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THERMAL FLOWS IN FRACTURED POROUS MEDIA

ISABELLE GRUAISY™ AND DAN POLISEVSKI?

Abstract. We consider the thermal flow problem occuring in a fractured porous medium. The incom-
pressible filtration flow in the porous matrix and the viscous flow in the fractures obey the Boussinesq
approximation of Darcy-Forchheimer law and respectively, the Stokes system. They are coupled by the
Saffman’s variant of the Beavers—Joseph condition. Existence and uniqueness properties are presented.
The use of the energy norm in describing the Darcy-Forchheimer law proves to be appropriate. In
the e-periodic framework, we find the two-scale homogenized system which governs their asymptotic
behaviours when € — 0 and the Forchheimer effect vanishes. The limit problem is mainly a model of
two coupled thermal flows, neither of them being incompressible.
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1. INTRODUCTION

Among the issues raised by the heat and mass transfer in fractured porous media, the requirement for further
construction and characterization of macroscopic models is of special interest. It is a difficult task because
the two components have highly constrasting behaviours. The models of flows through fractured porous media
(see [3,4,9,25,27]) are usually obtained by asymptotic methods, from the alteration of a homogeneous porous
medium by a distribution of microscopic fractures/fissures. In this context, the periodic homogenization, based
on the assumption of the e-periodicity of the structure properties, is an important modelling tool for a fractured
porous media process. Although it looks like an idealistic assumption, it usually authorizes a rigorous approach,
yielding many of the properties which must be taken into account at macroscopic level.

Here, we consider that the heat and mass transfer takes place in a periodically structured domain consisting of
two interwoven regions, separated by an interface. As the process at the microscopic scale takes place under the
assumption of e-periodicity, the study of its asymptotic behaviour (when £ — 0) is amenable to the procedures of
the homogenization theory. Regarding our subject, the homogenization of phenomena in fractured media could
be studied in a more realistic manner only when the non-connectedness assumption of one of the components
was dropped out (see [1,23,24]). We improve the properties of the e-periodic biphasic structure introduced in
[24], by attaching the so-called e-domes. They are placed in the last entire e-cells contained in the domain, near
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the boundary, and they complete the e-periodic interface such that it can be as smooth as it is needed, all the
properties of [24] remaining valid.

The first region, the only one reaching the boundary of the domain, represents a connected porous matrix,
where, disregarding its pore scale, we consider the movement of an incompressible average filtration fluid gov-
erned by the Boussinesq approximation of the Darcy-Forchheimer system. The linear Darcy’s law relating the
flow and the pressure gradient in the porous surrounding matrix relies on the assumption of laminar flow (see
[29]). Unfortunately, this assumption does not hold when high imposed pressure gradients and resistance from
fracture walls lead to reduced flow rates compared to the linear Darcy relation. The standard extended model
involves a Forchheimer correction term (see [10]) which introduces a non-linear coupling between pressure gra-
dient and flow rates. This Forchheimer term was proved to be valid at higher Reynolds number by Muskat (see
[21]). Exterior forces are present.

The second region, representing the fractures, which are not necessarily connected, is saturated by an incom-
pressible viscous fluid governed by the Boussinesq approximation of the Stokes system.

These two flows are coupled on the interface by the Saffman’s variant [26] of the Beavers—Joseph condition
(see [5,16]) which was confirmed by Jager and Mikeli¢ [15] as the limit of a homogenization process. Besides
the continuity of the normal component of the velocity, it imposes the proportionality of the tangential velocity
with the tangential component of the viscous stress on the fluid-side of the interface.

The tensors of thermal diffusion of the two phases are e-periodic and not necessarily equal. At the interface,
the the temperature and the heat flux are continuous. Heat sources are present in each component and a
temperature distribution is imposed on the boundary of the domain.

We prove the existence and uniqueness properties of the velocity, pressure and temperature distribution,
solutions of the corresponding thermal flow boundary problem. An L*-estimate of the temperature, uniform
with respect to €, is also presented (Thm. 3.1). The way of describing the Darcy-Forchheimer law by powers
of the energy norm of the inverse permeability tensor proves to be appropriate. These results have an intrinsic
interest, apart from the related homogenization result.

As the Forchheimer effect vanishes with the small period of the distribution shrinking to zero, we study
the asymptotic behaviour of the flow when the Rayleigh number is of unity order, the permeability of the
porous blocks of unity order and the Beavers—Joseph transfer coefficient of e-order, balancing the measure of
the interface. Our main result (Thm. 4.5) presents the two-scale system verified by the limits of the e-solutions,
the local problems and the effective coefficients of the leading homogenized system. Regarding the case of the
non-vanishing Forchheimer effect, the expression of its limit seems to us untraceable by the procedures of the
two-scale convergence theory.

The paper is organized as follows.

In Section 2 we present our fractured porous medium, the e-periodic structure provided with the useful
e-domes. The direct form of the thermal flow problem is introduced.

