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UNIFIED ANALYSIS OF DISCONTINUOUS GALERKIN AND C°INTERIOR
PENALTY FINITE ELEMENT METHODS FOR HAMILTON-JACOBI-BELLMAN
AND ISAACS EQUATIONS

Errya L. KAWECKI AND [AIN SMEARS*

Abstract. We provide a unified analysis of a posteriori and a priori error bounds for a broad class of
discontinuous Galerkin and C°-IP finite element approximations of fully nonlinear second-order elliptic
Hamilton—Jacobi-Bellman and Isaacs equations with Cordes coefficients. We prove the existence and
uniqueness of strong solutions in H? of Isaacs equations with Cordes coefficients posed on bounded con-
vex domains. We then show the reliability and efficiency of computable residual-based error estimators
for piecewise polynomial approximations on simplicial meshes in two and three space dimensions. We
introduce an abstract framework for the a priori error analysis of a broad family of numerical methods
and prove the quasi-optimality of discrete approximations under three key conditions of Lipschitz con-
tinuity, discrete consistency and strong monotonicity of the numerical method. Under these conditions,
we also prove convergence of the numerical approximations in the small-mesh limit for minimal regular-
ity solutions. We then show that the framework applies to a range of existing numerical methods from
the literature, as well as some original variants. A key ingredient of our results is an original analysis of
the stabilization terms. As a corollary, we also obtain a generalization of the discrete Miranda—Talenti
inequality to piecewise polynomial vector fields.
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1. INTRODUCTION

We consider fully nonlinear second-order elliptic Isaacs equations with a homogeneous Dirichlet boundary

condition of the form
Flu] == inf sup [L“ﬁu - f“ﬁ] =0 in Q,
e pen (1.1)

u=0 on 0%,

where € is a bounded convex polytopal open set in R?, d € {2,3} and where the second-order elliptic operators
L*? are defined in (2.4) below. It is also possible to consider the case where the order of the infimum and
supremum in (1.1) are reversed. Isaacs equations of the form (1.1) arise in applications of two-player games
of stochastic optimal control, and they can be seen as a generalization of Hamilton-Jacobi-Bellman (HJB)
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equations [24]. Isaacs and HJB equations and related stochastic control problems arise in many applications
from engineering, energy, finance and computer science. Many other important nonlinear partial differential
equations (PDE) can be reformulated as HJB or Isaacs equations, including the Monge-Ampére equation
which, along with its convexity constraint, can be reformulated as a fully nonlinear HJB equation as shown
in [23,40]; see also [35] for some further results. The equation in (1.1) is fully nonlinear in the sense that all
partial derivatives are contained in the nonlinearity, which prohibits approaches based on weak solutions that
are standard for divergence form problems.

The design and analysis of stable and accurate numerical methods for the approximation of the solution
of fully nonlinear PDE such as (1.1) remains generally very challenging. One approach consists of designing
methods that satisfy a discrete maximum principle, which can be shown to converge to the viscosity solu-
tion in the maximum norm under appropriate conditions of consistency, stability and the availability of a
comparison principle for viscosity sub- and supersolutions [2,18]. See [11] and the references therein for the reg-
ularity theory of viscosity solutions. Efforts in this direction have focused primarily on finite difference methods
[19,23,41,42], although there has been recent interest also in finite element methods (FEM) satisfying a maximum
principle [32,33], which additionally show stability and convergence of the derivatives in L?. See also [49,51] for
methods based on integral-operator approximations. Methods based on discrete maximum principles have the
advantage of being able to handle problems with possibly degenerate second-order terms and correspondingly
low-regularity solutions. However, it is well-known that enforcing a discrete maximum principle is restrictive in
practice, typically requiring highly structured grids or meshes and wide stencil approximations of the differential
operators, and it also leads to limitations on the order of convergence [6,17,39,46].

There is therefore considerable interest in the analysis of methods that do not require a discrete maximum
principle [8,22,43,44,47], although a long-standing difficulty has been to design provably stable methods for
a sufficiently broad range of problems. This challenge was resolved in [54-56] in the context of nondivergence
form elliptic equations and fully nonlinear HJB equations on convex domains that satisfy the Cordes condition.
The Cordes condition is an algebraic assumption on the coefficients of the linear operators inside the nonlinear
terms, which is thus naturally preserved under linearizations of the original fully nonlinear operator and also
under discretization. The motivation for the Cordes condition stems from the analysis of linear nondivergence
form elliptic equations with discontinuous coefficients, which arise as linearizations of fully nonlinear HJB
equations under policy iteration. In particular, it is well-known that for linear nondivergence form elliptic
equations in three space dimensions and above, the discontinuities in the diffusion coefficients generally lead to
ill-posedness, even in the uniformly elliptic case with smooth data on a smooth domain, and for both strong
and viscosity solutions with measurable ingredients [45, 50]. Further assumptions on the coefficients (other
than continuity) are therefore generally necessary to recover well-posedness. For instance, there are available
results on the well-posedness of strong solutions when the coefficients are of vanishing mean-oscillation [13,45];
however in practice, the discontinuous coeflicients obtained in the linearized problems mentioned above typically
feature jump discontinuities and are not of vanishing mean-oscillation. The case of general L coefficients thus
falls outside the scope of the Calderén—Zygmund and Schauder theories [29]. In particular, it can be shown
that well-posedness is recovered for strong solutions on convex domains under the Cordes condition [16], see
also [45] for a comprehensive discussion. In two space dimensions however, uniform ellipticity implies the Cordes
condition. It was then shown in [54, 55] that the Cordes condition also implies existence and uniqueness of
strong solutions in H? for fully nonlinear second-order elliptic HJB equations on convex domains, where an
hp-version discontinuous Galerkin (DG) finite element method was proposed with proven stability and with
optimal convergence rates with respect to the mesh-size, and half-order suboptimal rates with respect to the
polynomial degree, in H2-type norms. It was also shown in [55] that policy iteration, understood as a semismooth
Newton method, has local superlinear convergence. These results were extended to parabolic problems in [56].
There has since been significant recent activity centred on this approach, including preconditioners [53], adaptive
H?-conforming and mixed methods in [26,28], extensions to curved domains [36], boundary conditions involving
oblique derivatives [27,37], and C? interior penalty (IP) methods [3,9,48].
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In this work, we present a unified a priori and a posteriori analysis of DG and C°-IP methods for Isaacs
equations (1.1) with Cordes coefficients. First, we extend the well-posedness result of [55] for fully nonlinear HIB
equations to the setting of Isaacs equations, showing existence and uniqueness of a strong solution of (1.1) in
H?(Q) N H}(Q). This is the subject of Section 2. Our second main contribution is a proof of reliability and local
efficiency of residual-based error estimators in H2-norms for piecewise polynomial approximations on simplicial
meshes, which consist of unweighted volume residuals with appropriately penalized jumps of function gradients
and jumps of function values. This extends earlier results for H?-conforming and C°-IP methods from [3,9,26].
In fact, owing to the strong solution of the PDE, we show that the a posteriori error analysis is determined
primarily by the choice of approximation space and is otherwise independent of the numerical method, so
that our a posteriori error bounds applies to any piecewise polynomial function over the mesh. This situation
thus differs significantly from residual-based error estimates for divergence form elliptic problems, where the
reliability bound is typically only satisfied under a suitable form of Galerkin orthogonality for the numerical
solution [12,58]. The above observation implies that our a posteriori error analysis applies to any numerical
method employing piecewise polynomial approximations on simplicial meshes.

Our further main contributions concern the a priori error analysis of DG and C°-IP methods for Isaacs
equations. We provide a framework for proving quasi-optimality, also called near-best approximation, of the
error attained by the numerical solution under only the minimum guaranteed regularity of the solution in
H?(Q) N H}(2). The key requirements on the numerical method of the framework are Lipschitz continuity,
strong monotonicity and an appropriate notion of consistency. Therefore, this generalizes Céa’s lemma to the
problem at hand, which, interestingly for nonconforming methods, holds here without additional terms related
to data oscillation [30]. We then prove convergence of the numerical approximations in the small-mesh limit
for sequences of shape-regular meshes, without any additional regularity assumptions. We then show how our
framework applies to a broad family of DG and C°-IP methods which include as special cases the methods
of [54,55] (restricted here to simplicial meshes and fixed polynomial degrees), the method of [48], as well as some
original variants that are of further interest in the context of adaptive methods [38]. Thus, up to the constants
involved, all of these methods are quasi-optimal and converge in the minimal regularity setting. We note from
the onset that we consider here a homogeneous boundary condition for simplicity, and that nonhomogeneous
boundary data can be also be handled with minor adjustments, see e.g. Section 6.2 of [54] for some further
discussion.

These results are original even in the setting of HJB equations, and our current approach to the a priori
error analysis differs significantly from the earlier approach of [54,55]. Indeed, in [54, 55] the analysis employs
a notion of consistency that involves the insertion of the exact solution of the problem into the discrete forms,
which leads to additional regularity assumptions on the exact solution in order to handle terms involving traces
of second derivatives on mesh faces, see e.g. Corollary 6 of [54]. In this work, we propose and show a different
notion of consistency, that is determined entirely at the discrete level (thus called here discrete consistency) and
thus does not involve additional assumptions on the exact solution. The key to showing that the methods satisfy
the discrete consistency condition is an original sharp analysis of the kernel of the stabilization terms that were
first introduced in [54], see in particular Theorem 5.5 below. Note that methods using the original stabilization
terms of [54,55] remain competitive in practice owing to the fact that they lead to penalization parameters that
are robust with respect to domain geometry, and they have further advantages in terms of flexibility, since they
can accommodate extensions to hp-version, meshes with hanging nodes, non-simplicial elements, etc. We also
show here that the discrete Miranda—Talenti inequality of [48] can be seen as a special case of a more general
result for piecewise polynomial discontinuous vector fields.

This paper is organized as follows. First, we prove the well-posedness of (1.1) on convex domains under the
Cordes condition in Section 2. Then, after defining the notation in Section 3, we present the general a posteriori
and a priori error analysis in Section 4. In Section 5 we present the family of numerical methods, and present
our main results that verify the abstract assumptions of the framework. The proofs, including the analysis of
the stabilization terms and discrete Miranda—Talenti inequalities, are then given in Section 6.
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2. ANALYSIS OF WELL-POSEDNESS OF THE PROBLEM

Let Q C R%, d € {2,3}, be a bounded convex polytopal open set. The assumption d € {2,3} is primarily
technical and is related to some HZ2-enrichment operators that appear later in this work in Section 4.1. We
therefore note that the results of this section are not restricted to d € {2,3} and in fact hold for general
dimensions. Let &7, % be compact metric spaces, and let the ngxrg matrix-valued function a, the R? vector-
valued function b, and the real-valued functions ¢ and f be continuous on Q x & x %, where ngxrg denotes the
space of symmetric d x d matrices. For each (o, 3) € &7 x % we define a®?: x — a(z,a, 3) for all x € Q. The
functions v*8, ¢*# and f*? are defined in a similar manner for each (o, 3) € & x 2. It is assumed that c*? is
nonnegative in  for all (a, 3) € & x %, and that the diffusion coefficients a®? are uniformly elliptic, uniformly

over & X A, i.e. there exist positive constants v and 7 such that
v[€? < €TaP ()€ <TIE|?P Vo e Q, VE € RYY(a, B) € o x B, (2.1)

where |£| denotes the Euclidean norm of the vector £ GiRd.
If the functions b and ¢ both vanish identically on X & x £, i.e. b = 0 and ¢ = 0, then we assume the
Cordes condition: there exists a v € (0, 1] such that
|a®f?

Tr(a®f)2 —d—1+v

inQ Vo, B) € o x B, (2.2)

where |a®?| denotes the Frobenius norm of the matrix a®?. Otherwise, in the case of nonvanishing lower-order
terms, i.e. b Z 0 or ¢ # 0, we assume that there exists a A > 0 and a v € (0, 1] such that

|a®B|2 + [bB|2 )2) + (B /)2 1

(Tr(a®P) + coB /)2 <y, D& Vep)ed x B, (2.3)

where [b*?| denotes the Euclidean norm of 5*”. As explained in [55] the parameter \ serves to make the Cordes
condition invariant under isotropic affine mappings of the domain. If b and ¢ vanish identically, we let A = 0.

Remark 2.1. It is well-known that if d = 2, then the uniform ellipticity condition (2.1) implies the Cordes
condition (2.2), and that v can be bounded from below in terms of v and 7 alone, see for instance Example 2
of [55].

