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ERROR ESTIMATION OF THE BESSE RELAXATION SCHEME
FOR A SEMILINEAR HEAT EQUATION

Georgios E. Zouraris*

Abstract. The solution to the initial and Dirichlet boundary value problem for a semilinear, one
dimensional heat equation is approximated by a numerical method that combines the Besse Relaxation
Scheme in time [C. R. Acad. Sci. Paris Sér. I 326 (1998)] with a central finite difference method in
space. A new, composite stability argument is developed, leading to an optimal, second-order error
estimate in the discrete 𝐿∞𝑡 (𝐻2

𝑥)-norm at the time-nodes and in the discrete 𝐿∞𝑡 (𝐻1
𝑥)-norm at the

intermediate time-nodes. It is the first time in the literature where the Besse Relaxation Scheme is
applied and analysed in the context of parabolic equations.
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1. Introduction

1.1. The initial boundary value problem

Let 𝑇 > 0, 𝑥𝑎, 𝑥𝑏 ∈ R with 𝑥𝑏 > 𝑥𝑎, ℐ := [𝑥𝑎, 𝑥𝑏], 𝑄 = [0, 𝑇 ] × ℐ, 𝑔 : R → R, 𝑢0 : ℐ → R, 𝑓 : 𝑄 → R and
𝑢 : 𝑄 → R be the solution of the following initial and boundary value problem:

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑔(𝑢) 𝑢 + 𝑓 on 𝑄, (1.1)
𝑢(𝑡, 𝑥𝑎) = 𝑢(𝑡, 𝑥𝑏) = 0 ∀ 𝑡 ∈ [0, 𝑇 ], (1.2)
𝑢(0, 𝑥) = 𝑢0(𝑥) ∀𝑥 ∈ ℐ. (1.3)

Letting 𝜇 ∈ 𝐶𝛼(R) with 𝜇(𝑥) = 𝑔(𝑥) 𝑥 and 𝑓 ∈ 𝐶
𝛼
2 ,𝛼

𝑡,𝑥 (𝑄) for any 𝛼 ∈ (0, 1), and 𝑢0 ∈ 𝐶2(ℐ) with

𝑢0(𝑥𝑎) = 𝑢0(𝑥𝑏) = 0, 𝑢′′0(𝑥𝑎) + 𝑓(0, 𝑥𝑎) = 𝑢′′0(𝑥𝑏) + 𝑓(0, 𝑥𝑏) = 0, (1.4)

the classical theory for parabolic problems yields that there exists a (at least) local solution 𝑢 ∈ 𝐶1,2
𝑡,𝑥 (𝑄), and we

can achieve additional smoothness for 𝑢 by requiring additional regularity for 𝑓 , 𝜇, 𝑢0 along with compatibility
conditions between 𝑢0 and 𝑓 (see, e.g., [12]).

Keywords and phrases. Besse Relaxation Scheme, semilinear heat equation, finite differences, Dirichlet boundary conditions,
optimal order error estimates.

Division of Applied Mathematics: Differential Equations and Numerical Analysis, Department of Mathematics and Applied
Mathematics, University of Crete, GR-700 13 Voutes Campus, Heraklion, Crete, Greece.
*Corresponding author: georgios.zouraris@uoc.gr

Article published by EDP Sciences c○ EDP Sciences, SMAI 2021

https://doi.org/10.1051/m2an/2020077
https://www.esaim-m2an.org
mailto:georgios.zouraris@uoc.gr
https://www.edpsciences.org


302 G.E. ZOURARIS

1.2. Formulation of the numerical method

Let N be the set of all positive integers and L := 𝑥𝑏 − 𝑥𝑎. For given 𝑁 ∈ N, we define a uniform partition
of the time interval [0, 𝑇 ] with time-step 𝜏 := 𝑇

𝑁 , nodes 𝑡𝑛 := 𝑛 𝜏 for 𝑛 = 0, . . . , 𝑁 , and intermediate nodes
𝑡𝑛+ 1

2 = 𝑡𝑛 + 𝜏
2 for 𝑛 = 0, . . . , 𝑁 −1. Also, for given 𝐽 ∈ N, we consider a uniform partition of ℐ with mesh-width

ℎ := L
𝐽+1 and nodes 𝑥𝑗 := 𝑥𝑎 + 𝑗 ℎ for 𝑗 = 0, . . . , 𝐽 + 1. Then, we introduce the discrete spaces

Xℎ :=
{︀

(𝑣𝑗)𝐽+1
𝑗=0 : 𝑣𝑗 ∈ R, 𝑗 = 0, . . . , 𝐽 + 1

}︀
and X∘ℎ :=

{︀
(𝑣𝑗)𝐽+1

𝑗=0 ∈ Xℎ : 𝑣0 = 𝑣𝐽+1 = 0
}︀

,

a discrete product operator · ⊗ · : Xℎ × Xℎ → Xℎ by (𝑣⊗𝑤)𝑗 = 𝑣𝑗 𝑤𝑗 for 𝑗 = 0, . . . , 𝐽 + 1 and 𝑣, 𝑤 ∈ Xℎ,
and a discrete Laplacian operator ∆ℎ : X∘ℎ → X∘ℎ by ∆ℎ𝑣𝑗 := 𝑣𝑗−1−2𝑣𝑗+𝑣𝑗+1

ℎ2 for 𝑗 = 1, . . . , 𝐽 and 𝑣 ∈ X∘ℎ. In
addition, we introduce operators Iℎ : 𝐶(ℐ) → Xℎ and I∘ℎ : 𝐶(ℐ) → X∘ℎ, which, for given 𝑧 ∈ 𝐶(ℐ), are defined
by (Iℎ𝑧)𝑗 := 𝑧(𝑥𝑗) for 𝑗 = 0, . . . , 𝐽 + 1 and (I∘ℎ𝑧)𝑗 := 𝑧(𝑥𝑗) for 𝑗 = 1, . . . , 𝐽 . Finally, for 𝑞 : R → R and for any
𝑤 ∈ Xℎ, we define 𝑞(𝑤) ∈ Xℎ by (𝑞(𝑤))𝑗 := 𝑞(𝑤𝑗) for 𝑗 = 0, . . . , 𝐽 + 1.