In Section 3 we prove the existence and uniqueness properties. The weak solutions of our nonlinear problem
are found by means of the Browder-Minty and Schauder fixed-point theorems. The primary estimates are also
obtained.

Section 4 is devoted to the homogenization in the case when the Forchheimer effect is vanishing. We present
the a priori estimates which serve as departure point for adapting the compactness results of the two-scale
convergence theory (see [2,19,22]). Using the techniques of the two-scale convergence theory (see [2,7,22]), we
obtain the so-called two-scale homogenized problem and the solutions of the local problems which allow us to
define the effective coefficients of the homogenized system and to eliminate some of the oscillating unknowns. It
is a model of two coupled thermal flows, neither of them being incompressible. This macroscopic problem takes
a classic form in the case of non-oscillating permeability tensor.

At the end, in Appendix A, a usefull result of strict monotonicity is proved.
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FIGURE 1. The rhombic cell including domes (left) and the resulting modified periodic distri-
bution (right).

2. THE FRACTURED STRUCTURE AND THE GOVERNING SYSTEM

Let Q be an open connected bounded set in RY, N € {2,3}, a manifold of class C? composed of a finite
number of connected components, locally located on one side of the boundary 02 with v its outward normal.

We describe now the geometric structure of our fractured porous medium, similar to that introduced in [14].

Let E be the rhombic polyhedron obtained by affixing square pyramids of 1/2 height on each face of the cube

Y =] —1/2,1/2[", that is
E =int (Conv (YU{:I:;ei,i:LZ,...,N}>>, (2.1)

where e; are the unit vectors of the canonical basis in RYV.
For D cC E, an open set of class C?, and denoting Yy =Y ND and Y = {y c Y : y; = +1/2}, we
assume that for every ¢ € {1,2,..., N} it holds

YNyt ccx® (2.2)
We assume also that these intersections are reproduced identically on opposite faces of the cube Y, that is
e+ YNt =Y,;ny", Vie{l,2,...,N}L (2.3)
For every i € {1,2,..., N} we define the corresponding two opposite domes of Y} by

1 1
Df = (Y + 262») ND and D; = (Y - Qei) nD. (24)

Denoting Y; := Y\?f, we assume that the reunion in R of all the periodic replications of Y, parts, denoted
by RY, has a C? boundary; R}V is similarly defined. The characteristic functions of Y; and Y are denoted by
xs and xf, respectively; we also assume m := |Yy| €]0, 1] (Fig. 1).

Without loss of the generality, we set the origin of the coordinate system in such a way that there exists
r > 0 with the property B(0,7) C RY.

For any e €]0, 1] we denote

Z.={keZ": ck+eY CQ}, (2.5)
I.={k€Z.: ck+ee,+eY CQ, Vie{1,2,...,N}},
O = Uper. (ek +€Yy). (2.7)
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For any k € Z. \ L., denoting by
Jfk:{ie{1,2,...,zv}, (gkz+gﬁ§t)m@7&®}, (2.8)

we define the e-domes which have to be attached to QEf in order to regularize the interface between the free
fluid saturating the fractures and the filtration fluid saturating the porous matrix, by

Dey, = (Ui€J+k (ek Jrf—:D;r)) U (Uiej-k (ek + 6D;)) . (2.9)
We consider that the free fluid takes place in

Qcp = int ((Uker. (b +eYy)) U (Ukezani. Der)) - (2.10)
Consequently, the porous matrix and the interface between the two components are defined by:

O =0\ O, (2.11)
. = 005 N0, = 0. (2.12)

We assume that )., is connected, which means that for NV = 2 we have the classical setup with Yy = D CC Y
and the e-domes can be considered only when N = 3. Also, for every € > 0, there exist k. € N, k. > 1, such
that

0.y = Uk 2, 1)

where every Q’;f is a connected subdomain of Q. with dist(2 e Qg f) > 0 if ¢ # j. The characteristic functions
of ., and €. are denoted by x.s and Xy, respectively.
Denoting I'* = 8Q’§f, it follows that
I, =Uje Tk (2.14)

Denoting by I' = 0Y; N 0Y; C 9D, by n the normal on 9D (inward to D) and by n° the normal on I'.
(outward to Q.s), we have

n®(x) = n(x/e), for any x € (ek + €I') with k € I, (2.15)

where the Y-periodic extension of n|r is still denoted by n.

The class of the connections between QEDf and the corresponding e-domes is similar to that between Y; and
its domes, that is the class of D. This is an important advantage of the structures with e-domes: the class of I'.
is given by D and by the reunion of all the Y, parts in RY, which can be assumed as smooth as it is needed.
There is also an important feature of our periodic structure, provided with e-domes. As the (ek + £Y)-cells
containing e-domes are of at most (4" —2) types and the distance between I'. and 952 is greater than /2, they
do not affect the results obtained for the classical e-periodic structures. The present structure preserves many
specific properties (see [6,9,13,14,24]).

