On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 595-625

We provide an endpoint stability result for Scott-Zhang type operators in Besov spaces. For globally continuous piecewise polynomials these are bounded from H3/2 into B 2, 3/2 ; for element wise polynomials these are bounded from H1/2 into B 2, 1/2 . As an application, we obtain a multilevel decomposition based on Scott-Zhang operators on a hierarchy of meshes generated by newest vertex bisection with equivalent norms up to (but excluding) the endpoint case. A local multilevel diagonal preconditioner for the fractional Laplacian on locally refined meshes with optimal eigenvalue bounds is presented.

DOI : 10.1051/m2an/2020079
Classification : 65D05, 65F08, 65N30, 35R11
Keywords: Scott-Zhang operator, Besov space, multilevel decomposition, fractional Laplacian, preconditioning
@article{M2AN_2021__55_2_595_0,
     author = {Faustmann, Markus and Melenk, Jens Markus and Parvizi, Maryam},
     title = {On the stability of {Scott-Zhang} type operators and application to multilevel preconditioning in fractional diffusion},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {595--625},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {2},
     doi = {10.1051/m2an/2020079},
     mrnumber = {4238777},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020079/}
}
TY  - JOUR
AU  - Faustmann, Markus
AU  - Melenk, Jens Markus
AU  - Parvizi, Maryam
TI  - On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 595
EP  - 625
VL  - 55
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020079/
DO  - 10.1051/m2an/2020079
LA  - en
ID  - M2AN_2021__55_2_595_0
ER  - 
%0 Journal Article
%A Faustmann, Markus
%A Melenk, Jens Markus
%A Parvizi, Maryam
%T On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 595-625
%V 55
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020079/
%R 10.1051/m2an/2020079
%G en
%F M2AN_2021__55_2_595_0
Faustmann, Markus; Melenk, Jens Markus; Parvizi, Maryam. On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 2, pp. 595-625. doi: 10.1051/m2an/2020079

[1] G. Acosta, Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math. 135 (2001) 91–109. | MR | Zbl | DOI

[2] G. Acosta, F. M. Bersetche and J. P. Borthagaray, A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74 (2017) 784–816. | MR | DOI

[3] R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd edition. In: Vol. 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). | MR | Zbl

[4] M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327 (2017) 4–35. | MR | DOI

[5] M. Ainsworth and W. Mclean, Multilevel diagonal scaling preconditioners for boundary element equations on locally refined meshes. Numer. Math. 93 (2003) 387–413. | MR | Zbl | DOI

[6] M. Ainsworth, W. Mclean and T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901–1932. | MR | Zbl | DOI

[7] T. Apel, Anisotropic finite elements: local estimates and applications. In: Advances in Numerical Mathematics. Teubner Stuttgart (1999). | MR | Zbl

[8] T. Apel, Interpolation of non-smooth functions on anisotropic finite element meshes. ESAIM: M2AN 33 (1999) 1149–1185. | MR | Zbl | Numdam | DOI

[9] M. Arioli and D. Loghin, Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47 (2009) 2924–2951. | MR | Zbl | DOI

[10] M. Aurada, M. Feischl, J. Kemetmüller, M. Page and D. Praetorius, Each H 1 / 2 -stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in R d . ESAIM: M2AN 47 (2013) 1207–1235. | MR | Zbl | Numdam | DOI

[11] M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations. Appl. Numer. Math. 95 (2015) 15–35. | MR | DOI

[12] S. Badia, On stabilized finite element methods based on the Scott-Zhang projector. Circumventing the inf-sup condition for the Stokes problem. Comput. Methods Appl. Mech. Eng. 247/248 (2012) 65–72. | MR | DOI

[13] R. E. Bank and L. R. Scott, On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal. 26 (1989) 1383–1394. | MR | Zbl | DOI

[14] C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. | MR | Zbl | DOI

[15] T. Bærland, M. Kuchta and K.-A. Mardal, Multigrid methods for discrete fractional Sobolev spaces. SIAM J. Sci. Comput. 41 (2019) A948–A972. | MR | DOI

[16] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola and A. J. Salgado, Numerical methods for fractional diffusion. Comput. Vis. Sci. 19 (2018) 19–46. | MR | DOI

[17] J. P. Borthagaray, W. P. Li and R. H. Nochetto, Linear and nonlinear fractional elliptic problems, 75 years of mathematics of computation. In: Vol. 754 of Contemp. Math. Amer. Math. Soc., Providence, RI (2020) 69–92. | MR | DOI

[18] J. Bramble, J. Pasciak and J. Xu, Parallel multilevel preconditioners. Math. Comput. 55 (1991) 1–22. | MR | Zbl | DOI

[19] J. H. Bramble, J. E. Pasciak and P. S. Vassilevski, Computational scales of Sobolev norms with application to preconditioning. Math. Comput. 69 (2000) 463–480. | MR | Zbl | DOI

[20] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, 2nd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York (2002). | MR | Zbl

[21] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Part. Differ. Equ. 32 (2007) 1245–1260. | MR | Zbl | DOI

[22] C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: M2AN 33 (1999) 1187–1202. | MR | Zbl | Numdam | DOI

[23] C. Carstensen and J. Hu, Hanging nodes in the unifying theory of a posteriori finite element error control. J. Comput. Math. 27 (2009) 215–236. | MR | Zbl