The Besse Relaxation Finite Difference (BRFD) method combines a standard finite difference discretization
in space with the Besse Relaxation Scheme in time (cf. [4]). Its algorithm consists of the following steps:

Step I. Define 𝑈0 ∈ X∘ℎ by
𝑈0 := I∘ℎ[𝑢0] (1.5)

and then find 𝑈
1
2 ∈ X∘ℎ such that

𝑈
1
2−𝑈0

(𝜏/2) = ∆ℎ

(︂
𝑈

1
2 +𝑈0

2

)︂
+ 𝑔

(︀
𝑢0

)︀
⊗

(︂
𝑈

1
2 +𝑈0

2

)︂
+ I∘ℎ

[︂
𝑓(𝑡

1
2 ,·)+𝑓(𝑡0,·)

2

]︂
· (1.6)

Step II. Define Φ
1
2 ∈ Xℎ by

Φ
1
2 := 𝑔(𝑈

1
2 ) (1.7)

and then find 𝑈1 ∈ X∘ℎ such that

𝑈1−𝑈0

𝜏 = ∆ℎ

(︁
𝑈1+𝑈0

2

)︁
+ Φ

1
2 ⊗

(︁
𝑈1+𝑈0

2

)︁
+ I∘ℎ

[︁
𝑓(𝑡1,·)+𝑓(𝑡0,·)

2

]︁
· (1.8)

Step III. For 𝑛 = 1, . . . , 𝑁 − 1, first define Φ𝑛+ 1
2 ∈ Xℎ by

Φ𝑛+ 1
2 := 2 𝑔(𝑈𝑛)− Φ𝑛− 1

2 (1.9)

and then find 𝑈𝑛+1 ∈ X∘ℎ such that

𝑈𝑛+1−𝑈𝑛

𝜏 = ∆ℎ

(︁
𝑈𝑛+1+𝑈𝑛

2

)︁
+ Φ𝑛+ 1

2 ⊗
(︁

𝑈𝑛+1+𝑈𝑛

2

)︁
+ I∘ℎ

[︁
𝑓(𝑡𝑛+1,·)+𝑓(𝑡𝑛,·)

2

]︁
· (1.10)

Remark 1.1. Here, by performing one step with the linearized version of the Crank-Nicolson method (1.6), we
compute a second order approximation 𝑈

1
2 of 𝑢(𝑡

1
2 , ·) and thus Φ

1
2 = 𝑔(𝑈

1
2 ) is a second order approximation of

𝑔(𝑢(𝑡
1
2 , ·)), that effects a second order convergence of Φ𝑛+ 1

2 to 𝑔(𝑢(𝑡𝑛+ 1
2 , ·)) (see Thm. 4.6 and Tab. 1 in Sect. 5).

It is worth to note that, in the bibliography, the Relaxation Scheme is formulated along with the initial choice
Φ

1
2 := 𝑔(𝑢0) (see, e.g., [4, 5, 10, 11]), which is a first order in time approximation of 𝑔(𝑢(𝑡

1
2 , ·)) and results a

first order in time convergence of Φ𝑛+ 1
2 to 𝑔(𝑢(𝑡𝑛+ 1

2 , ·)) (see Thm. 4.7 and Tab. 2 in Sect. 5). However, in both
cases, the method exhibits a second order convergence of 𝑈𝑛 to 𝑢(𝑡𝑛, ·) (see Thms. 4.6 and 4.7).

Remark 1.2. The Relaxation Scheme seems to be a special two-step method over the nodes and the interme-
diate nodes of the partition of the time interval. Indeed, the computation of 𝑈𝑛+1 requires the knowledge of
the previous approximations Φ𝑛+ 1

2 and 𝑈𝑛, and the computation of Φ𝑛+ 1
2 is based on the knowledge of 𝑈𝑛 and

Φ𝑛− 1
2 .

Remark 1.3. The (BRFD) method requires, at every time step, the solution of a tridiagonal linear system of
algebraic equations. The discussion on the well-posedness of the (BRFD) method is postponed until Theorems 4.6
and 4.7.
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1.3. Relation to the bibliography

Two decades ago, for the discretization in time of the nonlinear Schrödinger (NLS) equation, C. Besse [4]
introduced a new linear-implicit, conservative time-stepping method (called Relaxation Scheme (RS)) as an
attempt to avoid the numerical solution of the nonlinear systems of algebraic equations that the application
of the implicit Crank–Nicolson method yields. The (RS) combined with a finite element or a finite difference
space discretization, is computationally efficient (see, e.g., [3, 8, 11]) and performs as a second order method
(see, e.g., [5,11]). Later, C. Besse [5], analysing the (RS), as a semidiscrete in time method to approximate the
solution to the Cauchy problem for the (NLS) equation with power non-linearity, provided its convergence under
small final time 𝑇 , without concluding a convergent rate with respect to the time-step. Oelz and Trabelsi [14]
formulated a time-discrete version of the (RS) for the approximation of the solution to the Cauchy problem for a
special nonlinear Schrödinger equation occurring in plasma physics, and then developed a convergence analysis
analogous to that of [5], without, also, arriving at a conclusion on the order of convergence. Katsaounis and
Kyza [10] first proposed a finite element version of the (RS) over a non uniform partition of the time interval,
and then constructed an posteriori bound for the error only at the time-nodes, under the assumption that the
proposed method has a second order convergence at the intermediate time nodes. At this point, we would like
to observe, that the finite element version of the (RS) proposed in [10, 11] requires the solution of two linear
systems of algebraic equations at every time-step, and thus its computational complexity is two times higher
than that of the corresponding finite difference version of the (RS).

