
ESAIM: M2AN 55 (2021) 209–227 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2020078 www.esaim-m2an.org

EIGENFUNCTION BEHAVIOR AND ADAPTIVE FINITE ELEMENT
APPROXIMATIONS OF NONLINEAR EIGENVALUE PROBLEMS IN

QUANTUM PHYSICS

Bin Yang1,2 and Aihui Zhou1,2,*

Abstract. In this paper, we investigate a class of nonlinear eigenvalue problems resulting from quan-
tum physics. We first prove that for any open set 𝐺, there exists an eigenfunction that cannot be a
polynomial on 𝐺, which may be reviewed as a refinement of the classic unique continuation property.
Then we apply the non-polynomial behavior of the eigenfunction to show that the adaptive finite ele-
ment approximations are convergent even if the initial mesh is not fine enough. We finally remark that
similar arguments can be applied to a class of linear eigenvalue problems that improve the relevant
existing results.
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1. Introduction

In this paper, we investigate the eigenfunction behavior and adaptive finite element approximations of the
following nonlinear eigenvalue problem: find (𝜆𝑖, 𝜑𝑖) ∈ R × 𝐻1

0 (Ω) such that
∫︀
Ω
𝜑𝑖𝜑𝑗 = 𝛿𝑖𝑗 (𝑖, 𝑗 = 1, 2, . . . , 𝑁)

and
(−𝜅∆ + 𝑉 +𝒩 (𝜌))𝜑𝑖 = 𝜆𝑖𝜑𝑖, in Ω, 𝑖 = 1, 2, . . . , 𝑁, (1.1)

where Ω ⊂ R3, 𝑁 ≥ 1, 𝜅 > 0, 𝜌 =
∑︀𝑁

𝑖=1 |𝜑𝑖|2, 𝑉 : Ω → R is a given function, and 𝒩 maps a nonnegative
function to some function on Ω. We observe that the Schrödinger–Newton equation modeling the quantum state
reduction [18,25], the Gross–Pitaevskii equation (GPE) describing Bose–Einstein condensates (BEC) [2,35], and
the Thomas–Fermi–von Weizsäcker (TFvW) type equations and the Kohn–Sham equations appearing in the
electronic density functional theory [3, 9, 20–22] are typical examples of (1.1).

We understand that it is significant to solve (1.1) accurately and efficiently. And we note that the a priori
knowledge of their eigenfunctions is very helpful in the design and analysis of numerical methods. To improve
the approximation accuracy and reduce the computational cost in solving the eigenvalue problem, we see from
the regularity behavior of eigenfunctions [17, 34] that adaptive finite element approaches should be employed
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(see also [7, 10–14, 24, 31] and references cited therein). We observe that the adaptive finite element analysis of
the nonlinear eigenvalue problem (1.1) in [7, 8, 10] requires that the initial mesh size is small enough. However,
our numerical experiments show that the small initial mesh size requirement is unnecessary [7, 8, 10]. In this
paper, we study the adaptive finite element approximations when the initial mesh is not fine, for which we need
to apply an eigenfunction behavior that is also investigated.

We see that the unique continuation property is significant in the context of partial differential equations
(see, e.g., [19, 28, 33] and references cited therein). After looking into the eigenfunction behavior of (1.1), we
find that for any open set 𝐺, there exists an eigenfunction that cannot be a polynomial on 𝐺, which may be
reviewed as a refinement of the classic unique continuation property and is indeed a key in our adaptive finite
element analysis. Taking into account the eigenfunction behavior, we are indeed able to prove the convergence
of adaptive finite element approximations without the requirement of the small initial mesh size.

The rest of this paper is organized as follows. In the next section, we describe some basic notation and review
the adaptive finite element method for solving (1.1). Then we show some polynomial properties which are crucial
in our adaptive finite element analysis. In Section 3, we obtain that for any open set 𝐺 of Ω, there exists an
eigenfunction of (1.1) that cannot be a polynomial on 𝐺 under some assumptions, which may be reviewed as an
extension and refinement of the classic unique continuation property. In Section 4, based on the non-polynomial
behavior of eigenfunctions, we study the convergence of the adaptive finite element method. We finally remark
that similar arguments can be applied to a class of linear eigenvalue problems that improve the relevant existing
results.

2. Preliminaries

Let Ω ⊂ R3 be a convex polyhedral bounded domain. We will always use 𝐺 for a nonempty open set of
R𝑑 (𝑑 ≥ 1) throughout this paper. Let Q+ = Q∩ [0,∞) and 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑑) ∈ Q𝑑

+ be a 𝑑-tuple. We denote
|𝛼| = 𝛼1 + 𝛼2 + . . . + 𝛼𝑑, define 𝑥𝛼 = 𝜉𝛼1

1 𝜉𝛼2
2 𝜉𝛼3

3 for any 𝑥 = (𝜉1, 𝜉2, 𝜉3) ∈ R3 and 𝛼 = (𝛼1, 𝛼2, 𝛼3) ∈ Q3
+, and

use the notation
𝜕𝑖𝜑 =

𝜕𝜑

𝜕𝜉𝑖
, 𝑖 = 1, 2, 3.

For any 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑑), 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑑) ∈ Q𝑑
+, we denote 𝛼 ≻ 𝛽 if the first non-zero element of

𝛼−𝛽 = (𝛼1−𝛽1, 𝛼2−𝛽2, . . . , 𝛼𝑑−𝛽𝑑) is larger than 0 and 𝛼 < 𝛽 if 𝛼 ≻ 𝛽 or 𝛼 = 𝛽. For convenience, we define

𝒫Q+(𝐺) =

⎧⎨⎩ ∑︁
𝛼∈𝐼⊂Q𝑑

+

𝑎𝛼𝑥
𝛼 : 𝑎𝛼, 𝑥

𝛼 ∈ R, ∀𝛼 ∈ 𝐼, ∀𝑥 ∈ 𝐺, |𝐼| <∞

⎫⎬⎭ ,

where |𝐼| means the cardinality of 𝐼. We shall use the notation

𝒫𝜇
Q+

(𝐺) =
{︀
𝑝𝜇 : 𝑝 ∈ 𝒫Q+(𝐺) and 𝑝𝜇(𝑥) ∈ R ∀𝑥 ∈ 𝐺

}︀
for any 𝜇 ≥ 0. We call 𝑎𝛼𝑥

𝛼 with 𝑎𝛼 ̸= 0 a monomial. Denote |𝛼| the degree of the monomial 𝑎𝛼𝑥
𝛼. We shall

let the degree of the polynomial 0 be −∞. For any 𝑝 ∈ 𝒫Q+(𝐺), define deg 𝑝 as the max degree of terms of 𝑝,
which is called the degree of 𝑝. We shall also denote deg 𝑝𝜇 = 𝜇deg 𝑝 for any 𝑝 ∈ 𝒫Q+(𝐺) and 𝜇 ∈ Q+ and
deg(𝑝/𝑞) = deg 𝑝 − deg 𝑞 for any 𝑝, 𝑞 ∈ 𝒫Q+(𝐺). Let 𝒫ℓ(𝐺) be the set of real polynomials on 𝐺 with a degree
not larger than ℓ. It is clear that 𝒫ℓ(𝐺) ⊂ 𝒫Q+(𝐺). The standard notation 𝑊 𝑠,𝑝(Ω)(𝑠 ≥ 0) for Sobolev spaces
and their associated norms ‖ · ‖𝑠,𝑝,Ω shall also be used [1]. We write

𝐺 ⊂⊂ Ω

if 𝐺̄ ⊂ Ω and 𝐺̄ is compact. 𝑊 𝑠,𝑝
loc (Ω) denotes the space of the function 𝑣 satisfying that for any open set 𝐺 ⊂⊂ Ω,

𝑣 ∈ 𝑊 𝑠,𝑝(𝐺). For 𝑝 = 2, we denote 𝐻𝑠(Ω) = 𝑊 𝑠,2(Ω), 𝐻𝑠
loc(Ω) = 𝑊 𝑠,2

loc (Ω), 𝐻1
0 (Ω) = {𝑣 ∈ 𝐻1(Ω) : 𝑣|𝜕Ω = 0},
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where 𝑣|𝜕Ω is understood in the sense of trace, ‖ · ‖𝑠,Ω = ‖ · ‖𝑠,2,Ω. We use P(𝑠, (𝑐1, 𝑐2)) to denote a class of
functions satisfying some growth conditions:

P(𝑠, (𝑐1, 𝑐2)) = {𝑓 : ∃ 𝑎1, 𝑎2 ∈ R such that 𝑐1𝑡𝑠 + 𝑎1 ≤ 𝑓(𝑡) ≤ 𝑐2𝑡
𝑠 + 𝑎2 ∀𝑡 ≥ 0}

with 𝑐1 ∈ R and 𝑐2, 𝑠 ∈ [0,∞).

2.1. Quantum eigenvalue problem

We consider the nonlinear eigenvalue problem (1.1) where 𝑉 is of the form

𝑉 = −
𝑀∑︁

𝑗=1

𝑓𝑗

𝑔𝑗
(2.1)

with 𝑓𝑗 , 𝑔𝑗 ∈ 𝒫𝜇
Q+

(R3)(𝑗 = 1, 2, . . . ,𝑀) for some 𝜇 ∈ Q+. Assume that 𝒩 is divided into two parts:

𝒩 (𝜌) = 𝒩1(𝜌) +𝒩2(𝜌), (2.2)

where 𝜌 =
∑︀𝑁

𝑖=1 |𝜑𝑖|2. Let 𝒩1 : [0,∞) → R be defined by

𝒩1(𝑡) =
𝐾∑︁

𝑖=1

𝑝𝑖(𝑡)
ℎ𝑖(𝑡)

ln 𝑞𝑖(𝑡) (2.3)

with 𝑝𝑖, ℎ𝑖 ∈ 𝒫Q+([0,∞)), where 𝑞𝑖 are polynomials satisfying 𝑞𝑖|[0,∞) > 0 and 𝑞𝑖 ̸= 1(𝑖 = 1, 2, · · · ,𝐾) , and 𝒩2

be given by a convolution integral

𝒩2(𝜌) = 𝛼

∫︁
Ω

𝜌(𝑦)
| · −𝑦|

d𝑦 (2.4)

with some constant 𝛼.
The energy functional associated with (1.1) is

𝐸(Φ) =
∫︁

Ω

(︃
𝜅

𝑁∑︁
𝑖=1

|∇𝜑𝑖|2 + 𝑉 𝜌Φ + ℰ(𝜌Φ)

)︃
+
𝛼

2
𝐷(𝜌Φ, 𝜌Φ)

for Φ = (𝜑1, 𝜑2, . . . , 𝜑𝑁 ) ∈ ℋ ≡ (𝐻1
0 (Ω))𝑁 , where 𝜌Φ =

∑︀𝑁
𝑖=1 |𝜑𝑖|2, ℰ : [0,∞) → R is defined by

ℰ(𝑠) =
∫︁ 𝑠

0

𝒩1(𝑡)d𝑡,

and 𝐷(·, ·) is a bilinear form as follows

𝐷(𝑓, 𝑔) =
∫︁

Ω

∫︁
Ω

𝑓(𝑥)𝑔(𝑦)
|𝑥− 𝑦|

d𝑥d𝑦.

