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ERROR ESTIMATION OF THE BESSE RELAXATION SCHEME
FOR A SEMILINEAR HEAT EQUATION

GEORGIOS E. ZOURARIS*

Abstract. The solution to the initial and Dirichlet boundary value problem for a semilinear, one
dimensional heat equation is approximated by a numerical method that combines the Besse Relaxation
Scheme in time [C. R. Acad. Sci. Paris Sér. I 326 (1998)] with a central finite difference method in
space. A new, composite stability argument is developed, leading to an optimal, second-order error
estimate in the discrete L°(H2)-norm at the time-nodes and in the discrete L°(Hz)-norm at the
intermediate time-nodes. It is the first time in the literature where the Besse Relaxation Scheme is
applied and analysed in the context of parabolic equations.
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1. INTRODUCTION

1.1. The initial boundary value problem

Let T > 0, 24, ©p € R with 2y > 24, Z := [2g,2], @ = [0,T] XZ, g : R >R, up:Z - R, f:Q — R and
u : @ — R be the solution of the following initial and boundary value problem:

Up = Ugy + gu)u+ f on @, (1.1)
u(t,zq) = ult,zp) =0 vVt e [0,T], (1.2
w(0,2) = up(x) Veel. (1.3)

Letting u € C*(R) with p(z) = g(z) z and f € fm’a(Q) for any « € (0,1), and ug € C*(Z) with

uo(za) = uo(wp) =0, ug(wa) + f(0,2a) = ug(zs) + f(0,26) = 0, (1.4)

the classical theory for parabolic problems yields that there exists a (at least) local solution u € Ct17 7?(Q), and we
can achieve additional smoothness for u by requiring additional regularity for f, u, uo along with compatibility
conditions between ug and f (see, e.g., [12]).

Keywords and phrases. Besse Relaxation Scheme, semilinear heat equation, finite differences, Dirichlet boundary conditions,
optimal order error estimates.

Division of Applied Mathematics: Differential Equations and Numerical Analysis, Department of Mathematics and Applied
Mathematics, University of Crete, GR-700 13 Voutes Campus, Heraklion, Crete, Greece.
*Corresponding author: georgios.zouraris@uoc.gr

Article published by EDP Sciences © EDP Sciences, SMAI 2021


https://doi.org/10.1051/m2an/2020077
https://www.esaim-m2an.org
mailto:georgios.zouraris@uoc.gr
https://www.edpsciences.org

302 G.E. ZOURARIS

1.2. Formulation of the numerical method

Let N be the set of all positive integers and L := z, — z,. For given N € N, we define a uniform partition

of the time interval [0,7] with time-step 7 := %, nodes t, := n7 for n = 0,..., N, and intermediate nodes
e = ¢, + g formn =0,..., N —1. Also, for given J € N, we consider a uniform partition of Z with mesh-width
h:= J%H and nodes z; := x4, +jh for j =0,...,J 4+ 1. Then, we introduce the discrete spaces

X ::{(vj)j;}): v;€R, j=0,...,J+1} and x;;::{(vj)j;gexh: v =0, =0},

a discrete product operator - @ - : Xp x Xp, — X, by (v®@w); = vjw; for j = 0,...,J + 1 and v,w € Xy,
and a discrete Laplacian operator Ay, : X{ — X9 by Apv; := Wﬁ# forj=1,...,J and v € Xj. In
addition, we introduce operators I, : C(Z) — X; and I§, : C(Z) — X$,, which, for given z € C(Z), are defined
by (Inz); := z(z;) for j =0,...,J + 1 and (I52); := z(x;) for j = 1,...,J. Finally, for ¢ : R — R and for any
w € Xp, we define g(w) € X, by (¢(w)); := g(w;) for j =0,...,J+ 1L

The Besse Relaxation Finite Difference (BRFD) method combines a standard finite difference discretization
in space with the Besse Relaxation Scheme in time (cf. [4]). Its algorithm consists of the following steps:
Step I. Define U° € X by

U% .= 15 [ug) (1.5)
and then find Uz € X7 such that

1 1 1 1
S = (‘”;U") +g () @ (“;U”) + 15 [“”"’;f‘“”} - (L6)

Step II. Define ®2 € X, by

P2 = g(U?) (1.7)
and then find U! € X3 such that
Ul:UO — A, (UI;UO) Lot (UIJQFUO) e |:f(t17')‘5f(t07')i| , (1.8)
Step III. For n=1,..., N — 1, first define ®"*2 € X;, by
PR = 2g(UM) — @"2 (1.9)
and then find U™ € X}, such that
U"Jrir—U" _ Ah (U"*;—&-U”) + @nJr% ® <U"+12+U") + I?L |:f(tn,+1;')2+f(tn7'):| . (110)

Remark 1.1. Here, by performing one step with the linearized version of the Crank-Nicolson method (1.6), we
compute a second order approximation Uz of u(t%, -) and thus P2 = g(U %) is a second order approximation of
g(u(t2, ")), that effects a second order convergence of ®**+2 to g(u(t""2,-)) (see Thm. 4.6 and Tab. 1 in Sect. 5).

It is worth to note that, in the bibliography, the Relaxation Scheme is formulated along with the initial choice
P2 = g(u) (see, e.g., [4,5,10,11]), which is a first order in time approximation of g(u(tz,-)) and results a
first order in time convergence of ®"2 to g(u(t"*z,.)) (see Thm. 4.7 and Tab. 2 in Sect. 5). However, in both
cases, the method exhibits a second order convergence of U™ to u(t,,-) (see Thms. 4.6 and 4.7).

Remark 1.2. The Relaxation Scheme seems to be a special two-step method over the nodes and the interme-

diate nodes of the partition of the time interval. Indeed, the computation of U"*! requires the knowledge of
1

the previous approximations d"tz and U " and the computation of ®* 12 is based on the knowledge of U™ and

o3,

Remark 1.3. The (BRFD) method requires, at every time step, the solution of a tridiagonal linear system of
algebraic equations. The discussion on the well-posedness of the (BRFD) method is postponed until Theorems 4.6
and 4.7.
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1.3. Relation to the bibliography

Two decades ago, for the discretization in time of the nonlinear Schrédinger (NLS) equation, C. Besse [4]
introduced a new linear-implicit, conservative time-stepping method (called Relazation Scheme (RS)) as an
attempt to avoid the numerical solution of the nonlinear systems of algebraic equations that the application
of the implicit Crank-Nicolson method yields. The (RS) combined with a finite element or a finite difference
space discretization, is computationally efficient (see, e.g., [3,8,11]) and performs as a second order method
(see, e.g., [5,11]). Later, C. Besse [5], analysing the (RS), as a semidiscrete in time method to approximate the
solution to the Cauchy problem for the (NLS) equation with power non-linearity, provided its convergence under
small final time T, without concluding a convergent rate with respect to the time-step. Oelz and Trabelsi [14]
formulated a time-discrete version of the (RS) for the approximation of the solution to the Cauchy problem for a
special nonlinear Schrodinger equation occurring in plasma physics, and then developed a convergence analysis
analogous to that of [5], without, also, arriving at a conclusion on the order of convergence. Katsaounis and
Kyza [10] first proposed a finite element version of the (RS) over a non uniform partition of the time interval,
and then constructed an posteriori bound for the error only at the time-nodes, under the assumption that the
proposed method has a second order convergence at the intermediate time nodes. At this point, we would like
to observe, that the finite element version of the (RS) proposed in [10, 11] requires the solution of two linear
systems of algebraic equations at every time-step, and thus its computational complexity is two times higher
than that of the corresponding finite difference version of the (RS).

Independently of the present work [16], C. Besse et al. [6] focusing on the cubic NLS equation, completed
the convergence analysis of [4] by a proper consistency argument and arrived at a error bound consisting of the
error approximating g(u(t%7 -)) along with a second order, with respect to the time step, term. However, the
latter error estimate fails to explain the second order, experimental convergence of the (RS) under the choice
g(uo(+)) as an initial approximation of g(u(t2,-)) (see Rem. 1.1). In addition, the technique used in [5,6] for the
convergence analysis of the time-discrete (RS) is not suitable for the error estimation of a fully-discrete version
of the (RS), because it is based on the derivation of a priori bounds of the (RS) time-discrete approximations
in higher order Sobolev norms.

Also, independently of the present work [16], Li et al. [13] formulated a finite element version of the (RS)
for the approximation of the solution to the Cauchy problem for the one dimensional, fractional, cubic (NLS)
equation and presented an error analysis based on the energy technique. However, the convergence proof contains
a gap, which, unfortunately, can not be resolved within the energy method, because the (RS) has the soul of a
multistep method and within the context of the (NLS) equation this can not be overcame (see, e.g., [5,17]).

