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UNIFIED ANALYSIS OF DISCONTINUOUS GALERKIN AND 𝐶0-INTERIOR
PENALTY FINITE ELEMENT METHODS FOR HAMILTON–JACOBI–BELLMAN

AND ISAACS EQUATIONS

Ellya L. Kawecki and Iain Smears*

Abstract. We provide a unified analysis of a posteriori and a priori error bounds for a broad class of
discontinuous Galerkin and 𝐶0-IP finite element approximations of fully nonlinear second-order elliptic
Hamilton–Jacobi–Bellman and Isaacs equations with Cordes coefficients. We prove the existence and
uniqueness of strong solutions in 𝐻2 of Isaacs equations with Cordes coefficients posed on bounded con-
vex domains. We then show the reliability and efficiency of computable residual-based error estimators
for piecewise polynomial approximations on simplicial meshes in two and three space dimensions. We
introduce an abstract framework for the a priori error analysis of a broad family of numerical methods
and prove the quasi-optimality of discrete approximations under three key conditions of Lipschitz con-
tinuity, discrete consistency and strong monotonicity of the numerical method. Under these conditions,
we also prove convergence of the numerical approximations in the small-mesh limit for minimal regular-
ity solutions. We then show that the framework applies to a range of existing numerical methods from
the literature, as well as some original variants. A key ingredient of our results is an original analysis of
the stabilization terms. As a corollary, we also obtain a generalization of the discrete Miranda–Talenti
inequality to piecewise polynomial vector fields.
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1. Introduction

We consider fully nonlinear second-order elliptic Isaacs equations with a homogeneous Dirichlet boundary
condition of the form

𝐹 [𝑢] := inf
𝛼∈A

sup
𝛽∈B

[︀
𝐿𝛼𝛽𝑢− 𝑓𝛼𝛽

]︀
= 0 in Ω,

𝑢 = 0 on 𝜕Ω,
(1.1)

where Ω is a bounded convex polytopal open set in R𝑑, 𝑑 ∈ {2, 3} and where the second-order elliptic operators
𝐿𝛼𝛽 are defined in (2.4) below. It is also possible to consider the case where the order of the infimum and
supremum in (1.1) are reversed. Isaacs equations of the form (1.1) arise in applications of two-player games
of stochastic optimal control, and they can be seen as a generalization of Hamilton–Jacobi–Bellman (HJB)
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equations [24]. Isaacs and HJB equations and related stochastic control problems arise in many applications
from engineering, energy, finance and computer science. Many other important nonlinear partial differential
equations (PDE) can be reformulated as HJB or Isaacs equations, including the Monge–Ampère equation
which, along with its convexity constraint, can be reformulated as a fully nonlinear HJB equation as shown
in [23, 40]; see also [35] for some further results. The equation in (1.1) is fully nonlinear in the sense that all
partial derivatives are contained in the nonlinearity, which prohibits approaches based on weak solutions that
are standard for divergence form problems.

The design and analysis of stable and accurate numerical methods for the approximation of the solution
of fully nonlinear PDE such as (1.1) remains generally very challenging. One approach consists of designing
methods that satisfy a discrete maximum principle, which can be shown to converge to the viscosity solu-
tion in the maximum norm under appropriate conditions of consistency, stability and the availability of a
comparison principle for viscosity sub- and supersolutions [2,18]. See [11] and the references therein for the reg-
ularity theory of viscosity solutions. Efforts in this direction have focused primarily on finite difference methods
[19,23,41,42], although there has been recent interest also in finite element methods (FEM) satisfying a maximum
principle [32,33], which additionally show stability and convergence of the derivatives in 𝐿2. See also [49,51] for
methods based on integral-operator approximations. Methods based on discrete maximum principles have the
advantage of being able to handle problems with possibly degenerate second-order terms and correspondingly
low-regularity solutions. However, it is well-known that enforcing a discrete maximum principle is restrictive in
practice, typically requiring highly structured grids or meshes and wide stencil approximations of the differential
operators, and it also leads to limitations on the order of convergence [6, 17,39,46].

There is therefore considerable interest in the analysis of methods that do not require a discrete maximum
principle [8, 22, 43, 44, 47], although a long-standing difficulty has been to design provably stable methods for
a sufficiently broad range of problems. This challenge was resolved in [54–56] in the context of nondivergence
form elliptic equations and fully nonlinear HJB equations on convex domains that satisfy the Cordes condition.
The Cordes condition is an algebraic assumption on the coefficients of the linear operators inside the nonlinear
terms, which is thus naturally preserved under linearizations of the original fully nonlinear operator and also
under discretization. The motivation for the Cordes condition stems from the analysis of linear nondivergence
form elliptic equations with discontinuous coefficients, which arise as linearizations of fully nonlinear HJB
equations under policy iteration. In particular, it is well-known that for linear nondivergence form elliptic
equations in three space dimensions and above, the discontinuities in the diffusion coefficients generally lead to
ill-posedness, even in the uniformly elliptic case with smooth data on a smooth domain, and for both strong
and viscosity solutions with measurable ingredients [45, 50]. Further assumptions on the coefficients (other
than continuity) are therefore generally necessary to recover well-posedness. For instance, there are available
results on the well-posedness of strong solutions when the coefficients are of vanishing mean-oscillation [13,45];
however in practice, the discontinuous coefficients obtained in the linearized problems mentioned above typically
feature jump discontinuities and are not of vanishing mean-oscillation. The case of general 𝐿∞ coefficients thus
falls outside the scope of the Calderón–Zygmund and Schauder theories [29]. In particular, it can be shown
that well-posedness is recovered for strong solutions on convex domains under the Cordes condition [16], see
also [45] for a comprehensive discussion. In two space dimensions however, uniform ellipticity implies the Cordes
condition. It was then shown in [54, 55] that the Cordes condition also implies existence and uniqueness of
strong solutions in 𝐻2 for fully nonlinear second-order elliptic HJB equations on convex domains, where an
ℎ𝑝-version discontinuous Galerkin (DG) finite element method was proposed with proven stability and with
optimal convergence rates with respect to the mesh-size, and half-order suboptimal rates with respect to the
polynomial degree, in 𝐻2-type norms. It was also shown in [55] that policy iteration, understood as a semismooth
Newton method, has local superlinear convergence. These results were extended to parabolic problems in [56].
There has since been significant recent activity centred on this approach, including preconditioners [53], adaptive
𝐻2-conforming and mixed methods in [26,28], extensions to curved domains [36], boundary conditions involving
oblique derivatives [27,37], and 𝐶0 interior penalty (IP) methods [3, 9, 48].
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In this work, we present a unified a priori and a posteriori analysis of DG and 𝐶0-IP methods for Isaacs
equations (1.1) with Cordes coefficients. First, we extend the well-posedness result of [55] for fully nonlinear HJB
equations to the setting of Isaacs equations, showing existence and uniqueness of a strong solution of (1.1) in
𝐻2(Ω)∩𝐻1

0 (Ω). This is the subject of Section 2. Our second main contribution is a proof of reliability and local
efficiency of residual-based error estimators in 𝐻2-norms for piecewise polynomial approximations on simplicial
meshes, which consist of unweighted volume residuals with appropriately penalized jumps of function gradients
and jumps of function values. This extends earlier results for 𝐻2-conforming and 𝐶0-IP methods from [3,9,26].
In fact, owing to the strong solution of the PDE, we show that the a posteriori error analysis is determined
primarily by the choice of approximation space and is otherwise independent of the numerical method, so
that our a posteriori error bounds applies to any piecewise polynomial function over the mesh. This situation
thus differs significantly from residual-based error estimates for divergence form elliptic problems, where the
reliability bound is typically only satisfied under a suitable form of Galerkin orthogonality for the numerical
solution [12, 58]. The above observation implies that our a posteriori error analysis applies to any numerical
method employing piecewise polynomial approximations on simplicial meshes.

Our further main contributions concern the a priori error analysis of DG and 𝐶0-IP methods for Isaacs
equations. We provide a framework for proving quasi-optimality, also called near-best approximation, of the
error attained by the numerical solution under only the minimum guaranteed regularity of the solution in
𝐻2(Ω) ∩ 𝐻1

0 (Ω). The key requirements on the numerical method of the framework are Lipschitz continuity,
strong monotonicity and an appropriate notion of consistency. Therefore, this generalizes Céa’s lemma to the
problem at hand, which, interestingly for nonconforming methods, holds here without additional terms related
to data oscillation [30]. We then prove convergence of the numerical approximations in the small-mesh limit
for sequences of shape-regular meshes, without any additional regularity assumptions. We then show how our
framework applies to a broad family of DG and 𝐶0-IP methods which include as special cases the methods
of [54,55] (restricted here to simplicial meshes and fixed polynomial degrees), the method of [48], as well as some
original variants that are of further interest in the context of adaptive methods [38]. Thus, up to the constants
involved, all of these methods are quasi-optimal and converge in the minimal regularity setting. We note from
the onset that we consider here a homogeneous boundary condition for simplicity, and that nonhomogeneous
boundary data can be also be handled with minor adjustments, see e.g. Section 6.2 of [54] for some further
discussion.

These results are original even in the setting of HJB equations, and our current approach to the a priori
error analysis differs significantly from the earlier approach of [54, 55]. Indeed, in [54, 55] the analysis employs
a notion of consistency that involves the insertion of the exact solution of the problem into the discrete forms,
which leads to additional regularity assumptions on the exact solution in order to handle terms involving traces
of second derivatives on mesh faces, see e.g. Corollary 6 of [54]. In this work, we propose and show a different
notion of consistency, that is determined entirely at the discrete level (thus called here discrete consistency) and
thus does not involve additional assumptions on the exact solution. The key to showing that the methods satisfy
the discrete consistency condition is an original sharp analysis of the kernel of the stabilization terms that were
first introduced in [54], see in particular Theorem 5.5 below. Note that methods using the original stabilization
terms of [54,55] remain competitive in practice owing to the fact that they lead to penalization parameters that
are robust with respect to domain geometry, and they have further advantages in terms of flexibility, since they
can accommodate extensions to ℎ𝑝-version, meshes with hanging nodes, non-simplicial elements, etc. We also
show here that the discrete Miranda–Talenti inequality of [48] can be seen as a special case of a more general
result for piecewise polynomial discontinuous vector fields.

This paper is organized as follows. First, we prove the well-posedness of (1.1) on convex domains under the
Cordes condition in Section 2. Then, after defining the notation in Section 3, we present the general a posteriori
and a priori error analysis in Section 4. In Section 5 we present the family of numerical methods, and present
our main results that verify the abstract assumptions of the framework. The proofs, including the analysis of
the stabilization terms and discrete Miranda–Talenti inequalities, are then given in Section 6.
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2. Analysis of well-posedness of the problem

Let Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, be a bounded convex polytopal open set. The assumption 𝑑 ∈ {2, 3} is primarily
technical and is related to some 𝐻2-enrichment operators that appear later in this work in Section 4.1. We
therefore note that the results of this section are not restricted to 𝑑 ∈ {2, 3} and in fact hold for general
dimensions. Let A , B be compact metric spaces, and let the R𝑑×𝑑

sym matrix-valued function 𝑎, the R𝑑 vector-
valued function 𝑏, and the real-valued functions 𝑐 and 𝑓 be continuous on Ω×A ×B, where R𝑑×𝑑

sym denotes the
space of symmetric 𝑑 × 𝑑 matrices. For each (𝛼, 𝛽) ∈ A ×B we define 𝑎𝛼𝛽 : 𝑥 ↦→ 𝑎(𝑥, 𝛼, 𝛽) for all 𝑥 ∈ Ω. The
functions 𝑏𝛼𝛽 , 𝑐𝛼𝛽 and 𝑓𝛼𝛽 are defined in a similar manner for each (𝛼, 𝛽) ∈ A ×B. It is assumed that 𝑐𝛼𝛽 is
nonnegative in Ω for all (𝛼, 𝛽) ∈ A ×B, and that the diffusion coefficients 𝑎𝛼𝛽 are uniformly elliptic, uniformly
over A ×B, i.e. there exist positive constants 𝜈 and 𝜈 such that

𝜈|𝜉|2 ≤ 𝜉⊤𝑎𝛼𝛽(𝑥)𝜉 ≤ 𝜈|𝜉|2 ∀𝑥 ∈ Ω, ∀𝜉 ∈ R𝑑,∀(𝛼, 𝛽) ∈ A ×B, (2.1)

where |𝜉| denotes the Euclidean norm of the vector 𝜉 ∈ R𝑑.
If the functions 𝑏 and 𝑐 both vanish identically on Ω × A × B, i.e. 𝑏 ≡ 0 and 𝑐 ≡ 0, then we assume the

Cordes condition: there exists a 𝜈 ∈ (0, 1] such that

|𝑎𝛼𝛽 |2

Tr(𝑎𝛼𝛽)2
≤ 1

𝑑− 1 + 𝜈
in Ω ∀(𝛼, 𝛽) ∈ A ×B, (2.2)

where |𝑎𝛼𝛽 | denotes the Frobenius norm of the matrix 𝑎𝛼𝛽 . Otherwise, in the case of nonvanishing lower-order
terms, i.e. 𝑏 ̸≡ 0 or 𝑐 ̸≡ 0, we assume that there exists a 𝜆 > 0 and a 𝜈 ∈ (0, 1] such that

|𝑎𝛼𝛽 |2 + |𝑏𝛼𝛽 |2/2𝜆 + (𝑐𝛼𝛽/𝜆)2

(Tr(𝑎𝛼𝛽) + 𝑐𝛼𝛽/𝜆)2
≤ 1

𝑑 + 𝜈
in Ω ∀(𝛼, 𝛽) ∈ A ×B, (2.3)

where |𝑏𝛼𝛽 | denotes the Euclidean norm of 𝑏𝛼𝛽 . As explained in [55] the parameter 𝜆 serves to make the Cordes
condition invariant under isotropic affine mappings of the domain. If 𝑏 and 𝑐 vanish identically, we let 𝜆 = 0.

Remark 2.1. It is well-known that if 𝑑 = 2, then the uniform ellipticity condition (2.1) implies the Cordes
condition (2.2), and that 𝜈 can be bounded from below in terms of 𝜈 and 𝜈 alone, see for instance Example 2
of [55].

For each (𝛼, 𝛽) ∈ A ×B, the bounded linear operator 𝐿𝛼𝛽 : 𝐻2(Ω) → 𝐿2(Ω) is defined by

𝐿𝛼𝛽𝑣 := 𝑎𝛼𝛽 :∇2𝑣 + 𝑏𝛼𝛽 ·∇𝑣 − 𝑐𝛼𝛽𝑣 ∀𝑣 ∈ 𝐻2(Ω), (2.4)

where ∇2𝑣 denotes the Hessian of 𝑣, and where 𝐴:𝐵 :=
∑︀𝑑

𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗 denotes the Frobenius inner-product of
matrices. The compactness of Ω × A ×B and the continuity of the coefficients 𝑎, 𝑏, 𝑐 and 𝑓 imply that the
fully nonlinear differential operator

𝐹 [𝑣] := inf
𝛼∈A

sup
𝛽∈B

[︀
𝐿𝛼𝛽𝑣 − 𝑓𝛼𝛽

]︀
∀𝑣 ∈ 𝐻2(Ω), (2.5)

is well-defined as a mapping from 𝐻2(Ω) to 𝐿2(Ω). In [55,56] it was shown that fully nonlinear HJB equations
can be reformulated in terms of a renormalized nonlinear operator. We show here that this approach extends
to Isaacs equations. For each (𝛼, 𝛽) ∈ A ×B, we consider the renormalization function 𝛾𝛼𝛽 ∈ 𝐶(Ω) defined by
𝛾𝛼𝛽 := Tr 𝑎𝛼𝛽

|𝑎𝛼𝛽 |2 if the coefficients 𝑏 and 𝑐 vanish identically, or otherwise by

𝛾𝛼𝛽 :=
Tr 𝑎𝛼𝛽 + 𝑐𝛼𝛽/𝜆

|𝑎𝛼𝛽 |2 + |𝑏𝛼𝛽 |2/2𝜆 + |𝑐𝛼𝛽 |2/𝜆2
· (2.6)
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In all cases, note that the continuity of the coefficients, the uniform ellipticity condition (2.1) and the non-
negativity of 𝑐𝛼𝛽 imply that there exists a uniform positive upper and lower bounds 𝛾* and 𝛾* > 0 such that
𝛾* ≥ 𝛾𝛼𝛽 ≥ 𝛾* in Ω for all (𝛼, 𝛽) ∈ A ×B. Let the renormalized operator 𝐹𝛾 : 𝐻2(Ω) → 𝐿2(Ω) be defined by

𝐹𝛾 [𝑣] := inf
𝛼∈A

sup
𝛽∈B

[︀
𝛾𝛼𝛽

(︀
𝐿𝛼𝛽𝑣 − 𝑓𝛼𝛽

)︀]︀
∀𝑣 ∈ 𝐻2(Ω). (2.7)

The following lemma shows that the equations 𝐹 [𝑢] = 0 and 𝐹𝛾 [𝑢] = 0 have equivalent respective sets of sub-
and supersolutions.

Lemma 2.2. A function 𝑣 ∈ 𝐻2(Ω) satisfies 𝐹 [𝑣] ≤ 0 pointwise a.e. in Ω if and only if 𝐹𝛾 [𝑣] ≤ 0 pointwise
a.e. in Ω. Furthermore, a function 𝑣 ∈ 𝐻2(Ω) satisfies 𝐹 [𝑣] ≥ 0 pointwise a.e. in Ω if and only if 𝐹𝛾 [𝑣] ≥ 0
pointwise a.e. in Ω.

