝜀𝑠) → ∇𝑝𝑠 in 𝐿𝑟′(Ω), (4.40)

that is, 𝑝𝑠 = 𝑝𝑠 ∈𝑊 1,𝑟′(Ω). �
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Now, we can present the so-called two-scale homogenized problem, verified by the limits given by Theo-
rems 4.1–4.3. We find this problem to be well-posed at least for 𝛼 sufficiently small. Hence, the asymptotic
behaviour of 𝑢𝜀, 𝑇 𝜀 and 𝑝𝜀 is completely described by the solutions of this problem, via (4.20)–(4.21), (4.25)–
(4.27) and (4.28).

Denoting

𝐻(Ω× 𝑌 ) =
{︀
𝑢 ∈ 𝐿2(Ω× 𝑌 ), div𝑦𝑢 = 0 in Ω× 𝑌, 𝑢𝑓 = 𝑢̃𝑓 ∈ 𝐻1

0 (Ω)𝑁 , 𝑢̃ ∈ 𝐻0(div,Ω)
}︀
, (4.41)

𝑉 (Ω× 𝑌 ) = {𝑢 ∈ 𝐻(Ω× 𝑌 ), div 𝑢̃ = 0 in Ω} , (4.42)

we see that
𝑋 = 𝐻(Ω× 𝑌 )× 𝐿2

(︁
Ω, 𝐻̃1

per(𝑌𝑓 )𝑁
)︁

(4.43)

is a Hilbert space endowed with the scalar product

((𝑢,𝑤), (𝜙,𝜓))𝑋 =
∫︁

Ω×𝑌𝑠

𝑢 · 𝜙+
∫︁

Ω

div 𝑢̃div𝜙+
∫︁

Ω×𝑌𝑓

(𝑒(𝑢) + 𝑒𝑦(𝑤)) (𝑒(𝜙) + 𝑒𝑦(𝜓)) . (4.44)

We also have to introduce the following spaces

𝑀 =
{︀
𝑞 ∈ 𝐿2

0(Ω× 𝑌 ), 𝑞𝑠 = 𝑞𝑠 ∈ 𝐻1(Ω)
}︀
,

𝑋0 =
{︀

(𝑢,𝑤) ∈ 𝑋, div 𝑢̃ = 0 in Ω, div𝑦𝑤 + div 𝑢𝑓 = 0 in Ω× 𝑌𝑓

}︀
.

Theorem 4.4. The limits of the convergences (4.20)–(4.21), (4.25)–(4.27) and (4.28), that is (𝑢,𝑤) ∈ 𝑋0,
(𝑇,𝑅) ∈ 𝐻1

0 (Ω)×𝐻1
per(𝑌 )/R and 𝑝 ∈𝑀 , verify the following system:∫︁

Ω×𝑌

𝐵 (∇(𝑇 + 𝜏) +∇𝑦𝑅) (∇Φ +∇𝑦Ψ) +
∫︁

Ω

𝑢̃Φ∇(𝑇 + 𝜏)

=
∫︁

Ω

𝑄̃Φ, ∀ (Φ,Ψ) ∈ 𝐻1
0 (Ω)×𝐻1

per(𝑌 )/R. (4.45)∫︁
Ω×𝑌𝑠

𝐴𝑢𝜙+
∫︁

Ω×𝑌𝑓

(𝑒(𝑢) + 𝑒𝑦(𝑤)) (𝑒(𝜙) + 𝑒𝑦(𝜓)) +
∫︁

Ω×Γ

𝛽(𝑢𝑓 − 𝑢𝑓
𝑛𝑛)𝜙+ 𝛼

∫︁
Ω

(𝑇 + 𝜏)𝑔𝜙

=
∫︁

Ω

𝑝𝑠div𝜙+
∫︁

Ω×𝑌𝑓

(𝑝𝑓 − 𝑝𝑠) (div𝜙+ div𝑦𝜓) , ∀(𝜙,𝜓) ∈ 𝑋. (4.46)

Proof. First, for some Φ ∈ 𝒟(Ω) and Ψ ∈ 𝒟(Ω, 𝐶∞per(𝑌 )), we set 𝑆 = Φ+𝜀Ψ𝜀 in (3.14), where Ψ𝜀(𝑥) = Ψ(𝑥, 𝑥/𝜀)
for a.a. 𝑥 ∈ Ω. Using (4.20), (4.21) and (4.25)–(4.27) we easily obtain (4.45), even the convergence of the
convective term, as ∫︁