For each (a, ) € & x %, the bounded linear operator L% : H2(Q2) — L?(Q) is defined by
Ly = a®P:V?0 + b*P.Vu — *Pv Yo € H3(Q), (2.4)

where V2v denotes the Hessian of v, and where A:B = Zf j A;ijB;; denotes the Frobenius inner-product of

matrices. The compactness of  x &7 x % and the continuity of the coefficients a, b, ¢ and f imply that the
fully nonlinear differential operator

F[v] == inf Loy — fof H*(Q
] Jél,gf;‘gg[ v— % Ve H*(Q), (2.5)

is well-defined as a mapping from H?(Q2) to L*(Q). In [55,56] it was shown that fully nonlinear HJB equations
can be reformulated in terms of a renormalized nonlinear operator. We show here that this approach extends
to Isaacs equations. For each («,3) € & x %, we consider the renormalization function v*# € C(Q) defined by

yoB = % if the coefficients b and ¢ vanish identically, or otherwise by

af . Tra®? + 8 /A
T [aoB2 1 008|220 + |coB[2 /22

(2.6)
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In all cases, note that the continuity of the coefficients, the uniform ellipticity condition (2.1) and the non-
negativity of ¢*? imply that there exists a uniform positive upper and lower bounds 7* and v, > 0 such that
¥ >4 > 4, in Q for all (a, B) € o7 x %B. Let the renormalized operator F. : H2(2) — L%(Q2) be defined by

F,[v] == inf B (L*Py — foP)] Vv e H*(Q).
S[o] = inf sup [v*? (L*Pv — f*P)]  Yw € H*(Q) @7
The following lemma shows that the equations F[u] = 0 and F,[u] = 0 have equivalent respective sets of sub-
and supersolutions.

Lemma 2.2. A function v € H?() satisfies F[v] < 0 pointwise a.e. in 2 if and only if F,[v] < 0 pointwise
a.e. in Q. Furthermore, a function v € H*(Q) satisfies F[v] > 0 pointwise a.e. in  if and only if F,[v] > 0
pointwise a.e. in Q.

Proof. The proof is a straightforward extension of the arguments in the proof of Theorem 3 from [55], and is
primarily a consequence of the strict positivity of the renormalization function v*. For each a € .7, define
the operators G*[v] := supge g L0 — f*P] and G[v] == supgey [v* (L*Pv — f2F)] for cach v € H?(2). We
start by showing the equivalence of the sets of supersolutions. Suppose that v € H?(Q); then F[v] > 0 a.e.
in Q if and only if G*[v] > 0 a.e. in Q for every a € &/. Then, for any « € &/, owing to compactness of %A
and the continuity of the data, at almost every point x € Q, the supremum in G*[v](z) is attained by some
B* € B, which gives (L v — f*#")(z) > 0, which implies GS[v](z) > B (LB y — fB7) () > 0 using (strict)
positivity of ¥*?. Considering also the converse situation, we then deduce that G®[v] > 0 a.e. in Q is equivalent
to GS[v] > 0 a.e. in Q for any a € 7. Since « is arbitrary, we find that F'[v] > 0 a.e. in Q if and only if F,[v] > 0
a.e. in . We now consider the sets of subsolutions. A function v € H?(2) satisfies F[v] < 0 a.e. in Q if and only
if, for a.e. v € , there exists an o, € & such that G*[v](z) < 0, which is equivalent to (L*Av — f*#)(z) <0
for all 3 € %, which is equivalent to v (z)(L*Pv — f*B)(z) < 0 for all 3 € & by strict positivity of v+,
which is finally equivalent to G5+ [v](z) < 0. This shows that G*[v] <0 a.e. in Q if and only if G~ [v] <0 a.e.
in ©, and thus the equivalence of F[v] < 0 a.e. in Q if and only if F,[v] < 0 a.e. in Q, thereby completing the
proof. (|

A particular consequence of Lemma 2.2 is that a solution of F[u] = 0 is equivalently a solution of F,[u] = 0.

Remark 2.3 (Equivalence of problems in the sense of viscosity solutions). The proof of Lemma 2.2 involves
only manipulations of pointwise values of the nonlinear operators F' and F,. Therefore, the H?-regularity
assumption on the sets of sub- and supersolutions in Lemma 2.2 is not essential. In particular, recalling the
notions of viscosity sub- and supersolutions [18], it is easy to see that the argument above imply the equivalence
of the sets of viscosity sub- and supersolutions (and hence also viscosity solutions) for the equations Flu] = 0
and F,[u] = 0.

Let the differential operator Ly: H?(Q) — L?(Q) be defined by
Lyv:i=Av— v Yve H*Q). (2.8)

We now show some bounds for the operator F, including a Lipschitz continuity bound with a constant inde-
pendent of the data. Since the properties are pointwise, we extend the definition of the operators F, and Ly
from the space H2()) to H?(w) for arbitrary open subsets w C  in order to simplify later applications of this
result.

Lemma 2.4. For any open set w C Q, and for any u,v € H*(w), writing w = u — v, the following inequalities
hold pointwise a.e. in w

|F,[u] — Fy[v] — La(u —v)| < V1 —v/|V20]2 + 2\ Vw|? + A2 |w|?, (2.9a)
|Fy[u] — Fy[v]] < (1+ Vd+1)y/|V2w[? + 2\ V|2 + X2|w|2. (2.9b)
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Proof. For arbitrary bounded sets of real numbers {Xaﬁ}(a7ﬁ)€p{x% and {Y”‘B}(a,g)edx%), it is easy to see that

inf sup X*% — inf sup Y*?

< sup  |X9P—yes
acd BER acd BER

(c,B)EA X B

The proof of (2.9a) then follows the same arguments as in Lemma 1 of [55]. The inequality (2.9b) is then obtained
from (2.9a) by adding and subtracting Lyw and applying the triangle inequality, along with the Cauchy—Schwarz
inequality |Lyw| < vVd + 1/]V2w|? + A2|w]2. O

Let ||| r2(q) denote the H2-norm of functions in H?(€2), defined by
oy = [ V202 + V0P + o] W0 € (),
Q

It is well-known that the convexity of 2 implies that the operator Ly is bijective between H?(Q) N Hj () and
L? (Q). Furthermore, there exists a positive constant Cy dqiam o depending only on d and diam €, the diameter
of 2, such that, for any A > 0,
ol g/ (V202 + 20| Vol + A2[o]?] g/\Lw\Q Vo € H2(Q) N HL(Q), (2.10)
Cd,diamQ Q Q
where the first inequality is shown by the Poincaré inequality for functions in H§(€2) and the identity [,|Vv|? =
— [qvAv for all v € H?(Q) N H(), and the second inequality follows from the Miranda-Talenti inequality,
see e.g. [45,54,55]. We now show that there exists a unique strong solution in H?(Q) N H}(Q) of the Isaacs
equation (1.1) on convex domains under the Cordes condition, which generalises the well-posedness result for
HJB equations of Theorem 3 from [55].

Theorem 2.5 (Existence and uniqueness of a strong solution). There exists a unique u € H?(2) N H} () that
solves Flu] = 0 pointwise a.e. in Q, and, equivalently, that solves F.[u] = 0 pointwise a.e. in .

Proof. The proof of Theorem 2.5 follows the same arguments as in Theorem 3 of [55], although we give here
the details for completeness. Let A: H2(Q) N H}(Q) x H2(2) N H () — R be defined by

A(w;v) = | FywlLyv VYw, v € H*(Q)N Hy(Q). (2.11)
Q

We infer from the bijectivity of the operator Ly: H*(Q) N H}(Q) — L*(Q) and from Lemma 2.2 that u €
H2(2) N H () solves Flu] = 0 a.e. in §, and equivalently F,[u] = 0 a.e. in €, if and only if A(u;v) = 0 for
all v € H2(Q) N HY(Q). Tt is easy to see from (2.9b) that A(:;-) is bounded and also Lipschitz continuous, i.e.
that [A(w;v) — A(z;0)| < Cllw — 2| m2()l|v]| 20 for all w, z, v € H*(Q) N Hg(Q2) for some constant C. We
also claim that A(:;-) strongly monotone on H2(Q) N H}(Q), which will then imply that there exists a unique
u € H2(Q) N HL(Q) that solves A(u;v) = 0 for all v € H?(Q) N H () as a result of the Browder—Minty
Theorem (see e.g. the textbook [15]). To show strong monotonicity, let w, v € H2(Q) N H}(Q) be arbitrary and
set z := w — v; then, by addition and subtraction, we find that

Alw;w —v) — A(v;w — ) :/Q(Fy[w] _FVM)LAZZ/Q‘LAZ|2+/Q(F7[M — F,[v] — Laz)Lyz

> (1- V=) /Q Laz > (1 VT 2)07 2 mall e,

where the inequalities in the last line follow from (2.9a) and (2.10). This shows that A(:; ) is strongly monotone
on H2(2) N H(Q) and completes the proof. O

(2.12)

As mentioned at the beginning of this section, this analysis in this section does not make use of the assumption
d € {2,3}, and nor does it require € to be polytopal. Therefore, Theorem 2.5 holds for general bounded convex
domains in arbitrary dimensions.
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3. SETTING AND NOTATION

For a Lebesgue measurable set w C R?, let |w| denote its Lebesgue measure, and let diamw denote its
diameter. The L2-norm of functions over w is denoted by ||-||,. Let 7 be a finite conforming partition of € into
closed simplices, and let 7 denote its shape-regularity parameter defined by

97 = max dlaﬂ, (3.1)
KeT pg

where pg is the diameter of the largest ball inscribed in the element K. In the following, for real numbers a
and b, we write a < b if there exists a constant C' such that a < Cb, where C' depends only on the dimension d,
the domain €2, on ¥7 and on the polynomial degrees p and ¢ defined below, but is otherwise independent of all
other quantities. We write a =< b if and only if a < b and b < a. Let F denote the set of d — 1 dimensional closed
faces of the mesh, and let ! and F? denote the subsets of interior faces and boundary faces, respectively. For
each face F' € F, we consider a fixed choice of unit normal ng. If F' is a boundary face then we choose ng to be
the unit outward normal to 2. To alleviate the notation, we shall usually drop the subscript and simply write n
when there is no possibility of confusion. For each K € T, we define hg = |K |%, and note that up to constants
depending only on d and on 97, we have hx ~ diam(K). For each face F € F, let hp = (H*"(F)) ﬁ, where
H?~1 denotes the (d — 1)-dimensional Hausdorff measure. Similarly, we have hr ~ diam(F) and hx ~ hp for
any element K € 7 and any face F' € F contained in K, with constants in the equivalence depending only
on 97 and on d. Let the global mesh-size function h7: @ — R be defined by hr|ke = hi for each K € T,
where K° denotes the interior of K, and hr|r = hr for each F' € F. The function hz is uniformly bounded
in Q, and is only defined up to sets of zero H? '-measure, which is sufficient for our purposes since hz only
appears in integrals over sets of dimensions d — 1 and d. The motivation for this particular definition of Az can
be found in the analysis of adaptive methods, see [38] for further details. For the purposes of this work, it is of
course possible to consider common alternative definitions of A7 that are equivalent up to constants depending
on shape-regularity of the mesh.

Integration. It will be frequently convenient to use a shorthand notation for integrals over collections of
elements and faces of the meshes. For any subcollection of elements £ C 7, we shall write f e = Dkee f  Where
the measure of integration is the Lebesgue measure on R?. Likewise, if G C F, we write fg = ZFGQ fF, where
the measure of integration is the (d — 1)-dimensional Hausdorff measure on R?. We do not indicate the measure
of integration as there is no possibility of confusion.

Partial derivatives. In order to unify and generalise the notions of weak derivatives of Sobolev regu-
lar functions and the notion of piecewise derivatives of functions from the finite element spaces, we define
notions of gradients and Hessians of functions for certain classes of functions of bounded variation. Let
BV () denote the space of real-valued functions of bounded variation on €, see [1,21] for precise defi-
nitions. Recall that BV(€2) is a Banach space equipped with the norm |v||gy(q) = |[v[lz1(@) + |[Dv|(),
where |Dv|(€) denotes the total variation of its distributional derivative Dv over 2, defined by |Dv|(Q2) =
sup { foy v div ¢: & € G (% RY), bl gipe) = 1}-

For any v € BV (), the distributional derivative Dv can be identified with a Radon measure on ) that can
be decomposed into the sum of an absolutely continuous part with respect to Lebesgue measure, and a singular
part [21], p. 196. Let Vo € L*(Q;R?) denote the (vector) density of the absolutely continuous part of Dv with
respect to Lebesgue measure. Following [25], for functions v € BV (Q) such that Vo € BV(Q;RY), we define
V2v as the density of the absolutely continuous part of D(Vv) the distributional derivative of Vv; in particular,

V2 :=V(Vv) € LYQRPY), (V?0);; = V,,(Vy0) Vi, je{l,....d}. (3.2)

The Laplacian Av is defined as the matrix trace of V2v. Note that Vv is defined in terms of D(Vv) and not
D?v the second distributional derivative of v since in general D?v is not necessarily a Radon measure. The
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definitions above unify the concepts of weak derivatives of functions in Sobolev spaces over ) and of piecewise
derivatives of functions from the DG and CP-IP finite element spaces defined shortly below. Indeed, it is easy to
see that the above definition of Vv coincides with the weak gradient of v if v € W1(Q) and that V2v coincides
with the weak Hessian of v if v € W21(Q). Moreover, for functions that are piecewise smooth over the mesh 7,
such as functions from the finite element spaces defined below, it is easy to see that the gradient and Hessian
as defined above coincide with the piecewise gradient and Hessian over elements of the mesh. The nonlinear
Isaacs operators F' from (2.5) and F, from (2.7) are then naturally extended to all functions v € BV (§2) such
that Vv € BV (Q;R9).