The aim of the present work is to propose (RS) as an alternative mechanism to derive second order, linearly
implicit methods for parabolic problems with a non linear structure. Our choice to consider a finite difference
version of the (RS), rather than a finite element one, is due to its higher flexibility in deriving energy-type error
estimates in the discrete H'-norm, which is fundamental to avoid mesh conditions in the one space dimension
case. Indeed, by building up a proper stability argument and using energy techniques based on the parabolic
strong stability, we are able to prove an optimal, second order error estimate in a discrete L{°(H})-norm at
the intermediate time nodes and in a discrete L (H2)-norm at the time nodes, under the choice (1.7) for ®2.
Addressing the initial choice ®2 = g(u°), we arrive at a new second order error estimate in the discrete L (H1)-
norm at the time nodes. The convergence analysis we present here can be used as a guide in the development of
error estimates for finite element versions of the (RS) and for finite difference versions of the (RS) in the higher
space dimension case (see, e.g., [18]).

1.4. An overview of the paper

In the error analysis of the (BRFD) method, we face the locally Lipschitz nonlinearity of the problem
by introducing the (MBRFD) scheme (see Sect. 4.2), which follows from the (BRFD) method after mollifying
properly the terms with nonlinear structure (cf. [1,9,15]). The (MBRFD) approximations depend on a parameter
6 > 0 and have the following key property: when their discrete L>°-norm is bounded by ¢, then they are also
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(BRFD) approximations, because, in that case, the molifier (see (4.1)) acts as an indentity. Assuming that §
is large enough and 7 is sufficiently small, for the (BRFD) approximations, first we show that are well-defined
(see Prop. 4.2), and then we establish an optimal, second order error estimate in the discrete H2-norm at the
time nodes and in the discrete H!-norm at the intermediate time nodes (see Thm. 4.4). Letting h and 7 be
sufficiently small (see (4.62)) and applying a discrete Sobolev inequality (see (2.2)), the latter convergence result
implies that the discrete L>°-norm of the (MBRFD) approximations are lower than ¢ and thus they, also, are
(BRFD) approximations. Finally, we show that the (BRFD) approximations are unique and hence inherit the
convergence properties of the (MBRFD) scheme (see Thm. 4.6), i.e., there exist positive constants Cy and Cy,
independent of 7 and h, such that

U7 = Blu?, )], , < Cy (72 + VT h?)

and
n—i—l n—‘,—l n o 2 2
o B Mo E M+ 2 [0 Rl M S Co 1),
where |- |1 5 is a discrete H'-norm which is stronger than the discrete L>-norm and |- |2 5, is a discrete H2-norm
(see Sect. 2). Also, we undertook the challenge to investigate the influence on the convergence rate of the initial
. 1 . . . . . 1 o, . .
choice @2 = g(u®), which is a first order (with respect to 7) approximation of g(u(t2,-)) and it is used in actual
computations by several authors (see, e.g., [4,5,10,11]). First, we show that the latter initial choice affects the
order of convergence at the intermediate node (see Cor. 4.5), i.e., there exist a positive constant C3, independent
of 7 and h, such that
(I)n+% —1 tn+% . < h2
pJnax | nlg(ut" 2, )], , < Cs (1 + k),
which is confirmed by results from numerical experiments (see Sect. 5). Then, we show that the order of
convergence at the time nodes is still optimal (see Thm. 4.7), i.e., there exist constants Cy4, independent of 7
and h, such that

smax [0 =l Ny, + |0 = Rluttn ]y | < Ca e 407,
The result above is new and it is the first time in the bibliography that the observed second order experimental
convergence of the Relaxation Scheme at the time nodes, under a first order in time approximation of g(u(t%7 ),
is mathematically explained.

We close this section by giving a brief overview of the paper. In Section 2, we introduce additional notation
and provide a series of auxiliary results. Section 3 is dedicated to the estimation of several type of consistency
errors and of the approximation error of a discrete elliptic projection. In Section 4, first we introduce a modified
version of the (BRFD) method, and then we analyze its convergence properties and arrive at a set of conditions
that ensure the well-posedness and convergence of the (BRFD) method. Finally, Section 5 contains results from
numerical experiments confirming the outcome of the convergence analysis, and Section 6 contains some general
conclusions of the work at hands.

2. PRELIMINARIES

Let us introduce another discrete space by Gj, := { (Zj);:() tz;€R, j=0,..., J} and the discrete space
derivative operator 8y : X, — Gp, by dpv; := “H5—% for j = 0,...,J and v € X,. We provide G, with an
inner product ((-,-))o,, defined by ((z,v))o,n := h E}]:o zjvj for z,v € Gy, and we shall denote by || - |lo,» the
corresponding norm, i.e., ||z]lo.n := [((2,2))on]"* for 2 € Gj. Also, we provide G, with a discrete maximum
norm || - [|o,n defined by [|v]|so,n := maxo<j<, |v;| for v € Gp.

On X9 we define a discrete inner product (-,-)o,n by (v,2)on = h 3.7, v;2; for v,z € X§, and we shall
denote by || - |jo.s its induced norm, i.e., |[v]jo.n = [(v,v)0.4]"* for v € X§. Also, for v € C?(I), we define a
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discrete elliptic projection Ry (v) € X, of v (¢f. [2]) by requiring
An(Ra(v)) = 150", (2.1)

Moreover, we equip X;, with a discrete L°-norm | - | defined by |w|eo n 1= maxo<;<s41 |w;| for w € X, and
with a discrete H'-seminorm |- |y 5, given by |wly 5 := [|6pw]lo,n for w € Xp,. It is easily seen that |- |15, becomes
a norm when it is restricted on X7 and satisfies the following useful inequalities:

[Vloe.n < LY [vl1,n Vv e Xp, (2.2)
[vllo,n < Ll|vlin Vo e Xj. (2.3)

Lemma 2.1. For all v,z € X} it holds that

(Apv, 2)o,n = = (600, 0n2)0,n = (v, An2)o,n, (2.4)
(Apv,v)p = —|U\ih, (2.5)

[v]1,n < L{[ARv]o,n-

N

Proof. Relations (2.4) and (2.5) are standard. The inequality (2.6) follows, easily, by combining (2.5), the
Cauchy—Schwarz inequality and (2.3). a

Thus, under the light of (2.6), we can provide X§, with a discrete H2-norm |- |2 5, defined by |v|2.n = [|Anv|lo.n
for v € X7.

We close this section by some useful Lipschitz-type inequalities the proof of which, can be found in the
appendix.

Lemma 2.2. Let g € C*(R;R) with sup(|g’| + |g”|) < +o00. Then, for v,w € X3, it holds that
R

l9(v) — a(w)[1.n < suplg'||v—wlin +sup |g"] dnwllec.n [0 = wllo.n- (2.7)
R R

Proof. See Appendix A. a

Lemma 2.3. Let g € C3(R;R) with sup(|g'| + |g”| + [¢"'|) < +oo. Then, for v, v’ 2%, 20 € X3, it holds that
R

la(v®) — 8(v”) = 8(=*) + 8(=")lon < sup |g”| [ = 2°loo,n 0" = 2°llo.n
R

b

+ <sup lg’| +suplg”| |2 — zb|m7h> [v® —v® — 2%+ 2°|lon (2.8)
R R

and
lg(v®) — a(v”) — a(z*) + g(z")|1n < F (0", 0%) 0" — 0" = 2% + 2%
+ F2(2%,2%) ([v* = v® = 2% + 2o + 0" = 2°[lo,n)
+ FC (2%, zb) (|va —b =20 4 zb\l’h + |vb - zb|1,h) , (2.9)
where: F* (v, 0?) = suplg'| + Y5 suplg”| (Jvn + [0°10), F2(2%20) = sup|g”| 8 (z* — 2*)loo,n and
R R R

FO(2%,2%) = |2% = 2foon [sup, |g"] + L sup, |g"'] (1082 lloc.n + 902" [loc.n )]

Proof. See Appendix B. O
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3. LOCAL ERRORS

To simplify the notation, we set 1 := T ut = Ih[u(t%, I, u™ = lp[u(ty,)] for n =0,..., N, and unte =
In[u(t™t2, )] for n = 0,...,N — 1, C(t,z) := g(u(t,z)) and &(t,z) := g(u(t, z)) u(t,z). In view of the Dirichlet

boundary conditions (1.2) and the compatibility conditions (1.4), it holds that ui € X;,u™ € X7 forn =0,..., N
and u"t2 € X forn =0,...,N —1.

