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AN ITERATIVE METHOD FOR ELLIPTIC PROBLEMS WITH RAPIDLY
OSCILLATING COEFFICIENTS

Scott Armstrong1, Antti Hannukainen2, Tuomo Kuusi3

and Jean-Christophe Mourrat4,*

Abstract. We introduce a new iterative method for computing solutions of elliptic equations with ran-
dom rapidly oscillating coefficients. Similarly to a multigrid method, each step of the iteration involves
different computations meant to address different length scales. However, we use here the homogenized
equation on all scales larger than a fixed multiple of the scale of oscillation of the coefficients. While the
performance of standard multigrid methods degrades rapidly under the regime of large scale separation
that we consider here, we show an explicit estimate on the contraction factor of our method which
is independent of the size of the domain. We also present numerical experiments which confirm the
effectiveness of the method, with openly available source code.
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1. Introduction

1.1. Informal summary of results

In this paper, we introduce a new iterative method for the numerical approximation of solutions of elliptic
problems with rapidly oscillating coefficients. For definiteness, we consider the Dirichlet problem{︂

𝑙𝑙𝑙 −∇ · (a(𝑥)∇𝑢) = 𝑓 in 𝑈𝑟,

𝑢 = 𝑔 on 𝜕𝑈𝑟,
(1.1)

where 𝑟 > 0 is the length scale of the problem, which is typically very large (𝑟 ≫ 1), and we write 𝑈𝑟 := 𝑟𝑈
where 𝑈 ⊆ R𝑑 is a bounded 𝐶1,1 domain, in dimension 𝑑 > 2. The boundary condition 𝑔 belongs to 𝐻1(𝑈𝑟), and
the right-hand side 𝑓 belongs to 𝐻−1(𝑈𝑟). The coefficients a(𝑥) are symmetric, uniformly elliptic and Hölder
continuous. Moreover, in order to ensure that quantitative homogenization holds on large scales, we assume that
the coefficients are sampled by a probability measure which is Z𝑑-stationary and has a unit range of dependence
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(see below for the precise formulation of these assumptions). Our goal is to build a numerical method for the
computation of 𝑢 which remains efficient in the regime of fast oscillations of the coefficient field (which in
our setting corresponds to the case in which the length scale is very large, 𝑟 ≫ 1) and does not rely on scale
separation for convergence (the method computes the true solution for fixed 𝑟 and not only in the limit 𝑟 →∞).

In the absence of fast oscillations of the coefficient field, contemporary technology allows to access numerical
approximations of elliptic problems involving billions of degrees of freedom. One of the most successful methods
allowing to achieve such results is the multigrid method (see [16] for benchmarks). However, the performance of
this method degrades as the coefficient field becomes more rapidly oscillating (see for instance [35], Tab. IV).

We seek to remedy this problem by leveraging on homogenization. While standard multigrid methods use
a decomposition of the elliptic problem into a series of scales, the difficulty in our context is that the slow
eigenmodes of the heterogeneous operator still have fast oscillations, and are thus not easily captured through a
coarse representation. We overcome this by introducing a suitable variant of the multigrid method that succeeds
in replacing the heterogeneous operator by the homogenized one on length scales larger than a large but finite
multiple of the correlation length scale. The result is a new iterative method that converges exponentially fast
in the number of iterations, each of which is relatively inexpensive to compute – the memory and number of
computations required scale linearly in the volume, and the computation is very amenable to parallelization.
We give a rigorous proof of convergence and present numerical experiments which establish the efficiency of the
method from a practical point of view.

1.2. Statement of the main result

We introduce some notation in order to state our main result. We begin with the precise assumptions on the
coefficient field. We fix parameters Λ > 1 and 𝛼 ∈ (0, 1] and require our coefficient fields a(𝑥) to satisfy

∀𝑥, 𝑦 ∈ R𝑑, |a(𝑦)− a(𝑥)| 6 Λ|𝑥− 𝑦|𝛼 (1.2)

and
∀𝑥 ∈ R𝑑, ∀𝜉 ∈ R𝑑, Λ−1|𝜉|2 6 𝜉 · a(𝑥)𝜉 6 Λ|𝜉|2. (1.3)

We denote by R𝑑×𝑑
sym the set of 𝑑-by-𝑑 real symmetric matrices and define

Ω :=
{︀
a : R𝑑 → R𝑑×𝑑

sym satisfying (1.2) and (1.3)
}︀

.

For each Borel set 𝑉 ⊆ R𝑑, we denote by ℱ𝑉 the Borel 𝜎-algebra on Ω generated by the family of mappings

a ↦→
∫︁

R𝑑

𝜒a𝑖𝑗 , 𝑖, 𝑗 ∈ {1, . . . , 𝑑}, 𝜒 ∈ 𝐶∞𝑐 (𝑉 ).

We also set ℱ := ℱR𝑑 . For each 𝑦 ∈ R𝑑, we denote by 𝑇𝑦 : Ω → Ω the action of translation by 𝑦:

∀𝑥 ∈ R𝑑, 𝑇𝑦a(𝑥) := a(𝑥 + 𝑦).

We assume that P is a probability measure on (Ω,ℱ) satisfying:

– stationarity with respect to Z𝑑-translations: for every 𝑦 ∈ Z𝑑 and 𝐴 ∈ ℱ ,

P [𝑇𝑦𝐴] = P [𝐴] ;

– unit range of dependence: for every Borel sets 𝑉,𝑊 ⊆ R𝑑,

dist(𝑉,𝑊 ) > 1 =⇒ ℱ𝑉 and ℱ𝑊 are P-independent.
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The expectation associated with the probability measure P is denoted by E. We recall that, by classical homog-
enization theory (see [3,33]), the heterogeneous operator −∇·a(𝑥)∇ homogenizes to the homogeneous operator
−∇ · a∇, where a ∈ R𝑑×𝑑 is a deterministic, constant, positive definite matrix. For every 𝑠, 𝜃 > 0 and random
variable 𝑋, we write

𝑋 6 𝒪𝑠 (𝜃) if and only if E
[︁
exp

(︁(︀
𝜃−1 max(𝑋, 0)

)︀𝑠)︁]︁
6 2. (1.4)

We also set, for every 𝜆 ∈ (0, 1],

ℓ(𝜆) :=

{︃ (︀
log(1 + 𝜆−1)

)︀ 1
2 if 𝑑 = 2,

1 if 𝑑 > 3.
(1.5)

For notational convenience, from now on we will suppress the explicit dependence on the spatial variable in the
operator −∇ · a(𝑥)∇ and simply write −∇ · a∇.

We now state the main result of the paper. We recall that P is a probability measure on (Ω,ℱ) which specifies
the law of the coefficient field a(𝑥) and satisfies the assumptions stated above, that a is the homogenized matrix
associated to P, and that 𝑈 ⊆ R𝑑 is a bounded domain with 𝐶1,1 boundary.

Theorem 1.1 (𝐻1 contraction). For each 𝑠 ∈ (0, 2), there exists a constant 𝐶(𝑠, 𝑈, Λ, 𝛼, 𝑑) < ∞ such that
the following statement holds. Fix 𝑟 > 1, 𝜆 ∈

[︀
𝑟−1, 1

]︀
, 𝑓 ∈ 𝐻−1(𝑈𝑟), 𝑔 ∈ 𝐻1(𝑈𝑟) and let 𝑢 ∈ 𝑔 + 𝐻1

0 (𝑈𝑟) be
the solution of (1.1). Also fix a function 𝑣 ∈ 𝑔 + 𝐻1

0 (𝑈𝑟) and define the functions 𝑢0, 𝑢, ̃︀𝑢 ∈ 𝐻1
0 (𝑈𝑟) to be the

solutions of the following equations (with null Dirichlet boundary condition on 𝜕𝑈𝑟):(︀
𝜆2 −∇ · a∇

)︀
𝑢0 = 𝑓 +∇ · a∇𝑣 in 𝑈𝑟,

−∇ · a∇𝑢 = 𝜆2𝑢0 in 𝑈𝑟,(︀
𝜆2 −∇ · a∇

)︀ ̃︀𝑢 =
(︀
𝜆2 −∇ · a∇

)︀
𝑢 in 𝑈𝑟.