Independently of the present work [16], C. Besse et al. [6] focusing on the cubic NLS equation, completed
the convergence analysis of [4] by a proper consistency argument and arrived at a error bound consisting of the
error approximating 𝑔(𝑢(𝑡

1
2 , ·)) along with a second order, with respect to the time step, term. However, the

latter error estimate fails to explain the second order, experimental convergence of the (RS) under the choice
𝑔(𝑢0(·)) as an initial approximation of 𝑔(𝑢(𝑡

1
2 , ·)) (see Rem. 1.1). In addition, the technique used in [5,6] for the

convergence analysis of the time-discrete (RS) is not suitable for the error estimation of a fully-discrete version
of the (RS), because it is based on the derivation of a priori bounds of the (RS) time-discrete approximations
in higher order Sobolev norms.

Also, independently of the present work [16], Li et al. [13] formulated a finite element version of the (RS)
for the approximation of the solution to the Cauchy problem for the one dimensional, fractional, cubic (NLS)
equation and presented an error analysis based on the energy technique. However, the convergence proof contains
a gap, which, unfortunately, can not be resolved within the energy method, because the (RS) has the soul of a
multistep method and within the context of the (NLS) equation this can not be overcame (see, e.g., [5, 17]).

The aim of the present work is to propose (RS) as an alternative mechanism to derive second order, linearly
implicit methods for parabolic problems with a non linear structure. Our choice to consider a finite difference
version of the (RS), rather than a finite element one, is due to its higher flexibility in deriving energy-type error
estimates in the discrete 𝐻1-norm, which is fundamental to avoid mesh conditions in the one space dimension
case. Indeed, by building up a proper stability argument and using energy techniques based on the parabolic
strong stability, we are able to prove an optimal, second order error estimate in a discrete 𝐿∞𝑡 (𝐻1

𝑥)-norm at
the intermediate time nodes and in a discrete 𝐿∞𝑡 (𝐻2

𝑥)-norm at the time nodes, under the choice (1.7) for Φ
1
2 .

Addressing the initial choice Φ
1
2 = 𝑔(𝑢0), we arrive at a new second order error estimate in the discrete 𝐿∞𝑡 (𝐻1

𝑥)-
norm at the time nodes. The convergence analysis we present here can be used as a guide in the development of
error estimates for finite element versions of the (RS) and for finite difference versions of the (RS) in the higher
space dimension case (see, e.g., [18]).

1.4. An overview of the paper

In the error analysis of the (BRFD) method, we face the locally Lipschitz nonlinearity of the problem
by introducing the (MBRFD) scheme (see Sect. 4.2), which follows from the (BRFD) method after mollifying
properly the terms with nonlinear structure (cf. [1,9,15]). The (MBRFD) approximations depend on a parameter
𝛿 > 0 and have the following key property: when their discrete 𝐿∞-norm is bounded by 𝛿, then they are also
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(BRFD) approximations, because, in that case, the molifier (see (4.1)) acts as an indentity. Assuming that 𝛿
is large enough and 𝜏 is sufficiently small, for the (BRFD) approximations, first we show that are well-defined
(see Prop. 4.2), and then we establish an optimal, second order error estimate in the discrete 𝐻2-norm at the
time nodes and in the discrete 𝐻1-norm at the intermediate time nodes (see Thm. 4.4). Letting ℎ and 𝜏 be
sufficiently small (see (4.62)) and applying a discrete Sobolev inequality (see (2.2)), the latter convergence result
implies that the discrete 𝐿∞-norm of the (MBRFD) approximations are lower than 𝛿 and thus they, also, are
(BRFD) approximations. Finally, we show that the (BRFD) approximations are unique and hence inherit the
convergence properties of the (MBRFD) scheme (see Thm. 4.6), i.e., there exist positive constants 𝐶1 and 𝐶2,
independent of 𝜏 and ℎ, such that ⃒⃒

𝑈
1
2 − I∘ℎ[𝑢(𝑡

1
2 , ·)]

⃒⃒
1,ℎ

≤ 𝐶1 (𝜏2 +
√

𝜏 ℎ2)

and
max

0≤𝑛≤𝑁−1

⃒⃒
Φ𝑛+ 1

2 − Iℎ[𝑔(𝑢(𝑡𝑛+ 1
2 , ·))]

⃒⃒
1,ℎ

+ max
0≤𝑛≤𝑁

⃒⃒
𝑈𝑛 − I∘ℎ[𝑢(𝑡𝑛, ·)]

⃒⃒
2,ℎ

≤ 𝐶2 (𝜏2 + ℎ2),

where | · |1,ℎ is a discrete 𝐻1-norm which is stronger than the discrete 𝐿∞-norm and | · |2,ℎ is a discrete 𝐻2-norm
(see Sect. 2). Also, we undertook the challenge to investigate the influence on the convergence rate of the initial
choice Φ

