Unified analysis of discontinuous Galerkin and C 0 -interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 449-478

We provide a unified analysis of a posteriori and a priori error bounds for a broad class of discontinuous Galerkin and C0-IP finite element approximations of fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman and Isaacs equations with Cordes coefficients. We prove the existence and uniqueness of strong solutions in H2 of Isaacs equations with Cordes coefficients posed on bounded convex domains. We then show the reliability and efficiency of computable residual-based error estimators for piecewise polynomial approximations on simplicial meshes in two and three space dimensions. We introduce an abstract framework for the a priori error analysis of a broad family of numerical methods and prove the quasi-optimality of discrete approximations under three key conditions of Lipschitz continuity, discrete consistency and strong monotonicity of the numerical method. Under these conditions, we also prove convergence of the numerical approximations in the small-mesh limit for minimal regularity solutions. We then show that the framework applies to a range of existing numerical methods from the literature, as well as some original variants. A key ingredient of our results is an original analysis of the stabilization terms. As a corollary, we also obtain a generalization of the discrete Miranda–Talenti inequality to piecewise polynomial vector fields.

DOI : 10.1051/m2an/2020081
Classification : 65N30, 65N15, 65N12
Keywords: Fully nonlinear PDE, Hamilton–Jacobi–Bellman and Isaacs equations, Cordes condition, nonconforming finite element methods, error analysis
@article{M2AN_2021__55_2_449_0,
     author = {Kawecki, Ellya L. and Smears, Iain},
     title = {Unified analysis of discontinuous {Galerkin} and $C^0$-interior penalty finite element methods for {Hamilton{\textendash}Jacobi{\textendash}Bellman} and {Isaacs} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {449--478},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020081},
     mrnumber = {4229194},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020081/}
}
TY  - JOUR
AU  - Kawecki, Ellya L.
AU  - Smears, Iain
TI  - Unified analysis of discontinuous Galerkin and $C^0$-interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 449
EP  - 478
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020081/
DO  - 10.1051/m2an/2020081
LA  - en
ID  - M2AN_2021__55_2_449_0
ER  - 
%0 Journal Article
%A Kawecki, Ellya L.
%A Smears, Iain
%T Unified analysis of discontinuous Galerkin and $C^0$-interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 449-478
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020081/
%R 10.1051/m2an/2020081
%G en
%F M2AN_2021__55_2_449_0
Kawecki, Ellya L.; Smears, Iain. Unified analysis of discontinuous Galerkin and $C^0$-interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 449-478. doi: 10.1051/m2an/2020081

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[2] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271–283. | MR | Zbl | DOI

[3] J. Blechschmidt, R. Herzog and M. Winkler, Error estimation for second-order PDEs in non-variational form. Preprint (2019). | arXiv | MR

[4] J. Blechta, J. Málek and M. Vohralk, Localization of the W - 1 , q norm for local a posteriori efficiency. IMA J. Numer. Anal. 40 (2020) 914–950. | MR | DOI

[5] O. Bokanowski, S. Maroso and H. Zidani, Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47 (2009) 3001–3026. | MR | Zbl | DOI

[6] J. F. Bonnans and H. Zidani, Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41 (2003) 1008–1021. | MR | Zbl | DOI

[7] S. C. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | MR | Zbl | DOI

[8] S. C. Brenner, T. Gudi, M. Neilan and L. Y. Sung, 𝒞 0 penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80 (2011) 1979–1995. | MR | Zbl | DOI

[9] S. C. Brenner and E. L. Kawecki, Adaptive C 0 interior penalty methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients. J. Comput. Appl. Math. 113241 (2020). | MR

[10] S. C. Brenner and L. Y. Sung, Virtual enriching operators. Calcolo 56 (2019) 25. | MR | DOI

[11] L. A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations. In: Vol. 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1995). | MR | Zbl | DOI

[12] C. Carstensen, T. Gudi and M. Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM. Numer. Math. 112 (2009) 363–379. | MR | Zbl | DOI

[13] F. Chiarenza, M. Frasca and P. Longo, W 2 , p -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 336 (1993) 841–853. | MR | Zbl

[14] P. G. Ciarlet, The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR | Zbl

[15] P. G. Ciarlet, Linear and Nonlinear Functional Analysis With Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). | MR | Zbl | DOI

[16] H. O. Cordes, Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen. Math. Ann. 131 (1956) 278–312. | MR | Zbl | DOI

[17] M. G. Crandall and P.-L. Lions, Convergent difference schemes for nonlinear parabolic equations and mean curvature motion. Numer. Math. 75 (1996) 17–41. | MR | Zbl | DOI

[18] M. G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. | MR | Zbl | DOI

[19] K. Debrabant and E. R. Jakobsen, Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comput. 82 (2013) 1433–1462. | MR | Zbl | DOI

[20] D. A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69. of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | MR | Zbl | DOI

[21] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, revised edition. In: Textbooks in Mathematics. CRC Press, Boca Raton, FL (2015). | MR | Zbl

[22] X. Feng, R. Glowinski and M. Neilan, Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55 (2013) 205–267. | MR | Zbl | DOI

[23] X. Feng and M. Jensen, Convergent semi-Lagrangian methods for the Monge-Ampère equation on unstructured grids. SIAM J. Numer. Anal. 55 (2017) 691–712. | MR | DOI

