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ON THE STABILITY OF SCOTT-ZHANG TYPE OPERATORS AND
APPLICATION TO MULTILEVEL PRECONDITIONING IN FRACTIONAL
DIFFUSION

MARKUS FAUSTMANN*, JENS MARKUS MELENK AND MARYAM PARVIZI

Abstract. We provide an endpoint stability result for Scott-Zhang type operators in Besov spaces.
For globally continuous piecewise polynomials these are bounded from H 3/2 into Bg{;; for element
wise polynomials these are bounded from H /2 into 321/02C As an application, we obtain a multilevel
decomposition based on Scott-Zhang operators on a hierarchy of meshes generated by newest vertex
bisection with equivalent norms up to (but excluding) the endpoint case. A local multilevel diagonal
preconditioner for the fractional Laplacian on locally refined meshes with optimal eigenvalue bounds is

presented.
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1. INTRODUCTION

The Scott-Zhang projection, originally introduced in [50], is a very important tool in numerical analysis and
has been generalized in various ways [1,8,11,14,22,23,28,35,36,40,42,48]. In its classical form, it is quasi-local,
it is a projection onto the space of globally continuous, piecewise polynomials, it is stable in both L? and H*
(and thus, by interpolation also in H*, s € (0,1)), and has optimal approximation properties. Therefore, it is
well-suited for the analysis of classical finite element methods (FEMs) [20], and plays a key role in the analyses
of, e.g., anisotropic finite elements [7], adaptive finite element methods [10], or mixed methods [12].

As globally continuous piecewise linear functions are not only in the Sobolev space H'(2), but also in
(fractional) Sobolev spaces H®/27¢(Q) for any ¢ > 0 — in fact, they are in the Besov space BS/OQO(Q) - a
natural question is whether the operator is also stable in the stronger norms imposed on these spaces. In this
article, we provide an endpoint stability result, i.e., we study the stability in the norm || - || B2 () not only
for the Scott-Zhang operator but more generally for local, L?(Q)-stable operators with certain approximation
properties in L2(2) on shape-regular meshes. Additionally, we cover the case of operators such as the elementwise
L2-projection that map into spaces of discontinuous piecewise polynomials, where the corresponding endpoint
space is le/fo(ﬂ) By interpolation, these endpoint results imply stability results in the full range between L?
and the Besov space.
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Multilevel representations of Sobolev spaces (and Besov spaces) based on sequences of uniformly refined
meshes are available in the literature; see, e.g., [19,47,49], and the references therein. For fractional Sobolev
spaces H*°(Q) and general meshes (with certain restrictions on s), we mention [51], where wavelet bases are
employed. Our stability result for Scott-Zhang type operators allows us to develop multilevel norm equivalences
in Besov spaces up to the endpoint case for standard discrete spaces of globally continuous piecewise polynomials
on adaptively refined meshes 7. These are assumed to be shape-regular and obtained by newest vertex bisection
(NVB). The mesh hierarchy T = fee(7, Tg) £=0,...,L,is given by the finest common coarsening of 7 and the
meshes ’]} of a sequence (’Tg) ¢ of uniformly refined NVB generated meshes. Our actual multilevel decomposition
is then obtained with an adapted Scott-Zhang operator that is of independent interest (Lem. 4.4).

In numerics, an important application of multilevel decompositions is the design of multilevel additive Schwarz
preconditioners, in particular multilevel diagonal scaling [34,59], and BPX [18]. In this article, we propose a
local multilevel diagonal preconditioner for the integral fractional Laplacian (—A)® for s € (0,1) on adaptively
refined meshes 7;. The need for a preconditioner arises from the observation that the condition number of
the stiffness matrix A¢ € RNe*Ne corresponding to a FEM discretization by piecewise linears of the integral

d—2s
h[

min denote the maximal and minimal

, where h¢

fractional Laplacian grows like £(A*) ~ N, 2s/d Z"‘f"‘

max?
mesh width of 7y, see, e.g., [4,6]. Since the fractional Laplacian on bounded domains features singularities
at the boundary, typical meshes are strongly refined towards the boundary so that the quotient h’, /h®. is

large (see, e.g., [4,16,37] for adaptively generated meshes). While the impact of the variation of the element

size can be controlled by diagonal scaling (see, e.g., [6,13]), the factor Ngs/d persists. A good preconditioner
is therefore required for an efficient iterative solution for large problem sizes N,. Indeed, preconditioning for
fractional differential operators has attracted attention recently. We mention multigrid preconditioners [4] based
on uniformly refined mesh hierarchies and operator preconditioning [39,41,53], which requires one to realize an
operator of the opposite order. Another classical technique is the framework of additive Schwarz preconditioners,
analyzed in a BPX-setting with Fourier techniques in [17]. For a different definition of the fractional Laplacian via
spectral and PDE theory [21], locally refined FEMs have been studied in [25], and [26] provides an almost optimal
multilevel method for this interpretation. We also mention [15], where optimal additive Schwarz preconditioners
on quasi-uniform meshes for the spectral fractional Laplacian are proposed, similarly to our result for the integral
fractional Laplacian.

In the present work, we also adopt the additive Schwarz framework and show that, also in the presence of
adaptively refined meshes, multilevel diagonal scaling leads to uniformly bounded condition numbers for the
integral fractional Laplacian. The above mentioned norm equivalence of the multilevel decomposition provides
the lower bound for the eigenvalues; an inverse estimate in fractional Sobolev norms, similarly to [37], gives the
upper bound for the eigenvalues.

We mention that very closely related to preconditioning of discretizations of the fractional differential oper-
ators is earlier work on preconditioning for the hypersingular integral equation (e.g., the operators coincide for
the case s = 1/2 for screen problems) in boundary element methods (BEMs) [5,38,45,56-58].

The present paper is structured as follows: Section 2 provides the necessary notation and states the three
main results of the paper. The first result is the stability of quasi-interpolation operators in the endpoint Besov
space (Thm. 2.2) both for globally continuous and discontinuous piecewise polynomials. The second result is
a multilevel decomposition based on a modified Scott-Zhang operator on a mesh hierarchy of NVB meshes
(Thm. 2.5). The third result is an optimal local multilevel diagonal preconditioner for the fractional Laplacian.
Two types of mesh hierarchies are considered: The first one is assumed to be generated by an adaptive algorithm
and discussed in Theorem 2.6. The second one, 7y = £ ce(7, ’Z}) is generated by the finest common coarsening
of a fixed mesh 7 and a sequence of uniformly refined meshes Tg and analyzed in Theorem 2.9.

Section 3 is concerned with the proof of the stability result of the quasi-interpolation operators in Besov spaces.
Moreover, we present some extensions such as inverse estimates in Besov norms (Lem. 3.6) or an interpolation
result for discrete spaces in Besov norms (Cor. 3.8).
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In Section 4, we develop properties of the finest common coarsening of two meshes. We prove the norm
equivalence for the multilevel decomposition. Furthermore, we develop, for given meshes 7, 7, two Scott-Zhang
type operator 75% and IS% on the meshes 7 and 7 := fce(7, ’]A') with the property I8%y = 5%y for u € SPL(T).
Such operators are useful in various context and similar operators have been constructed, e.g., in Lemma 3.5 in
[32].

Finally, Section 5 provides the abstract analysis for the additive Schwarz method to prove the optimal bounds
on the extremal eigenvalues of the preconditioned stiffness matrix for the fractional Laplacian on adaptively
generated NVB meshes. Numerical experiments underline the optimality of the preconditioner.

Throughout the paper, we use the notation < to abbreviate < up to a generic constant C' > 0 that does not
depend on critical parameters in our analysis. We use ~ to indicate that both estimates < and 2 hold.

2. MAIN RESULTS

2.1. Stability of (quasi-)interpolation operators in Besov spaces

Let Q C R? be a bounded Lipschitz domain. For s > 0, we use the Sobolev spaces H*(£2), in the integer case
s € Ny defined in the standard way, see, e.g., [3], and for the fractional case s ¢ Ny defined by interpolation
[54]. We note that, equipped with the Aronstein-Slobodeckij (semi-)norm

2 2 2 . 2 (u(2) — u(y))?
Il = Nl + iy with Tl = [ [ =8 asay

the space H*(Q) is a Hilbert space. Moreover, for s > 0, s ¢ Ny, ¢ € [1, 00], we employ the Besov spaces B3 ,(2)
defined as the interpolation spaces Bj ,(Q) := (H° (), H°(2))g,q, where o0 = |s] and 6§ = s — o € (0,1).
Throughout we use the so-called “real method” /“K-method” as described in, e.g., [54]. The norm is given by

oo _ 1
oo (o= A U (7P ) )" g [1,00),
2 sup,sot K (t,u) q = oo.

[ul

Here, for u € H?(Q)) and ¢ > 0, the K-functional is defined by

K(t,u) = utel;l,{}ﬁl(m lw = wel| o () + tluel| o+ (@)

For the discretization, we assume that a regular (in the sense of Ciarlet) triangulation 7 of Q consisting of
open simplices is given. Additionally, 7 is assumed to be ~-shape regular in the sense that

. 1/d\
max (dlam(T)/ |T| ) <y < o0,

where diam(7T') := sup,, ,cr |# — y| and |T'| is the volume of T'. By h € L*°(92), we denote the piecewise constant
mesh size function satisfying h|p := hp = |T\1/d forT €T.

Let P,(T) be the space of polynomials of (maximal) degree p on the element T" € 7. Then, the spaces of
T -piecewise polynomials of degree p € Ny and regularity m € Ny are defined by

SPT) :={ue H™"(Q): ulr € P,(T) VT €T}, Sg’l(T) = SPHT)N Hy (Q).
For T € 7 and k € N, we inductively define the element patches
W(T) =T, wk(T) := interior (U {?: T €T, T' Nwk—1(T) # @}) ,

and for the first order patch, we abbreviate w(T) := w!(T).
In the present work, we study (quasi-)interpolation operators I} satisfying the following locality, stability
and approximation properties.
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Assumption 2.1. Let m > 1 and I]" be an operator I7* : L*(Q) — SP™~Y(T) that satisfies:
(i) Quasi-locality: For every T € T, the restriction (I}/'u)|r depends solely on uly(r).
(ii) Stability in L*: For u € L?(S2), there holds
17 ull 2y < Cllullzew(ry)-
(iii) Approzimation properties of mth order: For u € H™ (), there holds
lw— I3 ul| 27y < Chyl|ull grm w(T)).-
The constants in (ii) and (iii) depend only on Q, d, m, p, and the v-shape reqularity of T .

The following theorem is the main result of this subsection and states a stability result in the Besov space
Bm71/2

9,00 () for operators satisfying Assumption 2.1. Its proof will be given in Section 3.1 below.

Theorem 2.2. Fiz m € {1,2} and p € Ng with p > m — 1. Let T be a ~y-shape regular triangulation. Let an
operator I} satisfying Assumption 2.1 be given. Then,

15 ull g 172y < Cllullgrm-s/200y  Vu € H™ %), (2.1)

where the constant C' > 0 depends solely on ), d, m, p, and the y-shape regularity of T .
If the mesh T is additionally quasi-uniform, then, the following sharper estimate holds:

—-1/2
17 ull 172y < Cllull gposaggy  Vu € Byl 2(Q). (2.2)
Remark 2.3. For m = 1, a possible choice for I} is the L?(Q)-orthogonal projection that trivially satisfies
Assumption 2.1. For m = 2, the Scott-Zhang projection, introduced in [50] and defined below, is an example
of an operator I;" satisfying Assumption 2.1. Therefore, Theorem 2.2 provides a novel stability estimates for
these projection operators in Besov spaces. |

2.2. Multilevel decomposition based on mesh hierarchies generated by NVB

The multilevel decompositions will be based on mesh hierarchies that are engendered by newest vertex bisec-
tion (NVB). For a discussion of properties of NVB meshes, we refer to [43] for the case d = 2 and to [52] for
the case d > 3. We consider sequences of regular meshes that are obtained by NVB refinement from an initial
mesh 7.