Ω

𝑢𝜀Φ∇𝑇 𝜀 = −
∫︁

Ω

𝑇 𝜀𝑢𝜀∇Φ and 𝑢𝜀 ⇀ 𝑢̃ weakly in 𝐿2(Ω). (4.47)

Next, let 𝜙 ∈ 𝒟(Ω, 𝐶∞per(𝑌 ))𝑁 and 𝜓 ∈ 𝒟(Ω, 𝐶∞per(𝑌𝑓 ))𝑁 such that (𝜙,𝜓) ∈ 𝑋. Let 𝜓 a prolongation of 𝜓 to
𝒟(Ω, 𝐻̃per(div, 𝑌 )), which can be done, for instance, by considering a certain Neumann problem in 𝑌𝑠. Denoting,

as usual, 𝜙𝜀(𝑥) = 𝜙
(︁
𝑥,
𝑥

𝜀

)︁
and 𝜓𝜀(𝑥) = 𝜓

(︁
𝑥,
𝑥

𝜀

)︁
, we can set 𝑣(𝑥) = 𝜙𝜀(𝑥) + 𝜀𝜓𝜀(𝑥) in (3.36). Passing to the

limit with 𝜀→ 0 and using the two-scale convergences of Theorems 4.1–4.3, we obtain:∫︁
Ω

𝑝𝜀div(𝜙𝜀 + 𝜀𝜓𝜀) →
∫︁

Ω×𝑌𝑓

𝑝𝑓 (div𝑥𝜙+ div𝑦𝜓) +
∫︁

Ω×𝑌𝑠

𝑝𝑠
(︁

div𝑥𝜙+ div𝑦𝜓
)︁
.

As 𝑝 ∈𝑀 , we have also ∫︁
Ω×𝑌𝑠

𝑝𝑠div𝑦𝜓 = −
∫︁

Ω×Γ

𝑝𝑠𝜓𝑛 = −
∫︁

Ω×𝑌𝑓

𝑝𝑠div𝑦𝜓
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and the convergence of the right-hand side term of (3.36) is proved. All the other convergences are straightfor-
ward, except that on Ω× Γ𝜀, which is similar to that in [14]. �

The system (4.45) and (4.46) will provide all the local solutions of our problem, allowing us to successively
eliminate some of the rapidly oscillating unknowns from the governing system.

First, denoting

𝑉𝑓 =
{︁
𝜙 ∈

(︀
𝐻1

per(𝑌𝑓 )/R
)︀𝑁

, div𝑦𝜙 = 0
}︁
, (4.48)

𝐾𝑓 =
{︁
𝜙 ∈

(︀
𝐻1

per(𝑌𝑓 )/R
)︀𝑁

, div𝑦𝜙 = −1
}︁
, (4.49)

for any 𝑘, ℎ ∈ {1, 2, . . . , 𝑁} we define 𝑅𝑘 ∈ 𝐻1
per(𝑌 )/R, (𝑊 𝑘ℎ, 𝑞𝑘ℎ) ∈ 𝑉𝑓 × 𝐿2

0(𝑌𝑓 ) and 𝑊 ∈ 𝐾𝑓 as the unique
solutions of the following three problems:∫︁

𝑌

𝐵∇(𝑦𝑘 +𝑅𝑘)∇𝜓 = 0, ∀𝜓 ∈ 𝐻1
per(𝑌 )/R, (4.50)

where 𝐵 =
{︂
𝐵𝑠 in 𝑌𝑠,
𝐵𝑓 in 𝑌𝑓 ,⎧⎨⎩

∫︀
𝑌𝑓

(︀
𝛿𝑖𝑘𝛿𝑗ℎ + 𝑒𝑦,𝑖𝑗(𝑊 𝑘ℎ)

)︀
𝑒𝑦,𝑖𝑗(𝜓) =

∫︀
𝑌𝑓
𝑞𝑘ℎdiv𝑦𝜓, ∀𝜓∈(𝐻1

per(𝑌𝑓 )/R)𝑁,∫︀
𝑌𝑓
𝑞 div𝑦(𝑊ℎ𝑘) = 0, ∀𝑞 ∈ 𝐿2

0(𝑌𝑓 ),
(4.51)