For any Φ ∈ ℋ, we denote

‖Φ‖𝑠,Ω =

(︃
𝑁∑︁

𝑖=1

‖𝜑𝑖‖2𝑠,Ω

)︃1/2

.

We see that (1.1) includes the GPE, the Schrödinger–Newton equation, the TFvW type equation, and the
Kohn–Sham equation (see Rem. 3.7, Examples 3.9, 3.10, and 3.11 for more details).

Let 𝒬 be a subset of ℋ:
𝒬 = {Φ ∈ ℋ : Φ𝑇 Φ = 𝐼𝑁×𝑁},
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where Φ𝑇 Ψ =
(︀∫︀

Ω
𝜑𝑖𝜓𝑗

)︀
∈ R𝑁×𝑁 . The ground state charge density of (1.1) is obtained by solving the mini-

mization problem
inf{𝐸(Φ) : Φ ∈ 𝒬}. (2.5)

We see that any minimizer Φ = (𝜑1, . . . , 𝜑𝑁 ) of (2.5) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨𝐻Φ𝜑𝑖, 𝑣⟩ =

⎛⎝ 𝑁∑︁
𝑗=1

𝜆𝑗𝑖𝜑𝑗 , 𝑣

⎞⎠ ∀𝑣 ∈ 𝐻1
0 (Ω), 𝑖 = 1, 2, . . . , 𝑁,

∫︁
Ω

𝜑𝑖𝜑𝑗 = 𝛿𝑖𝑗 ,

(2.6)

where 𝐻Φ : 𝐻1
0 (Ω) → 𝐻−1(Ω) is the Hamiltonian operator defined by

⟨𝐻Φ𝑢, 𝑣⟩ = 𝜅(∇𝑢,∇𝑣) + (𝑉 𝜌Φ +𝒩 (𝜌Φ)𝑢, 𝑣) ∀𝑢, 𝑣 ∈ 𝐻1
0 (Ω)

and

Λ = (𝜆𝑖𝑗)𝑁
𝑖,𝑗=1 =

(︂∫︁
Ω

𝜑𝑖𝐻Φ𝜑𝑗

)︂𝑁

𝑖,𝑗=1

is the Lagrange multiplier. We call (Λ,Φ) a state of (2.6) and define the set of ground states by

Θ =
{︂

(Λ,Φ) ∈ R𝑁×𝑁 ×𝒬 : 𝐸(Φ) = min
Ψ∈𝒬

𝐸(Ψ) and (Λ,Φ) solves (2.6)
}︂
.

We define the set of states of (2.6) by

𝒲 = {(Λ,Φ) ∈ R𝑁×𝑁 ×ℋ : (Λ,Φ) solves (2.6)}.

Since the electron density 𝜌Φ and the operator 𝐻Φ are invariant under any unitary transform, we may
diagonalize the Lagrange multiplier Λ and arrive at⎧⎨⎩

⟨𝐻Φ𝜑𝑖, 𝑣⟩ = 𝜆𝑖(𝜑𝑖, 𝑣) ∀𝑣 ∈ 𝐻1
0 (Ω), 𝑖 = 1, 2, . . . , 𝑁,∫︁

Ω

𝜑𝑖𝜑𝑗 = 𝛿𝑖𝑗 ,
(2.7)

which is equivalent to (2.6) and a weak form of (1.1).
In practice, the ground states are usually approximated by solving the lowest 𝑁 eigenpairs of (2.7) [22].

2.2. An adaptive finite element method

Let 𝑑Ω be the diameter of Ω and {𝒯ℎ} be a shape regular family of nested conforming meshes over Ω with
size ℎ ∈ (0, 𝑑Ω): there exists a constant 𝛾* such that

ℎ𝜏

𝜌𝜏
≤ 𝛾* ∀𝜏 ∈ 𝒯ℎ,

where ℎ𝜏 is the diameter of 𝜏 , 𝜌𝜏 is the diameter of the biggest ball contained in 𝜏 , and ℎ = max{ℎ𝜏 : 𝜏 ∈ 𝒯ℎ}.
Let ℰℎ denote the set of interior faces of 𝒯ℎ. We shall also use a slight abuse of notation that ℎ denotes the
mesh size function defined by

ℎ(𝑥) = ℎ𝜏 , 𝑥 ∈ 𝜏 ∀𝜏 ∈ 𝒯ℎ.

Let 𝑆ℎ(Ω) ⊂ 𝐻1(Ω) be the corresponding finite element space consisting of continuous piecewise polynomials
over 𝒯ℎ of degrees not larger than 𝑛 ≥ 1 and

𝑆ℎ
0 (Ω) = 𝑆ℎ ∩𝐻1

0 (Ω).
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Let 𝑉ℎ = (𝑆ℎ
0 (Ω))𝑁 .

Consider the finite element approximation of (2.5):

inf {𝐸(Φℎ) : Φℎ ∈ 𝑉ℎ ∩𝒬} . (2.8)

We see that any minimizer Φℎ = (𝜑1,ℎ, . . . , 𝜑𝑁,ℎ) of (2.8) solves the Euler-Lagrange equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨𝐻Φℎ

𝜑𝑖,ℎ, 𝑣⟩ =

⎛⎝ 𝑁∑︁
𝑗=1

𝜆𝑗𝑖,ℎ𝜑𝑗,ℎ, 𝑣

⎞⎠ ∀𝑣 ∈ 𝑆ℎ
0 (Ω), 𝑖 = 1, 2, . . . , 𝑁,

∫︁
Ω

𝜑𝑖,ℎ𝜑𝑗,ℎ = 𝛿𝑖𝑗

(2.9)

with the Lagrange multiplier

Λℎ = (𝜆𝑖𝑗,ℎ)𝑁
𝑖,𝑗=1 =

(︂∫︁
Ω

𝜑𝑖,ℎ𝐻Φℎ
𝜑𝑗,ℎ

)︂𝑁

𝑖,𝑗=1

when the energy functional is differentiable. Define the set of finite dimensional ground state solutions:

Θℎ =
{︂

(Λℎ,Φℎ) ∈ R𝑁×𝑁 × (𝒬∩ 𝑉ℎ) : 𝐸(Φℎ) = min
Ψ∈𝒬∩𝑉ℎ

𝐸(Ψ), (Λℎ,Φℎ) solves (2.9)
}︂
.

Using a unitary transformation, we have the following discrete equation⎧⎨⎩
⟨𝐻Φℎ

𝜑𝑖,ℎ, 𝑣⟩ = 𝜆𝑖,ℎ(𝜑𝑖,ℎ, 𝑣) ∀𝑣 ∈ 𝐻1
0 (Ω), 𝑖 = 1, 2, . . . , 𝑁,∫︁

Ω

𝜑𝑖,ℎ𝜑𝑗,ℎ = 𝛿𝑖𝑗 .
(2.10)

In practice, we usually solve and obtain the lowest 𝑁 eigenpairs of (2.10) [22].
We recall that the adaptive finite element method is to repeat the following procedure [10]:

Solve → Estimate → Mark → Refine.

For convenience, we shall replace subscript ℎ (or ℎ𝑘) by an iteration counter 𝑘 of the adaptive method afterwards.
Given an initial triangulation 𝒯0 so that the dimension of 𝑆ℎ

0 is larger than or equal to 𝑁 , the above procedure
generates a sequence of nested triangulations 𝒯𝑘(𝑘 = 1, 2, . . .). Given an iteration counter 𝑘, the procedure
“Solve” is to get the discrete ground state solution of (2.9) over 𝒯𝑘. The procedure “Estimate” determines the
element indicators for all elements 𝜏 ∈ 𝒯𝑘. In this step, a posteriori error estimators play a critical role. Then,
the element indicators are used by the procedure “Mark” to create a subset ℳ𝑘 of marked elements 𝜏 ∈ 𝒯𝑘.
Finally, the procedure “Refine” produces a new partition 𝒯𝑘+1 by refining all elements in ℳ𝑘 at least once.
Here we use a shape-regular bisection for the refinement. To keep the conformity, we usually partition a few
more elements 𝜏 ∈ 𝒯𝑘 ∖ℳ𝑘.

Given a triangulation 𝒯ℎ and the corresponding finite element solution (Λℎ,Φℎ), we respectively define the
element residual ℛ𝜏 (Φℎ) and the jump 𝐽𝑒(Φℎ) by

ℛ𝜏 (Φℎ) =

⎛⎝𝐻Φℎ
𝜑𝑖,ℎ −

𝑁∑︁
𝑗=1

𝜆𝑗𝑖,ℎ𝜑𝑗,ℎ

⎞⎠𝑁

𝑖=1

in 𝜏 ∈ 𝒯ℎ,

𝐽𝑒(Φℎ) = (𝑗𝑒(𝜑𝑖,ℎ))𝑁
𝑖=1 , 𝑗𝑒(𝜑𝑖,ℎ) = 𝜅∇𝜑𝑖,ℎ|𝜏1 · −→𝑛1 + 𝜅∇𝜑𝑖,ℎ|𝜏2 · −→𝑛2,
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where 𝑒 is the common face of elements 𝜏1 and 𝜏2 with unit outward normals −→𝑛1 and −→𝑛2. For 𝜏 ∈ 𝒯ℎ, we define
the local error indicator 𝜂ℎ(Φℎ, 𝜏) as follows:

𝜂2
ℎ(Φℎ, 𝜏) = ℎ2

𝜏‖ℛ𝜏 (Φℎ)‖20,𝜏 +
∑︁

𝑒∈ℰℎ,𝑒⊂𝜕𝜏

ℎ𝑒‖𝐽𝑒(Φℎ)‖20,𝑒.

Depending on the a posteriori error indicators {𝜂𝑘(Φ𝑘, 𝜏)}𝜏∈𝒯𝑘
, the procedure “Mark” gives a strategy to create

a subset of elements ℳ𝑘 of 𝒯𝑘. Here, we consider “maximum strategy” which only requires that the set of
marked elements ℳ𝑘 contains at least one element of 𝒯𝑘 holding the largest value estimator. Namely, there
exists at least one element 𝜏max

𝑘 ∈ℳ𝑘 such that

𝜂𝑘(Φ𝑘, 𝜏
max
𝑘 ) = max

𝜏∈𝒯𝑘

𝜂𝑘(Φ𝑘, 𝜏).