1
2 = 𝑔(𝑢0), which is a first order (with respect to 𝜏) approximation of 𝑔(𝑢(𝑡

1
2 , ·)) and it is used in actual

computations by several authors (see, e.g., [4, 5, 10, 11]). First, we show that the latter initial choice affects the
order of convergence at the intermediate node (see Cor. 4.5), i.e., there exist a positive constant 𝐶3, independent
of 𝜏 and ℎ, such that

max
0≤𝑛≤𝑁−1

⃒⃒
Φ𝑛+ 1

2 − Iℎ[𝑔(𝑢(𝑡𝑛+ 1
2 , ·))]

⃒⃒
1,ℎ

≤ 𝐶3 (𝜏 + ℎ2),

which is confirmed by results from numerical experiments (see Sect. 5). Then, we show that the order of
convergence at the time nodes is still optimal (see Thm. 4.7), i.e., there exist constants 𝐶4, independent of 𝜏
and ℎ, such that

max
0≤𝑛≤𝑁

[︁⃦⃦
𝑈𝑛 − I∘ℎ[𝑢(𝑡𝑛, ·)]

⃦⃦
0,ℎ

+
⃒⃒
𝑈𝑛 − I∘ℎ[𝑢(𝑡𝑛, ·)]

⃒⃒
1,ℎ

]︁
≤ 𝐶4 (𝜏2 + ℎ2).

The result above is new and it is the first time in the bibliography that the observed second order experimental
convergence of the Relaxation Scheme at the time nodes, under a first order in time approximation of 𝑔(𝑢(𝑡

1
2 , ·)),

is mathematically explained.
We close this section by giving a brief overview of the paper. In Section 2, we introduce additional notation

and provide a series of auxiliary results. Section 3 is dedicated to the estimation of several type of consistency
errors and of the approximation error of a discrete elliptic projection. In Section 4, first we introduce a modified
version of the (BRFD) method, and then we analyze its convergence properties and arrive at a set of conditions
that ensure the well-posedness and convergence of the (BRFD) method. Finally, Section 5 contains results from
numerical experiments confirming the outcome of the convergence analysis, and Section 6 contains some general
conclusions of the work at hands.

2. Preliminaries

Let us introduce another discrete space by Gℎ :=
{︀

(𝑧𝑗)𝐽
𝑗=0 : 𝑧𝑗 ∈ R, 𝑗 = 0, . . . , 𝐽

}︀
and the discrete space

derivative operator 𝛿ℎ : Xℎ → Gℎ by 𝛿ℎ𝑣𝑗 := 𝑣𝑗+1−𝑣𝑗

ℎ for 𝑗 = 0, . . . , 𝐽 and 𝑣 ∈ Xℎ. We provide Gℎ with an
inner product ((·, ·))0,ℎ defined by ((𝑧, 𝑣))0,ℎ := ℎ

∑︀𝐽

𝑗=0 𝑧𝑗 𝑣𝑗 for 𝑧, 𝑣 ∈ Gℎ, and we shall denote by ||| · |||0,ℎ the
corresponding norm, i.e., |||𝑧|||0,ℎ := [((𝑧, 𝑧))0,ℎ]1/2 for 𝑧 ∈ Gℎ. Also, we provide Gℎ with a discrete maximum
norm ||| · |||∞,ℎ defined by |||𝑣|||∞,ℎ := max0≤𝑗≤𝐽 |𝑣𝑗 | for 𝑣 ∈ Gℎ.

On X∘ℎ we define a discrete inner product (·, ·)0,ℎ by (𝑣, 𝑧)0,ℎ := ℎ
∑︀𝐽

𝑗=1 𝑣𝑗 𝑧𝑗 for 𝑣, 𝑧 ∈ X∘ℎ, and we shall
denote by ‖ · ‖0,ℎ its induced norm, i.e., ‖𝑣‖0,ℎ := [(𝑣, 𝑣)0,ℎ]1/2 for 𝑣 ∈ X∘ℎ. Also, for 𝑣 ∈ 𝐶2(ℐ), we define a
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discrete elliptic projection Rℎ(𝑣) ∈ X∘ℎ of 𝑣 (cf. [2]) by requiring

∆ℎ(Rℎ(𝑣)) = I∘ℎ(𝑣′′). (2.1)

Moreover, we equip Xℎ with a discrete 𝐿∞-norm | · |∞,ℎ defined by |𝑤|∞,ℎ := max0≤𝑗≤𝐽+1 |𝑤𝑗 | for 𝑤 ∈ Xℎ and
with a discrete 𝐻1-seminorm | · |1,ℎ given by |𝑤|1,ℎ := |||𝛿ℎ𝑤|||0,ℎ for 𝑤 ∈ Xℎ. It is easily seen that | · |1,ℎ becomes
a norm when it is restricted on X∘ℎ and satisfies the following useful inequalities:

|𝑣|∞,ℎ ≤ L1/2 |𝑣|1,ℎ ∀ 𝑣 ∈ X∘ℎ, (2.2)
‖𝑣‖0,ℎ ≤ L |𝑣|1,ℎ ∀ 𝑣 ∈ X∘ℎ. (2.3)

Lemma 2.1. For all 𝑣, 𝑧 ∈ X∘ℎ it holds that

(∆ℎ𝑣, 𝑧)0,ℎ = −((𝛿ℎ𝑣, 𝛿ℎ𝑧))0,ℎ = (𝑣, ∆ℎ𝑧)0,ℎ, (2.4)
(∆ℎ𝑣, 𝑣)ℎ = −|𝑣|21,ℎ, (2.5)

|𝑣|1,ℎ ≤ L ‖∆ℎ𝑣‖0,ℎ. (2.6)

Proof. Relations (2.4) and (2.5) are standard. The inequality (2.6) follows, easily, by combining (2.5), the
Cauchy–Schwarz inequality and (2.3). �

Thus, under the light of (2.6), we can provide X∘ℎ with a discrete 𝐻2-norm | · |2,ℎ defined by |𝑣|2,ℎ := ‖∆ℎ𝑣‖0,ℎ

for 𝑣 ∈ X∘ℎ.
We close this section by some useful Lipschitz-type inequalities the proof of which, can be found in the

appendix.