Now we can present the thermal flow problem which corresponds to our framework. If (u®,p®®,6°%) and
(usf,pef,057) stand for the velocities, pressures and temperatures associated to the corresponding phase of our
structure, then they verify the following dimensionless system:

dive®* =0 in Q. dive/ =0 in Qep, u®-nf = un® on T, (2.16)
V™ + (1 + deu®[[22) Au™ + .09 = 0,  [u*|4e = (A5uf*u5®)? in Qo (2.17)
—divET +a.6g; =0 in Q. Vie{l,2,...,N}, (2.18)

; 1 (0w ou’ )
55t = —p i +ei(u), eij(u) = 2 (a:; sl BELRL (2.19)
J 3
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poons + 250 + efe(uff — (- n)ng) =0 on T, Vie{1,2,...,N}, (2.20)
Ve — div(BIVOT) = Q7 in Q, (2.21)
U VO — div(B=VOT) = Q° in Q. (2.22)
B;! ‘?:ng =B ‘ZHZ ng, 0°=67 on T. (2.23)
u”¥-v=0 on 0f), v theoutward normal, (2.24)
0° =71 on 01, (2.25)

where T € H(Q) N L>°(Q) has the property that 3y > 0 for which
|T] < 70 on O in the sense of H(2) (see [17]). (2.26)

The symmetric tensor A5 € L>(Q)V*¥ which stands for the inverse of the permeability tensor, the Beavers—
Joseph coefficient 3. € C1(Q) and the symmetric conductivities B/, B** € L>°(Q)N*N are given with the
property that there exist by and by > 0, by < b2, independent of ¢, such that for any £ > 0 we have

|A| oo () < b2y [B**|pee(q) < bo, | B |p(q) < bo, a.e. in ), (2.27)
8. > by, (A;?j, B, B ) €& > b &k, VEERY, ae. in Q. (2.28)

Y

The rest of the data are the Forchheimer coefficient d. > 0, the Rayleigh number «, > 0, the exterior forces
g € L2(Q)N, the heat sources Q7,Q° € L?(2) and the Forchheimer exponent r € R with the property:

r>2 if N=2 and 3<r<6 if N=3. (2.29)

3. EXISTENCE AND ESTIMATES OF THE WEAK SOLUTIONS

We present in this section the existence and uniqueness properties of the weak solutions of the convection
problem (2.16)—(2.25), together with an L*°-estimate of the temperature.
Let us introduce the following spaces:

H={veH(div,Q), veL(Q", v,=0 on 09}, (3.1)
V={veH, divi=0 in Q}, (3.2)
H.={veH, vlg,€H (Qp)"}, (3.3)
Ve={veH, divv=0 in Q}, (3.4)
L3(Q) = {p€L2(Q), /Qp=0}, (3.5)

where v,, stands for the normal trace on 9f2.
For any v € H. we denote the normal trace on T in the H(div,{2) sense by v, and the trace on T'; in the
H'(Q.y) sense by v.pv. As I'; is of class C?, let us remark that

Upe = (yepv)ns € HY2(T,). (3.6)

Introducing
Ve 1= Yo pv — (Une)n° € HY2(T)N, (3.7)

we obviously have
(’yafv)2 = (Vpe)? + (v4=)? a.e.on T.. (3.8)
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We see now that H and H. are Banach spaces, endowed with the norms:

vl = |v|Lr(q) + |divolLzq), (3.9)

0la, = [l @, + divol e, + le()lz2@.,) + &2, (3.10)

Moreover, by rescaling some inequalities valid in Y, £\ Y and Y}, we obtain:

‘U|L2(st) <C (|’U‘L2(st) + g|div U|L2(Qgs) + 5|6(2))|L2(ng) + 51/2|Ut5 ‘L2(1"5)) , (3.11)
|U|H1(ng) < C|’U|H5, Yv € H,, (312)
where C' is independent of €.

Denoting T¢ = 6° — 7 in (2.16)—(2.25), we are led to the following variational problem:
To find (u,T¢) € V. x H}(Q) which verifies

/ (1+ de|uf|’2?) Aufv —|—/ eij(u)e;;(v) + 5@3/ ug v+ . / (T +7)gv =0, YveV, (3.13)
Qes Qcp T. Q
/ BVTeVS +/ utSVTe = / QS — / utSVT — / BeVTVS, VS € Hy(Q), (3.14)
Q Q Q Q Q
where we denoted
e [ B inQg, _ ) Q7 in Qg

Theorem 3.1. There exists a solution of the problem (3.13) and (3.14). Any solution (u¢,T¢) of (3.13) and
(3.14) has the property that T¢ € L () and that for some ¢ > 0, independent of €, we have

VT 20 + [T + Tl (0) < ¢, (3.16)
[0 L2 (@) + [0 ) + €2 Ui |2, < ca, (3.17)
[u®| Lr(o.) < ca/raztr, (3.18)

Proof. By splitting the system according to the two distinct types of nonlinearities involved, we expect to
complete the proof by the Schauder fixed-point theorem.
For w € V., we define T, € H} () to be the unique solution of the problem:

/BEVTwVS—i— /wSVTw = / QS — /wSVT - /BEVTVS, VS € HL (D). (3.19)
Q Q Q Q Q

First, let us examine the continuity of the convective term.