The adaptive finite element algorithm for solving (2.7) is stated as follows [7, 8, 10]:

Algorithm 1
1. Pick an initial mesh 𝒯0 and let 𝑘 = 0.
2. Solve (2.10) on 𝒯𝑘 to get the discrete ground state solution (𝜆𝑖,𝑘, 𝜑𝑖,𝑘)(𝑖 = 1, 2, . . . , 𝑁).
3. Compute the local error indicators 𝜂𝑘(Φ𝑘, 𝜏) for all 𝜏 ∈ 𝒯𝑘.
4. Construct ℳ𝑘 ⊂ 𝒯𝑘 by the maximum strategy.
5. Refine 𝒯𝑘 to get a new conforming mesh 𝒯𝑘+1.
6. Let 𝑘 = 𝑘 + 1 and go to 2.

We observe that there are a number of works on analyzing adaptive finite element methods in the literature.
We refer to [4–6,11,15,16] and references cited therein for linear eigenvalue problems and to [7,8,10] for nonlinear
cases when the initial mesh is fine enough. We see that under the so-called Non-Degeneracy assumption1, [14]
proved the convergence of an adaptive finite element method starting from any initial mesh for some linear
elliptic eigenvalue problems.

2.3. A polynomial theory

In our analysis, we need the following basic results, which are motivated by [36].

Lemma 2.1. Let 𝑘 be a prime number. Then there exist polynomials with respect to 𝑡1, 𝑡2, . . . , 𝑡𝑘

{𝑝𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) : 𝑗 = 2, . . . , 𝑘}

with real coefficients satisfying

(1) 𝑝𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) is a polynomial of a degree not larger than 𝑗 − 1 with respect to 𝑡𝑘 and

𝑝𝑗(𝜆𝑡1, 𝜆𝑡2, . . . , 𝜆𝑡𝑘−1, 𝑡𝑘) = 𝜆𝑗𝑝𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘−1, 𝑡𝑘) ∀𝜆 ∈ R;

(2) if 𝛾, 𝑎1, 𝑎2, . . . , 𝑎𝑘−1, 𝑡 ∈ R satisfy 𝛾 = 𝑎1𝑡+ 𝑎2𝑡
2 + · · ·+ 𝑎𝑘−1𝑡

𝑘−1, then

𝛾𝑘 +
𝑘∑︁

𝑗=2

𝑝𝑗(𝑎1, 𝑎2, . . . , 𝑎𝑘−1, 𝑡
𝑘)𝛾𝑘−𝑗 = 0.

1No eigenfunction is equal to a polynomial of degree ≤ 𝑛 on an open subset of Ω, where 𝑛 denotes the polynomial degree of the
finite element bases being used.
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The proof of Lemma 2.1 is given in Appendix A.

Lemma 2.2. Suppose 𝑘 is a prime. Then for any positive integer 𝑛, there exist polynomials{︀
𝐻𝑛,𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑛) : 𝑗 = 0, 1, 2, . . . , 𝑘𝑛−1

}︀
with real coefficients satisfying
(1) 𝐻𝑛,0(𝑡1, 𝑡2, . . . , 𝑡𝑛) = 1, 𝐻𝑛,𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑛) (𝑗 = 1, 2, . . . , 𝑘𝑛−1) are homogeneous:

𝐻𝑛,𝑗(𝜆𝑡1, 𝜆𝑡2, . . . , 𝜆𝑡𝑛) = 𝜆𝑗𝐻𝑛,𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑛) ∀𝜆 ∈ R,

and (−1)𝑘𝑛−1
𝐻𝑛,𝑘𝑛−1(𝑡1, 𝑡2, . . . , 𝑡𝑛) is a monic polynomial of a degree 𝑘𝑛−1 with respect to each variable

𝑡𝑙(𝑙 = 1, 2, . . . , 𝑛);
(2) if 𝛾, 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ R satisfy 𝛾 =

∑︀𝑛
𝑗=1 𝑡𝑗, then

𝑘𝑛−1∑︁
𝑗=0

𝐻𝑛,𝑗(𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑛)𝛾𝑘(𝑘𝑛−1−𝑗) = 0.

Proof. We prove the conclusion by induction on 𝑛. First, for 𝑛 = 1, 𝛾 = 𝑡1 implies 𝛾𝑘 − 𝑡𝑘1 = 0, which shows
that Lemma 2.2 is true when 𝑛 = 1, namely, 𝐻1,1(𝑡1) = −𝑡1. Assume that Lemma 2.2 is true for 𝑛 ≥ 1. We
show that Lemma 2.2 is true for 𝑛+ 1. Let

𝑛+1∑︁
𝑗=1

𝑡𝑗 = 𝛾.

It follows from the induction hypothesis and
𝑛∑︁

𝑗=1

𝑡𝑗 = 𝛾 − 𝑡𝑛+1

that there exist polynomials {︀
𝐻𝑛,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛) : 𝑗 = 0, 1, 2, . . . , 𝑘𝑛−1

}︀
with real coefficients satisfying that (−1)𝑘𝑛−1

𝐻𝑛,𝑘𝑛−1(𝑠1, 𝑠2, . . . , 𝑠𝑛) is a monic polynomial of a degree 𝑘𝑛−1 with
respect to each variable 𝑠𝑙(𝑙 = 1, 2, . . . , 𝑛), 𝐻𝑛,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛)(𝑗 = 1, 2, . . . , 𝑘𝑛−1) are homogeneous, and

𝑘𝑛−1∑︁
𝑗=0

𝐻𝑛,𝑗

(︀
𝑡𝑘1 , 𝑡

𝑘
2 , . . . , 𝑡

𝑘
𝑛

)︀
(𝛾 − 𝑡𝑛+1)𝑘(𝑘𝑛−1−𝑗) = 0.

We obtain from Newton binomial theory that
𝑘−1∑︁
𝑖=1

𝑎𝑖𝛾
𝑘

(︂
− 𝑡𝑛+1

𝛾

)︂𝑖

= 𝑎, (2.11)

where

𝑎 = 𝐻𝑛,𝑘𝑛−1

(︀
𝑡𝑘1 , 𝑡

𝑘
2 , . . . , 𝑡

𝑘
𝑛

)︀
+ (−𝑡𝑛+1)𝑘𝑛

+ 𝛾𝑘𝑛

+
𝑘𝑛−1−1∑︁

ℓ=1

(︂
𝑘𝑛

𝑘ℓ

)︂
𝛾𝑘𝑛−𝑘ℓ(−𝑡𝑛+1)𝑘ℓ

+
𝑘𝑛−1−1∑︁

𝑗=1

𝐻𝑛,𝑗(𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑛)

𝑘𝑛−1−𝑗∑︁
ℓ=0

(︂
𝑘𝑛 − 𝑘𝑗

𝑘ℓ

)︂
𝛾𝑘𝑛−𝑘𝑗−𝑘ℓ(−𝑡𝑛+1)𝑘ℓ,

𝑎𝑖 = −
𝑘𝑛−1−1∑︁

𝑗=0

𝐻𝑛,𝑗(𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑛)

𝑘𝑛−1−𝑗∑︁
ℓ=1

(︂
𝑘𝑛 − 𝑘𝑗

𝑘ℓ− 𝑘 + 𝑖

)︂
𝛾𝑘𝑛−𝑘𝑗−𝑘ℓ(−𝑡𝑛+1)𝑘ℓ−𝑘,

𝑖 = 1, 2, . . . , 𝑘 − 1.
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Let polynomials 𝑃 and 𝑃𝑖(𝑖 = 1, 2, . . . , 𝑘 − 1) be

𝑃 (𝑠1, 𝑠2, . . . , 𝑠𝑛+2) = 𝐻𝑛,𝑘𝑛−1(𝑠1, 𝑠2, . . . , 𝑠𝑛) + (−𝑠𝑛+1)𝑘𝑛−1
+ 𝑠𝑘𝑛−1

𝑛+2 +
𝑘𝑛−1−1∑︁

ℓ=1

(︂
𝑘𝑛

𝑘ℓ

)︂
𝑠𝑘𝑛−1−ℓ

𝑛+2 (−𝑠𝑛+1)ℓ

+
𝑘𝑛−1−1∑︁

𝑗=1

𝐻𝑛,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛)
𝑘𝑛−1−𝑗∑︁

ℓ=0

(︂
𝑘𝑛 − 𝑘𝑗

𝑘ℓ

)︂
𝑠𝑘𝑛−1−𝑗−ℓ

𝑛+2 (−𝑠𝑛+1)ℓ,

𝑃𝑖(𝑠1, 𝑠2, . . . , 𝑠𝑛+2) = −
𝑘𝑛−1−1∑︁

𝑗=0

𝐻𝑛,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛)
𝑘𝑛−1−𝑗∑︁

ℓ=1

(︂
𝑘𝑛 − 𝑘𝑗

𝑘ℓ− 𝑘 + 𝑖

)︂
𝑠𝑘𝑛−1−𝑗−ℓ

𝑛+2 (−𝑠𝑛+1)ℓ−1,

𝑖 = 1, 2, . . . , 𝑘 − 1.

It is clear that 𝑃 and 𝑃𝑖(𝑖 = 1, 2, . . . , 𝑘−1) are homogeneous, deg𝑃 = 𝑘𝑛−1, deg𝑃𝑖 = 𝑘𝑛−1−1 (𝑖 = 1, 2, . . . , 𝑘−1),
and

𝑎 = 𝑃 (𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑛+1, 𝛾

𝑘), (2.12)

𝑎𝑖 = 𝑃𝑖(𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑛+1, 𝛾

𝑘) 𝑖 = 1, 2, . . . , 𝑘 − 1. (2.13)

Since 𝑘 is a prime, we see from (2.11) that there exist {𝑝𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) : 𝑗 = 2, 3, . . . , 𝑘} satisfying Lemma 2.1,
namely,

0 = 𝑎𝑘 +
𝑘∑︁

𝑗=2

𝑝𝑗(𝑎1𝛾
𝑘, 𝑎2𝛾

𝑘, . . . , 𝑎𝑘−1𝛾
𝑘, (−𝑡𝑛+1)𝑘/𝛾𝑘)𝑎𝑘−𝑗 ,

or

0 = 𝑎𝑘 +
𝑘∑︁

𝑗=2

𝑝𝑗(𝑎1, 𝑎2, . . . , 𝑎𝑘−1, (−𝑡𝑛+1)𝑘/𝛾𝑘)𝛾𝑘𝑗𝑎𝑘−𝑗 . (2.14)

We define 𝑄(𝑠1, 𝑠2, . . . , 𝑠𝑛+2) by

𝑄 = 𝑃 𝑘 +
𝑘∑︁

𝑗=2

𝑝𝑗(𝑃1, 𝑃2, . . . , 𝑃𝑘−1, (−1)𝑘𝑠𝑛+1/𝑠𝑛+2)𝑠𝑗
𝑛+2𝑃

𝑘−𝑗 .

