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ON THE STABILITY OF SCOTT-ZHANG TYPE OPERATORS AND
APPLICATION TO MULTILEVEL PRECONDITIONING IN FRACTIONAL

DIFFUSION

Markus Faustmann*, Jens Markus Melenk and Maryam Parvizi

Abstract. We provide an endpoint stability result for Scott-Zhang type operators in Besov spaces.
For globally continuous piecewise polynomials these are bounded from 𝐻3/2 into 𝐵

3/2
2,∞; for element

wise polynomials these are bounded from 𝐻1/2 into 𝐵
1/2
2,∞. As an application, we obtain a multilevel

decomposition based on Scott-Zhang operators on a hierarchy of meshes generated by newest vertex
bisection with equivalent norms up to (but excluding) the endpoint case. A local multilevel diagonal
preconditioner for the fractional Laplacian on locally refined meshes with optimal eigenvalue bounds is
presented.
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1. Introduction

The Scott-Zhang projection, originally introduced in [50], is a very important tool in numerical analysis and
has been generalized in various ways [1,8,11,14,22,23,28,35,36,40,42,48]. In its classical form, it is quasi-local,
it is a projection onto the space of globally continuous, piecewise polynomials, it is stable in both 𝐿2 and 𝐻1

(and thus, by interpolation also in 𝐻𝑠, 𝑠 ∈ (0, 1)), and has optimal approximation properties. Therefore, it is
well-suited for the analysis of classical finite element methods (FEMs) [20], and plays a key role in the analyses
of, e.g., anisotropic finite elements [7], adaptive finite element methods [10], or mixed methods [12].

As globally continuous piecewise linear functions are not only in the Sobolev space 𝐻1(Ω), but also in
(fractional) Sobolev spaces 𝐻3/2−𝜀(Ω) for any 𝜀 > 0 – in fact, they are in the Besov space 𝐵

3/2
2,∞(Ω) – a

natural question is whether the operator is also stable in the stronger norms imposed on these spaces. In this
article, we provide an endpoint stability result, i.e., we study the stability in the norm ‖ · ‖

𝐵
3/2
2,∞(Ω)

, not only

for the Scott-Zhang operator but more generally for local, 𝐿2(Ω)-stable operators with certain approximation
properties in 𝐿2(Ω) on shape-regular meshes. Additionally, we cover the case of operators such as the elementwise
𝐿2-projection that map into spaces of discontinuous piecewise polynomials, where the corresponding endpoint
space is 𝐵

1/2
2,∞(Ω). By interpolation, these endpoint results imply stability results in the full range between 𝐿2

and the Besov space.
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Multilevel representations of Sobolev spaces (and Besov spaces) based on sequences of uniformly refined
meshes are available in the literature; see, e.g., [19, 47, 49], and the references therein. For fractional Sobolev
spaces 𝐻𝑠(Ω) and general meshes (with certain restrictions on 𝑠), we mention [51], where wavelet bases are
employed. Our stability result for Scott-Zhang type operators allows us to develop multilevel norm equivalences
in Besov spaces up to the endpoint case for standard discrete spaces of globally continuous piecewise polynomials
on adaptively refined meshes 𝒯 . These are assumed to be shape-regular and obtained by newest vertex bisection
(NVB). The mesh hierarchy ̃︀𝒯ℓ = fcc(𝒯 , ̂︀𝒯ℓ), ℓ = 0, . . . , 𝐿, is given by the finest common coarsening of 𝒯 and the
meshes ̂︀𝒯ℓ of a sequence (̂︀𝒯ℓ)ℓ of uniformly refined NVB-generated meshes. Our actual multilevel decomposition
is then obtained with an adapted Scott-Zhang operator that is of independent interest (Lem. 4.4).

In numerics, an important application of multilevel decompositions is the design of multilevel additive Schwarz
preconditioners, in particular multilevel diagonal scaling [34, 59], and BPX [18]. In this article, we propose a
local multilevel diagonal preconditioner for the integral fractional Laplacian (−∆)𝑠 for 𝑠 ∈ (0, 1) on adaptively
refined meshes 𝒯ℓ. The need for a preconditioner arises from the observation that the condition number of
the stiffness matrix Aℓ ∈ R𝑁ℓ×𝑁ℓ corresponding to a FEM discretization by piecewise linears of the integral

fractional Laplacian grows like 𝜅(Aℓ) ∼ 𝑁
2𝑠/𝑑
ℓ

(︁
ℎℓ
max

ℎℓ
min

)︁𝑑−2𝑠

, where ℎℓ
max, ℎ

ℓ
min denote the maximal and minimal

mesh width of 𝒯ℓ, see, e.g., [4, 6]. Since the fractional Laplacian on bounded domains features singularities
at the boundary, typical meshes are strongly refined towards the boundary so that the quotient ℎℓ

max/ℎℓ
min is

large (see, e.g., [4, 16, 37] for adaptively generated meshes). While the impact of the variation of the element
size can be controlled by diagonal scaling (see, e.g., [6, 13]), the factor 𝑁

2𝑠/𝑑
ℓ persists. A good preconditioner

is therefore required for an efficient iterative solution for large problem sizes 𝑁ℓ. Indeed, preconditioning for
fractional differential operators has attracted attention recently. We mention multigrid preconditioners [4] based
on uniformly refined mesh hierarchies and operator preconditioning [39,41,53], which requires one to realize an
operator of the opposite order. Another classical technique is the framework of additive Schwarz preconditioners,
analyzed in a BPX-setting with Fourier techniques in [17]. For a different definition of the fractional Laplacian via
spectral and PDE theory [21], locally refined FEMs have been studied in [25], and [26] provides an almost optimal
multilevel method for this interpretation. We also mention [15], where optimal additive Schwarz preconditioners
on quasi-uniform meshes for the spectral fractional Laplacian are proposed, similarly to our result for the integral
fractional Laplacian.

In the present work, we also adopt the additive Schwarz framework and show that, also in the presence of
adaptively refined meshes, multilevel diagonal scaling leads to uniformly bounded condition numbers for the
integral fractional Laplacian. The above mentioned norm equivalence of the multilevel decomposition provides
the lower bound for the eigenvalues; an inverse estimate in fractional Sobolev norms, similarly to [37], gives the
upper bound for the eigenvalues.

We mention that very closely related to preconditioning of discretizations of the fractional differential oper-
ators is earlier work on preconditioning for the hypersingular integral equation (e.g., the operators coincide for
the case 𝑠 = 1/2 for screen problems) in boundary element methods (BEMs) [5, 38,45,56–58].

The present paper is structured as follows: Section 2 provides the necessary notation and states the three
main results of the paper. The first result is the stability of quasi-interpolation operators in the endpoint Besov
space (Thm. 2.2) both for globally continuous and discontinuous piecewise polynomials. The second result is
a multilevel decomposition based on a modified Scott-Zhang operator on a mesh hierarchy of NVB meshes
(Thm. 2.5). The third result is an optimal local multilevel diagonal preconditioner for the fractional Laplacian.
Two types of mesh hierarchies are considered: The first one is assumed to be generated by an adaptive algorithm
and discussed in Theorem 2.6. The second one, ̃︀𝒯ℓ = fcc(𝒯 , ̂︀𝒯ℓ), is generated by the finest common coarsening
of a fixed mesh 𝒯 and a sequence of uniformly refined meshes ̂︀𝒯ℓ and analyzed in Theorem 2.9.

Section 3 is concerned with the proof of the stability result of the quasi-interpolation operators in Besov spaces.
Moreover, we present some extensions such as inverse estimates in Besov norms (Lem. 3.6) or an interpolation
result for discrete spaces in Besov norms (Cor. 3.8).
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In Section 4, we develop properties of the finest common coarsening of two meshes. We prove the norm
equivalence for the multilevel decomposition. Furthermore, we develop, for given meshes 𝒯 , ̂︀𝒯 , two Scott-Zhang
type operator ̂︀𝐼SZ and ̃︀𝐼SZ on the meshes ̂︀𝒯 and ̃︀𝒯 := fcc(𝒯 , ̂︀𝒯 ) with the property ̂︀𝐼SZ𝑢 = ̃︀𝐼SZ𝑢 for 𝑢 ∈ 𝑆𝑝,1(𝒯 ).
Such operators are useful in various context and similar operators have been constructed, e.g., in Lemma 3.5 in
[32].

Finally, Section 5 provides the abstract analysis for the additive Schwarz method to prove the optimal bounds
on the extremal eigenvalues of the preconditioned stiffness matrix for the fractional Laplacian on adaptively
generated NVB meshes. Numerical experiments underline the optimality of the preconditioner.

Throughout the paper, we use the notation . to abbreviate ≤ up to a generic constant 𝐶 > 0 that does not
depend on critical parameters in our analysis. We use ≃ to indicate that both estimates . and & hold.

2. Main results

2.1. Stability of (quasi-)interpolation operators in Besov spaces

Let Ω ⊂ R𝑑 be a bounded Lipschitz domain. For 𝑠 ≥ 0, we use the Sobolev spaces 𝐻𝑠(Ω), in the integer case
𝑠 ∈ N0 defined in the standard way, see, e.g., [3], and for the fractional case 𝑠 /∈ N0 defined by interpolation
[54]. We note that, equipped with the Aronstein-Slobodeckij (semi-)norm

‖𝑢‖2𝐻𝑠(Ω) := ‖𝑢‖2𝐿2(Ω) + |𝑢|2𝐻𝑠(Ω) with |𝑢|2𝐻𝑠(Ω) :=
∫︁

Ω

∫︁
Ω

(𝑢(𝑥)− 𝑢(𝑦))2

|𝑥− 𝑦|𝑑+2𝑠
d𝑥 d𝑦,

the space 𝐻𝑠(Ω) is a Hilbert space. Moreover, for 𝑠 > 0, 𝑠 /∈ N0, 𝑞 ∈ [1,∞], we employ the Besov spaces 𝐵𝑠
2,𝑞(Ω)

defined as the interpolation spaces 𝐵𝑠
2,𝑞(Ω) := (𝐻𝜎(Ω), 𝐻𝜎+1(Ω))𝜃,𝑞, where 𝜎 = ⌊𝑠⌋ and 𝜃 = 𝑠 − 𝜎 ∈ (0, 1).

Throughout we use the so-called “real method”/“𝐾-method” as described in, e.g., [54]. The norm is given by

‖𝑢‖𝐵𝑠
2,𝑞(Ω) :=

{︃(︀∫︀∞
𝑡=0

(︀
𝑡−𝜃𝐾(𝑡, 𝑢)

)︀𝑞 d𝑡
𝑡

)︀1/𝑞
𝑞 ∈ [1,∞),

sup𝑡>0 𝑡−𝜃𝐾(𝑡, 𝑢) 𝑞 = ∞.

Here, for 𝑢 ∈ 𝐻𝜎(Ω) and 𝑡 > 0, the 𝐾-functional is defined by

𝐾(𝑡, 𝑢) := inf
𝑢𝑡∈𝐻𝜎+1(Ω)

‖𝑢− 𝑢𝑡‖𝐻𝜎(Ω) + 𝑡‖𝑢𝑡‖𝐻𝜎+1(Ω).

For the discretization, we assume that a regular (in the sense of Ciarlet) triangulation 𝒯 of Ω consisting of
open simplices is given. Additionally, 𝒯 is assumed to be 𝛾-shape regular in the sense that

max
𝑇∈𝒯

(︁
diam(𝑇 )/ |𝑇 |1/𝑑

)︁
≤ 𝛾 < ∞,

where diam(𝑇 ) := sup𝑥,𝑦∈𝑇 |𝑥− 𝑦| and |𝑇 | is the volume of 𝑇 . By ℎ ∈ 𝐿∞(Ω), we denote the piecewise constant
mesh size function satisfying ℎ|𝑇 := ℎ𝑇 := |𝑇 |1/𝑑 for 𝑇 ∈ 𝒯 .

Let 𝑃𝑝(𝑇 ) be the space of polynomials of (maximal) degree 𝑝 on the element 𝑇 ∈ 𝒯 . Then, the spaces of
𝒯 -piecewise polynomials of degree 𝑝 ∈ N0 and regularity 𝑚 ∈ N0 are defined by

𝑆𝑝,𝑚(𝒯 ) := {𝑢 ∈ 𝐻𝑚(Ω): 𝑢|𝑇 ∈ 𝑃𝑝(𝑇 ) ∀𝑇 ∈ 𝒯 } , 𝑆𝑝,1
0 (𝒯 ) := 𝑆𝑝,1(𝒯 ) ∩𝐻1

0 (Ω).

For 𝑇 ∈ 𝒯 and 𝑘 ∈ N, we inductively define the element patches

𝜔0(𝑇 ) := 𝑇, 𝜔𝑘(𝑇 ) := interior
(︁⋃︁{︁

𝑇 ′ : 𝑇 ′ ∈ 𝒯 , 𝑇 ′ ∩ 𝜔𝑘−1(𝑇 ) ̸= ∅
}︁)︁

,

and for the first order patch, we abbreviate 𝜔(𝑇 ) := 𝜔1(𝑇 ).
In the present work, we study (quasi-)interpolation operators 𝐼𝑚

ℎ satisfying the following locality, stability
and approximation properties.
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Assumption 2.1. Let 𝑚 ≥ 1 and 𝐼𝑚
ℎ be an operator 𝐼𝑚

ℎ : 𝐿2(Ω) → 𝑆𝑝,𝑚−1(𝒯 ) that satisfies:

(i) Quasi-locality: For every 𝑇 ∈ 𝒯 , the restriction (𝐼𝑚
ℎ 𝑢)|𝑇 depends solely on 𝑢|𝜔(𝑇 ).

(ii) Stability in 𝐿2: For 𝑢 ∈ 𝐿2(Ω), there holds

‖𝐼𝑚
ℎ 𝑢‖𝐿2(𝑇 ) ≤ 𝐶‖𝑢‖𝐿2(𝜔(𝑇 )).

(iii) Approximation properties of 𝑚th order: For 𝑢 ∈ 𝐻𝑚(Ω), there holds

‖𝑢− 𝐼𝑚
ℎ 𝑢‖𝐿2(𝑇 ) ≤ 𝐶ℎ𝑚

𝑇 ‖𝑢‖𝐻𝑚(𝜔(𝑇 )).

The constants in (ii) and (iii) depend only on Ω, 𝑑, 𝑚, 𝑝, and the 𝛾-shape regularity of 𝒯 .

The following theorem is the main result of this subsection and states a stability result in the Besov space
𝐵

𝑚−1/2
2,∞ (Ω) for operators satisfying Assumption 2.1. Its proof will be given in Section 3.1 below.

Theorem 2.2. Fix 𝑚 ∈ {1, 2} and 𝑝 ∈ N0 with 𝑝 ≥ 𝑚 − 1. Let 𝒯 be a 𝛾-shape regular triangulation. Let an
operator 𝐼𝑚

ℎ satisfying Assumption 2.1 be given. Then,

‖𝐼𝑚
ℎ 𝑢‖

𝐵
𝑚−1/2
2,∞ (Ω)

≤ 𝐶‖𝑢‖𝐻𝑚−1/2(Ω) ∀𝑢 ∈ 𝐻𝑚−1/2(Ω), (2.1)

where the constant 𝐶 > 0 depends solely on Ω, 𝑑, 𝑚, 𝑝, and the 𝛾-shape regularity of 𝒯 .
If the mesh 𝒯 is additionally quasi-uniform, then, the following sharper estimate holds:

‖𝐼𝑚
ℎ 𝑢‖

𝐵
𝑚−1/2
2,∞ (Ω)

≤ 𝐶‖𝑢‖
𝐵

𝑚−1/2
2,∞ (Ω)

∀𝑢 ∈ 𝐵
𝑚−1/2
2,∞ (Ω). (2.2)

Remark 2.3. For 𝑚 = 1, a possible choice for 𝐼𝑚
ℎ is the 𝐿2(Ω)-orthogonal projection that trivially satisfies

Assumption 2.1. For 𝑚 = 2, the Scott-Zhang projection, introduced in [50] and defined below, is an example
of an operator 𝐼𝑚

ℎ satisfying Assumption 2.1. Therefore, Theorem 2.2 provides a novel stability estimates for
these projection operators in Besov spaces. �

2.2. Multilevel decomposition based on mesh hierarchies generated by NVB

The multilevel decompositions will be based on mesh hierarchies that are engendered by newest vertex bisec-
tion (NVB). For a discussion of properties of NVB meshes, we refer to [43] for the case 𝑑 = 2 and to [52] for
the case 𝑑 ≥ 3. We consider sequences of regular meshes that are obtained by NVB refinement from an initial
mesh ̂︀𝒯0.

2.2.1. The finest common coarsening

For two regular triangulations 𝒯 , 𝒯 ′ (obtained by NVB from the same triangulation ̂︀𝒯0), we define the finest
common coarsening as

fcc(𝒯 , 𝒯 ′) := {𝑇 ∈ 𝒯 : ∃𝑇 ′ ∈ 𝒯 ′ s.t. 𝑇 ′ ( 𝑇}⏟  ⏞  
=:T1

∪{𝑇 ′ ∈ 𝒯 ′ : ∃𝑇 ∈ 𝒯 s.t. 𝑇 ( 𝑇 ′}⏟  ⏞  
=:T2

∪ (𝒯 ∩ 𝒯 ′)⏟  ⏞  
=:T3

. (2.3)

Figure 1 provides two examples for this concept. We refer to Lemma 4.1 for the proofs that the three sets in
the definition (2.3) are pairwise disjoint and that fcc(𝒯 , 𝒯 ′) is indeed a regular triangulation of Ω.

Let ̂︀𝒯ℓ be the ℓth uniform refinement of ̂︀𝒯0. We call level(𝑇 ) := ℓ the level of an element 𝑇 ∈ ̂︀𝒯ℓ. Given a
regular triangulation 𝒯 that is obtained by NVB from 𝒯0 we will consider̃︀𝒯ℓ := fcc(𝒯 , ̂︀𝒯ℓ),

which is, in general, a coarser mesh than the uniform triangulation ̂︀𝒯ℓ.
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Figure 1. Example of the finest common coarsening of 𝒯 and 𝒯 ′ and the sets T1 (coarser
elements of 𝒯 , red), T2 (coarser elements of 𝒯 ′, green), T3 (common elements, blue) in (2.3).

2.2.2. Adapted Scott-Zhang operators

We recall the basic construction of the Scott-Zhang operator of [50] or Section 4.8 of [20]. It will be convenient
in the proof of Lemma 4.4 to use Lagrange bases of the space 𝑆𝑝,1(𝒯 ′) defined on a mesh 𝒯 ′, where 𝒯 ′ is either̂︀𝒯ℓ or fcc(𝒯 , ̂︀𝒯ℓ). We define the adapted Scott-Zhang operator in the following way:

(1) On the reference 𝑑-simplex ̂︀𝑇 = conv{𝑧1, . . . , 𝑧𝑑+1}, let the dim 𝑃𝑝 nodes 𝒩 ( ̂︀𝑇 ) be the regularly spaced
nodes as described in Section 2.2 of [27] (called “principal lattice” there),

𝒩 ( ̂︀𝑇 ) :=

⎧⎨⎩𝑥 =
𝑑+1∑︁
𝑗=1

𝜆𝑗𝑧𝑗 :
𝑑+1∑︁
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ∈
{︂

𝑖

𝑝
, 𝑖 = 0, . . . , 𝑝

}︂⎫⎬⎭ .

We note that any polynomial in 𝑃𝑝 is uniquely determined by its values on 𝒩 ( ̂︀𝑇 ).
(2) The nodes 𝒩 (𝒯 ′) ⊂ Ω for the mesh 𝒯 ′ are the push-forward of the nodes of 𝒩 ( ̂︀𝑇 ) under the element

maps. The Lagrange basis {𝜙𝑧,𝒯 ′ : 𝑧 ∈ 𝒩 (𝒯 ′)} of 𝑆𝑝,1(𝒯 ′) is characterized by 𝜙𝑧,𝒯 ′(𝑧′) = 𝛿𝑧,𝑧′ for all 𝑧,
𝑧′ ∈ 𝒩 (𝒯 ′); here, 𝛿𝑧,𝑧′ is the Kronecker Delta with 𝛿𝑧,𝑧′ = 1 if 𝑧 = 𝑧′ and 𝛿𝑧,𝑧′ = 0 if 𝑧 ̸= 𝑧′.

(3) The basis functions 𝜙𝑧,𝒯 ′ have the following support properties: a) if 𝑧 ∈ 𝑇 for some 𝑇 ∈ 𝒯 ′, then
supp 𝜙𝑧,𝒯 ′ ⊂ 𝑇 ; b) if 𝑧 ∈ 𝑓 for some 𝑗-dimensional face (𝑗 < 𝑑) of 𝑇 , then supp 𝜙𝑧,𝒯 ′ ⊂ 𝜔𝑓 , where
𝜔𝑓 = interior

⋃︀
{𝑇 : 𝑓 is 𝑗-face of 𝑇 ∈ 𝒯 ′}. In particular, if 𝑧 ̸∈ 𝑇 , then supp 𝜙𝑧,𝒯 ′ ∩ 𝑇 = ∅.