3.1. Time truncation error

Forn=1,...,N —1, let r" € X} be determined by

—g(un+%);g(“n_%) = g(u™) +r". (3.1)
Also, let ri € X, be defined by
wot {um@%,.);uzr(to,»} o) ® <u52+uo> Tl [f(t5,~)2+f(tor)] e (3.2)
and let r"tz € X, be specified by
ot ), [tsattan e @] 4 g(qrt) g (£50) 1, [MeslGd]  td (3g)

forn =0,...,N — 1. Using that u € Ctlf(Q) along with (1.1), (1.4) and the Dirichlet boundary conditions
(1.2), we arrive at uy,(t,x) = —f(t,z) for t € [0,7] and z € {z4,2,}. Thus, we have ri € X3 and r*t2 € X
forn=0,...,N —1. Also, (3.2) and (3.3) along with (1.1), yield

1 1 1 1
ri=ri—rf and "tz =r}"2 frg—”, n=0,...,N—1, (3.4)
1 1 n+l n+i
where r3,r3,ry 2,rg * € X7 be defined by
1
1 1 ug (12, ) +ue(to,
Aoy o[ ()] - [ ),
1 1 0 0
i o) s o) [ ] [y

and

1 n+1 n 1 . . 1
r2+2 =, [Ut (t”+5, )} — Iy [—ut(t”’ Hg‘(t"“’) — U (t"+2,~)] ,

T

1 n n n+1 n+1 n n
rg""z =g (un+%) ® {u +12—0—u _un+%} o |:9(“ Jou" M g(u)@u g (un-&-%) ®un+§] .

2

Applying the Taylor formula, with respect to t around ¢ = t,,, we obtain

= [/j [(% —5) Cut (bn+57,) +5Cue (t"_% —|—s7’,~)} dS] , n=1,...,N -1 (3.5)
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Applying again the Taylor formula, with respect to ¢ around t = ti, we have

r;%, =721, [/ [s g ( (% — 3)2 Uit (t% + s, )} ds}
l/ S g ( )—i—(i—s) Ugtt (t%+577.)} d8‘| ,

1

/0 [sutt (s7,)+ (5 —5) un (t%+57,~)} ds]
— élh l/o}l [sftt (s7,)+ (3 —s) u (ti —|—ST,-)} ds] )

Also, the Taylor formula, with respect to ¢t around t = t”*é, yields

N 3
2= Lzz I [/ (8% wpe (tn +57,)] + (5 — 5)2 (o (tw% +s7, )] ds
0

% 1
2, [/0 vt 0y (= e (27 ]

/0E [sutt (tn +s7,°) + (% — 5) m (t"*é + s, )} ds]

5 Vf (36t 7s)+ (3= 5) (575 ds]

forn=0,...,N —1.
Thus, assuming that g € C4(R), u € Cif(Q) and Ofu € C?;(Q) for £ =1,2,3, from (3.4) to (3.7), we arrive
at the following estimates:

1 1 1 ~
Irillon +7llrdllon +  max [ 2]l < Co 72 max(fue| + [were| + G| + [€ee]), (3-8)
0<n<N-1 Q
1 i ~
max  [/"2|y, +7(rE e < Cot? max (Jugse| + [waree] + |Cot| + [Entel) (3.9)
0<n<N-1 Q
and
n n < 2 2 1
1<max7 Ir™ 1o, + grv?gz)v(fl Ir"lin <Cs7 mgx(|<tt| + [Catt]) (3.10)
sl IF™ =" Hlon + [, max [P = < Cyr? mQaX(Kttt‘ + [Cateel) - (3.11)

3.2. Space truncation error

Also, let s7 € X}, be defined by

+si (3.12)




308 G.E. ZOURARIS

and, forn=0,...,N — 1, let s"z € X be given by

un+1T_un —A, (un+12+un) tg (u"*é) ® (u+12+u) 4 [f(tn,+1,~)2+f(tn,,')] Lt

Subtracting (3.12) from (3.2) and (3.13) from (3.3), we obtain
1
ri 75% — A, <u%+u0> - |;)L [uwx<t27')2+umz(t01')] :

+1 ntl g™ o | Uza(tnt1,)FUaa(tn,: _
—5”2—Ah<“ ) e [t buse ) | o — N -1

For t € [0, T, the use of the Taylor formula (with respect to « around x = z;) yields

(B (Gt ) — 15 a2, )]), = 2 / (1= 9)° tpaas (b2 + hy) dy

1
+ %2 / y3u:}czzz (taxjfl +hy) dyv J: 17"'7J'
0

Assuming that u € Cgf(Q), (3.14) and (3.15) yield that

1 1 +3 +3 1 p2
||S4 —r4 ||O,h + 0;;121)\,(71 ||sn 2 — "2 ||O,h < is h mQaX ‘umgmﬂ

3.3. Elliptic projection approximation error

Let v € C*(T). Using the Taylor formula (cf. (3.15)) it follows that
An(I5 () = 15,(0") + B " (v)

where r®F(v) € X§ is defined by

1
(@)= [ (1= 9)* 0" 5+ hy) + 5o (g + )] dye =L
0
Subtracting (2.1) from (3.17) we conclude that

An(15(v) = Ru(v) = 5 r™ (v),

which, obviously, yields

IR (v) = 15,(0)]o.n < Y& h? max [v].
T

Also, combining (3.19) and (2.6), we obtain

[N

Rp(v) = 12(0)]1.n < 52 h? max [v""].
h ) 12
T

We close this section with the following useful lemma.

Lemma 3.1. Forw € C;’JE)(Q) with wy € CE,’;(Q), it holds that

3
R [tejtesd ] iy [ttt ] | < b2 mac gy

for all t,s € [0, T] with t > s.

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Proof. Let t,s € [0,T] with ¢ > s, and w := Ry, {M} —e {%} € xe.

t—s
First, we observe that

|wli,n

/mwm&w&mw

1
t—s
1,h

t
< e [ R ) = (sl 05

and then we use (3.20) to have

5 t
|w|1,h S ng % (/ mIaX|w:L’:czzt(s/a )l dS/)
S
3
< ng h? max [Wyappwt-
Q
O
4. CONVERGENCE ANALYSIS
4.1. A mollifier
For § > 0, let ng € C3(R;R) (cf. [9,15]) be an odd function defined by
T, if x€]0,d],
ns(z) := < ps(z), if ze€(6,20], Va>0, (4.1)
294, if x> 26,

where p;s is the unique polynomial of P7[6, 28] that satisfies the following conditions:
ps(8) =0, p5(0) =1, p§(8) =p5'(6) =0, ps(29) =24, p5(20) = p5(29) = p§'(26) = 0.

4.2. The (MBRFD) scheme

The modified version of the (BRFD) method (cf. [1,9,15]) is a recursive procedure that, for given 6 > 0,
derives approximations (Vi*)N_, C X7 of the solution u by performing the steps below:

Step 1. Let V¥ € X be defined by

V(go = ’LLO (4 2)
and V;? € X be specified by
vi_vp vEvp 0 Vi o | F(2 )+ F(t0,)
?T/z)éAh(éz‘s)ﬁLg(“)@ SR Bl e Rl I (4.3)
Step 2. Define ‘135% € Xy, by
o2 =g <n5 (Vf)) (4.4)

and find V51 € X} such that

1
VJI;VJO _A, (Vél_;véo) g (‘Pg) ® <V51_5V50) Y {W . (4.5)
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1
Step 3. Forn=1,...,N — 1, first define &} "2 € X,, by

and, then, find V(;”+1 € Xj, such that

T

ntl_ym ntl_ yn L ntl_ yn ) ]
Vs Vs _ Ay, (Vs 2+V5 ) T ng (¢5+2) ® <V5 2+V5 ) +19 I:f(tn+11)2+f(tn7):| . (4.7)

1 1 ntl
Remark 4.1. Let Af := 3 (V? + V) and A§+2 = %(V(;M'1 + V") for n =0,...,N — 1. Then, (4.3), (4.5)
and (4.7) are, respectively, equivalent to

1
1 1 1 F(t2,)+f(to,)
2AF —TAAf —Tg(u0) @A =2V + 315 [()2"] (4.8)

and

2457 — 2 AT g (0] ) @ AR — v gy MmO 0 N =1 (49)

4.3. Existence and uniqueness of the (MBRFD) approximations

Proposition 4.2. Let ¢°, = max|goug|, § > ¢°  and C§*' := 1 max|ns|. When 7CJ™ < 1, then the
R

max = Jmax
A

(BRFD) approzimations are well-defined.
Proof. Let ¢ € Xp, € € (0,1] and T[e, (] : X5, — X7 be a linear operator given by
Tle,(lv:=2v—eTApv—e7 [ns(¢) ®v] Vv e X].

max?