‘ / wSVTy,
Q

Asr e (2,00) if N=2and r € [3,6) if N =3, then by using the corresponding Sobolev inequalities we get

< |w|L7‘(Q)|Tw‘L2r/(r—2)(Q)‘S|Hé(9). (3.20)

|Tw|L27‘/(7‘—2)(Q) < C|Tw|Hé(Q)- (3.21)
|w|LT(st) < c|w‘H1(ng)7 (3'22)

which obviously imply
< clw|g, |Tw| g1 o) |S]H1(0)- (3.23)

‘/ wSVT,
Q
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Thus, using again that div w = 0 in 2, the existence and uniqueness results follow straightly from the Lax—
Milgram Theorem.
Moreover, acting like in [8,14], we prove that T,, € L>°(£) and there exists ¢ > 0 (independent of ¢) such
that
|VTw|L2(Q) + |Tw + T‘LOO(Q) <ec (3.24)

Setting S = Ty, in (3.19), we obtain
IVTwlr2) < c(1Ql2) + IVTIL2) + (@2 () + 10) lwlr2(e)) » (3.25)

where ¢ > 0 is independent of €.
Now we introduce F(w) € V. as the unique solution of the problem:

/QES (14 de|F(w)|2) A*F(w)o +/

Qef

i3 (F(w))es; (v) + 2B. /

F(w)iv=—a. / (Tw +7)gv, Yv eV
FE Q

(3.26)

The existence and the uniqueness can be proved by the Browder-Minty Theorem (see [30]) applied to the strictly
monotone map (see Cor. A.3 in the Appendices) G, : V. — V. defined by

(Geu,v)v., vy :/ (1+ de|ul2?) AEWHL/ eij(u)eij(U)Jrffﬁe/ Ut v, (3.27)

es ef 5

which is also bounded and hemicontinuous. As r > 2 and as for any u € H. we have

(e, vz 2 e (ulfa) + le() aa,) + ueBa, ) - (3.28)

for some ¢, > 0 independent of u, the coercivity of G. follows.
Next, we estimate the range of F'(w) with respect to w € V.. Setting v = F(w) in (3.26) and calling (3.16)
we get for some ¢ > 0 independent of

de|F (W)L .,y + [F(w)|12q.,) + le(F @)1, + el F (W) 120, < coe (10 +1QL2()) F(w)lL2()- (3-29)
Using (3.11) we finally obtain:

|F(w)|2(0.,) + le(F(w))| 2o,y + V2 F (W)t | p2r.) < cae (to + Qlr2(0)) » (3.30)
r 2/r 1 /r
[F(w)l gy < o/ (10 +[Qluz) " dVr, (3.31)

that is, there exists cg > 0 independent of ¢ such that
|F(w)|g. < cp (045 + ag/’"d;”’“) . (3.32)
Thus we have defined a mapping w € M, — F(w) € M., where
M, = {U eV, lp <cr (oza + a?“d;“’“)} . (3.33)

We check now that F' is compact. Let (wy)ren be bounded in V;; then, using (3.25) and (3.11), we see that
(VTw, )ken is bounded in L?(Q2). As H}(Q) is compactly included in L"(£2), we find that there exists a subse-
quence (T, , )xren which is a Cauchy sequence in L"(€2). Using the strict monotony of G, it follows from (3.26)
that (F(wg))gren is a Cauchy sequence in V.

We see that the Schauder fixed-point theorem can be applied. Thus we obtain an element u € V. such that
u = F(u) and obviously (u,T,) € V. x H}(f) is a solution of the problem (3.13) and (3.14).

The rest of the proof is straightforward. O
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Remark 3.2. Problem (3.13) and (3.14) has a unique solution only if we assume the Rayleigh number a,. > 0
to be small enough.

We proceed by recovering the pressure which was hidden by the (3.13) and (3.14) formulation. Let us introduce
the spaces

V(Qop) = {v€D(Q)Y, divo=0inQ.,}, h=sorf, (3.34)
’ ]_ 1
L= {qe L3, qlo.. e W (%)}, S+- =1 (3.35)

Remark 3.3. W' (Q.,) cC L*(Q.s).

Theorem 3.4. Let (u®,T¢) € V. x H} () be a solution of (3.13) and (3.14). Then there exists p° € L. such
that

J

Moreover, there exists ¢ > 0 independent of € such that

(14 de|u®|’2?) A€u5v+/ eij(ua)eij(v)—l—aﬁs/ ufev—i—as/

(T€+T)gv:/pedivv, Vv € H.. (3.36)
st Fe Q (9]

es

Ip°|L20) < c (d;/rag/Tl+Oés+asﬂs> and  [Vp*[pv . ) <c (045 + Oég/rldi/r/) (3.37)
Proof. For some w € V(Q;), we set in (3.13)

v = {0 in Qg (3.38)

w in Qg

Applying the corresponding version of the De Rham theorem we find that 3p= € W' (€,), unique up to an
additive constant, such that