(4) For each element 𝑇 ∈ 𝒯 ′ one has a dual basis {𝜙*𝑧,𝑇 : 𝑧 ∈ 𝑇} ⊂ 𝑃𝑝(𝑇 ) of 𝑃𝑝(𝑇 ), i.e.,
∫︀

𝑇
𝜙*𝑧,𝑇 𝜙𝑧′,𝒯 ′ = 𝛿𝑧,𝑧′

for all nodes 𝑧, 𝑧′ ∈ 𝑇 . In particular, this gives∫︁
𝑇

𝜙*𝑧,𝑇 𝑢 d𝑥 = 𝑢(𝑧) ∀𝑇 ∈ 𝒯 ′ ∀𝑢 ∈ 𝑃𝑝(𝑇 ). (2.4)

(5) For each node 𝑧 ∈ 𝒩 (𝒯 ′) define the admissible set of averaging elements as 𝒜(𝑧, 𝒯 ′) := {𝑇 ∈ 𝒯 ′ : 𝑧 ∈ 𝑇}.
A Scott-Zhang operator is then defined by selecting, for each 𝑧, a 𝑇𝑧 ∈ 𝒜(𝑧, 𝒯 ′) and set

𝐼SZ𝑢 :=
∑︁

𝑧∈𝒩 (𝒯 ′)

𝜙𝑧,𝒯 ′

(︂∫︁
𝑇𝑧

𝜙*𝑧,𝑇𝑧
𝑢 d𝑥

)︂
. (2.5)



600 M. FAUSTMANN ET AL.

For nodes 𝑧 that are on the boundary of an element, the admissible set 𝒜(𝑧, 𝒯 ′) has more than one element.
However, from (2.4), we get that the values of the functionals coincide on 𝑆𝑝,1(𝒯 ′):∫︁

𝑇𝑧

𝜙*𝑧,𝑇𝑧
𝑢 d𝑥 = 𝑢(𝑧) =

∫︁
𝑇 ′𝑧

𝜙*𝑧,𝑇 ′𝑧
𝑢 d𝑥 ∀𝑇𝑧, 𝑇

′
𝑧 ∈ 𝒜(𝑧, 𝒯 ) ∀𝑢 ∈ 𝑆𝑝,1(𝒯 ′). (2.6)

We also highlight that (2.4) implies that 𝐼SZ is a projection onto 𝑆𝑝,1(𝒯 ). Such Scott-Zhang operators satisfy the
stability and approximation properties of Assumption 2.1 with constants that solely depend on 𝑝, the specific
polynomial basis, the shape-regularity of the underlying triangulation, and Ω. In particular, the constants are
independent of the specific choice of averaging region 𝑇𝑧.

The freedom in the choice of the averaging element 𝑇𝑧 can be exploited to ensure additional properties, see
also Section 4 of [24], Section 3 of [32], Section 4.3 of [38]. For the Scott-Zhang operator on general NVB meshes,
the mesh decomposition of [24] can be employed to transfer information between the refinement levels. In the
following, we define a modified Scott-Zhang operator for the hierarchy

(︀
fcc(𝒯 , ̂︀𝒯ℓ)

)︀
ℓ
, where a guiding principle

is that in the definition of ̃︀𝐼SZ one selects the averaging element 𝑇𝑧 from the mesh 𝒯 whenever possible:

Definition 2.4 (Adapted Scott-Zhang operators). Given a 𝒯 that is obtained by NVB refinement from a
regular triangulation ̂︀𝒯0 and ̃︀𝒯ℓ = fcc(𝒯 , ̂︀𝒯ℓ), the operators ̃︀𝐼SZ

ℓ : 𝐿2(Ω) → ̃︀𝑉ℓ = 𝑆𝑝,1(̃︀𝒯ℓ) and ̂︀𝐼SZ
ℓ : 𝐿2(Ω) →̂︀𝑉ℓ = 𝑆𝑝,1(̂︀𝒯ℓ) are Scott-Zhang operators of the form (2.5) with the following choice of averaging element 𝑇𝑧:

(1) First, loop through all 𝑇 ∈ ̂︀𝒯ℓ ∩ ̃︀𝒯ℓ (in any fixed order) and select the averaging sets 𝑇𝑧 for the nodes 𝑧 ∈ 𝑇
as follows:

(a) If 𝑧 ∈ 𝑇 , then select 𝑇𝑧 = 𝑇 for both ̂︀𝐼SZ
ℓ and ̃︀𝐼SZ

ℓ .
(b) If 𝑧 ∈ 𝜕𝑇 and the node 𝑧 has not been assigned an averaging set 𝑇𝑧 yet, then:
(i) If 𝒜(𝑧, ̂︀𝒯ℓ) contains an element 𝑇 ′ ∈ ̂︀𝒯ℓ that is a proper subset of an element ̃︀𝑇 ∈ 𝒯 , then select this 𝑇 ′

to define ̂︀𝐼SZ
ℓ and select ̃︀𝑇 for the definition of ̃︀𝐼SZ

ℓ .
(ii) Else select 𝑇 for both ̂︀𝐼SZ

ℓ and ̃︀𝐼SZ
ℓ .

(2) Next, loop through all 𝑇 ∈ ̃︀𝒯ℓ ∖ ̂︀𝒯ℓ (in any fixed order). Select, for the construction of ̃︀𝐼SZ
ℓ , this 𝑇 as the

averaging element for all nodes 𝑧 with 𝑧 ∈ 𝑇 that have not already been fixed in step (1) or in a previous
step of the loop. This completes the definition of ̃︀𝐼SZ

ℓ .
(3) Finally, loop through all 𝑇 ∈ ̂︀𝒯ℓ ∖ ̃︀𝒯ℓ (in any fixed order). Select, for the construction of ̂︀𝐼SZ

ℓ , this 𝑇 as the
averaging element for all nodes 𝑧 with 𝑧 ∈ 𝑇 that have not already been fixed in step (1) or in a previous
step of the loop. This completes the definition of ̂︀𝐼SZ

ℓ .

In Lemma 4.4 below we will see that this definition of the adapted Scott-Zhang operator ensures ̂︀𝐼SZ
ℓ 𝑢 = ̃︀𝐼SZ

ℓ 𝑢
for all 𝑢 ∈ 𝑆𝑝,1(𝒯 ).

2.2.3. The multilevel decomposition

With the use of the adapted Scott-Zhang operators ̃︀𝐼SZ
ℓ and a mesh hierarchy based on the finest common

coarsening between NVB meshes and uniformly refined meshes, we obtain a multilevel decomposition with norm
equivalence in the Besov space 𝐵

3𝜃/2
2,𝑞 (Ω) as a consequence of the stability estimate of Theorem 2.2.

Theorem 2.5. Let 𝒯 be a mesh obtained by NVB refinement of a triangulation ̂︀𝒯0 with mesh size ̂︀ℎ0. Let ̂︀𝒯ℓ

be the sequence of uniformly refined meshes starting from ̂︀𝒯0 with mesh size ̂︀ℎℓ = ̂︀ℎ02−ℓ. Set ̃︀𝒯ℓ := fcc(𝒯 , ̂︀𝒯ℓ).
Let ̃︀𝐼SZ

ℓ : 𝐿2(Ω) → 𝑆𝑝,1(̃︀𝒯ℓ) be the adapted Scott-Zhang operator defined in Definition 2.4. Then, on the space
𝑆𝑝,1(𝒯 ) the following three norms are equivalent with equivalence constants depending only on ̂︀𝒯0, 𝑝, 𝜃 ∈ (0, 1),
and 𝑞 ∈ [1,∞]:
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‖𝑢‖
𝐵

3𝜃/2
2,𝑞 (Ω)

, (2.7)

‖̃︀𝐼SZ
0 𝑢‖𝐿2(Ω) + ‖(23𝜃ℓ/2‖𝑢− ̃︀𝐼SZ

ℓ 𝑢‖𝐿2(Ω))ℓ≥0‖ℓ𝑞 , (2.8)

‖̃︀𝐼SZ
0 𝑢‖𝐿2(Ω) + ‖(23𝜃ℓ/2‖̃︀𝐼SZ

ℓ+1𝑢− ̃︀𝐼SZ
ℓ 𝑢‖𝐿2(Ω))ℓ≥0‖ℓ𝑞 . (2.9)

2.3. A realization of an optimal multilevel preconditioner for the fractional Laplacian

The final main result of this paper presents a multilevel diagonal preconditioner with uniformly bounded
condition number on locally refined triangulations for the fractional Laplacian.

With the integral fractional Laplacian defined as the principal value integral

(−∆)𝑠𝑢(𝑥) := 𝐶(𝑑, 𝑠) P.V.
∫︁

R𝑑

𝑢(𝑥)− 𝑢(𝑦)
|𝑥− 𝑦|𝑑+2𝑠

d𝑦, 𝐶(𝑑, 𝑠) := 22𝑠𝑠
Γ(𝑠 + 𝑑/2)

𝜋𝑑/2Γ(1− 𝑠)
0 < 𝑠 < 1,

where Γ( · ) denotes the Gamma function, we consider the problem

(−∆)𝑠𝑢 = 𝑓 in Ω, 𝑢 = 0 in Ω𝑐 (2.10)

for a given right-hand side 𝑓 ∈ 𝐻−𝑠(Ω). Here, 𝐻−𝑠(Ω) denotes the dual space of the Hilbert space

̃︀𝐻𝑠(Ω) =
{︀
𝑢 ∈ 𝐻𝑠(R𝑑) : 𝑢 ≡ 0 on Ω𝑐

}︀
, ‖𝑣‖2̃︀𝐻𝑠(Ω) := ‖𝑣‖2𝐻𝑠(Ω) +

⃦⃦
dist(·, 𝜕Ω)−𝑠𝑣

⃦⃦2

𝐿2(Ω)
.

The weak formulation of (2.10) is given by finding 𝑢 ∈ ̃︀𝐻𝑠(Ω) such that

𝑎(𝑢, 𝑣) :=
𝐶(𝑑, 𝑠)

2

∫︁ ∫︁
R𝑑×R𝑑

(𝑢(𝑥)− 𝑢(𝑦))(𝑣(𝑥)− 𝑣(𝑦))

|𝑥− 𝑦|𝑑+2𝑠
d𝑥 d𝑦 =

∫︁
Ω

𝑓𝑣 d𝑥 ∀𝑣 ∈ ̃︀𝐻𝑠(Ω). (2.11)

Existence and uniqueness of 𝑢 ∈ ̃︀𝐻𝑠(Ω) follow from the Lax–Milgram lemma.
With a given regular triangulation 𝒯0, we consider two hierarchical sequence of meshes 𝒯ℓ, ̃︀𝒯ℓ, ℓ = 0, . . . , 𝐿:

(1) (sequence (𝒯ℓ)ℓ): The meshes 𝒯ℓ are generated by an adaptive algorithm (see, e.g., [33]) of the form SOLVE
– ESTIMATE – MARK – REFINE, where the step REFINE is done by newest vertex bisection. In the following,
both for the case of piecewise linear and piecewise constant basis functions, we always assume that the
meshes 𝒯ℓ are regular in the sense of Ciarlet.

(2) (sequence (̃︀𝒯ℓ)ℓ): From a given triangulation 𝒯𝐿 obtained by NVB refinement of 𝒯0, which may, e.g., be
obtained from an adaptive algorithm, the finest common coarsening of 𝒯𝐿 with the uniform refinements of
𝒯0 (denoted by ̂︀𝒯ℓ) provides a hierarchy of meshes ̃︀𝒯ℓ = fcc(𝒯𝐿, ̂︀𝒯ℓ).

2.3.1. A local multilevel diagonal preconditioner for adaptively refined meshes

We start with the case of the adaptively generated mesh hierarchy (𝒯ℓ)ℓ. On the mesh 𝒯ℓ, we discretize with
piecewise constants (for 0 < 𝑠 < 1/2) as the space 𝑉 0

ℓ = 𝑆0,0(𝒯ℓ) and piecewise linears (for 0 < 𝑠 < 1) as the
space 𝑉 1

ℓ = 𝑆1,1
0 (𝒯ℓ). If the distinction between 𝑉 0

ℓ and 𝑉 1
ℓ is not essential, we write 𝑉ℓ meaning 𝑉ℓ ∈ {𝑉 0

ℓ , 𝑉 1
ℓ }.

The Galerkin discretization (2.11) in 𝑉ℓ of reads as: Find 𝑢ℓ ∈ 𝑉ℓ, such that

𝑎(𝑢ℓ, 𝑣ℓ) = ⟨𝑓, 𝑣ℓ⟩𝐿2(Ω) ∀𝑣ℓ ∈ 𝑉ℓ. (2.12)

Moreover, on the uniformly refined meshes ̂︀𝒯ℓ, in the same way, we define the discrete spaces ̂︀𝑉 0
ℓ = 𝑆0,0(̂︀𝒯ℓ),̂︀𝑉 1

ℓ = 𝑆1,1
0 (̂︀𝒯ℓ), and ̂︀𝑉ℓ ∈ {̂︀𝑉 0

ℓ , ̂︀𝑉 1
ℓ }.

We define sets of “characteristic” points 𝒩 𝑖
ℓ , 𝑖 = 0, 1, representing the degrees of freedom of 𝑉ℓ. For the

piecewise constant case 𝑉 0
ℓ , the set 𝒩 0

ℓ comprises all barycenters of elements of the mesh 𝒯ℓ. For the piecewise
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linear case 𝑉 1
ℓ , we denote the set of all interior vertices of the mesh 𝒯ℓ by 𝒩 1

ℓ . If the distinction between 𝒩 0
ℓ

and 𝒩 1
ℓ is not essential, we will write 𝒩ℓ meaning 𝒩ℓ ∈ {𝒩 0

ℓ ,𝒩 1
ℓ } is either 𝒩 0

ℓ if 𝑉ℓ = 𝑉 0
ℓ or 𝒩 1

ℓ if 𝑉ℓ = 𝑉 1
ℓ .

The points 𝑧 ∈ 𝒩ℓ are called nodes.
We choose a basis of 𝑉ℓ = span{𝜙ℓ

𝑧𝑗
: 𝑧𝑗 ∈ 𝒩ℓ, 𝑗 = 1, . . . , 𝑁ℓ}: for the piecewise constants we take the

characteristic functions 𝜙ℓ
𝑧𝑗

= 𝜒𝑇𝑗 of the element satisfying 𝑧𝑗 ∈ 𝑇𝑗 ∈ 𝒯ℓ, and for the piecewise linears we take
hat functions corresponding to the interior nodes defined by 𝜙ℓ

𝑧𝑗
(𝑧𝑖) = 𝛿𝑗,𝑖 for all nodes 𝑧𝑖 ∈ 𝒩ℓ. With these

bases, we can write 𝑢ℓ =
∑︀𝑁ℓ

𝑗=1 xℓ
𝑗𝜙

ℓ
𝑧𝑗

, and (2.12) is equivalent to solving the linear system

Aℓxℓ = bℓ (2.13)

with the stiffness matrix Aℓ and load vector bℓ

Aℓ
𝑘𝑗 := 𝑎(𝜙ℓ

𝑧𝑗
, 𝜙ℓ

𝑧𝑘
), bℓ

𝑘 :=
⟨︀
𝑓, 𝜙ℓ

𝑧𝑘

⟩︀
𝐿2(Ω)

. (2.14)

Again, we mention that the ℓ2-condition number of the unpreconditioned Galerkin matrix grows like 𝜅(Aℓ) ∼

𝑁
2𝑠/𝑑
ℓ

(︁
ℎℓ
max

ℎℓ
min

)︁𝑑−2𝑠

, which shows the need for a preconditioner in order to use an iterative solver.

For fixed 𝐿 ∈ N0, we introduce a local multilevel diagonal preconditioner (B𝐿)−1 of BPX-type for the stiffness
matrix A𝐿 from (2.13) in the same way as in [5,38]. That is, following [38], we define the patch of a node 𝑧 ∈ 𝒩ℓ

as
𝜔ℓ(𝑧) := interior

⋃︁
{𝑇 : 𝑇 ∈ 𝒯ℓ, 𝑧 ∈ 𝑇}.

The sets ℳ𝑖
ℓ, 𝑖 = 0, 1, defined in the following, describe the changes in the mesh hierarchy between the levels

ℓ and ℓ− 1 and are crucial for the definition of the local diagonal scaling. For the case of piecewise linears, we
define the sets ℳ1

ℓ as the sets of new vertices and their direct neighbors in the mesh 𝒯ℓ: We set ℳ1
0 := 𝒩 1

0 and

ℳ1
ℓ := 𝒩 1

ℓ ∖𝒩 1
ℓ−1 ∪ {𝑧 ∈ 𝒩 1

ℓ ∩𝒩 1
ℓ−1 : 𝜔ℓ(𝑧) ( 𝜔ℓ−1(𝑧)}, ℓ ≥ 1. (2.15)

For the case of a piecewise constant discretization, we define the set ℳ0
ℓ simply as the barycenters corresponding

to the new elements, i.e., ℳ0
ℓ := 𝒩 0

ℓ ∖𝒩 0
ℓ−1 for ℓ ≥ 1. In the same way as for the nodes 𝒩ℓ, we write ℳℓ to

either be ℳ0
ℓ and ℳ1

ℓ , which should be clear from context.
The local multilevel diagonal preconditioner is given by

(B𝐿)−1 :=
𝐿∑︁

ℓ=0

Iℓ Dℓ
inv(Iℓ)𝑇 , (2.16)

where, with 𝑁ℓ := #𝒩ℓ, the appearing matrices are defined as

– Iℓ ∈ R𝑁𝐿×𝑁ℓ denotes the matrix representation of the embedding ℐℓ : 𝑉ℓ → 𝑉𝐿.

– Dℓ
inv ∈ R𝑁ℓ×𝑁ℓ is a diagonal matrix with entries

(︀
Dℓ

inv

)︀
𝑗𝑘

=

{︃(︀
Aℓ

𝑗𝑗

)︀−1
𝛿𝑗𝑘 𝑗 : 𝑧𝑗 ∈ℳℓ

0 otherwise
.

That is, the entries of the diagonal matrix are the reciprocals of the diagonal entries of the matrix Aℓ

corresponding to the degrees of freedom in ℳℓ.

Moreover, we define the additive Schwarz matrix P𝐿
AS :=

(︀
B𝐿
)︀−1

A𝐿. Instead of solving (2.13) for ℓ = 𝐿, we
solve the following preconditioned linear systems

P𝐿
ASx

𝐿 =
(︀
B𝐿
)︀−1

b𝐿. (2.17)

The following theorem is the main result of this section and provides optimal bounds to the eigenvalues of the
preconditioned matrix.
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Theorem 2.6. The minimal and maximal eigenvalues of the additive Schwarz matrix P𝐿
AS are bounded by

𝑐 ≤ 𝜆min

(︀
P𝐿

AS

)︀
and 𝜆max

(︀
P𝐿

AS

)︀
≤ 𝐶, (2.18)

where the constants 𝑐, 𝐶 > 0 depend only on Ω, 𝑑, 𝑠, and the initial triangulation 𝒯0.

Remark 2.7. The preconditioner (B𝐿)−1 is a symmetric positive definite matrix and the preconditioned matrix
P𝐿

AS is symmetric and positive definite with respect to the inner product induced by B𝐿. Therefore, Theorem 2.6
leads to 𝜅(P𝐿

AS) ≤ 𝐶/𝑐. �

Remark 2.8. The cost to apply the preconditioner is proportional to
∑︀𝐿

ℓ=0 cardℳℓ = 𝑂(𝑁𝐿) by Section 3.1
of [38]. �

2.3.2. A local multilevel diagonal preconditioner using a finest common coarsening mesh hierarchy

In this subsection, we provide a result similar to Theorem 2.6 for the meshes ̃︀𝒯ℓ = fcc(𝒯𝐿, ̂︀𝒯ℓ), where
ℓ = 0, . . . , 𝐿. With ̃︀𝑉 0

ℓ = 𝑆0,0(̃︀𝒯ℓ), ̃︀𝑉 1
ℓ = 𝑆1,1

0 (̃︀𝒯ℓ), and ̃︀𝑉ℓ ∈ {̃︀𝑉 0
ℓ , ̃︀𝑉 1

ℓ } being either the piecewise constants or
piecewise linears on ̃︀𝒯ℓ, the Galerkin discretization of finding ̃︀𝑢ℓ ∈ ̃︀𝑉ℓ such that

𝑎(̃︀𝑢ℓ, ̃︀𝑣ℓ) = ⟨𝑓, ̃︀𝑣ℓ⟩𝐿2(Ω) ∀ ̃︀𝑣ℓ ∈ ̃︀𝑉ℓ (2.19)

is equivalent to solving the linear system

̃︀Aℓ̃︀xℓ = ̃︀bℓ (2.20)

by choosing a nodal basis as in the previous subsection. The set of nodes ̃︀𝒩 𝑖
ℓ , 𝑖 = 0, 1, and ̃︀𝒩ℓ as well as the sets̃︁ℳ𝑖

ℓ, 𝑖 = 0, 1, and ̃︁ℳℓ can be defined in exactly the same way as in the previous subsection by just replacing the
meshes 𝒯ℓ with ̃︀𝒯ℓ. Therefore, in exactly the same way as in (2.16), we can define the local multilevel diagonal
preconditioner

(︁̃︀B𝐿
)︁−1

:=
𝐿∑︁

ℓ=0

Iℓ ̃︀Dℓ
inv(Iℓ)𝑇 .

The following theorem then gives optimal bounds for the smallest and largest eigenvalues of the preconditioned

matrix ̃︀P𝐿
AS :=

(︁̃︀B𝐿
)︁−1 ̃︀A𝐿.

Theorem 2.9. The minimal and maximal eigenvalues of the additive Schwarz matrix ̃︀P𝐿
AS are bounded by

𝑐 ≤ 𝜆min

(︁̃︀P𝐿
AS

)︁
and 𝜆max

(︁̃︀P𝐿
AS

)︁
≤ 𝐶, (2.21)

where the constants 𝑐, 𝐶 > 0 depend only on Ω, 𝑑, 𝑠, and the initial triangulation 𝒯0.