Thus it follows from (1) in Lemma 2.1 and (2.12), (2.13) that 𝑄 is a homogeneous polynomial of a degree 𝑘𝑛

and

𝑎𝑘 +
𝑘∑︁

𝑗=2

𝑝𝑗

(︀
𝑎1, 𝑎2, . . . , 𝑎𝑘−1, (−𝑡𝑛+1)𝑘/𝛾𝑘

)︀
𝛾𝑘𝑗𝑎𝑘−𝑗 = 𝑄

(︀
𝑡𝑘1 , 𝑡

𝑘
2 , . . . , 𝑡

𝑘
𝑛+1, 𝛾

𝑘
)︀
. (2.15)

We see that 𝑄 can be expressed as

𝑄(𝑠1, 𝑠2, . . . , 𝑠𝑛+2) =
𝑘𝑛∑︁
𝑗=0

𝐻𝑛+1,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛+1)𝑠𝑘𝑛−𝑗
𝑛+2 , (2.16)

where 𝐻𝑛+1,𝑗 (𝑗 = 1, 2, . . . , 𝑘𝑛) are homogeneous:

𝐻𝑛+1,𝑗(𝜆𝑠1, 𝜆𝑠2, . . . , 𝜆𝑠𝑛+1) = 𝜆𝑗𝐻𝑛+1,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛+1) ∀𝜆 ∈ R.

It is not difficult to see that 𝐻𝑛+1,0(𝑠1, 𝑠2, . . . , 𝑠𝑛) = 1. We obtain from the definitions of 𝑃, 𝑃𝑖 and 𝑄 that

𝐻𝑛+1,𝑘𝑛(𝑠1, 𝑠2, . . . , 𝑠𝑛+1)

=

⎛⎝𝐻𝑛,𝑘𝑛−1(𝑠1, 𝑠2, . . . , 𝑠𝑛) + (−𝑠𝑛+1)𝑘𝑛−1
+

𝑘𝑛−1−1∑︁
𝑗=1

𝐻𝑛,𝑗(𝑠1, 𝑠2, . . . , 𝑠𝑛)(−𝑠𝑛+1)𝑘𝑛−1−𝑗

⎞⎠𝑘

.
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Since (−1)𝑘𝑛−1
𝐻𝑛,𝑘𝑛−1(𝑠1, 𝑠2, . . . , 𝑠𝑛) is a monic polynomial of a degree 𝑘𝑛−1 with respect to each variable

𝑠𝑙(𝑙 = 1, 2, . . . , 𝑛), we have that (−1)𝑘𝑛

𝐻𝑛+1,𝑘𝑛(𝑠1, 𝑠2, . . . , 𝑠𝑛+1) is a monic polynomial of a degree 𝑘𝑛 with
respect to each variable 𝑠𝑙(𝑙 = 1, 2, . . . , 𝑛 + 1). It follows from (2.14) to (2.16) that 𝐻𝑛+1,𝑗 (𝑗 = 0, 1, . . . , 𝑘𝑛)
satisfy (2) in Lemma 2.2. This completes the proof. �

Since every integer larger than 1 can be written as a product of one or more primes, we arrive at

Proposition 2.3. Let 𝑘 and 𝑛 be two positive integers. Then there exists a homogeneous polynomial
𝑃 (𝑡1, 𝑡2, . . . , 𝑡𝑛+1) with real coefficients satisfying

(1) the degree of 𝑃 with respect to each variable is the same;
(2) 𝑃 is a monic polynomial with respect to 𝑡𝑛+1;
(3) if 𝛾, 𝑡1, 𝑡2, . . . , 𝑡𝑛 ∈ R satisfy 𝛾 =

∑︀𝑛
𝑗=1 𝑡𝑗, then

𝑃 (𝑡𝑘1 , 𝑡
𝑘
2 , . . . , 𝑡

𝑘
𝑛, 𝛾

𝑘) = 0.

Remark 2.4. Proposition 2.3 shows that there exists a real homogeneous polynomial 𝑃 such that any zero of

𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝛾) ≡
𝑛∑︁

𝑖=1

𝑘
√
𝑡𝑖 − 𝛾

is a zero of
𝑃 (𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝛾𝑘).

Proposition 2.5. Let 𝐺 be a nonempty open set of R3. If 𝑝 ∈ 𝒫Q+(𝐺) and deg 𝑝 > 0, then for any nonempty
open set 𝐺0 ⊂ 𝐺, there exists 𝑥0 ∈ 𝐺0 such that 𝑝(𝑥0) ̸= 0.

Proof. We see from the definition of 𝒫Q+(𝐺) that

𝑝 =
𝑛∑︁

𝑖=1

𝑎𝛼(𝑖)𝑥𝛼(𝑖)
,

where 𝛼(𝑖) ∈ Q3
+, 0 ̸= 𝑎𝛼(𝑖) ∈ R, and 𝛼(𝑛) is the max index. Hence we can choose a positive integer 𝑘 such that

all components of 𝑘𝛼(𝑖)(𝑖 = 1, 2, . . . , 𝑛) are integers.
Assume that 𝑝 = 0 in 𝐺0. Then there exists a real homogeneous polynomial 𝑃 (𝑡1, 𝑡2, . . . , 𝑡𝑛) satisfying (2) of

Proposition 2.3 and
𝑃
(︁
𝑥𝑘𝛼(1)

, 𝑥𝑘𝛼(2)
, . . . , 𝑥𝑘𝛼(𝑛)

)︁
= 0, in 𝐺0.

Set 𝑄 = 𝑃
(︁
𝑥𝑘𝛼(1)

, 𝑥𝑘𝛼(2)
, . . . , 𝑥𝑘𝛼(𝑛)

)︁
. Then 𝑄 is a polynomial with a positive degree which is a contradiction

to 𝑄 = 0. This completes the proof. �

Lemma 2.6. Let 𝑛 ≥ 2 be a positive integer, 𝐺 and 𝐺0 be nonempty open subsets of R3 with 𝐺0 ⊂ 𝐺. Let
𝑝𝑗 ∈ 𝒫1/𝑘

Q+
(𝐺) for some positive integer 𝑘 and 𝑞𝑗 ∈ 𝒫Q+(𝐺)(𝑗 = 1, 2, . . . , 𝑛). If 𝑞𝑗 > 0(𝑗 = 1, 2, . . . , 𝑛) in 𝐺0 with

𝑞𝑗0 ̸= 1 in 𝐺0 for some 𝑗0 and

deg 𝑝𝑗0 > deg 𝑝𝑗 ∀𝑗 ∈ {1, 2, . . . , 𝑛} ∖ {𝑗0},

then there exists 𝑥0 ∈ 𝐺0 such that
𝑛∑︁

𝑗=1

𝑝𝑗(𝑥0) ln 𝑞𝑗(𝑥0) ̸= 0.

The proof of Lemma 2.6 is provided in Appendix B.
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3. Behavior of eigenfunction

In this section, we investigate the non-polynomial behavior of eigenfunctions of (1.1), which will be applied
to analyze the convergence of their adaptive finite element approximations. We see from [17, 34] that the
eigenfunctions of (1.1) vary rapidly around nuclei, which indeed results in applying adaptive finite element
computations.

We first recall the unique continuation property.

Definition 3.1. Equation (1.1) has a unique continuation property if every solution in 𝐻2
loc(Ω) that vanishes

on an open set of Ω vanishes identically.

To look into if (1.1) has a unique continuation property, we may apply the following conclusion, which can
be found in [33].

Lemma 3.2. Assume that 𝑢 ∈ 𝐻2
loc(Ω) and 𝒱 ∈ 𝐿3/2

loc (Ω) such that |∆𝑢| ≤ 𝒱|𝑢| a.e.. If 𝑢 vanishes on an open
set of Ω, then 𝑢 is identically zero on Ω.

Theorem 3.3. If 𝑉 ∈ 𝐿2(Ω) and 𝒩1(𝑡) ∈ P(𝑠, (𝑐1, 𝑐2)) with 𝑠 ∈ [0, 3/2], then (1.1) has a unique continuation
property.

Proof. It follows from a standard elliptic regularity argument that 𝜑𝑖 ∈ 𝐻2(Ω) (see, e.g., [17,34] and Sect. 4.3.1
of [23]), which together with Sobolev imbedding theorem leads to 𝜑𝑖 ∈ 𝐶(Ω̄) (𝑖 = 1, 2, . . . , 𝑁).

Note that Young’s inequality and Sobolev imbedding theorem imply

‖𝒩2(𝜌)‖0,∞,Ω ≤ 𝐶‖𝜌‖0,Ω ≤ 𝐶

𝑁∑︁
𝑖=1

‖𝜑𝑖‖20,4,Ω ≤ 𝐶‖Φ‖21,Ω <∞.

We have that |∆𝜑𝑖| = 𝒱𝑖|𝜑𝑖| and 𝒱𝑖 ∈ 𝐿3/2
loc (Ω), where 𝒱𝑖 = |𝑉 +𝒩 (𝜌)− 𝜆𝑖|/𝜅 (𝑖 = 1, 2, . . . , 𝑁). Thus we arrive

at the conclusion from Lemma 3.2. �

Remark 3.4. We may see from the proof of Theorem 3.3 that if 𝑉 ∈ 𝐿2(Ω) is replaced by 𝑉 ∈ 𝐿
3/2
loc (Ω) and

any solution of (1.1) is in 𝐻2(Ω), then (1.1) has a unique continuation property.

Theorem 3.5. Let Φ = (𝜑1, 𝜑2, . . . , 𝜑𝑁 ) be a solution of (1.1). Assume that 𝑉 and 𝒩 are defined by (2.1) and
(2.2)–(2.4) with 𝛼 = 0, respectively. If 𝑉 is a non-constant function and

deg 𝑝1 − deg ℎ1 > max
{︂

0, max
1≤𝑗≤𝑀

(deg 𝑓𝑗 − deg 𝑔𝑗)/2, max
2≤𝑖≤𝐾

(deg 𝑝𝑖 − deg ℎ𝑖)
}︂
, (3.1)

then for any nonempty open set 𝐺 ⊂ Ω, there exists an eigenfunction 𝜑𝑗(𝑗 ∈ {1, 2, . . . , 𝑁}) being not a non-zero
polynomial on 𝐺. If in addition, 𝑉 ∈ 𝐿2(Ω) and 𝒩1(𝑡) ∈ P(𝑠, (𝑐1, 𝑐2)) with 𝑠 ∈ [0, 3/2], then for any nonempty
open set 𝐺 ⊂ Ω, there exists an eigenfunction 𝜑𝑗(𝑗 ∈ {1, 2, . . . , 𝑁}) being not a polynomial on 𝐺.