Since § > ¢° | the definition of ns yields that ns (g (uo)) =g (uo). Thus, from (4.9) and (4.8) it is easily seen
that the well-posedness of V(;% and (V;")"_, follows easily by securing that T|e, (] is invertible. In particular,
(4.9) corresponds to the choice (g,() = (I,CID”JF%) and (4.8) to the choice (¢,¢) = (3, g(u?)).

Assuming that 7 C; < 1 and using (2.5) we obtain

(Tle,¢Jo,v)on = 2[0llg n +Te vl ) = Te (15(0) ® v,0),,

> 2ol + e ol — 7 l0l s I15()looun

> refolf +4lol, (3 - F maxns]) (4.10)
> re ol + 4l (3 -7

> T€|v|ih Vo eX;.

When v € Ker(T[e,¢]), then (T[e, ¢]v,v)o,n = 0, which, along with (4.10) yields |v|;,, = 0 and thus v = 0. The
latter argument shows that Ker(T[e, ¢]) = {0} and, thus, Tle, (] is invertible, since X§ has finite dimension. [

1
Remark 4.3. Let us assume that 7 C5*' < % and § > ¢°_ . Since V¥ := u® and Vi is well-defined, in view of

max®

(4.3) and (1.6), we conclude that Uz is, also, well-defined and Uz = V(;%.
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4.4. Convergence of the (MBRFD) scheme

First, we establish convergence of the (MBRFD) approximations.

Theorem 4.4. Let g € C*(R), u € C’i’f(Q), Ofu € Cg’zl (Q) fort=1,2,3, and Opu € Cgf(Q). Also, let Uy, =

0 = max lgougl, 0x > Max{Upax; Gimax } andTC(BS'j" < %, where C?j" = i mﬂgx|n5|.

Then, there exist constants C3°* > C5*', C5* > 0, C5™* > 0 and C7"* > 0, independent of T and h, such
that: if T C3™1 < 3, then

mMax ||, guax := max|goul, g
Q Q

luz — Véh,h < G (7'2 +73 h2) , (4.11)
o< 1o (7 4) =9 o 7 Vil S G (4 ) (412

and
b8 lg (u"“F%) — (IDQZJF% |1’h + omax [u™ = Vi o n < G (72 + h?) . (4.13)
Proof. To simplify the notation, we set e? = us — Vé € Xy, e =um = V" € Xj form =0,...,N, and
em = g(umta) — <I>gi+% € Xy form =0,..., N —1. In the sequel, we will use the symbol C' to denote a generic

constant that is independent of 7, h and d,, and may changes value from one line to the other. Also, we will use
the symbol Cjs, to denote a generic constant that depends on d, but is independent of 7, h, and may changes
value from one line to the other. We note that the constants C' and Cj, may depend on the solution u and its
partial derivatives.

Since e? = 0, after subtracting (4.3) from (3.12) we obtain

[N

Nl=
(2]

Bl

e = ﬁAhe% +Zg9W)®ez + (4.14)

INIEY

Next, take the (-, -)o,p-inner product of (4.14) with e?, and then use (2.5), the Cauchy—Schwarz inequality, (3.4),
(3.8), (3.16) and the arithmetic mean inequality to get
0 3 %) ( i %)
(g<u)®e’e O,h+ 5t 0,h

1 1 1 1 1L
5 0 led R n+ 3 |5t = r¥llon + It lon] e flon

1 1
le 15, + Fle2 5, =

IN
ISH
SR

IA

1 1
20 ez g, +C (2 +7h%) |lez|lon
20Nty +C (72 +7h?)" 4 L lez

nax

IN

2
0,h
Let G := max{$ ¢° ., C5%'} and 7 C3*" < . Then, the inequality above yields that

e |2, +7le? 2, < C (2 +7h%)%. (4.15)

Taking the (-, )o,,—inner product of (4.14) with Ape?, and then using (2.5), we obtain

41ex[3 ), + 7| Ape|[3, = al +a?, (4.16)
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where al := —7 (g (uo) ®e%,Ahe%) and a? = —27 (si,Ahe%) . Now, we use the Cauchy-Schwarz
0,h 0,h

inequality, the arithmetic mean inequality and (4.15), to have

al < 76°  lleZ o [1AneZ o

A

3(g%.,)° 1 1 1
. [() I3 + 1 | Ane? ||ah]
(4.17)

IN

2 1
Cr (72 + Th2) +3 |Ae? ||(2)7h

2
<C (T% + 73 hz) + 5 HAh@%”g,h'
Also, (3.4), the Cauchy—Schwarz inequality, (3.8) and (3.16) yield

11 1 1 1
a?= 27 (s4fr4,Ahe2) —27 (r4,Ahe2)
0,h 0,h

1 1 1 i 1 1 1
= =27 (54—r4,Ahe2) -2T (rﬁ,Ahw) +27 (ré,AhW)
0,h 0,h 0,h

IA

1 1 1
27 (st = 4o + I

1
o,h} 1ARe? o + 27 (ré,Ahe%)

s

IN

1
C (h+72) | Ane on +27 (rF, Ane?)

)

1
Since r} € X}, using (2.4), the Cauchy-Schwarz inequality, (3.9) and the arithmetic mean inequality we arrive
at

1 1
a2 < 1 (r2+12) ||Ane|lon — 27 ((5hrg,5he%))
2 2 1 i 1 ,
<Cr (T +h ) [Arez[lon +27r5|1nle2]1n
<Cr (7’2 + h2) ||Ah6%”0,h +C 72 |e%|1’h
< lC (P +r) + blane 3] + [Crt +IedR,] (4.18)

IA

2
o (et | gt it

IN

2
C (P +r02) + E [ Aned |, +1ed B
In view of (4.16)—(4.18), we arrive at
2 212 2 1.2)?
2B+ 7l Anet 3, < € (2478 02), (4.19)

which, obviously, yields (4.11).
Since 6, > Upa.y, We have ng, (u%) = w2, which we use, along with (4.4), (4.1) and (4.15), to obtain

1 1 2
1ealZn = llg (ns. (1)) =g (ms. (Vi2)) 115
1
< sup|(gons) [ [le? |3 (4.20)
R

< Cs, (72 + Th2)2.
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Also, using (2.7) (with g =gons, ), (2.3) and (4.19), we get

1 1\ 2
|69nid ih = |g (115* (ué>> -9 (n5* (%i)) |1,h
1 1 1
< 2sup|(go no’*)/ |2 |e? ‘ih +2sup|(go na*)/l |2 llong (u2> mio,h [le2 ||%,h
" R (4.21)
< Cs, |€§|§,h
. 2
< Cs, (7’2 + 72 h2) .
We subtract (4.5) and (4.7) from (3.13), to obtain the following error equations:
3
2 (en —e") =7rAL (" ") + > QY n=0,...,N—1, (4.22)
k=1
where QL7 1= 27573, Q21 = Tns, (@Z:FE) ® (e’“r1 + e”) and
1
Q¥n =1 [g(u”Jr%) —ng, (@?jﬂ} @ (u" T +um).
Taking the inner product (-,-)os of (4.22) with (e"™! — ™), and then, use (2.4), we arrive at
3
2||en+1 7€n||(2),h+7_ [|6n+1ﬁ,h - |en|ih] = Z (Qm,n’6n+1 7en)o7h7 n:()?"wN* 1 (423)

k=1

Let n € {0..., N—1}. Using the Cauchy—Schwarz inequality, the arithmetic mean inequality, (3.8) and (3.16),
we have

(@ et =)y, < 27 [l = o+ P o] e = e o
Cr (T2 + h2> Hen+1 - €n||0’h (424)
C 72 (7'2 + h2)2 + % flentt — e"||g7h.