Proof. The proof is a straightforward extension of the arguments in the proof of Theorem 3 from [55], and is
primarily a consequence of the strict positivity of the renormalization function 𝛾𝛼𝛽 . For each 𝛼 ∈ A , define
the operators 𝐺𝛼[𝑣] := sup𝛽∈B

[︀
𝐿𝛼𝛽𝑣 − 𝑓𝛼𝛽

]︀
and 𝐺𝛼

𝛾 [𝑣] := sup𝛽∈B

[︀
𝛾𝛼𝛽(𝐿𝛼𝛽𝑣 − 𝑓𝛼𝛽)

]︀
for each 𝑣 ∈ 𝐻2(Ω). We

start by showing the equivalence of the sets of supersolutions. Suppose that 𝑣 ∈ 𝐻2(Ω); then 𝐹 [𝑣] ≥ 0 a.e.
in Ω if and only if 𝐺𝛼[𝑣] ≥ 0 a.e. in Ω for every 𝛼 ∈ A . Then, for any 𝛼 ∈ A , owing to compactness of B
and the continuity of the data, at almost every point 𝑥 ∈ Ω, the supremum in 𝐺𝛼[𝑣](𝑥) is attained by some
𝛽* ∈ B, which gives (𝐿𝛼𝛽*𝑣−𝑓𝛼𝛽*)(𝑥) ≥ 0, which implies 𝐺𝛼

𝛾 [𝑣](𝑥) ≥ 𝛾𝛼𝛽*(𝐿𝛼𝛽*𝑣−𝑓𝛼𝛽*)(𝑥) ≥ 0 using (strict)
positivity of 𝛾𝛼𝛽 . Considering also the converse situation, we then deduce that 𝐺𝛼[𝑣] ≥ 0 a.e. in Ω is equivalent
to 𝐺𝛼

𝛾 [𝑣] ≥ 0 a.e. in Ω for any 𝛼 ∈ A . Since 𝛼 is arbitrary, we find that 𝐹 [𝑣] ≥ 0 a.e. in Ω if and only if 𝐹𝛾 [𝑣] ≥ 0
a.e. in Ω. We now consider the sets of subsolutions. A function 𝑣 ∈ 𝐻2(Ω) satisfies 𝐹 [𝑣] ≤ 0 a.e. in Ω if and only
if, for a.e. 𝑥 ∈ Ω, there exists an 𝛼* ∈ A such that 𝐺𝛼* [𝑣](𝑥) ≤ 0, which is equivalent to (𝐿𝛼*𝛽𝑣− 𝑓𝛼*𝛽)(𝑥) ≤ 0
for all 𝛽 ∈ B, which is equivalent to 𝛾𝛼*𝛽(𝑥)(𝐿𝛼*𝛽𝑣 − 𝑓𝛼*𝛽)(𝑥) ≤ 0 for all 𝛽 ∈ B by strict positivity of 𝛾𝛼*𝛽 ,
which is finally equivalent to 𝐺𝛼*

𝛾 [𝑣](𝑥) ≤ 0. This shows that 𝐺𝛼* [𝑣] ≤ 0 a.e. in Ω if and only if 𝐺𝛼*
𝛾 [𝑣] ≤ 0 a.e.

in Ω, and thus the equivalence of 𝐹 [𝑣] ≤ 0 a.e. in Ω if and only if 𝐹𝛾 [𝑣] ≤ 0 a.e. in Ω, thereby completing the
proof. �

A particular consequence of Lemma 2.2 is that a solution of 𝐹 [𝑢] = 0 is equivalently a solution of 𝐹𝛾 [𝑢] = 0.

Remark 2.3 (Equivalence of problems in the sense of viscosity solutions). The proof of Lemma 2.2 involves
only manipulations of pointwise values of the nonlinear operators 𝐹 and 𝐹𝛾 . Therefore, the 𝐻2-regularity
assumption on the sets of sub- and supersolutions in Lemma 2.2 is not essential. In particular, recalling the
notions of viscosity sub- and supersolutions [18], it is easy to see that the argument above imply the equivalence
of the sets of viscosity sub- and supersolutions (and hence also viscosity solutions) for the equations 𝐹 [𝑢] = 0
and 𝐹𝛾 [𝑢] = 0.

Let the differential operator 𝐿𝜆 : 𝐻2(Ω) → 𝐿2(Ω) be defined by

𝐿𝜆𝑣 := ∆𝑣 − 𝜆𝑣 ∀𝑣 ∈ 𝐻2(Ω). (2.8)

We now show some bounds for the operator 𝐹𝛾 , including a Lipschitz continuity bound with a constant inde-
pendent of the data. Since the properties are pointwise, we extend the definition of the operators 𝐹𝛾 and 𝐿𝜆

from the space 𝐻2(Ω) to 𝐻2(𝜔) for arbitrary open subsets 𝜔 ⊂ Ω in order to simplify later applications of this
result.

Lemma 2.4. For any open set 𝜔 ⊆ Ω, and for any 𝑢, 𝑣 ∈ 𝐻2(𝜔), writing 𝑤 := 𝑢− 𝑣, the following inequalities
hold pointwise a.e. in 𝜔

|𝐹𝛾 [𝑢]− 𝐹𝛾 [𝑣]− 𝐿𝜆(𝑢− 𝑣)| ≤
√

1− 𝜈
√︀
|∇2𝑤|2 + 2𝜆|∇𝑤|2 + 𝜆2|𝑤|2, (2.9a)

|𝐹𝛾 [𝑢]− 𝐹𝛾 [𝑣]| ≤
(︀
1 +

√
𝑑 + 1

)︀√︀
|∇2𝑤|2 + 2𝜆|∇𝑤|2 + 𝜆2|𝑤|2. (2.9b)
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Proof. For arbitrary bounded sets of real numbers {𝑋𝛼𝛽}(𝛼,𝛽)∈A×B and {𝑌 𝛼𝛽}(𝛼,𝛽)∈A×B, it is easy to see that⃒⃒⃒⃒
⃒ inf
𝛼∈A

sup
𝛽∈B

𝑋𝛼𝛽 − inf
𝛼∈A

sup
𝛽∈B

𝑌 𝛼𝛽

⃒⃒⃒⃒
⃒ ≤ sup

(𝛼,𝛽)∈A×B
|𝑋𝛼𝛽 − 𝑌 𝛼𝛽 |.

The proof of (2.9a) then follows the same arguments as in Lemma 1 of [55]. The inequality (2.9b) is then obtained
from (2.9a) by adding and subtracting 𝐿𝜆𝑤 and applying the triangle inequality, along with the Cauchy–Schwarz
inequality |𝐿𝜆𝑤| ≤

√
𝑑 + 1

√︀
|∇2𝑤|2 + 𝜆2|𝑤|2. �

Let ‖·‖𝐻2(Ω) denote the 𝐻2-norm of functions in 𝐻2(Ω), defined by

‖𝑣‖2𝐻2(Ω) :=
∫︁

Ω

[︀
|∇2𝑣|2 + |∇𝑣|2 + |𝑣|2

]︀
∀𝑣 ∈ 𝐻2(Ω).

It is well-known that the convexity of Ω implies that the operator 𝐿𝜆 is bijective between 𝐻2(Ω) ∩𝐻1
0 (Ω) and

𝐿2(Ω). Furthermore, there exists a positive constant 𝐶𝑑,diam Ω depending only on 𝑑 and diam Ω, the diameter
of Ω, such that, for any 𝜆 ≥ 0,

1
𝐶2

𝑑,diam Ω

‖𝑣‖2𝐻2(Ω) ≤
∫︁

Ω

[︀
|∇2𝑣|2 + 2𝜆|∇𝑣|2 + 𝜆2|𝑣|2

]︀
≤

∫︁
Ω

|𝐿𝜆𝑣|2 ∀𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω), (2.10)

where the first inequality is shown by the Poincaré inequality for functions in 𝐻1
0 (Ω) and the identity

∫︀
Ω
|∇𝑣|2 =

−
∫︀
Ω

𝑣∆𝑣 for all 𝑣 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω), and the second inequality follows from the Miranda–Talenti inequality,

see e.g. [45, 54, 55]. We now show that there exists a unique strong solution in 𝐻2(Ω) ∩ 𝐻1
0 (Ω) of the Isaacs

equation (1.1) on convex domains under the Cordes condition, which generalises the well-posedness result for
HJB equations of Theorem 3 from [55].

Theorem 2.5 (Existence and uniqueness of a strong solution). There exists a unique 𝑢 ∈ 𝐻2(Ω)∩𝐻1
0 (Ω) that

solves 𝐹 [𝑢] = 0 pointwise a.e. in Ω, and, equivalently, that solves 𝐹𝛾 [𝑢] = 0 pointwise a.e. in Ω.

Proof. The proof of Theorem 2.5 follows the same arguments as in Theorem 3 of [55], although we give here
the details for completeness. Let 𝐴 : 𝐻2(Ω) ∩𝐻1

0 (Ω)×𝐻2(Ω) ∩𝐻1
0 (Ω) → R be defined by

𝐴(𝑤; 𝑣) =
∫︁

Ω

𝐹𝛾 [𝑤]𝐿𝜆𝑣 ∀𝑤, 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω). (2.11)

We infer from the bijectivity of the operator 𝐿𝜆 : 𝐻2(Ω) ∩ 𝐻1
0 (Ω) → 𝐿2(Ω) and from Lemma 2.2 that 𝑢 ∈

𝐻2(Ω) ∩𝐻1
0 (Ω) solves 𝐹 [𝑢] = 0 a.e. in Ω, and equivalently 𝐹𝛾 [𝑢] = 0 a.e. in Ω, if and only if 𝐴(𝑢; 𝑣) = 0 for

all 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω). It is easy to see from (2.9b) that 𝐴(·; ·) is bounded and also Lipschitz continuous, i.e.

that |𝐴(𝑤; 𝑣) − 𝐴(𝑧; 𝑣)| ≤ 𝐶‖𝑤 − 𝑧‖𝐻2(Ω)‖𝑣‖𝐻2(Ω) for all 𝑤, 𝑧, 𝑣 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω) for some constant 𝐶. We

also claim that 𝐴(·; ·) strongly monotone on 𝐻2(Ω) ∩𝐻1
0 (Ω), which will then imply that there exists a unique

𝑢 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω) that solves 𝐴(𝑢; 𝑣) = 0 for all 𝑣 ∈ 𝐻2(Ω) ∩ 𝐻1

0 (Ω) as a result of the Browder–Minty
Theorem (see e.g. the textbook [15]). To show strong monotonicity, let 𝑤, 𝑣 ∈ 𝐻2(Ω)∩𝐻1

0 (Ω) be arbitrary and
set 𝑧 := 𝑤 − 𝑣; then, by addition and subtraction, we find that

𝐴(𝑤; 𝑤 − 𝑣)−𝐴(𝑣; 𝑤 − 𝑣) =
∫︁

Ω

(𝐹𝛾 [𝑤]− 𝐹𝛾 [𝑣])𝐿𝜆𝑧 =
∫︁

Ω

|𝐿𝜆𝑧|2 +
∫︁

Ω

(𝐹𝛾 [𝑤]− 𝐹𝛾 [𝑣]− 𝐿𝜆𝑧)𝐿𝜆𝑧

≥
(︀
1−

√
1− 𝜈

)︀ ∫︁
Ω

|𝐿𝜆𝑧|2 ≥ (1−
√

1− 𝜈)𝐶−2
𝑑,diam Ω‖𝑧‖

2
𝐻2(Ω),

(2.12)

where the inequalities in the last line follow from (2.9a) and (2.10). This shows that 𝐴(·; ·) is strongly monotone
on 𝐻2(Ω) ∩𝐻1

0 (Ω) and completes the proof. �

As mentioned at the beginning of this section, this analysis in this section does not make use of the assumption
𝑑 ∈ {2, 3}, and nor does it require Ω to be polytopal. Therefore, Theorem 2.5 holds for general bounded convex
domains in arbitrary dimensions.
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3. Setting and notation

For a Lebesgue measurable set 𝜔 ⊂ R𝑑, let |𝜔| denote its Lebesgue measure, and let diam 𝜔 denote its
diameter. The 𝐿2-norm of functions over 𝜔 is denoted by ‖·‖𝜔. Let 𝒯 be a finite conforming partition of Ω into
closed simplices, and let 𝜗𝒯 denote its shape-regularity parameter defined by

𝜗𝒯 := max
𝐾∈𝒯

diam 𝐾

𝜌𝐾
, (3.1)

where 𝜌𝐾 is the diameter of the largest ball inscribed in the element 𝐾. In the following, for real numbers 𝑎
and 𝑏, we write 𝑎 . 𝑏 if there exists a constant 𝐶 such that 𝑎 ≤ 𝐶𝑏, where 𝐶 depends only on the dimension 𝑑,
the domain Ω, on 𝜗𝒯 and on the polynomial degrees 𝑝 and 𝑞 defined below, but is otherwise independent of all
other quantities. We write 𝑎 h 𝑏 if and only if 𝑎 . 𝑏 and 𝑏 . 𝑎. Let ℱ denote the set of 𝑑− 1 dimensional closed
faces of the mesh, and let ℱ𝐼 and ℱ𝐵 denote the subsets of interior faces and boundary faces, respectively. For
each face 𝐹 ∈ ℱ , we consider a fixed choice of unit normal 𝑛𝐹 . If 𝐹 is a boundary face then we choose 𝑛𝐹 to be
the unit outward normal to Ω. To alleviate the notation, we shall usually drop the subscript and simply write 𝑛
when there is no possibility of confusion. For each 𝐾 ∈ 𝒯 , we define ℎ𝐾 := |𝐾| 1𝑑 , and note that up to constants

depending only on 𝑑 and on 𝜗𝒯 , we have ℎ𝐾 h diam(𝐾). For each face 𝐹 ∈ ℱ , let ℎ𝐹 :=
(︀
ℋ𝑑−1(𝐹 )

)︀ 1
𝑑−1 , where

ℋ𝑑−1 denotes the (𝑑 − 1)-dimensional Hausdorff measure. Similarly, we have ℎ𝐹 h diam(𝐹 ) and ℎ𝐾 h ℎ𝐹 for
any element 𝐾 ∈ 𝒯 and any face 𝐹 ∈ ℱ contained in 𝐾, with constants in the equivalence depending only
on 𝜗𝒯 and on 𝑑. Let the global mesh-size function ℎ𝒯 : Ω → R be defined by ℎ𝒯 |𝐾∘ = ℎ𝐾 for each 𝐾 ∈ 𝒯 ,
where 𝐾∘ denotes the interior of 𝐾, and ℎ𝒯 |𝐹 = ℎ𝐹 for each 𝐹 ∈ ℱ . The function ℎ𝒯 is uniformly bounded
in Ω, and is only defined up to sets of zero ℋ𝑑−1-measure, which is sufficient for our purposes since ℎ𝒯 only
appears in integrals over sets of dimensions 𝑑− 1 and 𝑑. The motivation for this particular definition of ℎ𝒯 can
be found in the analysis of adaptive methods, see [38] for further details. For the purposes of this work, it is of
course possible to consider common alternative definitions of ℎ𝒯 that are equivalent up to constants depending
on shape-regularity of the mesh.

Integration. It will be frequently convenient to use a shorthand notation for integrals over collections of
elements and faces of the meshes. For any subcollection of elements ℰ ⊂ 𝒯 , we shall write

∫︀
ℰ :=

∑︀
𝐾∈ℰ

∫︀
𝐸

where
the measure of integration is the Lebesgue measure on R𝑑. Likewise, if 𝒢 ⊂ ℱ , we write

∫︀
𝒢 :=

∑︀
𝐹∈𝒢

∫︀
𝐹

, where
the measure of integration is the (𝑑− 1)-dimensional Hausdorff measure on R𝑑. We do not indicate the measure
of integration as there is no possibility of confusion.

Partial derivatives. In order to unify and generalise the notions of weak derivatives of Sobolev regu-
lar functions and the notion of piecewise derivatives of functions from the finite element spaces, we define
notions of gradients and Hessians of functions for certain classes of functions of bounded variation. Let
𝐵𝑉 (Ω) denote the space of real-valued functions of bounded variation on Ω, see [1, 21] for precise defi-
nitions. Recall that 𝐵𝑉 (Ω) is a Banach space equipped with the norm ‖𝑣‖𝐵𝑉 (Ω) := ‖𝑣‖𝐿1(Ω) + |𝐷𝑣|(Ω),
where |𝐷𝑣|(Ω) denotes the total variation of its distributional derivative 𝐷𝑣 over Ω, defined by |𝐷𝑣|(Ω) :=
sup

{︁∫︀
Ω

𝑣 div 𝜑 : 𝜑 ∈ 𝐶∞0 (Ω; R𝑑), ‖𝜑‖𝐶(Ω;R𝑑) = 1
}︁

.
For any 𝑣 ∈ 𝐵𝑉 (Ω), the distributional derivative 𝐷𝑣 can be identified with a Radon measure on Ω that can

be decomposed into the sum of an absolutely continuous part with respect to Lebesgue measure, and a singular
part [21], p. 196. Let ∇𝑣 ∈ 𝐿1(Ω; R𝑑) denote the (vector) density of the absolutely continuous part of 𝐷𝑣 with
respect to Lebesgue measure. Following [25], for functions 𝑣 ∈ 𝐵𝑉 (Ω) such that ∇𝑣 ∈ 𝐵𝑉 (Ω; R𝑑), we define
∇2𝑣 as the density of the absolutely continuous part of 𝐷(∇𝑣) the distributional derivative of ∇𝑣; in particular,

∇2𝑣 := ∇(∇𝑣) ∈ 𝐿1(Ω; R𝑑×𝑑), (∇2𝑣)𝑖𝑗 := ∇𝑥𝑗
(∇𝑥𝑖

𝑣) ∀𝑖, 𝑗 ∈ {1, . . . , 𝑑}. (3.2)

The Laplacian ∆𝑣 is defined as the matrix trace of ∇2𝑣. Note that ∇2𝑣 is defined in terms of 𝐷(∇𝑣) and not
𝐷2𝑣 the second distributional derivative of 𝑣 since in general 𝐷2𝑣 is not necessarily a Radon measure. The
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definitions above unify the concepts of weak derivatives of functions in Sobolev spaces over Ω and of piecewise
derivatives of functions from the DG and 𝐶0-IP finite element spaces defined shortly below. Indeed, it is easy to
see that the above definition of ∇𝑣 coincides with the weak gradient of 𝑣 if 𝑣 ∈ 𝑊 1,1(Ω) and that ∇2𝑣 coincides
with the weak Hessian of 𝑣 if 𝑣 ∈ 𝑊 2,1(Ω). Moreover, for functions that are piecewise smooth over the mesh 𝒯 ,
such as functions from the finite element spaces defined below, it is easy to see that the gradient and Hessian
as defined above coincide with the piecewise gradient and Hessian over elements of the mesh. The nonlinear
Isaacs operators 𝐹 from (2.5) and 𝐹𝛾 from (2.7) are then naturally extended to all functions 𝑣 ∈ 𝐵𝑉 (Ω) such
that ∇𝑣 ∈ 𝐵𝑉 (Ω; R𝑑).

