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EIGENFUNCTION BEHAVIOR AND ADAPTIVE FINITE ELEMENT
APPROXIMATIONS OF NONLINEAR EIGENVALUE PROBLEMS IN
QUANTUM PHYSICS

BIN YANG!2 AND AIHUI ZHOU.?*

Abstract. In this paper, we investigate a class of nonlinear eigenvalue problems resulting from quan-
tum physics. We first prove that for any open set GG, there exists an eigenfunction that cannot be a
polynomial on GG, which may be reviewed as a refinement of the classic unique continuation property.
Then we apply the non-polynomial behavior of the eigenfunction to show that the adaptive finite ele-
ment approximations are convergent even if the initial mesh is not fine enough. We finally remark that
similar arguments can be applied to a class of linear eigenvalue problems that improve the relevant
existing results.
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1. INTRODUCTION

In this paper, we investigate the eigenfunction behavior and adaptive finite element approximations of the
following nonlinear eigenvalue problem: find (s, ¢;) € R x Hg(Q) such that [, ¢i¢; = 055 (4,5 = 1,2,...,N)
and

where Q CR3, N> 1, k>0, p = vazl |#i]?, V : © — R is a given function, and N maps a nonnegative
function to some function on 2. We observe that the Schrodinger—Newton equation modeling the quantum state
reduction [18,25], the Gross—Pitaevskii equation (GPE) describing Bose—Einstein condensates (BEC) [2,35], and
the Thomas-Fermi-von Weizsdacker (TFvW) type equations and the Kohn-Sham equations appearing in the
electronic density functional theory [3,9,20-22] are typical examples of (1.1).

We understand that it is significant to solve (1.1) accurately and efficiently. And we note that the a priori
knowledge of their eigenfunctions is very helpful in the design and analysis of numerical methods. To improve
the approximation accuracy and reduce the computational cost in solving the eigenvalue problem, we see from
the regularity behavior of eigenfunctions [17,34] that adaptive finite element approaches should be employed
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(see also [7,10-14,24,31] and references cited therein). We observe that the adaptive finite element analysis of
the nonlinear eigenvalue problem (1.1) in [7,8,10] requires that the initial mesh size is small enough. However,
our numerical experiments show that the small initial mesh size requirement is unnecessary [7,8,10]. In this
paper, we study the adaptive finite element approximations when the initial mesh is not fine, for which we need
to apply an eigenfunction behavior that is also investigated.

We see that the unique continuation property is significant in the context of partial differential equations
(see, e.g., [19,28,33] and references cited therein). After looking into the eigenfunction behavior of (1.1), we
find that for any open set GG, there exists an eigenfunction that cannot be a polynomial on G, which may be
reviewed as a refinement of the classic unique continuation property and is indeed a key in our adaptive finite
element analysis. Taking into account the eigenfunction behavior, we are indeed able to prove the convergence
of adaptive finite element approximations without the requirement of the small initial mesh size.

The rest of this paper is organized as follows. In the next section, we describe some basic notation and review
the adaptive finite element method for solving (1.1). Then we show some polynomial properties which are crucial
in our adaptive finite element analysis. In Section 3, we obtain that for any open set G of €2, there exists an
eigenfunction of (1.1) that cannot be a polynomial on G under some assumptions, which may be reviewed as an
extension and refinement of the classic unique continuation property. In Section 4, based on the non-polynomial
behavior of eigenfunctions, we study the convergence of the adaptive finite element method. We finally remark
that similar arguments can be applied to a class of linear eigenvalue problems that improve the relevant existing
results.

2. PRELIMINARIES

Let © C R? be a convex polyhedral bounded domain. We will always use G for a nonempty open set of
R? (d > 1) throughout this paper. Let Q1 = QN[0,00) and a = (a1, 9, . . ., g) € Qi be a d-tuple. We denote
lo| = a1 + as + ... + ag, define 2 = M1E52E5° for any x = (&1,&2,&3) € R® and a = (a1, a2, a3) € Q3, and
use the notation

¢

0ip=—,1=1,2,3.
0§
For any a = (aq,a9,...,0q),0 = (B1,02,...,84) € Q‘L we denote a > 3 if the first non-zero element of
a—L0= (a1 — 01,02 —Pa,...,aq— Bg) is larger than 0 and « = 3 if @ > § or a = [3. For convenience, we define
Po, (G) = Z 4o : g, 2 ER,Va e I,Vx € G, |I| < o0y,

aelcQf
where |I| means the cardinality of I. We shall use the notation
P, (G) = {p" :p € Py, (G) and p(z) € R Vz € G}

for any p > 0. We call anz® with a, # 0 a monomial. Denote |a| the degree of the monomial a,z*. We shall
let the degree of the polynomial 0 be —oo. For any p € Pg, (G), define degp as the max degree of terms of p,
which is called the degree of p. We shall also denote degp* = pdegp for any p € Py, (G) and p € Q4 and
deg(p/q) = degp — degq for any p,q € Pg, (G). Let P¢(G) be the set of real polynomials on G with a degree
not larger than /. It is clear that P;(G) C Pg, (G). The standard notation W*P(€)(s > 0) for Sobolev spaces
and their associated norms || - ||5,.o shall also be used [1]. We write

GccQ

if G ¢ Q and G is compact. WP () denotes the space of the function v satisfying that for any open set G CC €,
v € WP(G). For p = 2, we denote H*(Q) = W2(Q), Hy (Q) = W22(Q), HYQ) = {v € HY(Q) : v|aq = 0},

loc



EIGENFUNCTION BEHAVIOR AND ADAPTIVE FINITE ELEMENT APPROXIMATIONS 211

where v|pq is understood in the sense of trace, || - ||s.o = || - ||s,2.0. We use &(s, (c1,¢2)) to denote a class of
functions satisfying some growth conditions:

P(s,(c1,c2)) ={f :3 a1,a2 € R such that c1¢° + a1 < f(t) < cot® + a2Vt > 0}
with ¢; € R and ¢g, s € [0, 00).