For ̂︀𝑣 ∈ 𝑔 + 𝐻1
0 (𝑈𝑟) defined by ̂︀𝑣 := 𝑣 + 𝑢0 + ̃︀𝑢, (1.6)

we have the estimate
‖∇(̂︀𝑣 − 𝑢)‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶ℓ(𝜆)

1
2 𝜆

1
2 ‖∇(𝑣 − 𝑢)‖𝐿2(𝑈𝑟)

)︁
. (1.7)

The function 𝑢 ∈ 𝐻1(𝑈𝑟) appearing in Theorem 1.1 is the unknown we wish to approximate, and 𝑣 ∈ 𝐻1(𝑈𝑟)
should be thought of as the current approximation to 𝑢. The function ̂︀𝑣 is then the new, updated approximation
to 𝑢 and the estimate (1.7) says that, if 𝜆 is chosen small enough, then the error in our approximation will
be reduced by a multiplicative factor of 1/2. As explained more precisely around (1.10) below, we can then
iterate this procedure and obtain rapid convergence to the solution. The only assumption we make on 𝑣 is that
it satisfies the correct boundary condition, that is, 𝑣 ∈ 𝑔 + 𝐻1

0 (𝑈𝑟). In particular, we may begin the iteration
with 𝑣 = 𝑔 as the initial guess (or any other function with the correct boundary condition). The computation
of ̂︀𝑣 reduces to solving the problems for 𝑢0, 𝑢, and ̃︀𝑢 listed in the statement, and the point is that each of these
problems is relatively inexpensive to compute, provided that 𝜆 is not too small. A fundamental aspect of the
result is therefore that the required smallness of the parameter 𝜆 (so that (1.7) gives us a strict contraction
in 𝐻1) does not depend on the length scale 𝑟 of the problem. In other words, we may need to take 𝜆 to be
small, but it will still be of order one, no matter how large 𝑟 is.

Similarly to standard multigrid methods, the equation for 𝑢0 is meant to resolve the small-scale discrepancies
between 𝑢 and 𝑣. Note that the equation for 𝑢0 can be rewritten as

(𝜆2 −∇ · a∇)𝑢0 = −∇ · a∇(𝑢− 𝑣) in 𝑈𝑟.
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The parameter 𝜆−1 is the characteristic length scale of this problem, and in practice we will take it to be some
fixed multiple of the scale of oscillations of the coefficients. The computation of 𝑢0 can thus be decomposed
into a large number of essentially unrelated elliptic problems posed on subdomains of side length of the order of
𝜆−1. In analogy with multigrid methods, we may also think of 𝜆−2 as the number of elementary pre-smoothing
steps performed during one global iteration.

As announced, we then use the homogenized operator on scales larger than 𝜆−1. This is what the problem
for 𝑢 is meant to capture. Since the elliptic problem for 𝑢 involves the homogenized operator −∇ · a∇, it can
be solved efficiently using the standard multigrid method. We note that the equation for 𝑢 can be rewritten, if
desired, in the form

−∇ · a∇𝑢 = −∇ · a∇(𝑢− 𝑣 − 𝑢0) in 𝑈𝑟. (1.8)

The final step of the iteration, involving the definition of ̃︀𝑢, is meant to add back some small-scale details
to the function 𝑢. It is analogous to the post-smoothing step in the standard 𝑉 -cycle implementation of the
multrigrid method, and the parameter 𝜆−2 represents the number of post-smoothing steps.

We next discuss the more probabilistic aspects involved in the statement of Theorem 1.1. Since the coefficient
field is random, the statement of this theorem can only be valid with high probability, but not almost surely.
Indeed, with non-zero probability, the coefficient field can be essentially arbitrary, and on such small-probability
events, the idea of leveraging on homogenization can only perform badly (recall that we aim for a convergence
result for large but fixed 𝑟, as opposed to asymptotic convergence). It may help the intuition to observe that,
by Chebyshev’s inequality, the assumption of (1.4) implies that

∀𝑥 > 0, P [𝑋 > 𝜃𝑥] 6 2 exp(−𝑥𝑠), (1.9)

and that conversely, the assumption of (1.9) implies that 𝑋 6 𝒪𝑠(𝐶𝜃) for some constant 𝐶(𝑠) < ∞ (see [3],
Lem. A.1).

We remark that Theorem 1.1 is new even when restricted to the subclass of periodic coefficient fields. In
this case, both the probabilistic part of the estimate as well as the logarithmic factor of ℓ(𝜆) are not present,
and (1.7) can be replaced with the simpler form

‖∇(̂︀𝑣 − 𝑢)‖𝐿2(𝑈𝑟) 6 𝐶𝜆
1
2 ‖∇(𝑣 − 𝑢)‖𝐿2(𝑈𝑟).

We stress that the probabilistic statement in (1.7) is valid for each fixed choice of 𝑢, 𝑣 ∈ 𝐻1(𝑈𝑟). In fact,
further work inspired by the first version of the present paper allowed to obtain the following stronger, uniform
estimate [20]. For each 𝑠 ∈ (0, 2), there exist a constant 𝐶(𝑠, 𝑝, 𝑈, Λ, 𝑑) < ∞ and, for each 𝑟 > 1 and 𝜆 ∈ [𝑟−1, 1],
a random variable 𝒳𝑠,𝑟,𝜆 : Ω → [0, +∞] satisfying

𝒳𝑠,𝑟,𝜆 6 𝒪𝑠 (𝐶)

such that, for every 𝑢, 𝑣 ∈ 𝐻1(𝑈𝑟) and ̂︀𝑣 as in the statement of Theorem 1.1,

‖∇(̂︀𝑣 − 𝑢)‖𝐿2(𝑈𝑟) 6 𝒳𝑠,𝑟,𝜆 ℓ(𝜆)
1
2 𝜆

1
2 (log 𝑟)

1
𝑠 ‖∇(𝑣 − 𝑢)‖𝐿2(𝑈𝑟) . (1.10)

Moreover, the proof given in [20] does not require that the coefficient field be Hölder continuous. As is apparent
in (1.10), the price one has to pay for the uniformity of this estimate in the functions 𝑢 and 𝑣 is a slight
degradation of the contraction factor, by a slowly diverging logarithmic factor of the domain size. Due to
randomness, uniform estimates such as (1.10) must necessarily contain some logarithmic divergence in the
domain size. Indeed, consider for instance the case of a coefficient field given by a random checkerboard in
which we toss a fair coin, independently for each 𝑧 ∈ Z𝑑, the coefficient field in 𝑧 + [0, 1)𝑑 to be either 𝐼𝑑 or 2𝐼𝑑.
Then, with probability tending to one as 𝑟 tends to infinity, there will be in the domain 𝑈𝑟 a region of space
of side length of the order of (log 𝑟)

1
𝑑 where the coefficient field is constant equal to 𝐼𝑑. If the support of the

solution we seek is concentrated in this region, then the iteration described in Theorem 1.1 will perform badly
unless 𝜆−1 is chosen larger than (log 𝑟)

1
𝑑 .
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The iteration proposed in Theorem 1.1 requires the user to make a judicious choice of the length scale 𝜆−1.
Ideally, it would be preferable to devise an adaptive method which discovers a good choice for 𝜆−1 automatically.
The contraction of the iteration would then be guaranteed with probability one, and more subtle probabilistic
quantifiers would instead enter into the complexity analysis of the method. A suitably designed adaptive algo-
rithm would likely also work on more general coefficient fields than those considered here, allowing for instance
to drop the assumption of stationarity. An assumption of approximate local stationarity would then also enter
into the complexity analysis of the method. We leave the development of such adaptive methods to future work.

The method proposed here also requires that the user computes a beforehand. An efficient method for doing
so was presented in [23,29]; see also [11,17] and references therein for previous work on this problem. Moreover,
one can check that in order to guarantee the contraction property of the iteration described in Theorem 1.1, say
by a factor of 1/2, a coarse approximation of a, which may be off by a small but fixed positive amount, suffices.

The proof of Theorem 1.1 can be modified so that the 𝐿2 norms in (1.7) are replaced by 𝐿𝑝 norms, for
any exponent 𝑝 < ∞. Up to some additional logarithmic factors in 𝜆, the contraction factor in the estimate
would then be of order 𝜆

1
𝑝 rather than 𝜆

1
2 . This modification requires the application of large-scale Calderón–

Zygmund-type 𝐿𝑝 estimates which can be found in Chapter 7 of [3]. The main required modification to the
proof of Theorem 1.1 is simply to upgrade the two-scale expansion result of Theorem 3.1 from 𝑝 = 2 to larger
exponents by adapting the argument of Theorem 7.10 from [3].