Lemma 2.2. Let g ∈ 𝐶2(R; R) with sup
R

(|g′|+ |g′′|) < +∞. Then, for 𝑣, 𝑤 ∈ X∘ℎ, it holds that

|g(𝑣)− g(𝑤)|1,ℎ ≤ sup
R
|g′| |𝑣 − 𝑤|1,ℎ + sup

R
|g′′| |||𝛿ℎ𝑤|||∞,ℎ ‖𝑣 − 𝑤‖0,ℎ. (2.7)

Proof. See Appendix A. �

Lemma 2.3. Let g ∈ 𝐶3(R; R) with sup
R

(|g′|+ |g′′|+ |g′′′|) < +∞. Then, for 𝑣𝑎, 𝑣𝑏, 𝑧𝑎, 𝑧𝑏 ∈ X∘ℎ, it holds that

‖g(𝑣𝑎)− g(𝑣𝑏)− g(𝑧𝑎) + g(𝑧𝑏)‖0,ℎ ≤ sup
R
|g′′| |𝑧𝑎 − 𝑧𝑏|∞,ℎ ‖𝑣𝑏 − 𝑧𝑏‖0,ℎ

+
(︂

sup
R
|g′|+ sup

R
|g′′| |𝑧𝑎 − 𝑧𝑏|∞,ℎ

)︂
‖𝑣𝑎 − 𝑣𝑏 − 𝑧𝑎 + 𝑧𝑏‖0,ℎ (2.8)

and

|g(𝑣𝑎)− g(𝑣𝑏)− g(𝑧𝑎) + g(𝑧𝑏)|1,ℎ ≤ ℱ𝐴(𝑣𝑎, 𝑣𝑏) |𝑣𝑎 − 𝑣𝑏 − 𝑧𝑎 + 𝑧𝑏|1,ℎ

+ ℱ𝐵(𝑧𝑎, 𝑧𝑏)
(︀
‖𝑣𝑎 − 𝑣𝑏 − 𝑧𝑎 + 𝑧𝑏‖0,ℎ + ‖𝑣𝑏 − 𝑧𝑏‖0,ℎ

)︀
+ ℱ𝐶(𝑧𝑎, 𝑧𝑏)

(︀
|𝑣𝑎 − 𝑣𝑏 − 𝑧𝑎 + 𝑧𝑏|1,ℎ + |𝑣𝑏 − 𝑧𝑏|1,ℎ

)︀
, (2.9)

where: ℱ𝐴(𝑣𝑎, 𝑣𝑏) := sup
R
|g′| + L1/2

2 sup
R
|g′′| (|𝑣𝑎|1,ℎ + |𝑣𝑏|1,ℎ), ℱ𝐵(𝑧𝑎, 𝑧𝑏) := sup

R
|g′′| |||𝛿ℎ(𝑧𝑎 − 𝑧𝑏)|||∞,ℎ and

ℱ𝐶(𝑧𝑎, 𝑧𝑏) := |𝑧𝑎 − 𝑧𝑏|∞,ℎ

[︀
supR |g′′|+ L supR |g′′′|

(︀
|||𝛿ℎ𝑧𝑎|||∞,ℎ + |||𝛿ℎ𝑧𝑏|||∞,ℎ

)︀]︀
.

Proof. See Appendix B. �
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3. Local errors

To simplify the notation, we set 𝑡
1
4 := 𝜏

4 , 𝑢
1
4 := Iℎ[𝑢(𝑡

1
4 , ·)], 𝑢𝑛 := Iℎ[𝑢(𝑡𝑛, ·)] for 𝑛 = 0, . . . , 𝑁 , and 𝑢𝑛+ 1

2 :=
Iℎ[𝑢(𝑡𝑛+ 1

2 , ·)] for 𝑛 = 0, . . . , 𝑁 − 1, 𝜁(𝑡, 𝑥) := 𝑔(𝑢(𝑡, 𝑥)) and 𝜉(𝑡, 𝑥) := 𝑔(𝑢(𝑡, 𝑥)) 𝑢(𝑡, 𝑥). In view of the Dirichlet
boundary conditions (1.2) and the compatibility conditions (1.4), it holds that 𝑢

1
4 ∈ X∘ℎ, 𝑢𝑛 ∈ X∘ℎ for 𝑛 = 0, . . . , 𝑁

and 𝑢𝑛+ 1
2 ∈ X∘ℎ for 𝑛 = 0, . . . , 𝑁 − 1.