Next, we use the Cauchy—Schwarz inequality, (2.3), (4.1) and the arithmetic mean inequality, to get

0,h

A

IN

+1
(@t =)y, < ns, (®57) b €75 + o "+ = o
C,. 7 ‘en-i-l + €n|1,h H€n+1 _ en”O,h (4.25)

Cs, 7 Uenﬂﬁ,h + le” %h] + % lle"tt — enH(z),h‘

*

<
<

Finally, taking into account that d, > g,..., we apply the Cauchy—Schwarz inequality, (4.1) and the arithmetic
mean inequality to obtain

1
(Q¥™, et — e”)o’h < 27 Upyy |15, (g (u"*é)) —ng, (‘b?j“‘) lo.n lle™ T —e™[|o.n
1 nt3
<Cr m][?‘X ‘I‘l:;*| Hg (un+2) - q)(;* 2 HOJ'L ||en+1 - enHO,h (426)
< Cs. 7 llenallon lle™™ —€™on
< 06* 72 | e;’rL)id g,h + é ||6n+1 - 6n||(2),h'
From (4.23)-(4.26), we conclude that there exists a constant C*" > 0, such that
et —e™[5, +Tle" T, < Tlet R + G [[e T e T + el a]

(4.27)
+C7? (7’2+h2)2, n=20,...,N—1.
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Let us find an error equation governing the midpoint error e”
and the assumption 6, > u we obtain

mid

max )

etatert =2 [gms, (u) =g s, (Vi) +2r", n=1,...,N—1,

mid mid

which, easily, yields that

elta—elti=20"4+2 (""", n=2,...,N-1,

mid mid

where ¢” € Xj is defined by
7 =g o, (V1)) = (05, V2)) = g . (471)) 3 . (7).
Then, we use (2.8) (with g = gons,), (4.1) and the mean value theorem, to get

lo™lo.n < sup|(gons,) [lle” = e" o
R

"Moo [ll€" =" Mo + 1€ lo.n]

+sup|(gon,,)" | |u
R
< Cs, [||e" — e”_1||07h +7 ||€n||o7h] , n=2,...,N—1.

Taking the (-, -)o,5, inner product of both sides of (4.29) with 7 (e”
inequality, (4. 31) (3.11) and (2.3), it follows that

lnld mid

er 2o n < 270 lon +27 17" =" Hlon) llel
< GCs., [T||€"*6”71||0h+7 "lo,n] lle
+Crt ek, +erlon
<Cs, 7le" —e" Hon (letallon + Hem.d llo,n)
+Cs, 72" |1 (lletallon + letllon)
+OT ( 0h+|m|d ||Oh) n=2,...,N—1.

+ el

en 8’}1 — T

mid

T

nud mid

mld + em]d ||07h

nnd

Now, we apply the arithmetic mean inequality to obtain

7 [|enma 8,}1_7- €onia ||0h <Cs, 77 (lleallon + llela < llo, h) + [le™ — e 1||0h
+Cs, 72 [l + (letallon + letilon)’]
+Cr8 472 (||€mld on + etz lon)’
< Cs, 7 (llefalldn + llera?lls, h) + He " En
+Cs, 72 (le™1 1 + lemallon + lema’ll5n)
+CT +2T (‘ €nia O,h+ Imd ||Oh) n=2,...,N-L
Thus, we arrive at
Tllelulldn + 7 llefat 15, < 7llelat 3., + 7 lleka? s + e — e 5, + C7°

+Cs, 7 [le" R+ llemallon + llen®l5n] . n=2,...,N-1.

From (4.27) and (4.32), we conclude that there exists a constant C5*" > 0 such that:

(1-C&Vr) EMl < (14 C8Vr) E 4+ C7% (P4 027, n=2,...,N-1,

Subtracting (4.6) from (3.1) and using (4.1)

(4.28)

(4.29)

(4.30)

(4.31)

+ el 2) and then using the Cauchy—Schwarz

(4.32)

(4.33)
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where
E™ = fle™ —e™ MG+ 7 (le™ 5 + el 5 n + el ®15,,), n=2,...,N. (4.34)

Assuming that 7 C5™" < 1 with CET’V i= max{C5™", C5*"}, and applying a standard discrete Gronwall argument,
from (4.33) we arrive at
max E™ < Cs, {E2 + T (7'2 + h2)2} .

2<m<N

Since € = 0, the later inequality along with (4.34) obviously yield that

o | max [e",+ maﬁlnezédnah}sca [le? = M3 + 712+ 713

0<m T 0gm< (4.35)
7 lebualld s+ 7 NeSualld s+ 7 (72 +12)7]
Setting n = 0 in (4.27) and using that ¢ = 0, we obtain
T |el|ih < Cs, [7’2 (7'2 + h2) + 72 ||em,d ] (4.36)
Now, we set n =1 in (4.27) and use (4.36), to have
le? = €3+ 7l < Co, |72 (72 4+ 52)% 7l + 72 llehualld o]
(4.37)
<Co. |72 (P24 1) 472 DB n + 7 lebualBa] -
Also, we set n =1 in (4.28) and then use (3.10), (2.3) and (4.36), to get
2
ekl < [Ietulon +2 sup (g oms, YT Ietlon + 21 o
R
< Cs, (lledalldn + lle'll5n +7) (4.38)
< Cs, (ledallin+ et |1h+T )
< Cs, [lleduullin + (7 +12)7]
From (4.35) to (4.38), we arrive at
Jmax (e + max e 8n < G [(72 45+ lebul (4.39)

Thus, (4.12) follows, easily, from (4.39) and (4.20).

Let us define p™ := Rp[u(t™,-)] —u™ € X} and n™ := V]™ — Rp[u(t™,-)] € X}, for m =0,...,N.
Then, using (4.5), (4.7), (3.3) and (2.1) we get

4
20" =) =T A (" ") + ) B, m=0,... N -1, (4.40)

k=1
where ) i .
gln —9F (u"'" —u™ R}, {U(t ) —u(t 1)}) ,

T T
1
B = — 271" "2,

1
B3 := — 7ns, (@ng) ® ("t 4 €M),

B =7 [, (257F) — na. (90w H)] @ (H + ).
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Take the (-, )o p-inner product of (4.40) with A (n™+1 —n™), and then, use (2.5) and (2.4), to have

4
2" ="}, + 7 (1 Ay — A" 15.4] = > (6nB=" 00 (7" =), (4.41)
k=1

forn=0,...,N —1.
Let n € {0..., N—1}. Using the Cauchy—Schwarz inequality, the arithmetic mean inequality, (3.9) and (3.21),

we have . L L L
((5hB ’natsh (77n+ _Wn)))()h_ ‘B n|1h|77n+ -1 |1h
S C’Th2 |77n+1 - |1,h (442)
ek A VA
and

(3B, 00 (0™ = 0")) g < 27 P2 [ [ = "
< 07,3 ‘nn+1 _ nn|17h (443)
< C 76 _|_%|T]n+1 —g" 2
Using, again, the Cauchy—Schwarz inequality and the arithmetic mean inequality, we get

(0 (B*™ +BY")0n (0™ = n"))g, < 377 (I8 + 1" [10) + 3 0" =01 (4.44)

)

where

0
i

*

( u"+%> —ng, (@gj%» ® (u" ™ +um).
2.6

6), we get

B, (07F) @ (e e,

Using (4.1), (2.2), (4.12), (3.20) and (

J

l 1
80 < [Ins, (573) i fem* + e+ s, (972) L e
n+ § "+% 2 n+1 n|2
<C ns, (@52 ) l1n+ Ins, (s, 7 ) loo,n| " + €14
n|2 )

< o [ o =g (wrt3) |+l (w2 ) 1] (e s e )
<Cs, (L+lelulin) (e T +1e™in)

<Cs, [|em1d 1nt |€n+1|%,h + \enﬁ,h]

< Cs, [lemalin 10" T+ 1" + 0"+ "1 ]

< Cs, [lelalin+nt+ ", + "3 -

2
+l
<C {S§P|ng*| |25, %10 + S}épna*] (le™ 13 n
(4.45)

mid

Also, combining (2.2), (2.3), (2.7) (with g = ns,) and the assumption d, > g,,.. We obtain
|C4,n|ih <C [|n6* ( ( é)) ( ) |1 n |un+1 +un|

"+2 n+1 n 2

+lins. (g (u2)) =, (2572) o Ion (u** +u") moo,h}
1
<0 (2271) - (5 () 16
2
< C [suplo, el -+ moxlo 110, (9 (174)) Lo el

< 05* |€mid|1,h'
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Thus, (4.44)—(4.46) yield

((5h (Bd,’ﬂ + B4,TL) 75h (77n+1 - nn)))o h S C(S* T2 [h4 + |€Zid

ih + |77n+1|§,h + \77”@,}&

: (4.47)
+ % It — 77n|%,h'
From (4.41) to (4.43) and (4.47), we conclude that there exists a constant C§**' > 0, such that
" = I TR S T+ G (lenal T 1T S+ I3 ) (1.48)

+C7? (T +h2) , n=0,...,N—1.