Remark 2.10. By Lemma 4.3 the cost of the preconditioner are, up to a constant, card ̃︁ℳ0 +
∑︀𝐿

ℓ=1 card ̃︁ℳℓ .

card ̃︁ℳ0 +
∑︀𝐿

ℓ=0 card ̃︀𝒩ℓ − card ̃︀𝒩ℓ−1 . card ̃︀𝒩𝐿 = card 𝒯𝐿. �

3. Stability of Scott-Zhang type operators

We will need mollifiers with certain local approximation properties. Essentially, such operators are given by
those classical mollifiers that reproduce, or at least approximate to high order, polynomials of degree 𝑝. The
following proposition, which is taken from [42], provides such operators. Our primary reason for working with
this particular class of approximation operators is that the technical complications associated with the boundary
of 𝜕Ω have been taken care of.
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Proposition 3.1 ([42], Thm. 2.3). Let Ω be a bounded Lipschitz domain and 𝑝 ∈ N0 be fixed. For open 𝜔 ⊂ Ω
and 𝜀 > 0 denote by 𝜔𝜀 := Ω ∩ ∪𝑥∈𝜔𝐵𝜀(𝑥) the “𝜀-neighborhood” of 𝜔. Then, there exists a constant 𝐶 > 0
such that for every 𝜀 > 0 there is a linear operator 𝒜𝜀 : 𝐿1

𝑙𝑜𝑐(Ω) → 𝐶∞(Ω) with the following stability and
approximation properties for arbitrary open 𝜔 ⊂ Ω:

(i) If 𝑢 ∈ 𝐻𝑘(𝜔𝜀) with 𝑘 ≤ 𝑝 + 1, then ‖𝒜𝜀𝑢‖𝐻ℓ(𝜔) ≤ 𝐶𝜀−ℓ+𝑘‖𝑢‖𝐻𝑘(𝜔𝜀), ℓ = 𝑘, . . . , 𝑝 + 1.
(ii) If 𝑢 ∈ 𝐻𝑘(𝜔𝜀) with 𝑘 ≤ 𝑝 + 1, then ‖𝑢−𝒜𝜀𝑢‖𝐻ℓ(𝜔) ≤ 𝐶𝜀𝑘−ℓ‖𝑢‖𝐻𝑘(𝜔𝜀), ℓ = 0, . . . , 𝑘.

Proof. The proof for the much more technical case of a variable length scale function 𝜀 = 𝜀(𝑥) is given in
Theorem 2.3 of [42]. We give the idea of the proof: in the interior of Ω, the operator 𝒜𝜀 has the form 𝒜𝜀𝑢 = 𝑢*𝜌𝜀,
where the mollifier 𝜌𝜀 is such that it reproduces polynomials of degree 𝑝 (the “classical” mollifier reproduces
merely constant functions). Near the boundary, this standard averaging is modified such that 𝒜𝜀𝑢(𝑥) is not
obtained by averaging 𝑢 on 𝐵𝜀(𝑥) but by averaging 𝑢 on the ball 𝐵𝜀(𝑥+𝜀𝑏) and evaluating the Taylor polynomial
of degree 𝑝 of this averaged function at the point 𝑥 of interest; the vector 𝑏 is suitable of size 𝑂(1) and it ensures
that the averaging is performed inside Ω. �

With the mollifiers from Proposition 3.1, we can prove stability and approximation properties for operators
satisfying Assumption 2.1 in stronger norms.

Lemma 3.2. Let 𝑚 ∈ {1, 2} and 𝑝 ≥ 𝑚−1. Assume that the linear operator 𝐼𝑚
ℎ : 𝐻𝑚(Ω) → 𝑆𝑝,𝑚−1(𝒯 ) satisfies

Assumption 2.1. Then, there is a constant 𝐶 > 0 depending solely on 𝑑, 𝑚, 𝑝, and the 𝛾-shape-regularity of 𝒯
such that for all 𝑇 ∈ 𝒯 the following stability and approximation properties hold:

‖𝐼𝑚
ℎ 𝑢‖𝐻𝑟(𝑇 ) ≤ 𝐶‖𝑢‖𝐻𝑟(𝜔2(𝑇 )), 𝑟 = 0, . . . ,𝑚, (3.1)

‖𝑢− 𝐼𝑚
ℎ 𝑢‖𝐻𝑟(𝑇 ) ≤ 𝐶ℎ𝑘−𝑟

𝑇 ‖𝑢‖𝐻𝑘(𝜔2(𝑇 )), 𝑟 = 0, . . . , min{𝑘, 𝑚}, 𝑘 = 0, . . . , 𝑝 + 1. (3.2)

Proof. Let 𝑇 ∈ 𝒯 be arbitrary. We use the operator 𝒜𝜀 of Proposition 3.1 with 𝜔 = 𝜔(𝑇 ) and 𝜀 ∼ ℎ𝑇 , such
that 𝜔𝜀 ⊂ 𝜔2(𝑇 ). We write using the triangle inequality

‖𝑢− 𝐼𝑚
ℎ 𝑢‖𝐻𝑟(𝑇 ) ≤ ‖𝑢−𝒜𝜀𝑢‖𝐻𝑟(𝑇 ) + ‖𝒜𝜀𝑢− 𝐼𝑚

ℎ 𝒜𝜀𝑢‖𝐻𝑟(𝑇 ) + ‖𝐼𝑚
ℎ (𝑢−𝒜𝜀𝑢)‖𝐻𝑟(𝑇 ) =: 𝑇1 + 𝑇2 + 𝑇3.

By Proposition 3.1, we have 𝑇1 . ℎ𝑘−𝑟
𝑇 ‖𝑢‖𝐻𝑘(𝜔2(𝑇 )). A polynomial inverse estimate, see, e.g., [30], the stability

property (ii) of Assumption 2.1, and Proposition 3.1 give

𝑇3 . ℎ−𝑟
𝑇 ‖𝑢−𝒜𝜀𝑢‖𝐿2(𝜔(𝑇 )) . ℎ−𝑟

𝑇 ℎ𝑘
𝑇 ‖𝑢‖𝐻𝑘(𝜔2(𝑇 )).

In order to estimate 𝑇2, we use a piecewise polynomial 𝑞 ∈ 𝑆𝑝,𝑚−1(𝒯 ) with approximation properties in the
𝐻𝑟-norm (e.g., a Clément or Scott-Zhang type interpolation) as given by Theorem 4.8.12 of [20]. Then,

𝑇2 ≤ ‖𝒜𝜀𝑢− 𝑢‖𝐻𝑟(𝑇 ) + ‖𝑢− 𝑞‖𝐻𝑟(𝑇 ) + ‖𝐼𝑚
ℎ 𝒜𝜀𝑢− 𝑞‖𝐻𝑟(𝑇 ) =: 𝑇2,1 + 𝑇2,2 + 𝑇2,3.

We have already estimated 𝑇2,1 = 𝑇1. By Theorem 4.8.12 of [20] (and inspection of the procedure there), we
obtain 𝑇2,2 . ℎ𝑘−𝑟

𝑇 ‖𝑢‖𝐻𝑘(𝜔2(𝑇 )). Finally, for 𝑇2,3, we use an inverse estimate

𝑇2,3 . ℎ−𝑟
𝑇 ‖𝐼𝑚

ℎ 𝒜𝜀𝑢− 𝑞‖𝐿2(𝑇 ) . ℎ−𝑟
𝑇

[︀
‖𝐼𝑚

ℎ 𝒜𝜀𝑢−𝒜𝜀𝑢‖𝐿2(𝑇 ) + ‖𝒜𝜀𝑢− 𝑢‖𝐿2(𝑇 ) + ‖𝑢− 𝑞‖𝐿2(𝑇 )

]︀
.

The last two terms have the desired form due to Proposition 3.1 and Theorem 4.8.12 of [20]. For the remaining
term, we write with Assumption 2.1 (iii) and Proposition 3.1

‖𝐼𝑚
ℎ 𝒜𝜀𝑢−𝒜𝜀𝑢‖𝐿2(𝑇 ) . ℎ𝑚

𝑇 ‖𝒜𝜀𝑢‖𝐻𝑚(𝜔(𝑇 )) . ℎ𝑚
𝑇 ℎ𝑘−𝑚

𝑇 ‖𝑢‖𝐻𝑘(𝜔2(𝑇 )).

Finally, (3.1) follows from (3.2) by selecting 𝑟 = 𝑘. �
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The generalization of Proposition 3.1 to the case of variable length scale functions from Theorem 2.3 of [42]
can also be used to derive a smooth operator with approximation and stability properties for ℎ-weighted and
fractional norms.

Corollary 3.3. With the mesh size function ℎ of 𝒯 and 𝑡 > 0, define the function ℎ := max{𝑡, ℎ}. Let 𝑚,
𝑛 ∈ N0 be fixed and 𝑢 ∈ 𝐻𝑚(Ω). Then, for every 𝑡 > 0 there exists a linear operator 𝐽𝑡 : 𝐿2(Ω) → 𝐶∞(Ω) with
the following stability and approximation properties:

‖ℎ𝑛∇𝑚+𝑛𝐽𝑡𝑢‖𝐿2(Ω) ≤ 𝐶𝑚,𝑛‖𝑢‖𝐻𝑚(Ω), (3.3)
𝑚∑︁

𝑗=0

‖ℎ−(𝑗−𝑚)∇𝑗(𝑢− 𝐽𝑡𝑢)‖𝐿2(Ω) ≤ 𝐶𝑚‖𝑢‖𝐻𝑚(Ω). (3.4)

In particular, interpolation arguments give

‖ℎ1/2∇𝐽𝑡𝑢‖𝐿2(Ω) + ‖ℎ−1/2
(𝑢− 𝐽𝑡𝑢)‖𝐿2(Ω) ≤ 𝐶‖𝑢‖𝐻1/2(Ω), (3.5)

‖ℎ1/2∇2𝐽𝑡𝑢‖𝐿2(Ω) + ‖ℎ−3/2
(𝑢− 𝐽𝑡𝑢)‖𝐿2(Ω) + ‖ℎ−1/2∇(𝑢− 𝐽𝑡𝑢)‖𝐿2(Ω) ≤ 𝐶‖𝑢‖𝐻3/2(Ω). (3.6)

The constants 𝐶𝑚,𝑛 and 𝐶𝑚 depend on 𝑚 and 𝑛 as indicated, as well as on Ω and the 𝛾-shape regularity of 𝒯 .
The constant 𝐶 depends only on Ω and the 𝛾-shape regularity of 𝒯 .

Proof.
Step 1. For 𝑡 ≥ diam Ω, one may select 𝐽𝑡 = 0.
Step 2. For 𝑡 ≤ diam Ω, one constructs a length scale function 𝜀 with 𝜀 ∼ ℎ in the following way: First, by
mollification of the piecewise constant function ℎ (see Lemma 3.1 of [42], for details), one obtains a functioñ︀ℎ ∈ 𝐶∞(Ω), whose Lipschitz constant ℒ depends solely on the 𝛾-shape regularity of 𝒯 and Ω. Next, one defines
the auxiliary length scale function ̃︀𝜀(𝑥) := ̃︀ℎ(𝑥) + 𝑡. We note that the Lipschitz constant of ̃︀𝜀 is still ℒ. From
Lemma 5.7 of [42], there are parameters 0 < 𝛼 < 𝛽 (depending on ℒ) and 𝑁𝑑 ∈ N (depending only on the
spatial dimension 𝑑) as well as closed balls 𝐵𝑖𝑗 := 𝐵𝛼̃︀𝜀(𝑥𝑖𝑗)(𝑥𝑖𝑗), 𝑖 = 1, . . . , 𝑁𝑑, 𝑗 ∈ N such that the following
holds:
(a) Ω ⊂ ∪𝑁𝑑

𝑖=1 ∪𝑗∈N 𝐵𝑖𝑗 ;
(b) There is a constant 𝐶big > 0, such that, for each 𝑖 ∈ {1, . . . , 𝑁𝑑}, the stretched ballŝ︀𝐵𝑖𝑗 := 𝐵𝛽̃︀𝜀(𝑥𝑖𝑗)(𝑥𝑖𝑗) satisfy an overlap condition: #{𝑗′ | ̂︀𝐵𝑖𝑗′ ∩ ̂︀𝐵𝑖𝑗 ̸= ∅} ≤ 𝐶big for all 𝑗 ∈ N.
(c) For pairs (𝑖, 𝑗) and (𝑖′, 𝑗′) with ̂︀𝐵𝑖𝑗∩ ̂︀𝐵𝑖′𝑗′ ̸= ∅, there holds ̃︀𝜀(𝑥𝑖𝑗) ∼ ̃︀𝜀(𝑥𝑖′𝑗′) with implied constant depending

solely on ℒ and 𝛽. This implies a fortiori that for pairs (𝑖, 𝑗) and (𝑖′, 𝑗′) with 𝐵𝑖𝑗 ∩ 𝐵𝑖′𝑗′ ̸= ∅ there holds̃︀𝜀(𝑥𝑖𝑗) ∼ ̃︀𝜀(𝑥𝑖′𝑗′) with implied constant depending solely on ℒ and 𝛽 (which follows by inspection of the
proof of Lemma 5.7 from [42]).

Denoting by 𝜒𝐴 the characteristic function of the set 𝐴, we define the desired length scale function 𝜀 as

𝜀 :=
𝑁𝑑∑︁
𝑖=1

∑︁
𝑗∈N

̃︀𝜀(𝑥𝑖𝑗)(𝜒𝐵𝑖𝑗
* 𝜌(𝛽−𝛼)̃︀𝜀(𝑥𝑖𝑗)), (3.7)

where 𝜌𝛿 is a standard non-negative mollifier supported by 𝐵𝛿(0). Let 𝑥 ∈ Ω. Due to (a) there is (𝑖, 𝑗) with
𝑥 ∈ 𝐵𝑖𝑗 . The non-negativity of the mollifier 𝜌𝛿 gives 𝜀(𝑥) & ̃︀𝜀(𝑥𝑖𝑗). Furthermore, (b), (c) imply that the sum
(3.7) is locally finite (with at most 𝑁𝑑𝐶big non-zero terms). In view of (c), we get 𝜀(𝑥) . 𝜀(𝑥𝑖𝑗). By studying
derivatives of 𝜀, we recognize that it is a length scale function in the sense of Definition 2.1 from [42].
Step 3. The upshot of Lemma 5.7 from [42] is that, once a length scale function 𝜀 is available, then a covering
argument can be employed. That is, the operator 𝒜𝜀 of Theorem 2.3 from [42] yields

𝑚∑︁
𝑗=0

‖𝜀𝑚−𝑗∇𝑗(𝑢−𝒜𝜀𝑢)‖𝐿2(Ω) . ‖𝑢‖𝐻𝑚(Ω), ‖𝜀𝑛∇𝑚+𝑛𝒜𝜀𝑢‖𝐿2(Ω) . ‖𝑢‖𝐻𝑚(Ω),
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which proves (3.3) and (3.4) since 𝜀 ∼ ℎ.
Step 4. Interpolation between the inequalities for 𝑚 = 0 and 𝑚 = 1 using Lemma 23.1 of [54] then gives the
estimate (3.5), and interpolation between 𝑚 = 1 and 𝑚 = 2 the bound (3.6). �

Remark 3.4. If the shape-regular mesh 𝒯 is obtained by repeated NVB from a coarse grid 𝒯0, then a simpler
proof is possible: one may take a quasi-uniform mesh 𝒯𝑡 of mesh size ∼ 𝑡 and consider ̃︀𝒯 := fcc(𝒯 , 𝒯𝑡). Then,
𝐽𝑡 can be taken as a mollifier of the standard Scott-Zhang operator associated with ̃︀𝒯 . �

3.1. Proof of Theorem 2.2

Proof of Theorem 2.2. The function 𝐼𝑚
ℎ 𝑢 is piecewise smooth on a finite mesh. Hence, it is an element of

𝐵
𝑚−1/2
2,∞ (Ω), so that only the stability estimate has to be proved. This is achieved by constructing an element

𝑢𝑡 := 𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢) for an appropriate 𝛿 > 0 such that the 𝐾-functional can be estimated by the 𝐻𝑚−1/2-norm of

𝑢. We have

‖𝐼𝑚
ℎ 𝑢‖

𝐵
𝑚−1/2
2,∞ (Ω)

= sup
𝑡>0

𝑡−1/2𝐾(𝑡, 𝐼𝑚
ℎ 𝑢)

. sup
𝑡>0

𝑡−1/2
(︁
‖𝐼𝑚

ℎ 𝑢−𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢)‖𝐻𝑚−1(Ω) + 𝑡 ‖𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢)‖𝐻𝑚(Ω)

)︁
. (3.8)

With the operator 𝐽𝑡 from Corollary 3.3, we further decompose 𝑢 = (𝑢− 𝐽𝑡𝑢) + 𝐽𝑡𝑢 =: 𝑢0 + 𝑢1 into an element
of 𝐻𝑚−1(Ω) and one in 𝐻𝑚(Ω). By the triangle inequality, we have to control the right-hand side of (3.8) for
both contributions separately.
Step 1. For fixed 𝑡 > 0, we split the mesh into elements of size smaller than 𝑡 and larger than 𝑡:

𝒯≤𝑡 := {𝑇 ∈ 𝒯 : diam 𝑇 ≤ 𝑡}, 𝒯>𝑡 := {𝑇 ∈ 𝒯 : diam 𝑇 > 𝑡}

and define the regions covered by these elements by

Ω≤𝑡 := interior

(︃ ⋃︁
𝑇∈𝒯≤𝑡

𝑇

)︃
, Ω>𝑡 := interior

(︃ ⋃︁
𝑇∈𝒯>𝑡

𝑇

)︃
. (3.9)

There is a constant 𝛿 > 0, depending solely on the 𝛾-shape regularity of 𝒯 , such that the “𝛿𝑡-neighborhood”
𝑇𝛿𝑡 := Ω ∩ ∪𝑥∈𝑇 𝐵𝛿𝑡(𝑥) of each element in 𝒯>𝑡 is contained in the patch of the element, i.e., 𝑇𝛿𝑡 ⊂ 𝜔(𝑇 ) for all
𝑇 ∈ 𝒯>𝑡. Moreover, for each 𝑇 ∈ 𝒯>𝑡, we define the inside strip 𝑆𝑇,𝛿𝑡 at the boundary 𝜕𝑇 of 𝑇 by

𝑆𝑇,𝛿𝑡 := {𝑥 ∈ 𝑇 : dist(𝑥, 𝜕𝑇 ) < 𝛿𝑡}. (3.10)

For the set 𝒯≤𝑡, the 𝛾-shape regularity of 𝒯 implies the existence of 𝜂 ≥ 𝛿 and 𝐶 > 0 depending only on the
𝛾-shape regularity such that the extended set Ω𝜂𝑡 := Ω ∩

⋃︀
𝑥∈Ω≤𝑡

𝐵𝜂𝑡(𝑥) satisfies the conditions

𝑇 ∈ 𝒯≤𝑡 =⇒ 𝜔2(𝑇 ) ⊂ Ω𝜂𝑡, (3.11)
𝑇 ∈ 𝒯 with 𝑇 ⊂ Ω𝜂𝑡 =⇒ diam 𝑇 ≤ 𝐶𝑡, (3.12)

𝑇 ∈ 𝒯 with 𝑇 ∩ Ω𝜂𝑡 ̸= ∅ =⇒ 𝜔(𝑇 ) ⊂ Ω2𝜂𝑡. (3.13)

With the sets from (3.9) and (3.10), we decompose for 𝑘 ∈ N0 and 𝑣 ∈ 𝐻𝑘(Ω)

‖𝑣‖2𝐻𝑘(Ω) . ‖𝑣‖
2
𝐻𝑘(Ω≤𝑡)

+ ‖𝑣‖2𝐻𝑘(Ω>𝑡)
. ‖𝑣‖2𝐻𝑘(Ω≤𝑡)

+
∑︁

𝑇∈𝒯>𝑡

‖𝑣‖2𝐻𝑘(𝑇∖𝑆𝑇,𝛿𝑡)
+
∑︁

𝑇∈𝒯>𝑡

‖𝑣‖2𝐻𝑘(𝑆𝑇,𝛿𝑡)
. (3.14)

We employ this decomposition in (3.8) for 𝑘 = 𝑚 − 1 and 𝑣 = 𝐼𝑚
ℎ 𝑢𝑖 − 𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢𝑖) as well as for 𝑘 = 𝑚 and
𝑣 = 𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢𝑖) and 𝑖 ∈ {0, 1}. In the following, we estimate all these contributions separately by the desired
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𝐻𝑚−1/2(Ω)-norm of 𝑢. The main ideas are that, (a) on Ω≤𝑡, we exploit that elements are small; and (b) on
𝑇∖𝑆𝑇,𝛿𝑡, we may exploit that a sufficiently small neighborhood of this set is still contained in 𝑇 ; (c) we can use
the smoothness of 𝐼𝑚

ℎ 𝑢𝑖 inside 𝑇 ; (d) for 𝑆𝑇,𝛿𝑡, we exploit the thinness of the strip.
Step 2. We estimate 𝐼𝑚

ℎ 𝑢𝑖 −𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢𝑖) on Ω≤𝑡, where 𝛿 ≤ 𝜂 is given by step 1.

