The solution to the initial and Dirichlet boundary value problem for a semilinear, one dimensional heat equation is approximated by a numerical method that combines the Besse Relaxation Scheme in time [C. R. Acad. Sci. Paris Sér. I 326 (1998)] with a central finite difference method in space. A new, composite stability argument is developed, leading to an optimal, second-order error estimate in the discrete -norm at the time-nodes and in the discrete -norm at the intermediate time-nodes. It is the first time in the literature where the Besse Relaxation Scheme is applied and analysed in the context of parabolic equations.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020077
Keywords: Besse Relaxation Scheme, semilinear heat equation, finite differences, Dirichlet boundary conditions, optimal order error estimates
@article{M2AN_2021__55_1_301_0,
author = {Zouraris, Georgios E.},
title = {Error estimation of the {Besse} {Relaxation} {Scheme} for a semilinear heat equation},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {301--328},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
number = {1},
doi = {10.1051/m2an/2020077},
mrnumber = {4216828},
zbl = {1491.65080},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2020077/}
}
TY - JOUR AU - Zouraris, Georgios E. TI - Error estimation of the Besse Relaxation Scheme for a semilinear heat equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2021 SP - 301 EP - 328 VL - 55 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2020077/ DO - 10.1051/m2an/2020077 LA - en ID - M2AN_2021__55_1_301_0 ER -
%0 Journal Article %A Zouraris, Georgios E. %T Error estimation of the Besse Relaxation Scheme for a semilinear heat equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2021 %P 301-328 %V 55 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2020077/ %R 10.1051/m2an/2020077 %G en %F M2AN_2021__55_1_301_0
Zouraris, Georgios E. Error estimation of the Besse Relaxation Scheme for a semilinear heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 301-328. doi: 10.1051/m2an/2020077
[1] , Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. | MR | Zbl | DOI
[2] and , Finite difference discretizations of some initial and boundary value problems with interface. Math. Comput. 56 (1991) 505–522. | MR | Zbl | DOI
[3] , and , Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184 (2013) 2621–2633. | MR | Zbl | DOI
[4] , Schéma de relaxation pour l’ équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I 326 (1998) 1427–1432. | MR | Zbl | DOI
[5] , A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934–952. | MR | Zbl | DOI
[6] , , and , Energy preserving methods for nonlinear Schrödinger equations. Preprint (2018). | arXiv | MR
[7] , , and , LINPACK Users’ Guide. SIAM (1987). | Zbl
[8] and , Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinet. Relat. Models 12 (2019) 1247–1271. | MR | Zbl | DOI
[9] and , A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67 (1998) 479–499. | MR | Zbl | DOI
[10] and , A posteriori error analysis for evolution nonlinear Schrödinger equations up to the critical exponent. SIAM J. Numer. Anal. 56 (2018) 1405–1434. | MR | Zbl | DOI
[11] and , On the reflection of solitons of the cubic nonlinear Schrödinger equation. Math. Methods Appl. Sci. 41 (2018) 1013–1018. | MR | Zbl | DOI
[12] , , , Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs. AMS 23 (1968). | MR | Zbl
[13] , and , A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numerical Algorithms 83 (2020) 99–124. | MR | Zbl | DOI
[14] and , Analysis of a relaxation scheme for a nonlinear Schrödinger equation occurring in Plasma Physics. Math. Modell. Anal. 19 (2014) 257–274. | MR | Zbl | DOI
[15] , On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Math. Model. Numer. Anal. 35 (2001) 389–405. | MR | Zbl | Numdam | DOI
[16] , Error estimation of the Besse Relaxation Scheme for a semilinear heat equation. Preprint (2018). | arXiv | MR
[17] , Error estimation of the Relaxation Finite Difference Scheme for the nonlinear Schrödinger equation. Preprint (2020). | arXiv | MR
[18] , A Relaxation/Finite Difference discretization of a 2D Semilinear Heat Equation over a rectangular domain. Preprint (2020). | arXiv
Cité par Sources :