Taking the (-,+)o,n inner product of both sides of (4.29) by 7 Ay (e
Schwarz inequality and (3.11), we have
Irnd |1 h = 2T ((5h0n7 5h ( €mia T 62142)))0 h

+27 (((5h (r”_r - ),5}1( el el )))O,h (4.49)
<27 (lo™in + " =" Hen) (lelalin + lel?ln)
<27 (\0”|17h —|—73) (|efﬁd Lh+ |emid |1,h), n=2...,N—1.

+ e"2), and using (2.4), the Cauchy—

nud mid

2
1,h

n
mid

T |€e

Using (4.30), (2.9) (with g = gomns,), (2.3), (4.12) and (3.21), we get

lo™1n < Cs, (le" —e" in+7le"in)
<Cs, " =" Man+ 1" = p" w47 (72 + h?)] (4.50)
< Cs, [|77n - 77n71|1,h + T (7'2 + h2)] , n=2,...,N -1

Then, (4.49), (4.50) and the arithmetic mean inequality, yield

T |e::nd %,h +7 mxd | <7 |em|d |1 h + 7 |em|d |1,h + 05* T |7In - 77“71|1,h (|€?1id 1,h + |€Z;2|17h)
+ G5, 72 (124 02) (lefalin + left®lin)

<Tlel i Frlemd T+ =0 R+ O, 7 (elalin + \62;2\1,}7,)2

e [+ -
< T|emld BhtTlelin+ " —n""3

O [ (bt ) + 2 4]

for n =2,..., N — 1. Combining (4.48) and (4.51), we conclude that there exists a positive constant C5*"" such
that:

(1—CoY ) EPHL < (14 C8V7) ER 4G5, 72 (P24 4%)°, n=2,... ,N—1, (4.52)
where
EV =™ =™ W+ 7"+ rlel i+ Tlel P, m=2,...,N. (4.53)

Let us assume that TCBR,vm <
Gronwall argument based on (4.52),

, whcre G5 = max{C{™™, C*""}. Then, employing a standard discrete
t follows that

\/L\D\P—‘

max EJ" < Gy, |:E3+7' (T2+h2)2],

2<m<N
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which, along with (4.53), yields

| 7 e Jeufal < Co I~ a4l B -
+ 7lel . 1h+7’ o 1h+7’ (72+h2)2} .
Combining (4.48) (with n = 0) and (3.19), we obtain
T < Co, |7 I8+ T2 bl + 72 (72 + B2
< Cs, [7‘ R+ 72 el i+ (7P + h2)2} (4.55)
< Co. [P lebualin 7 (724127
Using (4.48) (with n = 1) and (4.55) we have
02 =0 B+ 7B < Co. [rIn' B+ 72 lebualin + 7 (72 4+ 12)°)] s

< 05* [7-2 |er1nid|%,h + 7—2 |€0‘ i (T2 + h2)2:| :

Also, from (4.28) (with n = 1), (2.7) (with g = gomns,), (2.3), (3.19), (2.6) and (3.10), we conclude that
2
1 < [ledalin +21g (ns, (') — g (ns, (V5,)) [n +2[r! |10]
< Cs, (|€Sfud|% e+t
< Cs, Tt o eIt ) (4.57)
Mﬂnbh+0f+f)]

e

mid

rmcl

< Cs, |:|6mxd
SC(S |:|em1d|1h+ h2+7—> :|
Since €? = 0, using (3.19), we get

max [e™[3), < max (|p"[an + [1™"]2n)"

0<m<nN 1<m (4.58)
<0h4+ max [1" |5, '
1<m
Thus, from (4.54) to (4.58), it follows that
max |e 55+ max lem |2, < Cs., |:|€8'1id Tt (P4 hQ)Q} . (4.59)
0<m 0<m<n—1 ’ ’
Finally, (4.13) follows, easily, from (4.59) and (4.21). O

1
Next, we investigate the influence on the convergence rate of a different construction of ®7 (see [4,5]).

Corollary 4.5. Let g € C*(R), u € C?2(Q), 8fu € C’tO”xl(Q) for £ = 1,2,3, and dyu € Cgf(Q). Also, let

Uy 1= mgx|u|, Jrnax = mgx|g( u)|, 0, > max{umx,gmax}, CET" = % m§X|n5| and TCET'I < % If

z =g (u°), (4.60)
then, there exist constants C3;' > C5™' and C5? > 0, independent of T and h, such that: if T C5:' < 1, then

m+3 _(I)m+2
o [g(u™re)

m m B,2 2
[ gmax [ =Vl < G (v + 2). (461)
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Proof. Since 8§, > Upay, estimate (4.61) is a simple consequence of (4.60), (2.7) (with g = g o ns,)
and (4.59). O

4.5. Convergence of the (BRFD) method
Theorem 4.6. Let g € C*(R), u € C’if(Q), olu € Cg’zl(Q) for £ = 1,2,3, and du € CYHQ). Also, let

t,x

Uy 1= mgx|u|, oo 1= mgx|gou|, ¢@° = mIaX|go o, 0x > 2 MaX{Unaxs Ginax 5 C?f" =1 m§X|n5|, CZiV’l,

max 1

C5?, G527 and C57* be the constants specified in Theorem 4.4, where CI™" > CF*' If 7 C57* < 3 and
VL (T2 +77 h2) < %, max{C3°, GV VL (7P +R%) < &, (4.62)
then, the method (BRFD) is well-defined and the following error estimates hold
ut — Uy, < €2 (72 43 h2) (4.63)
and

1 1
gonax lg (um+2) — "I g + Jmax [u™ — U™y, < max{C5™*, G5} (72 + h?). (4.64)

Proof. Since &, > 2 max{guax, Umax} > g0, and 7 CET'l <T C(Bsiv’l < %7 Proposition 4.2 yields the existence and
uniqueness of the (MBRFD) approximations when § = J,. Using the convergence estimates (4.11)—(4.13), the
discrete Sobolev inequality (2.2) and the mesh size conditions (4.62) we have

@55 < g (@ #) =23+ g (0 ) oo
<V (w3) =0

SCOUVE (P )+ <8, n=0, N1,

V3| o < Jut = V3!

0,h + |un|007h
VL U™ = Vi1 + Vs
SGUVL(PHR)+ 5 <6, =1 N1,

oo,

and

|V5% < |“% -V
x loo,h — Ox

oco,h + |u% ‘oo,h
1 1
< VEJut = Vi |+
< VL (rQ +7% hQ) +2% <4,
which, along with (4.1), yield
ns, (Vi)=Vi, (=%11,...,N-1,
n+i n+i (465)
ns. (<I>5* 2) —opt n=0,... N1
Thus, for 6 = &, the (MBRFD) approximations are (BRFD) approximations, i.e., (1.5)—(1.10) hold after replac-
ing U by V2, U™ by Vi forn=0,...,N, and ®"*% by ®; "2 forn =0,...,N — 1.

N—-1
Let Uz, (U™)Y_, and ((I>"+%) be approximations derived by the (BRFD) method. Then, we introduce
n=0
1 il
the errors q% =V - U%7 qt:=Vy' —U" forn=0,...,N, and q,, := <I>5*+2 —®"F: for n = 0,...,N —1.
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Since 7 C5*' < 1 and 6, > guue > g2, Remark 4.3 and (1.5) yield q° =0, g2 =0 and q°,, = 0. Now, we assume

that for a given m € {0,..., N — 1} it holds that "> = 0 and g7, = 0. Subtracting (1.10) from (4.7) (or (1.8)
from (4.5) when m = 0), and then using (4.65), we obtain

qm+1 _ %Ahqm+1 +g |:n5* ((Pg;b‘f‘%) ® qm+1} ) (466)

m—+1

Next, taking the inner product (-, -)o 5 with g and then using (2.5), the Cauchy—Schwarz inequality, (4.1)

and the definition of C§*', we get

m T | M m""% m m
0= a3+ 5 0" — 5 (s, (@57F) @ a7t qm1)

T
2 0,h
> IR 2 a2, (; 2 sup |n5*|)
R
> g 4 2 a2, (A= )
> % |qm+1 %,h?

which, obviously, yields that ¢™+! = 0. When m < N — 2, observing that

Goia =2 [g (Vi) =g (U™ )] = alls

mid

we arrive at g™ = 0. The induction argument above, shows that, under our assumptions the (BRFD) approx-

imations are only those derived from the (MBRFD) scheme when § = d,, and thus the error estimates (4.63)
and (4.64) follow as a natural outcome of (4.11) and (4.13). O