2.2.1. The finest common coarsening

For two regular triangulations 7, 7’ (obtained by NVB from the same triangulation ’%), we define the finest
COMMON COGTSENING as

fcc(7,7') = {T €T : 3T eT st. T CTIU{T' €T : IT €T st. TCT}U(TNT"). (2.3)
——
=% =:%5 =:T3

Figure 1 provides two examples for this concept. We refer to Lemma 4.1 for the proofs that the three sets in
the definition (2.3) are pairwise disjoint and that fcc(7,7") is indeed a regular triangulation of Q.

Let 7; be the ¢th uniform refinement of 7. We call level(T') := ¢ the level of an element T € 7;. Given a
regular triangulation 7 that is obtained by NVB from 7; we will consider

T; = fcc(T,T,),

which is, in general, a coarser mesh than the uniform triangulation 7.



STABILITY OF SCOTT-ZHANG TYPE OPERATORS AND APPLICATION TO MULTILEVEL PRECONDITIONING 599

| 1 b fee(T,T7)

T3

FIGURE 1. Example of the finest common coarsening of 7 and 7’ and the sets ¥; (coarser
elements of 7, red), T2 (coarser elements of 7', green), T3 (common elements, blue) in (2.3).

2.2.2. Adapted Scott-Zhang operators

We recall the basic construction of the Scott-Zhang operator of [50] or Section 4.8 of [20]. It will be convenient
in the proof of Lemma 4.4 to use Lagrange bases of the space SP''(7”) defined on a mesh 7', where 7" is either
7o or fcc(7,7;). We define the adapted Scott-Zhang operator in the following way:

(1)

On the reference d-simplex T = conv{zi,..., 241}, let the dim P, nodes N/ (f) be the regularly spaced
nodes as described in Section 2.2 of [27] (called “principal lattice” there),

R d+1 d+1 i
N(T) = .’E:Z)\ij ZZ)\J':L )\je{p,izo,...,p}
j=1

Jj=1

We note that any polynomial in P, is uniquely determined by its values on N (f)

The nodes N(7’) C Q for the mesh 7’ are the push-forward of the nodes of A/(T) under the element
maps. The Lagrange basis {p, 7/ : 2 € N(T')} of SP1(T") is characterized by ¢, 7/(z') = 8, .+ for all z,
z' € N(T'); here, 6, . is the Kronecker Delta with ¢, ,» = 1if z = 2" and ¢, ,» = 0 if z # 2/.

The basis functions ¢, 7+ have the following support properties: a) if z € T for some T € 7', then
suppy..7» C T; b) if z € f for some j-dimensional face (j < d) of T, then suppp. 7 C wy, where
wy = interior J{T': f is j-face of T € T'}. In particular, if z ¢ T, then supp . 7 NT = 0.

For each element T' € 7' one has a dual basis {¢} ; : 2 € T} C Py(T) of Py(T), i-e., [0k por 7 = 640
for all nodes z, 2’ € T. In particular, this gives

/ ¢r pudr = u(z) VI € T' Yue Py(T). (2.4)
T

For each node z € N(T") define the admissible set of averaging elements as A(z,T7') :={T € T': 2 € T}.
A Scott-Zhang operator is then defined by selecting, for each z, a T, € A(z,7") and set

%%y = Z Pz, T’ (/ @2,T2Ud$> . (2.5)
) T

zeN(T’



600 M. FAUSTMANN ET AL.

For nodes z that are on the boundary of an element, the admissible set A(z,7") has more than one element.
However, from (2.4), we get that the values of the functionals coincide on SP*(7”):

/ i pudr=u(z) = / pipoude VT, T, € Az, T) Vue SPL(T). (2.6)
We also highlight that (2.4) implies that 157 is a projection onto SP>!(7). Such Scott-Zhang operators satisfy the
stability and approximation properties of Assumption 2.1 with constants that solely depend on p, the specific
polynomial basis, the shape-regularity of the underlying triangulation, and 2. In particular, the constants are
independent of the specific choice of averaging region T,.

The freedom in the choice of the averaging element 7T, can be exploited to ensure additional properties, see
also Section 4 of [24], Section 3 of [32], Section 4.3 of [38]. For the Scott-Zhang operator on general NVB meshes,
the mesh decomposition of [24] can be employed to transfer information between the refinement levels. In the
following, we define a modified Scott-Zhang operator for the hierarchy (fcc(7, f})) ,» where a guiding principle

is that in the definition of I5% one selects the averaging element T, from the mesh 7 whenever possible:

Definition 2.4 (Adapted Scott-Zhang operators) Given a 7 that is obtained by NVB refinement from a
regular triangulation 7o and T; = fcc(T,7y), the operators 152 : L2(Q) — V; = SP1(T;) and T5% : L2(Q) —
= 5P 1(7}) are Scott-Zhang operators of the form (2.5) with the following choice of averaging element T:

(1) First, loop through all T € 7,N T, (in any fixed order) and select the averaging sets T, for the nodes z € T

as follows:

(a) If z € T, then select T, = T for both fEZ and TESZ.

(b) If z € T and the node z has not been assigned an averaging set T, yet, then:

(i) If A(z, ﬁ) contains an element 7" € 7, that is a proper subset of an element T’ € T, then select this 7"
to define I3 and select T for the definition of I52.

(ii) Else select T for both fgsz and TZSZ.

(2) Next, loop through all T € o \ 7 (in any fixed order). Select, for the construction of I~€SZ, this T' as the
averaging element for all nodes z with z € T that have not already been fixed in step (1) or in a previous
step of the loop. This completes the definition of '[;SZ_

(3) Finally, loop through all T' € 7, \ T (in any fixed order). Select, for the construction of ./T\EZ, this T as the
averaging element for all nodes z with z € T that have not already been fixed in step (1) or in a previous
step of the loop. This completes the definition of jEZ

In Lemma 4.4 below we will see that this definition of the adapted Scott-Zhang operator ensures f;zu = TZSZU

for all u € SP1(7).

2.2.8. The multilevel decomposition

With the use of the adapted Scott-Zhang operators ESZ and a mesh hierarchy based on the finest common
coarsening between NVB meshes and uniformly refined meshes, we obtain a multilevel decomposition with norm
equivalence in the Besov space BSG/ 2(Q) as a consequence of the stability estimate of Theorem 2.2.

Theorem 2.5. Let T be a mesh obtained by NVB refinement of a triangulation 75 with mesh size ho Let 'Tg
be the sequence of umformly refined meshes starting from TO with mesh size h/ = h02 L Set Ty = fce(7, ’Z})
Let ISZ : L2(Q) — Spt (’Z}) be the adapted Scott-Zhang operator defined in Definition 2.4. Then, on the space
SP-Y(T) the following three norms are equivalent with equivalence constants depending only on 'ZAZ), p, 0 €(0,1),
and q € [1, 00]:
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”uHBg’iI/Z(Q)’ (27)
17520l 20y + 112372l — I5%ul| 12 () esollea, (2.8)
115%ull L2y + 1232 IFE u — I ul| L2 () )exolles- (2.9)

2.3. A realization of an optimal multilevel preconditioner for the fractional Laplacian

The final main result of this paper presents a multilevel diagonal preconditioner with uniformly bounded
condition number on locally refined triangulations for the fractional Laplacian.
With the integral fractional Laplacian defined as the principal value integral

u(z) — u(y) 25, L(s +d/2)
—-A)* = P.V. — =28 — 1
(=A)°u(x) :=C(d, s) P.V o T — g dy, C(d,s) Swd/21“(1—s)0<3< ,
where I'( - ) denotes the Gamma function, we consider the problem
(—A)’u=f inQ, u=0 1in Q° (2.10)

for a given right-hand side f € H~*(Q). Here, H*(Q2) denotes the dual space of the Hilbert space
r7s s — c 2 2 . —_s |12
H3(Q)={ue H*(RY) : u=0o0nQ°}, 1ol 5 ) = Vg o) + || dist(-, 0£2) ’UHL2(Q) .
The weak formulation of (2.10) is given by finding v € H*(2) such that

a(u,v) = @ //]Rded (u(@) = uly))(vlz) = v(y)) dzdy = /va dz Vv e H*(Q). (2.11)

d+2s
|z -y

Existence and uniqueness of v € H*(Q) follow from the Lax-Milgram lemma.
With a given regular triangulation 7y, we consider two hierarchical sequence of meshes 7y, 7y, £ =0, ..., L:

(1) (sequence (7¢)¢): The meshes Ty are generated by an adaptive algorithm (see, e.g., [33]) of the form SOLVE
— ESTIMATE — MARK — REFINE, where the step REFINE is done by newest vertex bisection. In the following,
both for the case of piecewise linear and piecewise constant basis functions, we always assume that the
meshes 7; are regular in the sense of Ciarlet.

(2) (sequence (7;)¢): From a given triangulation 7, obtained by NVB refinement of 7y, which may, e.g., be
obtained from an adaptive algorithm, the finest common coarsening of 77, with the uniform refinements of
7o (denoted by 7y) provides a hierarchy of meshes 7y = fcc(7y, 7y).

2.8.1. A local multilevel diagonal preconditioner for adaptively refined meshes

We start with the case of the adaptively generated mesh hierarchy (7;),. On the mesh 7y, we discretize with
piecewise constants (for 0 < s < 1/2) as the space V) = $%9(7;) and piecewise linears (for 0 < s < 1) as the
space V! =S4 (T;). Tf the distinction between V2 and V! is not essential, we write V; meaning V; € {V,2, V,'}.
The Galerkin discretization (2.11) in Vp of reads as: Find u; € Vp, such that

aue, ve) = (f,v0) 12(q) Ve € V. (2.12)

Moreover, on the uniformly refined meshes ’ZAZ, in the same way, we define the discrete spaces 1750 = SO’O(’?Z),
Vi =S8N (T), and Vi € {V2, V).

We define sets of “characteristic” points A}, i = 0,1, representing the degrees of freedom of V. For the
piecewise constant case VEO7 the set N, eo comprises all barycenters of elements of the mesh 7,. For the piecewise
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linear case V', we denote the set of all interior vertices of the mesh 7; by N;. If the distinction between N
and N} is not essential, we will write Ny meaning N; € {N?,N}} is either NP if V; = V)2 or N} if V, = V1.
The points z € N are called nodes.

We choose a basis of V, = Span{goﬁj : zj € Ng,j = 1,...,Ng}: for the piecewise constants we take the
characteristic functions goﬁj = x1, of the element satisfying z; € T € 7y, and for the piecewise linears we take
hat functions corresponding to the interior nodes defined by gpﬁj (zi) = 6;, for all nodes z; € Ny. With these

Ny

bases, we can write ug = 3 ;% xﬁcpﬁj, and (2.12) is equivalent to solving the linear system

Afx! =1’ (2.13)
with the stiffness matrix A¢ and load vector b’
Ajy=alel eh), b= (o) paa) - (2.14)

Again, we mention that the ¢2-condition number of the unpreconditioned Galerkin matrix grows like x(Af) ~

¢ d—2s
N, 4,2 s/d (%) , which shows the need for a preconditioner in order to use an iterative solver.

For fixed L € Ny, we introduce a local multilevel diagonal preconditioner (BY)~! of BPX-type for the stiffness
matrix A from (2.13) in the same way as in [5,38]. That is, following [38], we define the patch of a node z € N
as

we(z) = interior U{T :TeTy,2z€T}.