1.3. Previous works

There has been a lot of work on numerical algorithms that become sharp only in the limit of infinite scale
separation (see for instance [1,6,8,9,24,28,30] and the references therein). That is, the error between the true
solution 𝑢 and its numerical approximation becomes small only as 𝑟 → ∞. Such algorithms typically have a
computational complexity scaling sublinearly with the volume of the domain. An example of such a method in
the context of the homogenization problem considered here is to compute an approximation of the solution to
the homogenized equation. In addition to relying on scale separation, we note that such a sublinear method can
only give an accurate global approximation in a weaker space such as 𝐿2, but not in stronger norms such as 𝐻1

which are sensitive to small scale oscillations.
We now turn our attention to numerical algorithms that, like ours, converge to the true solution for each finite

value of 𝑟. As pointed out in [19, 25], direct applications of standard multigrid methods result in coarse-scale
systems that do not capture the relevant large-scale properties of the problem. Indeed, standard coarsening
procedures produce effective coefficients that are simple arithmetic averages of the original coefficient field,
instead of the homogenized coefficients. To remedy this problem, Griebel and Knapek [19, 25] propose more
subtle, matrix-dependent choices for the restriction and prolongation operators. The idea is to try to approxi-
mate a Schur complement calculation, while preserving some calculability constraints such as matrix sparsity.
The method proposed there is shown numerically to perform better than simple averaging, but no theoretical
guarantee is provided.

In [12, 13], the authors propose, in the periodic setting, to solve local problems for the correctors, deduce
locally homogenized coefficients, and build coarsened operators from these. For the special two-dimensional case
with a(𝑥) = ̃︀a(𝑥1 − 𝑥2) for some 1-periodic ̃︀a ∈ 𝐶([0, 1]; R2×2

sym), they show (in our notation) that 𝑂(𝑟
5
3 log 𝑟)

smoothing steps suffice to guarantee the contractivity of the two-step multigrid method (assuming that the
chosen coarsening scale is a bounded multiple of the oscillation scale). For comparison, this roughly corresponds
to the choice of 𝜆 ≃ 𝑟−

5
6 in our method. They also report better numerical performance than predicted by their

theoretical arguments.
Beyond our current assumption of stationarity of the coefficient field, one can look for numerical methods for

the resolution of general elliptic problems with rapidly oscillating coefficients. Possibly the simplest such method
is to rely on the uniform ellipticity assumption (1.3) and appeal to a preconditioned conjugate gradient method,
using the standard Laplacian as a preconditioner. However, the norm that is contracted at each iteration of



42 S. ARMSTRONG ET AL.

this algorithm is the 𝐿2 norm, as opposed to a contraction of the 𝐻1 norm as obtained in the present paper1.
Moreover, the performance of this method degrades quickly if the ellipticity ratio Λ becomes large. In contrast,
using some of the results and techniques of [2,7], generalizations of Theorem 1.1 have now been obtained in the
highly degenerate case of perforated media of percolation type, for which Λ = ∞; see [21].

Algebraic multigrid methods are intended to solve completely arbitrary linear systems of equations, by auto-
matically discovering a hierarchy of coarsened problems [34]. In practice, it is however necessary to make some
judicious choices of coarsening operators. In a sense, the present contribution as well as those of [12, 13, 19, 25]
are descriptions of specific coarsening procedures which, under stronger assumptions such as stationarity, are
shown to have fast convergence properties.

Many alternative approaches to the computation of elliptic problems with arbitrary coefficient fields have been
developed. We mention in particular, without going into details, hierarchical matrices [5], generalized multiscale
finite element methods [4, 10, 18], polyharmonic splines [32], local orthogonal decompositions [27], subspace
correction methods [26] and gamblets [31]. While methods such as gamblets have been shown theoretically
to have essentially linear complexity under weaker assumptions than those explored in the present paper, the
construction and storage of the hierarchy of gamblets may actually be quite expensive in practice (we are not
aware of large-scale computations that use gamblets; the main numerical example in [31] has 224 ≃ 1.7 × 107

degrees of freedom). Methods such as local orthogonal decompositions introduce an intermediate scale, often
denoted by 𝐻, inbetween the microscopic and the macroscopic scales, and an adapted basis of local functions is
computed at this level. In this framework, the numerical error is bounded from below by a multiple of 𝐻. The
method presented in Theorem 1.1 shares some aspects of this idea in that it also introduces an intermediate
scale 𝜆−1; however, the final numerical error is not constrained by this choice, and can be made arbitrarily low
irrespectively of the value of 𝜆.

The very recent work [15] probably comes closest to the goals of the present work. Under assumptions similar
to ours, they analyze the performance of the method of local orthogonal decompositions (LOD). We believe
that the method presented here has fundamental advantages over LOD. One aspect is that, as explained above,
the error in LOD is bounded from below by a multiple of the intermediate scale (often denoted by 𝐻), while
this is not so in our approach (in which the intermediate scale is 𝜆−1). Moreover, our result guarantees an
approximation of the true solution in 𝐻1, while the results of [15] only provide with 𝐿2 estimates. Finally,
our method is very easy to implement, as can be verified by the curious reader since the source code of our
numerical tests is openly available, see (4.1); on the other hand, the finite but possibly large overlaps of the
local orthogonal frame might in practice cause significant computational overheads.

1.4. Organization of the paper

We introduce some more notation in Section 2. Section 3 is devoted to the proof of Theorem 1.1. We report
on our numerical results in Section 4. Finally, an appendix recalls some classical Sobolev and elliptic estimates
for the reader’s convenience.

2. Notation

In this section, we collect some notation used throughout the paper. Recall that the notation 𝒪𝑠(·) was
defined in (1.4). We will need the following fact, which says that 𝒪𝑠 is behaving like a norm: for each 𝑠 ∈ (0,∞),
there exists 𝐶𝑠 < ∞ (with 𝐶𝑠 = 1 for 𝑠 > 1) such that the following triangle inequality for 𝒪𝑠(·) holds: for
any measure space (𝐸,𝒮, 𝜇), measurable function 𝜃 : 𝐸 → (0,∞) and jointly measurable family {𝑋(𝑧)}𝑧∈𝐸 of
random variables, we have (see [3], Lem. A.4)

∀𝑧 ∈ 𝐸, 𝑋(𝑧) 6 𝒪𝑠(𝜃(𝑧)) =⇒
∫︁

𝐸

𝑋 d𝜇 6 𝒪𝑠

(︂
𝐶𝑠

∫︁
𝐸

𝜃 d𝜇

)︂
. (2.1)

1Naturally, the 𝐿2 and 𝐻1 norms become equivalent after discretization; but a theoretical guarantee of contraction in 𝐻1 ensures
that the high frequencies can be resolved efficiently after only a few steps of the iteration, irrespectively of the size of the mesh
refinement.
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We denote by (𝑒1, . . . , 𝑒𝑑) the canonical basis of R𝑑, and write 𝐵(𝑥, 𝑟) ⊆ R𝑑 for the Euclidean ball centered at
𝑥 ∈ R𝑑 and of radius 𝑟 > 0. For a Borel set 𝑉 ⊆ R𝑑, we denote its Lebesgue measure by |𝑉 |. If |𝑉 | < ∞, then
for every 𝑝 ∈ [1,∞) and 𝑓 ∈ 𝐿𝑝(𝑉 ) we write the scaled 𝐿𝑝 norm of 𝑓 by

‖𝑓‖𝐿𝑝(𝑉 ) :=
(︂
|𝑉 |−1

∫︁
𝑉

𝑓𝑝

)︂ 1
𝑝

= |𝑉 |−
1
𝑝 ‖𝑓‖𝐿𝑝(𝑉 ).

For each 𝑘 ∈ N, we denote by 𝐻𝑘(𝑉 ) the classical Sobolev space on 𝑉 , whose norm is given by

‖𝑓‖𝐻𝑘(𝑉 ) :=
∑︁

06|𝛽|6𝑘

‖𝜕𝛽𝑓‖𝐿2(𝑉 ).