For 𝑖 = 0, we use the stability estimates of Proposition 3.1 and Lemma 3.2 and finally Corollary 3.3 (using ℎ ∼ 𝑡
due to (3.12)) to obtain

‖𝐼𝑚
ℎ 𝑢0 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖𝐻𝑚−1(Ω≤𝑡) ≤ ‖𝐼
𝑚
ℎ 𝑢0‖𝐻𝑚−1(Ω≤𝑡) + ‖𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖𝐻𝑚−1(Ω≤𝑡)

. ‖𝐼𝑚
ℎ 𝑢0‖𝐻𝑚−1(Ω≤𝑡) + ‖𝐼𝑚

ℎ 𝑢0‖𝐻𝑚−1(Ω𝜂𝑡)

(3.1)

. ‖𝑢0‖𝐻𝑚−1(Ω2𝜂𝑡) = ‖𝑢− 𝐽𝑡𝑢‖𝐻𝑚−1(Ω2𝜂𝑡)

Cor. 3.3

. 𝑡1/2 ‖𝑢‖𝐻𝑚−1/2(Ω) .

For 𝑖 = 1, we use the approximation property of 𝐼𝑚
ℎ (cf. (3.2) with 𝑟 = 𝑚 − 1 and 𝑘 = 𝑚) together with the

fact that the element size of elements in Ω≤𝑡 is bounded by 𝑡 as well as the local stability and approximation
properties of 𝒜𝛿𝑡 from Proposition 3.1 to get

‖𝐼𝑚
ℎ 𝑢1 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢1)‖𝐻𝑚−1(Ω≤𝑡)

≤ ‖𝐼𝑚
ℎ 𝑢1 − 𝑢1‖𝐻𝑚−1(Ω≤𝑡) + ‖𝑢1 −𝒜𝛿𝑡𝑢1‖𝐻𝑚−1(Ω≤𝑡) + ‖𝒜𝛿𝑡(𝑢1 − 𝐼𝑚

ℎ 𝑢1)‖𝐻𝑚−1(Ω≤𝑡)

ℎ.𝑡

. 𝑡‖𝑢1‖𝐻𝑚(Ω𝜂𝑡) + 𝑡‖𝑢1‖𝐻𝑚(Ω𝜂𝑡) + ‖𝑢1 − 𝐼𝑚
ℎ 𝑢1‖𝐻𝑚−1(Ω𝜂𝑡)

ℎ.𝑡

. 𝑡‖𝑢1‖𝐻𝑚(Ω2𝜂𝑡)

Cor. 3.3

. 𝑡1/2 ‖𝑢‖𝐻𝑚−1/2(Ω) .

Step 3. We estimate 𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢𝑖) on Ω≤𝑡. For 𝑖 = 0, using the stability properties of the smoothing operator

from Proposition 3.1, the stability of 𝐼𝑚
ℎ , and Corollary 3.3, we get

𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢0)‖𝐻𝑚(Ω≤𝑡) . ‖𝐼

𝑚
ℎ 𝑢0‖𝐻𝑚−1(Ω𝜂𝑡)

(3.1)

. ‖𝑢0‖𝐻𝑚−1(Ω2𝜂𝑡)

Cor. 3.3

. 𝑡1/2‖𝑢‖𝐻𝑚−1/2(Ω).

Similarly, for 𝑢1 ∈ 𝐻𝑚(Ω), we obtain with Proposition 3.1

𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢1)‖𝐻𝑚(Ω≤𝑡) . 𝑡‖𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢1 − 𝑢1)‖𝐻𝑚(Ω≤𝑡) + 𝑡‖𝒜𝛿𝑡𝑢1‖𝐻𝑚(Ω≤𝑡)

. ‖𝐼𝑚
ℎ 𝑢1 − 𝑢1‖𝐻𝑚−1(Ω𝜂𝑡) + 𝑡‖𝑢1‖𝐻𝑚(Ω𝜂𝑡)

(3.2),ℎ≤𝑡

. 𝑡‖𝑢1‖𝐻𝑚(Ω2𝜂𝑡)

Cor. 3.3

. 𝑡1/2‖𝑢‖𝐻𝑚−1/2(Ω).

Step 4. We derive estimates on 𝑇∖𝑆𝑇,𝛿𝑡 for 𝑇 ∈ 𝒯>𝑡. Since the “𝛿𝑡-neighborhood” (𝑇∖𝑆𝑇,𝛿𝑡)𝛿𝑡 of 𝑇∖𝑆𝑇,𝛿𝑡

satisfies (𝑇∖𝑆𝑇,𝛿𝑡)𝛿𝑡 ⊆ 𝑇 , Proposition 3.1 and an inverse inequality imply

‖𝐼𝑚
ℎ 𝑢0 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖𝐻𝑚−1(𝑇∖𝑆𝑇,𝛿𝑡) . 𝑡‖𝐼𝑚
ℎ 𝑢0‖𝐻𝑚(𝑇 ) . 𝑡ℎ−1

𝑇 ‖𝐼𝑚
ℎ 𝑢0‖𝐻𝑚−1(𝑇 )

(3.1)

. 𝑡ℎ−1
𝑇 ‖𝑢0‖𝐻𝑚−1(𝜔2(𝑇 )).

Summation over all elements 𝑇 ∈ 𝒯>𝑡 and Corollary 3.3, (3.5) and (3.6) (noting that 𝑡 < ℎ𝑇 implies ℎ = ℎ on
𝒯>𝑡) give the desired estimate∑︁

𝑇∈𝒯>𝑡

‖𝐼𝑚
ℎ 𝑢0 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖2𝐻𝑚−1(𝑇∖𝑆𝑇,𝛿𝑡)
. 𝑡2

∑︁
𝑇∈𝒯>𝑡

ℎ−2
𝑇 ‖𝑢0‖2𝐻𝑚−1(𝜔2(𝑇 ))

𝑡<ℎ𝑇

. 𝑡

𝑚−1∑︁
𝑗=0

⃦⃦⃦
ℎ
−1/2∇𝑗(𝑢− 𝐽𝑡𝑢)

⃦⃦⃦2

𝐿2(Ω)
. 𝑡 ‖𝑢‖2𝐻𝑚−1/2(Ω) . (3.15)



608 M. FAUSTMANN ET AL.

Similarly, the approximation properties of 𝒜𝛿𝑡, the stability of 𝐼𝑚
ℎ , and Corollary 3.3 give∑︁

𝑇∈𝒯>𝑡

‖𝐼𝑚
ℎ 𝑢1 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢1)‖2𝐻𝑚−1(𝑇∖𝑆𝑇,𝛿𝑡)
. 𝑡2

∑︁
𝑇∈𝒯>𝑡

‖𝐼𝑚
ℎ 𝑢1‖2𝐻𝑚(𝑇 )

(3.1)

. 𝑡2
∑︁

𝑇∈𝒯>𝑡

‖𝑢1‖2𝐻𝑚(𝜔2(𝑇 ))

𝑡<ℎ𝑇

. 𝑡
∑︁

𝑇∈𝒯>𝑡

ℎ𝑇 ‖𝐽𝑡𝑢‖2𝐻𝑚(𝜔2(𝑇 ))

Cor. 3.3

. 𝑡 ‖𝑢‖2𝐻𝑚−1/2(Ω) . (3.16)

Using the stability instead of the approximation properties of 𝒜𝛿𝑡 from Proposition 3.1, the same arguments
and an inverse estimate lead to

𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢0)‖𝐻𝑚(𝑇∖𝑆𝑇,𝛿𝑡) . 𝑡‖𝐼𝑚

ℎ 𝑢0‖𝐻𝑚(𝑇 ) . 𝑡ℎ−1
𝑇 ‖𝑢0‖𝐻𝑚−1(𝜔2(𝑇 )),

𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢1)‖𝐻𝑚(𝑇∖𝑆𝑇,𝛿𝑡) . 𝑡‖𝐼𝑚

ℎ 𝑢1‖𝐻𝑚(𝑇 ) . 𝑡‖𝑢1‖𝐻𝑚(𝜔2(𝑇 )).

Summation and employing Corollary 3.3 gives the desired estimates as in (3.15) and (3.16).
Step 5. We derive approximation results for 𝐼𝑚

ℎ on the strip 𝑆𝑇,𝛿𝑡 for 𝑇 ∈ 𝒯>𝑡. For 𝑣 ∈ 𝐻𝑚(Ω), we claim

‖𝑣 − 𝐼𝑚
ℎ 𝑣‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡) .

√︀
𝑡ℎ𝑇 ‖𝑣‖𝐻𝑚(𝜔2(𝑇 )). (3.17)

With the aid of Lemma 2.1 from [44] on the reference element and a scaling argument, one can show for
𝑣 ∈ 𝐻1(𝑇 ) and 𝑇 ∈ 𝒯>𝑡

‖𝑣‖2𝐿2(𝑆𝑇,𝛿𝑡)
.

𝑡

ℎ𝑇
‖𝑣‖2𝐿2(𝑇 ) + 𝑡‖𝑣‖𝐿2(𝑇 )‖∇𝑣‖𝐿2(𝑇 ). (3.18)

For polynomials 𝑣 ∈ 𝑃𝑝(𝑇 ), an inverse estimate and (3.18) furthermore lead to

‖𝑣‖2𝐿2(𝑆𝑇,𝛿𝑡)
.

𝑡

ℎ𝑇
‖𝑣‖2𝐿2(𝑇 ). (3.19)

To see (3.17), we estimate

‖𝑣 − 𝐼𝑚
ℎ 𝑣‖2𝐿2(𝑆𝑇,𝛿𝑡)

(3.18)

.
𝑡

ℎ𝑇
‖𝑣 − 𝐼𝑚

ℎ 𝑣‖2𝐿2(𝑇 ) + 𝑡‖𝑣 − 𝐼𝑚
ℎ 𝑣‖𝐿2(𝑇 )‖∇(𝑣 − 𝐼𝑚

ℎ 𝑣)‖𝐿2(𝑇 )

(3.2)

. ℎ𝑇 𝑡‖𝑣‖2𝐻1(𝜔2(𝑇 )).

This shows (3.17) for 𝑚 = 1. For 𝑚 = 2, we apply (3.18) to ∇(𝑢− 𝐼𝑚
ℎ 𝑢) and proceed similarly.

Step 6. We derive an estimate for 𝐼𝑚
ℎ 𝑢𝑖 − 𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢𝑖) on the strip 𝑆𝑇,𝛿𝑡 for 𝑇 ∈ 𝒯>𝑡. Here, we need the “𝛿𝑡-
neighborhood” (𝑆𝑇,𝛿𝑡)𝛿𝑡 of the strip 𝑆𝑇,𝛿𝑡. Our assumption on 𝛿 implies that (𝑆𝑇,𝛿𝑡)𝛿𝑡 ⊂ 𝜔(𝑇 ). Moreover, we
note that the strip (𝑆𝑇,𝛿𝑡)𝛿𝑡 is contained in the inside strip 𝑆𝑇,2𝛿𝑡 of 𝑇 and in parts of the inside strip of width
𝛿𝑡 of the elements 𝑇 ′ ∈ 𝜔(𝑇 ).
Using the triangle inequality, Proposition 3.1 and (3.19) on each element of the patch 𝜔(𝑇 ) separately for
𝑣 = 𝐼𝑚

ℎ 𝑢0 in the case 𝑚 = 1 or 𝑣 = ∇𝐼𝑚
ℎ 𝑢0 for 𝑚 = 2, we get, since ℎ𝑇 ′ ∼ ℎ𝑇 for 𝑇 ′ ∈ 𝜔(𝑇 ),

‖𝐼𝑚
ℎ 𝑢0 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡) ≤ ‖𝐼
𝑚
ℎ 𝑢0‖𝐻𝑚−1((𝑆𝑇,𝛿𝑡)𝛿𝑡)

(3.19)

. 𝑡1/2ℎ
−1/2
𝑇 ‖𝐼𝑚

ℎ 𝑢0‖𝐻𝑚−1(𝜔(𝑇 )) (3.20)

. 𝑡1/2ℎ
−1/2
𝑇 ‖𝑢0‖𝐻𝑚−1(𝜔3(𝑇 )).

Summing over all elements 𝑇 ∈ 𝒯>𝑡 and employing the arguments from (3.15), we get the desired bound by
𝑡1/2 ‖𝑢‖𝐻𝑚−1/2(Ω). For 𝑢1, we use the triangle inequality, Proposition 3.1, and (3.17)

‖𝐼𝑚
ℎ 𝑢1 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢1)‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡)

≤ ‖𝐼𝑚
ℎ 𝑢1 − 𝑢1‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡) + ‖𝑢1 −𝒜𝛿𝑡𝑢1‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡) + ‖𝒜𝛿𝑡(𝑢1 − 𝐼𝑚

ℎ 𝑢1)‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡)

Prop. 3.1

. ‖𝐼𝑚
ℎ 𝑢1 − 𝑢1‖𝐻𝑚−1((𝑆𝑇,𝛿𝑡)𝛿𝑡) + ‖𝑢1 −𝒜𝛿𝑡𝑢1‖𝐻𝑚−1(𝑆𝑇,𝛿𝑡)

(3.17),Prop. 3.1

.
√︀

𝑡ℎ𝑇 ‖𝑢1‖𝐻𝑚(𝜔3(𝑇 )) + 𝑡‖𝑢1‖𝐻𝑚(𝜔(𝑇 ))

𝑡≤ℎ𝑇

.
√︀

𝑡ℎ𝑇 ‖𝑢1‖𝐻𝑚(𝜔3(𝑇 )).
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Summing over all elements 𝑇 ∈ 𝒯>𝑡 and employing the arguments from (3.16), we get the desired bound.

Step 7. We estimate 𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢𝑖) on the strip 𝑆𝑇,𝛿𝑡 for 𝑇 ∈ 𝒯>𝑡. The inverse estimate for 𝒜𝛿𝑡 of Proposition 3.1,

(3.19) employed on the patch 𝜔(𝑇 ) as in the previous step, and the stability (3.1) of 𝐼𝑚
ℎ imply

𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢0)‖𝐻𝑚(𝑆𝑇,𝛿𝑡) . ‖𝐼

𝑚
ℎ 𝑢0‖𝐻𝑚−1((𝑆𝑇,𝛿𝑡)𝛿𝑡) . 𝑡1/2ℎ

−1/2
𝑇 ‖𝐼𝑚

ℎ 𝑢0‖𝐻𝑚−1(𝜔(𝑇 )) (3.21)

. 𝑡1/2ℎ
−1/2
𝑇 ‖𝑢0‖𝐻𝑚−1(𝜔3(𝑇 )).

Summing over all elements 𝑇 ∈ 𝒯>𝑡 and employing the arguments from (3.15), we get the desired bound by
𝑡1/2 ‖𝑢‖𝐻𝑚−1/2(Ω). For 𝑢1, Proposition 3.1 and (3.17) on the patch 𝜔(𝑇 ) give

𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢1)‖𝐻𝑚(𝑆𝑇,𝛿𝑡) ≤ 𝑡‖𝒜𝛿𝑡(𝑢1 − 𝐼𝑚

ℎ 𝑢1)‖𝐻𝑚(𝑆𝑇,𝛿𝑡) + 𝑡‖𝒜𝛿𝑡𝑢1‖𝐻𝑚(𝑆𝑇,𝛿𝑡)

. ‖𝑢1 − 𝐼𝑚
ℎ 𝑢1‖𝐻𝑚−1((𝑆𝑇,𝛿𝑡)𝛿𝑡) + 𝑡‖𝑢1‖𝐻𝑚((𝑆𝑇,𝛿𝑡)𝛿𝑡)

(3.17)

. (𝑡ℎ𝑇 )1/2‖𝑢1‖𝐻𝑚(𝜔3(𝑇 )) + 𝑡‖𝑢1‖𝐻𝑚(𝜔3(𝑇 ))

𝑡<ℎ𝑇

. (𝑡ℎ𝑇 )1/2‖𝑢1‖𝐻𝑚(𝜔3(𝑇 )).

Summing over all elements 𝑇 ∈ 𝒯>𝑡 and employing the argument from (3.16), we get the desired bound.
Combining the estimates of steps 2–7, where all relevant terms are bounded by 𝑡1/2 ‖𝑢‖𝐻𝑚−1/2(Ω), gives the

desired bound for (3.8), which proves (2.1).

Final step. We show (2.2) with similar arguments as in steps 2–7. Let 𝑢 = 𝑢0+𝑢1 be an arbitrary decomposition
with 𝑢0 ∈ 𝐻𝑚−1(Ω) and 𝑢1 ∈ 𝐻𝑚(Ω). We distinguish the cases 𝑡 ≤ ℎ and 𝑡 > ℎ, where ℎ is the maximal mesh
size of the quasi-uniform triangulation. We note that in the decomposition (3.14) the sums

∑︀
𝑇∈𝒯>𝑡

are not
present in the case 𝑡 > ℎ and the terms involving ‖ · ‖𝐻𝑚−1(Ω≤𝑡) or ‖ · ‖𝐻𝑚(Ω≤𝑡) in the converse case. Inspection
of the above arguments therefore gives:
− For 𝑡 > ℎ: As in steps 2 and 3, we get

𝑡−1‖𝐼𝑚
ℎ 𝑢0 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖2𝐻𝑚−1(Ω) + 𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢0)‖2𝐻𝑚(Ω) . 𝑡−1‖𝑢0‖2𝐻𝑚−1(Ω),

𝑡−1‖𝐼𝑚
ℎ 𝑢1 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢1)‖2𝐻𝑚−1(Ω) + 𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢1)‖2𝐻𝑚(Ω) . 𝑡‖𝑢1‖2𝐻𝑚(Ω).

This implies 𝑡−1/2𝐾(𝑡, 𝐼𝑚
ℎ 𝑢) . 𝑡−1/2‖𝑢0‖𝐻𝑚−1(Ω) + 𝑡1/2‖𝑢1‖𝐻𝑚(Ω). Infimizing over all possible decompositions

𝑢 = 𝑢0 + 𝑢1 yields 𝑡−1/2𝐾(𝑡, 𝐼𝑚
ℎ 𝑢) . 𝑡−1/2𝐾(𝑡, 𝑢) . ‖𝑢‖

𝐵
𝑚−1/2
2,∞ (Ω)

.
− For 𝑡 ≤ ℎ: As in steps 4–7, we get

𝑡−1‖𝐼𝑚
ℎ 𝑢0 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢0)‖2𝐻𝑚−1(Ω) + 𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢0)‖2𝐻𝑚(Ω) . ℎ−1‖𝑢0‖2𝐻𝑚−1(Ω),

𝑡−1‖𝐼𝑚
ℎ 𝑢1 −𝒜𝛿𝑡(𝐼𝑚

ℎ 𝑢1)‖2𝐻𝑚−1(Ω) + 𝑡‖𝒜𝛿𝑡(𝐼𝑚
ℎ 𝑢1)‖2𝐻𝑚(Ω) . ℎ‖𝑢1‖2𝐻𝑚(Ω).

This implies 𝑡−1/2𝐾(𝑡, 𝐼𝑚
ℎ 𝑢) . ℎ−1/2‖𝑢0‖𝐻𝑚−1(Ω) + ℎ1/2‖𝑢1‖𝐻𝑚(Ω). Infimizing over all possible decompositions

𝑢 = 𝑢0 + 𝑢1 yields 𝑡−1/2𝐾(𝑡, 𝐼𝑚
ℎ 𝑢) . ℎ−1/2𝐾(ℎ, 𝑢) . ‖𝑢‖

𝐵
𝑚−1/2
2,∞ (Ω)

.

Combining the above two cases yields sup𝑡>0 𝐾(𝑡, 𝐼𝑚
ℎ 𝑢) . ‖𝑢‖

𝐵
𝑚−1/2
2,∞ (Ω)

, as claimed. �

While, for finite meshes, we have the continuous embeddings 𝑆𝑝,1(𝒯 ) ⊂ 𝐵
3/2
2,∞(Ω) and 𝑆𝑝,0(𝒯 ) ⊂ 𝐵

1/2
2,∞(Ω),

this is not necessarily the case for infinite meshes. As a consequence, one cannot expect that on general K-meshes
a stability 𝐼𝑚

ℎ : 𝐵
1/2
2,∞(Ω) → 𝐵

1/2
2,∞(Ω) can hold. The following example illustrates this.

Example 3.5. Let Ω = (0, 1). Set 𝐼1 = (0, 1/2) and 𝐼2 = (1/2, 1). Let 𝜙 ∈ 𝐶∞(R) be a 1-periodic function,
whose averages 𝜙1 := 1/|𝐼1|

∫︀
𝐼1

𝜙(𝑥) d𝑥 and 𝜙2 := 1/|𝐼2|
∫︀

𝐼2
𝜙(𝑥) d𝑥 are different. Define the function 𝑢 ∈

𝐶∞((0,∞)) by
𝑢(𝑥) := 𝜙(ln 𝑥).
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Define the (infinite) mesh 𝒯 on Ω, whose elements are given by the break points 𝑥𝑗 = 𝑒−2𝑗 , 𝑗 ∈ N0. Let 𝑚 = 1
and let 𝐼𝑚

ℎ : 𝐿2(Ω) → 𝑆0,0(𝒯 ) be the 𝐿2-projection onto the piecewise constant functions. By the periodicity of
𝜙, the piecewise constant function 𝐼𝑚

ℎ 𝑢 takes only the values 𝜙1 and 𝜙2

(𝐼𝑚
ℎ 𝑢)|(𝑥𝑗+1,𝑥𝑗) =

{︃
𝜙1 if 𝑗 is even
𝜙2 if 𝑗 is odd.