Theorem 4.7. Let g € C*(R), u € Cgf(@), Ofu € C’gjxl(Q) for£=1,2,3, and Osu € C’gf(Q).
Also, let Uy, = max|ul, gm.. = max|g(u)], ¢, = maxs|go ugl, 6x > 2 max{Upmee; Gmax}s Cao' =
Q Q *

max

3 mrgx\nﬂ, and C3' and C5? be the constants specified in Corollary 4.5, where Cg' > C3'. If TC5' < 3

and
G2 max (L2, L) (7 4 0) < 5, (167

then, the method (BRFD) with Pz = g (uo) is well-defined and the following error estimates hold

max [g(u"FE) — &I, < CEF (7 + h?) (4.68)

0<m<N-1
and, there exist constants C3* > C3' and C3*, such that: if T C5* < 1, then

max ([[u™ — U™ [lo.n + [u™ = U™[1) < C5* (72 + h?). (4.69)

0<m<nN

Proof. Since §, > 2 max{gumax, Umax} > g2, and TCST'I <rT Cgf < %, Proposition 4.2 yields the existence and

max

S ol
*

uniqueness of the (MBRFD) approximations when § = §, and &} =g (uo). Then, moving along the lines of
the proof of Theorem 4.6, and using (4.67), (4.61), (2.2) and (2.6) we conclude that

m+% m <
02X (85 loon < 0py | max [ViTloon < 0 (4.70)

and, in view of (4.1), we obtain

n+1 n+i
me (Vi) =V, n=1,.. N-1 and n, (@5") =0 n=o0.. N-1 (4.71)
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In addition, we conclude that the (BRFD) approximations with Pz = g (uo) are well-defined and are those

derived from the (MBRFD) scheme when ¢ = ¢, and @é* = g (u°), and thus the error estimate (4.68) follow as
a natural outcome of (4.61).
Recalling (4.22) and using (4.71), we have

3
et —en = LAV (e”Jrl + e") + ZQ""”, n=20,...,N—1, (4.72)

k=1

1
where QL ;= T5n+%, QZn .= gq):;:r? ® (6”*1 + e") and Q3" = Zena® (u”+1 + u")

mid

Since €® = 0, after taking the (-, ) p-inner product of (4.72) w1th ("™ + e"), using (2.5) and then summing
with respect to n, we get

3 m—1
lem 2, < Z[Z Q“’",e”+1+e")o,h], m=1,...N. (4.73)

k=1 Ln=0

Let m € {1...,N}. Using the Cauchy—Schwarz inequality, the arithmetic mean inequality, (3.8), (3.16) and
(4.70), we have

m—1 m—1

Z (an n+1 +e <r Z (||sn+2 _

n=0 n

", h) "+ + €"[|o,n
=0
m—1

Z (7 +22) (lle" Hlo.n + [le™llo.n)

\ /\

(4.74)

m—1

<O (P +r2) +20 Y (lle" 2, + e
n=0

o)

m—1
<C (P +R)  w2r|e™|B, +4r Y leM3,
n=0

and

3
L
3
L

2
D@ e eon < 50 ) (e on + lle”llo.n)
0

=0 " (4.75)

m—1

<To ™50 + 700 Y N5 ne
n=0

Observing that

3

m m—
(Q3 et e, = > (endt @ (w4 "on T3 > (e ® (@) +¢")on
0 n=1 n=0
(em.fl ® (um + umfl) ,6’")

mid

R

n

oS

0,h

m—1

2 ((ehat ) @ (" ™) M),

)

+
NS
—_ ,_.

3 3

+
(SR

(en. ® (un+1 _ un—l) ’en)

mid

3
Il
-
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and then using the Cauchy—Schwarz inequality, the error bound (4.61) along with (2.3), (4.28), (3.10), (4.70)
and the arithmetic mean inequality, we arrive at

m—1 m—
Z (Q3,n7 en—i—l + en)07h < C(;* (7_2 + Th2) ||emHO,h + 06 Z 7_ + Th2 ”enHO b
n=0 n—=1

m—1
+Cr Y (Ir 1) €™ lo.n (4.76)
n=1
9 m—1
<Cs, (P47 + 55 n +Com Y NG
m=0

From (4.73) to (4.76), we conclude that there exists a constant C5* > CF* such that

m—1

(1=7C3) le™3n < Cs. (PR +Cso Y lle™§n, m=1,...,N. (4.77)
n=0

Assuming that 7 CZ‘: < %, and applying a discrete Gronwall argument (4.77) yields

oHmax €™ (lo,n < Cs, (T2 +h?). (4.78)

Since € = 0, after taking the (-,-)o,,-inner product of (4.72) with A (e"** 4 €"), using (2.5), and then
summing with respect to n, we get

m—1 3 m—1
le™|3 ht3 Z le" Tt 4+ e™|ap < fz [Z (Qn’n,Ah (6"+1 Jre”))o’h] , m=1,...,N. (4.79)

n=0 k=1 Ln=0

Let m € {1..., N}. Using the Cauchy—Schwarz inequality, (3.8), (3.16), (4.70), (4.78) and the arithmetic mean
inequality, we have

m—1 m—1
= @A (et ey, <7 3 (I = o+ I E on ) €+ €z
n=0 n=0
m—1
SCr Y (P42 e e o (4.80)
n=0
m—1
<C(FP4+n)+1 > ettt enf3,
n=0
and
m—1 m—1 .
Q" A ("™ +e™)) o) S50 Y 157 oo [le" ™ + €™ [lo,n [€™ ! + €|z
n=0 n=0
m—1
<Cs.m ) (P4 R2) [T e o (4.81)
n=0
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Using (2.5) and rearranging the terms in the sums, we get

m—1

Z Qd " n+1 + en))oﬁ = -3 Z (62;1 ® (un + unil) 7Ah6n)o,h
n=0 n=1
m—1 (4.82)
_ % (EZid ® (un+1 + un) ,Ahe )0 .
n=0
= 7'1 + 1o + 7?53
where
Ti=75 (0n (elia’ @ (™ +u™h)) ne™)
m—1
Tpi=5 »_ (0 ((ehi! +el) @ (" +u71)) one”),,
n=1
m—1
=5 ) (0n(ena® (" —u"71)) dne"),,
n=1

Now, we apply the Cauchy—Schwarz inequality, (2.3), (4.61), (4.28), (3.10), (2.7) (with g = g o ns,) and the
arithmetic mean inequality, to obtain

71 S % [ mld |1h|u“’rn4>1 +LL’rn|00h +
<Orlelnle™ln
<C (7'2 +7'h2) le™]1,n

<C (P47 5l (4.83)

ema lon llon (W™ + ™) floo,n] le™ 1,

T, <3 |e”f1 +e”

mid mid

1h € 1n
<7 [lg(w™) — g (V5") [0 + IF"1,0] l€"1n

<Cs, T Z |€n|1h+7')|€n|1h
n=1

m—1
<Cs, T+ Cs, T D LR (4.84)

n=1

and
-1

3

e’l’L

mid

&
I

) [
r¥
a3

1h |un+1 _ un_1|oo,h + e

0.0 165 (w1 =™ ") floon] €™ |1,

n
mid

(SR

\ /\

1h|e |1h

rmd

(4.85)

\ /\

T +Th2 |€n|1h

m—1
< Cs, (72 + Th2)2 +Cs, T Z |e"|ih.

n=1
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From (4.79) to (4.85), we conclude that there exists a constant C3** > CF* such that

m—1
(1=7Ce) [ < Cs, (FP+h2) +Co,m > "5, m=1,...,N. (4.86)
n=0

Assuming that 7 CE’:* < %, and applying a discrete Gronwall argument (4.86) yields

max |e™|, < Cs, (72 +h?). (4.87)
0<m<nN
Thus, (4.69) follows easily from (4.78) and (4.87). O

5. NUMERICAL RESULTS

We implemented the finite difference method (BRFD) in a FORTRAN 77 program which uses double precision
real arithmetic and employs the subroutine dgtsl from LINPACK (see [7]) to solve the resulting tridiagonal linear
systems of algebraic equations. Also, the program gives to its user the option to set Pz = g (uo), or &z = g(U%)
after computing U? via (1.6). When the exact solution to the problem is available, the program computes the
following discrete L (H!)-norm approximation errors:

E4(N,J +1):= max ’@”‘F% —yg (u”‘*‘%)

0<n<N-1 |11h

and

E,(N,J+1):= max{|U§ —u? 1,h, Max !U" —u"|1h}
0<n<nN ot

when ®2 = g (U%>, or
* L n__ ,n
EX(N,J+1):= Jax U™ —u"|,,
when @z = g (uo). Finally, letting N be proportional to (J + 1) (i.e., N = ¢(J + 1) for a given ¢ € Q), we
compute the experimental order of convergence for successive values values J; and Js of J, using the formula

log (E(q(J1+1),(Ji+1))/E(q(J2+1),(J2+1))) /log ((J2+1)/(/1 +1)),

where F = Ey;, B, or E}.