Proof. Assume that all eigenfunctions {𝜑1, 𝜑2, . . . , 𝜑𝑁} are polynomials on the nonempty open set 𝐺: 𝜑𝑗 ∈
𝒫ℓ(𝐺)(𝑗 = 1, 2, . . . , 𝑁) for some positive integer ℓ. Without loss of generality, let deg 𝜑1 ≥ max2≤𝑗≤𝑁 deg 𝜑𝑗 .
We have deg 𝜌 = 2 deg 𝜑1 and see from (1.1) that

−𝜅∆𝜑1 −
𝑀∑︁

𝑗=1

𝑓𝑗

𝑔𝑗
𝜑1 +

𝐾∑︁
𝑖=1

𝑝𝑖(𝜌)
ℎ𝑖(𝜌)

𝜑1 ln 𝑞𝑖(𝜌) = 𝜆1𝜑1, in 𝐺. (3.2)
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If deg 𝜑1 > 0, then we see from (3.1) that

(deg 𝑝1 − deg ℎ1) deg 𝜌+ deg 𝜑1 > deg ∆𝜑1,

(deg 𝑝1 − deg ℎ1) deg 𝜌+ deg 𝜑1 > deg
(︂
𝑓𝑗

𝑔𝑗
𝜑1

)︂
, 𝑗 = 1, 2, . . . , 𝑁,

(deg 𝑝1 − deg ℎ1) deg 𝜌+ deg 𝜑1 > (deg 𝑝𝑖 − deg ℎ𝑖) deg 𝜌+ deg 𝜑1, 𝑖 = 2, 3, . . . ,𝐾,
(deg 𝑝1 − deg ℎ1) deg 𝜌+ deg 𝜑1 > deg 𝜑1.

Since 𝑞𝑖 are polynomials implying 𝑞𝑖(𝜌) ∈ 𝒫Q+(Ω)(𝑖 = 1, 2, . . . ,𝐾), we obtain from Lemma 2.6 that

−𝜅∆𝜑1(𝑥0)−
𝑀∑︁

𝑗=1

𝑓𝑗(𝑥0)
𝑔𝑗(𝑥0)

𝜑1(𝑥0) +
𝐾∑︁

𝑖=1

𝑝𝑖(𝜌)(𝑥0)
ℎ𝑖(𝜌)(𝑥0)

𝜑1(𝑥0) ln 𝑞𝑖(𝜌)(𝑥0) ̸= 𝜆1𝜑1(𝑥0)

for some 𝑥0 ∈ 𝐺, which is a contradiction to (3.2). Thus we arrive at that deg 𝜑1 = 0 on 𝐺. Since deg 𝜑1 ≥
max2≤𝑗≤𝑁 deg 𝜑𝑗 , we have that 𝜑𝑗 = 𝑐𝑗(𝑗 = 1, 2, . . . , 𝑁) are constants on 𝐺. If 𝑐𝑗 ̸= 0 for all 𝑗 ∈ {1, 2, . . . , 𝑁},
then

𝑀∑︁
𝑗=1

𝑓𝑗

𝑔𝑗
=

𝐾∑︁
𝑖=1

𝑝𝑖(𝜌)
ℎ𝑖(𝜌)

ln 𝑞𝑖(𝜌)− 𝜆1, in 𝐺,

with the constant 𝜌 =
∑︀𝑁

𝑗=1 𝑐
2
𝑗 , which is impossible. Hence 𝑐𝑗 = 0 for some 𝑗 ∈ {1, 2, . . . , 𝑁}.

If in addition, 𝑉 ∈ 𝐿2(Ω) and 𝒩1(𝑡) ∈ P(𝑠, (𝑐1, 𝑐2)) with 𝑠 ∈ [0, 3/2], then Theorem 3.3 implies that 𝜑𝑗 = 0
in Ω for some 𝑗 ∈ {1, 2, . . . , 𝑁}, which is a contradiction to

∫︀
Ω
𝜑2

𝑗 = 1. This completes the proof. �

Remark 3.6. We see from the above conclusion that the eigenfunction cannot be a polynomial on any open
set when 𝑁 = 1.

Remark 3.7. Note that Theorem 3.5 may be also true even if

deg 𝑝1 − deg ℎ1 = max
1≤𝑗≤𝑀

(deg 𝑓𝑗 − deg 𝑔𝑗)/2.

For instance, no eigenfunction 𝜑 ∈ 𝐻2(Ω) of GPE [2,35](︂
−1

2
∆ + 𝑉 + 𝛽|𝜑|2

)︂
𝜑 = 𝜆𝜑

with a harmonic trap potential

𝑉 (𝑥) = 𝛾1𝜉
2
1 + 𝛾2𝜉

2
2 + 𝛾3𝜉

2
3 , 𝛾1, 𝛾2, 𝛾3 > 0

can be a polynomial on any open set 𝐺 ⊂ Ω, where 𝑥 = (𝜉1, 𝜉2, 𝜉3) ∈ R3.

Theorem 3.8. Let Φ = (𝜑1, 𝜑2, . . . , 𝜑𝑁 ) be a solution of (1.1). Assume that 𝑉 and 𝒩 are defined by (2.1)
and (2.2)–(2.4) with 𝛼 ̸= 0, respectively, and 𝛼∆𝑉 is not a positive constant function. If either of the following
conditions holds:

(1)
max

1≤𝑖≤𝐾
(deg 𝑝𝑖 − deg ℎ𝑖) ≤ 1 and max

1≤𝑗≤𝑀
(deg 𝑓𝑗 − deg 𝑔𝑗) < 4,

(2) deg 𝑞1 = 0 and

deg 𝑝1 − deg ℎ1 > max
{︂

2, max
1≤𝑗≤𝑀

(deg 𝑓𝑗 − deg 𝑔𝑗)/2, max
2≤𝑖≤𝐾

(deg 𝑝𝑖 − deg ℎ𝑖)
}︂
, (3.3)
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then for any nonempty open set 𝐺 ⊂ Ω, there exists an eigenfunction 𝜑𝑗(𝑗 ∈ {1, 2, . . . , 𝑁}) being not a non-zero
polynomial on 𝐺. If in addition, 𝑉 ∈ 𝐿2(Ω) and 𝒩1(𝑡) ∈ P(𝑠, (𝑐1, 𝑐2)) with 𝑠 ∈ [0, 3/2], then for any nonempty
open set 𝐺 ⊂ Ω, there exists an eigenfunction 𝜑𝑗(𝑗 ∈ {1, 2, . . . , 𝑁}) being not a polynomial on 𝐺.

Proof. Assume that all eigenfunctions {𝜑1, 𝜑2, . . . , 𝜑𝑁} are polynomials on nonempty open set 𝐺: 𝜑𝑗 ∈
𝒫ℓ(𝐺) (𝑗 = 1, 2, . . . , 𝑁) for some positive integer ℓ. Without loss of generality, let deg 𝜑1 ≥ max2≤𝑗≤𝑁 deg 𝜑𝑗 .
Obviously, deg 𝜌 = 2 deg 𝜑1.

If 𝜑1(𝑥) ̸= 0 for any 𝑥 ∈ 𝐺 and deg 𝜑1 > 0, then we obtain from (1.1) that

−𝜅∆𝜑1

𝜑1
−

𝑀∑︁
𝑗=1

𝑓𝑗

𝑔𝑗
+ 𝛼

∫︁
Ω

𝜌(𝑦)
| · −𝑦|

d𝑦 +
𝐾∑︁

𝑖=1

𝑝𝑖(𝜌)
ℎ𝑖(𝜌)

ln 𝑞𝑖(𝜌) = 𝜆1, in 𝐺.

Applying the Laplace operator to both sides yields

−𝜅𝑝𝜑1 −
𝑀∑︁

𝑗=1

𝑓𝑗,𝑔 − 4𝛼𝜋𝜌+
𝐾∑︁

𝑖=1

𝑝𝑖,ℎ,𝜌 ln 𝑞𝑖(𝜌) +
𝐾∑︁

𝑖=1

𝑝𝑖,ℎ,𝑞,𝜌 = 0, in 𝐺, (3.4)

where

𝑝𝜑1 = ∆
(︂

∆𝜑1

𝜑1

)︂
,

𝑓𝑗,𝑔 = ∆
(︂
𝑓𝑗

𝑔𝑗

)︂
, 𝑗 = 1, . . . ,𝑀,

𝑝𝑖,ℎ,𝜌 = ∆
(︂
𝑝𝑖(𝜌)
ℎ𝑖(𝜌)

)︂
, 𝑖 = 1, . . . ,𝐾,

𝑝𝑖,ℎ,𝑞,𝜌 = 2
∇(𝑝𝑖(𝜌)/ℎ𝑖(𝜌)) · ∇𝑞𝑖(𝜌)

𝑞𝑖(𝜌)
+
𝑝𝑖(𝜌)(𝑞𝑖(𝜌)∆𝑞𝑖(𝜌)− |∇𝑞𝑖(𝜌)|2)

ℎ𝑖(𝜌)𝑞2𝑖 (𝜌)
, 𝑖 = 1, . . . ,𝐾.

If max1≤𝑖≤𝐾(deg 𝑝𝑖 − deg ℎ𝑖) ≤ 1 and max
1≤𝑗≤𝑀

(deg 𝑓𝑗 − deg 𝑔𝑗) < 4, then only 4𝛼𝜋𝜌 has the max degree.

If deg 𝑞1 = 0 and (3.3) holds, then 𝑝1,ℎ,𝑞,𝜌 = 0. Thus only one term, which is one term of 𝑝1,ℎ,𝜌, has the max
degree.

Therefore, we get a contradiction to (3.4) from Lemma 2.6. Consequently, deg 𝜑1 ≥ max2≤𝑗≤𝑁 deg 𝜑𝑗 leads
to that 𝜑𝑗 = 𝑐𝑗(𝑗 = 1, 2, . . . , 𝑁) are constants in 𝐺.

If 𝑐𝑗 ̸= 0 for all 𝑗 ∈ {1, 2, . . . , 𝑁}, we then derive from (3.4) that

∆𝑉 = 4𝛼𝜋
𝑁∑︁

𝑖=1

𝑐2𝑖 ∀𝑥 ∈ 𝐺,

which is impossible. Hence 𝑐𝑗 = 0 for some 𝑗 ∈ {1, 2, . . . , 𝑁}.
If in addition, 𝑉 ∈ 𝐿2(Ω) and 𝒩1(𝑡) ∈ P(𝑠, (𝑐1, 𝑐2)) with 𝑠 ∈ [0, 3/2], then we complete the proof by using

Theorem 3.3. �

We may apply Theorem 3.5 or Theorem 3.8 to the typical mathematical models in quantum physics to see
the eigenfunction behavior. The following are some examples.