The sets M?, i = 0,1, defined in the following, describe the changes in the mesh hierarchy between the levels
¢ and ¢ — 1 and are crucial for the definition of the local diagonal scaling. For the case of piecewise linears, we
define the sets M} as the sets of new vertices and their direct neighbors in the mesh 7;: We set M} := N and

M= NPWE U{z e NP ONE - we(z) Qe (2)}, €21 (2.15)

For the case of a piecewise constant discretization, we define the set MY simply as the barycenters corresponding
to the new elements, i.e., MY := NP\N?_, for £ > 1. In the same way as for the nodes Ny, we write M, to
either be MY and M, which should be clear from context.

The local multilevel diagonal preconditioner is given by

L
(BN =) 1'Di, (197, (2.16)
£=0

where, with N, := #MN;, the appearing matrices are defined as

— If € RVeXNe denotes the matrix representation of the embedding Z* : V, — V.
Dg RNZXNZ . . 1 . ith . Dg _ (Aﬁj)_l 6] j Lz S MZ
- D, € is a diagonal matrix with entries ( inv) S . .
J 0 otherwise

That is, the entries of the diagonal matrix are the reciprocals of the diagonal entries of the matrix A*
corresponding to the degrees of freedom in M.

Moreover, we define the additive Schwarz matrix PXg := (BL)_lAL. Instead of solving (2.13) for £ = L, we
solve the following preconditioned linear systems

Phx! = (BY) 'bl. (2.17)

The following theorem is the main result of this section and provides optimal bounds to the eigenvalues of the
preconditioned matrix.
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Theorem 2.6. The minimal and mazimal eigenvalues of the additive Schwarz matrix Pﬁs are bounded by
¢ < Amin (PXs)  and  Apax (Pg) < C, (2.18)
where the constants ¢, C > 0 depend only on 2, d, s, and the initial triangulation 7.

Remark 2.7. The preconditioner (B%)~! is a symmetric positive definite matrix and the preconditioned matrix
Pﬁs is symmetric and positive definite with respect to the inner product induced by B¥. Therefore, Theorem 2.6
leads to k(Pkg) < C/e. [ |

Remark 2.8. The cost to apply the preconditioner is proportional to ZeL:o card My = O(Np) by Section 3.1
of [38]. ]

2.8.2. A local multilevel diagonal preconditioner using a finest common coarsening mesh hierarchy

In this subsection, we provide a result similar to Theorem 2.6 for the meshes ’fg = fcc(TL,ﬁ) where
¢=0,...,L. With V? = §%%(7;), V}! = oN(Ty), and Vi € {Véo, Vz } being either the piecewise constants or
piecewise hnears on ’D, the Galerkin dlscretlzatlon of finding uy € V; such that

a(lie, V) = (f,00) o) V€V (2.19)
is equivalent to solving the linear system
AR =1! (2.20)
by choosmg a nodal basis as in the previous subsection. The set of nodes N, P.i=0,1, and M as well as the sets
‘
7»4=0,1,and M, ¢ can be defined in exactly the same way as in the previous subsection by just replacing the

meshes 7; with Tg. Therefore, in exactly the same way as in (2.16), we can define the local multilevel diagonal
preconditioner

(B) = D"
The following theorem then gives optimal bounds for the smallest and largest eigenvalues of the preconditioned
- N
matrix P4q = (BL) AL,
Theorem 2.9. The minimal and maximal eigenvalues of the additive Schwarz matriz f’ks are bounded by

¢ < Amin (f’f\s> and  Amax (f’f\S) <, (2.21)
where the constants ¢, C' > 0 depend only on ), d, s, and the initial triangulation Ty.

Remark 2.10. By Lemma 4.3 the cost of the preconditioner are, up to a constant, card Mo + 25:1 card Mz S
card M + ZeL:o card Ny — card M;_1 < card N, = card 7. [ ]

3. STABILITY OF SCOTT-ZHANG TYPE OPERATORS

We will need mollifiers with certain local approximation properties. Essentially, such operators are given by
those classical mollifiers that reproduce, or at least approximate to high order, polynomials of degree p. The
following proposition, which is taken from [42], provides such operators. Our primary reason for working with
this particular class of approximation operators is that the technical complications associated with the boundary
of 9N) have been taken care of.
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Proposition 3.1 ([42], Thm. 2.3). Let Q be a bounded Lipschitz domain and p € Ny be fized. For open w C
and € > 0 denote by w. := Q N UzcwB:(z) the “e-neighborhood” of w. Then, there exists a constant C > 0
such that for every e > 0 there is a linear operator A. : L}, (Q) — C>(Q) with the following stability and
approximation properties for arbitrary open w C Q:

(i) If u € H*(w.) with k <p+1, then ||Acul ey < Ce™ ¥ |ull gre .y, b=k, ..,p+1
(i) If u € H*(w.) with k < p+1, then |lu — Acul| ge() < Cé\kieHU”Hk(wE), £=0,...,k.

Proof. The proof for the much more technical case of a variable length scale function e = e(x) is given in
Theorem 2.3 of [42]. We give the idea of the proof: in the interior of €, the operator A, has the form A.u = ux*p.,
where the mollifier p. is such that it reproduces polynomials of degree p (the “classical” mollifier reproduces
merely constant functions). Near the boundary, this standard averaging is modified such that A.u(x) is not
obtained by averaging u on B.(z) but by averaging u on the ball B (z+¢b) and evaluating the Taylor polynomial
of degree p of this averaged function at the point x of interest; the vector b is suitable of size O(1) and it ensures
that the averaging is performed inside 2. O

With the mollifiers from Proposition 3.1, we can prove stability and approximation properties for operators
satisfying Assumption 2.1 in stronger norms.

Lemma 3.2. Let m € {1,2} and p > m—1. Assume that the linear operator I" : H™(2) — SP™~1(T) satisfies
Assumption 2.1. Then, there is a constant C > 0 depending solely on d, m, p, and the ~y-shape-regqularity of T
such that for all T € T the following stability and approximation properties hold:

||I}77,”u||H"'(T) < CHU||H"'(w2(T))a r=0,...,m, (31)
|l — I3 u|| g () < Ohlch_r||u||Hk(w2(T)), r=0,...,min{k,m}, k=0,...,p+1. (3.2)

Proof. Let T € T be arbitrary. We use the operator A, of Proposition 3.1 with w = w(T") and € ~ hp, such
that w. C w?(T). We write using the triangle inequality

lu = I3 ull g1y < llu— Acullgrry + |Acu — I Acull ey + 117 (u — Acv) | ey =2 T+ T2+ T5.

By Proposition 3.1, we have Ty < hI;«_T||U||Hk(w2(T)). A polynomial inverse estimate, see, e.g., [30], the stability
property (ii) of Assumption 2.1, and Proposition 3.1 give

Ty S hi'llu — Acull p2(oiry) S hr Bl ez o))

In order to estimate T, we use a piecewise polynomial ¢ € SP™~!(7T) with approximation properties in the
H"-norm (e.g., a Clément or Scott-Zhang type interpolation) as given by Theorem 4.8.12 of [20]. Then,

Ty < || Acw — ullgr(ry + [lu = qllgr )y + 15" A = qll gy =: Toq + Tap + To 3.

We have already estimated T57 = T1. By Theorem 4.8.12 of [20] (and inspection of the procedure there), we
obtain T5 9 < h’;fTHuHHk(wQ(T)). Finally, for T5 5, we use an inverse estimate

Ty S by | A — qll L2y S hp” [ Acu — Acull 2y + | Acu — ull 2ory + [[u — qll 2] -

The last two terms have the desired form due to Proposition 3.1 and Theorem 4.8.12 of [20]. For the remaining
term, we write with Assumption 2.1 (iii) and Proposition 3.1

11 Acu — Acul | 2ory S RPNl mm wery) S R |ul g w2 (7)) -

Finally, (3.1) follows from (3.2) by selecting r = k. O
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The generalization of Proposition 3.1 to the case of variable length scale functions from Theorem 2.3 of [42]
can also be used to derive a smooth operator with approximation and stability properties for h-weighted and
fractional norms.

Corollary 3.3. With the mesh size function h of T and t > 0, define the function h := max{t, h}.jet m,
n € Ny be fized and u € H™(Q). Then, for every t > 0 there exists a linear operator J; : L*(Q) — C°°(Q) with
the following stability and approzimation properties:

||Envm+thU||L2(Q) < Conllullam ), (3.3)
SR (Sl < Conllullin ). (3.4)
7=0
In particular, interpolation arguments give
1529 Tl gy + IR (= Jew) |2y < Clluall s, (3.5)
1B 202 Bl gy + 12 = T2y + B2V = Jow) |2y < Clull s ay- (3.6)

The constants Cy, ,, and C,, depend on m and n as indicated, as well as on ) and the y-shape reqularity of T .
The constant C' depends only on Q0 and the v-shape reqularity of T .

Proof.

Step 1. For t > diam 2, one may select J; = 0.

Step 2. For t < diam (), one constructs a length scale function ¢ with € ~ h in the following way: First, by

mollification of the piecewise constant function h (see Lemma 3.1 of [42], for details), one obtains a function

he C> (), whose Lipschitz constant £ depends solely on the y-shape regularity of 7 and 2. Next, one defines
the auxiliary length scale function &(z) := h(z) + t. We note that the Lipschitz constant of £ is still £. From

Lemma 5.7 of [42], there are parameters 0 < « < (3 (depending on £) and Ny € N (depending only on the

spatial dimension d) as well as closed balls B;; := Eag(zij)(l‘ij)7 it =1,...,Ng, j € N such that the following

holds:

( ) QCU 1UJ€NBzJ7

(b) There is a constant Ciiz > 0, such that, for each i € {1,...,Ng}, the stretched balls
Bij = Bz (s, (2i5) satisfy an overlap condition: #{;’ | Bijs (N Bij # 0} < Cig for all j € N.

(c) For pairs (i, ) and (¢, j') with Eij ﬁgi/jr # 0, there holds €(z;;) ~ €(xy ;) with implied constant depending
solely on £ and . This implies a fortiori that for pairs (i,7) and (¢/,j") with B;; N By # (0 there holds
€(xij) ~ €(x4jr) with implied constant depending solely on £ and 8 (which follows by inspection of the
proof of Lemma 5.7 from [42]).

Denoting by x4 the characteristic function of the set A, we define the desired length scale function € as

Nag
ei=> Y &(ij)(XB,, * PB-a)(ay)): (3.7)

i=1 jeN

where ps is a standard non-negative mollifier supported by B;s(0). Let « € Q. Due to (a) there is (¢,7) with
x € B;j. The non-negativity of the mollifier ps gives e(x) 2 €(z;;). Furthermore, (b), (c) imply that the sum
(3.7) is locally finite (with at most NgChig non-zero terms). In view of (c), we get e(z) < e(x;;). By studying
derivatives of e, we recognize that it is a length scale function in the sense of Definition 2.1 from [42].