Jump, average and tangential differential operators on faces. There is a bounded trace operator
𝜏𝜕𝐾 : 𝐵𝑉 (𝐾) → 𝐿1(𝜕𝐾) for each 𝐾 ∈ 𝒯 , see e.g. [21]. It follows that a function 𝑣 ∈ 𝐵𝑉 (Ω), once restricted to
an element 𝐾 ∈ 𝒯 , has a trace 𝜏𝜕𝐾𝑣 := 𝜏𝜕𝐾(𝑣|𝐾) ∈ 𝐿1(𝜕𝐾). In general, if 𝐹 is an interior face of the mesh, i.e.
𝐹 = 𝜕𝐾 ∩ 𝜕𝐾 ′ for 𝐾, 𝐾 ′ ∈ 𝒯 , then 𝜏𝜕𝐾𝑣|𝐹 ̸= 𝜏𝜕𝐾′𝑣|𝐹 , i.e. traces from different elements do not necessarily
agree on a common face. For 𝑣 ∈ 𝐵𝑉 (Ω), we define the jump J𝑣K𝐹 ∈ 𝐿1(𝐹 ) and average of {𝑣}𝐹 ∈ 𝐿1(𝐹 ) for
each 𝐹 ∈ ℱ by

{𝑣}𝐹 :=
1
2

(𝜏𝜕𝐾𝑣|𝐹 + 𝜏𝜕𝐾′𝑣|𝐹 ) , J𝑣K𝐹 := 𝜏𝜕𝐾𝑣|𝐹 − 𝜏𝜕𝐾′𝑣|𝐹 , ∀𝐹 ∈ ℱ𝐼 ,

{𝑣}𝐹 := 𝜏𝜕𝐾𝑣|𝐹 J𝑣K𝐹 := 𝜏𝜕𝐾𝑣|𝐹 ∀𝐹 ∈ ℱ𝐵 ,
(3.3)

where, in the case 𝐹 ∈ ℱ𝐼 , the elements 𝐾 and 𝐾 ′ ∈ 𝒯 are labelled such that the chosen unit normal 𝑛𝐹 is the
outward normal to 𝐾 on 𝐹 and the inward normal to 𝐾 ′ on 𝐹 , and where the trace operators 𝜏𝜕𝐾 and 𝜏𝜕𝐾′

are applied to the restrictions of the function 𝑣 to 𝐾 and 𝐾 ′, respectively. The jump and average operators are
further extended to vector fields in 𝐵𝑉 (Ω; R𝑑) componentwise. Although the sign of J𝑣K𝐹 depends on the choice
of 𝑛𝐹 , in subsequent expressions the jumps will appear either under absolute value signs or in products with
𝑛𝐹 , so that the overall resulting expression is uniquely defined and independent of the choice of 𝑛𝐹 . When no
confusion is possible, we drop the subscripts and simply write {·} and J·K.

For 𝐹 ∈ ℱ , let ∇𝑇 denote the tangential (surface) gradient operator, and let ∆𝑇 denote the tangential
Laplacian, which are defined for all sufficiently smooth functions on 𝐹 . We do not indicate the dependence of
these operators on 𝐹 in order to alleviate the notation, as it will be clear from the context.

Finite element spaces. For a fixed choice of polynomial degree 𝑝 ≥ 2, let the finite element spaces 𝑉 𝑠
𝒯 ,

𝑠 ∈ {0, 1}, be defined by

𝑉 0
𝒯 := {𝑣𝒯 ∈ 𝐿2(Ω) : 𝑣𝒯 |𝐾 ∈ P𝑝 ∀𝐾 ∈ 𝒯 }, 𝑉 1

𝒯 := 𝑉 0
𝒯 ∩𝐻1

0 (Ω), (3.4)

where P𝑝 denotes the space of polynomials of total degree at most 𝑝. The condition 𝑝 ≥ 2 is required due to the
fact that we seek approximations in 𝐻2-type norms, thus requiring at least piecewise quadratic polynomials to
approximate the Hessian of the true solution. The spaces 𝑉 0

𝒯 and 𝑉 1
𝒯 correspond to DG and 𝐶0-IP spaces on

𝒯 , respectively. It is clear that if 𝑣 ∈ 𝑉 𝑠
𝒯 , 𝑠 ∈ {0, 1}, then 𝑣 ∈ 𝐵𝑉 (Ω) and that ∇𝑣, as defined above, coincides

with the piecewise gradient of 𝑣 over the elements of the mesh 𝒯 . It then follows that ∇𝑣 ∈ 𝐵𝑉 (Ω; R𝑑) and
that the Hessian ∇2𝑣 defined above coincides with the piecewise Hessian of 𝑣 over the elements of the mesh.

The spaces 𝑉 𝑠
𝒯 , 𝑠 ∈ {0, 1}, are equipped with the norm ‖·‖𝒯 and jump seminorm |·|𝐽,𝒯 defined by

‖𝑣𝒯 ‖2𝒯 :=
∫︁

Ω

[︀
|∇2𝑣𝒯 |2 + |∇𝑣𝒯 |2 + |𝑣𝒯 |2

]︀
+ |𝑣|2𝐽,𝒯 , |𝑣|2𝐽,𝒯 :=

∫︁
ℱ𝐼

ℎ−1
𝒯 |J∇𝑣𝒯 K|2 +

∫︁
ℱ

ℎ−3
𝒯 |J𝑣𝒯 K|2, (3.5)

for all 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . Although 𝑉 0

𝒯 and 𝑉 1
𝒯 are equipped with the same norm and jump seminorm, it is clear that for

any 𝑣 ∈ 𝑉 1
𝒯 ⊂ 𝐻1

0 (Ω), the last term in the right-hand side (3.5) involving jumps over mesh faces vanishes and
that the terms involving jumps of first derivatives over internal mesh faces can be simplified to merely jumps
of normal derivatives. However, these simplifications do not play any particular role in the subsequent analysis
and do not need to be considered further. The norm ‖·‖𝒯 and jump semi-norm |·|𝐽,𝒯 extend to the sum space



UNIFIED ANALYSIS OF NONCONFORMING FEM FOR HJB AND ISAACS EQUATIONS 457

𝑉 𝑠
𝒯 + 𝐻2(Ω) ∩ 𝐻1

0 (Ω), where 𝐻 = 𝐻2(Ω) ∩ 𝐻1
0 (Ω). Note that for general 𝑣 ∈ 𝑉 𝑠

𝒯 + 𝐻2(Ω) ∩ 𝐻1
0 (Ω), we have

|𝑣|𝐽,𝒯 = 0 if and only if 𝑣 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω).

Poincaré–Friedrichs inequality. Although we consider here the norm ‖·‖𝒯 given in (3.5), our results are by
no means specific to this choice of norm. This is a consequence of the following second-order Poincaré–Friedrichs
inequality for functions in 𝑉 𝑠

𝒯 , which shows that the norm ‖·‖𝒯 is equivalent to other 𝐻2-type norms.

Theorem 3.1 (Poincaré–Friedrichs inequality). There exists a constant 𝐶PF depending only on 𝑑, 𝜗𝒯 , 𝑝, and
on diam Ω such that

‖𝑣𝒯 ‖𝒯 ≤ 𝐶PF

(︂∫︁
Ω

|∇2𝑣𝒯 |2 + |𝑣𝒯 |2𝐽,𝒯

)︂ 1
2

∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 , ∀𝑠 ∈ {0, 1}. (3.6)

Proof. We divide the proof into two steps, treating first the case 𝑠 = 1 followed by the more general case
𝑠 = 0. We note that in both cases, it is enough to show that the lower order terms in (3.5) are bounded by the
right-hand side of (3.6).

Step 1. Suppose that 𝑠 = 1, and let 𝑣𝒯 ∈ 𝑉 1
𝒯 be arbitrary. Then, integration-by-parts and an inverse inequality

yield ∫︁
Ω

|∇𝑣𝒯 |2 = −
∫︁

Ω

𝑣𝒯 ∆𝑣𝒯 +
∫︁
ℱ𝐼

𝑣𝒯 J∇𝑣𝒯 · 𝑛K .
(︂∫︁

Ω

|∇2𝑣𝒯 |2 + |𝑣𝒯 |2𝐽,𝒯

)︂ 1
2

‖𝑣𝒯 ‖Ω,

where the constant in the inequality above depends only on 𝑑, 𝜗𝒯 and 𝑝. Since 𝑉 1
𝒯 ⊂ 𝐻1

0 (Ω), we have
‖𝑣𝒯 ‖Ω ≤ 𝐶diam Ω‖∇𝑣𝒯 ‖Ω with a constant 𝐶diam Ω depending only on diam Ω, from which (3.6) for 𝑠 = 1
follows immediately.

Step 2. Suppose now that 𝑠 = 0 and let 𝑣𝒯 ∈ 𝑉 0
𝒯 be arbitrary. We use the 𝐻1

0 -enrichment operators from
[31,34]. In particular, there exists a linear operator 𝐸1 : 𝑉 0

𝒯 → 𝑉 1
𝒯 such that

2∑︁
𝑚=0

∫︁
𝐾

ℎ2𝑚−4
𝒯 |∇𝑚(𝑣𝒯 − 𝐸1𝑣𝒯 )|2 .

∫︁
ℱ𝐾

ℎ−3
𝒯 |J𝑣𝒯 K|2, ∀𝐾 ∈ 𝒯 , ∀𝑣𝒯 ∈ 𝑉 0

𝒯 , (3.7)

where ℱ𝐾 := {𝐹 ∈ ℱ , 𝐹 ∩𝐾 ̸= ∅} is the set of faces neighbouring the element 𝐾. The constant in (3.7) depends
only on 𝑑, 𝜗𝒯 and 𝑝, but not on Ω. In particular, the bound in (3.7) for 𝑚 = 1 is a consequence of Theorem 2.2
from [34], and the cases 𝑚 ∈ {0, 2} are shown in a similar manner by scaling arguments. We then infer from the
triangle inequality, the trace inequality and (3.7) that |𝐸1𝑣𝒯 |𝐽,𝒯 ≤ |𝑣𝒯 |𝐽,𝒯 + |𝑣𝒯 − 𝐸1𝑣𝒯 |𝐽,𝒯 . |𝑣𝒯 |𝐽,𝒯 again
with a constant depending only on 𝑑, 𝜗𝒯 and 𝑝. Therefore, using the triangle inequality and (3.6) for 𝑠 = 1
and (3.7), we find that

‖∇𝑣𝒯 ‖2Ω . ‖∇𝐸1𝑣𝒯 ‖2Ω + ‖∇(𝑣𝒯 − 𝐸1𝑣𝒯 )‖2Ω .
∫︁

Ω

|∇2𝐸1𝑣𝒯 |2 + |𝐸1𝑣𝒯 |2𝐽,𝒯 + |𝑣𝒯 |2𝐽,𝒯 .
∫︁

Ω

|∇2𝑣𝒯 |2 + |𝑣𝒯 |2𝐽,𝒯 ,

with a constant depending only on 𝑑, 𝑝, 𝜗𝒯 and diam Ω. We then obtain (3.6) upon recalling the inequality
‖𝑣𝒯 ‖2Ω . ‖∇𝑣𝒯 ‖2Ω +

∫︀
ℱ ℎ−1

𝒯 |J𝑣𝒯 K|2 with a constant depending only on 𝑑, 𝜗𝒯 , and diam Ω, see e.g. [7]. �

In the subsequent analysis, we occasionally use the 𝜆-weighted seminorm |·|𝜆,𝒯 : 𝑉 𝑠
𝒯 → R defined by

|𝑣𝒯 |2𝜆,𝒯 :=
∫︁

Ω

[︀
|∇2𝑣𝒯 |2 + 2𝜆|∇𝑣𝒯 |2 + 𝜆2|𝑣𝒯 |2

]︀
∀𝑣𝒯 ∈ 𝑉 𝑠

𝒯 . (3.8)

In general |·|𝜆,𝒯 is only a seminorm for 𝜆 ≥ 0, but is a norm if 𝜆 > 0. It is clear that |𝑣𝒯 |2𝜆,𝒯 + |𝑣𝒯 |2𝐽,𝒯 ≤ 𝑐2
𝜆‖𝑣𝒯 ‖2𝒯

with constant 𝑐𝜆 = max{1,
√

2𝜆, 𝜆} for all 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . Theorem 3.1 implies a converse bound, namely that

‖𝑣𝒯 ‖2𝒯 . |𝑣𝒯 |2𝜆,𝒯 + |𝑣𝒯 |2𝐽,𝒯 for all 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 .
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4. General framework for A PRIORI and A POSTERIORI error analysis

We now present a general framework for the a priori and a posteriori error analysis of a broad range of
numerical methods. We start by showing that the a posteriori error analysis is essentially determined only by
the approximation spaces, and is otherwise independent of the choice of numerical methods. For this reason, we
present the a posteriori error bound before discussing numerical discretizations of (1.1).

4.1. A posteriori error bound

Our first main result is an a posteriori error bound, where we prove reliability and local efficiency of residual-
type error estimators. The analysis hinges on the following Lemma, which shows that the jump seminorm |·|𝐽,𝒯
defined in (3.5) controls the distance of functions 𝑉 𝑠

𝒯 from 𝐻2(Ω)∩𝐻1
0 (Ω). See also [53] for related results that

are explicit in the polynomial degree on more general meshes, and see also the concluding remarks in [10].

Lemma 4.1 (𝐻2(Ω) ∩𝐻1
0 (Ω)-approximation). There exists a linear operator 𝐸𝒯 : 𝑉 0

𝒯 → 𝐻2(Ω) ∩𝐻1
0 (Ω) such

that
2∑︁

𝑚=0

∫︁
Ω

ℎ2𝑚−4
𝒯 |∇𝑚(𝑣𝒯 − 𝐸𝒯 𝑣𝒯 )|2 . |𝑣𝒯 |2𝐽,𝒯 ∀𝑣𝒯 ∈ 𝑉 0

𝒯 . (4.1)

Proof. We recall the operator 𝐸1 : 𝑉 0
𝒯 → 𝑉 1

𝒯 used in the proof of Theorem 3.1 above. Furthermore, in [48] (for
𝑑 = 2 and 𝑝 ≥ 2 or 𝑑 = 3 and 2 ≤ 𝑝 ≤ 3) and in [10] (for 𝑑 ∈ {2, 3} and 𝑝 ≥ 2) it is shown that there exists a
linear operator 𝐸2 : 𝑉 1

𝒯 → 𝐻2(Ω) ∩𝐻1
0 (Ω) such that

2∑︁
𝑚=0

∫︁
𝐾

ℎ2𝑚−4
𝒯 |∇𝑚(̃︀𝑣𝒯 − 𝐸2̃︀𝑣𝒯 )|2 .

∫︁
ℱ𝐼

𝐾

ℎ−1
𝒯 |J∇̃︀𝑣𝒯 · 𝑛K|2 ∀𝐾 ∈ 𝒯 , ∀̃︀𝑣𝒯 ∈ 𝑉 1

𝒯 , (4.2)

where ℱ𝐼
𝐾 := ℱ𝐾 ∩ ℱ𝐼 is the set of interior faces adjacent to 𝐾, see Lemma 3 of [48] and [10]. Then, we define

the operator 𝐸𝒯 as the composition of the operators 𝐸1 and 𝐸2, i.e. 𝐸𝒯 := 𝐸2𝐸1, and (4.1) is obtained by
applying the triangle inequality to 𝑣𝒯 −𝐸𝒯 𝑣𝒯 = 𝑣𝒯 −𝐸1𝑣𝒯 + 𝐸1𝑣𝒯 −𝐸2(𝐸1𝑣𝒯 ) and applying the bounds (3.7)
and (4.2) with summation over all elements of the mesh. �

The primary use of Lemma 4.1 for our purposes is the implication that

inf
𝑤∈𝐻2(Ω)∩𝐻1

0 (Ω)
‖𝑣𝒯 − 𝑤‖𝒯 . |𝑣𝒯 |𝐽,𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , ∀𝑠 ∈ {0, 1}, (4.3)

where the constant in the inequality above depends possibly on 𝑑, on 𝜗𝒯 , on 𝑝 and on Ω; see also Remark 4.4
below for further discussion of the constants.

We now introduce the residual-type error estimators that form the basis of the a posteriori error analysis.
For any 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , 𝑠 ∈ {0, 1}, let the elementwise error estimators {𝜂𝒯 (𝑣𝒯 , 𝐾)}𝐾∈𝒯 and global error estimator
𝜂𝒯 (𝑣𝒯 ) be defined by

[𝜂𝒯 (𝑣𝒯 , 𝐾)]2 :=
∫︁

𝐾

|𝐹𝛾 [𝑣𝒯 ]|2 +
∑︁

𝐹∈ℱ𝐼

𝐹⊂𝜕𝐾

∫︁
𝐹

𝛿𝐹 ℎ−1
𝒯 |J∇𝑣𝒯 K|2 +

∑︁
𝐹∈ℱ

𝐹⊂𝜕𝐾

∫︁
𝐹

𝛿𝐹 ℎ−3
𝒯 |J𝑣𝒯 K|2, (4.4a)

[𝜂𝒯 (𝑣𝒯 )]2 :=
∑︁
𝐾∈𝒯

[𝜂𝒯 (𝑣𝒯 , 𝐾)]2, (4.4b)

with weights 𝛿𝐹 := 1/2 if 𝐹 ∈ ℱ𝐼 and 𝛿𝐹 := 1 if 𝐹 ∈ ℱ𝐵 . Recall that the expression 𝐹𝛾 [𝑣𝒯 ] is computed using
the notion of gradients and Hessians of 𝑣𝒯 as defined in Section 3, which, for functions from the finite element
spaces, coincide with the notions of piecewise gradients and Hessians, respectively. For the special case 𝑠 = 1,
we note that the term involving the jumps J𝑣𝒯 K vanishes identically and thus may be dropped, and that the
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term involving jumps of gradients can be simplified to the jumps in the normal component of the gradients.
However these simplifications have no special consequence in the results below. In practice, one may consider a
number of variants of the estimators in (4.4), e.g. including various weightings of the different terms; we employ
the above choice of estimators for simplicity of presentation.