Example 3.9. No eigenfunction of the Schrödinger–Newton equation [18](︂
−∆−

∫︁
Ω

|𝑢(𝑦)|2

| · −𝑦|
d𝑦
)︂
𝑢 = 𝜆𝑢, in R3

can be a polynomial on any open set of R3.
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Example 3.10. No eigenfunction of the Thomas–Fermi–Dirac–von Weizsäcker equation [7, 21]⎛⎝−𝜅∆−
𝑀∑︁

𝑗=1

𝑍𝑗

| · −𝑟𝑗 |
+
∫︁

Ω

|𝑢(𝑦)|2

| · −𝑦|
d𝑦 + 𝛽1𝑢

2𝜈−2 − 𝛽2𝑢
2/3

⎞⎠𝑢 = 𝜆𝑢

can be a polynomial locally for a rational number 𝜈 in [1, 2], where 𝛽1 and 𝛽2 are constants.

Example 3.11. The Kohn–Sham equation of a system consisting of 𝑀 nuclei of charges {𝑍1, 𝑍2, . . . , 𝑍𝑀}
located at the positions {𝑟1, 𝑟2, . . . , 𝑟𝑀} and 𝑁 electrons is as follows:⎧⎪⎪⎨⎪⎪⎩

(︂
−1

2
∆ + 𝑉ext +

∫︁
Ω

𝜌(𝑦)
| · −𝑦|

d𝑦 + 𝑉xc(𝜌)
)︂
𝜑𝑖 = 𝜆𝑖𝜑𝑖, in Ω, 𝑖 = 1, 2, . . . , 𝑁,∫︁

Ω

𝜑𝑖𝜑𝑗 = 𝛿𝑖𝑗 ,

(3.5)

where 𝑉ext = −
∑︀𝑀

𝑘=1
𝑍𝑘

|·−𝑟𝑘| is the associated external potential, 𝜌 =
∑︀𝑁

𝑖=1 |𝜑𝑖|2 is the electronic density, and
𝑉xc(𝜌) is the exchange-correlation potential such as the 𝑋𝛼 exchange-correction potential [30]

𝑉xc(𝜌) =
3
2
𝛼

(︂
3
𝜋
𝜌

)︂1/3

(3.6)

with 𝛼 ∈ [2/3, 1] or the Perdew–Zunger type local-density approximations (LDA) potential [26]:

𝑉 LDA
xc (𝜌) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

0.1423 + 0.0633𝑟𝑠 + 0.1748
√
𝑟𝑠

(1 + 1.0529
√
𝑟𝑠 + 0.3334𝑟𝑠)2

−
(︂

9
4𝜋2

)︂ 1
3 1
𝑟𝑠
, if 𝑟𝑠 ≥ 1,

0.0311 ln 𝑟𝑠 − 0.0584 + 0.0013𝑟𝑠 ln 𝑟𝑠 − 0.0084𝑟𝑠 −
(︂

9
4𝜋2

)︂ 1
3 1
𝑟𝑠
, if 𝑟𝑠 < 1

(3.7)

with 𝑟𝑠 =
(︁

3
4𝜋𝜌

)︁1/3

. It is clear that 𝑉ext can be rewritten as the form (2.1). And (3.6) and (3.7) can be rewritten
as the form (2.3).

We see that if the exchange-correction potential is chosen as either (3.6) or (3.7), then for any nonempty
open set 𝐺 ⊂ Ω, there exists an eigenfunction 𝜑𝑗 (𝑗 ∈ {1, 2, . . . , 𝑁}) being not a polynomial on 𝐺.

In fact, the same conclusion is true for the Vosko–Wilk–Nusair type LDA potential [32]

𝑉xc(𝜌) =
𝐴

2

{︃
ln

𝑡2

𝑋(𝑡)
+

2𝑏
𝑄

tan−1 𝑄

2𝑡+ 𝑏
− 𝑏𝑡0
𝑋(𝑡0)

(︃
ln

(𝑡− 𝑡0)2

𝑋(𝑡)

+
2 (𝑏+ 2𝑡0)

𝑄
tan−1 𝑄

2𝑡+ 𝑏

)︂}︂
,

where 𝑟𝑠 =
(︁

3
4𝜋𝜌

)︁1/3

, 𝑡 = 𝑟
1/2
𝑠 , 𝑋(𝑡) = 𝑡2+𝑏𝑡+𝑐, 𝑄 =

(︀
4𝑐− 𝑏2

)︀1/2, 𝐴 = 0.0621814, 𝑡0 = −0.409286, 𝑏 = 13.0720,
and 𝑐 = 42.7198.

Indeed, we conjecture that no eigenfunction of (1.1) can be a polynomial on any open set in R3 when 𝑁 > 1.
Unfortunately, it is still open whether it is true or not.
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4. Adaptive approximations

In this section, we apply the behavior of the eigenfunctions to investigate the convergence of adaptive finite
element approximations of (1.1). We assume that

(i) 𝑉 ∈ 𝐿2(Ω);
(ii) ℰ ∈ P(3, (𝑐1, 𝑐2)) with 𝑐1 ≥ 0 or P(4/3, (𝑐1, 𝑐2));
(iii) 𝒩1 ∈ P(𝑠1, (𝑐1, 𝑐2)) for some 𝑠1 ∈ [0, 2) and 𝑡𝒩 ′(𝑡) ∈ P(𝑠2, (𝑐1, 𝑐2)) for some 𝑠2 ∈ [0, 2).

Let
Ω+ =

⋃︁
𝑇∈𝒯 +

𝑇,

where
𝒯 + =

⋃︁
𝑘≥0

⋂︁
𝑚≥𝑘

𝒯𝑚.

In our analysis, we need Lemma 4.3 in [14], which is stated as follows:

Lemma 4.1. The set Ω+ is empty if and only if lim𝑘→∞ ‖ℎ𝑘‖0,∞,Ω = 0.

Under the assumptions (i)–(iii), we observe from Theorem 3.5 in [10] and Theorem 4.2 in [7] that approxima-
tions Θ𝑘 produced by Algorithm 1 converge to a solution of (1.1) for any initial mesh and the solution becomes
a ground state if the initial mesh size is sufficiently small so that Θ0 is sufficiently near to Θ. Indeed, based on
the eigenfunction behavior, we are able to prove that Θ𝑘 produced by Algorithm 1 converge to a ground state
of (1.1) starting from any initial mesh under some assumptions.

Using the similar argument to the proof of Lemma 6.2 in [14], we have

Lemma 4.2. Let mesh size functions {ℎ𝑘}𝑘∈N and ground state solutions {Θ𝑘 = (Λ𝑘,Φ𝑘)}𝑘∈N be produced by
Algorithm 1. If for any nonempty open set 𝐺 ⊂ Ω, there exists an eigenfunction of (1.1) being not a polynomial
on 𝐺, then ‖ℎ𝑘‖0,∞,Ω → 0 as 𝑘 →∞.

Proof. If ‖ℎ𝑘‖0,∞,Ω does not tend to zero, then we derive from Lemma 4.1 that Ω+ is not empty. Thus there
exists 𝑇 ∈ 𝒯 + and 𝑘0 ∈ N such that 𝑇 ∈ 𝒯𝑘 for all 𝑘 ≥ 𝑘0.

Without loss of generality, we assume that 𝜑1 is not a polynomial on the nonempty open set 𝑇 . We obtain
from the proof of Theorem 3.5 in [10] that there exists a subsequence Φ𝑘𝑚

and some solution Φ of (1.1) such
that Φ𝑘𝑚 → Φ in ℋ. Thus we have that 𝜑1,𝑘𝑚 → 𝜑1 in 𝐻1

0 (Ω) as 𝑚→∞, which derives

lim
𝑚→∞

‖𝜑1,𝑘𝑚 − 𝜑1‖0,𝑇 = 0. (4.1)

Combining (4.1), 𝜑1,𝑘|𝑇 ∈ 𝒫𝑛(𝑇 ) for some integer 𝑛, and that 𝒫𝑛(𝑇 ) is a finite dimensional space, we obtain
that 𝜑1 ∈ 𝒫𝑛(𝑇 ), which contradicts to that 𝜑1 is not a polynomial on 𝑇 . This completes the proof. �

Let the distance between sets 𝑋,𝑌 ⊂ R𝑁×𝑁 ×ℋ be defined by

𝑑ℋ(𝑋,𝑌 ) = sup
(Λ,Φ)∈𝑋

inf
(𝛴,Ψ)∈𝑌

(|Λ−𝛴|+ ‖Φ−Ψ‖1,Ω),

where | · | is the Frobenius norm in R𝑁×𝑁 .
To carry out the convergence analysis, the gap-condition

min
Ψ∈𝒬

𝐸(Ψ) < inf
(𝑀,Ψ)∈𝒲∖Θ

𝐸(Ψ) (4.2)

is assumed in [7, 10]. Consequently, we have

min
Ψℎ∈𝑉ℎ∩𝒬

𝐸(Ψℎ) < inf
(𝑀,Ψ)∈𝒲∖Θ

𝐸(Ψ) (4.3)
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when ℎ is small enough. In order to ensure (4.3), we observe that the initial mesh size ℎ is assumed to be
sufficiently small in [7,10] (see [10], Thm. 3.5 and [7], Thm. 4.2). On the one hand, combining Theorems 3.5, 3.8,
and Lemma 4.2, we indeed have that the mesh size ℎ𝑘 tends to zero under the assumption in Theorem 3.5 or
that in Theorem 3.8, which shows that the mesh size ℎ𝑘 will be sufficiently small after finite iteration steps and
hence (4.3) holds provided 𝑘 ≫ 1. Namely, we have

𝐸(Φ𝑘) < inf
(𝑀,Ψ)∈𝒲∖Θ

𝐸(Ψ)

provided 𝑘 ≫ 1. On the other hand, we see that for any subsequence {(Λ𝑘𝑚 ,Φ𝑘𝑚)}𝑚∈N, there exists a convergent
subsequence {(Λ𝑘𝑚𝑗

,Φ𝑘𝑚𝑗
)}𝑗∈N and (Λ∞,Φ∞) ∈ 𝒲 such that (Λ𝑘𝑚𝑗

,Φ𝑘𝑚𝑗
) → (Λ∞,Φ∞) (see the proofs of

Thm. 3.5 in [10] and Thm. 4.2 in [7] for more details). Hence we have (Λ∞,Φ∞) ∈ Θ and arrive at

Theorem 4.3. Let {Θ𝑘}𝑘∈N be the sequence generated by Algorithm 1. If the gap-condition (4.2) and the
assumption in Theorem 3.5 or that in Theorem 3.8 are satisfied, then

lim
𝑘→∞

𝐸𝑘 = min
Ψ∈𝒬

𝐸(Ψ),

lim
𝑘→∞

𝑑ℋ(Θ𝑘,Θ) = 0,

where 𝐸𝑘 = 𝐸(Φ) ((Λ,Φ) ∈ Θ𝑘).