—Vp = (14 deus[2%) Au + 0o (T5 +7)g in L7 (). (3.39)

The corresponding Green formula follows:

/ (14 de|uf|?) A%ufo + ae/ (T* +7)gv = / p=divo 4+ / p*vpe, Vv € H.. (3.40)
es Qes Qes e
Next, let w € V(Qy) and set in (3.13)
~ J 0 in Qg
v= {w o (3.41)

Using again De Rham theorem, we find that 3p°/ € L?(Q. t), unique up to additive constants corresponding to
each connected component of €., and such that
881‘]‘ (us)

=a. (T +7)g; — e in H™(Q). (3.42)
J

Defining ¥ € L2(Q.)N by ‘
E;z _ 7p€f5ij + €ij (UE) (343)

we see that div (3°9) = a. (T° 4 7) g; € L*(Q5) and the Green formula follows:

/Q eij(u®)ei;(v) + ozs/Q (T +7)gv = /Q p*fdivo + (xet ] Ui>H—1/2,H1/2(F5)7 Vv € H.. (3.44)
ef ef ef
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From (3.40) and (3.44) we deduce that

<fo5avi>H*1/2,H1/2(Fe) +/ P Ve +5ﬁs/ ui0 =0, Yvel.
T, T,

We shall prove now that for a certain choice of the free constants, (3.45) holds for any v € H..
As Q5 is of class C2, we can introduce X5.,. € H-*/2(T.) by

<Zfﬁna,u>H71/27H1/2(p y = (Ens,un >H*1/2,H1/2(F5)’ Yu € Hl/Q(FE).

Also, for k € {1,2,...,k.}, we define QF : H'/2(I'*) — H'/2(T'.) as the natural extension with zero:

b S w(x), :vel"’;
wa(‘”)_{ 0, zeli, i#k

First, let w € H'Y/2(I'.)N; we set in (3.45) v € V. with the properties
v=0 in Qo and v=w-—w,n® on TI..

Thus we obtain

<E1€116awi>H*1/2,H1/2(F5) - <Zfﬁnfawn5>H*1/2,H1/2(F5) + 6ﬂ5/ ufaw =0, Ywel..
r

e

797

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

Next, let w € HY/2(T*) with Jx w = 0; obviously, there exists v € V. such that v = wn® on I'* and v = 0 in

Q\ QF. By setting such a v in (3.45) we get
<E;§n57w>H’1/2,H1/2(Fk) + / pESU) =0,
€ Fé

where ¥k . € H=Y/2(T*) is defined by

<Efm§niav>H—1/2,H1/2(F’g) = <EifniaQ§U>H—1/27H1/2(F5)7 Yu € Hl/z(f‘]g).

Classic manipulations of (3.50) yield

1 X
Zskng +p 5 = = TR <225n57Q§1>H*1/2 H/2(T,) +/ pss in H_l/z(ré).
|F€ | ' : ING
Choosing the free constants of p°/ and p** such that

(S5ene, Q1) 12 gisagr,y + /m P =0, Vke{l,2,... k},

€

/ p5f+/ paszo
Qe Q

es

we find that
ke
€ § e k
<En n57wn5>H*1/27H1/2(F€) < nsnfaQa (w”E|F§>>H—1/2,H1/2(FE)
k=1
kE kE
1>
<En5n5 wna‘F’§>H71/2’H1/2(Fk = E p° wnE|Fk H=1/2 H1/2(Tk)
k=1 k=1

:_Z/k wnE|Fk :_/ pwpe, VYw € H
r r

€

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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and hence (3.45) holds for any v € H.,.
Also, by adding (3.40) and (3.44), it follows that p® € L¢, defined by

e pef in Q.f,
p - {pES in st, (3’57)
satisfies (3.36).

As Q is of class C? and p® € Lo(2), the unique solution of the following Laplace equation with Neumann
boundary condition which has zero mean value belongs to H2(Q2); we denote it by v°:

Av® = p° in Q, (3.58)
gze =0 on 09 (3.59)

Moreover (see [20] Chap. 4, Sect. 2.3), that there exists C' > 0, independent of p°, such that
V%[ 20 < Olp°[L2(0)- (3.60)

Setting v = Vu© € H, in (3.36), we prove the estimate (3.37) by using (3.16)—(3.18) and (3.60) in a straightfor-
ward manner. 0

4. HOMOGENIZING THE CASE OF NEGLIGEABLE FORCHHEIMER EFFECT

In this section we shall study the asymptotic behaviour (when e — 0) of (u®,p*,T¢) € V. x L. x H}(Q)
verifying (3.14) and (3.36), as the Forchheimer effect is vanishing, that is,

d. — 0. (4.1)

In the framework of the homogenization procedure, we assume that there exist A € L>(Q, L2, (Y)Y N, g e
Cl.(Y), Bf and B® € L2 (Y)V*N such that

per per
(BE,BES,BEf) (x) = (ﬁ,Bs,Bf) (g) , A%(x) = A (w, g) , for a.a. v € Q, (4.2)
B>bi, (AB,BN)&E >bi&s, YEERY, aeinQxY. (4.3)