2.1. Quantum eigenvalue problem

We consider the nonlinear eigenvalue problem (1.1) where V' is of the form
M f,
V==Y (2.1)
= 9;
with f;,g; € 776+ (R3*)(j =1,2,...,M) for some p € Q. Assume that N is divided into two parts:

N(p) = Ni(p) + Na(p), (2.2)

where p = vazl |i|2. Let N7 : [0,00) — R be defined by

Ni(t) = i pi(?) Ing;(t) (2.3)
1 = () Z .

with p;, hi € Po, ([0,00)), where ¢; are polynomials satisfying ¢;|jo,cc) > 0 and ¢; # 1(i = 1,2,--- , K) , and Ny
be given by a convolution integral

N I ¢)
Nalp) = o [ Py (24)

with some constant a.
The energy functional associated with (1.1) is

E(®) = /Q (“Z IVéil> + Voo + 5(P<1>)> + %D(P@P@)

for ® = (¢1, p2,...,0n) € H = (HF(Q)N, where pp = Zi\il |i|2, € : [0,00) — R is defined by

£(s) = / N,

and D(-,-) is a bilinear form as follows

_ F@)9) 4,
D(f,g)—/n/Q P dady.

For any ® € H, we denote

N 1/2
[@ls,0 = <Z ||¢i||§,9> :
i=1

We see that (1.1) includes the GPE, the Schrédinger—Newton equation, the TFvW type equation, and the
Kohn—Sham equation (see Rem. 3.7, Examples 3.9, 3.10, and 3.11 for more details).
Let Q be a subset of H:
Q={dcH:0T®=1"*N}
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where ®T¥ = (fQ (bﬂ/)j) € R¥*N_ The ground state charge density of (1.1) is obtained by solving the mini-

mization problem

inf{E(®): ® € Q}. (2.5)
We see that any minimizer ® = (¢1,...,¢n) of (2.5) satisfies

<H<I>¢i7 U)

/Q b1ty = b,

where Hg @ H} (2) — H~(Q) is the Hamiltonian operator defined by

N
Z/\ji(bj,v VUEH&(Q), 1=1,2,..., N,
j (2.6)

(Hpu,v) = k(Vu, Vv) + (Vpa + N(ps)u,v) Yu,v € Hj()

N
A= ()\z‘j)?fj:l = (/Q ¢iH®¢j>i,j1

is the Lagrange multiplier. We call (A, ®) a state of (2.6) and define the set of ground states by

and

0= {(A, ®) e RVN x Q: B(®) = \rpneirQlE(\I/) and (A, ®) solves (2.6)} :

We define the set of states of (2.6) by
W ={(A,®) € RV*N x H : (A, ®) solves (2.6)}.

Since the electron density pg and the operator Hg are invariant under any unitary transform, we may
diagonalize the Lagrange multiplier A and arrive at

(Hppi,v) = Ni(¢i,v) Yo € H}(Q), i=1,2,...,N,
(2.7)
/¢1¢]: YK

which is equivalent to (2.6) and a weak form of (1.1).
In practice, the ground states are usually approximated by solving the lowest N eigenpairs of (2.7) [22].

2.2. An adaptive finite element method

Let dg be the diameter of 2 and {7;,} be a shape regular family of nested conforming meshes over Q with

size h € (0,dq): there exists a constant v* such that

h
— <" VreTy,

pr
where h, is the diameter of T, p, is the diameter of the biggest ball contained in 7, and h = max{h, : 7 € T, }.
Let &, denote the set of interior faces of 7;,. We shall also use a slight abuse of notation that h denotes the
mesh size function defined by

h(zx)=h,, xz€T VY7 ET.

Let S"(Q) c H'(Q) be the corresponding finite element space consisting of continuous piecewise polynomials
over 7; of degrees not larger than n > 1 and

SE(Q) = S"n HY().
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Let Vj, = (Sk(Q)N

Consider the finite element approximation of (2.5):
inf {E((I)h) P, e VN Q} (28)

We see that any minimizer ®5, = (¢1,4,...,0n,n) of (2.8) solves the Euler-Lagrange equation

N
<Hq>h¢i7h7’v> = Z)‘ji,h(bj,hav Yov € SQ(Q), 1=1,2,...,N,

/ Gin®in = 0;
Q

with the Lagrange multiplier
N

Ap = (Aij,h)»f\szl = (/Q ¢i,hH<I>h¢j,h)
ij=1

when the energy functional is differentiable. Define the set of finite dimensional ground state solutions:

O = {(Ah,<1>h) eRVN x (QNV,) : B(®),) = puin, E(¥), (Ap, ®5,) solves (2.9)} :

Using a unitary transformation, we have the following discrete equation

H<I>h¢lh7 >: zh(¢lh7 ) VUEH&(Q)v i:1,2,...,N,
(2.10)
/¢zh¢jh

In practice, we usually solve and obtain the lowest N eigenpairs of (2.10) [22].
We recall that the adaptive finite element method is to repeat the following procedure [10]:

Solve — Estimate — Mark — Refine.

For convenience, we shall replace subscript h (or hy) by an iteration counter k of the adaptive method afterwards.

Given an initial triangulation 7y so that the dimension of S% is larger than or equal to N, the above procedure
generates a sequence of nested triangulations 7x(k = 1,2,...). Given an iteration counter k, the procedure
“Solve” is to get the discrete ground state solution of (2.9) over 7j. The procedure “Estimate” determines the
element indicators for all elements 7 € 7. In this step, a posteriori error estimators play a critical role. Then,
the element indicators are used by the procedure “Mark” to create a subset M} of marked elements 7 € 7.
Finally, the procedure “Refine” produces a new partition 711 by refining all elements in M}, at least once.
Here we use a shape-regular bisection for the refinement. To keep the conformity, we usually partition a few
more elements T € T;, \ M.