Remark 4.4. We mention that we do not require the assumption in Theorem 4.3 that the ground state solution
and the discrete ground state solution correspond to the lowest 𝑁 eigenpairs of (2.7) and (2.10), respectively.
In practice, however, Θ and Θℎ are assumed to be the lowest 𝑁 eigenpairs of (2.7) and (2.10), respectively [22].

As a result, we see from [8,10] that the adaptive finite element method has the asymptotic linear convergence
rate and the asymptotic optimal complexity from any initial mesh. More precisely, the adaptive finite element
method has the linear convergence rate and the optimal complexity after finite iteration steps.

5. Concluding remarks

In this paper, we have investigated a class of nonlinear eigenvalue problems modeling quantum physics. We
have first proved that for any open set 𝐺, there exists an eigenfunction that cannot be a polynomial on G,
which may be reviewed as a refinement of the standard unique continuation property. Then applying the non-
polynomial behavior of eigenfunctions, we have shown that adaptive finite element approximations converge to
some ground state even if the initial mesh is not fine.

We mention that the same conclusion can be expected for any dimensions larger than 3. For instance, our
arguments can be applied to the following linear eigenvalue problem:

−∇ · (𝒜∇𝑢) + 𝒱𝑢 = 𝜆ℬ𝑢, in Ω, (5.1)

where Ω ⊂ R𝑑 for some positive integer 𝑑 ≥ 3 and 𝒜 is a symmetric-matrix-valued function and is uniformly
positive definite. We see that (5.1) includes the electronic Schrödinger equation⎛⎝− 𝑁∑︁

𝑖=1

~2

2𝑚𝑒
∇2

𝑥𝑖
−

𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑍𝑗𝑒
2

|𝑥𝑖 − 𝑟𝑗 |
+

1
2

𝑁∑︁
𝑖,𝑗=1,𝑖̸=𝑗

𝑒2

|𝑥𝑖 − 𝑥𝑗 |

⎞⎠𝜑 = 𝐸𝜑, in R3𝑁 , (5.2)

where ~ is the Planck’s constant divided by 2𝜋, 𝑚𝑒 is the mass of the electron, {𝑥𝑖 : 𝑖 = 1, . . . , 𝑁} are variables
that describe the electron positions, and 𝑒 is the electronic charge, 𝜑 is the wavefunction, 𝑁 is the number of
electrons, 𝑀 is the number of atoms, 𝑍𝑗 is the atomic number of the 𝑗-th atom, and 𝑟𝑗 is the position of the
𝑗-th atom.

For convenience, we introduce the following assumptions:
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I Entries of 𝒜 are continuous and piecewise functions in 𝒫Q+(Ω).
II ℬ is a piecewise function in 𝒫Q+(Ω).

III 𝒱 = −
∑︀𝑀

𝑗=1
𝑓𝑗

𝑔𝑗
, where 𝑓𝑗 , 𝑔𝑗 (𝑗 = 1, 2, . . . ,𝑀) are piecewise functions in 𝒫𝜇

Q+
(Ω) for some 𝜇 ∈ Q+.

IV 𝒱 cannot be equal to 𝜆ℬ for any 𝜆 ∈ R in any open subset of Ω.

If Assumptions I–IV hold true and that the entries of 𝒜|𝐺,ℬ|𝐺 belong to 𝒫Q+(𝐺) and 𝑓𝑗 |𝐺, 𝑔𝑗 |𝐺 ∈ 𝒫𝜇
Q+

(𝐺)
for all 𝑗 ∈ {1, 2, . . . ,𝑀} imply that only one among deg𝒜|𝐺 − 2, degℬ|𝐺,deg 𝑓1|𝐺 − deg 𝑔1|𝐺, . . . ,deg 𝑓𝑀 |𝐺 −
deg 𝑔𝑀 |𝐺 equals to

max {deg𝒜|𝐺 − 2,deg 𝑓1|𝐺 − deg 𝑔1|𝐺, . . . ,deg 𝑓𝑀 |𝐺 − deg 𝑔𝑀 |𝐺,degℬ|𝐺}

when 𝐺 ⊂ Ω is an open subset, then no eigenfunction of (5.1) can be a non-zero polynomial on 𝐺. If in addition,
(5.1) has a unique continuation property (see, e.g., [29, 33]), then any 𝐻2

loc-eigenfunction of (5.1) cannot be a
polynomial on any open subset of Ω. Since (5.2) satisfies Assumptions I–IV, in particular, we obtain the more
sophisticate conclusion than that in the existing literature (see, e.g., [28]).

Note that the so-called Non-Degeneracy Assumption of a linear case of

−∇ · (𝒜∇𝑢) = 𝜆ℬ𝑢 (5.3)

has been introduced in [14], which is a special case of (5.1) when 𝒱 = 0, the entries of 𝒜 are continuous and
piecewise linear, and ℬ is piecewise constant, with which together the convergence of an adaptive finite element
method from any initial mesh for (5.3) is then derived.

Appendix A.

In this appendix, we provide a proof of Lemma 2.1, whose idea is inspired by Appendixes A and B of [27].

Proof. Let 𝛾 = 𝑎1𝑡+ 𝑎2𝑡
2 + . . .+ 𝑎𝑘−1𝑡

𝑘−1 with 𝛾, 𝑎1, 𝑎2, . . . , 𝑎𝑘−1, 𝑡 ∈ R. For convenience, we may view 𝛾 as a
polynomial 𝛾(𝑡) with respect to 𝑡. Let 𝑧 ̸= 1 be a 𝑘th root of 1. We have

𝑘−1∑︁
𝑗=0

𝑧𝑗 = 0 (A.1)

and {︀
𝑧𝑚𝑗 : 𝑗 = 1, 2, . . . , 𝑘 − 1

}︀
=
{︀
𝑧𝑗 : 𝑗 = 1, 2, . . . , 𝑘 − 1

}︀
(A.2)

for any positive integer 𝑚 that is not divisible by 𝑘. Let

𝑃𝑡(𝑦) =
𝑘−1∏︁
𝑚=0

(𝑦 − 𝛾(𝑧𝑚𝑡)) , 𝑦 ∈ R, (A.3)

we obtain that 𝑃𝑡(𝛾) = 0 since 𝑧0 = 1. We claim that 𝑃𝑡(𝛾) = 0 yields the conclusion.
Indeed, it follows from (A.3) that 𝑃𝑡(𝑦) can be rewritten as

𝑃𝑡(𝑦) = 𝑦𝑘 +
𝑘∑︁

𝑗=1

𝑞𝑗(𝑎1, 𝑎2, . . . , 𝑎𝑘−1, 𝑡)𝑦𝑘−𝑗 , (A.4)

where

𝑞𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) =
𝑗(𝑘−1)∑︁

ℓ=𝑗

𝑓𝑗,ℓ(𝑡1, 𝑡2, . . . , 𝑡𝑘−1)𝑡ℓ𝑘 (A.5)
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for all 𝑡1, 𝑡2, . . . , 𝑡𝑘 ∈ R and 𝑓𝑗,ℓ is either a zero polynomial or a homogeneous polynomial of a degree 𝑗 for any
ℓ = 𝑗, 𝑗 + 1, . . . , 𝑗(𝑘 − 1). We see from (A.3) that 𝑃𝑡(𝑦) = 𝑃𝑡(𝑦). Thus 𝑞𝑗 (𝑗 = 1, 2, . . . , 𝑘) are real polynomials.
We obtain from (A.3) to (A.5) that

𝑃𝑡(𝑦) =
1
𝑘

𝑘−1∑︁
𝑚=0

𝑃𝑧𝑚𝑡(𝑦) = 𝑦𝑘 +
𝑘∑︁

𝑗=1

(︃
1
𝑘

𝑘−1∑︁
𝑚=0

𝑞𝑗(𝑎1, 𝑎2, . . . , 𝑎𝑘−1, 𝑧
𝑚𝑡)

)︃
𝑦𝑘−𝑗

= 𝑦𝑘 +
𝑘∑︁

𝑗=1

⎛⎝1
𝑘

𝑗(𝑘−1)∑︁
ℓ=𝑗

𝑓𝑗,ℓ(𝑎1, 𝑎2 . . . , 𝑎𝑘−1)𝑡ℓ
𝑘−1∑︁
𝑚=0

𝑧ℓ𝑚

⎞⎠ 𝑦𝑘−𝑗 ,

which together with (A.1) and (A.2) leads to

𝑃𝑡(𝑦) = 𝑦𝑘 +
𝑘∑︁

𝑗=2

(︃
𝑗−1∑︁
𝑚=1

𝑓𝑗,𝑚𝑘(𝑎1, 𝑎2, . . . , 𝑎𝑘−1)𝑡𝑚𝑘

)︃
𝑦𝑘−𝑗 . (A.6)

Comparing (A.4) with (A.6), we arrive at

𝑞1(𝑡1, 𝑡2, . . . , 𝑡𝑘) = 0,

𝑞𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) =
𝑗−1∑︁
𝑚=1

𝑓𝑗,𝑚𝑘(𝑡1, 𝑡2, . . . , 𝑡𝑘−1)𝑡𝑚𝑘
𝑘 , 𝑗 = 2, . . . , 𝑘 (A.7)

for all 𝑡1, 𝑡2, . . . , 𝑡𝑘 ∈ R. Let

𝑝𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) =
𝑗−1∑︁
𝑚=1

𝑓𝑗,𝑚𝑘(𝑡1, 𝑡2, . . . , 𝑡𝑘−1)𝑡𝑚𝑘 , 𝑗 = 2, . . . , 𝑘,

then we have
𝑞𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘) = 𝑝𝑗(𝑡1, 𝑡2, . . . , 𝑡𝑘−1, 𝑡

𝑘
𝑘), 𝑗 = 2, 3, . . . , 𝑘. (A.8)

Thus we complete the proof by using 𝑃𝑡(𝛾) = 0, (A.7), (A.8), and that 𝑓𝑗,ℓ is either a zero polynomial or
homogeneous of a degree 𝑗 for any ℓ. �

Appendix B.

In this appendix, we provide a proof of Lemma 2.6.

Proof. Without loss of generality, we divide 𝑛 into two parts: 𝑛 = 𝑛1+𝑛2, such that deg 𝑞𝑗 = 0 for 𝑗 ∈ {1, . . . , 𝑛1}
and deg 𝑞𝑗 > 0 for 𝑗 ∈ {𝑛1 + 1, . . . , 𝑛1 + 𝑛2}.

We prove the conclusion by induction on 𝑛2.