Also, there exists a > 0 such that
o — a when & —0. (4.4)

Under these conditions, the estimates (3.16), (3.18), (3.37) and the relation (3.39) yield

‘uelLT(QES) < Cds_l/r, (4.5)
‘UE‘L2(Q) + ‘VU6|L2(QEJ,) + elug. |L2(F€) <, (4.6)
IVT*|p2(q) + [T L= (o) < C, (4.7)
‘pE|L2(Q) +|Vp® L (o) = C, (4.8)
for some C' > 0 independent of ¢.
From (4.5) we obtain immediately
/Q d.|uf|"2A%ufv — 0, Vv € H., (4.9)

that is, the Forchheimer term has no macroscopic influence in this case.
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For any h € {s, f} and for any function ¢ defined on Q x Y, let us introduce the following notations.

Hper(div,Y) = {90 € Hioc (div7 RN) , pis Y—periodic} , (4.10)
Vper (div,Y) = {¢ € Hper(div,Y), divye=0inY }, (4.11)
- 1
<,0h - <)0|Q><th Qoh = 5 w(vy)dya h e {Svf}v (412)
Yl Jy,
= / o(y)dy, thatis &= (1—m)@" +m@’. (4.13)
Y
H;er( V) = {90 € Hlloc (RhN) ,p is Y—periodic} , (4.14)
H;er(Yh) = { Hper(Yh)’ 95 = 0} . (415)

Also, for any sequence (¢°)c, bounded in LP(Q X Y), 1 < p < 0o, we denote
° 2
when ¢ is two-scale convergent to ¢ € LP(Q x Y') in the sense of [19] and as usual

Hy(div,Q) ={v € H(div,Q), v, =0 on 0Q}, (4.16)
Vo(div, Q) = {v € Hp(div,Q2), dive=0 in Q}. (4.17)

From (4.6), it follows that Ju € L2(€2 x V)" such that, on some subsequence
u Ao, (4.18)

u® 4/ y)dy € Vo(div,Q) weakly in  L*(Q)V. (4.19)

Also, we see that (xesu®)e, (xefu®)e and (Xsfgu> are bounded in (L?(Q))Y, Vi € {1,2,...,N}. This
z;
situation was already studied in [12] and we recall the results proved there.

Theorem 4.1. There exist u € L? (Q, Vper(div,Y)), w € L2 (2, (H} (Y5)/R)N) such that the following con-
vergences hold on some subsequence:

2

u® = wu, (4.20)
Xer Vs 2 y; (w{ + vywi) , Vie{l,2,...,N} (4.21)
Moreover, u' is independent of the microscopic variable, namely:
o =al € Hi(Q), (4.22)
a € Vp(div, Q), (4.23)
divyw +dive! =0 in Qx Y. (4.24)

Concerning the temperature behaviour, from (4.7), and using the compactness result of [2], we get
Theorem 4.2. There exist T € H}(Q) and R € L* (Q, H..(Y)/R) such that

per

T AT, (4.25)
T 5 (0T OR .
Be; (8% + 8%) ., Vie{l,2,...,N}. (4.26)

Moreover, T € L () and we have

T¢ =T weakly in H}(Q) and weakly star in  L>(f). (4.27)
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Theorem 4.3. There exists p € L2(Q x Y) with p* = p* € W' (Q), such that on some subsequence we have

P 2. (4.28)

Proof. Calling (4.8), the compactness result of [2] implies the existence of some p € LZ(Q2 x Y') such that (4.28)

holds on some subsequence.
By rescaling the corresponding Rellich-Kondrachov inequality in Yy, we have

lalir 0. < Celalyir.,y Y4 € Wy (). (4.29)

Thus, taking (3.39) into account, we obtain

= ‘ / qVp™*
QES

V=l -1 (q,,) < Ce. (4.31)

vaS

<lglzr..)

(Vp=s, C]>W—11T',W$'T(Qgs) L (9 < C€|q|W01’T(QES)’ (4.30)

that is,

Then, using the extension operator Q.s € £ (L*(Qe,), L*(2)) of Lipton-Avellaneda (see [18]), defined by

7T(£L') in sta

Qesm =g 1 / ( : (4.32)
y)dy  in Qep,
‘EY;| ek+eYs </

Theorem 3.2 of [24] implies that there exists ¢° € L?(Q) such that

Qesp™ — ¢° in L*Q), (4.33)
S 2 S 3
XesD™ = Xs(y)¢* (z) in L*(QxY). (4.34)
Passing the equality
XssQaspss = Xesps in L? (Q)v (435)

at the two-scale limit, we obtain

Xs(¥)a*(z) = xs(y)p(z,y) for a.a. (z,y) € AXY, (4.36)

that is, p° = p* € L?(Q).
Moreover, (3.20)—(3.21) of [24] reads:

Qesp™ — p° in L"(Q)/R, (4.37)
V(Qesp™) — Vp* in WT(Q). (4.38)
Noticing that
IV(QesP™)| 1 () + VD™ | () < C, (4.39)
we infer that (4.38) implies
V(Qesp™) — Vp* in L7 (Q), (4.40)

that is, p° = p* € WL (Q). O
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Now, we can present the so-called two-scale homogenized problem, verified by the limits given by Theo-
rems 4.1-4.3. We find this problem to be well-posed at least for « sufficiently small. Hence, the asymptotic
behaviour of u®, T° and p° is completely described by the solutions of this problem, via (4.20)—(4.21), (4.25)—
(4.27) and (4.28).