For each element 𝐾 ∈ 𝒯 , we define ‖·‖𝒯 ,𝐾 : 𝑉 𝑠
𝒯 + 𝐻2(Ω) ∩𝐻1

0 (Ω) → R the localization of the norm ‖·‖𝒯 to
𝐾 by

‖𝑣‖2𝒯 ,𝐾 :=
∫︁

𝐾

[︀
|∇2𝑣|2 + |∇𝑣|2 + |𝑣|2

]︀
+

∑︁
𝐹∈ℱ𝐼

𝐹⊂𝜕𝐾

∫︁
𝐹

𝛿𝐹 ℎ−1
𝒯 |J∇𝑣K|2 +

∑︁
𝐹∈ℱ

𝐹⊂𝜕𝐾

∫︁
𝐹

𝛿𝐹 ℎ−3
𝒯 |J𝑣K|2. (4.5)

For any 𝑣 ∈ 𝑉 𝑠
𝒯 + 𝐻2(Ω) ∩𝐻1

0 (Ω) there holds ‖𝑣‖2𝒯 =
∑︀

𝐾∈𝒯 ‖𝑣‖2𝒯 ,𝐾 .
We now present an a posteriori error bound for arbitrary functions from the approximation space, and not

only the numerical solution. Recall that 𝑢 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω) denotes the unique solution of 𝐹 [𝑢] = 0 and

equivalently of 𝐹𝛾 [𝑢] = 0 pointwise a.e. in Ω, see Theorem 2.5.

Theorem 4.2 (A posteriori error bound). There exists a positive constant 𝐶rel depending only on 𝑑, 𝜗𝒯 , 𝑝, 𝜆,
𝜈 and Ω, such that, for any 𝑠 ∈ {0, 1},

‖𝑢− 𝑣𝒯 ‖𝒯 ≤ 𝐶rel𝜂𝒯 (𝑣𝒯 ) ∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (4.6)

There exists a positive constant 𝐶eff,loc depending only on 𝑑 and 𝜆, such that

𝜂𝒯 (𝑣𝒯 , 𝐾) ≤ 𝐶eff,loc‖𝑢− 𝑣𝒯 ‖𝒯 ,𝐾 ∀𝐾 ∈ 𝒯 , ∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (4.7)

There exists a positive constant 𝐶eff,glob depending only on 𝑑 and 𝜆, such that

𝜂𝒯 (𝑣𝒯 ) ≤ 𝐶eff,glob‖𝑢− 𝑣𝒯 ‖𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (4.8)

Proof. Let 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 and 𝑤 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) be arbitrary functions. Then, recalling (2.12) we see that

(1−
√

1− 𝜈)‖𝐿𝜆(𝑢− 𝑤)‖2Ω ≤
∫︁

Ω

𝐹𝛾 [𝑤]𝐿𝜆(𝑢− 𝑤)

≤ (‖𝐹𝛾 [𝑣𝒯 ]‖Ω + ‖𝐹𝛾 [𝑤]− 𝐹𝛾 [𝑣𝒯 ]‖Ω)‖𝐿𝜆(𝑢− 𝑤)‖Ω.

Then, using the fact that ‖𝑢 − 𝑤‖𝒯 = ‖𝑢 − 𝑤‖𝐻2(Ω), and by combining the above inequality with (2.10) and
the Lipschitz continuity bound of 𝐹𝛾 in (2.9b), we find that

‖𝑢− 𝑣𝒯 ‖𝒯 ≤ ‖𝑢− 𝑤‖𝐻2(Ω) + ‖𝑤 − 𝑣𝒯 ‖𝒯
≤ 𝐶𝑑,diam Ω‖𝐿𝜆(𝑢− 𝑤)‖Ω + ‖𝑣𝒯 − 𝑤‖𝒯
≤ 𝐶𝑑,diam Ω𝑐𝜈 (‖𝐹𝛾 [𝑣𝒯 ]‖Ω + ‖𝐹𝛾 [𝑤]− 𝐹𝛾 [𝑣𝒯 ]‖Ω) + ‖𝑣𝒯 − 𝑤‖𝒯
≤ 𝐶𝑑,diam Ω𝑐𝜈‖𝐹𝛾 [𝑣𝒯 ]‖Ω + (1 + 𝐶𝑑,diam Ω𝑐𝜈𝑐𝜆(1 +

√
𝑑 + 1))‖𝑣𝒯 − 𝑤‖𝒯 ,

(4.9)

with 𝑐𝜈 = (1−
√

1− 𝜈)−1, and 𝑐𝜆 = max{1,
√

2𝜆, 𝜆}. Since the function 𝑤 in (4.9) is arbitrary, we may take the
infimum over all 𝑤 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) and apply (4.3) to obtain

‖𝑢− 𝑣𝒯 ‖Ω ≤ 𝐶2 (‖𝐹𝛾 [𝑣𝒯 ]‖Ω + |𝑣𝒯 |𝐽,𝒯 ) ≤ 𝐶rel𝜂𝒯 (𝑣𝒯 ),

for some constants 𝐶2 and 𝐶rel that depend possibly on 𝑑, 𝜗𝒯 , 𝑝, 𝜈, 𝜆 and Ω, which proves (4.6). To prove (4.7),
we use Theorem 2.5 which shows that 𝑢 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) solves 𝐹𝛾 [𝑢] = 0 pointwise a.e. and thus infer that,
for all 𝐾 ∈ 𝒯 ,

𝜂𝒯 (𝑣𝒯 , 𝐾) ≤ 𝑐𝜆(1 +
√

𝑑 + 1)‖𝑣𝒯 − 𝑢‖𝒯 ,𝐾 ,

with 𝑐𝜆 as above, where we have used the Lipschitz bound from (2.9b) to bound ‖𝐹𝛾 [𝑣𝒯 ]‖Ω = ‖𝐹𝛾 [𝑣𝒯 ]−𝐹𝛾 [𝑢]‖Ω.
This gives (4.7) with 𝐶eff,loc = 𝑐𝜆(1 +

√
𝑑 + 1). We then obtain (4.8) from (4.7) by taking square powers and

summing over all elements of the mesh. �
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Remark 4.3. A posteriori error bounds of a similar nature have been shown already in [3, 9, 26] for various
numerical methods. However, Theorem 4.2 shows that the a posteriori error bounds are not restricted to any
particular numerical method, as the bounds apply to arbitrary piecewise polynomial approximations on 𝒯 .
The significance for computational practice is then that the error estimators are reliable and efficient even
for inexactly computed numerical solutions, obtained from iterative solvers for the nonlinear discrete problem.
Furthermore, Theorem 4.2 can be applied to a wide range of approximations using various finite element spaces,
such as Morley or Hermite elements, and, up to substituting 𝒯 for a submesh, macro-elements such as the Hsieh–
Clough–Tocher element [14]. Naturally, there may be some simplifications that can be made in the estimators
when taking their restrictions to subspaces of 𝑉 0

𝒯 with higher regularity. The fact that Theorem 4.2 holds for
arbitrary 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 presents some substantial differences with the case of the usual residual-based error estimators
for weak solutions of divergence form elliptic problems. Recall that for divergence form problems, the derivation
of the upper bound relies on some form of Galerkin orthogonality satisfied by the numerical solution [12, 58].
This is due to the issue of localizing and bounding the negative-order Sobolev norm of the residual, see [4]
for further details. By comparison, in the present setting the residual is in 𝐿2, so the residual norm localizes
trivially.

Theorem 4.2 shows that the residual-type estimators in (4.4) are reliable and locally efficient. In [38], we use
these estimators to construct and prove convergence of adaptive DG and 𝐶0-IP methods for the problem at
hand. Note that the estimators in the present setting have some notable differences with residual estimators
for approximations of divergence form elliptic problems in 𝐻1-type norms [58]. The estimators defined in (4.4)
do not include any weighting of the volume residual terms with positive powers of the mesh-size function ℎ𝒯 ;
this is indeed both natural and optimal as shown by the efficiency bounds (4.7) and (4.8). This has important
ramifications for the analysis of adaptive methods [38]. In comparison to residual estimators for divergence
form elliptic problems, here the residual term for the PDE is entirely located on the elements, and the face
terms measure only the nonconformity of the approximations. In consequence, the local efficiency bound (4.7)
is indeed fully local to an element and to its faces.

The estimators given here are reliable, although it appears harder to make them guaranteed, i.e. to obtain
a guaranteed upper bound on the error without unknown constants, since this would require determining the
constant 𝐶rel. Indeed, the principal difficulty is to determine the constant in (4.3) that feeds into 𝐶rel. It
appears possible however to obtain a guaranteed and fully computable estimator by replacing the part of the
estimator associated to the jumps of function values and gradients over mesh faces by a computable choice of
𝑤 ∈ 𝐻2(Ω)∩𝐻1

0 (Ω) that appears in the proof of Theorem 4.2, for instance using the approximation constructed
in Lemma 4.1. This however appears to be rather involved in practice, so we do not consider it further. In the
numerical experiment of Section 7 below, it is found that in practice the estimators are quite close to the true
errors, suggesting that 𝐶rel is close to a value of 1 for that experiment.

Remark 4.4 (Dependence of constants on domain geometry). The constant in (4.1) possibly depends on the
space dimension 𝑑, the shape-regularity parameter 𝜗𝒯 , the polynomial degree 𝑝 as may be expected. However,
the constant in the bound (4.1) also depends on constants appearing in the analysis in [10,48] that are not robust
with respect to the geometry of the boundary 𝜕Ω, as we now explain. It is enough to consider momentarily 𝑑 = 2
and 𝑠 = 1; then the enrichment operators from [10,48] (both labelled here 𝐸2 in a slight abuse of notation) both
prescribe that the gradient of the 𝐻2 ∩𝐻1

0 -enrichment approximation must vanish identically at corner points
of the boundary (called sharp vertices in [48]) see e.g. Lemma 2 of [48] and Section 3.3.1 of [10]. Supposing that
𝑣𝒯 ∈ 𝑉 1

𝒯 is the function to be approximated, and 𝑧 is a sharp (corner) vertex of 𝜕Ω, then the analysis in the
references above involve a bound of the form

|∇𝑣𝒯 |𝐾(𝑧)−∇𝐸2𝑣𝒯 (𝑧)|2 = |∇𝑣𝒯 |𝐾(𝑧)|2 ≤ 𝐶♯

∑︁
𝐹∈ℱ𝐼 ;𝑧∈𝐹

∫︁
𝐹

ℎ1−𝑑
𝒯 |J∇𝑣𝒯 · 𝑛K|2, (4.10)

for all elements 𝐾 sharing the vertex 𝑧, see [48], equation (3.11) and the first displayed equation in [10], p. 11.
The proof that such a constant exists involves writing ∇𝑣𝒯 |𝐾(𝑧) in terms of a local basis formed by tangent
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Figure 1. A pair of elements 𝐾1 and 𝐾2 are formed by the vertices 𝑧0 = 0, 𝑧1 = (cos 𝜔, sin 𝜔)
for some 𝜔 ∈ (0, 𝜋/2), 𝑧2 = (0, 1) and 𝑧3 = (−1, 0). Suppose that the lower edges of 𝐾1 and 𝐾2

are on the boundary 𝜕Ω, so that 𝑧0 is a corner (sharp) vertex of 𝜕Ω.

vectors of faces. However, the constant 𝐶♯ in (4.10) generally depends on the angle formed by the tangent
vectors and thus on the geometry of Ω, as illustrated by the following example. Consider a corner vertex
𝑧0 associated to a pair of elements 𝐾1 and 𝐾2 as shown in Figure 1, and consider a function 𝑣𝒯 such that
𝑣𝒯 |𝐾1(𝑥, 𝑦) = 𝑦 − 𝑥 tan 𝜔 and 𝑣𝒯 |𝐾2(𝑥, 𝑦) = 𝑦, so that 𝑣𝒯 is piecewise affine, continuous on 𝐾1 ∪ 𝐾2, and
vanishes on the boundary faces formed by the vertices 𝑧0, 𝑧1 and 𝑧3. Then, it follows that |∇𝑣𝒯 |𝐾(𝑧0)|2 ≥ 1
for 𝐾 ∈ {𝐾1, 𝐾2}, whereas

∫︀
𝐹

ℎ1−𝑑
𝒯 |J∇𝑣𝒯 · 𝑛K|2 = tan2 𝜔 for the interior face 𝐹 formed by the vertices 𝑧0 and

𝑧2. Therefore, the constant 𝐶♯ in (4.10) necessarily satisfies 𝐶♯ ≥ tan−2 𝜔 and thus becomes large for small 𝜔,
i.e. when Ω has very nearly flat corners. Therefore, the claim in Theorem. 2.1 of [10] that the constants there
depend only on the shape regularity of the meshes appears to have overlooked the dependence on the geometry
of the boundary. In three space dimensions, this geometric dependence also occurs for degrees of freedom on
edges belonging to two non-coplanar boundary faces.

4.2. Abstract a priori error bound

We now provide a unifying framework for the a priori error analysis of a broad family of numerical methods.
Some concrete examples of methods that we have in mind are given in Section 5, which covers a range of different
methods proposed in the literature as well as some original variants, see in particular the definition in (5.9) and
also Remark 5.3 below for further details. We consider an abstract numerical method of the form: for a chosen
𝑠 ∈ {0, 1}, find 𝑢𝒯 ∈ 𝑉 𝑠

𝒯 such that
𝐴𝒯 (𝑢𝒯 ; 𝑣𝒯 ) = 0 ∀𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , (4.11)

for a given nonlinear form 𝐴𝒯 (·; ·) : 𝑉 𝑠
𝒯 × 𝑉 𝑠

𝒯 → R. We prove a near-best approximation result under abstract
assumptions on 𝐴𝒯 (·, ·), which allows for a unified treatment of a range of numerical methods from the literature,
and some original methods as well. First, we assume that the nonlinear form 𝐴𝒯 (·; ·) is linear in its second
argument, i.e. 𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 + 𝛿𝑧𝒯 ) = 𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 ) + 𝛿𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 ) for all 𝑣𝒯 , 𝑤𝒯 and 𝑧𝒯 ∈ 𝑉 𝑠

𝒯 and 𝛿 ∈ R.
Next, we make the following three assumptions concerning Lipschitz continuity, discrete consistency and strong
monotonicity.

Lipschitz continuity. The nonlinear form 𝐴𝒯 is assumed to be Lipschitz continuous, i.e. there exists a positive
constant 𝐶Lip such that

|𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 )−𝐴𝒯 (𝑧𝒯 ; 𝑣𝒯 )| ≤ 𝐶Lip‖𝑤𝒯 − 𝑧𝒯 ‖𝒯 ‖𝑣𝒯 ‖𝒯 ∀𝑤𝒯 , 𝑧𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (A1)

Discrete consistency. We assume that there exists a linear operator 𝐿𝒯 : 𝑉 𝑠
𝒯 → 𝐿2(Ω) and positive constants

𝐶cons and 𝐶𝐿𝒯 and such that, for all 𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 ,⃒⃒⃒⃒

𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 )−
∫︁

Ω

𝐹𝛾 [𝑤𝒯 ]𝐿𝒯 𝑣𝒯

⃒⃒⃒⃒
≤ 𝐶cons|𝑤𝒯 |𝐽,𝒯 ‖𝑣𝒯 ‖𝒯 , ‖𝐿𝒯 𝑣𝒯 ‖Ω ≤ 𝐶𝐿𝒯 ‖𝑣𝒯 ‖𝒯 . (A2)
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We stress that the jump seminorm |𝑤𝒯 |𝐽,𝒯 appears in the right-hand side of the first inequality. Therefore, the
condition (A2) requires that 𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 ) must include the testing of the nonlinear operator 𝐹𝛾 with 𝐿𝒯 𝑣𝒯 for
a test function 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , and that any additional terms must vanish whenever |𝑤𝒯 |𝐽,𝒯 = 0, i.e. when the first
argument 𝑤𝒯 belongs to 𝐻2(Ω) ∩ 𝐻1

0 (Ω). The assumption on 𝐿𝒯 is rather general and allows for testing the
PDE with a range of choices, although in practice, 𝐿𝒯 is usually chosen with a view towards satisfying a strong
monotonicity assumption.

Strong monotonicity. Finally, we assume that 𝐴𝒯 (·; ·) is strongly monotone, i.e. there exists a positive con-
stant 𝐶mon such that

𝐶−1
mon‖𝑤𝒯 − 𝑣𝒯 ‖2𝒯 ≤ 𝐴𝒯 (𝑤𝒯 ; 𝑤𝒯 − 𝑣𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑤𝒯 − 𝑣𝒯 ) ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 . (A3)

In practice, strong monotonicity for DG and 𝐶0-IP methods is usually attained by introducing stabilization
terms and penalization terms on the jumps of the approximate solution values and gradients, and choosing
the penalty parameters to be sufficiently large. The Lipschitz continuity and strong monotonicity conditions
in (A1) and (A3) are natural discrete counterparts to the Lipschitz continuity and strong monotonicity of the
continuous nonlinear form 𝐴(·; ·) considered in the proof of Theorem 2.5.

Remark 4.5 (Notion of consistency). We call the first inequality in (A2) discrete consistency because it is a
notion of consistency on the numerical method that is determined entirely at the discrete level. See also [57]
for a seemingly related notion of consistency called full algebraic consistency, which plays an important role in
the analysis of abstract nonconforming methods for linear problems. In particular, the notion of consistency
employed differs from more usual notions of consistency based on inserting the exact solution 𝑢 into the numerical
scheme, which may be subject to additional regularity assumptions on the solution. In practice, the discrete
consistency condition (A2) is trivially satisfied by some numerical methods, such as the one in [48] but is far
from obvious for the original method of [54, 55] owing to the additional stabilization terms. One of our main
contributions in Sections 5 and 6 below is a proof of (A2) for the original method of [54, 55] and some original
variants, see in particular Theorem 5.5 and Corollary 5.6. In all cases, our results hold without introducing any
additional regularity assumptions on the exact solution.

It follows from the Lipschitz continuity assumption (A1) and strong monotonicity (A3) that there exists a
unique 𝑢𝒯 ∈ 𝑉 𝑠

𝒯 that solves (4.11). We now prove the main result on the a priori error analysis of these schemes,
namely a near-best approximation property akin to Céa’s Lemma, with a constant determined solely in terms of
𝑑, 𝜆, 𝐶mon, 𝐶𝐿𝒯 and 𝐶cons appearing above. Moreover, for the class of numerical methods considered below, the
assumptions of our framework will be satisfied without requiring any further regularity on the exact solution.
Recall that 𝑢 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) denotes the unique solution of 𝐹 [𝑢] = 0 and equivalently 𝐹𝛾 [𝑢] = 0 pointwise
a.e. in Ω, see Theorem 2.5.