3.1. Time truncation error

For 𝑛 = 1, . . . , 𝑁 − 1, let r𝑛 ∈ X∘ℎ be determined by

𝑔(𝑢𝑛+ 1
2 )+𝑔(𝑢𝑛− 1

2 )
2 = 𝑔(𝑢𝑛) + r𝑛. (3.1)

Also, let r
1
4 ∈ Xℎ be defined by

𝑢
1
2−𝑢0

(𝜏/2) = Iℎ

[︂
𝑢𝑥𝑥(𝑡

1
2 ,·)+𝑢𝑥𝑥(𝑡0,·)

2

]︂
+ 𝑔(𝑢0)⊗

(︂
𝑢

1
2 +𝑢0

2

)︂
+ Iℎ

[︂
𝑓(𝑡

1
2 ,·)+𝑓(𝑡0,·)

2

]︂
+ r

1
4 (3.2)

and let r𝑛+ 1
2 ∈ Xℎ be specified by

𝑢𝑛+1−𝑢𝑛

𝜏 = Iℎ
[︁

𝑢𝑥𝑥(𝑡𝑛+1,·)+𝑢𝑥𝑥(𝑡𝑛,·)
2

]︁
+ 𝑔(𝑢𝑛+ 1

2 )⊗
(︁

𝑢𝑛+1+𝑢𝑛

2

)︁
+ Iℎ

[︁
𝑓(𝑡𝑛+1,·)+𝑓(𝑡𝑛,·)

2

]︁
+ r𝑛+ 1

2 (3.3)

for 𝑛 = 0, . . . , 𝑁 − 1. Using that 𝑢 ∈ 𝐶1,2
𝑡,𝑥 (𝑄) along with (1.1), (1.4) and the Dirichlet boundary conditions

(1.2), we arrive at 𝑢𝑥𝑥(𝑡, 𝑥) = −𝑓(𝑡, 𝑥) for 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ {𝑥𝑎, 𝑥𝑏}. Thus, we have r
1
4 ∈ X∘ℎ and r𝑛+ 1

2 ∈ X∘ℎ
for 𝑛 = 0, . . . , 𝑁 − 1. Also, (3.2) and (3.3) along with (1.1), yield

r
1
4 = r

1
4
𝐴 − r

1
4
𝐵 and r𝑛+ 1

2 = r
𝑛+ 1

2
𝐴 − r

𝑛+ 1
2

𝐵 , 𝑛 = 0, . . . , 𝑁 − 1, (3.4)

where r
1
4
𝐴 , r

1
4
𝐵 , r

𝑛+ 1
2

𝐴 , r
𝑛+ 1

2
𝐵 ∈ X∘ℎ be defined by

r
1
4
𝐴 := 𝑢

1
2−𝑢0

(𝜏/2) − Iℎ
[︁
𝑢𝑡

(︁
𝑡

1
4 , ·

)︁]︁
− Iℎ

[︃
𝑢𝑡

(︁
𝑡
1
2 ,·
)︁
+𝑢𝑡(𝑡0,·)
2 − 𝑢𝑡

(︁
𝑡

1
4 , ·

)︁]︃
,

r
1
4
𝐵 := −

[︁
𝑔

(︁
𝑢

1
4

)︁
− 𝑔(𝑢0)

]︁
⊗ 𝑢

1
2 +𝑢0

2 + 𝑔
(︁
𝑢

1
4

)︁
⊗

[︂
𝑢

1
2 +𝑢0

2 − 𝑢
1
4

]︂
−

[︃
𝑔
(︁

𝑢
1
2
)︁
⊗𝑢

1
2 +𝑔(𝑢0)⊗𝑢0

2 − 𝑔
(︁
𝑢

1
4

)︁
⊗ 𝑢

1
4

]︃

and

r
𝑛+ 1

2
𝐴 := 𝑢𝑛+1−𝑢𝑛

𝜏 − Iℎ
[︁
𝑢𝑡

(︁
𝑡𝑛+ 1

2 , ·
)︁]︁
− Iℎ

[︁
𝑢𝑡(𝑡𝑛,·)+𝑢𝑡(𝑡𝑛+1,·)

2 − 𝑢𝑡

(︁
𝑡𝑛+ 1

2 , ·
)︁]︁

,

r
𝑛+ 1

2
𝐵 := 𝑔

(︁
𝑢𝑛+ 1

2

)︁
⊗

[︁
𝑢𝑛+1+𝑢𝑛

2 − 𝑢𝑛+ 1
2

]︁
−

[︂
𝑔(𝑢𝑛+1)⊗𝑢𝑛+1+𝑔(𝑢𝑛)⊗𝑢𝑛

2 − 𝑔
(︁
𝑢𝑛+ 1

2

)︁
⊗ 𝑢𝑛+ 1

2

]︂
·

Applying the Taylor formula, with respect to 𝑡 around 𝑡 = 𝑡𝑛, we obtain

r𝑛 = 𝜏2

2 Iℎ

[︃∫︁ 1
2

0

[︁(︀
1
2 − 𝑠

)︀
𝜁𝑡𝑡 (𝑡𝑛 + 𝑠 𝜏, ·) + 𝑠 𝜁𝑡𝑡

(︁
𝑡𝑛−

1
2 + 𝑠 𝜏, ·

)︁]︁
d𝑠

]︃
, 𝑛 = 1, . . . , 𝑁 − 1. (3.5)
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Applying again the Taylor formula, with respect to 𝑡 around 𝑡 = 𝑡
1
4 , we have