Denoting

HOQxY)={ueL*(QxY), divyu=0in Qx Y, u/ =3/ € HJ( )V, @ € Ho(div,Q)}, (4.41)
VOxY)={ue HQxY), divi=0inQ}, (4.42)

we see that ~
X=HQxY)x L2 (Q,H;er(yf)N) (4.43)

is a Hilbert space endowed with the scalar product
((u,w), (0, 9)) x =/ u-w+/divﬂdiV¢+/ (e(u) + ey(w)) (e(p) +ey()). (4.44)
QXY Q QxYy

We also have to introduce the following spaces
M={qeLiQxY), ¢=¢cH ()},
Xo={(u,w) € X, divi=0 in Q, divyw+dive/ =0 in QxY;}.

Theorem 4.4. The limits of the convergences (4.20)—(4.21), (4.25)-(4.27) and (4.28), that is (u,w) € Xo,
(T,R) € HY(Q) x HL,.(Y)/R and p € M, verify the following system:

per

/ B(V(T +7)+V,R) (V<I>+Vy\11)+/ﬁ<I>V(T+T)
QxY Q

per

- / Qd, V(®,V) € HL(Q) x H.(Y)/R. (4.45)
Q

/ Aug + / (e(u) + ey (w)) (e(0) + ey () + [ B! —uln)p +a / (T +7)9¢
QXY QxYy Q

QxT

= / p°div @ +/ (pf —p°) (dive +divyy), V(p,¥) € X. (4.46)
Q QXY

Proof. First, for some ® € D(Q2) and ¥ € D(Q, C2,.(Y)), we set S = ®+eP® in (3.14), where U¢(z) = U(x,x/¢)

per

)
for a.a. x € Q. Using (4.20), (4.21) and (4.25)—(4.27) we easily obtain (4.45), even the convergence of the
convective term, as

/ uFOVTE = — / T°u*V® and u® — 4 weakly in L?(Q). (4.47)
Q Q

Next, let ¢ € D(, C32,(Y))N and ¢ € D(Q,C3,(Yy))N such that (¢,¢) € X. Let v a prolongation of 1 to
D(Q, Hper(div,Y)), which can be done, for instance, by considering a certain Neumann problem in Y. Denoting,
as usual, p°(z) = ¢ (x, g) and ¢°(z) = ¥ (:v, g), we can set v(zr) = ¢°(z) + ey (x) in (3.36). Passing to the
limit with € — 0 and using the two-scale convergences of Theorems 4.1-4.3, we obtain:

/ pediv(ep® 4+ ey®) — pf (divep + divy ) +/ p° (divmcp + divyd;)
Q QxYy QXY

As p € M, we have also

/ pdivyd = */ PoYn = 7/ pdivytp
QxYs QxT QxYy
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and the convergence of the right-hand side term of (3.36) is proved. All the other convergences are straightfor-
ward, except that on Q x T';, which is similar to that in [14]. O

The system (4.45) and (4.46) will provide all the local solutions of our problem, allowing us to successively
eliminate some of the rapidly oscillating unknowns from the governing system.
First, denoting

Vy = {w € (Hiu(Y)/R)" | divyp = 0} : (4.48)
Ky ={p € (Hy(v)/R)" , divyp= -1}, (4.49)

for any k,h € {1,2,..., N} we define R¥ € H}

L (Y)/R, (WEh gkhy € Vi x L3(Yy) and W € Ky as the unique
solutions of the following three problems:

/Y BV (yx + RM)Vip =0, Vi € HL (YV)/R, (4.50)
B in Y,
where B = {Bf inY;,
Jy, (Oirdjn + ey.i (W) ey.i5(0) = [y, ¢ divyd, Vo€ (Hp, (V) /R)Y
(4.51)
fyf qdiv, (W) =0, Vqe L§(Yy),
/ ey(W)ey(¥) =0, Vi€ Vy. (4.52)
Yy

The existence and uniqueness results for (4.50) and (4.51) are obtained by the Lax—Milgram Theorem. Regarding
(4.52), we notice that W is the projection of 0 on the closed convex Ky # 0 in (H].(Yy)/R)™.