Theorem 4.6 (Near-best approximation). Suppose that the nonlinear form 𝐴𝒯 : 𝑉 𝑠
𝒯 × 𝑉 𝑠

𝒯 → R is linear in
its second argument, and satisfies assumptions (A1)–(A3). Let 𝑢𝒯 ∈ 𝑉 𝑠

𝒯 denote the unique solution of (4.11).
Then, we have the near-best approximation bound

‖𝑢− 𝑢𝒯 ‖𝒯 ≤ 𝐶NB inf
𝑣𝒯 ∈𝑉 𝑠

𝒯

‖𝑢− 𝑣𝒯 ‖𝒯 , (4.12)

where the constant 𝐶NB is given by

𝐶NB := 1 + 𝐶mon

(︁
𝐶cons + 𝐶𝐿𝒯 max

{︁
1,
√

2𝜆, 𝜆
}︁ (︁

1 +
√

𝑑 + 1
)︁)︁

.
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Proof. Let 𝑢𝒯 be the unique solution of (4.11), and let 𝑣𝒯 be arbitrary. Then, writing 𝑧𝒯 := 𝑣𝒯 − 𝑢𝒯 , we see
from (4.11), (A2) and (A3) that

𝐶−1
mon‖𝑣𝒯 − 𝑢𝒯 ‖2𝒯 = 𝐶−1

mon‖𝑧𝒯 ‖2𝒯 ≤ 𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑢𝒯 ; 𝑧𝒯 ) = 𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 )

= 𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 )−
∫︁

Ω

𝐹𝛾 [𝑣𝒯 ]𝐿𝒯 𝑧𝒯 +
∫︁

Ω

(𝐹𝛾 [𝑣𝒯 ]− 𝐹𝛾 [𝑢]) 𝐿𝒯 𝑧

≤ 𝐶cons|𝑣𝒯 − 𝑢|𝐽,𝒯 ‖𝑧𝒯 ‖𝒯 + ‖𝐹𝛾 [𝑣𝒯 ]− 𝐹𝛾 [𝑢]‖Ω𝐶𝐿𝒯 ‖𝑧𝒯 ‖𝒯
≤ 𝐶cons|𝑣𝒯 − 𝑢|𝐽,𝒯 ‖𝑧𝒯 ‖𝒯 + 𝑐𝑑,𝜆𝐶𝐿𝒯 ‖𝑣𝒯 − 𝑢‖𝒯 ‖𝑧𝒯 ‖𝒯 ,

where in the second line we have added and subtracted
∫︀
Ω

𝐹𝛾 [𝑣𝒯 ]𝐿𝒯 𝑧𝒯 and we have used the fact that 𝐹𝛾 [𝑢] = 0
a.e. in Ω, then in the third line we have used the discrete consistency bound (A2) with the identity |𝑣𝒯 |𝐽,𝒯 =
|𝑣𝒯 −𝑢|𝐽,𝒯 , along with the Cauchy–Schwarz inequality, and in the fourth line we have 𝑐𝑑,𝜆 := max{1,

√
2𝜆, 𝜆}(1+√

𝑑 + 1) which is obtained by bounding the right-hand side of (2.9b). We then deduce from the triangle inequality
and |𝑣𝒯 − 𝑢|𝐽,𝒯 ≤ ‖𝑣𝒯 − 𝑢‖𝒯 that

‖𝑢− 𝑢𝒯 ‖𝒯 ≤ ‖𝑢− 𝑣𝒯 ‖𝒯 + ‖𝑣𝒯 − 𝑢𝒯 ‖𝒯 ≤ [1 + 𝐶mon (𝐶cons + 𝑐𝑑,𝜆𝐶𝐿𝒯 )] ‖𝑢− 𝑣𝒯 ‖𝒯 , (4.13)

This proves (4.12) upon taking the infimum over all 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . �

Theorem 4.6 and the general framework introduced above can be easily extended to methods using a wide
range of approximations spaces, and not only the space 𝑉 𝑠

𝒯 considered here.
Note that the near-best approximation property given by Theorem 4.6 is rather remarkable given the fact

we consider here nonconforming methods, and is again primarily a consequence of the fact that 𝐹𝛾 [𝑢] = 0 in
the strong sense. Whereas the quasi-optimality of conforming Galerkin approximations of strongly monotone
operator equations is classical, c.f. Section 25.4 of [59], it is well-known that the analysis of near-best approxi-
mation properties for nonconforming methods is rather more challenging [30,57]. We refer the reader to [57] for
a detailed analysis of quasi-optimality for nonconforming methods for abstract linear problems. Note that even
in the case of linear divergence form elliptic problems, classical DG and other nonconforming methods often
do not satisfy a near-best approximation property ([57], Rem. 4.9), with the closest available results typically
including additional terms on the right-hand side [30].

Theorem 4.6 implies that, up to associated constants, all numerical methods satisfying the assumptions of the
above framework are quasi-optimal. Provided that the constants in the assumptions (A1)–(A3) are independent
of the mesh-size, it is then easy to show optimal rates of convergence with respect to the mesh-size under
additional regularity assumptions on the exact solution. Since the techniques for deriving convergence rates are
rather well-known, we leave the details to the reader.

Also under the assumption that the constants in the framework above remain uniformly bounded, Theorem 4.6
then leads to convergence of the numerical solutions in the small-mesh limit without any additional regularity
assumptions on 𝑢 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω).

Corollary 4.7 (Convergence for minimal regularity solutions). Let {𝒯𝑘}∞𝑘=1 be a sequence of conforming sim-
plicial meshes such that max𝐾∈𝒯𝑘

ℎ𝐾 → 0 as 𝑘 → ∞, and let 𝑢𝒯𝑘
∈ 𝑉 𝑠

𝒯𝑘
denote the corresponding numerical

solution of (4.11) for each 𝑘 ∈ N. Suppose that, for each 𝑘 ∈ N, the nonlinear form 𝐴𝒯𝑘
(·; ·) is linear in its

second argument and satisfies the assumptions (A1)–(A3) with associated constants that are uniformly bounded
with respect to 𝑘 ∈ N. Then the sequence of numerical solutions {𝑢𝒯𝑘

}𝑘∈N converges to 𝑢 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) the

exact solution of (1.1) with
lim

𝑘→∞
‖𝑢− 𝑢𝒯𝑘

‖𝒯𝑘
= 0. (4.14)

Proof. We prove this in two steps, first for 𝑠 = 0 and then for 𝑠 = 1.

Step 1. Suppose momentarily that 𝑠 = 0. Under the above hypotheses that the constants in (A1)–(A3) are
uniformly bounded with respect to 𝑘 ∈ N, we infer from (4.12) that it is enough to show that there exists a
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sequence of functions 𝑣𝑘 ∈ 𝑉 0
𝒯𝑘

such that ‖𝑢− 𝑣𝑘‖𝒯𝑘
→ 0 as 𝑘 →∞. For each 𝑘 ∈ N, we define 𝑣𝑘 ∈ 𝑉 0

𝒯𝑘
as the

unique piecewise quadratic polynomial that satisfies
∫︀

𝐾
(𝑢− 𝑣𝑘) = 0,

∫︀
𝐾
∇(𝑢− 𝑣𝑘) = 0 and

∫︀
𝐾
∇2(𝑢− 𝑣𝑘) = 0

for all 𝐾 ∈ 𝒯𝑘, where integration is taken component-wise for vectors and matrices. Note here that 𝑝 ≥ 2
implies that 𝑣𝑘 ∈ 𝑉 0

𝒯𝑘
. In particular, it is easily checked that an explicit formula for 𝑣𝑘|𝐾 is given by 𝑣𝑘|𝐾(𝑥) =

𝑟 + 𝑑 · 𝑥 + 1
2𝑥⊤𝐻𝑥 for all 𝑥 ∈ 𝐾, with coefficients 𝑟 ∈ R, 𝑑 ∈ R𝑑 and 𝐻 ∈ R𝑑×𝑑, with 𝐻 = ∇2𝑢|𝐾 ,

𝑑 = ∇𝑢−𝐻𝑥|𝐾 and 𝑟 = 𝑢− 𝑑·𝑥− 1
2𝑥⊤𝐻𝑥|𝐾 where 𝑤|𝐾 denotes the mean-value of a scalar-, vector- or

matrix-valued function 𝑤 over 𝐾. It then follows from repeated applications of Poincaré’s inequality that∫︀
𝐾

ℎ2𝑚−4
𝒯 |∇𝑚(𝑢 − 𝑣𝑘)|2 .

∫︀
𝐾
|∇2𝑢 − ∇2𝑢|𝐾 |2 for each 𝑚 ∈ {0, 1, 2}, for all 𝐾 ∈ 𝒯𝑘 and for all 𝑘 ∈ N.

Using trace inequalities to bound the jump-seminorms |𝑣𝑘|𝐽,𝒯𝑘
= |𝑢 − 𝑣𝑘|𝐽,𝒯𝑘

, we then see that ‖𝑢 − 𝑣𝑘‖2𝒯𝑘
.∑︀

𝐾∈𝒯𝑘

∫︀
𝐾
|∇2𝑢 − ∇2𝑢|𝐾 |2 for all 𝑘 ∈ N. It then follows from density of the space 𝐶∞0 (Ω; R𝑑×𝑑) of smooth

compactly supported R𝑑×𝑑-valued functions in 𝐿2(Ω; R𝑑×𝑑) that
∑︀

𝐾∈𝒯𝑘

∫︀
𝐾
|∇2𝑢−∇2𝑢|𝐾 |2 → 0 as 𝑘 →∞ and

hence also that ‖𝑢− 𝑣𝑘‖𝒯𝑘
→ 0 as 𝑘 →∞. This implies (4.14) for 𝑠 = 0.

Step 2. For 𝑠 = 1, let 𝑣𝑘 ∈ 𝑉 0
𝒯𝑘

define the above piecewise quadratic approximation, and let ̃︀𝑣𝑘 = 𝐸1𝑣𝑘 ∈ 𝑉 1
𝒯𝑘

denote its 𝐻1
0 -conforming enrichment, where it is recalled that 𝐸1 is as in the proof of Theorem 3.1; in a slight

abuse of notation, we do not indicate here the dependence of 𝐸1 on 𝑘. It is straightforward then to use triangle
inequalities and the bound (3.7) to show that ‖𝑢 − ̃︀𝑣𝑘‖𝒯𝑘

→ 0 as 𝑘 → ∞, thus showing (4.14) also in the case
𝑠 = 1. �

5. Application to a family of numerical methods

We now consider how the abstract framework for analysis in the sections above applies to a family of numerical
methods that includes as special cases the methods of [48, 54, 55] as well as some original methods which are
studied further in the context of adaptive methods in [38].

Lifting operators. Let 𝑞 denote a fixed choice of polynomial degree such that 𝑞 ≥ 𝑝 − 2, which implies that
𝑞 ≥ 0 since 𝑝 ≥ 2. Let 𝑉𝒯 ,𝑞 := {𝑤 ∈ 𝐿2(Ω): 𝑤|𝐾 ∈ P𝑞 ∀𝐾 ∈ 𝒯 } denote the space of piecewise polynomials of
degree at most 𝑞 over 𝒯 . For each interior face 𝐹 ∈ ℱ𝐼 , we define the lifting operator 𝑟𝐹

𝒯 : 𝐿2(𝐹 ) → 𝑉𝒯 ,𝑞 by∫︀
Ω

𝑟𝐹
𝒯 (𝑤)𝜙 =

∫︀
𝐹

𝑤{𝜙} for all 𝜙 ∈ 𝑉𝒯 ,𝑞 and all 𝑤 ∈ 𝐿2(𝐹 ). Using an inverse inequality for polynomials, it is easy
to see that ‖𝑟𝐹

𝒯 (𝑤)‖Ω . ℎ
−1/2
𝐹 ‖𝑤‖𝐹 for any 𝑤 ∈ 𝐿2(𝐹 ).

For a fixed choice of a parameter 𝜒 ∈ {0, 1}, we define the linear operators ∆𝒯 : 𝑉 𝑠
𝒯 → 𝐿2(Ω) and 𝑟𝒯 : 𝑉 𝑠

𝒯 →
𝑉𝒯 ,𝑞

∆𝒯 𝑣𝒯 := ∆𝑣𝒯 − 𝜒𝑟𝒯 (J∇𝑣𝒯 · 𝑛K), 𝑟𝒯 (J∇𝑣𝒯 · 𝑛K) :=
∑︁

𝐹∈ℱ𝐼

𝑟𝐹
𝒯 (J∇𝑣𝒯 · 𝑛K) ∀𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , (5.1)

In order to alleviate the notation, we do not write explicitly the dependence of ∆𝒯 on the parameter 𝜒. If 𝜒 = 0
then ∆𝒯 𝑣𝒯 coincides with the piecewise Laplacian of 𝑣𝒯 , whereas if 𝜒 = 1 then ∆𝒯 𝑣𝒯 is usually called the
lifted Laplacian. The choice 𝜒 = 1 is useful for proving asymptotic consistency of the numerical schemes in the
context of adaptive methods, see [38]. It is straightforward to show that

‖𝑟𝒯 (J∇𝑣𝒯 · 𝑛K)‖Ω . |𝑣𝒯 |𝐽,𝒯 , ‖∆𝒯 𝑣𝒯 ‖Ω . ‖𝑣𝒯 ‖𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 , (5.2)

where the constants depend only on 𝑑, 𝑝, 𝑞 and 𝜗𝒯 , see e.g. Section 4.3 of [20].

Stabilization. Let the stabilization bilinear form 𝑆𝒯 : 𝑉 𝑠
𝒯 × 𝑉 𝑠

𝒯 → R be defined by

𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 ) :=
∫︁

Ω

[︀
∇2𝑤𝒯 : ∇2𝑣𝒯 −∆𝑤𝒯 ∆𝑣𝒯

]︀
−

∫︁
ℱ

[∇𝑇 {∇𝑤𝒯 · 𝑛} · J∇𝑇 𝑣𝒯 K +∇𝑇 {∇𝑣𝒯 · 𝑛} · J∇𝑇 𝑤𝒯 K]

+
∫︁
ℱ𝐼

[{∆𝑇 𝑤𝒯 } J∇𝑣𝒯 · 𝑛K + {∆𝑇 𝑣𝒯 } J∇𝑤𝒯 · 𝑛K] ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 ,

(5.3)
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where it is recalled that ∇𝑇 and ∆𝑇 denote the tangential gradient and Laplacian, respectively, on mesh faces.
We now show that the stabilization form 𝑆𝒯 (·, ·) is equivalent to the stabilization terms that were used in [54,55].
In particular, let 𝐵𝒯 ,*(·, ·) : 𝑉 𝑠

𝒯 × 𝑉 𝑠
𝒯 → R be the bilinear form introduced in [54,55], defined by

𝐵𝒯 ,*(𝑤𝒯 , 𝑣𝒯 ) :=
∫︁

Ω

[︀
∇2𝑤𝒯 : ∇2𝑣𝒯 + 2𝜆∇𝑤𝒯 · ∇𝑣𝒯 + 𝜆2𝑤𝒯 𝑣𝒯

]︀
−

∫︁
ℱ

[∇𝑇 {∇𝑤𝒯 · 𝑛} · J∇𝑇 𝑣𝒯 K +∇𝑇 {∇𝑣𝒯 · 𝑛} · J∇𝑇 𝑤𝒯 K]

+
∫︁
ℱ𝐼

[{∆𝑇 𝑤𝒯 } J∇𝑣𝒯 · 𝑛K + {∆𝑇 𝑣𝒯 } J∇𝑤𝒯 · 𝑛K]

− 𝜆

∫︁
ℱ

[{∇𝑤𝒯 · 𝑛} J𝑣𝒯 K + {∇𝑣𝒯 · 𝑛} J𝑤𝒯 K]

− 𝜆

∫︁
ℱ𝐼

[{𝑤𝒯 } J∇𝑣𝒯 · 𝑛K + {𝑣𝒯 } J∇𝑤𝒯 · 𝑛K] .

(5.4)

The following lemma shows that the stabilization used in [55] can be equivalently simplified to the stabilization
form 𝑆𝒯 (·, ·) defined above in (5.3).

Lemma 5.1. Let the bilinear forms 𝑆𝒯 (·, ·) and 𝐵𝒯 ,*(·, ·) be defined by (5.3) and (5.4). Then, we have the
identity

𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 ) = 𝐵𝒯 ,*(𝑤𝒯 , 𝑣𝒯 )−
∫︁

Ω

𝐿𝜆𝑤𝒯 𝐿𝜆𝑣𝒯 ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (5.5)

Proof. After expanding 𝐿𝜆𝑤𝒯 𝐿𝜆𝑣𝒯 = ∆𝑤𝒯 ∆𝑣𝒯 − 𝜆∆𝑤𝒯 𝑣𝒯 − 𝜆𝑤𝒯 ∆𝑣𝒯 + 𝜆2𝑤𝒯 𝑣𝒯 , we see that the identity
in (5.5) follows straightforwardly from the integration-by-parts identity

−
∫︁

Ω

∆𝑤𝒯 𝑣𝒯 =
∫︁
∇𝑤𝒯 · ∇𝑣𝒯 −

∫︁
ℱ
{∇𝑤𝒯 · 𝑛} J𝑣𝒯 K−

∫︁
ℱ𝐼

J∇𝑤𝒯 · 𝑛K {𝑣𝒯 } ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 0
𝒯 , (5.6)

which is used twice, once as above and once with 𝑤𝒯 and 𝑣𝒯 interchanged, in order to cancel all terms involving
𝜆 in the right-hand side of (5.5). �

Lemma 5.1 shows that the stabilization terms used in [55] for 𝜆 possibly nonzero in fact coincides with the
stabilization term used below in (5.9) that defines the nonlinear form 𝐴𝒯 (·; ·). Therefore, in practice, the method
in [54,55] only requires the implementation of the terms of the stabilization form 𝑆𝒯 (·, ·).