Step 3. The upshot of Lemma 5.7 from [42] is that, once a length scale function ¢ is available, then a covering
argument can be employed. That is, the operator A. of Theorem 2.3 from [42] yields

D ™IV (u— Acu) | 2 () S llull o), "V Al r2) S llull mm e,
=0



606 M. FAUSTMANN ET AL.

which proves (3.3) and (3.4) since € ~ h.
Step 4. Interpolation between the inequalities for m = 0 and m = 1 using Lemma 23.1 of [54] then gives the
estimate (3.5), and interpolation between m = 1 and m = 2 the bound (3.6). O

Remark 3.4. If the shape-regular mesh 7 is obtained by repeated NVB from a coarse grid 7y, then a simpler
proof is possible: one may take a quasi-uniform mesh 7; of mesh size ~ ¢ and consider 7 := fcc(7,7;). Then,
J¢ can be taken as a mollifier of the standard Scott-Zhang operator associated with 7. |

3.1. Proof of Theorem 2.2

Proof of Theorem 2.2. The function I;*u is piecewise smooth on a finite mesh. Hence, it is an element of
Bgf O_ol/ 2(Q), so that only the stability estimate has to be proved. This is achieved by constructing an element

ug = Agsi(I]"u) for an appropriate ¢ > 0 such that the K-functional can be estimated by the H m=1/2_norm of
u. We have

m _ —1/2 m
|17, u||B;,;1/2(Q) St;1>1%)t K(t, I}T'u)

S supt ™72 (10 = A (50 sy + A (0 ) (38)

With the operator J; from Corollary 3.3, we further decompose u = (u — Jyu) + Jyu =: ug + vy into an element
of H™~1(Q) and one in H™(2). By the triangle inequality, we have to control the right-hand side of (3.8) for
both contributions separately.

Step 1. For fixed ¢t > 0, we split the mesh into elements of size smaller than ¢ and larger than ¢:

T ={T €T: diamT < t}, Top:={T € T: diamT >t}
and define the regions covered by these elements by
Q< := interior ( U T), Q- := interior ( U T). (3.9)
TeT<, TeT>,

There is a constant § > 0, depending solely on the «-shape regularity of 7', such that the “dt-neighborhood”
Tse := QN Uger Bse(x) of each element in 7%, is contained in the patch of the element, i.e., Ts; C w(T) for all
T € Ts¢. Moreover, for each T € 75, we define the inside strip St s: at the boundary 0T of T by

St.st = {x € T: dist(x,0T) < dt}. (3.10)

For the set 7<;, the y-shape regularity of 7 implies the existence of 7 > § and C' > 0 depending only on the
v-shape regularity such that the extended set ,; :== QN By(x) satisfies the conditions

IGQSt
T € T<y = W (T) C Qi (3.11)
TeT withT C Q, = diamT < Ct, (3.12)
T €T with TNQy # 0 = w(T) C Qo (3.13)

With the sets from (3.9) and (3.10), we decompose for k € Ny and v € H¥(€2)

2 2 2 2 2 2
[ollae ) S I0lar o, T 10l Er @) S I0lEr@.,) + Z [0l ek (s 50y + Z 02k (7. 51) - (3.14)
TeTS TeET>

We employ this decomposition in (3.8) for k = m — 1 and v = IJ'u; — Asi(I]u;) as well as for & = m and
v = A5 (IT"u;) and i € {0,1}. In the following, we estimate all these contributions separately by the desired
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H™Y/2(Q)-norm of u. The main ideas are that, (a) on Q<;, we exploit that elements are small; and (b) on
T\St.5:, we may exploit that a sufficiently small neighborhood of this set is still contained in T’; (c) we can use
the smoothness of I7"u, inside T'; (d) for St s, we exploit the thinness of the strip.

Step 2. We estimate I};"u; — A5 (1] w;) on Q<;, where 6 < 7 is given by step 1.

For i = 0, we use the stability estimates of Proposition 3.1 and Lemma 3.2 and finally Corollary 3.3 (using h ~ t
due to (3.12)) to obtain

115" w0 — Ase (15 wo) | mm-1(02,) < (13 uollmm-1(a.,) + [|Mse (I3 wo) [ m-1(ac,)

S R wollam-10z,) + 5 wollam-1(a,,)
(3.1)

Cor. 3.3
< | <

[Uol frm=-1(Qpy0) = It — Jeullgm-1(0,,,) < lwll grm-172(q2) -

For i = 1, we use the approximation property of I}* (cf. (3.2) with » = m — 1 and k = m) together with the
fact that the element size of elements in {2<; is bounded by t as well as the local stability and approximation
properties of Ag; from Proposition 3.1 to get

(17 w1 — Ast (I3 ur) | am—1(0z,)
<R ur = urllgm-rac,) + v = Asur | gm-1ao,) + Ase(ur — 1) [ gm-1(a.,)

h<t h<t Cor. 3.3 1/2
S tluallam @, + tludllem @,y + lus = Bluill g,y S tlullam@e,) S 87 lullgm-1/2) -

Step 3. We estimate Ags;(I]"u;) on Q<. For i = 0, using the stability properties of the smoothing operator
from Proposition 3.1, the stability of I}, and Corollary 3.3, we get

(3.1) r. 3.3
|l Ase (L wo) | () S w0l m-1(@,) S Muollm-1(0a,) S 72l me1/2(0)-

Similarly, for u; € H™(2), we obtain with Proposition 3.1

tl Ast (15 w) | rm e,y S HIAse (I ur — wa)l[ (s, + tHAstua | mm oo,

(3.2),h<t Cor. 3.3 12
m
S MR —uilgm-v,,) Htlullam@,) S tHulla= @, St ullgm-1200)-

Step 4. We derive estimates on T\Sr s for T € 7. Since the “dt-neighborhood” (T\St,s:)s: of T\St,s¢
satisfies (T\St,5¢)s¢ C T', Proposition 3.1 and an inverse inequality imply

3.1)
117 w0 — Ast (15 uo) | zrm—1 (1\87.50) St w0l (ry S thy | I uoll grm—rory Sty uoll gm-—1 (w2 (ry)-

Summation over all elements 7' € 7, and Corollary 3.3, (3.5) and (3.6) (noting that ¢ < hp implies h = h on
7<+) give the desired estimate

> o - Ast (I o) [ Frm—1 (7 5750y S 2 > bt luollFim-1 w2y

TEeT> TET>:
t<hr m—1 771/2 ) 2 )
J _
St Hh VI (u JtU)‘LQ(Q)§t||u||H,,,L71/2(Q). (3.15)
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Similarly, the approximation properties of As;, the stability of I;*, and Corollary 3.3 give

(3.1)
> 115 w1 = Ase (I un) [ Fm—r o\ 5750y S 12 S MR ulimey S D lwallimweery)

TeT> TeTS TeT>
t<hr Cor. 3.3
2
St Z hrllJoultm ey S tlulgm-iz ) - (3.16)
TeTS

Using the stability instead of the approximation properties of As; from Proposition 3.1, the same arguments
and an inverse estimate lead to

tl Ase (I wo) L irm (1\87.50) S EH ol () S thy uoll gm-1 w2 (),
tAse (15 )| zrm 7\ 5750 S IR wallgm () S tllullmm w2 (1y)-
Summation and employing Corollary 3.3 gives the desired estimates as in (3.15) and (3.16).
Step 5. We derive approximation results for I}”* on the strip St s for T € 7. For v € H™ (1), we claim

v = Iy v m=1(575) S VEhTlV] ™ (W2 (1)) (3.17)

With the aid of Lemma 2.1 from [44] on the reference element and a scaling argument, one can show for
ve HYT) and T € T+,

t
911725750 S EHUHQLz(T) + tvllz () VOl L2 (T (3.18)

For polynomials v € P,(T'), an inverse estimate and (3.18) furthermore lead to

t
10l (57 50) S E”’UH%Q(T)' (3.19)

To see (3.17), we estimate

(3.18) 4 (3.2)
lv = Lol Ze(sp,) S E”U_I;LnUH%Q(T)+t||v_I}TUHLZ(T)HV(U_I}ZnU)HLQ(T) < hrtoll ey

This shows (3.17) for m = 1. For m = 2, we apply (3.18) to V(u — I;"u) and proceed similarly.

Step 6. We derive an estimate for I)"u; — Asi(I;"u;) on the strip Sy s, for T € T-,. Here, we need the “dt-
neighborhood” (St,s¢)s: of the strip St ;. Our assumption on ¢ implies that (St s5:)s: C w(T'). Moreover, we
note that the strip (St.s:)s: is contained in the inside strip St s of T and in parts of the inside strip of width
0t of the elements T" € w(T).

Using the triangle inequality, Proposition 3.1 and (3.19) on each element of the patch w(7T') separately for
v = I"ug in the case m =1 or v = VI"ug for m = 2, we get, since hyr ~ hyp for TV € w(T),

11570 — Ase (I wo) || ron—1.(sp50) < R U0l rm-1 (575005 S /A PN o || 1 oy (3.20)

N tl/Qh;l/zHuO”H’”*l(w?’(T))-

Summing over all elements T € 75; and employing the arguments from (3.15), we get the desired bound by
t1/2 [l grm 12 (- For u1, we use the triangle inequality, Proposition 3.1, and (3.17)

17 w1 — Ase (I3 wa) | 51 (57,50

<R ur — urll gm—1(sp.50) + w1 — Asturl| gm—1(sp.5,) + [Ast (w1 = Ip"un) | gm-1(57.5.)
Prop. 3.1
S MR ur —wrll w1 (Sp.50)50) T lur — Aseua | gm-1(54.5,)

(3.17),Prop. 3.1 t<hr
< VthT”'UleHm(w?*(T))+t||ul||Hm(w(T)) < \/thTHul‘le(WS(T)).
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Summing over all elements T € 7, and employing the arguments from (3.16), we get the desired bound.

Step 7. We estimate As; (I} ;) on the strip St 5, for T € T54. The inverse estimate for As; of Proposition 3.1,
(3.19) employed on the patch w(T') as in the previous step, and the stability (3.1) of I} imply

tlAse (17 wo) | (8r50) S MU0l =1 ((Sp50050) S T/ 2N Py uo || -1 (w(T)) (3.21)
S t1/2h1_“1/2”uO”Hm*l(w?’(T))-

Summing over all elements T € 75; and employing the arguments from (3.15), we get the desired bound by
t1/2 [[ull grm—1/2(qr)- For w1, Proposition 3.1 and (3.17) on the patch w(T) give

tHA&t(I;Lnul)”H"”(ST,M) < tH‘A&(ul - IiyLnul)HH"”(ST,ét) + tH‘A&ulHHm(ST,(St)

S ||u1 - I;LnulHHm_l((ST,ét)ét) +t||u1||Hm((ST,6t)5t)
(3.17) 1/2 t<hrp 1/2
< (thy) ||u1||Hm(w3(T)) —l—tHu1||Hm(w3(T)) < (thr) ||u1||H7n(w3(T)).

Summing over all elements T € 7<; and employing the argument from (3.16), we get the desired bound.
Combining the estimates of steps 2-7, where all relevant terms are bounded by ¢'/2 ||u||Hm,1/2(Q), gives the

desired bound for (3.8), which proves (2.1).

Final step. We show (2.2) with similar arguments as in steps 2-7. Let u = ug+wu; be an arbitrary decomposition

with ug € H™~1(Q) and u; € H™(Q). We distinguish the cases ¢t < h and ¢ > h, where h is the maximal mesh

size of the quasi-uniform triangulation. We note that in the decomposition (3.14) the sums » 5. , are not

present in the case t > h and the terms involving || - [| zm-1(a_,) or || - ||zmq.,) in the converse case. Inspection

of the above arguments therefore gives:

— For t > h: As in steps 2 and 3, we get

I w0 — Ase (1 u0) [ 21 () + I Ase (1 wo) 3y S 1 ol Frm—1 (),
I ur — Ase (T wn) [ ) + st (T u) [ ) S tluallfm o)-
This implies ¢~Y/2K (¢, I7"u) S 72 |luo|| grm-1(0) + t/2||u|| grm (q)- Infimizing over all possible decompositions
u = up +uy yields t V2K (t, ["u) < t7V2K(tu) < 1wl gm—1/2
2,00
— For t < h: As in steps 4-7, we get

(@)

I w0 — Ase (I3 o) | Frm— () + ElAse (1 10) | 7m0y S 27wl Frm—1 (0

I = Ase (I ) [ By + Il Ase (T 1) [ Fm ) S Pllutl|Fm g)-

This implies ¢t~ V2K (¢, I7"u) < h™'2||uo|| grm-1() + h'/?||u1]| grm (). Infimizing over all possible decompositions
u =g +uy yields t V2K (t, I[Mu) < hTV2K (hyu) S Jlull g1/
2,00

s

(DN
u||B;n;1/2(Q)7 as claimed. O

Combining the above two cases yields sup,- o K (¢, [} u) <

~

While, for finite meshes, we have the continuous embeddings SP1(7) ¢ B2 (Q) and SP°(T) ¢ B2 (),

2,00 2,00

this is not necessarily the case for infinite meshes. As a consequence, one cannot expect that on general K-meshes
a stability 17" : 3217/020 Q) — 3217/020 (©) can hold. The following example illustrates this.