In the expression above, the parameter 𝛽 = (𝛽1, . . . , 𝛽𝑑) is a multi-index in N𝑑, and we used the notation

|𝛽| :=
𝑑∑︁

𝑖=1

𝛽𝑖 and 𝜕𝛽𝑓 = 𝜕𝛽1
𝑥1
· · · 𝜕𝛽𝑑

𝑥𝑑
𝑓.

Whenever |𝑉 | < ∞, we define the scaled Sobolev norm by

‖𝑓‖𝐻𝑘(𝑉 ) :=
∑︁

06|𝛽|6𝑘

|𝑉 |
|𝛽|−𝑘

𝑑 ‖𝜕𝛽𝑓‖𝐿2(𝑉 ).

We denote by 𝐻1
0 (𝑉 ) the completion in 𝐻1(𝑉 ) of the space 𝐶∞𝑐 (𝑉 ) of smooth functions with compact support

in 𝑉 . We write 𝐻−1(𝑉 ) for the dual space to 𝐻1
0 (𝑉 ), which we endow with the (scaled) norm

‖𝑓‖𝐻−1(𝑉 ) := sup
{︂
|𝑉 |−1

∫︁
𝑉

𝑓 𝑔, 𝑔 ∈ 𝐻1
0 (𝑉 ), ‖𝑔‖𝐻1(𝑉 ) 6 1

}︂
.

The integral sign above is an abuse of notation and should be understood as the duality pairing between 𝐻−1(𝑉 )
and 𝐻1

0 (𝑉 ). The spaces 𝐻−1(𝑉 ) and 𝐻1
0 (𝑉 ) can be continuously embedded into the space of distributions, and

we make sure that the duality pairing is consistent with the integral expression above whenever 𝑓 and 𝑔 are
smooth functions. For every 𝑟 > 0 and 𝑥 ∈ R𝑑, we denote the time-slice of the heat kernel which has length
scale 𝑟 by

Φ𝑟(𝑥) := (4𝜋𝑟2)−
𝑑
2 exp

(︂
− 𝑥2

4𝑟2

)︂
· (2.2)

We denote by 𝜁 ∈ 𝐶∞𝑐 (R𝑑) the standard mollifier

𝜁(𝑥) :=

{︃
𝑐𝑑 exp

(︀
−(1− |𝑥|2)−1

)︀
if |𝑥| < 1,

0 if |𝑥| > 1,
(2.3)

where the constant 𝑐𝑑 is chosen so that
∫︀

R𝑑 𝜁 = 1. For 𝑓 ∈ 𝐿𝑝(R𝑑) and 𝑔 ∈ 𝐿𝑝′(R𝑑) with 1
𝑝 + 1

𝑝′ = 1, we denote
the convolution of 𝑓 and 𝑔 by

𝑓 * 𝑔(𝑥) :=
∫︁

R𝑑

𝑓(𝑦)𝑔(𝑥− 𝑦) d𝑦.

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We begin by introducing the notion of (first-order)
corrector : for each 𝑝 ∈ R𝑑, the corrector in the direction of 𝑝 is the function 𝜑𝑝 ∈ 𝐻1

loc(R𝑑) solving

−∇ · a (𝑝 +∇𝜑𝑝) = 0 in R𝑑,
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and such that the mapping 𝑥 ↦→ ∇𝜑𝑝(𝑥) is Z𝑑-stationary and satisfies

E

[︃∫︁
[0,1]𝑑

∇𝜑𝑝

]︃
= 0.

The corrector 𝜑𝑝 is unique up to an additive constant (see [3], Def. 4.2 for instance). We also recall that one
can define the homogenized matrix a ∈ R𝑑×𝑑

sym via the formula

∀𝑝 ∈ R𝑑, a𝑝 = E

[︃∫︁
[0,1]𝑑

a(𝑝 +∇𝜑𝑝)

]︃
,

or equivalently,

∀𝑝 ∈ R𝑑, 𝑝 · a𝑝 = E

[︃∫︁
[0,1]𝑑

(𝑝 +∇𝜑𝑝) · a(𝑝 +∇𝜑𝑝)

]︃
,

and in particular, as a consequence of (1.3), we have

∀𝜉 ∈ R𝑑, Λ−1|𝜉|2 6 𝜉 · a𝜉 6 Λ|𝜉|2. (3.1)

For each 𝑘 ∈ {1, . . . , 𝑑} and 𝜆 > 0, we denote

𝜑(𝜆)
𝑒𝑘

:= 𝜑𝑒𝑘
− 𝜑𝑒𝑘

* Φ𝜆−1 .

A key ingredient in the proof of Theorem 1.1 is the following quantitative two-scale expansion for the oper-
ator

(︀
𝜆2 −∇ · a∇

)︀
. It is the only input from the quantitative theory of stochastic homogenization used in this

paper and it follows from some estimates which can be found in [3].

Theorem 3.1 (Two-scale expansion and error estimate). For each 𝑠 ∈ (0, 2), there exists a constant
𝐶(𝑠, 𝑈, Λ, 𝛼, 𝑑) < ∞ such that, for every 𝑟 > 1, 𝜆 ∈ [𝑟−1, 1], and 𝑣 ∈ 𝐻1

0 (𝑈𝑟) ∩𝐻2(𝑈𝑟), defining

𝑤 := 𝑣 +
𝑑∑︁

𝑘=1

𝜑(𝜆)
𝑒𝑘

𝜕𝑥𝑘
𝑣, (3.2)

we have the estimate

‖∇ · (a∇𝑤 − a∇𝑣)‖𝐻−1(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟) + 𝐶𝜆

𝑑
2 ‖𝑣‖𝐻1(𝑈𝑟)

)︁
. (3.3)

Moreover, for every 𝜇 ∈ [0, 𝜆] and 𝑣 ∈ 𝐻1
0 (𝑈𝑟) such that(︀

𝜇2 −∇ · a∇
)︀
𝑣 =

(︀
𝜇2 −∇ · a∇

)︀
𝑣, (3.4)

we have the estimate

‖𝑣 − 𝑤‖𝐻1(𝑈𝑟) +
(︀
𝜇 + 𝑟−1

)︀
‖𝑣 − 𝑣‖𝐿2(𝑈𝑟) +

(︀
𝜇 + 𝑟−1

)︀2 ‖𝑣 − 𝑣‖𝐻−1(𝑈𝑟)

6 𝒪𝑠

(︁
𝐶
(︁
𝜇ℓ(𝜆) + 𝜆

𝑑
2

)︁
‖𝑣‖𝐻1(𝑈𝑟) + 𝐶ℓ(𝜆)

1
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
. (3.5)

The proof of Theorem 3.1 follows that of a similar result from Chapter 6 of [3]. The main difference here is
the presence of the zeroth order term with the factor of 𝜇2, which presents no additional difficulty. We begin
by recalling the concept of a flux corrector and stating some estimates on the correctors proved in [3].
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For each 𝑝 ∈ R𝑑, we denote the (centered) flux of the corrector 𝜑𝑝 by

(g𝑝,𝑖)16𝑖6𝑑 = g𝑝 := a(𝑝 +∇𝜑𝑝)− a𝑝.

Since ∇ · g𝑝 = 0, the flux of the corrector admits a representation as the “curl” of some vector potential, by
Helmholtz’s theorem. This vector potential, the flux corrector, will be useful for the proof of Theorem 3.1.
For each 𝑝 ∈ R𝑑, the vector potential (S𝑝,𝑖𝑗)16𝑖,𝑗6𝑑 is a matrix-valued random field with entries in 𝐻1

loc(R𝑑)
satisfying, for each 𝑖, 𝑗 ∈ {1, . . . , 𝑑},

S𝑝,𝑖𝑗 = −S𝑝,𝑗𝑖,

∇ · S𝑝 = g𝑝, (3.6)

and such that 𝑥 ↦→ ∇S𝑝,𝑖𝑗(𝑥) is a stationary random field with mean zero. In (3.6), we used the shorthand
notation

(∇ · S𝑒)𝑖 :=
𝑑∑︁

𝑗=1

𝜕𝑥𝑗
S𝑒,𝑖𝑗 .

The conditions above do not specify the flux corrector uniquely. One way to “fix the gauge” is to enforce that,
for each 𝑖, 𝑗 ∈ {1, . . . , 𝑑},

∆S𝑝,𝑖𝑗 = 𝜕𝑥𝑗g𝑝,𝑖 − 𝜕𝑥𝑖g𝑝,𝑗 .