Penalization. For two positive constant parameters 𝜎 and 𝜌 to be chosen later, let the jump penalization
bilinear form 𝐽𝒯 : 𝑉 𝑠

𝒯 × 𝑉 𝑠
𝒯 → R be defined by

𝐽𝒯 (𝑤𝒯 , 𝑣𝒯 ) :=
∫︁
ℱ𝐼

𝜎ℎ−1
𝒯 J∇𝑤𝒯 K · J∇𝑣𝒯 K +

∫︁
ℱ𝐵

𝜎ℎ−1
𝒯 J∇𝑇 𝑤𝒯 K · J∇𝑇 𝑣𝒯 K +

∫︁
ℱ

𝜌ℎ−3
𝒯 J𝑤𝒯 KJ𝑣𝒯 K, (5.7)

for all 𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 , where it is recalled that ∇𝑇 denotes the tangential gradient on mesh faces.

Remark 5.2 (Penalization of jumps of tangential gradients). The bilinear form 𝐽𝒯 (·, ·) includes terms that
penalize tangential jumps of the solution on interior and boundary faces. For fixed polynomial degrees, it is
straightforward to show that the jump penalization bilinear form 𝐽𝒯 (·, ·) induces a semi-norm that is equivalent
to |·|𝐽,𝒯 , up to constants depending on the penalty paramters 𝜎 and 𝜌. However, the benefit of the terms
that penalize explicitly the jumps in tangential components of the gradients in the numerical scheme is that
it significantly improves the dependence of the penalty parameters on the polynomial degrees, in particular 𝜌,
which is essential for avoiding a degradation of the rate of convergence with respect to polynomial degrees in
the context of ℎ𝑝-version methods, and it also helps to improve the conditioning of the systems, see the analysis
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in [54, 55]. Thus the inclusion of explicit penalization of the jumps of tangential components is advantageous
in computational practice even though it is not strictly necessary for an analysis that is not explicit in the
polynomial degrees. Note however that for 𝐶0-IP methods, i.e. when 𝑠 = 1, then the last two terms in (5.7)
vanish identically.

Numerical methods. Recalling the operator ∆𝒯 from (5.1), we define the linear operator

𝐿𝜆,𝒯 𝑣𝒯 := ∆𝒯 𝑣𝒯 − 𝜆𝑣𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (5.8)

As above, we do not indicate explicitly the dependente of 𝐿𝜆,𝒯 on 𝜒 in order to alleviate the notation. We now
consider the following family of numerical methods: for a parameter 𝜃 ∈ [0, 1], define the nonlinear form

𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 ) :=
∫︁

Ω

𝐹𝛾 [𝑤𝒯 ]𝐿𝜆,𝒯 𝑣𝒯 + 𝜃𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 ) + 𝐽𝒯 (𝑤𝒯 , 𝑣𝒯 ) ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (5.9)

For simplicity of notation, we do not write explicitly the dependence of 𝐴𝒯 (·; ·) on the parameters 𝜆, 𝜃, 𝜒, 𝜎,
𝜇 and 𝜌, nor on choice of approximation space through 𝑠 ∈ {0, 1} and the polynomial degrees 𝑝 and 𝑞. The
discrete problem is then to find 𝑢𝒯 ∈ 𝑉 𝑠

𝒯 that solves (4.11).

Remark 5.3 (Relation to methods in the literature). Choosing 𝑠 = 0, 𝜒 = 0 and 𝜃 = 1/2, we obtain the
original DGFEM proposed in [54,55], see Lemma 5.1 concerning the equivalence of the stabilization terms. If we
take 𝑠 = 1, and 𝜒 = 𝜃 = 0, then we obtain the 𝐶0-interior penalty FEM proposed in [48], and further analysed
in [9]. Methods using 𝜒 = 1 are of interest in the context of adaptive methods, see [38]. Note however that the
general framework of Section 4 applies to some methods not directly covered by the class of methods of this
section, such as one of the two methods proposed in [3], which involves a 𝐶0-IP method featuring a Hessian
recovery into discontinuous piecewise polynomials for both trial and test functions.

We now state the main results that show that the family of numerical methods considered above satisfy the
assumptions (A1)–(A3) of the abstract framework for a priori error analysis.

Lipschitz continuity. Using the same techniques as in [54,55] and using Lemma 2.4, it can be shown that the
nonlinear form 𝐴𝒯 (·; ·) defined in (5.9) satisfies the Lipschitz continuity bound (A1). In particular, Lemma 2.4
improves on [54,55] by showing that the Lipschitz constant is otherwise independent of the data of the operators
𝐿𝛼𝛽 .

Lemma 5.4 (Lipschitz continuity). The nonlinear form 𝐴𝒯 (·; ·) defined by (5.9) satisfies (A1) with a constant
𝐶Lip that depends only on 𝑑, 𝜗𝒯 , 𝑝, 𝑞, 𝜆, 𝜎 and 𝜌.

Proof. Let 𝑤𝒯 , 𝑧𝒯 and 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 be arbitrary. Then, using (2.9b) for the nonlinear terms, using (5.2) for the

lifting terms, and applying inverse inequalities to the face terms in the bilinear form 𝑆𝒯 (·, ·), it is found that

|𝐴𝒯 (𝑤𝒯 ; 𝑣𝒯 )−𝐴𝒯 (𝑧𝒯 ; 𝑣𝒯 )| ≤
∫︁

Ω

|𝐹𝛾 [𝑤𝒯 ]− 𝐹𝛾 [𝑣𝒯 ]||𝐿𝜆,𝒯 𝑣𝒯 |

+ |𝑆𝒯 (𝑤𝒯 − 𝑧𝒯 , 𝑣𝒯 )|+ |𝐽𝒯 (𝑤𝒯 − 𝑧𝒯 , 𝑣𝒯 )|
. ‖𝑤𝒯 − 𝑧𝒯 ‖𝒯 ‖𝑣𝒯 ‖𝒯 ,

with a constant depending on 𝑑, 𝜗𝒯 , 𝑝, 𝑞, 𝜆, 𝜎 and 𝜌, thereby proving (A1). �

Discrete consistency. When 𝜃 = 0, it is straightforward to show that the nonlinear form 𝐴𝒯 (·, ·) defined
in (5.9) satisfies the discrete consistency assumption (A2). However for 𝜃 ̸= 0 this is far from obvious. The key
for showing discrete consistency is then the following bound on the stabilization term 𝑆𝒯 (·, ·), showing that
𝑆𝒯 (·, ·) is bounded with respect to the jump seminorms of its arguments, rather than the whole norm.
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Theorem 5.5 (Bound on stabilization terms). The bilinear form 𝑆𝒯 defined in (5.3) satisfies the bound

|𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 )| . |𝑤𝒯 |𝐽,𝒯 |𝑣𝒯 |𝐽,𝒯 ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (5.10)

The proof of Theorem 5.5 is given in Section 6.2 below. We now show how it is used to prove (A2).

Corollary 5.6 (Discrete consistency). The nonlinear form (5.9) satisfies (A2) with a constant 𝐶cons that
depends only on 𝑑, 𝜗𝒯 , 𝑝, 𝜎, 𝜇, 𝜌, and Ω, and a constant 𝐶𝐿𝒯 that depends only on 𝑑, 𝜆 and, if 𝜒 = 1,
then also on 𝜗𝒯 , 𝑝 and 𝑞.

Proof. Choosing 𝐿𝒯 𝑣𝒯 := ∆𝒯 𝑣𝒯 − 𝜆𝑣𝒯 for all 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 , we see that ‖𝐿𝒯 𝑣𝒯 ‖Ω . ‖𝑣𝒯 ‖𝒯 for all 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 with a
constant 𝐶𝐿𝒯 that depends only on 𝑑, 𝜆, and also 𝜗𝒯 , 𝑝 and 𝑞 if 𝜒 = 1. Then, for all 𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , we obtain⃒⃒⃒⃒
𝐴𝒯 (𝑤𝒯 , 𝑣𝒯 )−

∫︁
Ω

𝐹𝛾 [𝑤𝒯 ]𝐿𝒯 𝑣𝒯

⃒⃒⃒⃒
≤ |𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 )|+ |𝐽𝒯 (𝑤𝒯 , 𝑣𝒯 )| ≤ 𝐶cons|𝑤𝒯 |𝐽,𝒯 |𝑣𝒯 |𝐽,𝒯 , (5.11)

where we have used 𝜃 ∈ [0, 1], and we have used Theorem 5.5 in the second inequality to bound |𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 )|.
The constant 𝐶cons above depends only on 𝑑, 𝜗𝒯 , 𝑝, on the penalty parameters 𝜎 and 𝜌, and on Ω. This
proves (A2). �

Remark 5.7. The fact that the seminorm |𝑣𝒯 |𝐽,𝒯 appears on the right-hand side of (5.10) for the function
𝑣𝒯 in the second argument of the bilinear form 𝑆𝒯 (·, ·) is not strictly necessary for the discrete consistency
property (A2). Indeed, the condition (A2) allows the full norm of the second argument of the nonlinear form to
appear on the right-hand side. Thus, it is possible to show that the discrete consistency assumption (A2) also
holds for a nonsymmetric variant of the stabilization term 𝑆𝒯 (·, ·).

Strong monotonicity. We now show below that for all choices of the parameters defining the scheme, it is
possible to choose the penalty parameters sufficiently large such that (A3) is satisfied. The analysis suggests
however that the minimum necessary penalty parameters required for strong monotonicity may depend signifi-
cantly on the value of the stabilization parameter 𝜃. Indeed, Theorem 5.8 shows that if the parameter 𝜃 is in an
interval centred on 1/2, see (5.12) below, then (5.9) holds for a choice of penalty parameters that is independent
of the geometry of the domain Ω. In Theorem 5.10, we show that strong monotonicity can still be achieved for
general 𝜃, but with penalty parameters that possibly further depend on the geometry of Ω. In the following,
recall that 𝐶PF is the constant in (3.6).

Theorem 5.8 (Strong monotonicity I). Suppose that 𝜃 satisfies the condition

𝜃 ∈
(︂

1−
√

𝜈

2
,

1 +
√

𝜈

2

)︂
, (5.12)

and define the positive constant 𝜇 > 0 by

𝜇 := 𝜃 − 1− 𝜈

4(1− 𝜃)
· (5.13)

Then, there exists 𝜎min and 𝜌min, depending only on 𝑑, 𝜗𝒯 , 𝜆, 𝑝, 𝑞, 𝜃 and 𝜇, but not on Ω, such that, for all
𝜎 ≥ 𝜎min and 𝜌 ≥ 𝜌min, the nonlinear form 𝐴𝒯 (·; ·) satisfies (A3) with a constant 𝐶mon depending only on 𝜇
and on 𝐶PF.

Proof. Note that (5.12) and 𝜈 ≤ 1 imply that 𝜃 ∈ (0, 1) so that 𝜇 is well-defined and real. It is then easy to
check that 𝜇 is positive if and only if 𝜃 satisfies (5.12). The proof is an extension of the approach first introduced
in [54,55]. Let 𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 be arbitrary, and let 𝑧𝒯 := 𝑤𝒯 − 𝑣𝒯 . To show (A3), we start by proving that

𝜇

4
(︀
|𝑧𝒯 |2𝜆,𝒯 + |𝑧𝒯 |2𝐽,𝒯

)︀
≤ 𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ), (5.14)
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where we recall that the 𝜆-weighted seminorm |·|𝜆,𝒯 is defined in (3.8). The Poincaré–Friedrichs inequality
of Theorem 3.1 then implies (A3), e.g. with a constant 𝐶mon ≤ 4𝐶2

PF𝜇−1. Note that since 𝜈 ≤ 1, it follows
from (5.12) that 𝜃 ∈ (0, 1). We then use Lemma 5.1 to obtain

𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) =
∫︁

Ω

(𝐹𝛾 [𝑤𝒯 ]− 𝐹𝛾 [𝑣𝒯 ]) (𝐿𝜆𝑧𝒯 − 𝜒𝑟𝒯 (J∇𝑧𝒯 · 𝑛K))

+ 𝜃

(︂
𝐵𝒯 ,*(𝑧𝒯 , 𝑧𝒯 )−

∫︁
Ω

|𝐿𝜆𝑧𝒯 |2
)︂

+ 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ).

Adding and subtracting
∫︀
Ω
|𝐿𝜆𝑧𝒯 |2 and using the bounds (2.9a), (2.9b) and (5.2), we find that

𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) ≥ 𝜃𝐵𝒯 ,*(𝑧𝒯 , 𝑧𝒯 ) + (1− 𝜃)‖𝐿𝜆𝑧𝒯 ‖2 + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 )

−
√

1− 𝜈|𝑧𝒯 |𝜆,𝒯 ‖𝐿𝜆𝑧𝒯 ‖Ω − 𝑐†𝜒|𝑧𝒯 |𝜆,𝒯 |𝑧𝒯 |𝐽,𝒯 ,

where the constant 𝑐† depends only on 𝑑, 𝜗𝒯 , 𝑝 and 𝑞. Since 𝜃 ∈ (0, 1), we may use Young’s inequality

√
1− 𝜈|𝑧𝒯 |𝜆,𝒯 ‖𝐿𝜆𝑧𝒯 ‖Ω ≤

1− 𝜈

4(1− 𝜃)
|𝑧𝒯 |2𝜆,𝒯 + (1− 𝜃)‖𝐿𝜆𝑧𝒯 ‖2Ω

to obtain

𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) ≥ 𝜃𝐵𝒯 ,*(𝑧𝒯 , 𝑧𝒯 )− 1− 𝜈

4(1− 𝜃)
|𝑧𝒯 |2𝜆,𝒯 − 𝑐†𝜒|𝑧𝒯 |𝜆,𝒯 |𝑧𝒯 |𝐽,𝒯 + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ).

It is shown in Lemma 6 of [55] that for any 𝜅 > 1, there exists 𝜎min and 𝜌min, depending only on 𝜅, 𝑑, 𝜗𝒯 , 𝑝
and 𝜆, such that

𝐵𝒯 ,*(𝑧𝒯 , 𝑧𝒯 ) + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ) ≥ 1
𝜅
|𝑧𝒯 |2𝜆,𝒯 +

1
2
𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ) ∀𝑧𝒯 ∈ 𝑉 𝑠

𝒯 , (5.15)

for all 𝜎 ≥ 𝜎min and 𝜌 ≥ 𝜌min. Recalling the definition of 𝜇 in (5.13), we then choose, e.g., 𝜅 = (1 − 𝜇/2𝜃)−1,
and note that 𝜅 ∈ (1, 2), to get

𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) ≥
(︂

𝜃

𝜅
− 𝜃 + 𝜇

)︂
|𝑧𝒯 |2𝜆,𝒯 − 𝑐†|𝑧𝒯 |𝜆,𝒯 |𝑧𝒯 |𝐽,𝒯 +

(︂
1− 𝜃

2

)︂
𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 )

=
𝜇

2
|𝑧𝒯 |2𝜆,𝒯 − 𝑐†|𝑧𝒯 |𝜆,𝒯 |𝑧𝒯 |𝐽,𝒯 +

(︂
1− 𝜃

2

)︂
𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 )

≥ 𝜇

4
|𝑧𝒯 |2𝜆,𝒯 +

1
2
𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 )−

𝑐2
†

𝜇
|𝑧𝒯 |2𝐽,𝒯 ,

where in the last line we have used 1 − 𝜃/2 ≥ 1/2. It is then seen that there exists 𝜎min and 𝜌min sufficiently
large, depending only on 𝑑, 𝜗𝒯 , 𝑝, 𝑞, 𝜆, 𝜃 and 𝜇, such that (5.14) and hence also (A3) both hold for all 𝜎 ≥ 𝜎min

and 𝜌 ≥ 𝜌min. �

Remark 5.9 (Optimal value of 𝜃). Maximizing 𝜇 with respect to 𝜃 leads to 𝜇 = 1−
√

1− 𝜈 for 𝜃 = 1− 1
2

√
1− 𝜈,

which always satisfies (5.12) whenever 𝜈 ∈ (0, 1). The constant 𝐶mon is then comparable to the constant
appearing in (2.12). In the context of mixed methods, Gallistl and Süli [28], equation (2.8) make a similar
optimal choice of a parameter for stabilizing the curls of the approximations to the gradients. We consider here
more general values of 𝜃 however since the constant 𝜈 appearing in the Cordes condition might only be known
approximately in practice. However, for 𝜈 small, the optimal value 𝜃 = 1− 1

2

√
1− 𝜈 approaches 1/2, which was

the original choice made in [54,55].
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When the condition (5.12) does not hold, e.g. as in [48], then we can still show strong monotonicity for suffi-
ciently large penalty parameters, although the penalty parameters may then possibly depend on the geometry
of Ω. See Remark 5.11 below.

Theorem 5.10 (Strong monotonicity II). There exists 𝜎min and 𝜌min, depending only on 𝑑, 𝜗𝒯 , 𝜆, 𝑝, 𝑞, 𝜈 and
Ω, such that for all 𝜎 ≥ 𝜎min and 𝜌 ≥ 𝜌min, and all 𝜃 ∈ [0, 1], the nonlinear form 𝐴𝒯 (·; ·) satisfies (A3) with a
constant 𝐶mon that depends only on 𝜈 and 𝐶PF.

The proof of Theorem 5.10 is given in Section 6.3 below.

Remark 5.11 (Dependencies of penalty parameters). Ideally, the penalty parameters 𝜎 and 𝜌 should be chosen
as small as possible, which is important for the accuracy of the method and the conditioning of the discrete
problems. Notice that the original method of [54,55] based on the choice 𝜃 = 1/2 satisfies (5.12) for all values of
𝜈 > 0, and thus the stability of the method in [54,55] is robust with respect to domain geometry. Theorem 5.8
shows that robustness with respect to domain geometry extends to a range of choices of 𝜃 satisfying (5.12).
The difficulty when 𝜃 does not satisfy (5.12), e.g. as in [48], is that the proof of strong monotonicity then relies
on a discrete Miranda–Talenti inequality, where, to the best of our knowledge, all current proofs involve some
reconstruction operators with constants that depend critically on the angles formed by faces at corner points
and corner edges, see Remark 4.4 above. These constants then feed into 𝜎min and 𝜌min, which leaves open the
possibility that they may become very large on domains with very nearly flat edges.

Remark 5.12 (Near-best approximation and convergence). It follows from Lemma 5.4, Corollary 5.6 and The-
orems 5.8, 5.10 that the constants appearing in the abstract assumptions (A1)–(A3) all hold with constants
depending only on the quantities detailed above, and otherwise independent of the mesh-size. Therefore, Theo-
rem 4.6 and Corollary 4.7 show quasi-optimality of the approximations and convergence for minimal regularity
solutions in the small mesh limit for the family of methods considered above when considering shape-regular
sequences of meshes.