Jump, average and tangential differential operators on faces. There is a bounded trace operator
Toi: BV(K) — LY(0K) for each K € T, see e.g. [21]. Tt follows that a function v € BV (), once restricted to
an element K € 7, has a trace Torv = Tox (v|x) € L}(OK). In general, if F is an interior face of the mesh, i.e.
F =0KNOK' for K, K' € T, then 1oxv|r # Tox v|F, i.e. traces from different elements do not necessarily
agree on a common face. For v € BV (Q), we define the jump [v]r € L*(F) and average of {v}, € L'(F) for
each F' € F by

1
{U}F = i(TaKU|F+T3K/’U‘F), [[v]]p = TaKU|F*TaK’U|F7 VFE]:I, (3 3)

{v}p = 1oKV|F [v]F = ToKv|F VE € FB,

where, in the case F € F!, the elements K and K’ € T are labelled such that the chosen unit normal nr is the
outward normal to K on F' and the inward normal to K’ on F, and where the trace operators 7ox and Tox-
are applied to the restrictions of the function v to K and K’, respectively. The jump and average operators are
further extended to vector fields in BV (; R?) componentwise. Although the sign of [v] r depends on the choice
of np, in subsequent expressions the jumps will appear either under absolute value signs or in products with
np, so that the overall resulting expression is uniquely defined and independent of the choice of np. When no
confusion is possible, we drop the subscripts and simply write {-} and [-].

For F € F, let Vp denote the tangential (surface) gradient operator, and let Ap denote the tangential
Laplacian, which are defined for all sufficiently smooth functions on F. We do not indicate the dependence of
these operators on F' in order to alleviate the notation, as it will be clear from the context.

Finite element spaces. For a fixed choice of polynomial degree p > 2, let the finite element spaces V7,
s € {0,1}, be defined by

V2= {vr € L*(Q) :vr|g €P, VK € T}, Vi :=VIin Hy(Q), (3.4)

where P}, denotes the space of polynomials of total degree at most p. The condition p > 2 is required due to the

fact that we seek approximations in H2-type norms, thus requiring at least piecewise quadratic polynomials to

approximate the Hessian of the true solution. The spaces V2 and Vi correspond to DG and C°-IP spaces on

T, respectively. It is clear that if v € V£, s € {0,1}, then v € BV () and that Vv, as defined above, coincides

with the piecewise gradient of v over the elements of the mesh 7. It then follows that Vv € BV (2;R?) and

that the Hessian V2v defined above coincides with the piecewise Hessian of v over the elements of the mesh.
The spaces V3, s € {0,1}, are equipped with the norm |-||7 and jump seminorm |-|; 7 defined by

lorlly = [ [V20r + [9or P+ or) + olir. Wlr = [ aPIorlP+ [ a2l @9)

for all vz € V£, Although V2 and V} are equipped with the same norm and jump seminorm, it is clear that for
any v € V2 C H}(Q), the last term in the right-hand side (3.5) involving jumps over mesh faces vanishes and
that the terms involving jumps of first derivatives over internal mesh faces can be simplified to merely jumps
of normal derivatives. However, these simplifications do not play any particular role in the subsequent analysis
and do not need to be considered further. The norm ||-|7 and jump semi-norm || ;7 extend to the sum space
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VE+ H%(Q) N HE(Q), where H = H%(Q) N H (). Note that for general v € V3 + H2(Q) N H(2), we have
|vl;7 = 0 if and only if v € H2(Q) N H}(Q).

Poincaré—Friedrichs inequality. Although we consider here the norm |||z given in (3.5), our results are by
no means specific to this choice of norm. This is a consequence of the following second-order Poincaré—Friedrichs
inequality for functions in V3, which shows that the norm |[|-||7 is equivalent to other H?-type norms.

Theorem 3.1 (Poincaré—Friedrichs inequality). There exists a constant Cpr depending only on d, 91, p, and
on diam ) such that

1
2

lvrllr < Cpr (/ |V2ur|? + vﬂ?,j) Yuor € V§, Vse{0,1}. (3.6)
Q

Proof. We divide the proof into two steps, treating first the case s = 1 followed by the more general case
s = 0. We note that in both cases, it is enough to show that the lower order terms in (3.5) are bounded by the
right-hand side of (3.6).

Step 1. Suppose that s = 1, and let vz € V! be arbitrary. Then, integration-by-parts and an inverse inequality

yield
1
2
[1vert == [ orter+ | wuw-nns</ |v2vT|2+|vT|3,T) lorl,
Q Q FI Q

where the constant in the inequality above depends only on d, ¥7 and p. Since V} C H}(Q), we have
lorlla < CaiamallVur|la with a constant Cgjamo depending only on diam €, from which (3.6) for s = 1
follows immediately.

Step 2. Suppose now that s = 0 and let vz € V.2 be arbitrary. We use the Hg-enrichment operators from
[31,34]. In particular, there exists a linear operator Ey: V2 — VL such that

2
> / R4 V™ (v — Byur)|? g/ 3| [vr]f?, VK €T, Yur € V2, (3.7)
m=0" K Fx

where F = {F € F, FNK # (} is the set of faces neighbouring the element K. The constant in (3.7) depends
only on d, 97 and p, but not on Q. In particular, the bound in (3.7) for m = 1 is a consequence of Theorem 2.2
from [34], and the cases m € {0,2} are shown in a similar manner by scaling arguments. We then infer from the
triangle inequality, the trace inequality and (3.7) that |Eyvvr|s7 < |vrls7 + vz — Bivrlsr S |vr|sr again
with a constant depending only on d, 97 and p. Therefore, using the triangle inequality and (3.6) for s =1
and (3.7), we find that

IVorl < IVEwrl + [V (or — Bror) 3 < / V2B v + |Bvor 3y + [orfy < / V2072 + Jorl3r
Q Q

with a constant depending only on d, p, ¥7 and diam Q. We then obtain (3.6) upon recalling the inequality
lorlld S IVurlld + [z h7'|[vr]]? with a constant depending only on d, ¥7, and diam €, see e.g. [7]. O

In the subsequent analysis, we occasionally use the A-weighted seminorm |-|x 7: VZ — R defined by

or 21 ;:/ (V207 [2 + 20 Vor 2 + X2Jor[2] Vor € V3. (3.8)
Q

In general |-|5 7 is only a seminorm for A > 0, but is a norm if A > 0. It is clear that v |3 7+ v |5+ < & llor |5

with constant ¢y = max{1,v2A, A} for all vy € V2. Theorem 3.1 implies a converse bound, namely that

lorllF < lorl3 7 + [vr|5 1 for all vz € V3.
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4. GENERAL FRAMEWORK FOR A PRIORI AND A POSTERIORI ERROR ANALYSIS

We now present a general framework for the a priori and a posteriori error analysis of a broad range of
numerical methods. We start by showing that the a posteriori error analysis is essentially determined only by
the approximation spaces, and is otherwise independent of the choice of numerical methods. For this reason, we
present the a posteriori error bound before discussing numerical discretizations of (1.1).

4.1. A posteriori error bound

Our first main result is an a posteriori error bound, where we prove reliability and local efficiency of residual-
type error estimators. The analysis hinges on the following Lemma, which shows that the jump seminorm |-| 7
defined in (3.5) controls the distance of functions V3 from H?(2) N H{(£2). See also [53] for related results that
are explicit in the polynomial degree on more general meshes, and see also the concluding remarks in [10].

Lemma 4.1 (H?(Q) N H}(Q)-approximation). There exists a linear operator Ex : V2 — H?(Q) N HE(Q) such
that

2
Z / h%—m_4|vm(’l}7 — ETUT)|2 < |UT“2]77— Yoy € VQQ. (4.1)

Proof. We recall the operator Ey: V2 — V3 used in the proof of Theorem 3.1 above. Furthermore, in [48] (for
d=2andp>2ord=3and 2<p<3)andin [10] (for d € {2,3} and p > 2) it is shown that there exists a
linear operator Ey: V} — H2(Q) N H} () such that

Z/ WV - Er)P s [ h VS mlP K €T, Vor € Vi, (4.2)

m=0 Fr

where FL = Fx N F! is the set of interior faces adjacent to K, see Lemma 3 of [48] and [10]. Then, we define
the operator E7 as the composition of the operators E; and FEs, i.e. Ex = E3F;, and (4.1) is obtained by
applying the triangle inequality to vr — Eqxvr = vy — Eyvr + Eyvr — Eo(Ejv7) and applying the bounds (3.7)
and (4.2) with summation over all elements of the mesh. O

The primary use of Lemma 4.1 for our purposes is the implication that

inf ||’UT—U}||T S

Vs € {0,1},
weH2(Q)NHL(Q) s €{0,1} (4.3)

where the constant in the inequality above depends possibly on d, on ¥, on p and on €; see also Remark 4.4
below for further discussion of the constants.

We now introduce the residual-type error estimators that form the basis of the a posteriori error analysis.
For any vy € V2, s € {0, 1}, let the elementwise error estimators {nr(vr, K)}xer and global error estimator
N7 (vr) be defined by

bz (or, K / Er+ Y / seh T [Vorl + 3 / 57 [or] 2, (4.40)

FETx POk
nr(vr))? = [nr(vr, )%, (4.4b)

KeT

with weights dp == 1/2 if F € F! and §p == 1 if F € FB. Recall that the expression F,[v7] is computed using
the notion of gradients and Hessians of vy as defined in Section 3, which, for functions from the finite element
spaces, coincide with the notions of piecewise gradients and Hessians, respectively. For the special case s = 1,
we note that the term involving the jumps [vr] vanishes identically and thus may be dropped, and that the
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term involving jumps of gradients can be simplified to the jumps in the normal component of the gradients.
However these simplifications have no special consequence in the results below. In practice, one may consider a
number of variants of the estimators in (4.4), e.g. including various weightings of the different terms; we employ
the above choice of estimators for simplicity of presentation.

For each element K € T, we define ||-||7,x: V3 + H*(Q) N H}(2) — R the localization of the norm ||| to
K by

ol = [ 9% +1VoR + ] + 3 [ de Vel +

Fe]—'I Fer
FCOK FCOK

For any v € V# + H?(Q) N H(Q) there holds [[v]|F = 3 xcr 017 &

We now present an a posteriori error bound for arbitrary functions from the approximation space, and not
only the numerical solution. Recall that u € H?(Q) N Hg () denotes the unique solution of Flu] = 0 and
equivalently of F,[u] = 0 pointwise a.e. in €, see Theorem 2.5.

> [oenflel @)

Theorem 4.2 (A posteriori error bound). There exists a positive constant Cyel depending only on d, 91, p, A,
v and , such that, for any s € {0,1},

|lu —vrllr < Cranr(vr) Yoy € V3. (4.6)
There exists a positive constant Cegr 10c depending only on d and X, such that
nr(vr, K) < Cegtocllu —vr|lr.x VK €T, Yur € V7. (4.7)
There exists a positive constant Ceg gloh, depending only on d and A, such that
N7 (v7) < Cesr giobllu — vrllT  Yvr € V7. (4.8)

Proof. Let vz € V& and w € H*(Q2) N H} () be arbitrary functions. Then, recalling (2.12) we see that

(1~ VI )| La(u— w)[3 < / F [w]La(u - w)

< (1B [vr]lle + 1By [w] = Fy[or]llo)[| La(u — w)l|o-
Then, using the fact that ||u — w7 = [[u — w||g2(q), and by combining the above inequality with (2.10) and
the Lipschitz continuity bound of F, in (2.9b), we find that
lu—vrlle <flu— w2 + v —vrr

< Cadiam ol La(u — w)|la + [[vr —w| 7

< Cagiam oty (| By [vr]llo + |1 [w] = Fy [ur]lle) + [lor — w7

é Cd,diachvHF'y[vT]”Q + (1 + Cd,diamQCVC)\(]- + v d + 1))||UT - w||T7
with ¢, = (1—+/1 —v)71, and ¢) = max{1l,V2\, A\}. Since the function w in (4.9) is arbitrary, we may take the
infimum over all w € H2(Q) N H}(Q) and apply (4.3) to obtain

lu —vrlla < Co (|Fy[vr]llo + lvr|s1) < Cranr(vr),

for some constants Cy and C,¢ that depend possibly on d, ¥7, p, v, A and , which proves (4.6). To prove (4.7),
we use Theorem 2.5 which shows that u € H?(2) N H{ () solves F,[u] = 0 pointwise a.e. and thus infer that,
forall K € T,

(4.9)

nr(vr, K) < ex(1+Vd+1)|lvr —ul7 K,

with ¢y as above, where we have used the Lipschitz bound from (2.9b) to bound || F, [vr]|lo = || F; [vr] — Fy[u]||q.
This gives (4.7) with Cesrjoc = cA(1 + v/d+ 1). We then obtain (4.8) from (4.7) by taking square powers and
summing over all elements of the mesh. (I
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Remark 4.3. A posteriori error bounds of a similar nature have been shown already in [3,9,26] for various
numerical methods. However, Theorem 4.2 shows that the a posteriori error bounds are not restricted to any
particular numerical method, as the bounds apply to arbitrary piecewise polynomial approximations on 7.
The significance for computational practice is then that the error estimators are reliable and efficient even
for inexactly computed numerical solutions, obtained from iterative solvers for the nonlinear discrete problem.
Furthermore, Theorem 4.2 can be applied to a wide range of approximations using various finite element spaces,
such as Morley or Hermite elements, and, up to substituting 7 for a submesh, macro-elements such as the Hsieh—
Clough—Tocher element [14]. Naturally, there may be some simplifications that can be made in the estimators
when taking their restrictions to subspaces of V2 with higher regularity. The fact that Theorem 4.2 holds for
arbitrary vz € V7 presents some substantial differences with the case of the usual residual-based error estimators
for weak solutions of divergence form elliptic problems. Recall that for divergence form problems, the derivation
of the upper bound relies on some form of Galerkin orthogonality satisfied by the numerical solution [12, 58].
This is due to the issue of localizing and bounding the negative-order Sobolev norm of the residual, see [4]
for further details. By comparison, in the present setting the residual is in L2, so the residual norm localizes
trivially.