∫︁
𝑌𝑓

𝑒𝑦(𝑊 ) 𝑒𝑦(𝜓) = 0, ∀𝜓 ∈ 𝑉𝑓 . (4.52)

The existence and uniqueness results for (4.50) and (4.51) are obtained by the Lax–Milgram Theorem. Regarding
(4.52), we notice that 𝑊 is the projection of 0 on the closed convex 𝐾𝑓 ̸= ∅ in (𝐻1

per(𝑌𝑓 )/R)𝑁 .
Setting Φ = 0 in (4.45) and 𝜙 = 0 in (4.46), we find that 𝑅, 𝑤 and 𝑝𝑓 have closed expressions with respect

to 𝑢𝑓 , 𝑇 and 𝑝𝑠:

𝑅(𝑥, 𝑦) = 𝑅𝑖(𝑦)
𝜕𝑇

𝜕𝑥𝑖
(𝑥), (4.53)

𝑤(𝑥, 𝑦) = 𝑊 𝑖𝑗(𝑦)𝑒𝑖𝑗(𝑢𝑓 )(𝑥) +𝑊 (𝑦)div(𝑢𝑓 )(𝑥), (4.54)

𝑝𝑓 (𝑥, 𝑦) = 𝑝𝑠(𝑥) + 𝑞𝑖𝑗(𝑦)𝑒𝑖𝑗(𝑢𝑓 )(𝑥), for a.a. (𝑥, 𝑦) ∈ Ω× 𝑌 . (4.55)

Using (4.53)–(4.55), we elimitate 𝑅, 𝑤 and 𝑝𝑓 by an appropriate choice of test functions, respectively

Ψ = 𝑅𝑖 𝜕Φ
𝜕𝑥𝑖

in (4.45) and 𝜓 = 𝑊 𝑖𝑗𝑒𝑖𝑗(𝜙) in (4.46).

Thus we find the system which determines the leading limits of our homogenisation process.

Theorem 4.5. If 𝑢 ∈ 𝑉 (Ω × 𝑌 ), 𝑇 ∈ 𝐻1
0 (Ω) and 𝑝 ∈ 𝑀 are the limits given by Theorems 4.1–4.3, then they

verify the following system:∫︁
Ω×𝑌

𝐵𝐻∇(𝑇 + 𝜏)∇Φ +
∫︁

Ω

𝑢̃Φ∇(𝑇 + 𝜏) =
∫︁

Ω

𝑄̃Φ, ∀Φ ∈ 𝐻1
0 (Ω), (4.56)

∫︁
Ω×𝑌𝑠

𝐴𝑢𝑠𝜙𝑠 +𝑚𝜇𝐻
𝑖𝑗𝑘ℎ

∫︁
Ω

𝑒𝑖𝑗(𝑢𝑓 )𝑒𝑘ℎ(𝜙𝑓 ) +𝑚𝛽𝐻
𝑖𝑗

∫︁
Ω

𝑢𝑓
𝑖 𝜙

𝑓
𝑗 + 𝛼

∫︁
Ω

(𝑇 + 𝜏)𝑔𝜙
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=
∫︁

Ω

𝑝𝑠div𝜙, ∀𝜙 ∈ 𝐻(Ω× 𝑌 ), (4.57)

The so-called effective coefficients which appear in (4.56) and (4.57) are the following:

𝐵𝐻
𝑖𝑗 =

∫︁
𝑌

𝐵𝑘ℎ

(︂
𝛿𝑖𝑘 +

𝜕𝑅𝑘

𝜕𝑦𝑖

)︂(︂
𝛿𝑗ℎ +

𝜕𝑅ℎ

𝜕𝑦𝑗

)︂
, (4.58)

𝜇𝐻
𝑖𝑗𝑘ℎ = 𝜆𝛿𝑖𝑘𝛿𝑗ℎ +

1
|𝑌𝑓 |

∫︁
𝑌𝑓

(︀
𝛿ℓ𝑘𝛿𝑚ℎ + 𝑒𝑦,ℓ𝑚(𝑊 𝑘ℎ)