The computation of Besov norms is conveniently done in terms of the modulus of smoothness as defined in, e.g.,
Chapter 2, Section 7 of [31]. For an interval [𝑎, 𝑏] and a function 𝑣 defined on 𝐴 := [𝑎, 𝑏], and 𝑡 > 0, we define
the difference operator ∆ℎ by (∆ℎ𝑣)(𝑥) := 𝑣(𝑥 + ℎ) − 𝑣(𝑥) on 𝐴ℎ := [𝑎, 𝑏 − ℎ]. The modulus of smoothness
𝜔1(𝑣, 𝑡)2 is then given by 𝜔1(𝑣, 𝑡)2 := sup0<ℎ≤𝑡 ‖∆ℎ(𝑣, ·)‖𝐿2(𝐴ℎ). Let 𝑡 > 0. Consider all elements with diameter
> 𝑡. For the region covered by these elements, Ω>𝑡, we can compute the modulus of smoothness 𝜔1 in view of
the fact that 𝐼𝑚

ℎ 𝑢 is piecewise constant

𝜔1(𝐼𝑚
ℎ 𝑢, 𝑡)22,Ω>𝑡

&
∑︁

𝑥𝑗 :𝑥𝑗>𝑡

𝑡|[𝐼𝑚
ℎ 𝑢](𝑥𝑗)|2,

where [𝐼𝑚
ℎ 𝑢](𝑥𝑗) denotes the jump of 𝐼𝑚

ℎ 𝑢 at the break point 𝑥𝑗 . We conclude

𝜔1(𝐼𝑚
ℎ 𝑢, 𝑡)22 ≥ 𝜔1(𝐼𝑚

ℎ 𝑢, 𝑡)22,Ω>𝑡
&

∑︁
𝑥𝑗 :𝑥𝑗>𝑡

𝑡|[𝐼𝑚
ℎ 𝑢](𝑥𝑗)|2 =

∑︁
𝑥𝑗 :𝑥𝑗>𝑡

|𝜙1 − 𝜙2|2𝑡 ∼ |𝜙1 − 𝜙2|2𝑡| ln 𝑡|.

Next, we claim that 𝜔1(𝑢, 𝑡)22 . 𝑡. Since 𝑢 is bounded, we compute for 0 < ℎ ≤ 𝑡∫︁ 1−ℎ

0

|∆ℎ𝑢|2 d𝑥 =
∫︁ 1−ℎ

0

|𝑢(𝑥 + ℎ)− 𝑢(𝑥)|2 d𝑥 =
∫︁ ℎ

0

|𝑢(𝑥 + ℎ)− 𝑢(𝑥)|2 d𝑥 +
∫︁ 1−ℎ

ℎ

|𝑢(𝑥 + ℎ)− 𝑢(𝑥)|2 d𝑥

≤ 4ℎ‖𝑢‖2𝐿∞(Ω) +
∫︁ 1

ℎ

⃒⃒⃒⃒
⃒
∫︁ 𝑥+ℎ

𝑥

𝑢′(𝜉) d𝜉

⃒⃒⃒⃒
⃒
2

d𝑥 ≤ 4ℎ‖𝑢‖2𝐿∞(Ω) + ‖𝜙′‖2𝐿∞(Ω)ℎ
2

∫︁ 1

ℎ

(︂
1
𝑥

)︂2

d𝑥

≤ 4ℎ‖𝑢‖2𝐿∞(Ω) + ‖𝜙′‖2𝐿∞(Ω)ℎ.

This implies 𝜔1(𝑢, 𝑡)2 ≤ 𝐶𝑡1/2 and therefore 𝑢 ∈ 𝐵
1/2
2,∞(Ω), since, by Chapter 6, Theorem 2.4 of [31], 𝜔(𝑢, 𝑡)2 ∼

𝐾(𝑡, 𝑢) = inf𝑣∈𝐻1(𝐼) ‖𝑢−𝑣‖𝐿2(Ω) +𝑡‖𝑣‖𝐻1(Ω). However, the above calculation shows that 𝐼𝑚
ℎ 𝑢 ̸∈ 𝐵

1/2
2,∞(Ω), which

implies that 𝐼𝑚
ℎ cannot be a linear map 𝐵

1/2
2,∞(𝛺) → 𝐵

1/2
2,∞(𝛺). �

3.2. Some generalizations and applications

For quasi-uniform meshes, there also holds the following inverse estimate for the limiting case.

Lemma 3.6. Let 𝒯 be a quasi-uniform mesh on Ω of mesh size ℎ and 𝑚 ∈ {1, 2}. Then, for 𝑚′ ∈ (0, 𝑚− 1/2]
and 𝑞 ∈ [1,∞], there holds for a constant 𝐶 > 0 depending only on Ω, 𝑑, the 𝛾-shape-regularity of 𝒯 , and 𝑝:

‖𝑢‖𝐵𝑚′
2,𝑞(Ω) ≤ 𝐶ℎ−𝑚′‖𝑢‖𝐿2(Ω) ∀𝑢 ∈ 𝑆𝑝,1(𝒯 ). (3.22)

Proof. To fix ideas, we only prove the case 𝑚 = 2 as the case 𝑚 = 1 is handled with similar arguments. By
definition, we have

‖𝑢‖
𝐵

3/2
2,∞(Ω)

= sup
𝑡>0

𝑡−1/2𝐾(𝑡, 𝑢)

with the 𝐾-functional 𝐾(𝑡, 𝑢) = inf𝑣∈𝐻2(Ω) ‖𝑢− 𝑣‖𝐻1(Ω) + 𝑡‖𝑣‖𝐻2(Ω). For 𝑡 > ℎ, we estimate

𝑡−1/2𝐾(𝑡, 𝑢) = 𝑡−1/2 inf
𝑣∈𝐻2(Ω)

‖𝑢− 𝑣‖𝐻1(Ω) + 𝑡‖𝑣‖𝐻2(Ω) ≤ 𝑡−1/2‖𝑢‖𝐻1(Ω) . ℎ−1/2‖𝑢‖𝐻1(Ω) (3.23)



STABILITY OF SCOTT-ZHANG TYPE OPERATORS AND APPLICATION TO MULTILEVEL PRECONDITIONING 611

by choosing 𝑣 ≡ 0 to estimate the 𝐾-functional.
For 𝑡 ≤ ℎ, we estimate the 𝐾-functional more carefully. For a suitably small 𝛿 > 0, we set 𝑣 := 𝒜𝛿𝑡𝑢 with

the smoothing operator 𝒜𝛿𝑡 of Proposition 3.1. As in the proof of Theorem 2.2, we decompose an element into
𝑇 = 𝑇 ∖ 𝑆𝑇,𝛿𝑡 ∪ 𝑆𝑇,𝛿𝑡, where 𝑆𝑇,𝛿𝑡 is the inside strip defined in the first step of the proof of Theorem 2.2.
Employing Proposition 3.1 and a classical polynomial inverse estimate, we obtain

‖𝑣‖𝐻2(𝑇∖𝑆𝑇,𝛿𝑡)

Prop. 3.1

. ‖𝑢‖𝐻2(𝑇 ) . ℎ−1‖𝑢‖𝐻1(𝑇 ), (3.24a)

‖𝑢− 𝑣‖𝐻1(𝑇∖𝑆𝑇,𝛿𝑡)

Prop. 3.1

. 𝑡‖𝑢‖𝐻2(𝑇 ) . 𝑡ℎ−1‖𝑢‖𝐻1(𝑇 ). (3.24b)

As in steps 6 and 7 in the proof of Theorem 2.2, using Proposition 3.1 to obtain (3.21), (3.20), we get

‖𝑣‖𝐻2(𝑆𝑇,𝛿𝑡)

(3.21)

. (𝑡ℎ)−1/2‖𝑢‖𝐻1(𝜔(𝑇 )), (3.25a)

‖𝑢− 𝑣‖𝐻1(𝑆𝑇,𝛿𝑡)

(3.20)

. 𝑡1/2ℎ−1/2‖𝑢‖𝐻1(𝜔(𝑇 )). (3.25b)

Summation over all elements, using (3.24)–(3.25) leads to

𝑡−1/2𝐾(𝑡, 𝑢) .
(︁
𝑡1/2ℎ−1 + ℎ−1/2

)︁
‖𝑢‖𝐻1(Ω)

𝑡≤ℎ

. ℎ−1/2‖𝑢‖𝐻1(Ω). (3.26)

Combining (3.23) and (3.26) yields ‖𝑢‖
𝐵

3/2
2,∞(Ω)

. ℎ−1/2‖𝑢‖𝐻1(Ω). A further polynomial inverse estimate gives

the desired result for 𝑚′ = 3/2.
Finally, (3.22) follows from interpolation between the case 𝑚′ = 3/2 and the trivial inequality ‖𝑢‖𝐿2(Ω) ≤

‖𝑢‖𝐿2(Ω) noting that by the reinterpolation theorem (see, e.g., Chapter 26 of [54]), we have 𝐵
𝜃(𝑚−1/2)
2,𝑞 (Ω) =

(𝐿2(Ω), 𝐵𝑚−1/2
2,∞ (Ω))𝜃,𝑞 (with equivalent norms) for 𝜃 ∈ (0, 1). �

The operator 𝐼𝑚
ℎ is stable in 𝐿2(Ω) (by Assumption 2.1) and is stable as an operator 𝐻𝑚−1/2(Ω) → 𝐵

𝑚−1/2
2,∞ (Ω)

by Theorem 2.2. Interpolation therefore yields a stability for intermediate spaces.

Corollary 3.7. Let 𝒯 be a finite shape-regular mesh, 𝑚 ∈ {1, 2}, and let 𝐼𝑚
ℎ : 𝐿2(Ω) → 𝑆𝑝,𝑚−1(𝒯 ) satisfy

Assumption 2.1. Fix 𝑞 ∈ [1,∞] and 𝜃 ∈ (0, 1). Then, there is a constant 𝐶 > 0 depending only on Ω, 𝑝, 𝑞, 𝜃,
and the 𝛾-shape regularity of 𝒯 such that

‖𝐼𝑚
ℎ 𝑢‖

𝐵
𝜃(𝑚−1/2)
2,𝑞 (Ω)

≤ 𝐶‖𝑢‖
𝐵

𝜃(𝑚−1/2)
2,𝑞 (Ω)

. (3.27)

Proof. The assumed 𝐿2-stability and the stability proved in Theorem 2.2 imply the result using the reinterpo-
lation theorem (see, e.g., Chapter 26 of [54]) as in the proof of Lemma 3.6. �

Furthermore, Corollary 3.7 allows one to assert that interpolating between the discrete space 𝑆𝑝,𝑚−1(𝒯 )
equipped with the 𝐿2-norm and the 𝐻𝑠-norm yields the same space equipped with the 𝐻𝑠𝜃-norm.

Corollary 3.8. Let 𝑚 ∈ {1, 2}, 𝑞 ∈ [1,∞], and 𝜃 ∈ (0, 1). Then, there holds(︁(︀
𝑆𝑝,𝑚−1(𝒯 ), ‖ · ‖𝐿2(Ω)

)︀
,
(︁
𝑆𝑝,𝑚−1(𝒯 ), ‖ · ‖

𝐵
𝑚−1/2
2,∞ (Ω)

)︁)︁
𝜃,𝑞

=
(︁
𝑆𝑝,𝑚−1(𝒯 ), ‖ · ‖

𝐵
𝜃(𝑚−1/2)
2,𝑞 (Ω)

)︁
with equivalent norms. The norm equivalence constants depend only on Ω, 𝑝, 𝑞, 𝜃, and the 𝛾-shape regularity of
𝒯 . More generally, for any 𝐵

𝑚′−1/2
2,𝑞′ (Ω) with 1/2 < 𝑚′ < 𝑚 and 𝑞′ ∈ [1,∞], there holds, with equivalent norms,(︂(︀

𝑆𝑝,𝑚−1(𝒯 ), ‖ · ‖𝐿2(Ω)

)︀
,

(︂
𝑆𝑝,𝑚−1(𝒯 ), ‖ · ‖

𝐵
𝑚′−1/2
2,𝑞′ (Ω)

)︂)︂
𝜃,𝑞

=
(︂

𝑆𝑝,𝑚−1(𝒯 ), ‖ · ‖
𝐵

𝜃(𝑚′−1/2)
2,𝑞 (Ω)

)︂
.
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Proof. The proof follows from the existence of projection operators as presented in [9]. One needs a (stable)
projection onto 𝑆𝑝,𝑚−1(𝒯 ) satisfying Assumption 2.1, then Corollary 3.7 also provides the needed stability in
the Besov-spaces. For 𝑚 = 1, one may simply use the 𝐿2-projection, which trivially satisfies Assumption 2.1.
For 𝑚 = 2, one employs the Scott-Zhang operator 𝐼SZ of [50] without treating the boundary in a special way
as it is done there. Then, 𝐼SZ satisfies Assumption 2.1 by, e.g., Section 4.8 of [20]. �

4. Multilevel decomposition based on NVB mesh hierarchy

In this section, we use Theorem 2.2, or more precisely Corollary 3.8, to prove the norm equivalence for the
multilevel decomposition of Theorem 2.5. Before we come to the proof, we mention some properties of the
finest common coarsening and show that the adapted Scott-Zhang operators of Definition 2.4 for the finest
common coarsening of an NVB mesh and a uniform mesh coincides with the adapted Scott-Zhang operator for
the uniform mesh for piecewise polynomials on the NVB mesh (Lem. 4.4).

4.1. Properties of the finest common coarsening (fcc)

We recall the definition of the finest common coarsening

fcc(𝒯 , 𝒯 ′) := {𝑇 ∈ 𝒯 : ∃𝑇 ′ ∈ 𝒯 ′ s.t. 𝑇 ′ ( 𝑇}⏟  ⏞  
=:T1

∪{𝑇 ′ ∈ 𝒯 ′ : ∃𝑇 ∈ 𝒯 s.t. 𝑇 ( 𝑇 ′}⏟  ⏞  
=:T2

∪ (𝒯 ∩ 𝒯 ′)⏟  ⏞  
=:T3

.

The following Lemma 4.1 shows that the finest common coarsening of two NVB meshes obtained from the same
coarse regular triangulation is indeed a regular triangulation.

Lemma 4.1. Let 𝒯 , 𝒯 ′ be NVB refinements of the same common triangulation ̂︀𝒯0 of Ω. Then:

(i) fcc(𝒯 , 𝒯 ′) = fcc(𝒯 ′, 𝒯 ). The three sets T1, T2, T3 in the definition of fcc(𝒯 , 𝒯 ′) are pairwise disjoint.
(ii) fcc(𝒯 , 𝒯 ′) consists of simplices that cover Ω.

(iii) If 𝒯 and 𝒯 ′ are regular triangulations, then fcc(𝒯 , 𝒯 ′) is a regular triangulation of Ω.

Proof. Proof of (i): The symmetry of fcc is obvious. To see that the sets T1, T2, T3 are pairwise disjoint, let
𝑇 ∈ T1. Then 𝑇 ∈ 𝒯 but not in 𝒯 ′. Hence, 𝑇 ̸∈ T2 and 𝑇 ̸∈ T3. By symmetry, 𝑇 ∈ T2 also implies 𝑇 ̸∈ T1 and
𝑇 ̸∈ T3. Finally, if 𝑇 ∈ T3, then it cannot be in T1 or T2.

Proof of (ii): Let 𝑥 ∈ Ω (but not on the skeleton of 𝒯 or 𝒯 ′). Since 𝒯 , 𝒯 ′ cover Ω, there are 𝑇 ∈ 𝒯 and
𝑇 ′ ∈ 𝒯 ′ with 𝑥 ∈ 𝑇 , 𝑥 ∈ 𝑇 ′. Since both 𝑇 and 𝑇 ′ are obtained by NVB and 𝑇 ∩ 𝑇 ′ ̸= ∅, we must have 𝑇 = 𝑇 ′

or 𝑇 ( 𝑇 ′ or 𝑇 ′ ( 𝑇 . In the first case 𝑇 = 𝑇 ′ ∈ T3, in the second one 𝑇 ′ ∈ T2, and in the third one 𝑇 ∈ T1.
Hence, 𝑥 is in an element of fcc(𝒯 , 𝒯 ′).

Proof of (iii): Let 𝑇 , 𝑇 ′ be two elements of fcc(𝒯 , 𝒯 ′) with 𝑓 := 𝑇 ∩ 𝑇 ′ ̸= ∅. We have to show that for some
𝑗, the intersection 𝑇 ∩ 𝑇 ′ ̸= ∅ is a full 𝑗-face of both 𝑇 and 𝑇 ′. If both 𝑇 , 𝑇 ′ are in 𝒯 (or both are in 𝒯 ′),
then, by the regularity of 𝒯 (or the regularity of 𝒯 ′), their intersection is indeed a full 𝑗-face of either element.
Assume therefore 𝑇 ∈ 𝒯 and 𝑇 ′ ∈ 𝒯 ′ ∖ 𝒯 or, similiarly, 𝑇 ∈ 𝒯 ∖ 𝒯 ′. Since 𝑇 , 𝑇 ′ ∈ fcc(𝒯 , 𝒯 ′), we obtain 𝑇 ∈ T1

and 𝑇 ′ ∈ T2. Since both 𝑇 and 𝑇 ′ are created by NVB from the same initial triangulation, the intersection
𝑓 = 𝑇 ∩ 𝑇 ′ is a full 𝑗-face of either 𝑇 or 𝑇 ′.

Let us assume that 𝑓 is a full 𝑗-face of 𝑇 , and, by contradiction, that 𝑓 is not a full 𝑗-face of 𝑇 ′. Then, 𝑓
is a proper subset of a 𝑗-face 𝑓 ′ of 𝑇 ′. Since 𝑇 ∈ T1, it contains elements of 𝒯 ′. Hence, there is an element
𝑇 ′1 ∈ 𝒯 ′ with 𝑇 ′1 ⊂ 𝑇 that has a 𝑗-face 𝑓 ′1 with 𝑓 ′1 ⊂ 𝑓 . Thus, we have found elements 𝑇 ′, 𝑇 ′1 ∈ 𝒯 ′ with 𝑗-faces
𝑓 ′1 ⊂ 𝑓 ( 𝑓 ′, contradicting the regularity of 𝒯 ′. Hence, 𝑓 is also a full 𝑗-face of 𝑇 ′. Thus, fcc(𝒯 , 𝒯 ′) is a regular
triangulation. �

A completion of an (NVB-generated) mesh is any NVB refinement of it that is regular. We next show that
the minimal completion is unique.
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Lemma 4.2. Let 𝒯 be a NVB refinement of ̂︀𝒯0 and let 𝒯1, 𝒯2 be two completions of 𝒯 . Then fcc(𝒯1, 𝒯2) is a
completion of 𝒯 . The completion of minimal cardinality is unique.

Proof. Let 𝒯3 := fcc(𝒯1, 𝒯2). We claim that 𝒯3 is a completion of 𝒯 . Since 𝒯3 is regular by Lemma 4.1, we have
to assert that each element of 𝒯3 is contained in an element of 𝒯 . Suppose not. Then there is 𝑇3 ∈ 𝒯3 and a
𝑇 ∈ 𝒯 with 𝑇 ( 𝑇3. (We use that these meshes are obtained by NVB from a common 𝒯0.). By definition, 𝑇3 is
either in 𝒯1 or 𝒯2, which are both completions of 𝒯 , i.e., their elements are contained in elements of 𝒯 . This is
a contradiction.

To see the uniqueness of the minimal completion, let 𝒯1 ̸= 𝒯2 be two completions of minimal cardinality 𝑁 .
Note that 𝒯3 := fcc(𝒯1, 𝒯2) is also a completion. However, in view of 𝒯1 ̸= 𝒯2, at least one element of, say, 𝒯1

is a refinement of an element of 𝒯2 so that we have by definition of fcc(𝒯1, 𝒯2) that card 𝒯3 ≤ 𝑁 − 1, which
contradicts the minimality. �

Lemma 4.3. Let ̂︀𝒯ℓ, ℓ = 0, 1, . . . , be a sequence of uniform refinements of a regular mesh ̂︀𝒯0 and ̃︀𝒯ℓ =
fcc(𝒯 , ̂︀𝒯ℓ). Then:

(i) If 𝑇 ∈ ̃︀𝒯ℓ ∩ 𝒯 then 𝑇 ∈ ̃︀𝒯ℓ+𝑚 for all 𝑚 ≥ 0.
(ii) If 𝑇 ∈ ̃︀𝒯ℓ ∖ 𝒯 then 𝑇 ̸∈ ̃︀𝒯ℓ+1.
(iii) Denote by ̃︀𝒩 1

ℓ the set of nodes of ̃︀𝒯ℓ. Then ̃︀𝒩 1
ℓ+1 ⊃ ̃︀𝒩 1

ℓ for all ℓ.

(iv) Let ̃︁ℳ1
ℓ = ̃︀𝒩 1

ℓ ∖ ̃︀𝒩 1
ℓ−1 ∪

{︁
𝑧 ∈ ̃︀𝒩 1

ℓ ∩ ̃︀𝒩 1
ℓ−1 |𝜔ℓ(𝑧) ( 𝜔ℓ−1(𝑧)

}︁
. Then, we have card ̃︁ℳ1

ℓ ≤ 𝐶 card ̃︀𝒩 1
ℓ ∖ ̃︀𝒩 1

ℓ−1

for a 𝐶 > 0 depending only on the shape regularity of the triangulations.