Theorem 4.2 shows that the residual-type estimators in (4.4) are reliable and locally efficient. In [38], we use
these estimators to construct and prove convergence of adaptive DG and C°-IP methods for the problem at
hand. Note that the estimators in the present setting have some notable differences with residual estimators
for approximations of divergence form elliptic problems in H'-type norms [58]. The estimators defined in (4.4)
do not include any weighting of the volume residual terms with positive powers of the mesh-size function hr;
this is indeed both natural and optimal as shown by the efficiency bounds (4.7) and (4.8). This has important
ramifications for the analysis of adaptive methods [38]. In comparison to residual estimators for divergence
form elliptic problems, here the residual term for the PDE is entirely located on the elements, and the face
terms measure only the nonconformity of the approximations. In consequence, the local efficiency bound (4.7)
is indeed fully local to an element and to its faces.

The estimators given here are reliable, although it appears harder to make them guaranteed, i.e. to obtain
a guaranteed upper bound on the error without unknown constants, since this would require determining the
constant Cle. Indeed, the principal difficulty is to determine the constant in (4.3) that feeds into Che. It
appears possible however to obtain a guaranteed and fully computable estimator by replacing the part of the
estimator associated to the jumps of function values and gradients over mesh faces by a computable choice of
w € H*(Q)N HL(Q) that appears in the proof of Theorem 4.2, for instance using the approximation constructed
in Lemma 4.1. This however appears to be rather involved in practice, so we do not consider it further. In the
numerical experiment of Section 7 below, it is found that in practice the estimators are quite close to the true
errors, suggesting that Cle is close to a value of 1 for that experiment.

Remark 4.4 (Dependence of constants on domain geometry). The constant in (4.1) possibly depends on the
space dimension d, the shape-regularity parameter 97, the polynomial degree p as may be expected. However,
the constant in the bound (4.1) also depends on constants appearing in the analysis in [10,48] that are not robust
with respect to the geometry of the boundary 0f2, as we now explain. It is enough to consider momentarily d = 2
and s = 1; then the enrichment operators from [10,48] (both labelled here Es in a slight abuse of notation) both
prescribe that the gradient of the H? N H}-enrichment approximation must vanish identically at corner points
of the boundary (called sharp vertices in [48]) see e.g. Lemma 2 of [48] and Section 3.3.1 of [10]. Supposing that
vy € V7 is the function to be approximated, and z is a sharp (corner) vertex of 9, then the analysis in the
references above involve a bound of the form

Vorl(e) = VEar () = [Verlk@P <G 3 [ wriver -l (4.10)
FeFlzeF F

for all elements K sharing the vertex z, see [48], equation (3.11) and the first displayed equation in [10], p. 11.
The proof that such a constant exists involves writing Vo |k (z) in terms of a local basis formed by tangent
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2

FIGURE 1. A pair of elements K; and K5 are formed by the vertices zg = 0, 21 = (cosw, sinw)
for some w € (0,7/2), z2 = (0,1) and z3 = (—1,0). Suppose that the lower edges of K; and K»
are on the boundary 99, so that zg is a corner (sharp) vertex of 9.

vectors of faces. However, the constant Cy in (4.10) generally depends on the angle formed by the tangent
vectors and thus on the geometry of (2, as illustrated by the following example. Consider a corner vertex
zo associated to a pair of elements K7 and K5 as shown in Figure 1, and consider a function vz such that
vrli, (x,y) = y — xtanw and vr|k,(z,y) = y, so that vy is piecewise affine, continuous on K; U K», and
vanishes on the boundary faces formed by the vertices zp, 21 and z3. Then, it follows that |Vor|x(20)]* > 1
for K € {K1, K>}, whereas [, hi %|[Vvr - n]|? = tan?w for the interior face F' formed by the vertices z and
zo. Therefore, the constant Cy in (4.10) necessarily satisfies Cy > tan~2w and thus becomes large for small w,
i.e. when Q has very nearly flat corners. Therefore, the claim in Theorem. 2.1 of [10] that the constants there
depend only on the shape regularity of the meshes appears to have overlooked the dependence on the geometry
of the boundary. In three space dimensions, this geometric dependence also occurs for degrees of freedom on
edges belonging to two non-coplanar boundary faces.

4.2. Abstract a priori error bound

We now provide a unifying framework for the a priori error analysis of a broad family of numerical methods.
Some concrete examples of methods that we have in mind are given in Section 5, which covers a range of different
methods proposed in the literature as well as some original variants, see in particular the definition in (5.9) and
also Remark 5.3 below for further details. We consider an abstract numerical method of the form: for a chosen
s € {0,1}, find uy € V3 such that

AT(UT;UT) =0 Yur € V/]S-, (4.11)

for a given nonlinear form A7 (;-): V7 x V7 — R. We prove a near-best approximation result under abstract
assumptions on A7 (-, -), which allows for a unified treatment of a range of numerical methods from the literature,
and some original methods as well. First, we assume that the nonlinear form Az(-;-) is linear in its second
argument, i.e. Ar(wr;vr + d0z7) = Ar(wr;vr) + 0Ar(wr; z7) for all vy, wr and 2y € Vi and § € R.
Next, we make the following three assumptions concerning Lipschitz continuity, discrete consistency and strong
monotonicity.

Lipschitz continuity. The nonlinear form A7 is assumed to be Lipschitz continuous, i.e. there exists a positive
constant Cpp such that

|Ar(wr;vr) — A7 (275 07)| < CLipllwr — 27| 7|zl Ywr, 27, v7 € VF. (A1)

Discrete consistency. We assume that there exists a linear operator Lz : V& — L?(Q2) and positive constants
Ceons and Cp,, and such that, for all wy, vy € V7,

‘AT('LUTQUT) */ F,lwr]Lrvr| < Ceonslwr|s7|vr|l7, |L7vrle < Cr.llvr|r. (A2)

Q
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We stress that the jump seminorm |wz| ;7 appears in the right-hand side of the first inequality. Therefore, the
condition (A2) requires that Az (wr;v7) must include the testing of the nonlinear operator F, with Lyuvr for
a test function vy € V, and that any additional terms must vanish whenever |wr|s7 = 0, i.e. when the first
argument wz belongs to H2(2) N H (). The assumption on L7 is rather general and allows for testing the
PDE with a range of choices, although in practice, L7 is usually chosen with a view towards satisfying a strong
monotonicity assumption.

Strong monotonicity. Finally, we assume that Az (-;-) is strongly monotone, i.e. there exists a positive con-
stant Cpon such that

C;énHwT —vrl||3 < Ar(wr;wr —vr) — Ar(vrswr —vr)  Ywr,vr € Vi (A3)

In practice, strong monotonicity for DG and C°-IP methods is usually attained by introducing stabilization
terms and penalization terms on the jumps of the approximate solution values and gradients, and choosing
the penalty parameters to be sufficiently large. The Lipschitz continuity and strong monotonicity conditions
in (A1) and (A3) are natural discrete counterparts to the Lipschitz continuity and strong monotonicity of the
continuous nonlinear form A(-;-) considered in the proof of Theorem 2.5.

Remark 4.5 (Notion of consistency). We call the first inequality in (A2) discrete consistency because it is a
notion of consistency on the numerical method that is determined entirely at the discrete level. See also [57]
for a seemingly related notion of consistency called full algebraic consistency, which plays an important role in
the analysis of abstract nonconforming methods for linear problems. In particular, the notion of consistency
employed differs from more usual notions of consistency based on inserting the exact solution « into the numerical
scheme, which may be subject to additional regularity assumptions on the solution. In practice, the discrete
consistency condition (A2) is trivially satisfied by some numerical methods, such as the one in [48] but is far
from obvious for the original method of [54,55] owing to the additional stabilization terms. One of our main
contributions in Sections 5 and 6 below is a proof of (A2) for the original method of [54,55] and some original
variants, see in particular Theorem 5.5 and Corollary 5.6. In all cases, our results hold without introducing any
additional regularity assumptions on the exact solution.

It follows from the Lipschitz continuity assumption (A1) and strong monotonicity (A3) that there exists a
unique uz € V7 that solves (4.11). We now prove the main result on the a priori error analysis of these schemes,
namely a near-best approximation property akin to Céa’s Lemma, with a constant determined solely in terms of
d, A, Cron, Cr, and Cqons appearing above. Moreover, for the class of numerical methods considered below, the
assumptions of our framework will be satisfied without requiring any further regularity on the exact solution.
Recall that u € H?(2) N Hj () denotes the unique solution of Flu] = 0 and equivalently F,[u] = 0 pointwise
a.e. in €, see Theorem 2.5.

Theorem 4.6 (Near-best approximation). Suppose that the nonlinear form Ar: Vi x Vi — R is linear in
its second argument, and satisfies assumptions (A1)—(A3). Let ur € V3 denote the unique solution of (4.11).
Then, we have the near-best approximation bound

||U—UT||T S CNB inf H’U,—UTHT, (4.12)
vr €V

where the constant Cnp is given by

Cxp =1+ Cnon (Ceons + Crp max {1,V2A A} (14 Vi +1))
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Proof. Let ug be the unique solution of (4.11), and let vz be arbitrary. Then, writing z7 = vy — uz, we see
from (4.11), (A2) and (A3) that

Coollvr —urlF = Cobllzr iz < Ar(vr;zr) — Ar(ur; z1) = Az (vr; 27)
—Ar(orizr) ~ [ Blorllrsr + [ (B)for) - Bylul) Lrs
Q Q

< Ceons|vr —uly 1277 + |1 Fy[or] = Fy[u]l[oCL, |27 (|7

< Ceonslvr —uly7||27l|l7 + €arxCry v — vl 7|27 |7+

where in the second line we have added and subtracted [, F,[v7]Lzzr and we have used the fact that F[u] = 0
a.e. in €, then in the third line we have used the discrete consistency bound (A2) with the identity |vr |7 =
|vr —ul| 5,7, along with the Cauchy—Schwarz inequality, and in the fourth line we have ¢g4 » = max{1, V22X, A (14
v/d + 1) which is obtained by bounding the right-hand side of (2.9b). We then deduce from the triangle inequality
and |vr — uly7 < |jur — ul|7 that

Ju—urlr <|lu—vr|7+ |lor —urllT <1+ Cnon (Ceons + caxCrr)] lu — vrlT, (4.13)
This proves (4.12) upon taking the infimum over all vy € V3. O

Theorem 4.6 and the general framework introduced above can be easily extended to methods using a wide
range of approximations spaces, and not only the space V7 considered here.

Note that the near-best approximation property given by Theorem 4.6 is rather remarkable given the fact
we consider here nonconforming methods, and is again primarily a consequence of the fact that F)[u] = 0 in
the strong sense. Whereas the quasi-optimality of conforming Galerkin approximations of strongly monotone
operator equations is classical, c.f. Section 25.4 of [59], it is well-known that the analysis of near-best approxi-
mation properties for nonconforming methods is rather more challenging [30,57]. We refer the reader to [57] for
a detailed analysis of quasi-optimality for nonconforming methods for abstract linear problems. Note that even
in the case of linear divergence form elliptic problems, classical DG and other nonconforming methods often
do not satisfy a near-best approximation property ([57], Rem. 4.9), with the closest available results typically
including additional terms on the right-hand side [30].