Example 3.5. Let Q = (0,1). Set I; = (0,1/2) and Iy = (1/2,1). Let ¢ € C*°(R) be a 1-periodic function,
whose averages @, = 1/|I1|f11 p(r)dr and By = 1/|I2|f12 p(x)dx are different. Define the function u €
C>((0,00)) by

u(z) := o(Inz).
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Define the (infinite) mesh 7 on €2, whose elements are given by the break points z; = e=%/, j € No. Let m =1
and let I/ : L?(Q) — S%9(7) be the L?-projection onto the piecewise constant functions. By the periodicity of
¢, the piecewise constant function I;"u takes only the values ¥, and P,

if j is even

m ¥1
I ) Ny =
(L3 u)|(r.7+17%) {<02 if j is odd.

The computation of Besov norms is conveniently done in terms of the modulus of smoothness as defined in, e.g.,
Chapter 2, Section 7 of [31]. For an interval [a,b] and a function v defined on A := [a,b], and t > 0, we define
the difference operator Ay by (Apv)(z) := v(xr + h) —v(x) on Ap, := [a,b — h]. The modulus of smoothness
w1 (v, t)2 is then given by wy (v, )2 1= supg.p<; [[AR(v,-)[[22(a,)- Let £ > 0. Consider all elements with diameter
> t. For the region covered by these elements, 2~;, we can compute the modulus of smoothness w; in view of
the fact that I;"u is piecewise constant

williu 0., 2 Y HIFul(@))P,

xjix; >t

where [I]"u)(z;) denotes the jump of I7"u at the break point ;. We conclude

wi(lu, )5 > wi(I'u, )30, 2 Z I ) ()P = Z 71 — @al’t ~ [B1 — ol ?t| Int].

rjix;>t rjixi >t

Next, we claim that w;(u,t)3 < t. Since u is bounded, we compute for 0 < h < ¢

1-h 1—-h h 1-h
/0 |Ahu|2dw:/0 |u(z + h) fu(x)\zdx:/o \u(x+h)7u(x)|2dx+/h |u(z 4 h) — u(x)|? dz

1 x+h
< Ahfjul2 ey + / / o (€)de

< 4h||u||2L°°(Q) + H<P/||%oo(s2)h~

2 1 9
1
A A M EY

This implies w; (u, t)s < Ct'/? and therefore u € Bé/fo(Q), since, by Chapter 6, Theorem 2.4 of [31], w(u,t)2 ~

K(t,u) = inf,eg1(p) [lu—vl[z2(q) +tl|v| g1 (o). However, the above calculation shows that I} u ¢ 321/020(9), which

implies that I}” cannot be a linear map B;/;(Q) — Bgl/fo(ﬂ) [ ]

3.2. Some generalizations and applications

For quasi-uniform meshes, there also holds the following inverse estimate for the limiting case.

Lemma 3.6. Let T be a quasi-uniform mesh on Q of mesh size h and m € {1,2}. Then, for m’ € (0,m —1/2]

and q € [1,00], there holds for a constant C > 0 depending only on 2, d, the ~v-shape-reqularity of T, and p:
”u“B;’:’;(Q) < Ch*m,HU”L?(Q) vu € SPY(T). (3.22)

Proof. To fix ideas, we only prove the case m = 2 as the case m = 1 is handled with similar arguments. By
definition, we have

—1/2
| 3/ =supt K(t,u
” ”3312 () 0 ( ) )

with the K-functional K (t,u) = inf,cp2(q) [[u — vl g1 () + tl|v] #2(q). For t > h, we estimate

CVR () =t g ol + ol <6l Sl (3:29)
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by choosing v = 0 to estimate the K-functional.

For t < h, we estimate the K-functional more carefully. For a suitably small § > 0, we set v := Agu with
the smoothing operator Ag; of Proposition 3.1. As in the proof of Theorem 2.2, we decompose an element into
T =T\ Srst U St,6¢, where St s is the inside strip defined in the first step of the proof of Theorem 2.2.
Employing Proposition 3.1 and a classical polynomial inverse estimate, we obtain

Prop. 3.1

ollez sy S lullazay S A ullga, (3.24a)
Prop. 3.1

flu — U||H1(T\ST,&) S t||uHH2(T) N th71||u||H1(T)- (3.24b)

As in steps 6 and 7 in the proof of Theorem 2.2, using Proposition 3.1 to obtain (3.21), (3.20), we get

(3.21)
[ollr2(srsy S (fh)_1/2\|u||H1(w(T)), (3.25a)
(3.20) 1/2; —1/2
lu—=vllEr(srs) < t+/2h=Y [ull 1 (w(T))- (3.25Db)

Summation over all elements, using (3.24)—(3.25) leads to

t<h
R () S (20 R ey S B2l ). (3.26)

Combining (3.23) and (3.26) yields HUHBS@(Q) < h_1/2||U||H1(Q). A further polynomial inverse estimate gives
the desired result for m’ = 3/2.

Finally, (3.22) follows from interpolation between the case m’ = 3/2 and the trivial inequality |lu| z2q) <
|ull£2(q) noting that by the reinterpolation theorem (see, e.g., Chapter 26 of [54]), we have ng’b_l/m(ﬂ) =
(L2(9), By /?(2))g.4 (with equivalent norms) for 6 € (0, 1).

» 2,00

O

The operator I} is stable in L?() (by Assumption 2.1) and is stable as an operator H™~/2(Q) — B;’;UQ(Q)
by Theorem 2.2. Interpolation therefore yields a stability for intermediate spaces.

Corollary 3.7. Let T be a finite shape-reqular mesh, m € {1,2}, and let I" : L*(Q) — SP™~Y(T) satisfy
Assumption 2.1. Fiz q € [1,00] and 6 € (0,1). Then, there is a constant C > 0 depending only on §, p, q, 6,
and the y-shape regularity of T such that

||I;Tu“33f;n—1/2)(9) < C”“”Bﬁf;”””(ﬂ)' (3.27)
Proof. The assumed L2-stability and the stability proved in Theorem 2.2 imply the result using the reinterpo-
lation theorem (see, e.g., Chapter 26 of [54]) as in the proof of Lemma 3.6. |

Furthermore, Corollary 3.7 allows one to assert that interpolating between the discrete space SP™~1(T)
equipped with the L?-norm and the H’-norm yields the same space equipped with the H*’-norm.

Corollary 3.8. Let m € {1,2}, ¢ € [1,00], and 6 € (0,1). Then, there holds

(2= e (87D - Dppmsvagay)), = (827D g7 qy)

with equivalent norms. The norm equivalence constants depend only on ), p, q, 6, and the y-shape reqularity of
o _1/2(9) with 1/2 < m/ <m and ¢’ € [1,00]|, there holds, with equivalent norms,

T. More generally, for any By .
((Sp’m_l(T)’ I HL?(Q)) J <Sp7m_1(7)a I ||B;7;/1/2(Q)>> = <Sp’m_1(7)a |- Bgf;%’l/z>(ﬂ)> )

0,9
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Proof. The proof follows from the existence of projection operators as presented in [9]. One needs a (stable)
projection onto SP"™~1(7T) satisfying Assumption 2.1, then Corollary 3.7 also provides the needed stability in
the Besov-spaces. For m = 1, one may simply use the L?-projection, which trivially satisfies Assumption 2.1.
For m = 2, one employs the Scott-Zhang operator I°% of [50] without treating the boundary in a special way
as it is done there. Then, I5% satisfies Assumption 2.1 by, e.g., Section 4.8 of [20]. O

4. MULTILEVEL DECOMPOSITION BASED ON NVB MESH HIERARCHY

In this section, we use Theorem 2.2, or more precisely Corollary 3.8, to prove the norm equivalence for the
multilevel decomposition of Theorem 2.5. Before we come to the proof, we mention some properties of the
finest common coarsening and show that the adapted Scott-Zhang operators of Definition 2.4 for the finest
common coarsening of an NVB mesh and a uniform mesh coincides with the adapted Scott-Zhang operator for
the uniform mesh for piecewise polynomials on the NVB mesh (Lem. 4.4).

4.1. Properties of the finest common coarsening (fcc)

We recall the definition of the finest common coarsening

fcc(7,7) = {T €T 3T eT' st. T CTIU{T' €T : IT €T st. TCT'}U(TNT').
—_——
=% =:%o =:%3

The following Lemma 4.1 shows that the finest common coarsening of two NVB meshes obtained from the same
coarse regular triangulation is indeed a regular triangulation.

Lemma 4.1. Let T, T’ be NVB refinements of the same common triangulation ’ZAI) of Q. Then:

(1) fcc(T,T") = fcc(T',T). The three sets T1, To, T3 in the definition of fcc(T,T') are pairwise disjoint.
(ii) fcc(7,T") consists of simplices that cover €.
(i) If T and T’ are regular triangulations, then fcc(7T,T") is a regular triangulation of Q.

Proof. Proof of (i): The symmetry of fcc is obvious. To see that the sets 1, To, T3 are pairwise disjoint, let
T €%;,. Then T € 7 but not in 7'. Hence, T & T2 and T ¢ T3. By symmetry, T € T, also implies T ¢ T and
T & T5. Finally, if T € T3, then it cannot be in ¥; or .

Proof of (ii): Let x € Q (but not on the skeleton of 7 or 7”). Since 7, 7’ cover {2, there are T € T and
T € T' with x € T, x € T'. Since both T and T are obtained by NVB and T'NT" # @, we must have T' = T"
or T CT or T' C T. In the first case T = T" € T3, in the second one T’ € %5, and in the third one T € ¥;.
Hence, z is in an element of fcc(7,77).

Proof of (iii): Let T, T" be two elements of fcc(7,7’) with f := TNT’ # (). We have to show that for some
j, the intersection T NT’ #  is a full j-face of both T and T". If both T, T' are in 7 (or both are in 77),
then, by the regularity of 7 (or the regularity of 7'), their intersection is indeed a full j-face of either element.
Assume therefore T € T and T/ € 7'\ T or, similiarly, T € 7\ 7’. Since T, T” € fcc(7,7'), we obtain T € T,
and T € %5. Since both T and T” are created by NVB from the same initial triangulation, the intersection
f=TnNT'is a full j-face of either T or T".

Let us assume that f is a full j-face of T', and, by contradiction, that f is not a full j-face of T”. Then, f
is a proper subset of a j-face f’ of T'. Since T' € ¥, it contains elements of 7’. Hence, there is an element
T| € T' with T] C T that has a j-face f; with f{ C f. Thus, we have found elements T’, T{ € 7’ with j-faces
f1 C f € f', contradicting the regularity of 7’. Hence, f is also a full j-face of 7. Thus, fcc(7,7") is a regular
triangulation. O

A completion of an (NVB-generated) mesh is any NVB refinement of it that is regular. We next show that
the minimal completion is unique.
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Lemma 4.2. Let 7 be a NVB refinement of’j\f) and let T, T3 be two completions of T. Then fcc(Tq,7T2) is a
completion of T. The completion of minimal cardinality is unique.