Proof. For statement (i), we only show the case 𝑚 = 1 as the general case follows by induction. We note that
𝑇 ∈ ̃︀𝒯ℓ∩𝒯 implies 𝑇 ̸∈ T2,ℓ, where T𝑖,ℓ, ∈ {1, 2, 3} are the three sets given in (2.3). If 𝑇 ∈ T3,ℓ, then 𝑇 ∈ T1,ℓ+1.
If 𝑇 ∈ T1,ℓ, then, 𝑇 ∈ T1,ℓ+1. For statement (ii), we note that 𝑇 ∈ ̃︀𝒯ℓ ∖ 𝒯 implies 𝑇 ∈ ̂︀𝒯ℓ ∖ 𝒯 and hence 𝑇 is
neither in ̂︀𝒯ℓ+1 nor in 𝒯 . Hence 𝑇 ̸∈ ̃︀𝒯ℓ+1.

For statement (iii), let 𝑧 ∈ ̃︀𝒩 1
ℓ and 𝑇 ∈ ̃︀𝒯ℓ be an element such that 𝑧 is a node of 𝑇 . We consider two cases.

First, if 𝑇 ∈ 𝒯 ∩ ̃︀𝒯ℓ, then, by statement (i), we have 𝑇 ∈ 𝒯ℓ+1 so that 𝑧 ∈ ̃︀𝒩 1
ℓ+1. Second, let 𝑇 ∈ ̃︀𝒯ℓ ∖ 𝒯 . Then

𝑇 ∈ ̂︀𝒯ℓ and in fact in T2,ℓ. The node 𝑧 is the node of an element 𝑇 ′ ∈ ̂︀𝒯ℓ+1. This element 𝑇 ′ is either in 𝒯 ,
which implies 𝑧 ∈ ̃︀𝒩 1

ℓ+1, or 𝑇 ′ ∈ T2,ℓ+1, which also implies 𝑧 ∈ ̃︀𝒩 1
ℓ+1.

For statement (iv), one observes that for a node 𝑧 ∈ {𝑧 ∈ ̃︀𝒩 1
ℓ ∩ ̃︀𝒩 1

ℓ−1 |𝜔ℓ(𝑧) ( 𝜔ℓ−1(𝑧)}, there are elements
𝑇 ∈ ̃︀𝒯ℓ−1 and 𝑇 ′ ∈ ̃︀𝒯ℓ with 𝑇 ′ ( 𝑇 and 𝑧 is a node of 𝑇 . Hence 𝑇 ′ ∈ ̃︀𝒯ℓ ∖ ̃︀𝒯ℓ−1, and it has a node 𝑧′ ∈ ̃︀𝒩 1

ℓ ∖ ̃︀𝒩 1
ℓ−1.

We conclude card{𝑧 ∈ ̃︀𝒩 1
ℓ ∩ ̃︀𝒩 1

ℓ−1 |𝜔ℓ(𝑧) ( 𝜔ℓ−1(𝑧)} ≤ card ̃︀𝒩 1
ℓ ∖ ̃︀𝒩 1

ℓ−1. �

The following lemma shows that the adapted Scott-Zhang operators for the meshes ̃︀𝒯ℓ and ̂︀𝒯ℓ coincide on
piecewise polynomials on the mesh 𝒯 .

Lemma 4.4. Let 𝒯 be generated by NVB from ̂︀𝒯0. Let ̃︀𝐼SZ
ℓ : 𝐿2(Ω) → 𝑆𝑝,1(̃︀𝒯ℓ) and ̂︀𝐼SZ

ℓ : 𝐿2(Ω) → 𝑆𝑝,1(̂︀𝒯ℓ) be
the Scott-Zhang operators defined in Definition 2.4. Then, there holds̃︀𝐼SZ

ℓ 𝑢 = ̂︀𝐼SZ
ℓ 𝑢 ∀𝑢 ∈ 𝑆𝑝,1(𝒯 ).

Proof.
Step 1. Let 𝑇 ∈ ̂︀𝒯ℓ∩ ̃︀𝒯ℓ. We claim that

(︁̃︀𝐼SZ
ℓ 𝑢

)︁
|𝑇 =

(︁̂︀𝐼SZ
ℓ 𝑢

)︁
|𝑇 . The nodes 𝑧 ∈ 𝑇 and the shape functions 𝜙𝑧,̂︀𝒯ℓ

,

𝜙𝑧,̃︀𝒯ℓ
for the meshes ̂︀𝒯ℓ and fcc

(︁
𝒯 , ̂︀𝒯ℓ

)︁
coincide on 𝑇 . For the averaging element 𝑇𝑧 associated with 𝑧 ∈ 𝑇 , two

cases can occur:

(1) The two averaging sets for the two operators coincide. This happens in the following three cases: (a) if
𝑧 ∈ 𝑇 (case (a) of Def. 2.4); (b) if 𝑧 ∈ 𝜕𝑇 and (case (ii) of Def. 2.4) arose for 𝑇 in the loop; (c) (case (ii) of
Def. 2.4) arose for an element 𝑇 ′ ∈ ̂︀𝒯ℓ ∩ ̃︀𝒯ℓ with 𝑧 ∈ 𝑇 ′ that appeared earlier in the loop than 𝑇 . Since the
averaging sets coincide, the value of the linear functionals are the same.
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(2) Case (i) of Definition 2.4 arose. Then, both averaging sets are contained in an element ̃︀𝑇 ∈ 𝒯 . Since
𝑢|̃︀𝑇 ∈ 𝑃𝑝, we obtain from (2.4) that both linear functionals equal 𝑢(𝑧).

Hence, in all cases the values of the linear functionals coincide so that indeed the Scott-Zhang operators on the
element 𝑇 are equal.
Step 2. In the region not covered by elements in ̂︀𝒯ℓ ∩ ̃︀𝒯ℓ we show ̃︀𝐼SZ

ℓ 𝑢 = 𝑢 and ̂︀𝐼SZ
ℓ 𝑢 = 𝑢 for 𝑢 ∈ 𝑆𝑝,1(𝒯 ). For̂︀𝐼SZ

ℓ this is shown in step 3 and for ̃︀𝐼SZ
ℓ in step 4. This completes the proof of the lemma.

Step 3. Consider a 𝑇 ∈ ̂︀𝒯ℓ ∖ ̃︀𝒯ℓ. We note that the definition of the finest common coarsening implies

for any 𝑇 ′ ∈ ̂︀𝒯ℓ ∖ ̃︀𝒯ℓ, there exists ̃︀𝑇 ∈ 𝒯 with 𝑇 ′ ⊂ ̃︀𝑇 . (4.1)

Hence, there exists ̃︀𝑇 ∈ 𝒯 such that 𝑇 ⊂ ̃︀𝑇 . For 𝑢 ∈ 𝑆𝑝,1(𝒯 ), we have 𝑢|̃︀𝑇 ∈ 𝑃𝑝( ̃︀𝑇 ). Moreover, (̂︀𝐼SZ
ℓ 𝑢)|𝑇 =∑︀

𝑧∈𝒩 (𝑇 ) 𝜙𝑧,̂︀𝒯ℓ
𝑙𝑧(𝑢) with the linear functional 𝑙𝑧(𝑢) =

∫︀
𝑇𝑧

𝜙*𝑧,𝑇 𝑢. For the interior nodes 𝑧 ∈ 𝑇 , we have 𝑇𝑧 = 𝑇

and, since 𝑢|𝑇 ∈ 𝑃𝑝(𝑇 ), 𝑙𝑧(𝑢) = 𝑢(𝑧) by (2.4). For 𝑧 ∈ 𝜕𝑇 , the following cases may occur:

(a) If 𝑇𝑧 = 𝑇 , then again 𝑙𝑧(𝑢) = 𝑢(𝑧) by (2.4).
(b) If 𝑇𝑧 is a neighboring element of 𝑇 , then the following cases can occur:

(i) 𝑇𝑧 ∈ ̂︀𝒯ℓ∩ ̃︀𝒯ℓ: Then, 𝑧 ∈ 𝜕𝑇 and hence also in 𝜕𝑇𝑧. The construction of the averaging sets in Definition 2.4
is such that the averaging set 𝑇𝑧 for the node 𝑧 is chosen such that it is contained in an element 𝑇 ′ ∈ 𝒯
if possible. Since 𝑇 ⊂ ̃︀𝑇 ∈ 𝒯 is possible by (4.1), we conclude that also 𝑇𝑧 ⊂ 𝑇 ′′ ∈ 𝒯 for some 𝑇 ′′ ∈ 𝒯 .
Hence, 𝑢|𝑇𝑧

∈ 𝑃𝑝(𝑇𝑧), and the value of the linear functional is 𝑢(𝑧).
(ii) 𝑇𝑧 ∈ ̂︀𝒯ℓ ∖ ̃︀𝒯ℓ. Then, by (4.1), we get 𝑢|𝑇𝑧

∈ 𝑃𝑝(𝑇𝑧) so that again, by (2.4), 𝑙𝑧(𝑢) = 𝑢(𝑧).

In total, we have arrived at
(︁̂︀𝐼SZ

ℓ 𝑢
)︁
|𝑇 =

∑︀
𝑧∈𝒩 (𝑇 ) 𝜙𝑧,̂︀𝒯ℓ

𝑢(𝑧) = 𝑢|𝑇 , since 𝑢|𝑇 ∈ 𝑃𝑝(𝑇 ).

Step 4. Consider a 𝑇 ∈ ̃︀𝒯ℓ∖ ̂︀𝒯ℓ. Then 𝑇 ∈ 𝒯 . We have
(︁̃︀𝐼SZ

ℓ 𝑢
)︁
|𝑇 =

∑︀
𝑧∈𝒩 (𝑇 ) 𝜙𝑧,̃︀𝒯ℓ

𝑙𝑧(𝑢) with the linear functional

𝑙𝑧(𝑢) =
∫︀

𝑇𝑧
𝜙*𝑧,𝑇 𝑢. For the interior nodes 𝑧 ∈ 𝑇 , we have 𝑇𝑧 = 𝑇 and, since 𝑢|𝑇 ∈ 𝑃𝑝(𝑇 ), the property (2.4)

gives 𝑙𝑧(𝑢) = 𝑢(𝑧).
For 𝑧 ∈ 𝜕𝑇 , we argue as in step 3, item (i): The averaging set 𝑇𝑧 is chosen such that 𝑇𝑧 is contained in an
element of 𝒯 if possible. Since choosing 𝑇𝑧 = 𝑇 ∈ 𝒯 is possible, we have that 𝑇𝑧 ⊂ 𝑇 ′ ∈ 𝒯 for some 𝑇 ′ ∈ 𝒯 .
This ensures 𝑢|𝑇𝑧

∈ 𝑃𝑝(𝑇𝑧) and thus 𝑙𝑧(𝑢) = 𝑢(𝑧) by (2.4).

In total, we have arrived at
(︁̃︀𝐼SZ

ℓ 𝑢
)︁
|𝑇 =

∑︀
𝑧∈𝒩 (𝑇 ) 𝜙𝑧,̃︀𝒯ℓ

𝑢(𝑧) = 𝑢|𝑇 , since 𝑢|𝑇 ∈ 𝑃𝑝(𝑇 ). �

4.2. Proof of the norm equivalence of Theorem 2.5

With Lemma 4.4, Corollary 3.8, and Lemma 3.6, we are able to prove the norm equivalence for the multilevel
decomposition of Theorem 2.5.

Proof of Theorem 2.5. We apply Theorem 3.5.3 of [29] for the spaces 𝑋 =
(︁
𝑆𝑝,1(𝒯 ), ‖·‖𝐿2(Ω)

)︁
,

𝑌 =
(︁
𝑆𝑝,1(𝒯 ), ‖·‖

𝐵
3/2
2,∞(Ω)

)︁
noting that we have 𝑆𝑝,1(̃︀𝒯ℓ) ⊂ 𝑆𝑝,1(𝒯 ). Then, Theorem 3.5.3 of [29] provides

the equivalence of the second and third norm to the norm on the interpolation space (𝑋, 𝑌 )𝜃,𝑞, which by
Corollary 3.8 is the 𝐵

3/2𝜃
2,𝑞 (Ω)-norm, provided a Jackson-type and a Bernstein-type estimate holds.

Step 1. (Jackson-type inequality). Using Lemma 4.4, we compute for 𝑢 ∈ 𝑆𝑝,1(𝒯 ) and arbitrary 𝑤 ∈ 𝑆𝑝,1(̂︀𝒯ℓ)

inf
𝑣∈𝑆𝑝,1(̃︀𝒯ℓ)

‖𝑢− 𝑣‖𝐿2(Ω) ≤ ‖𝑢− ̃︀𝐼SZ
ℓ 𝑢‖𝐿2(Ω) = ‖𝑢− ̂︀𝐼SZ

ℓ 𝑢‖𝐿2(Ω) = ‖𝑢− 𝑤 − ̂︀𝐼SZ
ℓ (𝑢− 𝑤)‖𝐿2(Ω) . ‖𝑢− 𝑤‖𝐿2(Ω).

Hence, standard approximation results on the quasi-uniform meshes ̂︀𝒯ℓ of mesh size ̂︀ℎℓ = ̂︀ℎ02−ℓ provide

inf
𝑣∈𝑆𝑝,1(̃︀𝒯ℓ)

‖𝑢− 𝑣‖𝐿2(Ω) . inf
𝑤∈𝑆𝑝,1(̂︀𝒯ℓ)

‖𝑢− 𝑤‖𝐿2(Ω) . ̂︀ℎ3/2
ℓ ‖𝑢‖

𝐵
3/2
2,∞(Ω)

. 2−3ℓ/2‖𝑢‖
𝐵

3/2
2,∞(Ω)

. (4.2)
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We note that this estimate also implies the additional assumption (Equation 3.5.29 of [29]) on the projection
operators ̃︀𝐼SZ

ℓ .
Step 2 (Bernstein-type inequality).] Using the projection property of the Scott-Zhang operators and Lemma 4.4,
we get for arbitrary 𝑣 ∈ 𝑆𝑝,1𝒯

‖𝑣‖
𝐵

3/2
2,∞(Ω)

= ‖̃︀𝐼SZ
ℓ 𝑣‖

𝐵
3/2
2,∞(Ω)

= ‖̂︀𝐼SZ
ℓ 𝑣‖

𝐵
3/2
2,∞(Ω)

Lem. 3.6

. ̂︀ℎ−3/2
ℓ ‖̂︀𝐼SZ

ℓ 𝑣‖𝐿2(Ω)

= ̂︀ℎ−3/2
ℓ ‖̃︀𝐼SZ

ℓ 𝑣‖𝐿2(Ω) = ̂︀ℎ−3/2
ℓ ‖𝑣‖𝐿2(Ω). (4.3)

As the family of operators ̃︀𝐼SZ
ℓ : 𝑋 → 𝑆𝑝,1(̃︀𝒯ℓ) is also uniformly bounded in the 𝐿2(Ω)-norm, all assumptions of

Theorem 3.5.3 from [29] are valid and consequently the norm equivalences are proven. �

4.3. Boundary conditions‘

The previous results do not consider (homogeneous) Dirichlet boundary conditions. For the application we
have in mind (cf. (2.10)), an interpolation result similar to Corollary 3.8 for the spaces 𝐿2(Ω), 𝐻1

0 (Ω) and ̃︀𝐻𝑠(Ω)
for 𝑠 ∈ (0, 1) is of interest. Such results are already available in the literature, see, e.g., [11], where the proof uses
stability properties of the Scott-Zhang projection and the abstract result from [9], similarly to Corollary 3.8.
For sake of completeness, we state the result in the following corollary.

Corollary 4.5. Let 𝑠 ∈ (0, 1). Then, there holds(︁(︁
𝑆𝑝,1

0 (𝒯 ), ‖ · ‖𝐿2(Ω)

)︁
,
(︁
𝑆𝑝,1

0 (𝒯 ), ‖ · ‖𝐻1(Ω)

)︁)︁
𝑠,2

=
(︁
𝑆𝑝,1

0 (𝒯 ), ‖ · ‖ ̃︀𝐻𝑠(Ω)

)︁
with equivalent norms.

As done, for example, in [11], the Scott-Zhang operators ̃︀𝐼SZ
ℓ and ̂︀𝐼SZ

ℓ can be modified by simply dropping the
contributions from the shape functions associated with nodes on 𝜕Ω and thus map into the spaces ̃︀𝑆𝑝,1

0 (̃︀𝒯ℓ) and̃︀𝑆𝑝,1
0 (̂︀𝒯ℓ), respectively. We denote these operators by ̃︀𝐼SZ

0,ℓ and ̂︀𝐼SZ
0,ℓ , and they are still stable in 𝐿2(Ω) and 𝐻1

0 (Ω).
Therefore, Theorem 2.5 also provides a lower bound for the multilevel decomposition based on the Scott-Zhang
operator in the ̃︀𝐻𝑠(Ω)-norm.

Corollary 4.6. Let 𝒯 be a mesh obtained by NVB refinement of a triangulation ̂︀𝒯0. Let ̂︀𝒯ℓ be the sequence of
uniformly refined meshes starting from ̂︀𝒯0 with mesh size ̂︀ℎℓ = ̂︀ℎ02−ℓ. Set ̃︀𝒯ℓ := fcc(𝒯 , ̂︀𝒯ℓ). Let ̃︀𝐼SZ

0,ℓ : ̃︀𝐻𝑠(Ω) →
𝑆𝑝,1

0 (̃︀𝒯ℓ) be the Scott-Zhang operator defined as above. Then, we have
∞∑︁

ℓ=0

̂︀ℎ−2𝑠
ℓ

⃦⃦⃦
𝑢− ̃︀𝐼SZ

0,ℓ𝑢
⃦⃦⃦2

𝐿2(Ω)
≤ 𝐶𝑠 ‖𝑢‖2̃︀𝐻𝑠(Ω) ∀𝑢 ∈ 𝑆𝑝,1

0 (𝒯 ), 0 < 𝑠 < 1. (4.4)

Proof. We note that Jackson-type and Bernstein-type estimates (4.2) and (4.3) in the proof of Theorem 2.5
also hold for the variant of the Scott-Zhang projection that preserves homogeneous boundary conditions, if we
replace ̂︀ℎ3/2

ℓ ‖𝑢‖
𝐵

3/2
2,∞(Ω)

with ̂︀ℎℓ‖𝑢‖𝐻1
0 (Ω) in (4.2), and if we replace in (4.3) the norms ‖ · ‖

𝐵
3/2
2,∞(Ω)

with ‖ · ‖𝐻1(Ω)

and correspondingly ̂︀ℎ−3/2 with ̂︀ℎ−1. Therefore, the norm equivalences of Theorem 2.5 are still valid if one
replace 𝐵

3𝜃/2
2,∞ (Ω) with 𝐻𝜃

0 (Ω), ̃︀𝐼SZ
ℓ with ̃︀𝐼SZ

0,ℓ , and 23𝜃ℓ/2 with 2𝜃ℓ. �

5. Optimal additive Schwarz preconditioning for the fractional Laplacian
on locally refined meshes

In this section, we prove the optimal bounds on the eigenvalues of the preconditioned matrices P𝐿
AS of

Theorem 2.6 and ̃︀P𝐿
AS of Theorem 2.9. The key steps are done in Proposition 5.2 or Proposition 5.1, which state

a spectral equivalence of the additive Schwarz operator and the identity in the energy scalar product.
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5.1. Abstract analysis of the additive Schwarz method

5.1.1. The mesh hierarchy ̃︀𝒯ℓ = fcc(𝒯𝐿, ̂︀𝒯ℓ)

The additive Schwarz method is based on a local subspace decomposition. For the mesh hierarchy ̃︀𝒯ℓ =
fcc(𝒯𝐿, ̂︀𝒯ℓ), we recall that ̃︀𝑉ℓ ∈ {𝑆0,0(̃︀𝒯ℓ), 𝑆

1,1
0 (̃︀𝒯ℓ)} is either the space of piecewise constants or piecewise

linears on the mesh ̃︀𝒯ℓ. We follow the abstract setting of [55] and decompose ̃︀𝑉𝐿 =
∑︀𝐿

ℓ=0
̃︀𝒱ℓ with

̃︀𝒱ℓ := span
{︁̃︀𝜙ℓ

𝑧 : 𝑧 ∈ ̃︁ℳℓ

}︁
, (5.1)

where ̃︀𝜙ℓ
𝑧 denotes the basis function associated with the node 𝑧 ∈ ̃︀𝒩ℓ. We recall that these functions are either

characteristic functions of elements (for the piecewise constant case) or nodal hat functions (for the case of
piecewise linears). We note that ̃︀𝒱ℓ ⊂ ̂︀𝑉ℓ and, since ̃︁ℳℓ only contains new nodes and direct neighbors, this
space effectively is a discrete space on a uniform submesh (cf. Lem. 5.6). On the subspaces ̃︀𝒱ℓ, we introduce the
symmetric, positive definite bilinear form ̃︀𝑎ℓ(·, ·) : ̃︀𝒱ℓ × ̃︀𝒱ℓ (also known as local solvers) with

̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ) :=
∑︁

𝑧∈̃︁ℳℓ

⃦⃦⃦̂︀ℎ−𝑠
ℓ 𝑢ℓ(𝑧)̃︀𝜙ℓ

𝑧

⃦⃦⃦2

𝐿2(Ω)
≃
∑︁

𝑧∈̃︁ℳℓ

̂︀ℎ𝑑−2𝑠
ℓ |𝑢ℓ(𝑧)|2 .

The following proposition, cf., e.g., [46, 59], gives bounds on the minimal and maximal eigenvalues of the
preconditioned matrix ̃︀P𝐿

AS based on the abstract additive Schwarz theory.

Proposition 5.1. (i) Assume that every 𝑢 ∈ ̃︀𝑉𝐿 admits a decomposition 𝑢 =
∑︀𝐿

ℓ=0 𝑢ℓ with 𝑢ℓ ∈ ̃︀𝒱ℓ satisfying∑︀𝐿
ℓ=0 ̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ) ≤ 𝐶0 𝑎(𝑢, 𝑢) with a constant 𝐶0 > 0. Then, we have 𝜆min

(︁̃︀P𝐿
AS

)︁
≥ 𝐶−1

0 .