Theorem 4.6 implies that, up to associated constants, all numerical methods satisfying the assumptions of the
above framework are quasi-optimal. Provided that the constants in the assumptions (A1)—(A3) are independent
of the mesh-size, it is then easy to show optimal rates of convergence with respect to the mesh-size under
additional regularity assumptions on the exact solution. Since the techniques for deriving convergence rates are
rather well-known, we leave the details to the reader.

Also under the assumption that the constants in the framework above remain uniformly bounded, Theorem 4.6
then leads to convergence of the numerical solutions in the small-mesh limit without any additional regularity
assumptions on u € H2(Q) N HL(Q).

Corollary 4.7 (Convergence for minimal regularity solutions). Let {7;}72, be a sequence of conforming sim-
plicial meshes such that maxker, hk — 0 as k — oo, and let uz, € VZ denote the corresponding numerical
solution of (4.11) for each k € N. Suppose that, for each k € N, the nonlinear form Az, (-;-) is linear in its
second argument and satisfies the assumptions (A1)—(A3) with associated constants that are uniformly bounded
with respect to k € N. Then the sequence of numerical solutions {u, }ren converges to w € H*(Q) N H{(Y) the
exact solution of (1.1) with

kh_)n;OHu —ug, |7, =0. (4.14)

Proof. We prove this in two steps, first for s = 0 and then for s = 1.

Step 1. Suppose momentarily that s = 0. Under the above hypotheses that the constants in (A1)—(A3) are
uniformly bounded with respect to k € N, we infer from (4.12) that it is enough to show that there exists a
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sequence of functions vy € V3 such that ||u — vi[z, — 0 as k — co. For each k € N, we define v, € V3 as the
unique piecewise quadratic polynomial that satisfies [, (u —vx) =0, [, V(u—v) =0 and [, VZ(u—vg) =0
for all K € 7T, where integration is taken component-wise for vectors and matrices. Note here that p > 2
implies that vy € V% . In particular, it is easily checked that an explicit formula for vg|x is given by vg|x(x) =
r+d-x+ %xTHx for all z € K, with coefficients r € R, d € R? and H € R™? with H = ﬁh(,

d = Vu— Hz|g and r = u—d-w — 327 Hz|g where W|x denotes the mean-value of a scalar-, vector- or
matrix-valued function w over K. It then follows from repeated applications of Poincaré’s inequality that
[ B2V u — )2 S [x|VPu — V2u|g|? for each m € {0,1,2}, for all K € 7 and for all k € N.
Using trace inequalities to bound the jump-seminorms |vg|s7, = |u — vk|s7, , we then see that [u — vg|F, S
Yker, JxlV?u — V2u|g|? for all k € N. It then follows from density of the space Cg°(€;R**%) of smooth
compactly supported R™%-valued functions in L*(Q; R¥*?) that Y e [ |V2u— V2u|g|* — 0 as k — oo and
hence also that ||u — vg|lz, — 0 as k — oo. This implies (4.14) for s = 0.

Step 2. For s = 1, let v, € V% define the above piecewise quadratic approximation, and let vy, = Eyv, € Vle
denote its H}-conforming enrichment, where it is recalled that Ej is as in the proof of Theorem 3.1; in a slight
abuse of notation, we do not indicate here the dependence of E; on k. It is straightforward then to use triangle
inequalities and the bound (3.7) to show that ||u — vx||7, — 0 as k — oo, thus showing (4.14) also in the case
s=1. (]

5. APPLICATION TO A FAMILY OF NUMERICAL METHODS

We now consider how the abstract framework for analysis in the sections above applies to a family of numerical
methods that includes as special cases the methods of [48,54,55] as well as some original methods which are
studied further in the context of adaptive methods in [38].

Lifting operators. Let ¢ denote a fixed choice of polynomial degree such that ¢ > p — 2, which implies that
q > 0 since p > 2. Let Vr 4 = {w € L*(Q): w|g € P, VK € T} denote the space of piecewise polynomials of
degree at most g over 7. For each interior face F' € F! | we define the lifting operator r%: L*(F) — Vr, by
JorE(w)e = [pw{p} forall ¢ € V7 4 and all w € L*(F). Using an inverse inequality for polynomials, it is easy
to see that ||rf(w)|lo < h;l/szHF for any w € L%(F).

For a fixed choice of a parameter x € {0, 1}, we define the linear operators Az: V3 — L*(Q) and r7: V3 —
Vr.g

Agvr = Avy — xrr([Vor - n]), re([Vor -n]) = Z r?([[VvT -n]) Yor € V7, (5.1)
FeF!

In order to alleviate the notation, we do not write explicitly the dependence of A7 on the parameter x. If x =0
then Azwv7 coincides with the piecewise Laplacian of vz, whereas if x = 1 then Azvs is usually called the
lifted Laplacian. The choice x = 1 is useful for proving asymptotic consistency of the numerical schemes in the
context of adaptive methods, see [38]. It is straightforward to show that

lrr ([Vor -n])lle < lvrlsr, [Arvrle S llvrllr Yvr € V7, (5.2)

where the constants depend only on d, p, ¢ and J7, see e.g. Section 4.3 of [20].
Stabilization. Let the stabilization bilinear form S7: V7 x V7 — R be defined by

St (wr,vr) ::/ [V2w7 Vi — A’UJTAUT]
Q

- / [VT {VwT . ’I’L} . [[VTUT]] + VT {V’UT . n} . [[VT’LUT]H (53)

“

+/ {Arwr} [Vor - n] + {Arvr} [Vwr -n]] Ywr, vy € V3,
FI
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where it is recalled that V and Ap denote the tangential gradient and Laplacian, respectively, on mesh faces.
We now show that the stabilization form Sz (-, -) is equivalent to the stabilization terms that were used in [54,55].
In particular, let By .(-,-): V3 x V7 — R be the bilinear form introduced in [54,55], defined by

Br . (wr,vr) ::/Q [VQwT : V2ur + 2A\Vwr - Vo + )\Q’LUTUT]
— /]: [VT {qu— . n} . [[VTUT]] + Vr {VUT . TL} . HVTWT]H
+ / {Arwr} [Vur - n] + {Arvr} [Vwr - n]] (5.4)
f[
- /\/ {Vwr - n}[vr] + {Vur - n} [wr]]
F

—/\/ {wr} [Vor - n] + {vr} [Vor - n]].
]__I

The following lemma shows that the stabilization used in [55] can be equivalently simplified to the stabilization
form S7(-,-) defined above in (5.3).

Lemma 5.1. Let the bilinear forms St(-,-) and Br .(-,-) be defined by (5.3) and (5.4). Then, we have the
identity
ST(U)T, UT) = BT,*(wT,UT) — / LywrLyvy Ywr, vy € Vqs— (5.5)
Q
Proof. After expanding LywrLyvr = AwrAvy — Muwzvr — dMwrAvy + MNwrvr, we see that the identity
in (5.5) follows straightforwardly from the integration-by-parts identity

—/QA’LUTUT:/VU/T'VU'Z’_/}_{V'LUT'TL} [[UT]]_/P[[VUJT'"H {vr} Ywr,vr € V7, (5.6)

which is used twice, once as above and once with wr and v7 interchanged, in order to cancel all terms involving

A in the right-hand side of (5.5). O

Lemma 5.1 shows that the stabilization terms used in [55] for A possibly nonzero in fact coincides with the
stabilization term used below in (5.9) that defines the nonlinear form Az (-;-). Therefore, in practice, the method
in [54,55] only requires the implementation of the terms of the stabilization form Sz (-, ).

Penalization. For two positive constant parameters ¢ and p to be chosen later, let the jump penalization
bilinear form J7: V7 x V7 — R be defined by

Jr(wr,vr) = /

- Jh;—l [[VU)T]] . [[VUT]] + /]:B Uh,}l [[vaT]] . [[VTUT]] + /fph,;-:3 ﬂwT]] [[UT]], (5.7)

for all wr, vz € V7, where it is recalled that V1 denotes the tangential gradient on mesh faces.

Remark 5.2 (Penalization of jumps of tangential gradients). The bilinear form Jz(-,-) includes terms that
penalize tangential jumps of the solution on interior and boundary faces. For fixed polynomial degrees, it is
straightforward to show that the jump penalization bilinear form J7z (-, -) induces a semi-norm that is equivalent
to |-|s7, up to constants depending on the penalty paramters o and p. However, the benefit of the terms
that penalize explicitly the jumps in tangential components of the gradients in the numerical scheme is that
it significantly improves the dependence of the penalty parameters on the polynomial degrees, in particular p,
which is essential for avoiding a degradation of the rate of convergence with respect to polynomial degrees in
the context of hp-version methods, and it also helps to improve the conditioning of the systems, see the analysis
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in [54,55]. Thus the inclusion of explicit penalization of the jumps of tangential components is advantageous
in computational practice even though it is not strictly necessary for an analysis that is not explicit in the
polynomial degrees. Note however that for C°-IP methods, i.e. when s = 1, then the last two terms in (5.7)
vanish identically.

Numerical methods. Recalling the operator A7 from (5.1), we define the linear operator
L)\’TUT = Agvr — vy Yor € Vjﬁl (5.8)

As above, we do not indicate explicitly the dependente of Ly 7 on x in order to alleviate the notation. We now
consider the following family of numerical methods: for a parameter 6 € [0, 1], define the nonlinear form

AT(U)T; UT) = F’Y [wT}LA,TUT + HST(wT, UT) + JT(wT, 1}7) V’w'j', v € Vqsi (5.9)
Q
For simplicity of notation, we do not write explicitly the dependence of A7 (+;-) on the parameters A, 6, x, o,
w1 and p, nor on choice of approximation space through s € {0,1} and the polynomial degrees p and ¢. The
discrete problem is then to find ur € V3 that solves (4.11).

Remark 5.3 (Relation to methods in the literature). Choosing s = 0, x = 0 and § = 1/2, we obtain the
original DGFEM proposed in [54,55], see Lemma 5.1 concerning the equivalence of the stabilization terms. If we
take s = 1, and x = 0 = 0, then we obtain the C%interior penalty FEM proposed in [48], and further analysed
in [9]. Methods using x = 1 are of interest in the context of adaptive methods, see [38]. Note however that the
general framework of Section 4 applies to some methods not directly covered by the class of methods of this
section, such as one of the two methods proposed in [3], which involves a C°-IP method featuring a Hessian
recovery into discontinuous piecewise polynomials for both trial and test functions.

We now state the main results that show that the family of numerical methods considered above satisfy the
assumptions (A1)—(A3) of the abstract framework for a priori error analysis.

Lipschitz continuity. Using the same techniques as in [54,55] and using Lemma 2.4, it can be shown that the
nonlinear form Az (-;-) defined in (5.9) satisfies the Lipschitz continuity bound (A1). In particular, Lemma 2.4
improves on [54,55] by showing that the Lipschitz constant is otherwise independent of the data of the operators
LoB,

Lemma 5.4 (Lipschitz continuity). The nonlinear form Az (-;-) defined by (5.9) satisfies (A1) with a constant
Clip that depends only on d, V7, p, g, A, 0 and p.

Proof. Let wr, zr and vy € V2 be arbitrary. Then, using (2.9b) for the nonlinear terms, using (5.2) for the
lifting terms, and applying inverse inequalities to the face terms in the bilinear form Sz (-,-), it is found that

| A7 (wr;vr) — A7 (27307)] < / |y [wr] — F,Jor]||La,ror|
Q
+ |S7r(wr — z7,v7)| + |Jr(wr — 27, v7)]
S lwr = 27|l 7llvrlT,
with a constant depending on d, 97, p, g, A, o and p, thereby proving (Al). O

Discrete consistency. When 6 = 0, it is straightforward to show that the nonlinear form Az(-,-) defined
in (5.9) satisfies the discrete consistency assumption (A2). However for § # 0 this is far from obvious. The key
for showing discrete consistency is then the following bound on the stabilization term Sz (-, ), showing that
S7(-,-) is bounded with respect to the jump seminorms of its arguments, rather than the whole norm.
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Theorem 5.5 (Bound on stabilization terms). The bilinear form St defined in (5.3) satisfies the bound
|ST(wr,vr)| < |wT|J)T"UT|J’T Ywr, vr € V7. (5.10)
The proof of Theorem 5.5 is given in Section 6.2 below. We now show how it is used to prove (A2).

Corollary 5.6 (Discrete consistency). The nonlinear form (5.9) satisfies (A2) with a constant Ceons that
depends only on d, V1, p, o, p, p, and Q, and a constant Cr, that depends only on d, X\ and, if x = 1,
then also on Y7, p and q.