[24] W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, 2nd edition. In: Vol. 25 of Stochastic Modelling and Applied Probability. Springer, New York (2006). | MR | Zbl

[25] I. Fonseca, G. Leoni and R. Paroni, On Hessian matrices in the space B H . Commun. Contemp. Math. 7 (2005) 401–420. | MR | Zbl | DOI

[26] D. Gallistl, Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients. SIAM J. Numer. Anal. 55 (2017) 737–757. | MR | DOI

[27] D. Gallistl, Numerical approximation of planar oblique derivative problems in nondivergence form. Math. Comput. 88 (2019) 1091–1119. | MR | DOI

[28] D. Gallistl and E. Süli, Mixed finite element approximation of the Hamilton–Jacobi–Bellman equation with Cordes coefficients. SIAM J. Numer. Anal. 57 (2019) 592–614. | MR | DOI

[29] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order. . In: Classics in Mathematics. Reprint of the 1998 edition. Springer-Verlag, Berlin (2001). | MR | Zbl

[30] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79 (2010) 2169–2189. | MR | Zbl | DOI

[31] P. Houston, D. Schötzau and T. P. Wihler, Energy norm a posteriori error estimation of h p -adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17 (2007) 33–62. | MR | Zbl | DOI

[32] M. Jensen, L 2 ( H y 1 ) finite element convergence for degenerate isotropic Hamilton–Jacobi–Bellman equations. IMA J. Numer. Anal. 37 (2017) 1300–1316. | MR

[33] M. Jensen and I. Smears, On the convergence of finite element methods for Hamilton–Jacobi–Bellman equations. SIAM J. Numer. Anal. 51 (2013) 137–162. | MR | Zbl | DOI

[34] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. | MR | Zbl | DOI

[35] E. L. Kawecki, Finite element methods for Monge-Ampère type equations. Ph.D. thesis, University of Oxford (2018).

[36] E. L. Kawecki, A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains. Numer. Methods Part. Differ. Equ. 35 (2019) 1717–1744. | MR | DOI

[37] E. L. Kawecki, A discontinuous Galerkin finite element method for uniformly elliptic two dimensional oblique boundary-value problems. SIAM J. Numer. Anal. 57 (2019) 751–778. | MR | DOI

[38] E. L. Kawecki and I. Smears, Convergence of adaptive discontinuous Galerkin and C 0 -interior penalty finite element methods for Hamilton–Jacobi–Bellman and Isaacs equations. Preprint (2020). | arXiv | MR

[39] M. Kocan, Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numer. Math. 72 (1995) 73–92. | MR | Zbl | DOI

[40] N. V. Krylov, Nonlinear elliptic and parabolic equations of the second order. Translated from the Russian by P. L. Buzytsky [P. L. Buzytski]. In: Vol. 7 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987). | MR | Zbl

[41] H. J. Kuo and N. S. Trudinger, Linear elliptic difference inequalities with random coefficients. Math. Comput. 55 (1990) 37–53. | MR | Zbl | DOI

[42] H. J. Kushner and P. Dupuis, Numerical methods for stochastic control problems in continuous time, 2nd edition. In: Vol. 24 of Applications of Mathematics (New York). Springer-Verlag, New York (2001). | MR | Zbl

[43] O. Lakkis and T. Pryer, A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput. 33 (2011) 786–801. | MR | Zbl | DOI

[44] O. Lakkis and T. Pryer, A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35 (2013) A2025–A2045. | MR | Zbl | DOI

[45] A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and parabolic equations with discontinuous coefficients. In: Vol. 109 of Mathematical Research. Wiley-VCH Verlag Berlin GmbH, Berlin (2000). | MR | Zbl

[46] T. S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31 (1953) 253–259. | MR | Zbl | DOI

[47] M. Neilan, A. J. Salgado and W. Zhang, Numerical analysis of strongly nonlinear PDEs. Acta Numer. 26 (2017) 137–303. | MR | DOI

[48] M. Neilan and M. Wu. Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl. Math. 356 (2019) 358–376. | MR | DOI

[49] R. H. Nochetto and W. Zhang, Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form. Found. Comput. Math. 18 (2018) 537–593. | MR | DOI

[50] M. V. Safonov, Nonuniqueness for second-order elliptic equations with measurable coefficients. SIAM J. Math. Anal. 30 (1999) 879–895. | MR | Zbl | DOI

[51] A. J. Salgado and W. Salgado, Finite element approximation of the Isaacs equation. ESAIM: M2AN 53 (2019) 351–374. | MR | Zbl | Numdam | DOI

[52] J. Schöberl, C++11 implementation of finite elements in NGSolve. Tech. Rep. ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014).

[53] I. Smears, Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton–Jacobi–Bellman equations. J. Sci. Comput. 74 (2018) 145–174. | MR | Zbl | DOI

[54] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal. 51 (2013) 2088–2106. | MR | Zbl | DOI

[55] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52 (2014) 993–1016. | MR | Zbl | DOI

[56] I. Smears and E. Süli, Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients. Numer. Math. 133 (2016) 141–176. | MR | Zbl | DOI

[57] A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. I—Abstract theory. SIAM J. Numer. Anal. 56 (2018) 1621–1642. | MR | Zbl | DOI

[58] R. Verfürth, A posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl

[59] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York (1990). | MR | Zbl

Cité par Sources :