(ii) Assume that there exists a constant 𝐶1 > 0 such that for every decomposition 𝑢 =
∑︀𝐿

ℓ=0 𝑢ℓ with 𝑢ℓ ∈ ̃︀𝒱ℓ,

we have 𝑎(𝑢, 𝑢) ≤ 𝐶1

∑︀𝐿
ℓ=0 ̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ). Then, 𝜆max

(︁̃︀P𝐿
AS

)︁
≤ 𝐶1.

The first part of Proposition 5.1 is sometimes called Lions’ lemma and follows from the existence of a stable
decomposition proven in Lemma 5.5 below.

The assumption of the second statement follows directly from our strengthened Cauchy-Schwarz inequality
(Lem. 5.7) and local stability (Lem. 5.9).

5.1.2. The mesh hierarchy 𝒯ℓ provided by an adaptive algorithm

For the case of a mesh hierarchy 𝒯ℓ generated by an adaptive algorithm, similar definitions can be made and
analyzed. However, here, we follow the notation of [38], where the additive Schwarz operator consisting of a
sum of projections onto one dimensional spaces is analyzed. With the spaces 𝑉 ℓ

𝑧 := span{𝜙ℓ
𝑧} one may define

local projections 𝒫ℓ
𝑧 : ̃︀𝐻𝑠(Ω) → 𝑉 ℓ

𝑧 in the energy scalar product as

𝑎(𝒫ℓ
𝑧𝑢, 𝑣ℓ

𝑧) = 𝑎(𝑢, 𝑣ℓ
𝑧) for all 𝑣ℓ

𝑧 ∈ 𝑉 ℓ
𝑧 ,

and define the additive Schwarz operator as

𝒫𝐿
AS :=

𝐿∑︁
ℓ=0

∑︁
𝑧∈ℳℓ

𝒫ℓ
𝑧 .

Moreover, for 𝑢, 𝑣 ∈ 𝑉𝐿 and their expansions 𝑢 =
∑︀𝑁𝐿

𝑗=1 x𝑗𝜙
𝐿
𝑧𝑗

, 𝑣 =
∑︀𝑁𝐿

𝑗=1 y𝑗𝜙
𝐿
𝑧𝑗

, we have

𝑎
(︀
𝒫𝐿

AS𝑢, 𝑣
)︀

=
⟨︀
P𝐿

ASx,y
⟩︀
A𝐿 , (5.2)

where ⟨·, ·⟩A𝐿 :=
⟨︀
A𝐿·, ·

⟩︀
2
. Therefore, the multilevel diagonal scaling is a multilevel additive Schwarz method,

and we may analyze the additive Schwarz operator instead of the preconditioned matrix.
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Proposition 5.2. The operator 𝒫𝐿
AS is linear, bounded and symmetric in the energy scalar product. Moreover,

for 𝑢 ∈ 𝑉𝐿, we have the spectral equivalence

𝑐 ‖𝑢‖2̃︀𝐻𝑠(Ω) ≤ 𝑎
(︀
𝒫𝐿

AS𝑢, 𝑢
)︀
≤ 𝐶 ‖𝑢‖2̃︀𝐻𝑠(Ω) , (5.3)

where the constants 𝑐, 𝐶 > 0 only depend on Ω, 𝑑, 𝑠, and 𝒯0.

As in [38], Proposition 5.2 directly implies Theorem 2.6.

Proof of Theorem 2.6. Combining the bounds of Proposition 5.2 with (5.2) gives

𝑐 ‖x‖2A𝐿 ≤
⟨︀
P𝐿

ASx,x
⟩︀
A𝐿 ≤ 𝐶 ‖x‖2A𝐿

for all x ∈ R𝑁𝐿 , and therefore the bounds for the minimal and maximal eigenvalues. �

5.2. Inverse estimates for the fractional Laplacian

For the proof of a strengthened Cauchy Schwarz inequality, we employ an inverse inequality for the operator
(−∆)𝑠 of the form

‖ℎ𝑠(−∆)𝑠𝑣‖𝐿2(Ω) . ‖𝑣‖ ̃︀𝐻𝑠(Ω) . (5.4)

For the piecewise linear case 𝑣 ∈ 𝑆1,1
0 (𝒯 ), this inverse estimate is proven in Theorem 2.8 of [37]. We stress that

(5.4) only holds for 𝑠 < 3/4, since in the converse case the left-hand side is not well defined for 𝑣 ∈ 𝑆1,1
0 (𝒯 ). To

obtain an estimate for 𝑠 ∈ [3/4, 1), one has to introduce a weight function 𝑤(𝑥) := inf𝑇∈𝒯 dist(𝑥, 𝜕𝑇 ). Then,
Theorem 2.8 of [37] provides the inverse estimate⃦⃦⃦

ℎ1/2𝑤𝑠−1/2(−∆)𝑠𝑣
⃦⃦⃦

𝐿2(Ω)
. ‖𝑣‖ ̃︀𝐻𝑠(Ω) . (5.5)

For the case of piecewise constants, similar inverse estimates are stated in the lemma below. Here, we additionally
stress that for 𝑣 ∈ 𝑆0,0(𝒯 ) and 𝑥 ∈ 𝑇 ∈ 𝒯 , the estimate

|(−∆)𝑠𝑣(𝑥)| =

⃒⃒⃒⃒
⃒𝐶(𝑑, 𝑠)

∫︁
R𝑑∖𝐵dist(𝑥,𝜕𝑇 )(𝑥)

𝑣(𝑥)− 𝑣(𝑦)

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

⃒⃒⃒⃒
⃒ . ‖𝑣‖𝐿∞(Ω)

∫︁
𝐵dist(𝑥,𝜕𝑇 )(𝑥)𝑐

1

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

= ‖𝑣‖𝐿∞(Ω)

∫︁
𝜈∈𝜕𝐵1(0)

∫︁ diam Ω

𝑟=dist(𝑥,𝜕𝑇 )

𝑟−2𝑠−1 d𝑟 d𝜈 . ‖𝑣‖𝐿∞(Ω) dist(𝑥, 𝜕𝑇 )−2𝑠 (5.6)

gives

𝑤𝛽(−∆)𝑠𝑣 ∈ 𝐿2(Ω) if 𝛽 > 2𝑠− 1/2.

For 𝑠 < 1/4, we may choose 𝛽 = 0 and for 1/4 ≤ 𝑠 < 1/2, we may choose, e.g., 𝛽 = 𝑠 or 𝛽 = 3/2𝑠 − 1/4 (to
additionally ensure 𝛽 < 𝑠) to fulfill this requirement.

Lemma 5.3. Let 𝒯 be a regular and 𝛾-shape regular mesh generated by NVB refinement of a mesh 𝒯0.
Let 𝑣 ∈ 𝑆0,0(𝒯 ), ℎ be the piecewise constant mesh width function of the triangulation 𝒯 , and set 𝑤(𝑥) :=
inf𝑇∈𝒯 dist(𝑥, 𝜕𝑇 ). Let 𝛽 > 2𝑠− 1/2. Then, the inverse estimates

‖ℎ𝑠(−∆)𝑠𝑣‖𝐿2(Ω) ≤ 𝐶‖𝑣‖ ̃︀𝐻𝑠(Ω) 0 < 𝑠 < 1/4, (5.7)

‖ℎ𝑠−𝛽𝑤𝛽(−∆)𝑠𝑣‖𝐿2(Ω) ≤ 𝐶‖𝑣‖ ̃︀𝐻𝑠(Ω) 1/4 ≤ 𝑠 < 1/2 (5.8)

hold, where the constant 𝐶 > 0 depends only on Ω, 𝑑, 𝑠, and the 𝛾-shape regularity of 𝒯 .
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Proof. If we set 𝛽 = 0 for 𝑠 < 1/4, we can prove both statements of the lemma at once by estimating the
𝐿2-norms with the weight ℎ𝑠−𝛽𝑤𝛽 . We follow the lines of Theorem 2.8 from [37], starting with a splitting into
a near-field and a far-field part. The estimates of the near-field and the far-field are rather similar to the case
of piecewise linears from Lemmas 4.1 to 4.5 of [37]. Therefore, we quote the identical parts of the proof and
outline the necessary modifications for the piecewise constant case.

For each 𝑇 ∈ 𝒯 , we choose a cut-off function 𝜒𝑇 ∈ 𝐶∞0 (R𝑑) with the following properties: (1)
supp 𝜒𝑇 ∩ 𝛺 ⊂ 𝜔(𝑇 ); (2) 𝜒𝑇 ≡ 1 on a set 𝐵 satisfying 𝑇 ⊂ 𝐵 ⊂ 𝜔(𝑇 ) and dist(𝐵, 𝜕𝜔(𝑇 )) ∼ ℎ𝑇 ; (3)
‖𝜒𝑇 ‖𝑊 1,∞(𝜔(𝑇 )) . ℎ−1

𝑇 ; (4) 0 ≤ 𝜒𝑇 ≤ 1. Moreover, for each 𝑇 ∈ 𝒯 , we denote the average of 𝑣 on the patch
𝜔2(𝑇 ) by 𝑐𝑇 ∈ R. Since 𝑐𝑇 is a constant, we have (−∆)𝑠𝑐𝑇 ≡ 0. Therefore, we can decompose 𝑣 into the near-
field 𝑣𝑇

near := 𝜒𝑇 (𝑣−𝑐𝑇 ) and the far-field 𝑣𝑇
far := (1−𝜒𝑇 )(𝑣−𝑐𝑇 ), and obtain (−∆)𝑠𝑣 = (−∆)𝑠𝑣𝑇

near +(−∆)𝑠𝑣𝑇
far.

We start with the near-field, where compared to the result for the case of piecewise linears, we do not need
to distinguish cases for 𝑠. The definition of the fractional Laplacian leads to

1
𝐶(𝑑, 𝑠)2

⃦⃦
𝑤𝛽(−∆)𝑠𝑣𝑇

near

⃦⃦2

𝐿2(𝑇 )
=
∫︁

𝑇

𝑤(𝑥)2𝛽

(︃
P.V.

∫︁
R𝑑

(𝑣(𝑥)− 𝑐𝑇 )𝜒𝑇 (𝑥)− (𝑣(𝑦)− 𝑐𝑇 )𝜒𝑇 (𝑦)

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

)︃2

d𝑥

.
∫︁

𝑇

𝑤(𝑥)2𝛽(𝑣(𝑥)− 𝑐𝑇 )2
(︃

P.V.
∫︁

R𝑑

𝜒𝑇 (𝑥)− 𝜒𝑇 (𝑦)

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

)︃2

d𝑥

+
∫︁

𝑇

𝑤(𝑥)2𝛽

(︃
P.V.

∫︁
R𝑑

𝜒𝑇 (𝑦)
𝑣(𝑥)− 𝑣(𝑦)

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

)︃2

d𝑥. (5.9)

The first term on the right-hand side can be estimated using the Lipschitz continuity of 𝜒𝑇 and a Poincaré
inequality on the patch 𝜔(𝑇 ) in the same way as in the proof of Lemma 4.2 from [37] by

∫︁
𝑇

𝑤(𝑥)2𝛽(𝑣(𝑥)− 𝑐𝑇 )2
(︃

P.V.
∫︁

R𝑑

𝜒𝑇 (𝑥)− 𝜒𝑇 (𝑦)

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

)︃2

d𝑥 . ℎ2𝛽−2𝑠
𝑇 ‖𝑣‖2𝐻𝑠(𝜔2(𝑇 )) .

For the second term in (5.9), we observe that the integrand vanishes for 𝑦 ∈ 𝑇 since 𝑣 is piecewise constant,
and employ the same estimate as for (5.6) to obtain

∫︁
𝑇

𝑤(𝑥)2𝛽

(︃
P.V.

∫︁
R𝑑

𝜒𝑇 (𝑦)
𝑣(𝑥)− 𝑣(𝑦)

|𝑥− 𝑦|𝑑+2𝑠
d𝑦

)︃2

d𝑥 . ‖𝑣 − 𝑐𝑇 ‖2𝐿∞(𝜔(𝑇 ))

∫︁
𝑇

𝑤(𝑥)2𝛽−4𝑠d𝑥;

here, we added and subtracted the constant 𝑐𝑇 in the integrand and used the support properties of 𝜒𝑇 to obtain
the 𝐿∞-norm on the patch. As, by choice of 𝛽, we always have 2𝛽 − 4𝑠 > −1, the last integral exists, and we
can further estimate using a classical inverse estimate and a Poincaré inequality

‖𝑣 − 𝑐𝑇 ‖2𝐿∞(𝜔(𝑇 ))

∫︁
𝑇

𝑤(𝑥)2𝛽−4𝑠d𝑥 . ℎ2𝛽−4𝑠+𝑑
𝑇 ‖𝑣 − 𝑐𝑇 ‖2𝐿∞(𝜔(𝑇 ))

. ℎ2𝛽−4𝑠
𝑇 ‖𝑣 − 𝑐𝑇 ‖2𝐿2(𝜔(𝑇 )) . ℎ2𝛽−2𝑠

𝑇 ‖𝑣‖2𝐻𝑠(𝜔2(𝑇 )) .

Inserting everything into (5.9), multiplying with ℎ2𝑠−2𝛽
𝑇 and summing over all elements 𝑇 ∈ 𝒯 gives the desired

estimate for the near-field.
The far-field can be estimated using the Caffarelli-Silvestre extension, cf. [21], combined with a Caccioppoli-

type inverse estimate for the solution of the extension problem with boundary data (1−𝜒𝑇 )(𝑣−𝑐𝑇 ) as in [37]. In
fact, we observe that Lemma 4.5 of [37] holds for arbitrary 𝑣 ∈ ̃︀𝐻𝑠(Ω) and weight functions 𝑤 with non-negative
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exponent. This directly gives ∑︁
𝑇∈𝒯

‖ℎ𝑠−𝛽𝑤𝛽(−∆)𝑠𝑣𝑇
far‖2𝐿2(𝑇 ) . ‖𝑣‖

2
̃︀𝐻𝑠(Ω)

,

and combining the estimates for near- and far-field proves the lemma. �

5.3. Proof of the assumptions of Proposition 5.1

In order to apply Proposition 5.1, we show the existence of a stable decomposition (Lem. 5.5) and a strength-
ened Cauchy-Schwarz inequality (Lem. 5.7).

The following result relates the Scott-Zhang operators on two consecutive levels, similarly to [24], and is a
key ingredient of the proof of Lemma 5.5.

Lemma 5.4. Let 𝑝 = 1 and let ̃︀𝒩 1
ℓ , ̃︁ℳ1

ℓ be defined in Section 2.3.2. The Scott-Zhang operators ̃︀𝐼SZ
ℓ : 𝐿2(Ω) →

𝑆1,1(̃︀𝒯ℓ) can be constructed such that, additionally, they satisfy for all ℓ ∈ N and all 𝑢 ∈ 𝐿2(Ω)

(̃︀𝐼SZ
ℓ − ̃︀𝐼SZ

ℓ−1)𝑢(𝑧) = 0 ∀𝑧 ∈ ̃︀𝒩 1
ℓ ∖ ̃︁ℳ1

ℓ . (5.10)

Also, the Scott-Zhang operators ̃︀𝐼SZ
0,ℓ : 𝐿2(Ω) → 𝑆1,1

0 (̃︀𝒯ℓ) can be constructed such that (5.10) holds with ̃︀𝐼SZ
ℓ and̃︀𝐼SZ

ℓ−1 replaced with ̃︀𝐼SZ
0,ℓ and ̃︀𝐼SZ

0,ℓ−1, respectively.

Proof. We only consider the case of the operators ̃︀𝐼SZ
ℓ . We also recall that for the present case 𝑝 = 1 the nodes

coincide with the nodes of the triangulations.
Step 1. 𝑧 ∈ ̃︀𝒩 1

ℓ ∖ ̃︁ℳ1
ℓ implies 𝑧 ∈ ̃︀𝒩 1

ℓ ∩ ̃︀𝒩 1
ℓ−1. To see 𝑧 ∈ ̃︀𝒩 1

ℓ−1, we note ̃︀𝒩 1
ℓ−1 ⊂ ̃︀𝒩 1

ℓ by Lemma 4.3 and therefore
that 𝑧 ∈ ̃︀𝒩 1

ℓ ∖ ̃︁ℳ1
ℓ ⊂ ̃︀𝒩 1

ℓ ∖ ( ̃︀𝒩 1
ℓ ∖ ̃︀𝒩 1

ℓ−1) = ̃︀𝒩 1
ℓ−1.

Step 2. 𝑧 ∈ ̃︀𝒩 1
ℓ ∖ ̃︁ℳ1

ℓ ⊂ ̃︀𝒩 1
ℓ ∩ ̃︀𝒩 1

ℓ−1 implies that all elements of the patches 𝜔ℓ(𝑧) and 𝜔ℓ−1(𝑧) are in 𝒯 . To see
this, we note 𝑧 ∈ ̃︀𝒩 1

ℓ ∖ ̃︁ℳ1
ℓ ⊂ ̃︀𝒩 1

ℓ ∖ {𝑧 ∈ ̃︀𝒩 1
ℓ ∩ ̃︀𝒩 1

ℓ−1 |𝜔ℓ(𝑧) ( 𝜔ℓ−1(𝑧)}. The condition 𝜔ℓ−1(𝑧) = 𝜔ℓ(𝑧) implies
that all elements of 𝜔ℓ−1(𝑧) = 𝜔ℓ(𝑧) must be elements of 𝒯 .
Step 3. The basic idea for the choice of averaging sets 𝑇𝑧 in the construction of ̃︀𝐼SZ

ℓ−1 and ̃︀𝐼SZ
ℓ in Definition 2.4

is to select an element of 𝒯 whenever possible. Our modified construction of the operators ̃︀𝐼SZ
ℓ is by induction

on ℓ and carefully exploits the freedom left in the choice of the averaging sets 𝑇𝑧 in Definition 2.4. We start
with an ̃︀𝐼SZ

0 as constructed in Definition 2.4. Suppose the averaging sets 𝑇𝑧 for ̃︀𝒯ℓ−1 have been fixed. Effectively,
Definition 2.4 performs a loop over all nodes of ̃︀𝒯ℓ. When assigning an averaging set 𝑇𝑧 to a node 𝑧 ∈ ̃︀𝒩 1

ℓ ∖ ̃︁ℳ1
ℓ ,

we select as 𝑇𝑧 the element that has already been selected on the preceding level ℓ − 1. This is possible since
𝑧 ∈ ̃︀𝒩 1

ℓ ∖ ̃︁ℳ1
ℓ implies 𝑧 ∈ ̃︀𝒩 1

ℓ−1 by Step 1, and by Step 2 we know that all elements of both ̃︀𝒯ℓ−1 and ̃︀𝒯ℓ having
𝑧 as a vertex are elements of 𝒯 .

The same construction can also be applied to the operators ̃︀𝐼SZ
0,ℓ . �

The following lemma provides the existence of a stable decomposition for the mesh hierarchy generated by
the finest common coarsening. Rather than analyzing the 𝐿2-orthogonal projection onto a space of piecewise
polynomials on a uniform mesh, as in [38], we use the result of Corollary 4.6.

Lemma 5.5 (Stable decomposition for the mesh hierarchy (̃︀𝒯ℓ)ℓ). For every 𝑢 ∈ ̃︀𝑉𝐿, there is a decomposition
𝑢 =

∑︀𝐿
ℓ=0 𝑢ℓ with 𝑢ℓ ∈ ̃︀𝒱ℓ satisfying the stability estimate

𝐿∑︁
ℓ=0

̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ) =
𝐿∑︁

ℓ=0

∑︁
𝑧∈̃︁ℳℓ

⃦⃦⃦̂︀ℎ−𝑠
ℓ 𝑢ℓ(𝑧)̃︀𝜙ℓ

𝑧

⃦⃦⃦2

𝐿2(Ω)
≤ 𝐶2

stab ‖𝑢‖
2
̃︀𝐻𝑠(Ω)

with a constant 𝐶stab > 0 depending only on Ω, 𝑑, 𝑠, and the initial triangulation 𝒯0.
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Proof. We only show the case of piecewise linears, the piecewise constant case is even simpler as the basis func-
tions are 𝐿2-orthogonal. Let ̃︀𝐼SZ

0,ℓ : ̃︀𝐻𝑠(Ω) → 𝑆1,1
0 (̃︀𝒯ℓ) be the adapted Scott-Zhang projection from Definition 2.4

in the form given by Lemma 5.4. Set ̃︀𝐼SZ
0,−1 = 0. Then, we define

𝑢ℓ :=
∑︁

𝑧∈̃︁ℳℓ

(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢(𝑧)̃︀𝜙ℓ

𝑧.

Since
(︁̃︀𝐼SZ

0,ℓ − ̃︀𝐼SZ
0,ℓ−1

)︁
𝑢 ∈ ̃︀𝒱ℓ, we may decompose using a telescoping series and (5.10)

𝑢 = ̃︀𝐼SZ
0,𝐿𝑢 =

𝐿∑︁
ℓ=0

(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢 =

𝐿∑︁
ℓ=0

∑︁
𝑧∈̃︁ℳℓ

(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢(𝑧)̃︀𝜙ℓ

𝑧 =
𝐿∑︁

ℓ=0

𝑢ℓ. (5.11)

We next prove the stability of the decomposition (5.11). The standard scaling of the hat functions in 𝐿2 provides⃦⃦ ̃︀𝜙ℓ
𝑧

⃦⃦2

𝐿2(Ω)
≃ ℎℓ(𝑧)𝑑, with ℎℓ(𝑧) denoting the maximal mesh width on the patch corresponding to the node 𝑧.