Proof. Choosing Lrvr = Agvy — Avg for all vy € V2, we see that |[Lrvr|q S ||vr| 7 for all vy € V2 with a
constant C'r,, that depends only on d, A, and also ¢, p and ¢ if x = 1. Then, for all wy, v € V7, we obtain

’AT(wT,UT) - / Fylwr|Lrvr| < |St(wr,vr)| + |Jr(wr, v1)| < Ceons|wr | s, 7|07 |07, (5.11)
0

where we have used 6 € [0, 1], and we have used Theorem 5.5 in the second inequality to bound |S7(wr,vr)|.
The constant Ccons above depends only on d, Y7, p, on the penalty parameters ¢ and p, and on 2. This
proves (A2). O

Remark 5.7. The fact that the seminorm |v7|;7 appears on the right-hand side of (5.10) for the function
vy in the second argument of the bilinear form Sz (-,-) is not strictly necessary for the discrete consistency
property (A2). Indeed, the condition (A2) allows the full norm of the second argument of the nonlinear form to
appear on the right-hand side. Thus, it is possible to show that the discrete consistency assumption (A2) also
holds for a nonsymmetric variant of the stabilization term Sz (-, -).

Strong monotonicity. We now show below that for all choices of the parameters defining the scheme, it is
possible to choose the penalty parameters sufficiently large such that (A3) is satisfied. The analysis suggests
however that the minimum necessary penalty parameters required for strong monotonicity may depend signifi-
cantly on the value of the stabilization parameter 6. Indeed, Theorem 5.8 shows that if the parameter 6 is in an
interval centred on 1/2, see (5.12) below, then (5.9) holds for a choice of penalty parameters that is independent
of the geometry of the domain 2. In Theorem 5.10, we show that strong monotonicity can still be achieved for
general @, but with penalty parameters that possibly further depend on the geometry of €. In the following,
recall that Cpy is the constant in (3.6).

Theorem 5.8 (Strong monotonicity I). Suppose that 0 satisfies the condition

0e<1ﬁ1+ﬁ>, (5.12)

2 72
and define the positive constant p > 0 by

1—v

o (5.13)

wi=0-—
Then, there exists omin and pmin, depending only on d, V1, X\, p, q, 8 and p, but not on ), such that, for all
0 > Omin and p > pmin, the nonlinear form Az (;-) satisfies (A3) with a constant Ciyen depending only on p
and on Cpr.

Proof. Note that (5.12) and v < 1 imply that 6 € (0,1) so that u is well-defined and real. It is then easy to
check that p is positive if and only if 0 satisfies (5.12). The proof is an extension of the approach first introduced
in [54,55]. Let wr, vy € V2 be arbitrary, and let z7 := wr — vr. To show (A3), we start by proving that

E(erBr +1e7lir) < Ar(wrizr) = Ar(vrier), (5.14)
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where we recall that the A-weighted seminorm |-[5 7 is defined in (3.8). The Poincaré-Friedrichs inequality
of Theorem 3.1 then implies (A3), e.g. with a constant Cpen < 4C3pu~!. Note that since v < 1, it follows
from (5.12) that 6 € (0,1). We then use Lemma 5.1 to obtain

Ar(wr;zr) — A7 (vrs27) Z/Q(Fw[wﬂ = Fy[vr]) (Lazr — xrr([Var - n]))

+6 (BT,*(ZT,ZT) — / |L/\ZT|2) + Jr (21, 27).
Q
Adding and subtracting [,,|Lxz7|?* and using the bounds (2.9a), (2.9b) and (5.2), we find that

Ar(wr;zr) — Ar(vr; 27) > OB7 (27, 27) + (1 — O)|| Loz ||* + Jr (27, 27)

—V1—v|zr

where the constant ¢; depends only on d, 97, p and ¢. Since 6 € (0,1), we may use Young’s inequality

Tzt llo = erxlzrInTler|a T,

1-v
V1—vlzr[a7|Lizrlle < mkﬂi,ff + (1= 0)||Lrz7[l?,

to obtain

1

— VUV
Ar(wr;zr) — Ar(vrs2r) 2 0By (27, 27) — mbﬂirf — cixlzr

sTlerlor + Jr(er, z27).

It is shown in Lemma 6 of [55] that for any x > 1, there exists omin and pmin, depending only on &, d, 97, p
and A, such that

1 1
Br .27, 27) + Jr (27, 27) > E|ZT|?\,T + §JT(ZTaZT) Ver € V7, (5.15)

for all o > opin and p > pmin. Recalling the definition of x in (5.13), we then choose, e.g., K = (1 — 11/20)~ 1,
and note that x € (1,2), to get

0 0
Ar(wr;zr) — Ar(vrs2r) > (H -0+ u) lzr 3.7 — ctlerInTlerloT + (1 - 2) Jr (27, 27)

0
blerfr - elerlarlorlir + (1- 3 ) Jr(era)

2
f 1 i
> Z|Z’T|§,T +5Jrer,27) — E|ZT|3,T>

where in the last line we have used 1 — 0/2 > 1/2. It is then seen that there exists oy and pmin sufficiently
large, depending only on d, Y1, p, g, A, 6 and p, such that (5.14) and hence also (A3) both hold for all o > omin
and p > Pmin- O

Remark 5.9 (Optimal value of §). Maximizing p with respect to 6 leads tou =1—+/1 — v for = 1— %\/1 —v,
which always satisfies (5.12) whenever v € (0,1). The constant Cp,o, is then comparable to the constant
appearing in (2.12). In the context of mixed methods, Gallistl and Sili [28], equation (2.8) make a similar
optimal choice of a parameter for stabilizing the curls of the approximations to the gradients. We consider here
more general values of § however since the constant v appearing in the Cordes condition might only be known
approximately in practice. However, for v small, the optimal value § = 1 — %\/ 1 — v approaches 1/2; which was
the original choice made in [54,55].
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When the condition (5.12) does not hold, e.g. as in [48], then we can still show strong monotonicity for suffi-
ciently large penalty parameters, although the penalty parameters may then possibly depend on the geometry
of 2. See Remark 5.11 below.

Theorem 5.10 (Strong monotonicity II). There exists omin and pmin, depending only on d, 97, A, p, q, v and
Q, such that for all 0 > omin and p > pmin, and all § € [0, 1], the nonlinear form Az (-;-) satisfies (A3) with a
constant Con that depends only on v and Cpp.

The proof of Theorem 5.10 is given in Section 6.3 below.

Remark 5.11 (Dependencies of penalty parameters). Ideally, the penalty parameters o and p should be chosen
as small as possible, which is important for the accuracy of the method and the conditioning of the discrete
problems. Notice that the original method of [54,55] based on the choice § = 1/2 satisfies (5.12) for all values of
v > 0, and thus the stability of the method in [54,55] is robust with respect to domain geometry. Theorem 5.8
shows that robustness with respect to domain geometry extends to a range of choices of # satisfying (5.12).
The difficulty when 6 does not satisfy (5.12), e.g. as in [48], is that the proof of strong monotonicity then relies
on a discrete Miranda—Talenti inequality, where, to the best of our knowledge, all current proofs involve some
reconstruction operators with constants that depend critically on the angles formed by faces at corner points
and corner edges, see Remark 4.4 above. These constants then feed into o, and pupiy, which leaves open the
possibility that they may become very large on domains with very nearly flat edges.

Remark 5.12 (Near-best approximation and convergence). It follows from Lemma 5.4, Corollary 5.6 and The-
orems 5.8, 5.10 that the constants appearing in the abstract assumptions (A1)—(A3) all hold with constants
depending only on the quantities detailed above, and otherwise independent of the mesh-size. Therefore, Theo-
rem 4.6 and Corollary 4.7 show quasi-optimality of the approximations and convergence for minimal regularity
solutions in the small mesh limit for the family of methods considered above when considering shape-regular
sequences of meshes.

6. PROOF OF THEOREMS 5.5 AND 5.10.

We now turn towards the proof of Theorems 5.5 and 5.10. Our proofs are based on more general results
concerning discontinuous piecewise-polynomial vector fields.
6.1. Enrichment of discontinuous piecewise-polynomial vector fields

Consider the space V7 of piecewise-polynomial vector fields of degree at most p — 1 defined by

V= {vr € >(GRY); vr|g € P! | VK €T}, (6.1)

p—1

where Pg_l denotes the space of R?-valued polynomials of total degree at most p — 1. Note that Vv € V7 for
any vy € V2, s € {0,1}. Also, the fact that p > 2 implies that V7 contains at least all piecewise affine vector-
valued polynomials, and thus has a nontrivial continuous subspace. We define the norm ||-||v, and seminorm
|"lg 7 on VT by

orly, = [ (9orP+lorf] + sy forbr= [ o+ [ ariwne® o2

for all vy € V7. We also consider the space H 1T(Q) of H'-conforming vector fields with vanishing tangential
components on the boundary, i.e.

HL(Q) = {ve H (Q;R?); vy = 00on 0Q}, (6.3)

where v denotes the tangential component of the trace of v on the boundary. We now construct an operator
E 7 that maps vector fields from V1 to H 1T(Q)—Conforrning vector fields, with an error controlled by the jump
of the vector field over all internal faces and by the tangential component of traces over boundary faces.
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Theorem 6.1. There exists a linear operator Ex: V1 — V.o 0 HL(Q) such that
||’UT — ET'UT”VT S |/UT|J)’T VYor e V. (6.4)
The constant in (6.4) depends on d, 91, p and on Q.

Proof. The proof is an adaptation to the vectorial setting of enrichments by a standard technique of local
averaging, see e.g. [10,34,48]. Consider the space V.7 N H'(Q; R?) of continuous vector fields in V7, and let Z
denote the set of points z € Q corresponding to the Lagrange degrees of freedom of the space V.7 N H'(2;R?).
We remark that here the Lagrange degrees of freedom of vector fields are similar to the scalar case, with the
only difference being that all degrees of freedom are point vector-values in R%. Thus, for example, if p = 2, then
VN HY(Q;RY) consists of continuous piecewise-affine vector-valued polynomials, and then Z consists of all
mesh vertices. Let Z be partitioned into the set of interior points Z! and boundary points Z. For each z € Z,
let N(z) == {K € T;z € K} denote the set of elements that contain z, where we recall that elements are by
definition closed. For each point z € Z, let F, .= {F € F; z € F'} denote the set of faces containing z, and let
FF=F.nFl and FB = F, N FB denote the sets of interior and boundary faces containing z respectively,
where we recall that faces are closed. For boundary degrees of freedom, we distinguish two cases. We call z € Z8
flat and write z € ZbB if and only if all of the faces in FZ are coplanar. Otherwise we call z sharp and write

z

z € Zf. The operator E7: Vi — VN HY(Q) is then defined in terms of its point values for each z € Z by

|N%z)| ZK’GN(Z) vr |k (2) if z € 21,
ETU’T(Z) = 7|N%z)| ZK’EN(Z) ('U’T|K/(Z) . n@ﬂ)naﬂ if z € ZbB7 (65)
0 if 2 € 2P,

where vy € Vr, where |N(z)| denotes the cardinality of N(z), and where ngq = nga(z) denotes the unit
outward normal to 9 at z € ZbB , which is uniquely defined when z is flat. It follows from the above definition
that E7 maps V7 into V7 N HY(Q;R?), and additionally it is seen that for any boundary face, E7vr has
H%1-q.e. vanishing tangential traces on the boundary for all vy € V7, so that Er: V7 — VN H%(Q)
Then, using similar arguments as in [31,34,48], it is found that, for every z € Z! and every K € N(z), we have

lvr|k(2) — Bror(2)* S ) ; hy Y| vr]? Yor € Vr, (6.6)
FeF!

where the constant depends only on d, 7 and p. For flat vertices z € ZP, after splitting v (z) into its normal
and tangential components, i.e. vr|k(2) = (v7r|x)T + (v7|K (2) - PYQ ) N9 for each K € N(z), we find that

orle(2) = Bror@)F £ 3 [ wionllP+ 3 [ MellwnP wreve, g

FeF! FeFrp

where the constant depends only on d, ¥7 and p. Finally, if 2 € ZP, then there exists at least two faces in
FB that are not coplanar, and thus there exists a set of unit vectors {¢;}¢_, forming a basis of R?, such that
each t; is a tangent vector to some face of FZ. Therefore, we see that (6.7) also holds for z € ZﬁB but with a
constant that additionally depends on the basis {t;}¢_, and thus also on the geometry of 9, as in Remark 4.4.
The bound (6.4) is then obtained by inverse inequalities and summation of the above bounds (6.6) and (6.7),
proceeding as in [34]. O

Remark 6.2. The bound (6.4) can be easily improved to the sharper bound [, h2" 2| V™ (v — Ezv7)|?> <
|v7|377 for each m € {0,1}. However this sharper bound is not needed in the following analysis. Note also
that the constant in (6.4) is subject to the same dependence on the geometry of the domain as the constants
appearing in [10,48], as discussed in Remark 4.4 above.