Let us now consider the problem (1.1)—(1.4) with: g(z) = 1 — 22 and load f such that the function u(t,z) =
e10 (z — x3) sin(w (z — x4)) to be its exact solution. In the first set of numerical experiments we choose T = 1,
(e, 2] = [0,1], (N,J +1) = (v,v) for v = 20,40,80, 160, 320, 640, 1280, &% = ¢ (U%) and compute the
approximation errors Ey, (v, v) and E4(v,v). The results we obtain are shown on Table 1 and confirm that the
experimental order of convergence with respect to % is equal to 2, which is in agreement with the results of the
convergence analysis (see Thm. 4.6). In the second set of numerical experiments we choose T' = 1, [z, 23] = [0, 1],
(N,J 4+ 1) = (v,v) for v = 20,40, 80, 160, 320, 640, 1280, ®2 = g (u®) and compute the approximation errors
E’(v,v) and E.(v,v). We display the results obtained on Table 2, where it is obvious that the experimental
order of convergence with respect to % is equal to 1 for the error approximating g(u) at the intermediate time
nodes and is equal to 2 for the error approximating u at the time nodes. Again, the behaviour of the method is
in agreement with the results of the convergence analysis (see Thm. 4.7).
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TABLE 1. Discrete H' norm convergence when with ®2 = g(U2).

v Ey(v,v) Rate v Es(v,v) Rate

20  4.087(—3) - 20  5.509(—3)
40 1.025(—3) 1.994 40  1.255(—3) 2.133
80  2.565(—4) 1.999 80  3.152(—4) 1.999
160 6.414(—5) 1.999 160  7.921(—5) 1.999
(—5) (=5)
(—6) (—6)
(=6) (=6)

320 1.603 1.999 320 1.983(— 1.999
640 4.009(— 2.000 640 4.961(— 1.999
1280  1.002(— 1.999 1280 1.240(— 1.999

1280  1.025(— 1.999 1280 1.402(— 1.011

v Ej(v,v) Rate v Es(v,v) Rate
20 4.210(-3) - 20 1.673(-2) -

40 1.049(—3) 2.004 40 5.995(—3) 1.480
80 2.623(—4) 2.000 80 2.559(—3) 1.228
160 6.559(—5) 1.999 160 1.189(—-3) 1.105
320 1.640(—5) 1.999 320 5.748(—4) 1.049
640  4.101(—6) 1.999 640  2.827(—4) 1.023

(=6) (=4)

6. CONCLUSIONS

Coupling the Besse Relaxation Scheme [4] with a finite difference scheme for space discretization, we arrive at
a linearly implicit, fully discrete method for the approximation of the solution to a semilinear heat equation. For
the proposed method, we derive optimal, second order error estimates in various discrete norms. Investigating
the first order initial choice ®z = g (uo), we develop a re-estimation argument that leads to a new, second order
error estimate at the time nodes and to a first order error estimate at the intermediate nodes, which are in
agreement with results obtained from numerical experiments.

APPENDIX A.

Proof of Lemma 2.2. Let v,w € Xj. First, we define a*, b° € G, by aj = svj41 + (1 — s)v; and b] :=
swijr1+ (1 —s)w; for j =0,...,J and s € [0,1]. Then, we use the mean value theorem, to conclude that

5n(a(v) — glw)) = £* + £ (A1)

where L4, L" € Gp, given by L] = (dn(v — w)); fol ¢'(a3) ds and L7 = dpw; fol [g’(aj) —g’(b;)} ds for
Jj=0,...,J. Observing that |[,34| < sup, |g'[ |(0n(v — w)),| for 5 =0,...,J, and

1
A[ﬂwﬂfwﬁo+uf@@@fwﬂds

< 3 1(Gnw); Sl;p\gl'| (Jvje1 —wiga| + vy —wyl), j=0,...,J,

|1£57] < [ (6nw); | sup |g”|
R
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we, easily, arrive at

£ lo.n < sup |g’| 16n (v — w)llon,
R

I1£%o.n < Ionwllse.n sup |g”|lv = wllo,n-
R

Thus, (2.7) follows as a simple consequence of (A.1)—(A.3).

APPENDIX B.

Proof of Lemma 2.3. Let v®, v’ 2% 2% € X7 . We simplify the notation, first, by defining a®, b® € X7 by a® :=
sv+ (1 —s)v® and b := s2% + (1 — ) 2% for s € [0,1], and then, by introducing § € X, by := [, ¢ (a®) ds

and t € X} by t:= fol [g' (a®) — g’ (b°)] ds. Also, we set e? := v® — 2% and e’ ;= v® — 2b.
First, we use the definition of f and the mean value theorem, to get

|ﬂoo,h < sup ‘g/‘
R

and

1
i <4 (@) (a5) s

1
Ssup|g”|/ |5 6,08 + (1= s) 0% | ds

® 0
< L ople’] (8n0g]+Idekl) . =0,

which, obviously, yields
il < 3 supla”| (Jv"1n + [0°]n) -
R

Next, we use the definition of t and the mean value theorem, to obtain
1
1 < supla”| [ o - ds

1
<suplg’| [ s (v =) =25+ )+ (o = =) s
R 0

<suplg”| (lvf —of =2 + 2| +|vj = 2jl) . G=1....
R

which, leads to

[tllo.n < suplg”| (le® = €llon + llello,n) -
R
Finally, for s € [0,1], we apply (2.7) and (2.3), to arrive at
o' (a%) — g (6°) [, < sup|g”||a® — b%[1,n + sup|g”| |0n6" [l [[a” — 6% [lo,n
R R

< (sup g"| +L sup |g”] |||6hbsnoo,h) o — 6%l
R R

< (sup g"| +L sup |g” |||6hbsnoo,h) (1 = lun + ¥lun).-
R R

(B.1)

(B.4)



ERROR ESTIMATION OF THE BESSE RELAXATION SCHEME 327

Observing that dpt = fol on [9' (a®) — g’ (6°)] ds and using (B.4) we have

1
o < / 10’ (a®) — o' (6%) |1 ds
0

(B.5)
< {sup 6"+ L sup |g"| (192" loon + 10n2"loon) | (le® = €’lin +1e]1n) -
R R
Using the mean value theorem, we obtain
0(v") — a(v”) — 8(z*) +a(z") = £* + £, (B.6)

where £+, £7 € X} are defined by £4 := (v“ R zb) ®fand £° := (z“ — zb) ® t. Thus, using (B.1) and
(B.3), we have
1% lo,n < sup |g'[ le* = €"[lo,n,
R

(B.7)
122 ]lo,n < sup |g”| 2% = 2[oon (lle® = €llon + [l€"llo,n) -
R
The desired inequality (2.8) follows, easily, as a simple outcome of (B.6) and (B.7).
Part Ill. | For the discrete derivative of £* and £7, we, easily, obtain the following formulas:
(5h£A)j = 5h (Ua — ’Ub — 29 + Zb)j fj+1 + (’U; — U? — Z;-I + Z;j) (5hf)] s
(5h£5)j = (Za - Zb)j tji + (Za - Zb)j (6ht)j
for j =0,...,J, which yield
€410 < [e® = €l1n [floon + [ = €®loon [fl1,n, B.8)
€710 < 10 (2 = 2°) loon IElo,n + 12 = 2[00, [t1,n-
Using (B.8), (2.2), (B.1) and (B.2), we have
/ a a
1€ < [SUP '] + 55— sup lg”| ([v® |1 + [0 Lh)} e —€[1 - (B.9)
R R
Combining (B.8), (B.3) and (B.5), we arrive at
1£2]1,n < sup |g”| 105 (2% = 2°) llos,n (lle® = €”llo,n + [l€®llo,n)
R
(B.10)
#12  M [supla"]+ Lsupla”] (12 e+ 8005w ) | (1 = o+ 1)
R R
Finally, (2.9) follows, easily, in view of (B.6), (B.9) and (B.10). |
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