Given a triangulation 7, and the corresponding finite element solution (Ap, ), we respectively define the
element residual R, (®;,) and the jump J.(Py) by

N N
R (®n) = | Ha), din — Z Ajih @ik inT e,

i=1 i=1
Je(Dp) = (je(¢i,h))£\[:1 o Je(@in) = KVGinly 11+ EVGi blry - 113,
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where e is the common face of elements 7 and 75 with unit outward normals 77 and ns. For 7 € Tj,, we define
the local error indicator np (®p, 7) as follows:

(@) = W2IRA(PWIE -+ D el Je(@n) -

e€&p,eCOT

Depending on the a posteriori error indicators {ng (P, 7) }re7,, the procedure “Mark” gives a strategy to create
a subset of elements My, of 7. Here, we consider “maximum strategy” which only requires that the set of
marked elements My, contains at least one element of 7; holding the largest value estimator. Namely, there
exists at least one element 7"** € M, such that

e (P, i) = max (P, 7).
TET)

The adaptive finite element algorithm for solving (2.7) is stated as follows [7,8,10]:

Algorithm 1

Pick an initial mesh 7y and let £ = 0.

Solve (2.10) on 7 to get the discrete ground state solution (A k, ¢ix)(i =1,2,...,N).
Compute the local error indicators ng (P, 7) for all 7 € 7.

Construct My, C 7; by the maximum strategy.

Refine 7, to get a new conforming mesh 7j1.

Let k =k + 1 and go to 2.

Al ol

We observe that there are a number of works on analyzing adaptive finite element methods in the literature.
We refer to [4-6,11,15,16] and references cited therein for linear eigenvalue problems and to [7,8,10] for nonlinear
cases when the initial mesh is fine enough. We see that under the so-called Non-Degeneracy assumption’, [14]
proved the convergence of an adaptive finite element method starting from any initial mesh for some linear
elliptic eigenvalue problems.

2.3. A polynomial theory

In our analysis, we need the following basic results, which are motivated by [36].

Lemma 2.1. Let k be a prime number. Then there exist polynomials with respect to ti,ta, ... tx

{pj(tl,tg,...,tk) ]Z 2,...,]{:}
with real coefficients satisfying
(1) pj(t1,ta,... tx) is a polynomial of a degree not larger than j — 1 with respect to ty and
pj( M1, Moy ooy M1, tr) = Npj(tr,ta, .oy tho1, ) YA ER;

(2) if v,a1,az,...,a5_1,t € R satisfy v = art + ast® + - - + ap_1t*71, then

k

7k + ij(al,ag, R ak_l,tk)ﬁ/kij =0.
=2

INo eigenfunction is equal to a polynomial of degree < n on an open subset of €2, where n denotes the polynomial degree of the
finite element bases being used.
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The proof of Lemma 2.1 is given in Appendix A.
Lemma 2.2. Suppose k is a prime. Then for any positive integer n, there exist polynomials
{H, ;(t1,ta, ... ty) 5 =0,1,2,... k" "'}
with real coefficients satisfying
(1) Hpolt,to,. . tn) =1, Hy(t1,te,... 1) (1 =1,2,...,k" 1) are homogeneous:
Hy j(At1, Moy .oy M) = N Hy, j(t,ta, ..o ) YA ER,
and (71)kn_1Hn’kn—1(t1,t2, ..., tn) i a monic polynomial of a degree k"1 with respect to each variable
t(l=1,2,...,n);
(2) if v,t1,ta,...,tn, € R satisfy v = Z?Zl t;, then

kn— 1
n—1_ .
ZHTL] t17t27~--at'lrcz)7k(k ]):0

Proof. We prove the conclusion by induction on n. First, for n = 1, v = ¢; implies v¥ — t¥ = 0, which shows
that Lemma 2.2 is true when n = 1, namely, Hy1(¢1) = —¢1. Assume that Lemma 2.2 is true for n > 1. We
show that Lemma 2.2 is true for n + 1. Let

It follows from the induction hypothesis and

n

Z ti =7 —ths1
j=1

that there exist polynomials
{H, ;(s1,82,....8,) 15 =0,1,2,.... k" '}

n—1

with real coefficients satisfying that (—1)" H,, jn-1(s1,52,...,5,) is a monic polynomial of a degree k"~ with
respect to each variable s;(I =1,2,...,n), Hy ;(s1,82,...,8,)(j = 1,2,...,k" 1) are homogeneous, and
kn 1

k(kn—1_;
ZH”J tlat27--~7t)(’}/_tn+1)( j):O

We obtain from Newton binomlal theory that

k—1 ¢ 7
St (-22) —a. (211)

where

Z (¢ ¢ ) Z K™ —kj\ jr_gi— BE(pyyq)H
n ] 159259 tn /ﬂg v n+1 )
= =0
En—1l_q gl .
k™ —kj n_ i _
a; = — H’ﬂ,j<t17t§7'--atﬁ) (k€k+z)’yk h ké(_thrl)ke k’
j=0 =1

i=1,2,...,k—1.
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Let polynomials P and P;(i =1,2,...,k — 1) be

kn 1_1
n—1 n—1 —-1_
P(s1,82,.. ., 85n42) = Hyy gpno1(s1, 82, .., 8n) + (—=snp1)” + 5ﬁ+2 + Z < )57]212 “(=sn41)”

kn71—1 k7l71—j kn B kj » -
2 X tstenmees T (N )
Jj=1 (=0
kM1 ket ,
k™ —kj n-1_,_ _
Pi(sl,SQ,. . .,Sn+2) = — Hnyj(sl,SQ,. . .,Sn) (k‘f _ k—I— _)SZ+2 J f(_anrl)Z 1,
7=0 (=1 L
i=1,2,...k—1.