6. Proof of Theorems 5.5 and 5.10.

We now turn towards the proof of Theorems 5.5 and 5.10. Our proofs are based on more general results
concerning discontinuous piecewise-polynomial vector fields.

6.1. Enrichment of discontinuous piecewise-polynomial vector fields

Consider the space 𝑉 𝒯 of piecewise-polynomial vector fields of degree at most 𝑝− 1 defined by

𝑉 𝒯 := {𝑣𝒯 ∈ 𝐿2(Ω; R𝑑); 𝑣𝒯 |𝐾 ∈ P𝑑
𝑝−1 ∀𝐾 ∈ 𝒯 }, (6.1)

where P𝑑
𝑝−1 denotes the space of R𝑑-valued polynomials of total degree at most 𝑝− 1. Note that ∇𝑣𝒯 ∈ 𝑉 𝒯 for

any 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 , 𝑠 ∈ {0, 1}. Also, the fact that 𝑝 ≥ 2 implies that 𝑉 𝒯 contains at least all piecewise affine vector-

valued polynomials, and thus has a nontrivial continuous subspace. We define the norm ‖·‖𝑉 𝒯 and seminorm
|·|𝐽,𝒯 on 𝑉 𝒯 by

‖𝑣𝒯 ‖2𝑉 𝒯
:=

∫︁
Ω

[︀
|∇𝑣𝒯 |2 + |𝑣𝒯 |2

]︀
+ |𝑣𝒯 |2𝐽,𝒯 , |𝑣𝒯 |2𝐽,𝒯 :=

∫︁
ℱ𝐼

ℎ−1
𝒯 |J𝑣𝒯 K|2 +

∫︁
ℱ𝐵

ℎ−1
𝒯 |(𝑣𝒯 )𝑇 |2, (6.2)

for all 𝑣𝒯 ∈ 𝑉 𝒯 . We also consider the space 𝐻1
𝑇 (Ω) of 𝐻1-conforming vector fields with vanishing tangential

components on the boundary, i.e.

𝐻1
𝑇 (Ω) := {𝑣 ∈ 𝐻1(Ω; R𝑑); 𝑣𝑇 = 0 on 𝜕Ω}, (6.3)

where 𝑣𝑇 denotes the tangential component of the trace of 𝑣 on the boundary. We now construct an operator
𝐸𝒯 that maps vector fields from 𝑉 𝒯 to 𝐻1

𝑇 (Ω)-conforming vector fields, with an error controlled by the jump
of the vector field over all internal faces and by the tangential component of traces over boundary faces.
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Theorem 6.1. There exists a linear operator 𝐸𝒯 : 𝑉 𝒯 → 𝑉 𝒯 ∩𝐻1
𝑇 (Ω) such that

‖𝑣𝒯 −𝐸𝒯 𝑣𝒯 ‖𝑉 𝒯 . |𝑣𝒯 |𝐽,𝒯 ∀𝑣𝒯 ∈ 𝑉 𝒯 . (6.4)

The constant in (6.4) depends on 𝑑, 𝜗𝒯 , 𝑝 and on Ω.

Proof. The proof is an adaptation to the vectorial setting of enrichments by a standard technique of local
averaging, see e.g. [10,34,48]. Consider the space 𝑉 𝒯 ∩𝐻1(Ω; R𝑑) of continuous vector fields in 𝑉 𝒯 , and let 𝒵
denote the set of points 𝑧 ∈ Ω corresponding to the Lagrange degrees of freedom of the space 𝑉 𝒯 ∩𝐻1(Ω; R𝑑).
We remark that here the Lagrange degrees of freedom of vector fields are similar to the scalar case, with the
only difference being that all degrees of freedom are point vector-values in R𝑑. Thus, for example, if 𝑝 = 2, then
𝑉 𝒯 ∩ 𝐻1(Ω; R𝑑) consists of continuous piecewise-affine vector-valued polynomials, and then 𝒵 consists of all
mesh vertices. Let 𝒵 be partitioned into the set of interior points 𝒵𝐼 and boundary points 𝒵𝐵 . For each 𝑧 ∈ 𝒵,
let 𝑁(𝑧) := {𝐾 ∈ 𝒯 ; 𝑧 ∈ 𝐾} denote the set of elements that contain 𝑧, where we recall that elements are by
definition closed. For each point 𝑧 ∈ 𝒵, let ℱ𝑧 := {𝐹 ∈ ℱ ; 𝑧 ∈ 𝐹} denote the set of faces containing 𝑧, and let
ℱ𝐼

𝑧 := ℱ𝑧 ∩ ℱ𝐼 and ℱ𝐵
𝑧 := ℱ𝑧 ∩ ℱ𝐵 denote the sets of interior and boundary faces containing 𝑧 respectively,

where we recall that faces are closed. For boundary degrees of freedom, we distinguish two cases. We call 𝑧 ∈ 𝒵𝐵

flat and write 𝑧 ∈ 𝒵𝐵
♭ if and only if all of the faces in ℱ𝐵

𝑧 are coplanar. Otherwise we call 𝑧 sharp and write
𝑧 ∈ 𝒵𝐵

♯ . The operator 𝐸𝒯 : 𝑉 𝒯 → 𝑉 𝒯 ∩𝐻1
𝑇 (Ω) is then defined in terms of its point values for each 𝑧 ∈ 𝒵 by

𝐸𝒯 𝑣𝒯 (𝑧) :=

⎧⎪⎨⎪⎩
1

|𝑁(𝑧)|
∑︀

𝐾′∈𝑁(𝑧) 𝑣𝒯 |𝐾′(𝑧) if 𝑧 ∈ 𝒵𝐼 ,
1

|𝑁(𝑧)|
∑︀

𝐾′∈𝑁(𝑧)(𝑣𝒯 |𝐾′(𝑧) · 𝑛𝜕Ω)𝑛𝜕Ω if 𝑧 ∈ 𝒵𝐵
♭ ,

0 if 𝑧 ∈ 𝒵𝐵
♯ ,

(6.5)

where 𝑣𝒯 ∈ 𝑉 𝒯 , where |𝑁(𝑧)| denotes the cardinality of 𝑁(𝑧), and where 𝑛𝜕Ω = 𝑛𝜕Ω(𝑧) denotes the unit
outward normal to 𝜕Ω at 𝑧 ∈ 𝒵𝐵

♭ , which is uniquely defined when 𝑧 is flat. It follows from the above definition
that 𝐸𝒯 maps 𝑉 𝒯 into 𝑉 𝒯 ∩ 𝐻1(Ω; R𝑑), and additionally it is seen that for any boundary face, 𝐸𝒯 𝑣𝒯 has
ℋ𝑑−1-a.e. vanishing tangential traces on the boundary for all 𝑣𝒯 ∈ 𝑉 𝒯 , so that 𝐸𝒯 : 𝑉 𝒯 → 𝑉 𝒯 ∩ 𝐻1

𝑇 (Ω).
Then, using similar arguments as in [31,34,48], it is found that, for every 𝑧 ∈ 𝒵𝐼 and every 𝐾 ∈ 𝑁(𝑧), we have

|𝑣𝒯 |𝐾(𝑧)−𝐸𝒯 𝑣𝒯 (𝑧)|2 .
∑︁

𝐹∈ℱ𝐼
𝑧

∫︁
𝐹

ℎ1−𝑑
𝒯 |J𝑣𝒯 K|2 ∀𝑣𝒯 ∈ 𝑉 𝒯 , (6.6)

where the constant depends only on 𝑑, 𝜗𝒯 and 𝑝. For flat vertices 𝑧 ∈ 𝒵𝐵
♭ , after splitting 𝑣𝒯 (𝑧) into its normal

and tangential components, i.e. 𝑣𝒯 |𝐾(𝑧) = (𝑣𝒯 |𝐾)𝑇 + (𝑣𝒯 |𝐾(𝑧) · 𝑛𝜕Ω)𝑛𝜕Ω for each 𝐾 ∈ 𝑁(𝑧), we find that

|𝑣𝒯 |𝐾(𝑧)−𝐸𝒯 𝑣𝒯 (𝑧)|2 .
∑︁

𝐹∈ℱ𝐼
𝑧

∫︁
𝐹

ℎ1−𝑑
𝒯 |J𝑣𝒯 K|2 +

∑︁
𝐹∈ℱ𝐵

𝑧

∫︁
𝐹

ℎ1−𝑑
𝒯 |J(𝑣𝒯 )𝑇 K|2 ∀𝑣𝒯 ∈ 𝑉 𝒯 , (6.7)

where the constant depends only on 𝑑, 𝜗𝒯 and 𝑝. Finally, if 𝑧 ∈ 𝒵𝐵
♯ , then there exists at least two faces in

ℱ𝐵
𝑧 that are not coplanar, and thus there exists a set of unit vectors {𝑡𝑖}𝑑

𝑖=1 forming a basis of R𝑑, such that
each 𝑡𝑖 is a tangent vector to some face of ℱ𝐵

𝑧 . Therefore, we see that (6.7) also holds for 𝑧 ∈ 𝒵𝐵
♯ but with a

constant that additionally depends on the basis {𝑡𝑖}𝑑
𝑖=1 and thus also on the geometry of 𝜕Ω, as in Remark 4.4.

The bound (6.4) is then obtained by inverse inequalities and summation of the above bounds (6.6) and (6.7),
proceeding as in [34]. �

Remark 6.2. The bound (6.4) can be easily improved to the sharper bound
∫︀
Ω

ℎ2𝑚−2
𝒯 ‖∇𝑚(𝑣𝒯 −𝐸𝒯 𝑣𝒯 )‖2 .

|𝑣𝒯 |2𝐽,𝒯 for each 𝑚 ∈ {0, 1}. However this sharper bound is not needed in the following analysis. Note also
that the constant in (6.4) is subject to the same dependence on the geometry of the domain as the constants
appearing in [10,48], as discussed in Remark 4.4 above.
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6.2. Analysis of stabilization bilinear form

The main challenge in proving the discrete consistency bound (A2) for the nonlinear forms 𝐴𝒯 is the analysis
of the stabilization bilinear form 𝑆𝒯 (·, ·) defined in (5.3). We show here that 𝑆𝒯 (·, ·) can be seen as the restriction
to piecewise gradients of a more general bilinear form on the space of vector fields 𝑉 𝒯 . Let the bilinear form
𝐶𝒯 : 𝑉 𝒯 × 𝑉 𝒯 → R be defined by

𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 ) :=
∫︁

Ω

[∇𝑤𝒯 : ∇𝑣𝒯 − (∇·𝑤𝒯 )(∇·𝑣𝒯 )− (∇×𝑤𝒯 ) · (∇×𝑣𝒯 )]

−
∫︁
ℱ

[{∇𝑇 (𝑤𝒯 ·𝑛)} · J(𝑣𝒯 )𝑇 K + {∇𝑇 (𝑣𝒯 ·𝑛)} · J(𝑤𝒯 )𝑇 K]

+
∫︁
ℱ𝐼

[{∇𝑇 ·(𝑤𝒯 )𝑇 } J𝑣𝒯 ·𝑛K + {∇𝑇 ·(𝑣𝒯 )𝑇 } J𝑤𝒯 ·𝑛K]

(6.8)

where ∇𝑣𝒯 denotes the density of the absolutely continuous part of 𝐷(𝑣𝒯 ), where ∇ · 𝑣𝒯 denotes the trace
of ∇𝑣𝒯 , and where, if 𝑑 = 3, then (∇×𝑣𝒯 )𝑖 := 𝜖𝑖𝑗𝑘∇𝑥𝑗 (𝑣𝒯 )𝑘 for all 𝑖 ∈ {1, 2, 3} with 𝜖𝑖𝑗𝑘 denoting the Levi–
Civita symbol, and, if 𝑑 = 2, then ∇×𝑣𝒯 := ∇𝑥1(𝑣𝒯 )2 −∇𝑥2(𝑣𝒯 )1. Thus, since 𝑣𝒯 ∈ 𝑉 𝒯 is piecewise smooth
over 𝒯 , we see that ∇𝑣𝒯 , ∇ · 𝑣𝒯 and ∇×𝑣𝒯 correspond to the piecewise gradient, divergence and curl of 𝑣𝒯 ,
respectively. Using trace and inverse inequalities, it is straightforward to show that 𝐶𝒯 is bounded on 𝑉 𝒯 in
the sense that

|𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 )| . ‖𝑤𝒯 ‖𝑉 𝒯 ‖𝑣𝒯 ‖𝑉 𝒯 ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝒯 . (6.9)

The bilinear form 𝐶𝒯 (·, ·) is related to 𝑆𝒯 (·, ·), c.f. (5.3), through the identity

𝑆𝒯 (𝑤𝒯 , 𝑣𝒯 ) = 𝐶𝒯 (∇𝑤𝒯 ,∇𝑣𝒯 ) ∀𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 , (6.10)

which follows from the fact that the terms involving piecewise curls ∇×𝑣𝒯 vanish identically whenever 𝑣𝒯 =
∇𝑣𝒯 for some 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 .
The following Lemma can be seen as the vector-field extension of Lemma 5 from [54], which was key to the

consistency of the bilinear forms. In particular, it shows that 𝐶𝒯 (·, ·) vanishes whenever one of its arguments
belongs to the subspace 𝑉 𝒯 ∩𝐻1

𝑇 (Ω) of continuous piecewise-polynomial vector fields in 𝑉 𝒯 with vanishing
tangential traces on 𝜕Ω.

Lemma 6.3 (Consistency identity). For any 𝑤𝒯 ∈ 𝑉 𝒯 ∩𝐻1
𝑇 (Ω) and any 𝑣𝒯 ∈ 𝑣𝒯 , we have

𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 ) = 𝐶𝒯 (𝑣𝒯 , 𝑤𝒯 ) = 0. (6.11)

Proof. The proof is entirely similar to Lemma 5 from [54], and we include it here only for completeness. Let
𝑤𝒯 ∈ 𝑉 𝒯 ∩𝐻1

𝑇 (Ω) and 𝑣𝒯 ∈ 𝑉 𝒯 be arbitrary. Observe that since the bilinear form 𝐶𝒯 (·, ·) is symmetric it is
enough to show that 𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 ) = 0. For each 𝐾 ∈ 𝒯 , an integration-by-parts argument implies that∫︁

𝐾

[∇𝑤𝒯 :∇𝑣𝒯 − (∇·𝑤𝒯 )(∇·𝑣𝒯 )− (∇×𝑤𝒯 ) · (∇×𝑣𝒯 )]

−
∫︁

𝜕𝐾

∇𝑇 (𝑤𝒯 ·𝑛𝜕𝐾) · (𝑣𝒯 )𝑇 +
∫︁

𝜕𝐾

∇𝑇 ·(𝑤𝒯 )𝑇 (𝑣𝒯 ·𝑛𝜕𝐾) = 0, (6.12)

where 𝑛𝜕𝐾 denotes the unit outward normal on 𝜕𝐾. Using the fact that tangential differential opera-
tors commute with traces, we see that J∇𝑇 (𝑤𝒯 ·𝑛𝐹 )K𝐹 = ∇𝑇 J𝑤𝒯 ·𝑛𝐹 K𝐹 = 0 for each 𝐹 ∈ ℱ𝐼 , and that
J∇𝑇 ·(𝑤𝒯 )𝑇 K𝐹 = ∇𝑇 ·J(𝑤𝒯 )𝑇 K𝐹 = 0 for each 𝐹 ∈ ℱ since 𝑤𝒯 is continuous and thus J𝑤𝒯 K = 0 for all interior
faces, and since J(𝑤𝒯 )𝑇 K𝐹 = (𝑤𝒯 )𝑇 = 0 for all boundary faces 𝐹 ∈ ℱ𝐵 . Note that for each face 𝐹 ⊂ 𝜕𝐾, we
have 𝑛𝐹 = ±𝑛𝜕𝐾 |𝐹 depending on the choice of orientation of 𝑛𝐹 , and recall that the jumps are defined by (3.3)
in terms of this chosen orientation. Therefore, by summing the identity (6.11) and using the above identities
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for jumps on faces to simplify J∇𝑇 (𝑤𝒯 ·𝑛𝐹 ) · (𝑣𝒯 )𝑇 K𝐹 = {∇𝑇 (𝑤𝒯 ·𝑛𝐹 )}𝐹 · J(𝑣𝒯 )𝑇 K𝐹 for all faces 𝐹 ∈ ℱ and
J∇𝑇 ·(𝑤𝒯 )𝑇 (𝑣𝒯 · 𝑛𝐹 )K𝐹 = {∇𝑇 ·(𝑤𝒯 )𝑇 }𝐹 J𝑣𝒯 · 𝑛𝐹 K𝐹 for all 𝐹 ∈ ℱ𝐼 , we find that

∫︁
Ω

[∇𝑤𝒯 :∇𝑣𝒯 − (∇·𝑤𝒯 )(∇·𝑤𝒯 )−∇×𝑤𝒯 · ∇×𝑣𝒯 ]

−
∫︁
ℱ
{∇𝑇 (𝑤𝒯 ·𝑛)} · J(𝑣𝒯 )𝑇 K +

∫︁
ℱ𝐼

{∇𝑇 ·(𝑤𝒯 )𝑇 } J𝑣𝒯 ·𝑛K = 0,

from which we easily obtain (6.11) after noting that all remaining terms in (6.8) vanish since they include the
jumps on normal and tangential components of 𝑤𝒯 . �

We now prove Theorem 5.5.

Proof of Theorem 5.5. We will obtain (5.10) as a consequence of (6.10) and the related bound

|𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 )| . |𝑤𝒯 |𝐽,𝒯 |𝑣𝒯 |𝐽,𝒯 . (6.13)

Indeed, once (6.13) is known, we deduce (5.10) easily from (6.10) and from the bound |∇𝑣𝒯 |𝐽,𝒯 . |𝑣𝒯 |𝐽,𝒯 ,
which is obtained by applying the inverse inequality to the tangential component of the gradient on boundary
faces, i.e.

∫︀
𝐹

ℎ−1
𝒯 |J(∇𝑣𝒯 )𝑇 K|2 .