This latter choice then defines S𝑝,𝑖𝑗 uniquely, up to the addition of a constant. We refer to Section 6.1 of [3] for
more precision on this construction. We set

S(𝜆)
𝑒 := S𝑒 − S𝑒 * Φ𝜆−1 . (3.7)

The fundamental ingredient for the proof of Theorem 3.1 is the following proposition, which quantifies the
convergence to zero of the spatial averages of the gradients of the correctors.

Proposition 3.2 (Corrector estimates). For each 𝑠 ∈ (0, 2), there exists a constant 𝐶(𝑠, 𝑈, Λ, 𝛼, 𝑑) < ∞ such
that for every 𝜆 ∈ (0, 1), 𝑥 ∈ R𝑑 and 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑑},

|∇𝜑𝑒𝑘
(𝑥)| 6 𝒪𝑠 (𝐶) , (3.8)

|(∇𝜑𝑒𝑘
* Φ𝜆−1) (𝑥)|+ |(∇S𝑒𝑘,𝑖𝑗 * Φ𝜆−1) (𝑥)| 6 𝒪𝑠

(︁
𝐶𝜆

𝑑
2

)︁
, (3.9)⃒⃒⃒

𝜑(𝜆)
𝑒𝑘

(𝑥)
⃒⃒⃒
+
⃒⃒⃒
S(𝜆)

𝑒𝑘,𝑖𝑗(𝑥)
⃒⃒⃒

= 𝒪𝑠 (𝐶ℓ(𝜆)) . (3.10)

Proof. By Lemma 4.4 of [3], we have
‖∇𝜑𝑒𝑘

‖𝐿2(𝐵(0,1)) 6 𝒪𝑠 (𝐶) .

By the assumption of (1.2), we can apply standard Schauder estimates, see e.g. Theorems 3.1 and 3.8 of [22],
to deduce (3.8). The estimates in (3.9) are proved in Theorem 4.9 and Proposition 6.2 of [3]. The estimates in
(3.10) also follow from Theorem 4.9 and Proposition 6.2 of [3], combined with the assumption of (1.2) and the
Schauder estimate in Corollary 3.2 and Theorem 3.8 of [22]. �

In the next lemma, we provide a convenient representation of ∇ · a∇𝑤 in terms of the correctors.

Lemma 3.3. Let 𝜆 > 0, 𝑣 ∈ 𝐻1(𝑈𝑟), and let 𝑤 ∈ 𝐻1(𝑈𝑟) be defined by (3.2). Then

∇ · (a∇𝑤 − a∇𝑣) = ∇ · F,

where the 𝑖-th component of the vector field F is given by

F𝑖 :=
𝑑∑︁

𝑗,𝑘=1

(︁
a𝑖𝑗𝜑

(𝜆)
𝑒𝑘
− S(𝜆)

𝑒𝑘,𝑖𝑗

)︁
𝜕𝑥𝑗 𝜕𝑥𝑘

𝑣 +
𝑑∑︁

𝑗,𝑘=1

(︀
a𝑖𝑗

(︀
𝜕𝑥𝑗 𝜑𝑒𝑘

* Φ𝜆−1

)︀
+ 𝜕𝑥𝑗S𝑒,𝑖𝑗 * Φ𝜆−1

)︀
𝜕𝑥𝑘

𝑣. (3.11)
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Proof. The argument is very similar to that for Lemma 6.6 of [3], the main difference being that the definition
of 𝜑

(𝜆)
𝑒𝑘 is slightly different from that of 𝜑𝜀

𝑒𝑘
there. We recall the argument here for the reader’s convenience.

Observe that, for each 𝑗 ∈ {1, . . . , 𝑑},

𝜕𝑥𝑗
𝑤 =

𝑑∑︁
𝑘=1

(︁(︀
𝛿jk + 𝜕𝑥𝑗

𝜑𝑒𝑘

)︀
𝜕𝑥𝑘

𝑣 −
(︀
𝜕𝑥𝑗

𝜑𝑒𝑘
* Φ𝜆−1

)︀
𝜕𝑥𝑘

𝑣 + 𝜑(𝜆)
𝑒𝑘

𝜕𝑥𝑗
𝜕𝑥𝑘

𝑣
)︁

. (3.12)

We start by studying the contribution of the first summand. By (3.6) and (3.7), we have, for every 𝑖,
𝑘 ∈ {1, . . . , 𝑑},

𝑑∑︁
𝑗=1

𝜕𝑥𝑗
S(𝜆)

𝑒𝑘,𝑖𝑗 =
𝑑∑︁

𝑗=1

(︀
a𝑖𝑗

(︀
𝛿jk + 𝜕𝑥𝑗

𝜑𝑒𝑘

)︀
− a𝑖𝑗𝛿jk − 𝜕𝑥𝑗

S𝑒𝑘,𝑖𝑗 * Φ𝜆−1

)︀
.

We deduce that, for each 𝑖 ∈ {1, . . . , 𝑑},

𝑑∑︁
𝑗,𝑘=1

a𝑖𝑗

(︀
𝛿jk + 𝜕𝑥𝑗

𝜑𝑒𝑘

)︀
𝜕𝑥𝑘

𝑣 =
𝑑∑︁

𝑗,𝑘=1

(︁
a𝑖𝑗𝛿jk + 𝜕𝑥𝑗

S(𝜆)
𝑒𝑘,𝑖𝑗 + 𝜕𝑥𝑗

S𝑒𝑘,𝑖𝑗 * Φ𝜆−1

)︁
𝜕𝑥𝑘

𝑣, (3.13)

and thus

𝑑∑︁
𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︀
a𝑖𝑗

(︀
𝛿jk + 𝜕𝑥𝑗 𝜑𝑒𝑘

)︀
𝜕𝑥𝑘

𝑣
)︀

= ∇ · a∇𝑣 +
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︁
𝜕𝑥𝑗S

(𝜆)
𝑒𝑘,𝑖𝑗 𝜕𝑥𝑘

𝑣
)︁

+
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︀(︀
𝜕𝑥𝑗

S𝑒𝑘,𝑖𝑗 * Φ𝜆−1

)︀
𝜕𝑥𝑘

𝑣
)︀
.

By the skew-symmetry of S(𝜆)
𝑒 , we have

0 =
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖
𝜕𝑥𝑗

(︁
S(𝜆)

𝑒𝑘,𝑖𝑗 𝜕𝑥𝑘
𝑣
)︁

=
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︁
𝜕𝑥𝑗

S(𝜆)
𝑒𝑘,𝑖𝑗 𝜕𝑥𝑘

𝑣
)︁

+
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︁
S(𝜆)

𝑒𝑘,𝑖𝑗 𝜕𝑥𝑗
𝜕𝑥𝑘

𝑣
)︁

,

and thus

𝑑∑︁
𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︀
a𝑖𝑗

(︀
𝛿jk + 𝜕𝑥𝑗 𝜑𝑒𝑘

)︀
𝜕𝑥𝑘

𝑣
)︀

= ∇ · a∇𝑣 −
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︁
S(𝜆)

𝑒𝑘,𝑖𝑗 𝜕𝑥𝑗 𝜕𝑥𝑘
𝑣
)︁

+
𝑑∑︁

𝑖,𝑗,𝑘=1

𝜕𝑥𝑖

(︀(︀
𝜕𝑥𝑗

S𝑒𝑘,𝑖𝑗 * Φ𝜆−1

)︀
𝜕𝑥𝑘

𝑣
)︀
.

Recalling (3.12), we obtain the announced result. �

We next present the proof of Theorem 3.1, which can be compared to the one of Theorem 6.9 from [3].