It is clear that P and P;(i = 1,2, ..., k—1) are homogeneous, deg P = k"', deg P, = k"1 —1 (i =1,2,...,k—1),
and

= P(t},t5, .. th1,7"), (2.12)

a; =P(th,th, .. th YY) i=1,2,.. k-1 (2.13)

Since k is a prime, we see from (2.11) that there exist {p;(t1,t2,...,tx) 1 5 =2,3,...,k} satisfying Lemma 2.1,
namely,

k
O:ak+ij(a1’yk’a2fyk7"'aak—lq/k ( 7L+1) /’Y ) 7
=2

or
k

O:ak—l—ij(al,ag,...,ak,h( n+1) /’y ) (214)
=2

We define Q(s1,s2,...,8,42) by

k
Q = Pk -+ ij(Pl,PQ, ey Pk—la (71)k8n+1/8n+2)$i+2pk7j.
j=2

Thus it follows from (1) in Lemma 2.1 and (2.12), (2.13) that @ is a homogeneous polynomial of a degree k™

and
k

a* +Y pj(ar,az,. . ap1, (—tng) ) YT = Q (8,85, 0F) (2.15)
j=2

We see that @ can be expressed as

Kk
n

Q(Sl, S92, ..., 8n+2) = Z Hn+17j(81, S92, ..., 8n+1)82+5j, (2.16)
7=0

where Hy, 115 (j =1,2,...,k™) are homogeneous:
Hyi1,;(A81,A89, ., Aspg1) = M Hyp1 (51,82, Snp1) VA € R
It is not difficult to see that H, 1 0(s1,S2,...,,) = 1. We obtain from the definitions of P, P; and @ that

Hn+1,k" (Sla §2y .0y S’I’LJrl)

n—1_ »
= Hnykn—1($1752,...,8n)+(—Sn+1 + Z H, ,j 81,82,...,Sn)(—8n+1)k J
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Since (—1)kn_lHn)kn_1(sl,527...,sn) is a monic polynomial of a degree k™! with respect to each variable
si(l = 1,2,...,n), we have that (—1)ann+1,k"(81,82, ...,8p+1) is a monic polynomial of a degree k™ with
respect to each variable s;(I = 1,2,...,n+ 1). It follows from (2.14) to (2.16) that H,41; (j = 0,1,...,k™)
satisfy (2) in Lemma 2.2. This completes the proof. O

Since every integer larger than 1 can be written as a product of one or more primes, we arrive at

Proposition 2.3. Let k and n be two positive integers. Then there exists a homogeneous polynomial
P(t1,ta, ... tnt1) with real coefficients satisfying

(1) the degree of P with respect to each variable is the same;

(2) P is a monic polynomial with respect to t,i1;

(3) if v t1,ta, .ty € R satisfy v =37, t;, then

P(th th . th 4Ry =0.

Remark 2.4. Proposition 2.3 shows that there exists a real homogeneous polynomial P such that any zero of
n
p(t15t27-"atna7) = Z {C/E_,Y
i=1

is a zero of
P(t1,ta, ...t y).

Proposition 2.5. Let G be a nonempty open set of R3. If p € Po, (G) and degp > 0, then for any nonempty
open set Go C G, there exists xg € G such that p(xzg) # 0.

Proof. We see from the definition of Pg, (G) that

n
(1)
_ E @
p= Qo) T ’
1=1

where oV € Qi, 0#a,» € R, and o™ is the max index. Hence we can choose a positive integer k such that
all components of ka(i)(i =1,2,...,n) are integers.

Assume that p = 0 in Gg. Then there exists a real homogeneous polynomial P(t1,ta,...,t,) satisfying (2) of
Proposition 2.3 and

ey (2) () .
P (xka A L ) =0, in Gp.

Set Q =P (mka(l),a:ko‘(z), . ,xk“(”)) Then Q is a polynomial with a positive degree which is a contradiction
to @ = 0. This completes the proof. O

Lemma 2.6. Let n > 2 be a positive integer, G and Gy be nonempty open subsets of R® with Gy C G. Let
pj € P(é/f(G) for some positive integer k and q; € Po, (G)(j =1,2,...,n). If ¢; > 0(j = 1,2,...,n) in Gy with
gj, 7 1 1 Go for some jo and

degpj, >degp; Vj€{1,2,...,n}\ {jo},
then there exists xo € Gy such that

ij (z0) Ing;(xo) # 0.

Jj=1

The proof of Lemma 2.6 is provided in Appendix B.
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3. BEHAVIOR OF EIGENFUNCTION

In this section, we investigate the non-polynomial behavior of eigenfunctions of (1.1), which will be applied
to analyze the convergence of their adaptive finite element approximations. We see from [17,34] that the
eigenfunctions of (1.1) vary rapidly around nuclei, which indeed results in applying adaptive finite element
computations.

We first recall the unique continuation property.

Definition 3.1. Equation (1.1) has a unique continuation property if every solution in HZ2_(2) that vanishes
on an open set of {2 vanishes identically.

To look into if (1.1) has a unique continuation property, we may apply the following conclusion, which can
be found in [33].

Lemma 3.2. Assume that u € H2 (Q) and V € L3/2(Q) such that |Aul < V|u| a.e.. If u vanishes on an open

loc loc
set of ), then u is identically zero on 2.

Theorem 3.3. If V € L*(Q) and Ni(t) € P(s,(c1,c2)) with s € [0,3/2], then (1.1) has a unique continuation
property.

