Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 209-227

In this paper, we investigate a class of nonlinear eigenvalue problems resulting from quantum physics. We first prove that for any open set G, there exists an eigenfunction that cannot be a polynomial on G, which may be reviewed as a refinement of the classic unique continuation property. Then we apply the non-polynomial behavior of the eigenfunction to show that the adaptive finite element approximations are convergent even if the initial mesh is not fine enough. We finally remark that similar arguments can be applied to a class of linear eigenvalue problems that improve the relevant existing results.

DOI : 10.1051/m2an/2020078
Classification : 35Q55, 65N15, 65N25, 65N30, 81Q05
Keywords: Adaptive finite element approximation, complexity, convergence, nonlinear eigenvalue problem, non-polynomial behavior, unique continuation property
@article{M2AN_2021__55_1_209_0,
     author = {Yang, Bin and Zhou, Aihui},
     title = {Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {209--227},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020078},
     mrnumber = {4216829},
     zbl = {1476.35250},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020078/}
}
TY  - JOUR
AU  - Yang, Bin
AU  - Zhou, Aihui
TI  - Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 209
EP  - 227
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020078/
DO  - 10.1051/m2an/2020078
LA  - en
ID  - M2AN_2021__55_1_209_0
ER  - 
%0 Journal Article
%A Yang, Bin
%A Zhou, Aihui
%T Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 209-227
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020078/
%R 10.1051/m2an/2020078
%G en
%F M2AN_2021__55_1_209_0
Yang, Bin; Zhou, Aihui. Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 209-227. doi: 10.1051/m2an/2020078

[1] R. A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR

[2] W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Mod. 6 (2013) 1–135. | MR | Zbl | DOI

[3] A. D. Becke, Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140 (2014) 18A301. | DOI

[4] A. Bonito and A. Demlow, Convergence and optimality of higher-order adaptive finite element methods for eigenvalue clusters. SIAM J. Numer. Anal. 54 (2016) 2379–2388. | MR | Zbl | DOI

[5] C. Canuto, Adaptive h p -FEM for eigenvalue computations. Calcolo 56 (2019) 39. | MR | Zbl | DOI

[6] J. M. Cascon, C. Kreuzer, R. H. Nochetto and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. | MR | Zbl | DOI

[7] H. Chen, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics. Adv. Appl. Math. Mech. 3 (2011) 493–518. | MR | Zbl | DOI

[8] H. Chen, L. He and A. Zhou, Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput. Methods Appl. Mech. Eng. 200 (2011) 1846–1865. | MR | Zbl | DOI

[9] H. Chen, X. Gong, L. He, Z. Yang and A. Zhou, Numerical analysis of finite dimensional approximations of Khon-Sham models. Adv. Comput. Math. 38 (2013) 225–256. | MR | Zbl | DOI

[10] H. Chen, X. Dai, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for Kohn-Sham models. Multiscale Model. Simul. 12 (2014) 1828–1869. | MR | Zbl | DOI

[11] X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313–355. | MR | Zbl | DOI

[12] X. Dai, L. He and A. Zhou, Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues. IMA J. Numer. Anal. 35 (2015) 1934–1977. | MR | Zbl | DOI

[13] D. Davydov, T. D. Young and P. Steinmann, On the adaptive finite element analysis of the Kohn-Sham equations: methods, algorithms, and implementation. Int. J. Numerc. Methods Eng. 106 (2016) 863–888. | MR | Zbl | DOI

[14] E. M. Garau, P. Morin and C. Zuppa, Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19 (2009) 721–747. | MR | Zbl | DOI

[15] D. Gallistl, An optimal adaptive FEM for eigenvalue clusters. Numer. Math. 130 (2015) 467–496. | MR | Zbl | DOI

[16] S. Giani and I. G. Graham, A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47 (2009) 1067–1091. | MR | Zbl | DOI

[17] X. Gong, L. Shen, D. Zhang and A. Zhou, Finite element approximations for Schrödinger equations with applications to electronic structure computations. J. Comput. Math. 23 (2008) 310–327. | MR | Zbl

[18] R. Harrison, I. Moroz and K. P. Tod, A numerical study of the Schrödinger-Newton equations. Nonlinearity 16 (2003) 101–122. | MR | Zbl | DOI

[19] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121 (1985) 463–494. | MR | Zbl | DOI

[20] C. Le Bris, ed., Handbook of Numerical Analysis. In: Vol. X of Special issue: Computational Chemistry. North-Holland (2003). | MR | Zbl

[21] E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53 (1981) 603–641. | MR | Zbl | DOI

[22] R. M. Martin, Electronic Structure: Basic Theory and Practical Method. Cambridge University Press, Cambridge (2004). | Zbl | DOI

[23] V. Maz’Ya and J. Rossmann, Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence, RI (2010). | MR | Zbl | DOI

[24] P. Motamarri, M. R. Nowak, K. Leiter, J. Knap and V. Gavini, Higher-order adaptive finite-element methods for Kohn-Sham density functional theory. J. Comput. Phys. 253 (2013) 308–343. | MR | Zbl | DOI

[25] R. Penrose, On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28 (1996) 581–600. | MR | Zbl | DOI

[26] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23 (1981) 5048–5079. | DOI

[27] P. Pesic, Abel’s Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability. MIT Press, Cambridge etc (2004). | Zbl | MR

[28] M. Reed and B. Simon, Methods of Modern Mathematical Physics-IV: Analysis of Operators. Academic Press, San Diego (1978). | MR | Zbl

[29] M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl. 77 (1980) 482–492. | MR | Zbl | DOI

[30] J. C. Slater, A simplification of the Hartree-Fock method. Phys. Rev. 81 (1951) 385–390. | Zbl | DOI

[31] E. Tsuchida and M. Tsukada, Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B 54 (1996) 7602–7605. | DOI

[32] S. H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58 (1980) 1200–1211. | DOI

[33] H. Wolff, Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Gome. Anal. 3 (1993) 621–650. | MR | Zbl | DOI

[34] X. Zhang and A. Zhou, A singularity-based eigenfunction decomposition for Kohn-Sham equations. Sci. Sin. Math. 59 (2016) 1623–1634. | MR | Zbl

[35] A. Zhou, An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity 17 (2004) 541–550. | MR | Zbl | DOI

[36] A. Zhou, Hohenberg-Kohn theorem for Coulomb type systems and its generalization. J. Math. Chem. 50 (2012) 2746–2754. | MR | Zbl | DOI

Cité par Sources :