UNIFIED ANALYSIS OF NONCONFORMING FEM FOR HJB AND ISAACS EQUATIONS 471

6.2. Analysis of stabilization bilinear form

The main challenge in proving the discrete consistency bound (A2) for the nonlinear forms Az is the analysis
of the stabilization bilinear form Sz (-, ) defined in (5.3). We show here that S7(-,-) can be seen as the restriction
to piecewise gradients of a more general bilinear form on the space of vector fields V. Let the bilinear form
C7: V7 x Vs — R be defined by

Cr(wr,vr) ::/Q [Vwr : Vor — (Vwr)(Vor) — (Vxwr) - (Vxor)]

- /f {Vr(wrn)}-[(vr)r] + {Vr(vr-n)} - [(wr)r]] (6.8)
+ / {Vr-(wr)r} [or-n] +{Vr-(v7)7} [wr-n]]
FI

where Vus denotes the density of the absolutely continuous part of D(vr), where V - v denotes the trace
of Vvr, and where, if d = 3, then (Vxwv7); = €1V, (vr)p for all i € {1,2,3} with €, denoting the Levi-
Civita symbol, and, if d = 2, then Vxvs := V,, (vr)2 — V., (v7)1. Thus, since vy € V7 is piecewise smooth
over 7, we see that Vv, V - vy and Vxwv7 correspond to the piecewise gradient, divergence and curl of v,
respectively. Using trace and inverse inequalities, it is straightforward to show that Cr is bounded on V in
the sense that

|ICr(wr,v7)| S lwrllv,vrllv, Ywr, vreVr. (6.9)

The bilinear form Cr(,-) is related to Sz (-,-), c.f. (5.3), through the identity
ST(’LUT,UT) = CT(VwT, VUT) qu—, VT € Vji, (6.10)

which follows from the fact that the terms involving piecewise curls Vxwv7 vanish identically whenever vy =
Vg for some vy € V7.

The following Lemma can be seen as the vector-field extension of Lemma 5 from [54], which was key to the
consistency of the bilinear forms. In particular, it shows that Cr(-,-) vanishes whenever one of its arguments
belongs to the subspace VN H 1T(Q) of continuous piecewise-polynomial vector fields in V7 with vanishing
tangential traces on 9f2.

Lemma 6.3 (Consistency identity). For any wr € V. N H(Q) and any vy € vz, we have
CT(wT,vT) = CT(’UT,’wT) =0. (6.11)

Proof. The proof is entirely similar to Lemma 5 from [54], and we include it here only for completeness. Let
wr e VN H }(Q) and v € V1 be arbitrary. Observe that since the bilinear form C7(-,-) is symmetric it is
enough to show that C7(wz,v7r) = 0. For each K € 7, an integration-by-parts argument implies that

/K [VwT:VvT — (V-’LUT)(V"UT) — (VX’UJT) . (VX’UT)]

- VT(wT'n(')K) : (UT)T + VT'<’UJT)T(’UT-TL3K) =0, (6.12)
oK oK

where ngyi denotes the unit outward normal on OK. Using the fact that tangential differential opera-
tors commute with traces, we see that [Vr(wzr np)]r = Vr[wrnp]r = 0 for each F € F!, and that
[Vr-(wr)r]r = Vo [(wr)r]r = 0 for each F € F since wy is continuous and thus [wy] = 0 for all interior
faces, and since [(w7)r]r = (w7)r = 0 for all boundary faces F € FB. Note that for each face F C 0K, we
have np = £nyi|r depending on the choice of orientation of n g, and recall that the jumps are defined by (3.3)
in terms of this chosen orientation. Therefore, by summing the identity (6.11) and using the above identities
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for jumps on faces to simplify [Vr(wr-nr) - (vr)r]r = {Vr(wrnp)}p - [(vr)r]r for all faces F € F and
[[VT'(wT)T('UT . np)]]F = {VT'(wT)T}F [[’UT . TLF]]F for all F € .7:1, we find that

/Q [Vwr:Vuor — (Vawr)(Vawr) — Vxwyr - VxXour]
—/ {Vr(wrn)} - [(vr)r] +/ {Vr-(wr)r} [vr-n] =0,
F FI

from which we easily obtain (6.11) after noting that all remaining terms in (6.8) vanish since they include the
jumps on normal and tangential components of wy. (I

We now prove Theorem 5.5.

Proof of Theorem 5.5. We will obtain (5.10) as a consequence of (6.10) and the related bound

|ICr(wr,v7)| S |lwrls,rlvrls T (6.13)

Indeed, once (6.13) is known, we deduce (5.10) easily from (6.10) and from the bound |Vuvr|y 7z < |vrlsT,
which is obtained by applying the inverse inequality to the tangential component of the gradient on boundary
faces, i.e. [ h7 ' |[(Vor)7]|* £ [oh7’|[vr])? for all F € FB. Therefore, it is enough to show (6.13). To do so,
let w7 and vy € V7 be arbitrary, and recall E7 from Theorem 6.1. Then, since Ez: V7 — V7N HlT(Q)7
we infer from Lemma 6.3 that CT(Eq—wq—, ’UT) = CT(wT, ET’UT) = CT(ET’LUT, ET’UT) = 0 and hence

CT(wT, vT) = CT(wT — ETUIT, v — ET’UT). (6.14)

We then apply the bounds (6.4) and (6.9) to obtain |Cr(wr,v7)| < |lwr — Exwr|v,||lvr — Ervr|v, S
|lwr|s r|wr|s 7, which gives (6.13) and thus completes the proof of (5.10). O
6.3. Discrete Miranda—Talenti inequality and proof of Theorem 5.10

We now turn towards the proof of Theorem 5.10. The proof follows the approach based on a discrete Miranda—
Talenti inequality [48]. Here we remove the restriction in [48] that p < 3 in the case d = 3, and allow instead all
p > 2 for all d € {2,3}. Moreover, we show here that the discrete Miranda—Talenti inequality can be seen as a
special case of a more general result for discontinuous piecewise polynomial vector fields.

Theorem 6.4. All vector fields vy € V satisfy

’(/QWvTQ)% - (/Q [|V-UT|2+|VXUT|2])2

The constant in (6.15) depends only on d, 91, p and Q.

5 |’UT‘J”T. (6.15)

Proof. Let v € V7 be arbitrary, and recall the operator E7 from Theorem 6.1. Since Ezvyr € V7N H%(Q)
for all v € V7, Lemma 6.3 implies that C7(E7sv7, E7v7) = 0 and thus upon noting that all face integral
terms in Cr(Egvr, Ervr) vanish identically, we get

1

(/QIVETvﬂ)% _ (/Q [|V-Ezvr|> + |VxETvT|2]>2, (6.16)
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Therefore, applying triangle and reverse triangle inequalities along with (6.16), we deduce that

(=) (et Wmf})é'
</QV’UT|2)2 B </QIVETvT2)2'

1

<

(/Q [Iv.v72+|vxv7|2]>2 - </Q [|V'ETvTQ+VXETUT|2])2

SIV(vr = Ezvr)la S lvrla T,

+

where we have applied Theorem 6.1 in the last line, thereby proving (6.15). (]
Note that the analysis above does not use anywhere the fact that the domain is convex, and thus Theorem 6.4
is also valid for sufficiently regular polytopal nonconvex domains.
We now see that the discrete Miranda—Talenti inequality is a direct consequence of Theorem 6.4 by using the

fact that Vxwvs = 0 whenever v = Vur for some vy € V7.

Corollary 6.5 (Discrete Miranda—Talenti inequality). There exists a constant Cyir depending on d, 91, p and

& 27 Such that
Q Q

Furthermore, for every § > 0, there exists a constant Cs, depending on §, d, p, U1, A, and ), such that

< Cwrlvrlsr Yvr € V7. (6.17)

(1=0)rl3 7 < Lz |g + Cslvrl3r Vur € V3. (6.18)

Proof. The proof of (6.17) is immediate from Theorem 6.4, so it remains only to prove (6.18). Let 6 > 0 be
given, and let vy € V} be arbitrary. For e > 0 to be chosen below, we infer from Corollary 6.5 and Young’s
inequality 2zy < ex? + ¢~ 'y? for all positive numbers x, y, that

(1+€)_1/\V2v7|2 < /|AUT|2+(1+e)—1(1+e—1)c§n|v~,|?,j Vor € V2, (6.19)
Q Q

Moreover, using inverse inequalities and the integration by parts identity (5.6), we find that

/ [2A|[Vur [ + N Jof?] < / [—2 o7 Avr + Nor|?] + Cslvr |1 </ [2X|Vur[? +)\2|v2]> , (6.20)
Q Q Q

where Cj3 is a constant depending only on d, ¥7, p and A. After a further application of Young’s inequality to
the last term on the right-hand side of (6.20), we combine the above inequalities with (6.19) and find that

1+ M or2 s < / [lAvr? — 27 Avr + MJorl?] + Cilor[3y = / Lawr? + Calor 3.
Q Q

with a constant Cy depending on €, C3 and Cyt above. Thus, after choosing € such that (1+¢)~! = (1 —§) for
the given §, we obtain (6.18). O

We now give the proof of Theorem 5.10.



474 E.L. KAWECKI AND I. SMEARS

Proof of Theorem 5.10. Let wy, vy € V7 be arbitrary, and let z7 := wy — vy. Then, adding and subtracting
| Lazr || we get

Ar(wr;zr) — Ar(vrs 27) = ||Lazr||d + / (Fy[wr] = FyJvr] — Lazr)Lazt
Q

- /Q (F,wr] - By [or))xrr([Ver - nl) + 657 (o1 27) + Jr (o7, 27)

> || Lazr 1§ — V1 —vlzr|a7 | Lazrlla — xctlzr
+ Jr (21, 27),

5.7l2r AT — 0Cs |27 |5 1

where we have used (2.9a), (2.9b) and Theorem 5.5, with C5 the constant from (5.10), and ¢t a constant
depending only on d, ¥, p and ¢. Using Young’s inequality and Corollary 6.5 with, for instance, § = v/4, we
then eventually find that

(1-v)
2

1
Ar(wr;izr) — Ar(vTi27) 2 §||LAZTH2 - lzr 3,7 — xeilzrlizler|aT — 0Cs|27 15 7 + Jr(or, 21)
v—290
2

14
= ZIZTE\,T — xcilzrlirleriag — (0Cs + Cyya/2) |ZT“2]’T + Jr(z7, 27),

>

lzr 37 — xcilzrlazlzring — (0Cs + Cs/2) 2151 + J1 (21, 21),

where, after using x € {0,1} and 0 € [0, 1], we see that that there exists o and ppmin depending only on d,
O, p, ¢, A, v and Q such that Az (wr; 27) — Ar(vr; 27) > §(|2713 7 + |27(57), from which (A3) follows upon
using Theorem 3.1. In particular, we may then take C,o, to depend only on v and Cpr. ([l

7. NUMERICAL EXPERIMENT

In this section, we consider a numerical experiment for a fully nonlinear Isaacs equation posed on the irregular
pentagonal domain €2 presented in Figure 2. Note that the domain €2 is characterized by a large interior angle
7 — ¢ at the origin, where ¢ € [0, 7/4] is a small parameter specified below. This choice of domain is motivated
by Remark 4.4. We consider the Isaacs equation

inf sup[a®” : Vu— f*¥] =0 in Q,
a€d Bep

along with the homogeneous Dirichlet boundary condition u = 0 on 952, where

o8 _ g %(coso(z)+sina) 0

a ) sl

(cosa —sina

S

FIGURE 2. Experiment of Section 7: pentagonal domain 2, with vertices z; = (0,0), z2 = (1,0),
z3 = (1,1), z4 = (cos(m — ¢), 1)), and z5 = (cos(m — ¢), sin(m — ¢)).
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N] LINAINAT
S
l

FIGURE 3. Experiment of Section 7: initial mesh used for the adaptive computations (left) and
sample mesh obtained after 14 steps of the adaptive method (right) using the method (5.9)
withs=1,p=3,0=1/2.
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FIGURE 4. Experiment of Section 7: convergence plots for a range of DG and C°-IP methods of
the form of (5.9) on adaptively refined meshes. The convergence rates are optimal with respect
to the number of degrees of freedom.

for all @ € & = [0, max], With amax € Rso chosen below, and for all 3 € # = SO(2) the special
orthogonal group of matrices in R?*2. The diffusion coefficients then satisfy the Cordes condition (2.2) with
v = c08(2amax) € (0, 1], provided that apmax < 7/4. In our experiment, we set amax = 97/40 to be close to /4.
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The rotation matrices 5 € SO(2) then have the effect of allowing the diffusion coefficients to become strongly
anisotropic, and prevent the possibility of aligning the mesh with the principal directions of diffusion. Moreover,
a closer analysis shows that the control parameter « is of bang-bang type, leading to jump discontinuities in the
optimal control. In order to test the numerical methods in the regime of low-regularity solutions, we choose an
exact solution exhibiting a singularity induced by the corner. In particular, the source term f®? is chosen so
that the exact solution given in polar coordinates (r, p) is given by

u(r, p) = —r73% sin (7r7r¢p> my2(r),
where n1/2(r) = X{,«<1/2}el/(4’"2*1) is a smooth cut-off function that is included to enforce the homogeneous
Dirichlet boundary condition, with x,.1/2 the indicator function for the disc of radius 1 /2 around the origin.
Note that the regularity of the solution decreases as ¢ becomes small. For the computations presented below,
we choose ¢ = 7/10, and note that v € H*(Q) only for s < 2 + 1/9, which falls outside the scope of the a
priori error analysis of some earlier works. In particular, uniform mesh refinements would lead to low rates of
convergence, so we turn to adaptive methods.