With (5.10) and an inverse estimate – cf. Proposition 3.10 of [30], which provides an estimate for the nodal
value of a piecewise linear function on the mesh ̃︀𝒯ℓ by its 𝐿2-norm on the patch – this gives

𝐿∑︁
ℓ=0

∑︁
𝑧∈̃︁ℳℓ

⃦⃦⃦̂︀ℎ−𝑠
ℓ

(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢(𝑧)̃︀𝜙ℓ

𝑧

⃦⃦⃦2

𝐿2(Ω)
.

𝐿∑︁
ℓ=0

̂︀ℎ−2𝑠
ℓ

∑︁
𝑧∈̃︁ℳℓ

ℎℓ(𝑧)𝑑
⃒⃒⃒(︁̃︀𝐼SZ

0,ℓ − ̃︀𝐼SZ
0,ℓ−1

)︁
𝑢(𝑧)

⃒⃒⃒2

.
𝐿∑︁

ℓ=0

̂︀ℎ−2𝑠
ℓ

∑︁
𝑧∈ ̃︀𝒩ℓ

⃦⃦⃦(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢
⃦⃦⃦2

𝐿2(𝜔ℓ(𝑧))
.

𝐿∑︁
ℓ=0

̂︀ℎ−2𝑠
ℓ

∑︁
𝑇∈̃︀𝒯ℓ

⃦⃦⃦(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢
⃦⃦⃦2

𝐿2(𝑇 )
. (5.12)

Finally, we can use Corollary 4.6 to obtain

𝐿∑︁
ℓ=0

̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ) .
𝐿∑︁

ℓ=0

̂︀ℎ−2𝑠
ℓ

⃦⃦⃦(︁̃︀𝐼SZ
0,ℓ − ̃︀𝐼SZ

0,ℓ−1

)︁
𝑢
⃦⃦⃦2

𝐿2(Ω)
. ‖𝑢‖2̃︀𝐻𝑠(Ω) , (5.13)

which proves the existence of a stable decomposition. �

The following lemma shows that the submesh consisting of the elements corresponding to the points in ̃︁ℳℓ

is indeed quasi-uniform in that all elements have size 𝑂(̂︀ℎℓ).

Lemma 5.6. Let ̃︁ℳℓ be defined in Section 2.3.2 and let 𝑧 ∈ ̃︁ℳℓ, then it holds ℎℓ(𝑧) ≃ ̂︀ℎℓ, where ℎℓ(𝑧) denotes
the maximal mesh width on the patch 𝜔ℓ(𝑧). In particular, we have ̃︀𝒱ℓ ⊂ ̂︀𝑉ℓ, meaning ̃︀𝒱ℓ ⊂ ̂︀𝑉 0

ℓ if ̃︁ℳℓ = ̃︁ℳ0
ℓ

and ̃︀𝒱ℓ ⊂ ̂︀𝑉 1
ℓ if ̃︁ℳℓ = ̃︁ℳ1

ℓ .

Proof. We first note that if 𝑇 ∈ ̃︀𝒯ℓ ∖ ̃︀𝒯ℓ−1, then ℎ𝑇 ≃ ̂︀ℎℓ. If 𝑇 /∈ T1,ℓ for the first set in the definition of the
finest common coarsening (2.3), then 𝑇 ∈ ̂︀𝒯ℓ and ℎ𝑇 ≃ ̂︀ℎℓ follows since the mesh ̂︀𝒯ℓ is quasi-uniform. Now, let
𝑇 ∈ T1,ℓ, which implies 𝑇 ∈ 𝒯 , and that 𝑇 is a proper superset of an element ̂︀𝑇ℓ ∈ ̂︀𝒯ℓ, i.e., ℎ𝑇 ≥ ̂︀ℎℓ. Since 𝒯
and ̂︀𝑇ℓ−1 are NVB refinements of the same mesh, we either have 𝑇 ⊂ ̂︀𝑇ℓ−1, 𝑇 = ̂︀𝑇ℓ−1 or 𝑇 ⊃ ̂︀𝑇ℓ−1 for some
element ̂︀𝑇ℓ−1 ∈ ̂︀𝒯ℓ−1. For the first two cases, we have ℎ𝑇 . ̂︀ℎℓ−1 ≃ 2̂︀ℎℓ, which gives ℎ𝑇 ≃ ̂︀ℎℓ. The third case
𝑇 ⊃ ̂︀𝑇ℓ−1 implies that 𝑇 ∈ T1,ℓ−1 and therefore 𝑇 ∈ ̃︀𝒯ℓ−1, which contradicts the assumption 𝑇 ∈ ̃︀𝒯ℓ ∖ ̃︀𝒯ℓ−1.

This immediately proves the case ̃︁ℳℓ = ̃︁ℳ0
ℓ , since new points in ̃︁ℳ0

ℓ (barycenters) correspond to new
elements in ̃︀𝒯ℓ ∖ ̃︀𝒯ℓ−1.

For the case ̃︁ℳℓ = ̃︁ℳ1
ℓ , let 𝑧 ∈ ̃︁ℳℓ. By definition, this implies that there exists (at least) one element

𝑇 = 𝑇 (𝑧) with 𝑇 (𝑧) ⊂ 𝜔ℓ(𝑧) and 𝑇 (𝑧) ∈ ̃︀𝒯ℓ ∖ ̃︀𝒯ℓ−1. The previous discussion gives ℎ𝑇 (𝑧) ≃ ̂︀ℎℓ. By shape-regularity
this gives that ℎℓ(𝑧) = max𝑇∈𝜔ℓ(𝑧) ℎ𝑇 ≃ ̂︀ℎℓ. �
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With the inverse estimate of the previous subsection we now prove a strengthened Cauchy-Schwarz inequality.

Lemma 5.7 (Strengthened Cauchy-Schwarz inequality for the mesh hierarchy
(︁̃︀𝒯ℓ

)︁
). Let 𝑢ℓ ∈ ̃︀𝒱ℓ for ℓ =

0, 1, . . . , 𝐿. Then, we have

𝑎(𝑢𝑘, 𝑢𝑚) ≤ ℰ𝑚𝑘 ‖𝑢𝑘‖ ̃︀𝐻𝑠(Ω)

⃦⃦⃦̂︀ℎ−𝑠
𝑚 𝑢𝑚

⃦⃦⃦
𝐿2(Ω)

, 0 ≤ 𝑚 ≤ 𝑘 ≤ 𝐿,

with ℰ𝑚𝑘 = 𝐶CS(̂︀ℎ𝑚/̂︀ℎ𝑘)
𝑠−𝛽

. Here, 𝛽 is given as 𝛽 =

{︃
0 for 0 < 𝑠 < 1

4
3
2𝑠− 1

4 for 1
4 ≤ 𝑠 < 1

2

for the piecewise constant case

and 𝛽 = max{𝑠 − 1/2, 0} for the piecewise linear case. Moreover, the constant 𝐶CS > 0 depends only on Ω, 𝑑,
𝑠, and the initial mesh 𝒯0.

Proof. We define a modified mesh size function ̃︀ℎ𝑠
𝑘 as ̃︀ℎ𝑠

𝑘 := ℎ𝑠−𝛽
𝑘 𝑤𝛽

𝑘 with the weight function 𝑤𝑘 defined such
that the inverse estimates of (5.4), (5.5) or Lemma 5.3 (either for the piecewise linears or the piecewise constants)
hold. Moreover, we note that this choice of 𝛽 fulfills the assumptions of Lemma 5.3 as well as 𝛽 < 𝑠. Therefore,
the classical Cauchy-Schwarz inequality implies

𝑎(𝑢𝑘, 𝑢𝑚) = ⟨(−∆)𝑠𝑢𝑘, 𝑢𝑚⟩𝐿2(Ω) =
⟨̃︀ℎ𝑠

𝑘(−∆)𝑠𝑢𝑘,̃︀ℎ−𝑠
𝑘 𝑢𝑚

⟩
𝐿2(Ω)

≤
⃦⃦⃦̃︀ℎ𝑠

𝑘(−∆)𝑠𝑢𝑘

⃦⃦⃦
𝐿2(Ω)

⃦⃦⃦̃︀ℎ−𝑠
𝑘 𝑢𝑚

⃦⃦⃦
𝐿2(Ω)

. (5.14)

A scaling argument as in Lemma 3.2 of [37] yields⃦⃦
𝑤−𝛽

𝑚 𝑢𝑚

⃦⃦
𝐿2(𝑇 )

. ℎ𝑠−𝛽
𝑚 (𝑇 ) ‖𝑢𝑚‖𝐻𝑠(𝑇 ) + ℎ−𝛽

𝑚 (𝑇 ) ‖𝑢𝑚‖𝐿2(𝑇 ) .

Together with 𝑤𝑚 ≤ 𝑤𝑘, since ̃︀𝒯𝑘 is a refinement of ̃︀𝒯𝑚, and ℎ𝑘(𝑇 ) := ℎ𝑘|𝑇 ≥ ̂︀ℎ𝑘 this gives⃦⃦⃦̃︀ℎ−𝑠
𝑘 𝑢𝑚

⃦⃦⃦
𝐿2(𝑇 )

. ℎ𝛽−𝑠
𝑘 (𝑇 )

⃦⃦
𝑤−𝛽

𝑚 𝑢𝑚

⃦⃦
𝐿2(𝑇 )

. ℎ𝛽−𝑠
𝑘 (𝑇 )

(︁
ℎ𝑠−𝛽

𝑚 (𝑇 ) ‖𝑢𝑚‖𝐻𝑠(𝑇 ) + ℎ−𝛽
𝑚 (𝑇 ) ‖𝑢𝑚‖𝐿2(𝑇 )

)︁
. ̂︀ℎ𝛽−𝑠

𝑘 ℎ𝑠−𝛽
𝑚 (𝑇 ) ‖𝑢𝑚‖𝐻𝑠(𝑇 ) + ̂︀ℎ𝛽−𝑠

𝑘 ℎ−𝛽
𝑚 (𝑇 ) ‖𝑢𝑚‖𝐿2(𝑇 )

. ̂︀ℎ𝛽−𝑠
𝑘 ℎ−𝛽

𝑚 (𝑇 ) ‖𝑢𝑚‖𝐿2(𝑇 ) + (̂︀ℎ𝑚/̂︀ℎ𝑘)
𝑠−𝛽

⃦⃦⃦̂︀ℎ−𝑠
𝑚 𝑢𝑚

⃦⃦⃦
𝐿2(𝑇 )

. (̂︀ℎ𝑚/̂︀ℎ𝑘)
𝑠−𝛽

⃦⃦⃦̂︀ℎ−𝑠
𝑚 𝑢𝑚

⃦⃦⃦
𝐿2(𝑇 )

.

Summation over all the elements of ̃︀𝒯𝑚 gives⃦⃦⃦̃︀ℎ−𝑠
𝑘 𝑢𝑚

⃦⃦⃦
𝐿2(Ω)

. (̂︀ℎ𝑚/̂︀ℎ𝑘)
𝑠−𝛽

⃦⃦⃦̂︀ℎ−𝑠
𝑚 𝑢𝑚

⃦⃦⃦
𝐿2(Ω)

. (5.15)

Combining (5.14) and (5.15) with the inverse estimatẽ⃦⃦⃦︀ℎ𝑠
𝑘(−∆)𝑠𝑢𝑘

⃦⃦⃦
𝐿2(Ω)

. ‖𝑢𝑘‖ ̃︀𝐻𝑠(Ω)

of (5.4), (5.5) or Lemma 5.3 proves the strengthened Cauchy-Schwarz inequality. �

Remark 5.8. (1) Since
(︁̂︀ℎ𝑚/̂︀ℎ𝑘

)︁𝑠−𝛽

= 2−(𝑚−𝑘)(𝑠−𝛽), we get – following the notation of [55] – that the matrix

ℰ with entries ℰ𝑚𝑘 = 𝐶CS

(︁̂︀ℎ𝑚/̂︀ℎ𝑘

)︁𝑠−𝛽

satisfies 𝜌(ℰ) < 𝐶spr, with a constant depending only on Ω, 𝑑, 𝑠,
and the initial triangulation 𝒯0.

(2) There is some freedom in the choice of the parameter 𝛽 in Lemma 5.7: the proof shows that the essential
conditions are 2𝑠− 1/2 < 𝛽 < 𝑠. �



622 M. FAUSTMANN ET AL.

Lemma 5.9 (Local stability). For all 𝑢ℓ ∈ ̃︀𝒱ℓ, we have

‖𝑢ℓ‖2̃︀𝐻𝑠(Ω) ≤ 𝐶loc ̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ)

with a constant 𝐶loc > 0 depending only on Ω, 𝑑, 𝑠, and the initial triangulation 𝒯0.

Proof. Since 𝑢ℓ ∈ ̃︀𝒱ℓ, we have 𝑢ℓ =
∑︀

𝑧∈̃︁ℳℓ
𝑢ℓ(𝑧)̃︀𝜙ℓ

𝑧. With an inverse estimate, which can be applied, since due
to Lemma 5.6 𝑢ℓ only lives on a quasi-uniform submesh, we can estimate using that the number of overlapping
basis functions ̃︀𝜙ℓ

𝑧 is bounded by a constant depending only on the 𝛾-shape regularity of the initial triangulation

‖𝑢ℓ‖2̃︀𝐻𝑠(Ω) .
⃦⃦⃦̂︀ℎ−𝑠

ℓ 𝑢ℓ

⃦⃦⃦2

𝐿2(Ω)
= ̂︀ℎ−2𝑠

ℓ

⃦⃦⃦⃦
⃦⃦ ∑︁

𝑧∈̃︁ℳℓ

𝑢ℓ(𝑧)̃︀𝜙ℓ
𝑧

⃦⃦⃦⃦
⃦⃦

2

𝐿2(Ω)

. ̂︀ℎ−2𝑠
ℓ

∑︁
𝑧∈̃︁ℳℓ

|𝑢ℓ(𝑧)|2
⃦⃦ ̃︀𝜙ℓ

𝑧

⃦⃦2

𝐿2(Ω)
.

By definition of ̃︀𝑎ℓ(·, ·), this finishes the proof. �

Now, the assumptions of Proposition 5.1 follow directly from Lemma 5.5 (lower bound) and Lemma 5.7
together with Lemma 5.9 (upper bound) by writing 𝑢 =

∑︀
𝑘 𝑢𝑘 and

𝑎(𝑢, 𝑢) =
𝐿∑︁

𝑘,ℓ=1

𝑎(𝑢𝑘, 𝑢ℓ)
Lem. 5.7
≤

𝐿∑︁
𝑘,ℓ=1

ℰ𝑘ℓ

√︀
𝑎(𝑢𝑘, 𝑢𝑘) ̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ)

Lem. 5.9
≤ 𝐶

1/2
loc

𝐿∑︁
𝑘,ℓ=1

ℰ𝑘𝑚

√︀̃︀𝑎𝑘(𝑢𝑘, 𝑢𝑘) ̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ) ≤ 𝐶
1/2
loc 𝜌(ℰ)

𝐿∑︁
ℓ=0

̃︀𝑎ℓ(𝑢ℓ, 𝑢ℓ),

and the appearing constants are independent of 𝐿. This completes the proof of Theorem 2.9.
The following remark discusses the proof of Theorem 2.6.

Remark 5.10 (Stable decomposition and strengthened Cauchy-Schwarz inequality of mesh hierarchy (𝒯ℓ)ℓ

generated by an adaptive algorithm – Proof of Theorem 2.6). The existence of a stable decomposition and
consequently the lower bound in Proposition 5.2 follows essentially verbatim as in Section 4.5 of [38], where
instead of Corollary 4.6 an 𝐿2-orthogonal projection onto a uniform mesh is used.

Analyzing the proof of Lemma 5.7, we observe that the choice of mesh hierarchy is not crucial for the
arguments, one only needs an inverse estimate and a Poincaré-type inequality. Both hold for the case of the
decomposition into one dimensional spaces 𝑉 ℓ

𝑧 instead of ̃︀𝒱ℓ as well, and, therefore, we directly obtain a strength-
ened Cauchy-Schwarz inequality for (𝒯ℓ)ℓ as well. The algebraic arguments of Section 4.6 from [38] then give
the upper bound for Proposition 5.2. �

Remark 5.11. In the same way as in [38], it is possible to define a global multilevel diagonal preconditioner
by taking the whole diagonal of the matrix Aℓ instead of only the diagonal corresponding to the nodes in ℳℓ.
However, compared to the local multilevel diagonal preconditioner, the preconditioner is not optimal in the
sense that the condition number of the preconditioned system grows (theoretically) by a logarithmic factor of
𝑁𝐿. We refer to [38] for numerical observations of the sharpness of this bound for the hyper-singular integral
operator in the BEM, which essentially corresponds to the case 𝑠 = 1/2 here. �

5.4. Numerical example

We consider two examples: the L-shaped domain Ω = (−1, 1)2∖[0, 1]2 with 𝑓 ≡ 1 and the square Ω = (−1, 1)2

with discontinuous 𝑓 = 𝜒𝑥>0. We discretize (2.10) by piecewise linear functions in 𝑆1,1
0 (𝒯ℓ) on adaptively
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Figure 2. Adaptively generated NVB mesh on L-shaped domain and square.

Figure 3. Estimated condition numbers for A𝐿, the preconditioned matrices P𝐿
AS, and

diag(A𝐿)−1A𝐿. Top: L-shaped domain, bottom: square; left: 𝑠 = 0.25, right: 𝑠 = 0.75.

generated NVB meshes 𝒯ℓ that are generated by the adaptive algorithm proposed in [37] and are depicted in
Figure 2. This adaptive algorithm is steered by local error indicators given by

𝜂ℓ =

(︃∑︁
𝑇∈𝒯ℓ

⃦⃦⃦̃︀ℎ𝑠
ℓ

(︀
𝑓 − (−∆)𝑠𝑢ℓ

)︀⃦⃦⃦2

𝐿2(𝑇 )

)︃1/2

with ̃︀ℎ𝑠
ℓ :=

{︃
ℎ𝑠

ℓ for 0 < 𝑠 ≤ 1/2,

ℎ
1/2
ℓ 𝑤

𝑠−1/2
ℓ for 1/2 < 𝑠 < 1,

where 𝑢ℓ is the solution of (2.12). We note that by Theorem 2.3 of [37] theses indicators are reliable and for
𝑠 < 1/2 efficient in some weak sense. Moreover, Theorem 2.6 of [37] proves optimal convergence rates for the
adaptive algorithm based on these estimators.

Our implementation of the classical SOLVE-ESTIMATE-MARK-REFINE adaptive algorithm uses the MATLAB code
from [2] for the module SOLVE and adapted the MATLAB code for the local multilevel preconditioner from [38] to
our model problem.

Figure 3 gives the estimated condition numbers for the Galerkin matrix A𝐿 and the preconditioned matrix
P𝐿

AS, where the condition number has been estimated using power iteration and inverse power iteration (with
random initial vectors) to compute approximations to the smallest and largest eigenvalues.
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We observe that, as expected, the condition number of the unpreconditioned system grows with the problem
size, whereas the preconditioner leads to uniformly bounded condition numbers for the preconditioned system.
Moreover, diagonal scaling eliminates the dependence on the quotient of maximal and minimal mesh size, which
is the dominant part in the case 𝑠 = 0.25. While there is still dependence on the problem size, the growth
with respect to the number of degrees of freedom is very moderate, and for the problem sizes considered here,
diagonal scaling performs very well for the case 𝑠 = 0.25, but not for the case 𝑠 = 0.75.

As the preconditioner is structurally similar to the one used in [38] for the hypersingular integral equation, we
refer to the numerical results there for the confirmation that the preconditioner can also be realized efficiently.
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[26] L. Chen, R.H. Nochetto, E. Otárola and A.J. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional
diffusion. Math. Comput. 85 (2016) 2583–2607.

[27] P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications.
North-Holland Publishing Co., Amsterdam-New York-Oxford (1978).

[28] P. Ciarlet, Jr., Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21 (2013)
173–180.

[29] A. Cohen, Numerical analysis of wavelet methods. In: Vol. 32 of Studies in Mathematics Applications. North-Holland Publishing
Co., Amsterdam (2003).

[30] W. Dahmen, B. Faermann, I. Graham, W. Hackbusch and S. Sauter, Inverse inequalities on non-quasi-uniform meshes and
application to the mortar element method. Math. Comput. 73 (2004) 1107–1138.

[31] R.A. DeVore and G.G. Lorentz, Constructive approximation. In: Vol. 303 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1993).

[32] L. Diening, C. Kreuzer and R. Stevenson, Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16
(2016) 33–68.

[33] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124.
[34] M. Dryja and O.B. Widlund, Multilevel additive methods for elliptic finite element problems, Parallel algorithms for partial

differential equations (Kiel, 1990). In: Vol. 31 of Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig (1991) 58–69.
[35] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385.
[36] R.S. Falk and R. Winther, The bubble transform: a new tool for analysis of finite element methods. Found. Comput. Math.

(2015) 1–32.
[37] M. Faustmann, J.M. Melenk and D. Praetorius, Quasi-optimal convergence rate for an adaptive method for the integral

fractional Laplacian. Math. Comput., 51 (2013) 1327–1348
[38] M. Feischl, T. Führer, D. Praetorius and E.P. Stephan, Optimal additive Schwarz preconditioning for hypersingular integral

equations on locally refined triangulations. Calcolo 54 (2017) 367–399.
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