(1) For 𝑛2 = 0, we prove the conclusion by contradiction again. Assume that

𝑛1∑︁
𝑗=1

𝑝𝑗 ln 𝑞𝑗 = 0, in 𝐺0,

where ln 𝑞𝑗 are constants and ln 𝑞𝑗0(𝑥) ̸= 0 for any 𝑥 ∈ 𝐺0.
For convenience, we assume 𝑗0 = 1. Let 𝑃 (𝑡1, 𝑡2, . . . , 𝑡𝑛1) be a real homogeneous polynomial satisfying (2)
of Proposition 2.3 and

𝑃 (𝑝𝑘
2 , . . . , 𝑝

𝑘
𝑛1
, 𝑝𝑘

1) = 0, in 𝐺0.
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Set 𝑄 = 𝑃 (𝑝𝑘
2 , . . . , 𝑝

𝑘
𝑛, 𝑝

𝑘
1). We get from 𝑝𝑗 ∈ 𝒫1/𝑘

Q+
(𝑗 = 1, 2, . . . , 𝑛1) that 𝑄 ∈ 𝒫Q+ . Note that 𝑃 is a

homogeneous polynomial and monic in 𝑡𝑛1 , we obtain from the definition of𝑄 and deg 𝑝1 > max2≤𝑗≤𝑛1 deg 𝑝𝑗

that deg𝑄 > 0. Therefore Proposition 2.5 leads to a contradiction to 𝑄 = 0 in 𝐺0. Thus Lemma 2.6 is true
for 𝑛2 = 0.

(2) Assume that Lemma 2.6 is true for 𝑛2 ≥ 0. We show that Lemma 2.6 is true for 𝑛2 + 1. Let 𝑗0 = 1 or
𝑗0 = 𝑛1 + 1. It is obvious that the conclusion is true if 𝑝𝑛1+1 = 0 in 𝐺0. If 𝑝𝑛1+1 ̸= 0 in 𝐺0, then we assume
that

𝑛1∑︁
𝑗=1

𝑝𝑗 ln 𝑞𝑗 +
𝑛1+𝑛2+1∑︁
𝑗=𝑛1+1

𝑝𝑗 ln 𝑞𝑗 = 0, in 𝐺0,

which leads to
𝑛1∑︁

𝑗=1

𝑝𝑗

𝑝𝑛1+1
ln 𝑞𝑗 + ln 𝑞𝑛1+1 +

𝑛1+𝑛2+1∑︁
𝑗=𝑛1+2

𝑝𝑗

𝑝𝑛1+1
ln 𝑞𝑗 = 0, in 𝐺̃ (B.1)

for some nonempty open subset 𝐺̃ ⊂ 𝐺0, where 𝑞𝑗(𝑗 = 1, . . . , 𝑛1) are constants. Applying 𝜕𝑖 to (B.1)
(𝑖 = 1, 2, 3), we obtain

𝑛1∑︁
𝑗=1

𝑝𝑗,𝑖

𝑝2
𝑛1+1

ln 𝑞𝑗 +
𝑛1+𝑛2+1∑︁
𝑗=𝑛1+2

𝑝𝑗𝜕𝑖𝑞𝑗
𝑝𝑛1+1𝑞𝑗

+
𝜕𝑖𝑞𝑛1+1

𝑞𝑛1+1
+

𝑛1+𝑛2+1∑︁
𝑗=𝑛1+2

𝑝𝑗,𝑖

𝑝2
𝑛1+1

ln 𝑞𝑗 = 0, in 𝐺̃,

where 𝑝𝑗,𝑖 = 𝑝𝑛1+1𝜕𝑖𝑝𝑗 − 𝑝𝑗𝜕𝑖𝑝𝑛1+1, 𝑗 = 1, . . . , 𝑛1 + 𝑛2 + 1, 𝑖 = 1, 2, 3. It is easy to see that 𝑝𝑘
𝑛1+1𝑝

𝑘
𝑗 𝜉𝑖𝑝𝑗,𝑖 ∈

𝒫1/𝑘
Q+

.
If 𝑗0 = 1, then there exists 𝑖 such that deg 𝑝1,𝑖 = deg 𝑝1 + deg 𝑝𝑛1+1 − 1. Thus we have

deg 𝑝1,𝑖 − deg 𝑝2
𝑛1+1 > deg 𝑝𝑗,𝑖 − deg 𝑝2

𝑛1+1, 𝑗 = 2, . . . , 𝑛1 + 𝑛2 + 1,
deg 𝑝1,𝑖 − deg 𝑝2

𝑛1+1 > deg(𝑝𝑗𝜕𝑖𝑞𝑗)− deg(𝑝𝑛1+1𝑞𝑗), 𝑗 = 𝑛1 + 2, . . . , 𝑛1 + 𝑛2 + 1,
deg 𝑝1,𝑖 − deg 𝑝2

𝑛1+1 > deg 𝜕𝑖𝑞𝑛1+1 − deg 𝑞𝑛1+1.

If 𝑗0 = 𝑛1 + 1, then we pick up 𝑖 satisfying deg 𝜕𝑖𝑞𝑛1+1 ̸= −∞. It follows that

deg 𝜕𝑖𝑞𝑛1+1 − deg 𝑞𝑛1+1 = −1.

Consequently,

deg 𝜕𝑖𝑞𝑛1+1 − deg 𝑞𝑛1+1 > deg 𝑝𝑗,𝑖 − deg 𝑝2
𝑛1+1, 𝑗 = 1, . . . , 𝑛1 + 𝑛2 + 1,

deg 𝜕𝑖𝑞𝑛1+1 − deg 𝑞𝑛1+1 > deg(𝑝𝑗𝜕𝑖𝑞𝑗)− deg(𝑝𝑛1+1𝑞𝑗), 𝑗 = 𝑛1 + 2, . . . , 𝑛1 + 𝑛2 + 1.

Thus we conclude from the induction hypothesis that Lemma 2.6 is true when 𝑛2 is replaced by 𝑛2 + 1. This
completes the proof. �

Acknowledgements. The authors would like to thank the referees for their comments and suggestions that improved the
presentation of this paper. This work was partially supported by National Key Research and Development of China
under grant 2019YFA0709601, the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under
grant QYZDJ-SSW-SYS010, and the National Science Foundation of China under grants 91730302 and 11671389.

References

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).

[2] W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Mod. 6 (2013)
1–135.



EIGENFUNCTION BEHAVIOR AND ADAPTIVE FINITE ELEMENT APPROXIMATIONS 227

[3] A.D. Becke, Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140 (2014) 18A301.

[4] A. Bonito and A. Demlow, Convergence and optimality of higher-order adaptive finite element methods for eigenvalue clusters.
SIAM J. Numer. Anal. 54 (2016) 2379–2388.

[5] C. Canuto, Adaptive hp-FEM for eigenvalue computations. Calcolo 56 (2019) 39.

[6] J.M. Cascon, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element
method. SIAM J. Numer. Anal. 46 (2008) 2524–2550.

[7] H. Chen, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for a class of nonlinear eigenvalue problems in
quantum physics. Adv. Appl. Math. Mech. 3 (2011) 493–518.

[8] H. Chen, L. He and A. Zhou, Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput.
Methods Appl. Mech. Eng. 200 (2011) 1846–1865.

[9] H. Chen, X. Gong, L. He, Z. Yang and A. Zhou, Numerical analysis of finite dimensional approximations of Khon-Sham models.
Adv. Comput. Math. 38 (2013) 225–256.

[10] H. Chen, X. Dai, X. Gong, L. He and A. Zhou, Adaptive finite element approximations for Kohn–Sham models. Multiscale
Model. Simul. 12 (2014) 1828–1869.

[11] X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer.
Math. 110 (2008) 313–355.

[12] X. Dai, L. He and A. Zhou, Convergence and quasi-optimal complexity of adaptive finite element computations for multiple
eigenvalues. IMA J. Numer. Anal. 35 (2015) 1934–1977.

[13] D. Davydov, T.D. Young and P. Steinmann, On the adaptive finite element analysis of the Kohn–Sham equations: methods,
algorithms, and implementation. Int. J. Numerc. Methods Eng. 106 (2016) 863–888.

[14] E.M. Garau, P. Morin and C. Zuppa, Convergence of adaptive finite element methods for eigenvalue problems. Math. Models
Methods Appl. Sci. 19 (2009) 721–747.

[15] D. Gallistl, An optimal adaptive FEM for eigenvalue clusters. Numer. Math. 130 (2015) 467–496.

[16] S. Giani and I.G. Graham, A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47 (2009)
1067–1091.

[17] X. Gong, L. Shen, D. Zhang and A. Zhou, Finite element approximations for Schrödinger equations with applications to
electronic structure computations. J. Comput. Math. 23 (2008) 310–327.

[18] R. Harrison, I. Moroz and K.P. Tod, A numerical study of the Schrödinger-Newton equations. Nonlinearity 16 (2003) 101–122.

[19] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math.
121 (1985) 463–494.

[20] C. Le Bris, ed., Handbook of Numerical Analysis. In: Vol. X of Special issue: Computational Chemistry, North-Holland (2003).

[21] E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53 (1981) 603–641.

[22] R.M. Martin, Electronic Structure: Basic Theory and Practical Method. Cambridge University Press, Cambridge (2004).

[23] V. Maz’ya and J. Rossmann, Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence, RI
(2010).

[24] P. Motamarri, M.R. Nowak, K. Leiter, J. Knap and V. Gavini, Higher-order adaptive finite-element methods for Kohn–Sham
density functional theory. J. Comput. Phys. 253 (2013) 308–343.

[25] R. Penrose, On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28 (1996) 581–600.

[26] J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys.
Rev. B 23 (1981) 5048–5079.

[27] P. Pesic, Abel’s Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability. MIT Press, Cambridge etc (2004).

[28] M. Reed and B. Simon, Methods of Modern Mathematical Physics-IV: Analysis of Operators. Academic Press, San Diego
(1978).

[29] M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl.
77 (1980) 482–492.

[30] J.C. Slater, A simplification of the Hartree-Fock method. Phys. Rev. 81 (1951) 385–390.

[31] E. Tsuchida and M. Tsukada, Adaptive finite-element method for electronic-structure calculations. Phys. Rev. B 54 (1996)
7602–7605.

[32] S.H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calcu-
lations: a critical analysis. Can. J. Phys. 58 (1980) 1200–1211.

[33] H. Wolff, Recent work on sharp estimates in second-order elliptic unique continuation problems. J. Gome. Anal. 3 (1993)
621–650.

[34] X. Zhang and A. Zhou, A singularity-based eigenfunction decomposition for Kohn–Sham equations. Sci. Sin. Math. 59 (2016)
1623–1634.

[35] A. Zhou, An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlin-
earity 17 (2004) 541–550.

[36] A. Zhou, Hohenberg-Kohn theorem for Coulomb type systems and its generalization. J. Math. Chem. 50 (2012) 2746–2754.


	Introduction
	Preliminaries
	Quantum eigenvalue problem
	An adaptive finite element method
	A polynomial theory

	Behavior of eigenfunction
	Adaptive approximations
	Concluding remarks
	
	
	References