Proof. Let 73 := fcc(71,72). We claim that 73 is a completion of 7. Since 73 is regular by Lemma 4.1, we have
to assert that each element of 73 is contained in an element of 7. Suppose not. Then there is T3 € 73 and a
T €T with T C T5. (We use that these meshes are obtained by NVB from a common 7j.). By definition, 75 is
either in 77 or 73, which are both completions of 7, i.e., their elements are contained in elements of 7. This is
a contradiction.

To see the uniqueness of the minimal completion, let 7; # 75 be two completions of minimal cardinality N.
Note that 73 := fcc(71,73) is also a completion. However, in view of 77 # 75, at least one element of, say, T;
is a refinement of an element of 73 so that we have by definition of fcc(77,73) that card 73 < N — 1, which

contradicts the minimality. O
Lemma 4.3. Let ’?4, ¢ = 0,1,..., be a sequence of uniform refinements of a regular mesh ’?0 and T, =

fcc(T,Ty). Then:
(i) IfT € ﬁﬂT then T € %um for all m > 0.
(i) If T € T,\T then T & Toq.
(iii) Denote by /\741 the set of nodes of’jv'g. Then J\~/'el_~_1 D ]\7[1 for all 0.
(iv) Let Mv% = /\~Q1 \./\741_1 U {z € J%l ﬂj%l_l |we(z) € wg,l(z)}. Then, we have card Mv% < C'Card./\NQ1 \J%l_1
for a C > 0 depending only on the shape regularity of the triangulations.

Proof. For statement (i), we only show the case m = 1 as the general case follows by induction. We note that
T € T,NT implies T & To 0, where T, 4, € {1,2,3} are the three sets given in (2.3). If T' € T3, then T' € Ty p41.
If T € %14, then, T € ¥y 441. For statement (ii), we note that T € ’]~2 \ 7 implies T € ’?@ \ 7 and hence T is
neither in ?2-&-1 nor in 7. Hence T ¢ 7}_,.1. B

For statement (iii), let 2 € N} and T' € 7; be an element such that z is a node of 7. We consider two cases.
First, if T € 7 N7, then, by statement (i), we have T' € Tr41 so that z € ./\N/}H. Second, let T € T; \ 7. Then
T € ’]AQ and in fact in ¥y ,. The node z is the node of an element T € ’]A}_H. This element 7" is either in 7,
which implies z € /\N/'elﬂ, or T" € T3 441, which also implies z € J\~/'el+1.

For statement (iv), one observes that for a node z € {z € N} NN} | |we(2) € we_1(2)}, there are elements
T €Ty and T' € T, with T’ C T and z is a node of T. Hence 7" € ﬁ\ﬁ_h and it has a node 2’ € ./\751 \./\75171.
We conclude card{z € N} NN}, |we(2) S wr_1(2)} < card N} \ N1, O

The following lemma shows that the adapted Scott-Zhang operators for the meshes ’j} and @ coincide on
piecewise polynomials on the mesh 7.
Lemma 4.4. Let T be generated by NVB from Ty. Let TZSZ . L2(Q) — SPY(T,) and TEZ : L2(Q) — SPY(T,) be
the Scott-Zhang operators defined in Definition 2.4. Then, there holds

I3%u = fészu Yu € SPH(T).

Proof.
Step 1. Let T € T¢NT;. We claim that (TZSZU) lr = (f?zu> |7. The nodes z € T and the shape functions ©. 7

©, 7 for the meshes ’ZAZ and fcc (T , ’ZA}) coincide on T. For the averaging element T, associated with z € T', two
cases can occur:

(1) The two averaging sets for the two operators coincide. This happens in the following three cases: (a) if
z € T (case (a) of Def. 2.4); (b) if z € T and (case (ii) of Def. 2.4) arose for T in the loop; (c¢) (case (ii) of
Def. 2.4) arose for an element 7" € 'ZAQ N ’]~2 with z € T’ that appeared earlier in the loop than 7T'. Since the
averaging sets coincide, the value of the linear functionals are the same.
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(2) Case (i) of Definition 2.4 arose. Then, both averaging sets are contained in an element T € 7. Since
u|# € P, we obtain from (2.4) that both linear functionals equal u(z).

Hence, in all cases the values of the linear functionals coincide so that indeed the Scott-Zhang operators on the
element T' are equal.

Step 2. In the region not covered by elements in 7, N 7; we show 'flszu =u and f?zu = for u € SP(T). For
./T\EZ this is shown in step 3 and for IZSZ in step 4. This completes the proof of the lemma.

Step 3. Consider a T € ’]A]g \ ’f} We note that the definition of the finest common coarsening implies
for any 7" € 7, \ Ty, there exists T € T with T' C T. (4.1)

Hence, there exists T € T such that T C T. For u € SP1(T), we have uly € Pp(f). Moreover, (./[\EZUHT =
> cen(r) P, 7,l-(u) with the linear functional [, (u) = sz ¢ pu. For the interior nodes z € T', we have T, = T
and, since ulr € Py(T), I,(u) = u(z) by (2.4). For z € 9T, the following cases may occur:
(a) If T, = T, then again [, (u) = u(z) by (2.4).
(b) If T, is a neighboring element of T', then the following cases can occur:
(i) T, € ’]A}O’ZNZ: Then, z € 9T and hence also in 9T,. The construction of the averaging sets in Definition 2.4
is such that the averaging set T’ for the node z is chosen such that it is contained in an element 7" € 7
if possible. Since T C T € 7 is possible by (4.1), we conclude that also T, C T € T for some T € T.
Hence, u|r, € P,(T.), and the value of the linear functional is u(z).
(i) T. € 7, \ T;. Then, by (4.1), we get ulr, € Py(T;) so that again, by (2.4), I,(u) = u(z).

In total, we have arrived at (ffzu) IT =2 .enr) P2.7,u(2) = ulr, since u[r € P(T).

Step 4. Consider a T € T,\7;. Then T € T. We have (fZSZu> I7 = >_.en(r) ¥..7, 1= (u) with the linear functional

I.(u) = sz @3 pu. For the interior nodes z € T, we have T, = T' and, since u|r € P,(T), the property (2.4)
gives 1, (u) = u(z).

For z € 0T, we argue as in step 3, item (i): The averaging set T is chosen such that 7T, is contained in an
element of 7 if possible. Since choosing T, = T € 7 is possible, we have that T, C 7" € 7 for some T € 7.
This ensures u|r, € P,(T%.) and thus [, (u) = u(z) by (2.4).

In total, we have arrived at (fészu> 7 =2 en(r) Po.7,u(2) = ulr, since ulr € Py(T). O

4.2. Proof of the norm equivalence of Theorem 2.5

With Lemma 4.4, Corollary 3.8, and Lemma 3.6, we are able to prove the norm equivalence for the multilevel
decomposition of Theorem 2.5.

Proof of Theorem 2.5. We apply Theorem 3.5.3 of [29] for the spaces X = (Sp’l(T), H~||L2(Q)),
Y = (Spvl(T), [l g2/2 (Q)) noting that we have S71(7;) C SP1(T). Then, Theorem 3.5.3 of [29] provides
2,00

the equivalence of the second and third norm to the norm on the interpolation space (X,Y)gq, which by
Corollary 3.8 is the BS/ q29 (€2)-norm, provided a Jackson-type and a Bernstein-type estimate holds.

Step 1. (Jackson-type inequality). Using Lemma 4.4, we compute for u € SP*(7) and arbitrary w € Sp’l(’JAZ)

inf _Jlu— vl < lu— G%ullra@) = lu— L%l g2 = lu— w = T (u—w)| 120 < llu—w|r2@).
vesr1(Ty)

Hence, standard approximation results on the quasi-uniform meshes ’f} of mesh size /Hg = EOQ_K provide

. . ~3/2 3¢
inf _ fu—vl2o) S inf_ [lu—wl|peo) SR [ull a2 (o) < 2 s /2||UHB;/;(Q)~

vesr1(T;) wesr 1 (Ty)

(4.2)
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We note that this estimate also implies the additional assumption (Equation 3.5.29 of [29]) on the projection
operators ESZ.

Step 2 (Bernstein-type inequality).] Using the projection property of the Scott-Zhang operators and Lemma 4.4,
we get for arbitrary v € SPIT

Lem. 3.6
= 73 7-3/2)78
”UHBS’,/;(Q) = ||IZSZ’U||BS/02C(Q) = HIK ZU”B;/;(Q) 5 h£ / ||IZZUHL2(Q)
T—3/2 7¢ —-3/2
= PN 0 ey = By P ol 2 gay- (4.3)

As the family of operators ’I“esz : X — SP1(7,) is also uniformly bounded in the L2(€2)-norm, all assumptions ﬁ
Theorem 3.5.3 from [29] are valid and consequently the norm equivalences are proven.

4.3. Boundary conditions*

The previous results do not consider (homogeneous) Dirichlet boundary conditions. For the application we
have in mind (cf. (2.10)), an interpolation result similar to Corollary 3.8 for the spaces L*(Q), Hg(£2) and H*()
for s € (0,1) is of interest. Such results are already available in the literature, see, e.g., [11], where the proof uses
stability properties of the Scott-Zhang projection and the abstract result from [9], similarly to Corollary 3.8.
For sake of completeness, we state the result in the following corollary.

Corollary 4.5. Let s € (0,1). Then, there holds

(@0 lr@) - (S5 D0 @), = (S5 @1 Do)
with equivalent norms.

As done, for example, in [11], the Scott-Zhang operators I;SZ and j?z can be modified by simply dropping the
contributions from the shape functions associated with nodes on 92 and thus map into the spaces §g 1(%@) and
§g ’1(’?4), respectively. We denote these operators by fg)% and f&%, and they are still stable in L?(Q2) and Hg ().
Therefore, Theorem 2.5 also provides a lower bound for the multilevel decomposition based on the Scott-Zhang
operator in the H*(2)-norm.

Corollary 4.6. Let T be a mesh obtained by NVB refinement of a triangulation 7\6. Let ’j\'g be the sequence of
uniformly refined meshes starting from Ty with mesh size hy = ho2~*. Set Ty := fcc(7,7y). Let I&% cH3(Q) —
Sg’l(ﬁ) be the Scott-Zhang operator defined as above. Then, we have

o0

T—2s
> h
£=0

Proof. We note that Jackson-type and Bernstein-type estimates (4.2) and (4.3) in the proof of Theorem 2.5
also hold for the variant of the Scott-Zhang projection that preserves homogeneous boundary conditions, if we

2

7SZ
U — Io,eu’

<Cylulfaqy — YueSEHT), 0<s<l. (4.4)

L2(Q)

replace ﬁ?/2| with ﬁeHuHHé(Q) in (4.2), and if we replace in (4.3) the norms || - || g3/2 ¢, With || -[[z1(q)
2,00

lull 5372 @) 6)
and correspondingly h~3/2 with h~'. Therefore, the norm equivalences of Theorem 2.5 are still valid if one
3072() with HE(Q), I5% with 152, and 2394/2 with 20¢, O

2,00

replace B

5. OPTIMAL ADDITIVE SCHWARZ PRECONDITIONING FOR THE FRACTIONAL LAPLACIAN
ON LOCALLY REFINED MESHES

In this section, we prove the optimal bounds on the eigenvalues of the preconditioned matrices Pks of
Theorem 2.6 and Pﬁs of Theorem 2.9. The key steps are done in Proposition 5.2 or Proposition 5.1, which state
a spectral equivalence of the additive Schwarz operator and the identity in the energy scalar product.
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5.1. Abstract analysis of the additive Schwarz method
5.1.1. The mesh hierarchy ’f’g = fce(7y, ’ZA})

The additive Schwarz method is based on a local subspace decomposition. For the mesh hierarchy ’jv'g =
fce(7r,7p), we recall that V, € {50’0(72),53’1(72)} is either the space of piecewise constants or piecewise
linears on the mesh 7,. We follow the abstract setting of [55] and decompose Vj, = Zf:o V, with

V, 1= span {(5‘; 1z € Mvg} , (5.1)

where ¢ denotes the basis function associated with the node z € N. We recall that these functions are either
characteristic functions of elements (for the piecewise constant case) or nodal hat functions (for the case of
piecewise linears). We note that Vg - W and, since Mg only contains new nodes and direct neighbors, this
space effectively is a discrete space on a uniform submesh (¢f. Lem. 5.6). On the subspaces Vg, we introduce the
symmetric, positive definite bilinear form ag(-,-) : Vo x Vy (also known as local solvers) with

E : E : Td—2
w,ue Hh UZ h s |Up | .
L2( Q)

2EM, zeM,

The following proposition, cf., e.g., [46,59], gives bounds on the minimal and maximal eigenvalues of the
preconditioned matrix Pﬁs based on the abstract additive Schwarz theory.