Proof. Tt follows from a standard elliptic regularity argument that ¢; € H?> (€2) (see, e.g., [17,34] and Sect. 4.3.1
of [23]), which together with Sobolev imbedding theorem leads to ¢, € C(Q?) (i =1,2,...,N).
Note that Young’s inequality and Sobolev imbedding theorem imply

N2 (p)]

N
0,0 < CZ [| P

=1

0,000 < Cllp] 640 < Cl2[F o < oo

We have that [A¢;| = Vi|¢;| and Vi € LY/2(Q), where Vi = |V 4+ N (p) — \il/k (i = 1,2,..., N). Thus we arrive

loc
at the conclusion from Lemma 3.2. O

Remark 3.4. We may see from the proof of Theorem 3.3 that if V € L?(Q) is replaced by V € Lf’O/CQ(Q) and
any solution of (1.1) is in H%(Q), then (1.1) has a unique continuation property.

Theorem 3.5. Let ® = (¢1,¢2,...,0n) be a solution of (1.1). Assume that V and N are defined by (2.1) and
(2.2)~(2.4) with o = 0, respectively. If V is a non-constant function and

degp; — deg h; > max {O, lgnjaéw(deg fj —degg;)/2, zglizg%(degpi — deg hi)} , (3.1)

then for any nonempty open set G C 1, there exists an eigenfunction ¢;(j € {1,2,...,N}) being not a non-zero
polynomial on G. If in addition, V € L*(Q) and N1(t) € P (s, (c1,c2)) with s € [0,3/2], then for any nonempty
open set G C Q, there exists an eigenfunction ¢;(j € {1,2,...,N}) being not a polynomial on G.

Proof. Assume that all eigenfunctions {¢1,¢,...,¢n} are polynomials on the nonempty open set G: ¢; €
Pe(G)(j = 1,2,...,N) for some positive integer £. Without loss of generality, let deg¢1 > maxao< <y deg ¢;.
We have deg p = 2deg ¢1 and see from (1.1) that

~fi o x~pilp)
kDG~ > g+ 3T PR ngi(p) = Mg, in G (3:2)
gj 1 hi(p)

j=1 i=
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If deg ¢1 > 0, then we see from (3.1) that

(degp1 — deg hy) deg p + deg ¢ > deg A¢y,

(degpl - deg hl)degp + deg ¢1 > deg (;;chbl) ) ] = 1727 s '7N7
J

(degp1 — deghy) deg p + deg ¢1 > (degp; — deg h;) deg p + deg ¢1, i=2,3,..., K,

(degp; — deg hy) deg p 4 deg ¢1 > deg ¢;.

Since g; are polynomials implying ¢;(p) € Po, (2)(i = 1,2,...,K), we obtain from Lemma 2.6 that

ko) — 30 DO ) 3P o)) £ M)
o = 95(®0) P e (p) () Y T 1¢1(z0

for some ¢ € G, which is a contradiction to (3.2). Thus we arrive at that deg¢; = 0 on G. Since deg ¢ >
maxs<j<n deg ¢;, we have that ¢; = ¢;(j = 1,2,...,N) are constants on G. If ¢; # 0 for all j € {1,2,..., N},

then
~fi _ x=2ilp)
= “Ing(p) — A1, inG,
2 T Ly M) N

with the constant p = Zjvzl c?, which is impossible. Hence ¢; = 0 for some j € {1,2,...,N}.
If in addition, V € L?(Q) and N1 (t) € L(s, (c1,c2)) with s € [0,3/2], then Theorem 3.3 implies that ¢; =0
in  for some j € {1,2,..., N}, which is a contradiction to fQ qb? = 1. This completes the proof. O

Remark 3.6. We see from the above conclusion that the eigenfunction cannot be a polynomial on any open
set when NV = 1.

Remark 3.7. Note that Theorem 3.5 may be also true even if

degpy —deghy = (deg f; — degg;)/2.

max
<j<M

For instance, no eigenfunction ¢ € H?(Q) of GPE [2,35]

1
(—2A +V 4 ﬁ|¢l2) ¢ = Ao
with a harmonic trap potential

V(z) = 71&F + 7285 + 1365, 1,572,793 > 0
can be a polynomial on any open set G C Q, where x = (&1, &2, &3) € R3.

Theorem 3.8. Let ® = (¢1,Pa,...,0n) be a solution of (1.1). Assume that V and N are defined by (2.1)
and (2.2)—(2.4) with o # 0, respectively, and aAV is not a positive constant function. If either of the following
conditions holds:

(1)

- N < - )
12%}%((1%% degh;) <1 and max (deg f; — degyg;) < 4,

1<j<M
(2) deggr =0 and

deg p; — deg hy > max {2, max (deg f; —degg,)/2, 21<n_zi>§((degpi — deg hi)} , (3.3)

1<5<M



220 B. YANG AND A. ZHOU

then for any nonempty open set G C Q, there exists an eigenfunction ¢;(j € {1,2,...,N}) being not a non-zero
polynomial on G. If in addition, V € L*(Q) and N1(t) € P(s, (c1,c2)) with s € [0,3/2], then for any nonempty
open set G C Q, there exists an eigenfunction ¢;(j € {1,2,...,N}) being not a polynomial on G.

Proof. Assume that all eigenfunctions {¢1,¢s,...,¢n} are polynomials on nonempty open set G: ¢;
Pe(G) (j =1,2,...,N) for some positive integer £. Without loss of generality, let deg ¢ > maxao< <y deg ¢;.
Obviously, deg p = 2deg ¢;.

If ¢1(x) # 0 for any = € G and deg¢; > 0, then we obtain from (1.1) that

%_ f] pi(p) _ in
- z /‘_| +z o — N, G

’L

Applying the Laplace operator to both sides yields

M K K
—KP¢ — Z fig —4amp+ Zpi,h,p Ingi(p) + Zpi,h,q,p =0, inG, (3.4)
= i—1 i—1
where
A
Do = A < q;fl) ;
nygA(fj>7] 17 7M;
gj
N Pi(ﬂ) _
p%h,p_A(hi(p)), Z_la 7Ka
V(pi(p)/hi(p)) - Vai(p) | pi(p)(a(p)Agi(p) — [Va(p)®) .
Pishuap = 2 + Ci=1,... . K.
huap qi(p) hi(p)ai(p)

If max;<;<x(degp; — degh;) <1 and 1£nlzi>§\/[(deg fj —degg;) <4, then only 4amp has the max degree.
<j<

If deg g1 = 0 and (3.3) holds, then pq 4, = 0. Thus only one term, which is one term of p; p ,, has the max
degree.