∫︀
𝐹

ℎ−3
𝒯 |J𝑣𝒯 K|2 for all 𝐹 ∈ ℱ𝐵 . Therefore, it is enough to show (6.13). To do so,

let 𝑤𝒯 and 𝑣𝒯 ∈ 𝑉 𝒯 be arbitrary, and recall 𝐸𝒯 from Theorem 6.1. Then, since 𝐸𝒯 : 𝑉 𝒯 → 𝑉 𝒯 ∩𝐻1
𝑇 (Ω),

we infer from Lemma 6.3 that 𝐶𝒯 (𝐸𝒯 𝑤𝒯 , 𝑣𝒯 ) = 𝐶𝒯 (𝑤𝒯 , 𝐸𝒯 𝑣𝒯 ) = 𝐶𝒯 (𝐸𝒯 𝑤𝒯 , 𝐸𝒯 𝑣𝒯 ) = 0 and hence

𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 ) = 𝐶𝒯 (𝑤𝒯 −𝐸𝒯 𝑤𝒯 , 𝑣𝒯 −𝐸𝒯 𝑣𝒯 ). (6.14)

We then apply the bounds (6.4) and (6.9) to obtain |𝐶𝒯 (𝑤𝒯 , 𝑣𝒯 )| . ‖𝑤𝒯 − 𝐸𝒯 𝑤𝒯 ‖𝑉 𝒯 ‖𝑣𝒯 − 𝐸𝒯 𝑣𝒯 ‖𝑉 𝒯 .
|𝑤𝒯 |𝐽,𝒯 |𝑤𝒯 |𝐽,𝒯 , which gives (6.13) and thus completes the proof of (5.10). �

6.3. Discrete Miranda–Talenti inequality and proof of Theorem 5.10

We now turn towards the proof of Theorem 5.10. The proof follows the approach based on a discrete Miranda–
Talenti inequality [48]. Here we remove the restriction in [48] that 𝑝 ≤ 3 in the case 𝑑 = 3, and allow instead all
𝑝 ≥ 2 for all 𝑑 ∈ {2, 3}. Moreover, we show here that the discrete Miranda–Talenti inequality can be seen as a
special case of a more general result for discontinuous piecewise polynomial vector fields.

Theorem 6.4. All vector fields 𝑣𝒯 ∈ 𝑉 𝒯 satisfy⃒⃒⃒⃒
⃒
(︂∫︁

Ω

|∇𝑣𝒯 |2
)︂ 1

2

−
(︂∫︁

Ω

[︀
|∇·𝑣𝒯 |2 + |∇×𝑣𝒯 |2

]︀)︂ 1
2

⃒⃒⃒⃒
⃒ . |𝑣𝒯 |𝐽,𝒯 . (6.15)

The constant in (6.15) depends only on 𝑑, 𝜗𝒯 , 𝑝 and Ω.

Proof. Let 𝑣𝒯 ∈ 𝑉 𝒯 be arbitrary, and recall the operator 𝐸𝒯 from Theorem 6.1. Since 𝐸𝒯 𝑣𝒯 ∈ 𝑉 𝒯 ∩𝐻1
𝑇 (Ω)

for all 𝑣𝒯 ∈ 𝑉 𝒯 , Lemma 6.3 implies that 𝐶𝒯 (𝐸𝒯 𝑣𝒯 , 𝐸𝒯 𝑣𝒯 ) = 0 and thus upon noting that all face integral
terms in 𝐶𝒯 (𝐸𝒯 𝑣𝒯 , 𝐸𝒯 𝑣𝒯 ) vanish identically, we get

(︂∫︁
Ω

|∇𝐸𝒯 𝑣𝒯 |2
)︂ 1

2

=
(︂∫︁

Ω

[︀
|∇·𝐸𝒯 𝑣𝒯 |2 + |∇×𝐸𝒯 𝑣𝒯 |2

]︀)︂ 1
2

. (6.16)
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Therefore, applying triangle and reverse triangle inequalities along with (6.16), we deduce that⃒⃒⃒⃒
⃒
(︂∫︁

Ω

|∇𝑣𝒯 |2
)︂ 1

2

−
(︂∫︁

Ω

[︀
|∇·𝑣𝒯 |2 + |∇×𝑣𝒯 |2

]︀)︂ 1
2

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒
(︂∫︁

Ω

|∇𝑣𝒯 |2
)︂ 1

2

−
(︂∫︁

Ω

|∇𝐸𝒯 𝑣𝒯 |2
)︂ 1

2

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒
(︂∫︁

Ω

[︀
|∇·𝑣𝒯 |2 + |∇×𝑣𝒯 |2

]︀)︂ 1
2

−
(︂∫︁

Ω

[︀
|∇·𝐸𝒯 𝑣𝒯 |2 + |∇×𝐸𝒯 𝑣𝒯 |2

]︀)︂ 1
2

⃒⃒⃒⃒
⃒

. ‖∇(𝑣𝒯 −𝐸𝒯 𝑣𝒯 )‖Ω . |𝑣𝒯 |𝐽,𝒯 ,

where we have applied Theorem 6.1 in the last line, thereby proving (6.15). �

Note that the analysis above does not use anywhere the fact that the domain is convex, and thus Theorem 6.4
is also valid for sufficiently regular polytopal nonconvex domains.

We now see that the discrete Miranda–Talenti inequality is a direct consequence of Theorem 6.4 by using the
fact that ∇×𝑣𝒯 = 0 whenever 𝑣𝒯 = ∇𝑣𝒯 for some 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 .

Corollary 6.5 (Discrete Miranda–Talenti inequality). There exists a constant 𝐶MT depending on 𝑑, 𝜗𝒯 , 𝑝 and
Ω, such that ⃒⃒⃒⃒

⃒
(︂∫︁

Ω

|∇2𝑣𝒯 |2
)︂ 1

2

−
(︂∫︁

Ω

|∆𝑣𝒯 |2
)︂ 1

2

⃒⃒⃒⃒
⃒ ≤ 𝐶MT|𝑣𝒯 |𝐽,𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠

𝒯 . (6.17)

Furthermore, for every 𝛿 > 0, there exists a constant 𝐶𝛿, depending on 𝛿, 𝑑, 𝑝, 𝜗𝒯 , 𝜆, and Ω, such that

(1− 𝛿)|𝑣𝒯 |2𝜆,𝒯 ≤ ‖𝐿𝜆𝑣𝒯 ‖2Ω + 𝐶𝛿|𝑣𝒯 |2𝐽,𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠
𝒯 . (6.18)

Proof. The proof of (6.17) is immediate from Theorem 6.4, so it remains only to prove (6.18). Let 𝛿 > 0 be
given, and let 𝑣𝒯 ∈ 𝑉 𝑠

𝒯 be arbitrary. For 𝜖 > 0 to be chosen below, we infer from Corollary 6.5 and Young’s
inequality 2𝑥𝑦 ≤ 𝜖𝑥2 + 𝜖−1𝑦2 for all positive numbers 𝑥, 𝑦, that

(1 + 𝜖)−1

∫︁
Ω

|∇2𝑣𝒯 |2 ≤
∫︁

Ω

|∆𝑣𝒯 |2 + (1 + 𝜖)−1(1 + 𝜖−1)𝐶2
MT|𝑣𝒯 |2𝐽,𝒯 ∀𝑣𝒯 ∈ 𝑉 𝑠

𝒯 , (6.19)

Moreover, using inverse inequalities and the integration by parts identity (5.6), we find that

∫︁
Ω

[︀
2𝜆|∇𝑣𝒯 |2 + 𝜆2|𝑣|2

]︀
≤

∫︁
Ω

[︀
−2𝜆𝑣𝒯 ∆𝑣𝒯 + 𝜆2|𝑣𝒯 |2

]︀
+ 𝐶3|𝑣𝒯 |𝐽,𝒯

(︂∫︁
Ω

[︀
2𝜆|∇𝑣𝒯 |2 + 𝜆2|𝑣|2

]︀)︂ 1
2

, (6.20)

where 𝐶3 is a constant depending only on 𝑑, 𝜗𝒯 , 𝑝 and 𝜆. After a further application of Young’s inequality to
the last term on the right-hand side of (6.20), we combine the above inequalities with (6.19) and find that

(1 + 𝜖)−1|𝑣𝒯 |2𝜆,𝒯 ≤
∫︁

Ω

[︀
|∆𝑣𝒯 |2 − 2𝜆𝑣𝒯 ∆𝑣𝒯 + 𝜆2|𝑣𝒯 |2

]︀
+ 𝐶4|𝑣𝒯 |2𝐽,𝒯 =

∫︁
Ω

|𝐿𝜆𝑣𝒯 |2 + 𝐶4|𝑣𝒯 |2𝐽,𝒯 ,

with a constant 𝐶4 depending on 𝜖, 𝐶3 and 𝐶MT above. Thus, after choosing 𝜖 such that (1 + 𝜖)−1 = (1− 𝛿) for
the given 𝛿, we obtain (6.18). �

We now give the proof of Theorem 5.10.
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Proof of Theorem 5.10. Let 𝑤𝒯 , 𝑣𝒯 ∈ 𝑉 𝑠
𝒯 be arbitrary, and let 𝑧𝒯 := 𝑤𝒯 − 𝑣𝒯 . Then, adding and subtracting

‖𝐿𝜆𝑧𝒯 ‖2Ω we get

𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) = ‖𝐿𝜆𝑧𝒯 ‖2Ω +
∫︁

Ω

(𝐹𝛾 [𝑤𝒯 ]− 𝐹𝛾 [𝑣𝒯 ]− 𝐿𝜆𝑧𝒯 )𝐿𝜆𝑧𝒯

−
∫︁

Ω

(𝐹𝛾 [𝑤𝒯 ]− 𝐹𝛾 [𝑣𝒯 ])𝜒𝑟𝒯 (J∇𝑧𝒯 · 𝑛K) + 𝜃𝑆𝒯 (𝑧𝒯 , 𝑧𝒯 ) + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 )

≥ ‖𝐿𝜆𝑧𝒯 ‖2Ω −
√

1− 𝜈|𝑧𝒯 |𝜆,𝒯 ‖𝐿𝜆𝑧𝒯 ‖Ω − 𝜒𝑐†|𝑧𝒯 |𝐽,𝒯 |𝑧𝒯 |𝜆,𝒯 − 𝜃𝐶5|𝑧𝒯 |2𝐽,𝒯

+ 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ),

where we have used (2.9a), (2.9b) and Theorem 5.5, with 𝐶5 the constant from (5.10), and 𝑐† a constant
depending only on 𝑑, 𝜗𝒯 , 𝑝 and 𝑞. Using Young’s inequality and Corollary 6.5 with, for instance, 𝛿 = 𝜈/4, we
then eventually find that

𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) ≥ 1
2
‖𝐿𝜆𝑧𝒯 ‖2 −

(1− 𝜈)
2

|𝑧𝒯 |2𝜆,𝒯 − 𝜒𝑐†|𝑧𝒯 |𝐽,𝒯 |𝑧𝒯 |𝜆,𝒯 − 𝜃𝐶5|𝑧𝒯 |2𝐽,𝒯 + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 )

≥ 𝜈 − 𝛿

2
|𝑧𝒯 |2𝜆,𝒯 − 𝜒𝑐†|𝑧𝒯 |𝐽,𝒯 |𝑧𝒯 |𝜆,𝒯 − (𝜃𝐶5 + 𝐶𝛿/2)|𝑧𝒯 |2𝐽,𝒯 + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ),

=
𝜈

4
|𝑧𝒯 |2𝜆,𝒯 − 𝜒𝑐†|𝑧𝒯 |𝐽,𝒯 |𝑧𝒯 |𝜆,𝒯 −

(︀
𝜃𝐶5 + 𝐶𝜈/4/2

)︀
|𝑧𝒯 |2𝐽,𝒯 + 𝐽𝒯 (𝑧𝒯 , 𝑧𝒯 ),

where, after using 𝜒 ∈ {0, 1} and 𝜃 ∈ [0, 1], we see that that there exists 𝜎min and 𝜌min depending only on 𝑑,
𝜗𝒯 , 𝑝, 𝑞, 𝜆, 𝜈 and Ω such that 𝐴𝒯 (𝑤𝒯 ; 𝑧𝒯 )−𝐴𝒯 (𝑣𝒯 ; 𝑧𝒯 ) ≥ 𝜈

8 (|𝑧𝒯 |2𝜆,𝒯 + |𝑧𝒯 |2𝐽,𝒯 ), from which (A3) follows upon
using Theorem 3.1. In particular, we may then take 𝐶mon to depend only on 𝜈 and 𝐶PF. �

7. Numerical experiment

In this section, we consider a numerical experiment for a fully nonlinear Isaacs equation posed on the irregular
pentagonal domain Ω presented in Figure 2. Note that the domain Ω is characterized by a large interior angle
𝜋− 𝜑 at the origin, where 𝜑 ∈ [0, 𝜋/4] is a small parameter specified below. This choice of domain is motivated
by Remark 4.4. We consider the Isaacs equation

inf
𝛼∈A

sup
𝛽∈B

[𝑎𝛼𝛽 : ∇2𝑢− 𝑓𝛼𝛽 ] = 0 in Ω,

along with the homogeneous Dirichlet boundary condition 𝑢 = 0 on 𝜕Ω, where

𝑎𝛼𝛽 := 𝛽

[︃
1√
2
(cos 𝛼 + sin 𝛼) 0

0 1√
2
(cos 𝛼− sin 𝛼)

]︃
𝛽⊤,

Figure 2. Experiment of Section 7: pentagonal domain Ω, with vertices 𝑧1 = (0, 0), 𝑧2 = (1, 0),
𝑧3 = (1, 1), 𝑧4 = (cos(𝜋 − 𝜑), 1)), and 𝑧5 = (cos(𝜋 − 𝜑), sin(𝜋 − 𝜑)).
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Figure 3. Experiment of Section 7: initial mesh used for the adaptive computations (left) and
sample mesh obtained after 14 steps of the adaptive method (right) using the method (5.9)
with 𝑠 = 1, 𝑝 = 3, 𝜃 = 1/2.

Figure 4. Experiment of Section 7: convergence plots for a range of DG and 𝐶0-IP methods of
the form of (5.9) on adaptively refined meshes. The convergence rates are optimal with respect
to the number of degrees of freedom.

for all 𝛼 ∈ A := [0, 𝛼max], with 𝛼max ∈ R≥0 chosen below, and for all 𝛽 ∈ B := SO(2) the special
orthogonal group of matrices in R2×2. The diffusion coefficients then satisfy the Cordes condition (2.2) with
𝜈 = cos(2𝛼max) ∈ (0, 1], provided that 𝛼max < 𝜋/4. In our experiment, we set 𝛼max := 9𝜋/40 to be close to 𝜋/4.
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The rotation matrices 𝛽 ∈ SO(2) then have the effect of allowing the diffusion coefficients to become strongly
anisotropic, and prevent the possibility of aligning the mesh with the principal directions of diffusion. Moreover,
a closer analysis shows that the control parameter 𝛼 is of bang-bang type, leading to jump discontinuities in the
optimal control. In order to test the numerical methods in the regime of low-regularity solutions, we choose an
exact solution exhibiting a singularity induced by the corner. In particular, the source term 𝑓𝛼𝛽 is chosen so
that the exact solution given in polar coordinates (𝑟, 𝜌) is given by

𝑢(𝑟, 𝜌) = −𝑟
𝜋

𝜋−𝜑 sin
(︂

𝜋

𝜋 − 𝜑
𝜌

)︂
𝜂1/2(𝑟),

where 𝜂1/2(𝑟) := 𝜒{𝑟<1/2}𝑒
1/(4𝑟2−1) is a smooth cut-off function that is included to enforce the homogeneous

Dirichlet boundary condition, with 𝜒𝑟<1/2 the indicator function for the disc of radius 1/2 around the origin.
Note that the regularity of the solution decreases as 𝜑 becomes small. For the computations presented below,
we choose 𝜑 = 𝜋/10, and note that 𝑢 ∈ 𝐻𝑠(Ω) only for 𝑠 < 2 + 1/9, which falls outside the scope of the a
priori error analysis of some earlier works. In particular, uniform mesh refinements would lead to low rates of
convergence, so we turn to adaptive methods.

In order to test the usefulness of the a posteriori error estimators of Section 4.1, we apply several of the meth-
ods of Section 5 using adaptive mesh refinements guided by the residual error estimators (4.4). In particular,
we apply a bulk-chasing (Dörfler) marking scheme with bulk-chasing parameter 1/4. See [38] for the analysis of
convergence of adaptive methods for these problems. The coarse initial mesh used for the computations and a
sample adaptively refined mesh obtained from the computations are detailed in Figure 3. Our implementation
is based on the software package NGSolve [52]. Due to the nonconvexity of the Isaacs operator, the discrete
nonlinear problems are solved using a Howard-type algorithm similar to Algorithm Ho-4 from [5]. This algo-
rithm involves the solution of an outer sequence of discrete HJB problems that are each solved inexactly via
inner iterations of a semismooth Newton method ([55], Sect. 8). In our computations, we observed superlinear
convergence of this algorithm with respect to both the outer and inner iterations, so that the total cost of solving
the discrete Isaacs problem is comparable to the cost of solving a small number of discrete HJB equations.

Figure 4 presents the computed errors and global error estimator values, c.f. (4.4), for a range of methods with
varying parameters in the definition (5.9). In each case, the choice 𝜒 = 0 is fixed, and we vary the parameters
𝜃 ∈ {0, 1/2}, 𝑠 ∈ {0, 1}, which corresponds to DG and 𝐶0-IP methods; we also consider polynomial degrees
𝑝 ∈ {2, 3}. In particular the case 𝑠 = 0 and 𝜃 = 1/2 leads to the method of [54, 55] whereas 𝑠 = 1 and 𝜃 = 0
leads to the method of [48], see Remark 5.3. It is found that the adaptive algorithm leads to the optimal rates
of convergence with respect to the number of degrees of freedom; indeed, for all of the methods, we obtain
convergence rates of optimal order 𝑁−1/2 for 𝑝 = 2 and of optimal order 𝑁−1 for 𝑝 = 3, where 𝑁 denotes
the number of degrees of freedom. Figure 4 further shows the efficiency of the estimators across all of the
computations, with efficiency indices close to the ideal value of 1. It is also seen that the accuracy of the method
is similar for the different values of 𝜃 ∈ {0, 1/2}, as may be expected from the quasi-optimality of all these
methods. We also note that we did not observe significant qualitative differences when varying the angle 𝜑 in
further computations.
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[54] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with
Cordès coefficients. SIAM J. Numer. Anal. 51 (2013) 2088–2106.

[55] I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes
coefficients. SIAM J. Numer. Anal. 52 (2014) 993–1016.
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