An iterative method for elliptic problems with rapidly oscillating coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 37-55

We introduce a new iterative method for computing solutions of elliptic equations with random rapidly oscillating coefficients. Similarly to a multigrid method, each step of the iteration involves different computations meant to address different length scales. However, we use here the homogenized equation on all scales larger than a fixed multiple of the scale of oscillation of the coefficients. While the performance of standard multigrid methods degrades rapidly under the regime of large scale separation that we consider here, we show an explicit estimate on the contraction factor of our method which is independent of the size of the domain. We also present numerical experiments which confirm the effectiveness of the method, with openly available source code.

DOI : 10.1051/m2an/2020080
Classification : 65N55, 35B27
Keywords: Multiscale method, multigrid method, homogenization
@article{M2AN_2021__55_1_37_0,
     author = {Armstrong, Scott and Hannukainen, Antti and Kuusi, Tuomo and Mourrat, Jean-Christophe},
     title = {An iterative method for elliptic problems with rapidly oscillating coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {37--55},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020080},
     mrnumber = {4216834},
     zbl = {1481.65251},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020080/}
}
TY  - JOUR
AU  - Armstrong, Scott
AU  - Hannukainen, Antti
AU  - Kuusi, Tuomo
AU  - Mourrat, Jean-Christophe
TI  - An iterative method for elliptic problems with rapidly oscillating coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 37
EP  - 55
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020080/
DO  - 10.1051/m2an/2020080
LA  - en
ID  - M2AN_2021__55_1_37_0
ER  - 
%0 Journal Article
%A Armstrong, Scott
%A Hannukainen, Antti
%A Kuusi, Tuomo
%A Mourrat, Jean-Christophe
%T An iterative method for elliptic problems with rapidly oscillating coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 37-55
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020080/
%R 10.1051/m2an/2020080
%G en
%F M2AN_2021__55_1_37_0
Armstrong, Scott; Hannukainen, Antti; Kuusi, Tuomo; Mourrat, Jean-Christophe. An iterative method for elliptic problems with rapidly oscillating coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 37-55. doi: 10.1051/m2an/2020080

[1] A. Abdulle, W. E. B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. | MR | Zbl | DOI

[2] S. Armstrong and P. Dario, Elliptic regularity and quantitative homogenization on percolation clusters. Comm. Pure Appl. Math. 71 (2018) 1717–1849. | MR | Zbl | DOI

[3] S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative stochastic homogenization and large-scale regularity. In: Vol. 352 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin-Heidelberg (2019). | MR | Zbl

[4] I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (2011) 373–406. | MR | Zbl | DOI

[5] M. Bebendorf and W. Hackbusch, Existence of ℋ-matrix approximants to the inverse FE-matrix of elliptic operators with L-coefficients. Numer. Math. 95 (2003) 1–28. | MR | Zbl | DOI

[6] A. Brandt, Multiscale scientific computation: review 2001. In: Vol. 20 of Multiscale and multiresolution methods. Lect. Notes Comput. Sci. Eng. Springer, Berlin-Heidelberg (2002) 3–95. | MR | Zbl | DOI

[7] P. Dario, Optimal corrector estimates on percolation clusters. Preprint (2018). | arXiv | MR

[8] W.E., Principles of Multiscale Modeling. Cambridge University Press, Cambridge (2011). | MR | Zbl

[9] Y. Efendiev and T. Y. Hou, Multiscale finite element methods. In: Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009). | MR | Zbl

[10] Y. Efendiev, J. Galvis and T. Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251 (2013) 116–135. | MR | Zbl | DOI

[11] A.-C. Egloffe, A. Gloria, J.-C. Mourrat and T. N. Nguyen, Random walk in random environment, corrector equation and homogenized coefficients: from theory to numerics, back and forth. IMA J. Numer. Anal. 35 (2015) 499–545. | MR | Zbl | DOI

[12] B. Engquist and E. Luo, New coarse grid operators for highly oscillatory coefficient elliptic problems. J. Comput. Phys. 129 (1996) 296–306. | MR | Zbl | DOI

[13] B. Engquist and E. Luo, Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients. SIAM J. Numer. Anal. 34 (1997) 2254–2273. | MR | Zbl | DOI

[14] L. C. Evans, Partial differential equations, 2nd edition. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[15] J. Fischer, D. Gallistl and D. Peterseim, A priori error analysis of a numerical stochastic homogenization method. Preprint (2019). | arXiv | MR

[16] A. Gholami, D. Malhotra, H. Sundar and G. Biros, FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube. SIAM J. Sci. Comput. 38 (2016) C280–C306. | MR | Zbl | DOI

[17] A. Gloria, Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. ESAIM: M2AN 46 (2012) 1–38. | MR | Zbl | Numdam | DOI

[18] L. Grasedyck, I. Greff and S. Sauter, The AL basis for the solution of elliptic problems in heterogeneous media. Multiscale Model. Simul. 10 (2012) 245–258. | MR | Zbl | DOI

[19] M. Griebel and S. Knapek, A multigrid-homogenization method. In: Vol. 59 of Modeling and computation in environmental sciences (Stuttgart, 1995). Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1997) 187–202. | MR | Zbl | DOI

[20] C. Gu, Uniform estimate of an iterative method for elliptic problems with rapidly oscillating coefficients. Preprint (2018). | arXiv | MR | Zbl

[21] C. Gu, An efficient algorithm for solving elliptic problems on percolation clusters. Preprint (2019). | arXiv | MR | Zbl

[22] Q. Han and F. Lin, Elliptic partial differential equations. In: Vol. 1 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence, RI (1997). | MR | Zbl

[23] A. Hannukainen, J.-C. Mourrat and H. Stoppels, Computing homogenized coefficients via multiscale representation and hierarchical hybrid grids. Preprint (2019). | arXiv | MR | Zbl

[24] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. | MR | Zbl | DOI

[25] S. Knapek, Matrix-dependent multigrid homogeneization for diffusion problems. SIAM J. Sci. Comput. 20 (1998) 515–533. | MR | Zbl | DOI

[26] R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14 (2016) 1017–1036. | MR | Zbl | DOI

[27] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. | MR | Zbl | DOI

[28] A.-M. Matache and C. Schwab, Two-scale FEM for homogenization problems. M2AN Math. Model. Numer. Anal. 36 (2002) 537–572. | MR | Zbl | Numdam | DOI

[29] J.-C. Mourrat, Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math. 19 (2019) 435–483. | MR | Zbl | DOI

[30] N. Neuss, W. Jäger and G. Wittum, Homogenization and multigrid. Computing 66 (2001) 1–26. | MR | Zbl | DOI

[31] H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59 (2017) 99–149. | MR | Zbl | DOI

[32] H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: M2AN 48 (2014) 517–552. | MR | Zbl | Numdam | DOI

[33] G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients. In: Vol. 27 of Random fields, Vol. I, II (Esztergom, 1979). Colloq. Math. Soc. János Bolyai. North-Holland (1981) 835–873. | MR | Zbl

[34] K. Stüben, A review of algebraic multigrid. J. Comput. Appl. Math. 128 (2001) 281–309. | MR | Zbl | DOI

[35] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas and G. Stadler, Parallel geometric-algebraic multigrid on unstructured forests of octrees. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press (2012).

Cité par Sources :