Setting ® = 0 in (4.45) and ¢ = 0 in (4.46), we find that R, w and p/ have closed expressions with respect
to uf, T and p*:

R(z.y) = R)5 (@), (4.59)
W) = W9 (y)ess (u ) ) + W () div(uf ) a), (4.54)
P! (z,y) = p°(2) + 4" (y)ei; (w!) (@), for a.a. (z,y) € QX Y. (4.55)

Using (4.53)-(4.55), we elimitate R, w and p/ by an appropriate choice of test functions, respectively

5o i (4.45) and = WWe;;(p) in (4.46).
T

Thus we find the system which determines the leading limits of our homogenisation process.

Theorem 4.5. Ifu € V(Q xY), T € H}(Q) and p € M are the limits given by Theorems 4.1-4.3, then they
verify the following system:

/ BHV(T+T)V<I>+/1”L<I>V(T+T):/Q(I), Vo € Hy(Q), (4.56)
QxY Q Q

/ Aut® +mplly, / ei(ul )ern(pf) +mpl / ulol +a / (T +71)9%
QOxYs Q Q Q
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= / pidivg, Voe HQxXY), (4.57)
Q

The so-called effective coefficients which appear in (4.56) and (4.57) are the following:

OR* OR"
BE = | Bun (6 +=—) (0 + — ), 4.58
ij /Y kh(k+ayz>(J +8yj) ( )
1 i
ﬂgkh = Nikdjn + Vil Jy (60kOmn + ey,hn(th)) (60i0mj + ey, em(WH)), (4.59)
4 ¥
1
=51 [ )G — i), (1.60)
Yl Jr
where A > 0 is given by
1
A= — ey (W) ey, (W). (4.61)
Y] Yy

Remark 4.6. The tensors B and p* are positive-definite and have the usual symmetry properties Bg = Bﬁ
and ,ugkh = ufhij = uﬁkh; BH is also symmetric and has the property:

B i = /Q Fﬁ(w — (we)v)® >0, Vo€ Hy(Q)N. (4.62)

Remark 4.7. In the case when A is independent of y, that is A € L>(Q2)V>*¥  we can go further. The system
(4.56)—(4.57) yields:

S

ug:u{_< ! / Uf(y)) (Akju§+a(T+T)gi+ Op ) in L}QxY,), (4.63)
Vsl Jy, Oz

s

where U* € Hy(div,Y;) is the unique solution of

/AU’“G):/ O, VO € Hy(div,Ys). (4.64)
Y. Y.

s

Noticing that (Vil st Uk (y)) are the elements of a symmetric and positive-definite matrix, we define its inverse

by AH. Thus, redenoting § = T + 7, we find that
(@, uf, p*,0) € Ho(div, Q) x HL(Q) x WL (Q)/R x H'(Q) is weak solution of the system

(1 —m)diva® + mdivu! = in Q, (4.65)
Vp* + A%at 4 abg = (AT — A)u/ in Q, (4.66)

Vp* —div(ufe(u!)) + abg = —pu’ in Q, (4.67)
—div (B#V0) +aVe = (1 —m)Q* + m Q' in Q. (4.68)
=T on 0. (4.69)

This is a model of two coupled thermal flows, neither of them being incompressible. The terms of the right-hand
sides of (4.66) and (4.67) come from the Beavers—Joseph and the incompressible transfer conditions on the
vanished interface.
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APPENDIX A. A RESULT OF STRICT MONOTONICITY
We present here the inequality claimed in the proof of Theorem 3.1.

Theorem A.1l. Let (-, )y be an inner product on a vector space V over R and let |- |y, be the associated norm.
Then, for every p > 2, it holds:

lu+ovf}, < (|2u|§’/_2u + |20 0, u + v)v , Vu,veV. (A1)

Proof. The cases when p = 2 or u = 0 or v = 0 are obvious. Then, let p > 2, u # 0, v # 0; denoting |u|y = a > 0,
|[vlyy =b > 0 and |u+ v|y =t and defining f : [0,4+00) — R by:

) == 278 (@2 ) (@) (a2 - ) (42

we see that (A.1) is equivalent to:
f(#) <0, Vte[la—bl,a+b]. (A.3)

As f is decreasing on [0,tg] and increasing on [tg, +00o[ where

the proof is completed by the following two inequalities:

£(0) = —2P73(aP% — b*2)(a® - b*) <0, (A.5)
b A
e ()
which hold for any a,b > 0 as p > 2. |

When A = I, the following results have been already proved in R?(see [11]) and in R¥ (see [28]).

Corollary A.2. Let A be a positive-definite matriz on RN, N > 1, andp > 2. Denoting by (z,y)a = (y* Ax)'/?,
Va,y € RN, and by | - |4 the associated norm, we have

o =yl <272 —y)" (I:vIZIQAw - Iyl’Xsz> , Va,y €RY. (A7)
Corollary A.3. Let A € L>(Q) be symmetric with the property that 3o > 0 such that
Aij(2)&:€ > al¢?, VEERYN, for ae. z€Q, (A.8)

with Q a bounded domain in RN, N > 1. Then, there exists m > 0 such that for any p > 2 it holds:
/ <|u\ﬁ_2Au — o5 Av,u — v) dz > m/ |lu — vPdz (A.9)
Q Q
where (-,-) denotes the Euclidean inner product on RY.
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