Therefore, we get a contradiction to (3.4) from Lemma 2.6. Consequently, deg ¢1 > maxo<j<n deg@; leads
to that ¢; =¢;(j =1,2,...,N) are constants in G.

If ¢; #0 for all j € {1,2,..., N}, we then derive from (3.4) that

N
AV=4047TZ:Q2 Vx € G,

i=1

which is impossible. Hence ¢; = 0 for some j € {1,2,...,N}.
If in addition, V € L?(Q2) and N1(t) € (s, (c1,c2)) with s € [0,3/2], then we complete the proof by using
Theorem 3.3. ]

We may apply Theorem 3.5 or Theorem 3.8 to the typical mathematical models in quantum physics to see
the eigenfunction behavior. The following are some examples.

Example 3.9. No eigenfunction of the Schrédinger—Newton equation [18]
2
(—A || u(y )|dy>u:)\u, in R?
Q

can be a polynomial on any open set of R3.



EIGENFUNCTION BEHAVIOR AND ADAPTIVE FINITE ELEMENT APPROXIMATIONS 221

Example 3.10. No eigenfunction of the Thomas—Fermi-Dirac—von Weizsécker equation [7,21]

lu(y) 2/3
A — E =
—K | 7TJ| / dy + Gru? "% — Byu U=

can be a polynomial locally for a rational number v in [1, 2], where 5; and (2 are constants.

Example 3.11. The Kohn-Sham equation of a system consisting of M nuclei of charges {Z1,Zs,...,Zn}

located at the positions {r1,72,...,ry} and N electrons is as follows:
(_A+‘/ezxt+/| dy+ch( ))(bz:)\l(b’u anvz:1727aNa
(3.5)
/ i = 0ij,
Q
where Viyy = — 224:1 f—’;ﬂ is the associated external potential, p = Zfil |¢i]? is the electronic density, and
Vie(p) is the exchange-correlation potential such as the X, exchange-correction potential [30]
3 3 1/3
Vie(p) = za | — 3.6
=30 (%) (36)
with a € [2/3, 1] or the Perdew—Zunger type local-density approximations (LDA) potential [26]:
0.1423 + 0.06337, + 0.1748, /7, < 9\ 1 I
— —-(-—=) = if r
1+ 1.0529,/75 + 0.3334r)2 42 ) 1y’ T
agy = { v : 1 5.7)
9 \31
0.0311In7r, — 0.0584 + 0.001374 Inrg — 0.0084r, — (42> —, ifry<1
7r Ts

1/3
with ry = (%) . It is clear that Vo can be rewritten as the form (2.1). And (3.6) and (3.7) can be rewritten

as the form (2.3).

We see that if the exchange-correction potential is chosen as either (3.6) or (3.7), then for any nonempty
open set G C (2, there exists an eigenfunction ¢; (j € {1,2,...,N}) being not a polynomial on G.

In fact, the same conclusion is true for the Vosko-Wilk—Nusair type LDA potential [32]

CAf e 2 Qb [ (t—to)
Vielo) = 5 {ln Xt 0™ ait T X (ln X(0)

2b+2) _, Q
7t -
RS B vy
1/3

where r, = ﬁ

and ¢ = 42.7198.

=712 X () = 24bt+e, Q = (4c — b?) /%, A = 0.0621814, tg = —0.409286, b = 13.0720,

Indeed, we conjecture that no eigenfunction of (1.1) can be a polynomial on any open set in R® when N > 1.
Unfortunately, it is still open whether it is true or not.
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4. ADAPTIVE APPROXIMATIONS

In this section, we apply the behavior of the eigenfunctions to investigate the convergence of adaptive finite
element approximations of (1.1). We assume that

(i) Ve L*();
(ii) € € H(3,(c1,¢2)) with ¢; > 0 or H(4/3, (¢1,¢2));
(iii) My € P(s1,(c1,c2)) for some s1 € [0,2) and tN'(t) € P(s2,(C1,¢2)) for some sy € [0,2).

Let
ot=|J 1
TeT+
where
T =N T
k>0 m>k

In our analysis, we need Lemma 4.3 in [14], which is stated as follows:
Lemma 4.1. The set Q" is empty if and only if limg_ o ||Pk]/0,00.0 = O.

Under the assumptions (i)—(iii), we observe from Theorem 3.5 in [10] and Theorem 4.2 in [7] that approxima-
tions O produced by Algorithm 1 converge to a solution of (1.1) for any initial mesh and the solution becomes
a ground state if the initial mesh size is sufficiently small so that © is sufficiently near to ©. Indeed, based on
the eigenfunction behavior, we are able to prove that ©j produced by Algorithm 1 converge to a ground state
of (1.1) starting from any initial mesh under some assumptions.

Using the similar argument to the proof of Lemma 6.2 in [14], we have

Lemma 4.2. Let mesh size functions {hi}ren and ground state solutions {©y = (Ag, @) }ren be produced by
Algorithm 1. If for any nonempty open set G C Q, there exists an eigenfunction of (1.1) being not a polynomial
on G, then ||hillo,co.0 — 0 as k — co.

Proof. If ||hg|l0,00,0 does not tend to zero, then we derive from Lemma 4.1 that Q7 is not empty. Thus there
exists T € 71 and kg € N such that T' € 7}, for all k£ > k.