r
1
4
𝐴 = 𝜏2 Iℎ

[︃∫︁ 1
4

0

[︁
𝑠2 𝑢𝑡𝑡𝑡 (𝑠 𝜏, ·) +

(︀
1
4 − 𝑠

)︀2
𝑢𝑡𝑡𝑡

(︁
𝑡

1
4 + 𝑠 𝜏, ·

)︁]︁
d𝑠

]︃

− 𝜏2

2 Iℎ

[︃∫︁ 1
4

0

[︁
𝑠 𝑢𝑡𝑡𝑡 (𝑠 𝜏, ·) +

(︀
1
4 − 𝑠

)︀
𝑢𝑡𝑡𝑡

(︁
𝑡

1
4 + 𝑠 𝜏, ·

)︁]︁
d𝑠

]︃
,

r
1
4
𝐵 = − 𝜏 𝑢

1
2 +𝑢0

2 ⊗ Iℎ

[︃∫︁ 1
4

0

𝜁𝑡 (𝑠 𝜏, ·) d𝑠

]︃

+ 𝜏2

2 𝑔
(︁
𝑢

1
4

)︁
⊗ Iℎ

[︃∫︁ 1
4

0

[︁
𝑠 𝑢𝑡𝑡 (𝑠 𝜏, ·) +

(︀
1
4 − 𝑠

)︀
𝑢𝑡𝑡

(︁
𝑡

1
4 + 𝑠 𝜏, ·

)︁]︁
d𝑠

]︃

− 𝜏2

2 Iℎ

[︃∫︁ 1
4

0

[︁
𝑠 𝜉𝑡𝑡 (𝑠 𝜏, ·) +

(︀
1
4 − 𝑠

)︀
𝜉𝑡𝑡

(︁
𝑡

1
4 + 𝑠 𝜏, ·

)︁]︁
d𝑠

]︃
.

(3.6)

Also, the Taylor formula, with respect to 𝑡 around 𝑡 = 𝑡𝑛+ 1
2 , yields

r
𝑛+ 1

2
𝐴 = 𝜏2

2 Iℎ

[︃∫︁ 1
2

0

[︀
𝑠2 𝑢𝑡𝑡𝑡 (𝑡𝑛 + 𝑠 𝜏, ·)

]︀
+

(︀
1
2 − 𝑠

)︀2
𝑢𝑡𝑡𝑡

(︁
𝑡𝑛+ 1

2 + 𝑠 𝜏, ·
)︁]︃

d𝑠

− 𝜏2

2 Iℎ

[︃∫︁ 1
2

0

[︁
𝑠 𝑢𝑡𝑡𝑡 (𝑡𝑛 + 𝜏 𝑠, ·) +

(︀
1
2 − 𝑠

)︀
𝑢𝑡𝑡𝑡

(︁
𝑡𝑛+ 1

2 + 𝜏 𝑠, ·
)︁]︁

d𝑠

]︃
,

r
𝑛+ 1

2
𝐵 = 𝜏2

2 𝑔
(︁
𝑢𝑛+ 1

2

)︁
⊗ Iℎ

[︃∫︁ 1
2

0

[︁
𝑠 𝑢𝑡𝑡 (𝑡𝑛 + 𝑠 𝜏, ·) +

(︀
1
2 − 𝑠

)︀
𝑢𝑡𝑡

(︁
𝑡𝑛+ 1

2 + 𝑠 𝜏, ·
)︁]︁

d𝑠

]︃

− 𝜏2

2 Iℎ

[︃∫︁ 1
2

0

[︁
𝑠 𝜉𝑡𝑡 (𝑡𝑛 + 𝜏 𝑠, ·) +

(︀
1
2 − 𝑠

)︀
𝜉𝑡𝑡

(︁
𝑡𝑛+ 1

2 + 𝜏 𝑠, ·
)︁]︁

d𝑠

]︃
(3.7)

for 𝑛 = 0, . . . , 𝑁 − 1.
Thus, assuming that 𝑔 ∈ 𝐶4(R), 𝑢 ∈ 𝐶3,0

𝑡,𝑥 (𝑄) and 𝜕ℓ
𝑡𝑢 ∈ 𝐶0,1

𝑡,𝑥 (𝑄) for ℓ = 1, 2, 3, from (3.4) to (3.7), we arrive
at the following estimates:

‖r
1
4
𝐴‖0,ℎ + 𝜏 ‖r

1
4
𝐵‖0,ℎ + max

0≤𝑛≤𝑁−1
‖r𝑛+ 1

2 ‖0,ℎ ≤ ̂︀C1 𝜏2 max
𝑄

(|𝑢𝑡𝑡|+ |𝑢𝑡𝑡𝑡|+ |𝜁𝑡|+ |𝜉𝑡𝑡|), (3.8)

max
0≤𝑛≤𝑁−1

|r𝑛+ 1
2 |1,ℎ + 𝜏 |r

1
4
𝐵 |1,ℎ ≤ ̂︀C2 𝜏2 max

𝑄
(|𝑢𝑥𝑡𝑡|+ |𝑢𝑥𝑡𝑡𝑡|+ |𝜁𝑥𝑡|+ |𝜉𝑥𝑡𝑡|) (3.9)

and

max
1≤𝑛≤𝑁−1

‖r𝑛‖0,ℎ + max
1≤𝑛≤𝑁−1

|r𝑛|1,ℎ ≤ ̂︀C3 𝜏2 max
𝑄

(|𝜁𝑡𝑡|+ |𝜁𝑥𝑡𝑡|) , (3.10)

max
2≤𝑛≤𝑁−1

‖r𝑛 − r𝑛−1‖0,ℎ + max
2≤𝑛≤𝑁−1

|r𝑛 − r𝑛−1|1,ℎ ≤ ̂︀C4 𝜏3 max
𝑄

(|𝜁𝑡𝑡𝑡|+ |𝜁𝑥𝑡𝑡𝑡|) . (3.11)