Proposition 5.1. (i) Assume that every u € Vi, admits a decomposition u = ZeL:o ug with ug € Vg satisfying
ZzL:o ap(ug, ug) < Co a(u,u) with a constant Cy > 0. Then, we have Amin (f)/Lxs) > C(;l.

(ii) Assume that there exists a constant Cy > 0 such that for every decomposition u = Zf:o ug with uy € ]7@,
we have a(u,u) < Cy ZeLzo ag(ug,up). Then, Amax (f’lgs> < (.

The first part of Proposition 5.1 is sometimes called Lions’ lemma and follows from the existence of a stable
decomposition proven in Lemma 5.5 below.

The assumption of the second statement follows directly from our strengthened Cauchy-Schwarz inequality
(Lem. 5.7) and local stability (Lem. 5.9).

5.1.2. The mesh hierarchy T; provided by an adaptive algorithm

For the case of a mesh hierarchy 7; generated by an adaptive algorithm, similar definitions can be made and
analyzed. However, here, we follow the notation of [38], where the additive Schwarz operator consisting of a
sum of projections onto one dimensional spaces is analyzed. With the spaces V! := span{¢} one may define
local projections P! : H*(Q) — V/ in the energy scalar product as

a(Plu,vt) = a(u,vt) for all v¢ € V7,
and define the additive Schwarz operator as
L
L ¢
PRs=2_ 2. P
=0 ze M,
Moreover, for u, v € V, and their expansions u = Z i x]gozj v= Zjvil ngpfj , we have
a (Prsu,v) = <Pﬁsx,y>AL , (5.2)

where (-, ) oz = <AL ° ~>2. Therefore, the multilevel diagonal scaling is a multilevel additive Schwarz method,
and we may analyze the additive Schwarz operator instead of the preconditioned matrix.
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Proposition 5.2. The operator Pﬁs is linear, bounded and symmetric in the energy scalar product. Moreover,
for u € Vi, we have the spectral equivalence

clluly gy < a (Phsu,u) < C llul%. ) - (5.3)
where the constants ¢, C > 0 only depend on €, d, s, and Ty.
As in [38], Proposition 5.2 directly implies Theorem 2.6.
Proof of Theorem 2.6. Combining the bounds of Proposition 5.2 with (5.2) gives
cllxar < (PEsx,x) . < Clx[4x
for all x € RV-, and therefore the bounds for the minimal and maximal eigenvalues. O

5.2. Inverse estimates for the fractional Laplacian

For the proof of a strengthened Cauchy Schwarz inequality, we employ an inverse inequality for the operator
(—=A)® of the form

18°(=A)* 0]l 20y S V]l o - (5.4)

For the piecewise linear case v € Sé’l(T), this inverse estimate is proven in Theorem 2.8 of [37]. We stress that
(5.4) only holds for s < 3/4, since in the converse case the left-hand side is not well defined for v € S5 (7). To
obtain an estimate for s € [3/4,1), one has to introduce a weight function w(x) := infreg dist(x, 0T). Then,
Theorem 2.8 of [37] provides the inverse estimate

Hh1/2w871/2(7A)5,U

< ~
ey 1ol 7o ) - (5.5)

For the case of piecewise constants, similar inverse estimates are stated in the lemma below. Here, we additionally
stress that for v € S%9(7) and z € T' € 7T, the estimate

o(z) — v(y) 1
(~AY*u(z)| = |C(d ) / W) =0 4 < o] e S
B\ Byioe(o.0m (2) € — y|*T° D ) oo @) o — y|?
diam
Mol [ P2 dr A S o] e g distlr, O7) (5.6
vedB;(0) Jr=dist(z,0T)

gives
wl(=A)v e L2(Q)  if f>2s—1/2.

For s < 1/4, we may choose 8 = 0 and for 1/4 < s < 1/2, we may choose, e.g., 6 = s or § =3/2s — 1/4 (to
additionally ensure 3 < s) to fulfill this requirement.

Lemma 5.3. Let 7 be a regular and y-shape regular mesh generated by NVB refinement of a mesh 1.
Let v € SO°(T), h be the piecewise constant mesh width function of the triangulation T, and set w(zx) :=
infrer dist(z,0T). Let 8 > 2s — 1/2. Then, the inverse estimates

1B (~A)Y vl Lz < Clivllgeg, — 0<s<1/4 (5.7)
Ih*=Pwl(=A) vl a0y < Clloll g, 1/4<s<1/2 (5.8)

hold, where the constant C > 0 depends only on §2, d, s, and the y-shape regularity of T .
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Proof. If we set § = 0 for s < 1/4, we can prove both statements of the lemma at once by estimating the
L2-norms with the weight h*~#w”. We follow the lines of Theorem 2.8 from [37], starting with a splitting into
a near-field and a far-field part. The estimates of the near-field and the far-field are rather similar to the case
of piecewise linears from Lemmas 4.1 to 4.5 of [37]. Therefore, we quote the identical parts of the proof and
outline the necessary modifications for the piecewise constant case.

For each T € 7, we choose a cut-off function yr € C§°(R?) with the following properties: (1)
suppxr N 2 C w(T); (2) xr = 1 on a set B satisfying T C B C w(T') and dist(B,0w(T)) ~ hr; (3)
IxTllwroe @y S h;l; (4) 0 < xr < 1. Moreover, for each T' € 7, we denote the average of v on the patch
w?(T) by er € R. Since cr is a constant, we have (—A)®cy = 0. Therefore, we can decompose v into the near-
field vI . = x7(v—-cr) and the far-field v} := (1—x7)(v—cr), and obtain (—A)%v = (=A)vI, +(—A)%v] .

We start with the near-field, where compared to the result for the case of piecewise linears, we do not need
to distinguish cases for s. The definition of the fractional Laplacian leads to

2
1 oW 2 : (v(w) = er)xr (@) = ((y) = cr)xr (y)
o (=8)*0ue 2y = /T w(a)*? (P.v. /R ) —— ey dy) de

W near ‘LL‘ _ y|d+25
o @) =@\ o
S [ v o) - er) (P.V-/Rd p—t dy) d
—|—/Tw(x)2ﬂ (P.V. /]Rd XT(y)Wdy) dx. (5.9)

The first term on the right-hand side can be estimated using the Lipschitz continuity of xr and a Poincaré
inequality on the patch w(7') in the same way as in the proof of Lemma 4.2 from [37] by

2
xr () = xr(y) 2
oo —enr (v [ XA ) o ol

For the second term in (5.9), we observe that the integrand vanishes for y € T since v is piecewise constant,
and employ the same estimate as for (5.6) to obtain

2

v(z) —v(y _

[w@? (e [ a2 =ay) ar g o= erlfe i [ v
T R |z — vyl T

here, we added and subtracted the constant ¢y in the integrand and used the support properties of xr to obtain
the L*°-norm on the patch. As, by choice of 3, we always have 23 — 4s > —1, the last integral exists, and we
can further estimate using a classical inverse estimate and a Poincaré inequality

2 —4s 20—4s+d 2
v — CT||L°°(w(T)) /Tw(x)% Pz S hTB o — cT||L°°(w(T))

—4s 2 —2s 2
S hQTB ! v — CT||L2(W(T)) S h2T6 ? ||UHHs(w2(T)) :

Inserting everything into (5.9), multiplying with h?ps_% and summing over all elements T' € 7 gives the desired
estimate for the near-field.

The far-field can be estimated using the Caffarelli-Silvestre extension, cf. [21], combined with a Caccioppoli-
type inverse estimate for the solution of the extension problem with boundary data (1—xr)(v—cr) as in [37]. In
fact, we observe that Lemma 4.5 of [37] holds for arbitrary v € H 5(Q2) and weight functions w with non-negative
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exponent. This directly gives

Z Hhs*ﬁfwﬁ(_A)s’Uf?airH%2(T) 5 HU”QFIS(QV
TeT

and combining the estimates for near- and far-field proves the lemma. O

5.3. Proof of the assumptions of Proposition 5.1

In order to apply Proposition 5.1, we show the existence of a stable decomposition (Lem. 5.5) and a strength-
ened Cauchy-Schwarz inequality (Lem. 5.7).

The following result relates the Scott-Zhang operators on two consecutive levels; similarly to [24], and is a
key ingredient of the proof of Lemma 5.5.

Lemma 5.4. Let p =1 and let /\751, /’\/lv} be defined in Section 2.3.2. The Scott-Zhang operators TZSZ (L2(Q) —
SYY(Ty) can be constructed such that, additionally, they satisfy for all £ € N and all u € L?(Q)

(I3% - I3%)u(z) = 0 Vz € N\ M} (5.10)

Also, the Scott-Zhang operators Tg% (L2(Q) — Sé’l(’ZNZ) can be constructed such that (5.10) holds with ESZ and
TSZI replaced with Ige and I&%fl, respectively.

Proof. We only consider the case of the operators ’I;sz_ We also recall that for the present case p = 1 the nodes
coincide with the nodes of the triangulations. B _ _
Step 1. z € N} \ M} implies z € N} NN} |. Tosee z € N}, we note N} | C N} by Lemma 4.3 and therefore
that 2 € N} \ M} C N} \ (N} \NLy) = N
Step 2. z € ./\7[1 \ﬁ/lv% - J%l ﬂ./\?}_l implies that all elements of the patches we(z) and wy_1(2) are in 7. To see
this, we note z € /\NQl \/K/lv% C ./\~Q1 \{z € J\~f€1 ﬂ/\Nfel_l |we(z) € we—1(2)}. The condition wy_1(z) = we(z) implies
that all elements of wy_1(z) = wy(z) must be elements of 7.
Step 3. The basic idea for the choice of averaging sets T, in the construction of fle and f?z in Definition 2.4
is to select an element of 7 whenever possible. Our modified construction of the operators f »% is by induction
on £ and carefully exploits the freedom left in the choice of the averaging sets T’ in Deﬁmtlon 2.4. We start
with an I I5Z as constructed in Definition 2.4. Suppose the averaging sets T, for ’]} 1 have been fixed. Effectively,
Definition 2.4 performs a loop over all nodes of ’ZNQ When assigning an averaging set 7T, to a node z € ./\7 ! \M !
we select as T, the element that has already been selected on the preceding level £ — 1. This is possible since
z € Nl \M@ implies z € J\fel , by Step 1, and by Step 2 we know that all elements of both Z;_; and 7; having
z as a vertex are elements of 7. N

The same construction can also be applied to the operators I&%. O

The following lemma provides the existence of a stable decomposition for the mesh hierarchy generated by
the finest common coarsening. Rather than analyzing the L2-orthogonal projection onto a space of piecewise
polynomials on a uniform mesh, as in [38], we use the result of Corollary 4.6.

