Error estimation of the Besse Relaxation Scheme for a semilinear heat equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 301-328

The solution to the initial and Dirichlet boundary value problem for a semilinear, one dimensional heat equation is approximated by a numerical method that combines the Besse Relaxation Scheme in time [C. R. Acad. Sci. Paris Sér. I 326 (1998)] with a central finite difference method in space. A new, composite stability argument is developed, leading to an optimal, second-order error estimate in the discrete L t (H x 2 )-norm at the time-nodes and in the discrete L t (H x 1 )-norm at the intermediate time-nodes. It is the first time in the literature where the Besse Relaxation Scheme is applied and analysed in the context of parabolic equations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020077
Classification : 65M12, 65M60
Keywords: Besse Relaxation Scheme, semilinear heat equation, finite differences, Dirichlet boundary conditions, optimal order error estimates
@article{M2AN_2021__55_1_301_0,
     author = {Zouraris, Georgios E.},
     title = {Error estimation of the {Besse} {Relaxation} {Scheme} for a semilinear heat equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {301--328},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020077},
     mrnumber = {4216828},
     zbl = {1491.65080},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020077/}
}
TY  - JOUR
AU  - Zouraris, Georgios E.
TI  - Error estimation of the Besse Relaxation Scheme for a semilinear heat equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 301
EP  - 328
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020077/
DO  - 10.1051/m2an/2020077
LA  - en
ID  - M2AN_2021__55_1_301_0
ER  - 
%0 Journal Article
%A Zouraris, Georgios E.
%T Error estimation of the Besse Relaxation Scheme for a semilinear heat equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 301-328
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020077/
%R 10.1051/m2an/2020077
%G en
%F M2AN_2021__55_1_301_0
Zouraris, Georgios E. Error estimation of the Besse Relaxation Scheme for a semilinear heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 301-328. doi: 10.1051/m2an/2020077

[1] G. D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115–124. | MR | Zbl | DOI

[2] G. D. Akrivis and V. A. Dougalis, Finite difference discretizations of some initial and boundary value problems with interface. Math. Comput. 56 (1991) 505–522. | MR | Zbl | DOI

[3] X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184 (2013) 2621–2633. | MR | Zbl | DOI

[4] C. Besse, Schéma de relaxation pour l’ équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris Sér. I 326 (1998) 1427–1432. | MR | Zbl | DOI

[5] C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934–952. | MR | Zbl | DOI

[6] C. Besse, S. Descombes, G. Dujardin and I. Lacroix-Violet, Energy preserving methods for nonlinear Schrödinger equations. Preprint (2018). | arXiv | MR

[7] J. J. Dongarra, J. R. Bunch, C. B. Moller and G. W. Stewart, LINPACK Users’ Guide. SIAM (1987). | Zbl

[8] P. Henning and J. Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinet. Relat. Models 12 (2019) 1247–1271. | MR | Zbl | DOI

[9] O. Karakashian and Ch Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67 (1998) 479–499. | MR | Zbl | DOI

[10] T. Katsaounis and I. Kyza, A posteriori error analysis for evolution nonlinear Schrödinger equations up to the critical exponent. SIAM J. Numer. Anal. 56 (2018) 1405–1434. | MR | Zbl | DOI

[11] T. Katsaounis and D. Mitsotakis, On the reflection of solitons of the cubic nonlinear Schrödinger equation. Math. Methods Appl. Sci. 41 (2018) 1013–1018. | MR | Zbl | DOI

[12] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Ural’Ceva, Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs. AMS 23 (1968). | MR | Zbl

[13] M. Li, C. Huang and W. Ming, A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numerical Algorithms 83 (2020) 99–124. | MR | Zbl | DOI

[14] D. Oelz and S. Trabelsi, Analysis of a relaxation scheme for a nonlinear Schrödinger equation occurring in Plasma Physics. Math. Modell. Anal. 19 (2014) 257–274. | MR | Zbl | DOI

[15] G. E. Zouraris, On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Math. Model. Numer. Anal. 35 (2001) 389–405. | MR | Zbl | Numdam | DOI

[16] G. E. Zouraris, Error estimation of the Besse Relaxation Scheme for a semilinear heat equation. Preprint (2018). | arXiv | MR

[17] G. E. Zouraris, Error estimation of the Relaxation Finite Difference Scheme for the nonlinear Schrödinger equation. Preprint (2020). | arXiv | MR

[18] G. E. Zouraris, A Relaxation/Finite Difference discretization of a 2D Semilinear Heat Equation over a rectangular domain. Preprint (2020). | arXiv

Cité par Sources :