Proof of Theorem 3.1. We will proceed by proving first (3.3), and then the 𝐻1, 𝐿2 and 𝐻−1 estimates appearing
in (3.5), in this order. We decompose the arguments into seven steps.
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Step 1. We prove (3.3). In view of Lemma 3.3, it suffices to show that, for the vector field F defined in (3.11),

‖F‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟) + 𝐶𝜆

𝑑
2 ‖𝑣‖𝐻1(𝑈𝑟)

)︁
. (3.14)

We estimate each of the terms appearing in the definition of F. By Proposition 3.2 and (2.1), we have, for
every 𝑖, 𝑗, 𝑘 ∈ {1, . . . , 𝑑},⃦⃦⃦(︁

a𝑖𝑗𝜑
(𝜆)
𝑒𝑘
− S(𝜆)

𝑒𝑘,𝑖𝑗

)︁
𝜕𝑥𝑗

𝜕𝑥𝑘
𝑣
⃦⃦⃦

𝐿2(𝑈𝑟)
6 𝒪𝑠

(︀
𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︀
,

as well as ⃦⃦(︀
a𝑖𝑗

(︀
𝜕𝑥𝑗

𝜑𝑒𝑘
* Φ𝜆−1

)︀
+ 𝜕𝑥𝑗

S𝑒,𝑖𝑗 * Φ𝜆−1

)︀
𝜕𝑥𝑘

𝑣
⃦⃦

𝐿2(𝑈𝑟)
6 𝒪𝑠

(︁
𝐶𝜆

𝑑
2 ‖𝑣‖𝐻1(𝑈𝑟)

)︁
,

and thus (3.14) follows.

Step 2. In order to show (3.5), we first need to evaluate the contribution of a boundary layer. For every ℓ > 0,
we write 𝜁ℓ := ℓ−𝑑𝜁(ℓ−1 · ) (recall the definition of 𝜁 in (2.3)) and

𝑈𝑟,ℓ := {𝑥 ∈ 𝑈𝑟 : dist(𝑥, 𝜕𝑈𝑟) > ℓ} . (3.15)

With the definition of ℓ(𝜆) given in (1.5), we set

𝑇 :=
(︁
1R𝑑∖𝑈𝑟,2ℓ(𝜆)

* 𝜁ℓ(𝜆)

)︁ 𝑑∑︁
𝑘=1

𝜑(𝜆)
𝑒𝑘

𝜕𝑥𝑘
𝑣.

We will use the function 𝑇 as a test function for an upper bound on the size of the actual boundary layer
in the next step. In this step, we show that there exists 𝐶(𝑠, 𝑈, Λ, 𝛼, 𝑑) < ∞ such that

‖∇𝑇‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶 ℓ(𝜆)

1
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
(3.16)

and
‖𝑇‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶 ℓ(𝜆)

3
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

)︁
. (3.17)

By the chain rule,

‖∇𝑇‖𝐿2(𝑈𝑟) 6 𝐶

𝑑∑︁
𝑘=1

⃦⃦⃦⃦(︂
|∇𝑣|
ℓ(𝜆)

+ |∇2𝑣|
)︂ ⃒⃒⃒

𝜑(𝜆)
𝑒𝑘

⃒⃒⃒
+ |∇𝑣|

⃒⃒⃒
∇𝜑(𝜆)

𝑒𝑘

⃒⃒⃒⃦⃦⃦⃦
𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆))

.

By Proposition 3.2 and (2.1), we have⃦⃦⃦
|∇2𝑣|

⃒⃒⃒
𝜑(𝜆)

𝑒𝑘

⃒⃒⃒⃦⃦⃦
𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆))

6 𝒪𝑠

(︀
𝐶ℓ(𝜆)‖∇2𝑣‖𝐿2(𝑈𝑟)

)︀
.

Similarly, ⃦⃦⃦⃦
|∇𝑣|
ℓ(𝜆)

⃒⃒⃒
𝜑(𝜆)

𝑒𝑘

⃒⃒⃒⃦⃦⃦⃦
𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆))

6 𝒪𝑠

(︁
𝐶‖∇𝑣‖𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆))

)︁
, (3.18)

and by Proposition A.1,

‖∇𝑣‖𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆)) 6 𝐶 ℓ(𝜆)
1
2 𝑟

𝑑
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

. (3.19)

Finally, using again Proposition 3.2 and (2.1), we have⃦⃦⃦
|∇𝑣|

⃒⃒⃒
∇𝜑(𝜆)

𝑒𝑘

⃒⃒⃒⃦⃦⃦
𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆))

6 𝒪𝑠

(︁
𝐶‖∇𝑣‖𝐿2(𝑈𝑟∖𝑈𝑟,3ℓ(𝜆))

)︁
,

and we can appeal once more to (3.19) to estimate the norm of ∇𝑣 on the right side above. This completes
the proof of (3.16). The estimate (3.17) follows from (3.18) and (3.19).
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Step 3. We now evaluate the size of the boundary layer 𝑏 ∈ 𝐻1(𝑈𝑟) defined as the solution of⎧⎪⎪⎨⎪⎪⎩
(︀
𝜇2 −∇ · a∇

)︀
𝑏 = 0 in 𝑈𝑟,

𝑏 =
𝑑∑︁

𝑘=1

𝜑(𝜆)
𝑒𝑘

𝜕𝑥𝑘
𝑣 on 𝜕𝑈𝑟.

(3.20)

Since 𝑇 and 𝑏 share the same boundary condition on 𝜕𝑈𝑟, by the variational formulation of (3.20), we have∫︁
𝑈𝑟

(︀
𝜇2𝑏2 +∇𝑏 · a∇𝑏

)︀
6
∫︁

𝑈𝑟

(︀
𝜇2𝑇 2 +∇𝑇 · a∇𝑇

)︀
.

By the result of the previous step, we thus obtain, for every 𝜇 ∈ [0, 𝜆],

𝜇‖𝑏‖𝐿2(𝑈𝑟) + ‖∇𝑏‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶 ℓ(𝜆)

1
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
. (3.21)

Step 4. We are now prepared to prove that

‖∇(𝑣 − 𝑤)‖𝐿2(𝑈𝑟) + 𝜇‖𝑣 − 𝑤‖𝐿2(𝑈𝑟)

6 𝒪𝑠

(︁
𝐶
(︁
𝜇ℓ(𝜆) + 𝜆

𝑑
2

)︁
‖𝑣‖𝐻1(𝑈𝑟) + 𝐶ℓ(𝜆)

1
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
. (3.22)

For concision, we define
𝒳1 := ‖ − ∇ · (a∇𝑣 − a∇𝑤)‖𝐻−1(𝑈𝑟),

and recall that, by (3.3),
𝒳1 6 𝒪𝑠

(︁
𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟) + 𝐶𝜆

𝑑
2 ‖𝑣‖𝐻1(𝑈𝑟)

)︁
. (3.23)

Moreover, by (3.4) and (3.20),

−∇ · (a∇𝑣 − a∇𝑤) = −∇ · a∇(𝑣 − 𝑤) + 𝜇2(𝑣 − 𝑣)
= −∇ · a∇(𝑣 − 𝑤 + 𝑏) + 𝜇2(𝑣 − 𝑣 + 𝑏).

Since 𝑣 − 𝑤 + 𝑏 ∈ 𝐻1
0 (𝑈𝑟), we deduce that

|𝑈𝑟|−1

∫︁
𝑈𝑟

(︀
∇(𝑣 − 𝑤 + 𝑏) · a∇(𝑣 − 𝑤 + 𝑏) + 𝜇2(𝑣 − 𝑤 + 𝑏)(𝑣 − 𝑣 + 𝑏)

)︀
6 𝒳1‖∇(𝑣 − 𝑤 + 𝑏)‖𝐿2(𝑈𝑟),

and by the uniform ellipticity of a and Hölder’s inequality,

‖∇(𝑣 − 𝑤 + 𝑏)‖2𝐿2(𝑈𝑟) + 𝜇2‖𝑣 − 𝑤 + 𝑏‖2𝐿2(𝑈𝑟) 6 𝐶𝒳1‖∇(𝑣 − 𝑤 + 𝑏)‖𝐿2(𝑈𝑟)

+ 𝜇2‖𝑤 − 𝑣‖𝐿2(𝑈𝑟) ‖𝑣 − 𝑤 + 𝑏‖𝐿2(𝑈𝑟).

Using Proposition 3.2 and (2.1), we verify that

‖𝑤 − 𝑣‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︀
𝐶ℓ(𝜆)‖𝑣‖𝐻1(𝑈𝑟)

)︀
. (3.24)

Combining these two estimates with (3.23) and Young’s inequality, we obtain that

‖∇(𝑣 − 𝑤 + 𝑏)‖𝐿2(𝑈𝑟) + 𝜇‖𝑣 − 𝑤 + 𝑏‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶
(︁
𝜇ℓ(𝜆) + 𝜆

𝑑
2

)︁
‖𝑣‖𝐻1(𝑈𝑟) + 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
.