[24] L. Chen, R. H. Nochetto and J. Xu, Optimal multilevel methods for graded bisection grids. Numer. Math. 120 (2012) 1–34. | MR | Zbl | DOI

[25] L. Chen, R. H. Nochetto, E. Otárola and A. J. Salgado, A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys. 293 (2015) 339–358. | MR | DOI

[26] L. Chen, R. H. Nochetto, E. Otárola and A. J. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional diffusion. Math. Comput. 85 (2016) 2583–2607. | MR | DOI

[27] P. G. Ciarlet, The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). | MR | Zbl

[28] P. Ciarlet, Jr, Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21 (2013) 173–180. | MR | Zbl

[29] A. Cohen, Numerical analysis of wavelet methods. In: Vol. 32 of Studies in Mathematics Applications. North-Holland Publishing Co., Amsterdam (2003). | MR | Zbl

[30] W. Dahmen, B. Faermann, I. Graham, W. Hackbusch and S. Sauter, Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method. Math. Comput. 73 (2004) 1107–1138. | MR | Zbl | DOI

[31] R. A. Devore and G. G. Lorentz, Constructive approximation. In: Vol. 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1993). | MR | Zbl

[32] L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16 (2016) 33–68. | MR | DOI

[33] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI

[34] M. Dryja and O. B. Widlund, Multilevel additive methods for elliptic finite element problems, Parallel algorithms for partial differential equations (Kiel, 1990). In: Vol. 31 of Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1991) 58–69. | MR | Zbl

[35] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | MR | Zbl | Numdam | DOI

[36] R. S. Falk and R. Winther, The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math. 1–32 (2015). | MR

[37] M. Faustmann, J. M. Melenk and D. Praetorius, Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian. Math. Comput. 51 (2013) 1327–1348.

[38] M. Feischl, T. Führer, D. Praetorius and E. P. Stephan, Optimal additive Schwarz preconditioning for hypersingular integral equations on locally refined triangulations. Calcolo 54 (2017) 367–399. | MR | DOI

[39] H. Gimperlein, J. Štoček and C. Urzúa-Torres, Optimal operator preconditioning for pseudodifferential boundary problems. Comput. Math. App. 79 (2020) 3516–3530.

[40] V. Girault and L. R. Scott, Hermite interpolation of nonsmooth functions preserving boundary conditions. Math. Comput. 71 (2002) 1043–1074. | MR | Zbl | DOI

[41] R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699–706. | MR | Zbl | DOI

[42] M. Karkulik and J. M. Melenk, Local high-order regularization and applications to h p -methods. Comput. Math. Appl. 70 (2015) 1606–1639. | MR | DOI

[43] M. Karkulik, D. Pavlicek and D. Praetorius, On 2D newest vertex bisection: optimality of mesh-closure and H 1 -stability of L 2 -projection. Constr. Approx. 38 (2013) 213–234. | MR | Zbl | DOI

[44] J. Li, J. M. Melenk, B. Wohlmuth and J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. | MR | Zbl | DOI

[45] M. Maischak, A multilevel additive Schwarz method for a hypersingular integral equation on an open curve with graded meshes. Appl. Numer. Math. 59 (2009) 2195–2202. | MR | Zbl | DOI

[46] A. M. Matsokin and S. V. Nepomnyaschikh, A Schwarz alternating method in a subspace. Soviet Math. 29 (1985) 78–84. | Zbl

[47] P. Oswald, Multilevel Finite Element Approximation. Teubner Skripten zur Numerik, Teubner (1994). | MR | Zbl | DOI

[48] A. Rand, Average interpolation under the maximum angle condition. SIAM J. Numer. Anal. 50 (2012) 2538–2559. | MR | Zbl | DOI

[49] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. [Analysis-based methods for the efficient solution of large nonsparse systems of equations], In: Advances in Numerical Mathematics. Teubner Stuttgart, Stuttgart (1998). | MR | Zbl | DOI

[50] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI

[51] R. Stevenson, Stable three-point wavelet bases on general meshes. Numer. Math. 80 (1998) 131–158. | MR | Zbl | DOI

[52] R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | MR | Zbl | DOI

[53] R. Stevenson and R. Van Venetië, Uniform preconditioners for problems of positive order. Comput. Math. Appl. 79 (2020) 3516–3530. | MR | Zbl | DOI

[54] L. Tartar, An introduction to Sobolev spaces and interpolation spaces. In: Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin (2007). | MR | Zbl

[55] A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory. In: Vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2005). | MR | Zbl | DOI

[56] T. Tran and E. P. Stephan, Additive Schwarz methods for the h -version boundary element method. Appl. Anal. 60 (1996) 63–84. | MR | Zbl | DOI

[57] T. Tran, E. P. Stephan and P. Mund, Hierarchical basis preconditioners for first kind integral equations. Appl. Anal. 65 (1997) 353–372. | MR | Zbl | DOI

[58] T. Tran, E. P. Stephan and S. Zaprianov, Wavelet-based preconditioners for boundary integral equations. Adv. Comput. Math. 9 (1998) 233–249. | MR | Zbl | DOI

[59] X. Zhang, Multilevel Schwarz methods. Numer. Math. 63 (1992) 521–539. | MR | Zbl | DOI

Cité par Sources :