)︀ (︀
𝛿ℓ𝑖𝛿𝑚𝑗 + 𝑒𝑦,ℓ𝑚(𝑊 𝑖𝑗)

)︀
, (4.59)

𝛽𝐻
𝑖𝑗 =

1
|𝑌𝑓 |

∫︁
Γ

𝛽(𝑦)(𝛿𝑖𝑗 − 𝜈𝑖(𝑦)𝜈𝑗(𝑦))𝑑𝜎𝑦, (4.60)

where 𝜆 > 0 is given by

𝜆 =
1
|𝑌𝑓 |

∫︁
𝑌𝑓

𝑒𝑦(𝑊 ) 𝑒𝑦(𝑊 ). (4.61)

Remark 4.6. The tensors 𝐵𝐻 and 𝜇𝐻 are positive-definite and have the usual symmetry properties 𝐵𝐻
𝑖𝑗 = 𝐵𝐻

𝑗𝑖

and 𝜇𝐻
𝑖𝑗𝑘ℎ = 𝜇𝐻

𝑘ℎ𝑖𝑗 = 𝜇𝐻
𝑗𝑖𝑘ℎ; 𝛽𝐻 is also symmetric and has the property:

𝛽𝐻
𝑖𝑗

∫︁
Ω

𝜙𝑖𝜙𝑗 =
∫︁

Ω×Γ

𝛽(𝛾𝜙− (𝛾𝜈𝜙)𝜈)2 ≥ 0, ∀𝜙 ∈ 𝐻1
0 (Ω)𝑁 . (4.62)

Remark 4.7. In the case when 𝐴 is independent of 𝑦, that is 𝐴 ∈ 𝐿∞(Ω)𝑁×𝑁 , we can go further. The system
(4.56)–(4.57) yields:

𝑢𝑠
𝑖 = 𝑢𝑓

𝑖 −
(︂

1
|𝑌𝑠|

∫︁
𝑌𝑠

𝑈𝑘
𝑖 (𝑦)

)︂(︂
𝐴𝑘𝑗𝑢

𝑓
𝑗 + 𝛼(𝑇 + 𝜏)𝑔𝑖 +

𝜕𝑝𝑠

𝜕𝑥𝑘

)︂
in 𝐿2(Ω× 𝑌𝑠), (4.63)

where 𝑈𝑘 ∈ 𝐻0(div, 𝑌𝑠) is the unique solution of∫︁
𝑌𝑠

𝐴𝑈𝑘Θ =
∫︁

𝑌𝑠

Θ𝑘, ∀Θ ∈ 𝐻0(div, 𝑌𝑠). (4.64)

Noticing that
(︁

1
|𝑌𝑠|

∫︀
𝑌𝑠
𝑈𝑘

𝑖 (𝑦)
)︁

are the elements of a symmetric and positive-definite matrix, we define its inverse

by 𝐴𝐻 . Thus, redenoting 𝜃 = 𝑇 + 𝜏 , we find that
(𝑢̃𝑠, 𝑢𝑓 , 𝑝𝑠, 𝜃) ∈ 𝐻0(div,Ω)×𝐻1

0 (Ω)×𝑊 1,𝑟′(Ω)/R×𝐻1(Ω) is weak solution of the system

(1−𝑚)div 𝑢̃𝑠 +𝑚div 𝑢𝑓 = 0 in Ω, (4.65)

∇𝑝𝑠 +𝐴𝐻 𝑢̃𝑠 + 𝛼𝜃𝑔 = (𝐴𝐻 −𝐴)𝑢𝑓 in Ω, (4.66)

∇𝑝𝑠 − div(𝜇𝐻𝑒(𝑢𝑓 )) + 𝛼𝜃𝑔 = −𝛽𝐻𝑢𝑓 in Ω, (4.67)

−div
(︀
𝐵𝐻∇𝜃

)︀
+ 𝑢̃∇𝜃 = (1−𝑚)𝑄𝑠 +𝑚𝑄𝑓 in Ω. (4.68)

𝜃 = 𝜏 on 𝜕Ω. (4.69)

This is a model of two coupled thermal flows, neither of them being incompressible. The terms of the right-hand
sides of (4.66) and (4.67) come from the Beavers–Joseph and the incompressible transfer conditions on the
vanished interface.