An application of (3.21) then yields the announced estimate (3.22).
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Step 5. In this step, we complete the proof of the fact that ‖𝑣−𝑤‖𝐻1(𝑈𝑟) is bounded by the right side of (3.5).
In view of (3.22), it suffices to show that

𝑟−1‖𝑣 − 𝑤‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶
(︁
𝜇ℓ(𝜆) + 𝜆

𝑑
2

)︁
‖𝑣‖𝐻1(𝑈𝑟) + 𝐶ℓ(𝜆)

1
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
.

(3.25)

By (3.16) and (3.22), we have

‖∇(𝑣 − 𝑤 + 𝑇 )‖𝐿2(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶
(︁
𝜇ℓ(𝜆) + 𝜆

𝑑
2

)︁
‖𝑣‖𝐻1(𝑈𝑟) + 𝐶ℓ(𝜆)

1
2 ‖𝑣‖

1
2
𝐻1(𝑈𝑟)

‖𝑣‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑣‖𝐻2(𝑈𝑟)

)︁
.

The estimate (3.25) then follows by the Poincaré inequality and (3.17).

Step 6. We now complete the proof that
(︀
𝜇 + 𝑟−1

)︀
‖𝑣 − 𝑣‖𝐿2(𝑈𝑟) is bounded by the right side of (3.5). For

𝜇 > 𝑟−1, the result follows from (3.22) and (3.24), while 𝜇 6 𝑟−1, it follows from (3.5) and (3.24).

Step 7. We finally complete the proof of (3.5) by showing the estimate for the 𝐻−1 norm of 𝑣− 𝑣. If 𝜇 6 𝑟−1,
then the conclusion is immediate from the estimate on the 𝐿2 norm of 𝑣 − 𝑣, by scaling. Otherwise, by the
equations for 𝑣 and 𝑣, we have

𝜇2(𝑣 − 𝑣) = ∇ · (a∇𝑣 − a∇𝑣) ,

and moreover,

‖∇ · (a∇𝑣 − a∇𝑣)‖𝐻−1(𝑈𝑟) 6 ‖∇ · (a∇𝑤 − a∇𝑣)‖𝐻−1(𝑈𝑟) + ‖∇ · (a∇𝑣 − a∇𝑤)‖𝐻−1(𝑈𝑟)

6 ‖∇ · (a∇𝑤 − a∇𝑣)‖𝐻−1(𝑈𝑟) + 𝐶 ‖∇𝑣 −∇𝑤‖𝐿2(𝑈𝑟) .

The terms on the right side above have been estimated in (3.3) and (3.22) respectively, so the proof is
complete.

�

We next give the proof of the main result.

Proof of Theorem 1.1. Let 𝑢, 𝑣, 𝑢0, 𝑢, ̃︀𝑢 ∈ 𝐻1(𝑈𝑟) be as in the statement of Theorem 1.1. We first show the a
priori estimates

𝜆‖𝑢0‖𝐿2(𝑈𝑟) + ‖∇𝑢0‖𝐿2(𝑈𝑟) 6 𝐶‖𝑢− 𝑣‖𝐻1(𝑈𝑟), (3.26)

and
‖𝑢‖𝐻1(𝑈𝑟) + 𝜆−1‖𝑢‖𝐻2(𝑈𝑟) 6 𝐶‖𝑢− 𝑣‖𝐻1(𝑈𝑟). (3.27)

By the variational formulation of the equation for 𝑢0 ∈ 𝐻1
0 (𝑈𝑟), we have∫︁

𝑈𝑟

(︀
𝜆2𝑢2

0 +∇𝑢0 · a∇𝑢0

)︀
=
∫︁

𝑈𝑟

∇𝑢0 · a∇(𝑢− 𝑣).

By Hölder’s and Young’s inequalities and the uniform ellipticity of a, we get (3.26). Using the equation (1.8)
satisfied by 𝑢 ∈ 𝐻1

0 (𝑈𝑟) and the estimate (3.26), we deduce

‖∇𝑢‖𝐿2(𝑈𝑟) 6 𝐶‖∇(𝑢− 𝑣 − 𝑢0)‖𝐿2(𝑈𝑟)

6 𝐶‖∇(𝑢− 𝑣)‖𝐿2(𝑈𝑟).

By Proposition A.2 and the 𝐿2 estimate in (3.26), we also have

‖𝑢‖𝐻2(𝑈𝑟) 6 𝐶𝜆2‖𝑢0‖𝐿2(𝑈𝑟) 6 𝐶𝜆‖𝑢− 𝑣‖𝐻1(𝑈𝑟),
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as announced in (3.27).
We now introduce the two-scale expansion

𝑤 := 𝑢 +
𝑑∑︁

𝑘=1

𝜑(𝜆)
𝑒𝑘

𝜕𝑥𝑘
𝑢.

Using the equation for 𝑢 in (1.8) and Theorem 3.1 with 𝜇 = 0, we obtain

‖𝑣 + 𝑢0 + 𝑤 − 𝑢‖𝐻1(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶𝜆

𝑑
2 ‖𝑢‖𝐻1(𝑈𝑟) + 𝐶ℓ(𝜆)

1
2 ‖𝑢‖

1
2
𝐻1(𝑈𝑟)

‖𝑢‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑢‖𝐻2(𝑈𝑟)

)︁
,

and thus, by (3.27),
‖𝑣 + 𝑢0 + 𝑤 − 𝑢‖𝐻1(𝑈𝑟) 6 𝒪𝑠

(︁
𝐶ℓ(𝜆)

1
2 𝜆

1
2 ‖𝑢− 𝑣‖𝐿2(𝑈𝑟)

)︁
. (3.28)

In order to complete the proof of Theorem 1.1, there remains to estimate the 𝐻1 norm of 𝑤−̃︀𝑢. By the equation
for ̃︀𝑢, Theorem 3.1 and (3.27), we have

‖𝑤 − ̃︀𝑢‖𝐻1(𝑈𝑟) 6 𝒪𝑠

(︂
𝐶
(︁
𝜆ℓ(𝜆) + 𝜆

𝑑
2

)︁
‖𝑢‖𝐻1(𝑈𝑟)

+ 𝐶ℓ(𝜆)
1
2 ‖𝑢‖

1
2
𝐻1(𝑈𝑟)

‖𝑢‖
1
2
𝐻2(𝑈𝑟)

+ 𝐶ℓ(𝜆)‖𝑢‖𝐻2(𝑈𝑟)

)︂
6 𝒪𝑠

(︁
𝐶ℓ(𝜆)

1
2 𝜆

1
2 ‖𝑢− 𝑣‖𝐻1(𝑈𝑟)

)︁
,

as desired. �

4. Numerical results

In this section, we report on numerical tests demonstrating the performance of the iterative method described
in Theorem 1.1. The code used in the tests can be consulted at

https://github.com/ahannuka/homo_mg. (4.1)

Throughout this section, we consider a two-dimensional random checkerboard coefficient field 𝑥 ↦→ a(𝑥), which
is defined as follows: we give ourselves a family (𝑏(𝑧))𝑧∈Z2 of independent random variables such that for every
𝑧 ∈ Z2,

P [𝑏(𝑧) = 1] = P [𝑏(𝑧) = 9] =
1
2
·

We then set, for every 𝑥 ∈ 𝑧 + [0, 1)2,
a(𝑥) := 𝑏(𝑧) 𝐼2,

where 𝐼2 denotes the 2-by-2 identity matrix. For this particular coefficient field, the homogenized matrix can be
computed analytically as a = 3𝐼2 (see [3], Exercise 2.3). When such an analytical expression does not exist, the
homogenized coefficient can be approximated numerically, for example, by using the method presented in [29].