Lemma 5.5 (Stable decomposition for the mesh hierarchy (73)@). For every u € VL, there is a decomposition
U= Ef:o ug with ug € Vy satisfying the stability estimate

XL:EZ(W,W Z > Hh ue(z
=0

£=0 ZEMz

2 2
2|l L2 () < Cliab ||U||Hs(Q)

with a constant Cyap > 0 depending only on Q,d, s, and the initial triangulation 7.
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Proof. We only show the case of piecewise linears, the piecewise constant case is even simpler as the basis func-
tions are L2?-orthogonal. Let ISZ H*(Q) — — Sy7' (T7) be the adapted Scott-Zhang projection from Definition 2.4

in the form given by Lemma 5.4. Set [3271 = 0. Then, we define

wei= Y0 (% - 155 ) u(=) @

zEMy
Since (fgz Ig% 1) u € )7g, we may decompose using a telescoping series and (5.10)

L L

= Iitu =" (B - T% 1)u—z > (17 - T ) w=)t =Y ue (5.11)

£=0 =0 e M, =0

We next prove the stability of the decomposition (5.11). The standard scaling of the hat functions in L? provides
|& HLZ @ = ~ hy(z)?, with h(z) denoting the maximal mesh width on the patch corresponding to the node z.
With (5.10) and an inverse estimate — cf. Proposition 3.10 of [30], which provides an estimate for the nodal

value of a piecewise linear function on the mesh 7; by its L?-norm on the patch — this gives

Z > [[hee (5 - B ) w2t QQQ)SiWS S he(o)! | (15 - %) u(e)

‘ 2

0 2e M, £=0 zEM,y
L _ N L. 2
<SR Y| () S |87 -7, - 512)
=0 p L2(we(2)) T L2(T)
= zEN, TeT:
Finally, we can use Corollary 4.6 to obtain
L
7—2s SZ
> et ue) £ 3 hy || (1 - I550) ), ) = el (5.13)
£=0 =0
which proves the existence of a stable decomposition. O

The following lemma shows that the submesh consisting of the elements corresponding to the points in Mg
is indeed quasi-uniform in that all elements have size O(hy).

Lemma 5.6. Let ./\/lg be defined in Section 2.3.2 and let z € Mz, then it holds hy(z) ~ hg, where hy(z ) denotes
the mazimal mesh width on the patch we(z). In particular, we have V, C Vg, meaning Vi C Ve if M, = MO
and Vg C Vz zf./\/lg Mz

Proof. We first note that if T € ’f} \’f} 1 then hp ~ hg If T ¢ %y, for the first set in the definition of the
finest common coarsening (2.3), then T € 7, and hy ~ hy follows since the mesh 7; is quasi-uniform. Now, let
T e 51 ¢, which implies 7" € 7, and that T is a proper superset of an element Tg € ’Tg, i.e., hp > hg Since T
and Tg 1 are NVB refinements of the same mesh, we either have T - Tg 1, T = T, ¥—1 Or T D Tg 1 for some
element Tg 1 € Tg 1- For the first two cases, we have hr < hg 1~ 2hg7 which gives hp ~ hg The third case
T> T[ 1 implies that T € T; ,_; and therefore T' € Tg 1, which contradicts the assumption T € ’Z} \ Tg 1.

This 1mmed1ately proves the case M, = M since new points in MVO (barycenters) correspond to new
elements in 7; \ ’Tg 1.

For the case /\/lz = /\/lé, let z € ./\/lg By definition, this implies that there exists (at least) one element
T = T(z) with T(2) C wy(z) and T(z) € T;\ T;_1. The previous discussion gives hp(z) =~ he. By shape-regularity
this gives that hy(z) = maxpe,,(z) hr ~ he. O
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With the inverse estimate of the previous subsection we now prove a strengthened Cauchy-Schwarz inequality.

Lemma 5.7 (Strengthened Cauchy-Schwarz inequality for the mesh hierarchy (’i})) Let uy € 9@ for =
0,1,...,L. Then, we have

(ks tm) < Ene k| 7 [t 0<m<k<L,

£2(Q)’

: ~ 5B o 0 for 0 <s< 1 o
with Emp = Ccs(hm/hk)s . Here, 3 is given as 3 = { 4 1 or 1 5 4 for the piecewise constant case
58—7 for 3 <s<3
and = max{s — 1/2,0} for the piecewise linear case. Moreover, the constant Ccg > 0 depends only on Q, d,
s, and the initial mesh 7Tg.

Proof. We define a modified mesh size function lNLZ as ﬁz = hz_ﬁ wf with the weight function wj, defined such
that the inverse estimates of (5.4), (5.5) or Lemma 5.3 (either for the piecewise linears or the piecewise constants)
hold. Moreover, we note that this choice of § fulfills the assumptions of Lemma 5.3 as well as 8 < s. Therefore,
the classical Cauchy-Schwarz inequality implies

7 —s

@ttty ) = (= 8)" ks ) 20y = (BR(= D), ) < | By (5.14)

EZ(—A)Suk‘

L2(Q) L2(9) H mHL2(Q) '

A scaling argument as in Lemma 3.2 of [37] yields
Hw;{gumuLz(T) Sz hfn_ﬂ(T) ”umHHS(T) + h;’bﬁ(T) ||um||L2(T) :
Together with w,, < wy, since ’fk is a refinement of ’]~'m, and hi(T) := hg|r > Ek this gives

[P

S | oy S T (@) ey + 1 () Nt 2

S B R P(T) | gy + R (1) | 2

L2(T)

o R
ST R oy + Con /70 [t

~ o~ 5B~
< (. /h Hh* m’
oy S o)™ [

L2(1)
Summation over all the elements of 7, gives

[

~ o~ 5B
oy < (/) [ |

: 5.15
o) (5.15)

Combining (5.14) and (5.15) with the inverse estimate

of (5.4), (5.5) or Lemma 5.3 proves the strengthened Cauchy-Schwarz inequality. a

S ||Uk||ﬁs(9)

(=)

L2(Q)

~ o~ \SB
Remark 5.8. (1) Since (hm/hk> = 2= (m=k)(s=F) e get — following the notation of [55] — that the matrix
~ —~ s—0
& with entries &,,x = Ccs (hm/hk) satisfies p(£) < Cypr, with a constant depending only on Q, d, s,
and the initial triangulation 7.
(2) There is some freedom in the choice of the parameter 5 in Lemma 5.7: the proof shows that the essential
conditions are 2s — 1/2 < § < s. [ ]
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Lemma 5.9 (Local stability). For all uy € V;, we have
el %y < Croe Gelue, ur)
with a constant Cioe > 0 depending only on ., d, s, and the initial triangulation 7.

Proof. Since uy € %, we have uy = Zzeﬂ Ug(z)ﬁﬁ. With an inverse estimate, which can be applied, since due
. . . L . . .

to Lemma 5.6 u, only lives on a quasi-uniform submesh, we can estimate using that the number of overlapping

basis functions @* is bounded by a constant depending only on the y-shape regularity of the initial triangulation

2

2
2 T—s T—2s ~ T—2s 2|1 ~¢|2
el oy % [P oue] g =3 | 2 we@| SBR[ e -
zeﬂg LZ(Q) zeﬂz
By definition of (-, ), this finishes the proof. a

Now, the assumptions of Proposition 5.1 follow directly from Lemma 5.5 (lower bound) and Lemma 5.7
together with Lemma 5.9 (upper bound) by writing v = ), us and

L L
Lem. 5.7
a(u,u) = Z alug,up) < Z Skg\/a(uk,uk) ap (e, up)
k=1 e l=1
L L
Ol " Ermn/an (i ur) ap(ug,ur) < CLL7p(E) D ap(us, ue),

k,0=1 £=0

Lem. 5.9
<

and the appearing constants are independent of L. This completes the proof of Theorem 2.9.
The following remark discusses the proof of Theorem 2.6.

Remark 5.10 (Stable decomposition and strengthened Cauchy-Schwarz inequality of mesh hierarchy (7),
generated by an adaptive algorithm — Proof of Theorem 2.6). The existence of a stable decomposition and
consequently the lower bound in Proposition 5.2 follows essentially verbatim as in Section 4.5 of [38], where
instead of Corollary 4.6 an L2-orthogonal projection onto a uniform mesh is used.

Analyzing the proof of Lemma 5.7, we observe that the choice of mesh hierarchy is not crucial for the
arguments, one only needs an inverse estimate and a Poincaré-type inequality. Both hold for the case of the
decomposition into one dimensional spaces V instead of V' as well, and, therefore, we directly obtain a strength-
ened Cauchy-Schwarz inequality for (7;), as well. The algebraic arguments of Section 4.6 from [38] then give
the upper bound for Proposition 5.2. ]

Remark 5.11. In the same way as in [38], it is possible to define a global multilevel diagonal preconditioner
by taking the whole diagonal of the matrix Af instead of only the diagonal corresponding to the nodes in M,.
However, compared to the local multilevel diagonal preconditioner, the preconditioner is not optimal in the
sense that the condition number of the preconditioned system grows (theoretically) by a logarithmic factor of
Np. We refer to [38] for numerical observations of the sharpness of this bound for the hyper-singular integral
operator in the BEM, which essentially corresponds to the case s = 1/2 here. |

5.4. Numerical example

We consider two examples: the L-shaped domain 2 = (—1,1)2\[0,1]?> with f = 1 and the square Q = (—1,1)?
with discontinuous f = xz>0. We discretize (2.10) by piecewise linear functions in Sé’l(’Tg) on adaptively
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FIGURE 2. Adaptively generated NVB mesh on L-shaped domain and square.
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FiGURE 3. Estimated condition numbers for A’ the preconditioned matrices P£S7 and
diag(ALF)~LAL. Top: L-shaped domain, bottom: square; left: s = 0.25, right: s = 0.75.

generated NVB meshes 7, that are generated by the adaptive algorithm proposed in [37] and are depicted in
Figure 2. This adaptive algorithm is steered by local error indicators given by

1/2

2 o (ns for 0 < s <1/2
with Jog =4 ¢ or0<s<1/2,

L2(T) hyPwi ™ for1/2 < s <1,

me={ 32 |7 = (~a)w)|

TeT,

where uy is the solution of (2.12). We note that by Theorem 2.3 of [37] theses indicators are reliable and for
s < 1/2 efficient in some weak sense. Moreover, Theorem 2.6 of [37] proves optimal convergence rates for the
adaptive algorithm based on these estimators.

Our implementation of the classical SOLVE-ESTIMATE-MARK-REFINE adaptive algorithm uses the MATLAB code
from [2] for the module SOLVE and adapted the MATLAB code for the local multilevel preconditioner from [38] to
our model problem.

Figure 3 gives the estimated condition numbers for the Galerkin matrix A” and the preconditioned matrix
Pﬁs, where the condition number has been estimated using power iteration and inverse power iteration (with
random initial vectors) to compute approximations to the smallest and largest eigenvalues.



624 M. FAUSTMANN ET AL.

We observe that, as expected, the condition number of the unpreconditioned system grows with the problem
size, whereas the preconditioner leads to uniformly bounded condition numbers for the preconditioned system.
Moreover, diagonal scaling eliminates the dependence on the quotient of maximal and minimal mesh size, which
is the dominant part in the case s = 0.25. While there is still dependence on the problem size, the growth
with respect to the number of degrees of freedom is very moderate, and for the problem sizes considered here,
diagonal scaling performs very well for the case s = 0.25, but not for the case s = 0.75.

As the preconditioner is structurally similar to the one used in [38] for the hypersingular integral equation, we
refer to the numerical results there for the confirmation that the preconditioner can also be realized efficiently.

Acknowledgements. Financial support by the Austrian Science Fund (FWF) through the research program “Taming
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