804 I. GRUAIS AND D. POLIŠEVSKI

Appendix A. A result of strict monotonicity

We present here the inequality claimed in the proof of Theorem 3.1.

Theorem A.1. Let (·, ·)𝑉 be an inner product on a vector space 𝑉 over R and let | · |𝑉 be the associated norm.
Then, for every 𝑝 ≥ 2, it holds:

|𝑢+ 𝑣|𝑝𝑉 ≤
(︁
|2𝑢|𝑝−2

𝑉 𝑢+ |2𝑣|𝑝−2
𝑉 𝑣, 𝑢+ 𝑣

)︁
𝑉
, ∀𝑢, 𝑣 ∈ 𝑉. (A.1)

Proof. The cases when 𝑝 = 2 or 𝑢 = 0 or 𝑣 = 0 are obvious. Then, let 𝑝 > 2, 𝑢 ̸= 0, 𝑣 ̸= 0; denoting |𝑢|𝑉 = 𝑎 > 0,
|𝑣|𝑉 = 𝑏 > 0 and |𝑢+ 𝑣|𝑉 = 𝑡 and defining 𝑓 : [0,+∞) → R by:

𝑓(𝑡) = 𝑡𝑝 − 2𝑝−3
(︀
𝑎𝑝−2 + 𝑏𝑝−2

)︀
𝑡2 − 2𝑝−3

(︀
𝑎𝑝−2 − 𝑏𝑝−2

)︀ (︀
𝑎2 − 𝑏2

)︀
(A.2)

we see that (A.1) is equivalent to:
𝑓(𝑡) ≤ 0, ∀𝑡 ∈ [ |𝑎− 𝑏|, 𝑎+ 𝑏 ]. (A.3)

As 𝑓 is decreasing on [0, 𝑡0] and increasing on [𝑡0,+∞[ where

𝑡0 = 2
(︂
𝑎𝑝−2 + 𝑏𝑝−2

𝑝

)︂ 1
𝑝−2

, (A.4)

the proof is completed by the following two inequalities:

𝑓(0) = −2𝑝−3(𝑎𝑝−2 − 𝑏𝑝−2)(𝑎2 − 𝑏2) ≤ 0, (A.5)

𝑓(𝑎+ 𝑏) = 2𝑝

(︂
𝑎+ 𝑏

2

)︂(︃(︂
(𝑎+ 𝑏)

2

)︂𝑝−1

− 𝑎𝑝−1 + 𝑏𝑝−1

2

)︃
≤ 0 (A.6)

which hold for any 𝑎, 𝑏 > 0 as 𝑝 > 2. �

When 𝐴 = 𝐼, the following results have been already proved in R2(see [11]) and in R𝑁 (see [28]).

Corollary A.2. Let 𝐴 be a positive-definite matrix on R𝑁 , 𝑁 ≥ 1, and 𝑝 ≥ 2. Denoting by (𝑥, 𝑦)𝐴 = (𝑦𝑇𝐴𝑥)1/2,
∀𝑥, 𝑦 ∈ R𝑁 , and by | · |𝐴 the associated norm, we have

|𝑥− 𝑦|𝑝𝐴 ≤ 2𝑝−2(𝑥− 𝑦)𝑇
(︁
|𝑥|𝑝−2

𝐴 𝐴𝑥− |𝑦|𝑝−2
𝐴 𝐴𝑦

)︁
, ∀𝑥, 𝑦 ∈ R𝑁 . (A.7)

Corollary A.3. Let 𝐴 ∈ 𝐿∞(Ω) be symmetric with the property that ∃𝛼 > 0 such that

𝐴𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 ≥ 𝛼|𝜉|2, ∀𝜉 ∈ R𝑁 , for a.e. 𝑥 ∈ Ω, (A.8)

with Ω a bounded domain in R𝑁 , 𝑁 ≥ 1. Then, there exists 𝑚 > 0 such that for any 𝑝 ≥ 2 it holds:∫︁
Ω

(︁
|𝑢|𝑝−2

𝐴 𝐴𝑢− |𝑣|𝑝−2
𝐴 𝐴𝑣, 𝑢− 𝑣

)︁
d𝑥 ≥ 𝑚

∫︁
Ω

|𝑢− 𝑣|𝑝d𝑥 (A.9)

where (·, ·) denotes the Euclidean inner product on R𝑁 .
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