In order to test the usefulness of the a posteriori error estimators of Section 4.1, we apply several of the meth-
ods of Section 5 using adaptive mesh refinements guided by the residual error estimators (4.4). In particular,
we apply a bulk-chasing (Dorfler) marking scheme with bulk-chasing parameter 1/4. See [38] for the analysis of
convergence of adaptive methods for these problems. The coarse initial mesh used for the computations and a
sample adaptively refined mesh obtained from the computations are detailed in Figure 3. Our implementation
is based on the software package NGSolve [52]. Due to the nonconvexity of the Isaacs operator, the discrete
nonlinear problems are solved using a Howard-type algorithm similar to Algorithm Ho-4 from [5]. This algo-
rithm involves the solution of an outer sequence of discrete HJIB problems that are each solved inexactly via
inner iterations of a semismooth Newton method ([55], Sect. 8). In our computations, we observed superlinear
convergence of this algorithm with respect to both the outer and inner iterations, so that the total cost of solving
the discrete Isaacs problem is comparable to the cost of solving a small number of discrete HJB equations.

Figure 4 presents the computed errors and global error estimator values, c.f. (4.4), for a range of methods with
varying parameters in the definition (5.9). In each case, the choice x = 0 is fixed, and we vary the parameters
0 € {0,1/2}, s € {0,1}, which corresponds to DG and C°-IP methods; we also consider polynomial degrees
p € {2,3}. In particular the case s = 0 and # = 1/2 leads to the method of [54,55] whereas s = 1 and 6 = 0
leads to the method of [48], see Remark 5.3. It is found that the adaptive algorithm leads to the optimal rates
of convergence with respect to the number of degrees of freedom; indeed, for all of the methods, we obtain
convergence rates of optimal order N~1/2 for p = 2 and of optimal order N~! for p = 3, where N denotes
the number of degrees of freedom. Figure 4 further shows the efficiency of the estimators across all of the
computations, with efficiency indices close to the ideal value of 1. It is also seen that the accuracy of the method
is similar for the different values of 6 € {0,1/2}, as may be expected from the quasi-optimality of all these
methods. We also note that we did not observe significant qualitative differences when varying the angle ¢ in
further computations.

Acknowledgements. This work was supported by a Engineering and Physical Sciences Research Council (EPSRC)
Doctoral Prize Fellowship under grant EP/R513143/1.

REFERENCES

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. In: Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, New York (2000).

[2] G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic
Anal. 4 (1991) 271-283.

[3] J. Blechschmidt, R. Herzog and M. Winkler, Error estimation for second-order PDEs in non-variational form. Preprint
arXiv:1909.12676 (2019).

[4] J. Blechta, J. Mélek and M. Vohralik, Localization of the W =19 norm for local a posteriori efficiency. IMA J. Numer. Anal.
40 (2020) 914-950.


https://arxiv.org/abs/1909.12676

(5]
[6]

[7]
(8]

(9]

(10]
(11]

(12]
(13]

(14]

(15]
(16]
(17]
(18]
(19]
20]
(21]
(22]
(23]
(24]

25]
(26]

[27]
28]
[29]
[30]
[31]
(32
[33]
[34]

(35]
(36]

UNIFIED ANALYSIS OF NONCONFORMING FEM FOR HJB AND ISAACS EQUATIONS 477

O. Bokanowski, S. Maroso and H. Zidani, Some convergence results for Howard’s algorithm. STAM J. Numer. Anal. 47 (2009)
3001-3026.

J.F. Bonnans and H. Zidani, Consistency of generalized finite difference schemes for the stochastic HIB equation. STAM J.
Numer. Anal. 41 (2003) 1008-1021.

S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H! functions. STAM J. Numer. Anal. 41 (2003) 306-324.

S.C. Brenner, T. Gudi, M. Neilan and L.Y. Sung, C° penalty methods for the fully nonlinear Monge-Ampére equation. Math.
Comput. 80 (2011) 1979-1995.

S.C. Brenner and E.L. Kawecki, Adaptive CY interior penalty methods for Hamilton—Jacobi-Bellman equations with Cordes
coefficients. J. Comput. Appl. Math. (2020) 113241.

S.C. Brenner and L.Y. Sung, Virtual enriching operators. Calcolo 56 (2019) 25.

L.A. Caffarelli and X. Cabré, Fully nonlinear elliptic equations. In: Vol. 43 of American Mathematical Society Colloquium
Publications. American Mathematical Society, Providence, RI (1995).

C. Carstensen, T. Gudi and M. Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM. Numer.
Math. 112 (2009) 363-379.

F. Chiarenza, M. Frasca and P. Longo, W2P-solvability of the Dirichlet problem for nondivergence elliptic equations with
VMO coefficients. Trans. Am. Math. Soc. 336 (1993) 841-853.

P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics. Reprint of the
1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA (2002).

P.G. Ciarlet, Linear and Nonlinear Functional Analysis With Applications. Society for Industrial and Applied Mathematics,
Philadelphia, PA (2013).

H.O. Cordes, Uber die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei
Variablen. Math. Ann. 131 (1956) 278-312.

M.G. Crandall and P.L. Lions, Convergent difference schemes for nonlinear parabolic equations and mean curvature motion.
Numer. Math. 75 (1996) 17-41.

M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. (N.S.) 27 (1992) 1-67.

K. Debrabant and E.R. Jakobsen, Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comput.
82 (2013) 1433-1462.

D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69. of Mathématiques &
Applications (Berlin) [Mathematics € Applications]. Springer, Heidelberg (2012).

L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, revised edition. In: Teztbooks in Mathematics.
CRC Press, Boca Raton, FL (2015).

X. Feng, R. Glowinski and M. Neilan, Recent developments in numerical methods for fully nonlinear second order partial
differential equations. STAM Rev. 55 (2013) 205-267.

X. Feng and M. Jensen, Convergent semi-Lagrangian methods for the Monge-Ampere equation on unstructured grids. STAM
J. Numer. Anal. 55 (2017) 691-712.

W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions, 2nd edition. In: Vol. 25 of Stochastic
Modelling and Applied Probability. Springer, New York (2006).

I. Fonseca, G. Leoni and R. Paroni, On Hessian matrices in the space BH. Commun. Contemp. Math. 7 (2005) 401-420.

D. Gallistl, Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes
coefficients. STAM J. Numer. Anal. 55 (2017) 737-757.

D. Gallistl, Numerical approximation of planar oblique derivative problems in nondivergence form. Math. Comput. 88 (2019)
1091-1119.

D. Gallistl and E. Siili, Mixed finite element approximation of the Hamilton—Jacobi-Bellman equation with Cordes coefficients.
SIAM J. Numer. Anal. 57 (2019) 592-614.

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. In: Classics in Mathematics. Reprint of
the 1998 edition. Springer-Verlag, Berlin (2001).

T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79 (2010)
2169-2189.

P. Houston, D. Schétzau and T.P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin
methods for elliptic problems. Math. Models Methods Appl. Sci. 17 (2007) 33-62.

M. Jensen, L2(H%) finite element convergence for degenerate isotropic Hamilton—Jacobi-Bellman equations. IMA J. Numer.
Anal. 37 (2017) 1300-1316.

M. Jensen and I. Smears, On the convergence of finite element methods for Hamilton—Jacobi-Bellman equations. SIAM J.
Numer. Anal. 51 (2013) 137-162.

O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order
elliptic problems. STAM J. Numer. Anal. 41 (2003) 2374-2399.

E.L. Kawecki, Finite element methods for Monge—Ampére type equations. Ph.D. thesis, University of Oxford (2018).

E.L. Kawecki, A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains. Numer.
Methods Part. Differ. Equ. 35 (2019) 1717-1744.



478 E.L. KAWECKI AND I. SMEARS

[37] E.L. Kawecki, A discontinuous Galerkin finite element method for uniformly elliptic two dimensional oblique boundary-value
problems. SIAM J. Numer. Anal. 57 (2019) 751-778.

[38] E.L. Kawecki and I. Smears, Convergence of adaptive discontinuous Galerkin and CC-interior penalty finite element methods
for Hamilton—Jacobi—Bellman and Isaacs equations. Preprint arXiv 2006.07215 (2020).

[39] M. Kocan, Approximation of viscosity solutions of elliptic partial differential equations on minimal grids. Numer. Math. 72
(1995) 73-92.

[40] N.V. Krylov, Nonlinear elliptic and parabolic equations of the second order. Translated from the Russian by P. L. Buzytsky
[P. L. Buzytskii]. In: Vol. 7 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987).

[41] H.J. Kuo and N.S. Trudinger, Linear elliptic difference inequalities with random coefficients. Math. Comput. 55(1990) 37-53.

[42] H.J. Kushner and P. Dupuis, Numerical methods for stochastic control problems in continuous time, 2nd edition. In: Vol. 24
of Applications of Mathematics (New York). Springer-Verlag, New York (2001).

[43] O. Lakkis and T. Pryer, A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput. 33
(2011) 786-801.

[44] O. Lakkis and T. Pryer, A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35 (2013) A2025-A2045.

[45] A. Maugeri, D.K. Palagachev and L.G. Softova, Elliptic and parabolic equations with discontinuous coefficients. In: Vol. 109
of Mathematical Research. Wiley-VCH Verlag Berlin GmbH, Berlin (2000).

[46] T.S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive
coefficients. J. Math. Phys. 31 (1953) 253-259.

[47] M. Neilan, A.J. Salgado and W. Zhang, Numerical analysis of strongly nonlinear PDEs. Acta Numer. 26 (2017) 137-303.

[48] M. Neilan and M. Wu, Discrete Miranda—Talenti estimates and applications to linear and nonlinear PDEs. J. Comput. Appl.
Math. 356 (2019) 358-376.

[49] R.H. Nochetto and W. Zhang, Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence
form. Found. Comput. Math. 18 (2018) 537-593.

[50] M.V. Safonov, Nonuniqueness for second-order elliptic equations with measurable coefficients. STAM J. Math. Anal. 30 (1999)
879-895.

[61] A.J. Salgado and W. Salgado, Finite element approximation of the Isaacs equation. ESAIM: M2AN 53 (2019) 351-374.

[62] J. Schoberl, C++11 implementation of finite elements in NGSolve. Tech. Rep. ASC Report 30/2014, Institute for Analysis
and Scientific Computing, Vienna University of Technology (2014).

[53] I. Smears, Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton—
Jacobi-Bellman equations. J. Sci. Comput. 74 (2018) 145-174.

[54] I. Smears and E. Sili, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with
Cordes coefficients. STAM J. Numer. Anal. 51 (2013) 2088-2106.

[55] I. Smears and E. Siili, Discontinuous Galerkin finite element approximation of Hamilton—Jacobi-Bellman equations with Cordes
coefficients. STAM J. Numer. Anal. 52 (2014) 993-1016.

[56] I. Smears and E. Siili, Discontinuous Galerkin finite element methods for time-dependent Hamilton—Jacobi-Bellman equations
with Cordes coefficients. Numer. Math. 133 (2016) 141-176.

[57] A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. I-—Abstract theory. SIAM
J. Numer. Anal. 56 (2018) 1621-1642.

[58] R. Verfurth, A posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific
Computation. Oxford University Press, Oxford (2013).

[59] E. Zeidler, Nonlinear functional analysis and its applications. II/B. Nonlinear monotone operators, Translated from the German
by the author and Leo F. Boron. Springer-Verlag, New York (1990).


https://arxiv.org/abs/2006.07215

	Introduction
	Analysis of well-posedness of the problem
	Setting and notation
	Integration.
	Partial derivatives.
	Jump, average and tangential differential operators on faces.
	Finite element spaces.
	Poincaré–Friedrichs inequality.


	General framework for A PRIORI and A POSTERIORI error analysis
	A posteriori error bound
	Abstract a priori error bound
	Lipschitz continuity.
	Discrete consistency.
	Strong monotonicity.



	Application to a family of numerical methods
	Lifting operators.
	Stabilization.
	Penalization.
	Numerical methods.
	Lipschitz continuity.
	Discrete consistency.
	Strong monotonicity.


	Proof of Theorems 5.5 and 5.10.
	Enrichment of discontinuous piecewise-polynomial vector fields
	Analysis of stabilization bilinear form
	Discrete Miranda–Talenti inequality and proof of Theorem 5.10

	Numerical experiment
	References