Without loss of generality, we assume that ¢, is not a polynomial on the nonempty open set 7. We obtain
from the proof of Theorem 3.5 in [10] that there exists a subsequence @y, and some solution ® of (1.1) such
that ®, — ® in H. Thus we have that ¢1 x,, — ¢1 in Hg(Q) as m — oo, which derives

im {|¢1,, = é1llo.r = 0. W

Combining (4.1), ¢1,k|lr € Pn(T) for some integer n, and that P, (T) is a finite dimensional space, we obtain
that ¢1 € P, (T), which contradicts to that ¢, is not a polynomial on T'. This completes the proof. |

Let the distance between sets X, Y ¢ RV*N x H be defined by
dp(X,Y)= sup inf (JA—2[+ P —Vli0),
(A,®)ex (Z,¥)eY
where | - | is the Frobenius norm in RV*V,
To carry out the convergence analysis, the gap-condition

min F(¥) <

inf E(D) (4.2)
veQ (M, T)eEW\O

is assumed in [7,10]. Consequently, we have

min _ FE(¥,) <

inf E(U 4.3
o Bin B < e B (4.3)
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when h is small enough. In order to ensure (4.3), we observe that the initial mesh size h is assumed to be
sufficiently small in [7,10] (see [10], Thm. 3.5 and [7], Thm. 4.2). On the one hand, combining Theorems 3.5, 3.8,
and Lemma 4.2, we indeed have that the mesh size hj tends to zero under the assumption in Theorem 3.5 or
that in Theorem 3.8, which shows that the mesh size hy will be sufficiently small after finite iteration steps and
hence (4.3) holds provided k > 1. Namely, we have
E(®y) < inf E(¥)
(M,T)EW\O

provided k£ > 1. On the other hand, we see that for any subsequence {(Ag, , Pk, )} men, there exists a convergent
subsequence {(Akmjaq’kmj)}jeN and (As, Poo) € W such that (Akmj,fbkmj) — (Ao, Poo) (see the proofs of
Thm. 3.5 in [10] and Thm. 4.2 in [7] for more details). Hence we have (As, Poo) € © and arrive at

Theorem 4.3. Let {O}ren be the sequence generated by Algorithm 1. If the gap-condition (4.2) and the
assumption in Theorem 3.5 or that in Theorem 3.8 are satisfied, then

lim Ej = min E(7),

k— oo veQ

khm dH(@k, @) = O,

where By, = E(®) ((A,®) € Oy).

Remark 4.4. We mention that we do not require the assumption in Theorem 4.3 that the ground state solution
and the discrete ground state solution correspond to the lowest N eigenpairs of (2.7) and (2.10), respectively.
In practice, however, © and ©), are assumed to be the lowest N eigenpairs of (2.7) and (2.10), respectively [22].

As a result, we see from [8,10] that the adaptive finite element method has the asymptotic linear convergence
rate and the asymptotic optimal complexity from any initial mesh. More precisely, the adaptive finite element
method has the linear convergence rate and the optimal complexity after finite iteration steps.

5. CONCLUDING REMARKS

In this paper, we have investigated a class of nonlinear eigenvalue problems modeling quantum physics. We
have first proved that for any open set GG, there exists an eigenfunction that cannot be a polynomial on G,
which may be reviewed as a refinement of the standard unique continuation property. Then applying the non-
polynomial behavior of eigenfunctions, we have shown that adaptive finite element approximations converge to
some ground state even if the initial mesh is not fine.

We mention that the same conclusion can be expected for any dimensions larger than 3. For instance, our
arguments can be applied to the following linear eigenvalue problem:

~V - (AVu) + Vu = ABu, in Q, (5.1)

where Q C R? for some positive integer d > 3 and A is a symmetric-matrix-valued function and is uniformly
positive definite. We see that (5.1) includes the electronic Schrodinger equation

Ay = al e?
-y — — | ¢=E¢p, inR¥ 5.2
ZQ ZZW*H Z Tz — | ¢ ¢, in ’ (5:2)
i=1 i=1 j=1 J 1,j=1,i#j J
where £ is the Planck’s constant divided by 27, m, is the mass of the electron, {z; : ¢ = 1,..., N} are variables

that describe the electron positions, and e is the electronic charge, ¢ is the wavefunction, N is the number of
electrons, M is the number of atoms, Z; is the atomic number of the j-th atom, and r; is the position of the
j-th atom.

For convenience, we introduce the following assumptions:
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I Entries of A are continuous and piecewise functions in Pg, (£2).
IT B is a piecewise function in Pg, (©2).
I v=- Zjle ;—;, where f;, g; (j =1,2,..., M) are piecewise functions in ’P6+ (Q) for some pu € Q.
IV V cannot be equal to AB for any A € R in any open subset of €.
If Assumptions I-IV hold true and that the entries of A|g, B|g belong to Pg, (G) and fj|a, gjlc € 7?6+ (@)
for all j € {1,2,..., M} imply that only one among deg A|¢ — 2, deg B|g,deg fi|l¢ — deggila, - .., deg fule —
deg gar|a equals to

max {deg Al — 2,deg fi|¢ — deg g1lc, - . ., deg fu|a — deg gur|a, deg Bla}

when G C 2 is an open subset, then no eigenfunction of (5.1) can be a non-zero polynomial on G. If in addition,
(5.1) has a unique continuation property (see, e.g., [29,33]), then any H? -eigenfunction of (5.1) cannot be a
polynomial on any open subset of Q. Since (5.2) satisfies Assumptions I-IV, in particular, we obtain the more
sophisticate conclusion than that in the existing literature (see, e.g., [28]).

Note that the so-called Non-Degeneracy Assumption of a linear case of

-V (AVu) = ABu (5.3)

has been introduced in [14], which is a special case of (5.1) when V = 0, the entries of A are continuous and
piecewise linear, and B is piecewise constant, with which together the convergence of an adaptive finite element
method from any initial mesh for (5.3) is then derived.