For each 𝑟 > 0, we write 𝑈𝑟 := (0, 𝑟)2. We aim to compute the solution to the continuous partial differential
equation in (1.1) with 𝑔 = 0 (null Dirichlet boundary condition) and load function 𝑓 = 1. We discretize this
problem using a first-order finite element method. Let 𝒯 be a triangular mesh of the domain 𝑈𝑟 constructed
by first dividing each cell 𝑧 + [0, 1)2 (𝑧 ∈ Z2) into two triangles, and then using three levels of uniform mesh
refinement. This results into a sufficiently fine mesh to capture the oscillations present in the exact solution 𝑢.
The first order finite element space

𝑉ℎ :=
{︀
𝑢 ∈ 𝐻1

0 (𝑈𝑟) | 𝑢|𝐾 ∈ 𝑃 1(𝐾) ∀𝐾 ∈ 𝒯
}︀

https://github.com/ahannuka/homo_mg
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Figure 1. Left panel: a typical realization of the coefficient field a(𝑥), with 𝑟 = 100 (yellow
coresponds to the value 1 and blue to the value 9). Right panel: corresponding solution.
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Figure 2. Left panel: FE-solution to the heterogeneous problem, and right panel: FE-solution
to the corresponding homogenized problem. Both solutions are plotted along the line 𝑦 = 55.
The fast oscillation in the left figure is clearly visible.

with standard nodal basis is used in all computations. The finite element solution 𝑢ℎ ∈ 𝑉ℎ satisfies

∀𝑣ℎ ∈ 𝑉ℎ, (a∇𝑢ℎ,∇𝑣ℎ) = (𝑓, 𝑣ℎ). (4.2)

A typical realization of the coefficient field a(𝑥) and of the corresponding exact solution 𝑢 are visualized
in Figure 1, with the choice of 𝑟 = 100. The high-frequency oscillations in the solution are clearly visible in
Figure 2, where the solution is visualized along the line 𝑦 = 55.

Our interest lies in the contraction factor of the iterative procedure. The contraction factor is studied by
first solving the finite dimensional problem (4.2) exactly using a direct solver. Then a sequence of approximate
solutions {𝑢(𝑖)

ℎ }𝑁
𝑖=1 is generated by starting from 𝑢

(1)
ℎ = 0 and applying the iterative procedure described in
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Figure 3. Left panel: empirical distribution of the factor 𝜌 for 𝜆 = 0.1 and 𝑟 = 100, based on
100 runs. Right panel: error in the 𝐻1 seminorm for 𝑟 = 100 and 𝜆 = 0.1, after each iteration.
The method converges after 8 iterations.

Theorem 1.1. The logarithm of the error ‖∇(𝑢− 𝑢
(𝑖)
ℎ )‖𝐿2(𝑈𝑟) is computed for each 𝑖 ∈ {1, . . . , 10}, a regression

line is fitted, and the slope of this line is denoted by 𝜌. It is our numerical estimate of the logarithm of the
contraction factor; roughly speaking,

𝜌 ≈ log

(︃
‖∇(𝑢ℎ − 𝑢

(𝑖+1)
ℎ )‖𝐿2(𝑈𝑟)

‖∇(𝑢ℎ − 𝑢
(𝑖)
ℎ )‖𝐿2(𝑈𝑟)

)︃

(“log” denotes the natural logarithm.) The iteration is said to converge when the relative error is smaller than
10−9. Past this threshold, the error between the exact and the iterative solutions is smaller than the accuracy
of the discretization itself, and thus cannot be measured.

Since the coefficient field is random, the contraction factor will vary for different realizations of a. For the
choice of 𝜆 = 0.1 and 𝑟 = 100, the empirical distribution of the contraction factor is given in Figure 3, based
on one hundered samples of the coefficient field. Apart from the purposes of displaying this histogram, each of
our estimates for 𝜌 is an average over ten realizations of the coefficient field.

In our first test, the parameter 𝜆 is fixed to 𝜆 = 0.1, 0.2, and then 0.4. The size of the domain 𝑟 is varied
between 10 and 200. The averaged contraction factor is visualized on the left side of Figure 4. The results
are in excellent agreement with Theorem 1.1. After a pre-asymptotic region, the contraction factor becomes
independent of the size of the domain 𝑟. The pre-asymptotic region is due to the fact that for small values
of 𝑟, the pre- and post-smoothing steps are essentially sufficient to solve the equation. We emphasize that the
contraction factor remains very good, of the order of 0.1, even for the relatively large value of 𝜆 = 0.4.

In the second test, the size of the domain 𝑟 takes values 𝑟 = 100, 200, and 300, while 𝜆 is varied
between 0.01 and 0.5. For each 𝜆, the exponent of the averaged contraction factor is computed based on
ten simulation runs. The results are presented on the right side of Figure 4. After a pre-asymptotic region, the
exponential of the contraction factor behaves like 𝜆1/2, as predicted by Theorem 1.1. The pre-asymptotic region
is roughly characterized by the scaling 𝑟 . 10𝜆−1.
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Figure 4. Left panel: averaged factor 𝜌 as a function of 𝑟, for 𝜆 = 0.1, 0.2, and 0.4. Right
panel: exponential of the averaged factor 𝜌 as a function of 𝜆 for 𝑟 = 100, 200, and 300. In all
cases, the average is computed from ten simulation runs.

Appendix A. Sobolev estimates

In this appendix, we prove an estimate for the norm of a function restricted to a layer close to the boundary
of a domain. The estimate is an integrated version of a trace theorem. For convenience, we will also recall a
standard 𝐻2 estimate for homogeneous elliptic equations. As in (3.15), for every ℓ > 0, we write

𝑈𝑟,ℓ := {𝑥 ∈ 𝑈𝑟 : dist(𝑥, 𝜕𝑈𝑟) > ℓ} .

Proposition A.1 (Trace estimate). There exists 𝐶(𝑈, 𝑑) < ∞ such that for every 𝑟 > 1, ℓ ∈ (0, 𝑟] and
𝑓 ∈ 𝐻1(𝑈𝑟),

𝑟−𝑑 ‖𝑓‖2𝐿2(𝑈𝑟∖𝑈𝑟,ℓ)
6 𝐶 ℓ ‖𝑓‖𝐿2(𝑈𝑟) ‖𝑓‖𝐻1(𝑈𝑟).

Proof. Denote by n𝑟,𝑡 the unit normal vector to 𝜕𝑈𝑟,ℓ, which we extend to 𝑈𝑟,ℓ harmonic continuation. Since
𝑈 is 𝐶1,1, there exists 𝐶(𝑈, 𝑑) < ∞ such that for every 𝑡 ∈ (0, 𝑟/𝐶], we have ‖∇n𝑟,𝑡‖𝐿∞(𝑈𝑟,𝑡) 6 𝐶𝑟−1. It thus
follows that ∫︁

𝜕𝑈𝑟,𝑡

𝑓2 =
∫︁

𝑈𝑟,𝑡

∇ · (𝑓2 n𝑟,𝑡)

6 𝐶𝑟−1‖𝑓‖2𝐿2(𝑈𝑟) + 𝐶‖𝑓‖𝐿2(𝑈𝑟)‖∇𝑓‖𝐿2(𝑈𝑟)

6 𝐶𝑟𝑑‖𝑓‖𝐿2(𝑈𝑟) ‖𝑓‖𝐻1(𝑈𝑟).

By the coarea formula, for every ℓ 6 𝑟/𝐶, we have

‖𝑓‖2𝐿2(𝑈𝑟∖𝑈𝑟,ℓ)
=
∫︁ ℓ

0

‖𝑓‖2𝐿2(𝜕𝑈𝑟,𝑡)
d𝑡.

Combining the previous two displays yields

‖𝑓‖2𝐿2(𝑈𝑟∖𝑈𝑟,ℓ)
6 𝐶ℓ 𝑟𝑑 ‖𝑓‖𝐿2(𝑈𝑟) ‖𝑓‖𝐻1(𝑈𝑟),

which is the announced result. The case ℓ > 𝑟/𝐶 is immediate. �



54 S. ARMSTRONG ET AL.

Proposition A.2 (𝐻2 estimate). Let a ∈ R𝑑×𝑑
sym satisfy (3.1). There exists a constant 𝐶(Λ, 𝑈, 𝑑) < ∞ such that

for every 𝑢 ∈ 𝐻1
0 (𝑈𝑟) and 𝑓 ∈ 𝐿2(𝑈𝑟), if

−∇ · a∇𝑢 = 𝑓,

then 𝑢 ∈ 𝐻2(𝑈𝑟) and
‖𝑢‖𝐻2(𝑈𝑟) 6 𝐶‖𝑓‖𝐿2(𝑈𝑟).

Proof. See Theorem 6.3.2.4 of [14]. �
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