APPENDIX A.
In this appendix, we provide a proof of Lemma 2.1, whose idea is inspired by Appendixes A and B of [27].

Proof. Let v = a1t + ast? + ...+ ap_1t*~1 with v¥,a1,0a2,...,ar-1,t € R. For convenience, we may view v as a
polynomial «(t) with respect to ¢. Let z # 1 be a kth root of 1. We have

k—1
sz:O (A.1)
j=0
and
{zMj=1,2,..k=1}={:j=12,... k—1} (A.2)

for any positive integer m that is not divisible by k. Let

k—1
P(y) =[] w—~"1), yeR, (A3)

m=0

we obtain that P(y) = 0 since 20 = 1. We claim that P;(y) = 0 yields the conclusion.
Indeed, it follows from (A.3) that Pi(y) can be rewritten as

k

Pt(y) :yk +qu(a17a27'"7ak‘717t)yk_j7 (A4)
7j=1

where
J(k—1

)
qj‘(tl,tg,...,tk): Z fj,f(tl,t%---;tkfl)ti (A5)
l=j
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for all ¢1,t2,...,¢, € R and f;, is either a zero polynomial or a homogeneous polynomial of a degree j for any
C=j,7+1,...,5(k—1). We see from (A.3) that P,(y) = P,(y). Thus ¢; (j =1,2,...,k) are real polynomials.
We obtain from (A.3) to (A.5) that

k—1 k k—1
1 1 -j
P(y) = z Z Pomy(y) = y* + Z <k Z Qj(a17a27~-~7ak17zmt)> y"
m=0 j=1 m=0
ko[ 172D k-1
=y + Z k fielaz,az. .. ap_1)t" 2y,
j=1 t=j m=0

which together with (A.1) and (A.2) leads to

j7

k 1
Pt(y) - yk + Z < fj,mk(ah ag, ... 7ak1)t7nk> yk_j' (AG)
m=1

j=2
Comparing (A.4) with (A.6), we arrive at

q(t1,t2,...,tx) =0,

7j—1
qj(tlatQa"'7t/€) = Z fj,mk(tl;t2)- --7tk:—l)t]:;nk7 .7 = 27"'ak (A7)
m=1

for all t1,ta,...,tx € R. Let

Jj—1
piltata, o te) = > fime(ty te, o )t G =2, k,
m=1

then we have

qj(tita, .. ty) = pi(tita, .. te_1,tF), 5 =2,3,... k. (A.8)
Thus we complete the proof by using Pi(vy) = 0, (A.7), (A.8), and that f;, is either a zero polynomial or
homogeneous of a degree j for any /. O

APPENDIX B.
In this appendix, we provide a proof of Lemma 2.6.

Proof. Without loss of generality, we divide n into two parts: n = nj+no, such that degg; = 0forj € {1,...,n1}
and degg; > 0 for j € {n1 +1,...,n1 +na}.
We prove the conclusion by induction on ns.

(1) For ny = 0, we prove the conclusion by contradiction again. Assume that
1
ij Ing; =0, in Go,
j=1

where In g; are constants and In g;,(z) # 0 for any = € Go.
For convenience, we assume j, = 1. Let P(t1,t2,...,tn,) be a real homogeneous polynomial satisfying (2)
of Proposition 2.3 and

P(pg,...,pfll,plf) =0, in Gy.



226

B. YANG AND A. ZHOU

Set Q = P(p,...,pE,pk). We get from p; € Pé/f(j = 1,2,...,n1) that Q € Pg,. Note that P is a
homogeneous polynomial and monic in ¢,, , we obtain from the definition of @ and degpi > maxo< <y, degp;
that deg @@ > 0. Therefore Proposition 2.5 leads to a contradiction to @ = 0 in Gy. Thus Lemma 2.6 is true
for ny = 0.

Assume that Lemma 2.6 is true for no > 0. We show that Lemma 2.6 is true for ny + 1. Let jo = 1 or
jo =n1 + 1. It is obvious that the conclusion is true if p,,+1 = 0 in Gg. If pp,+1 # 0 in Gy, then we assume
that

ni+nz+1
ijlnqj—i— Z pjlng; =0, in Gy,
j=ni1+1
which leads to
ni ni+nz+1 ~
——1Ing; +1Ing,, 41 + Z Ing; =0, inG (B.1)
Pn1+1 g2 Pn1+1

for some nonempty open subset G C Gy, where gj(j = 1,...,n1) are constants. Applying 9; to (B.1)
(i =1,2,3), we obtain

ni+na+1 ni+nz+1 .

8- -
Z Dy Ing; + Z P;%id; i +1 + Z p]’ Ing; =0, inG,
— n1+1 g2 pn1+1QJ qnq,+1 JR——— pn1+1

where pj i = pn, 410ip; — PjOiPn, 41, § = 1,...,n1+na+1, i = 1,2,3. It is easy to see that pf . ,p5&ip;i €
P, o ~
If jo = 1, then there exists ¢ such that degp,,; = degp; + degpy,,+1 — 1. Thus we have

deg p1,i — degpl, > degpj; — degpy 41, j=2,...,n+na+1,
degpr,; — degp?z,l+1 > deg(p;0iq;) — deg(pn,+14;), j=n1+2,...,n1 +n2+1,
degpi,; — degpiﬁl > deg 0iqn, +1 — deg qn, 41

If jo = n1 + 1, then we pick up i satisfying deg 0;¢n,+1 7 —o0. It follows that

deg 0iqn, +1 — deg qn, +1 = —1.

Consequently,
deg Dign, +1 — deg qn,+1 > degpj; — degp? 1, j=1,...,n +nz+1,
deg 0ign,+1 — deg gn, +1 > deg(p;0iq;) — deg(pn, +195), J=n1+2,...,n +na+ 1.

Thus we conclude from the induction hypothesis that Lemma 2.6 is true when ns is replaced by ng + 1. This
completes the proof. O
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