3.2. Space truncation error

Also, let s
1
4 ∈ X∘ℎ be defined by

𝑢
1
2−𝑢0

(𝜏/2) = ∆ℎ

(︂
𝑢

1
2 +𝑢0

2

)︂
+ 𝑔

(︀
𝑢0

)︀
⊗

(︂
𝑢

1
2 +𝑢0

2

)︂
+ I∘ℎ

[︃
𝑓
(︁

𝑡
1
2 ,·
)︁
+𝑓(𝑡0,·)
2

]︃
+ s

1
4 (3.12)
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and, for 𝑛 = 0, . . . , 𝑁 − 1, let s𝑛+ 1
2 ∈ X∘ℎ be given by

𝑢𝑛+1−𝑢𝑛

𝜏 = ∆ℎ

(︁
𝑢𝑛+1+𝑢𝑛

2

)︁
+ 𝑔

(︁
𝑢𝑛+ 1

2

)︁
⊗

(︁
𝑢𝑛+1+𝑢𝑛

2

)︁
+ I∘ℎ

[︁
𝑓(𝑡𝑛+1,·)+𝑓(𝑡𝑛,·)

2

]︁
+ s𝑛+ 1

2 . (3.13)

Subtracting (3.12) from (3.2) and (3.13) from (3.3), we obtain

r
1
4 − s

1
4 = ∆ℎ

(︂
𝑢

1
2 +𝑢0

2

)︂
− I∘ℎ

[︃
𝑢𝑥𝑥

(︁
𝑡
1
2 ,·
)︁
+𝑢𝑥𝑥(𝑡0,·)
2

]︃
,

r𝑛+ 1
2 − s𝑛+ 1

2 = ∆ℎ

(︁
𝑢𝑛+1+𝑢𝑛

2

)︁
− I∘ℎ

[︁
𝑢𝑥𝑥(𝑡𝑛+1,·)+𝑢𝑥𝑥(𝑡𝑛,·)

2

]︁
, 𝑛 = 0, . . . , 𝑁 − 1.

(3.14)

For 𝑡 ∈ [0, 𝑇 ], the use of the Taylor formula (with respect to 𝑥 around 𝑥 = 𝑥𝑗) yields

(∆ℎ (I∘ℎ[𝑢(𝑡, ·)])− I∘ℎ [𝑢𝑥𝑥(𝑡, ·)])𝑗 = ℎ2

6

∫︁ 1

0

(1− 𝑦)3 𝑢𝑥𝑥𝑥𝑥 (𝑡, 𝑥𝑗 + ℎ 𝑦) d𝑦

+ ℎ2

6

∫︁ 1

0

𝑦3 𝑢𝑥𝑥𝑥𝑥 (𝑡, 𝑥𝑗−1 + ℎ 𝑦) d𝑦, 𝑗 = 1, . . . , 𝐽.

(3.15)

Assuming that 𝑢 ∈ 𝐶0,4
𝑡,𝑥 (𝑄), (3.14) and (3.15) yield that

‖s 1
4 − r

1
4 ‖0,ℎ + max

0≤𝑛≤𝑁−1
‖s𝑛+ 1

2 − r𝑛+ 1
2 ‖0,ℎ ≤ 1

12 ℎ2 max
𝑄
|𝑢𝑥𝑥𝑥𝑥|. (3.16)

3.3. Elliptic projection approximation error

Let 𝑣 ∈ 𝐶4(ℐ). Using the Taylor formula (cf. (3.15)) it follows that

∆ℎ(I∘ℎ(𝑣)) = I∘ℎ(𝑣′′) + ℎ2

6 rEP(𝑣) (3.17)

where rEP(𝑣) ∈ X∘ℎ is defined by

(rEP(𝑣))𝑗 :=
∫︁ 1

0

[︀
(1− 𝑦)3 𝑣′′′′(𝑥𝑗 + ℎ 𝑦) + 𝑦3 𝑣′′′′(𝑥𝑗−1 + ℎ 𝑦)

]︀
d𝑦, 𝑗 = 1, . . . , 𝐽. (3.18)

Subtracting (2.1) from (3.17) we conclude that

∆ℎ(I∘ℎ(𝑣)− Rℎ(𝑣)) = ℎ2

6 rEP(𝑣),

which, obviously, yields
|Rℎ(𝑣)− I∘ℎ(𝑣)|2,ℎ ≤

√
L

12 ℎ2 max
ℐ
|𝑣′′′′|. (3.19)

Also, combining (3.19) and (2.6), we obtain

|Rℎ(𝑣)− I∘ℎ(𝑣)|1,ℎ ≤ L
3
2

12 ℎ2 max
ℐ
|𝑣′′′′|. (3.20)

We close this section with the following useful lemma.

Lemma 3.1. For 𝑤 ∈ 𝐶1,0
𝑡,𝑥 (𝑄) with 𝑤𝑡 ∈ 𝐶0,4

𝑡,𝑥 (𝑄), it holds that⃒⃒⃒
Rℎ

[︁
𝑤(𝑡,·)−𝑤(𝑠,·)

𝑡−𝑠

]︁
− I∘ℎ

[︁
𝑤(𝑡,·)−𝑤(𝑠,·)

𝑡−𝑠

]︁ ⃒⃒⃒
1,ℎ

≤ L
3
2

12 ℎ2 max
𝑄
|𝑤𝑥𝑥𝑥𝑥𝑡| (3.21)

for all 𝑡, 𝑠 ∈ [0, 𝑇 ] with 𝑡 > 𝑠.
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Proof. Let 𝑡, 𝑠 ∈ [0, 𝑇 ] with 𝑡 > 𝑠, and 𝜔 := Rℎ

[︁
𝑤(𝑡,·)−𝑤(𝑠,·)

𝑡−𝑠

]︁
− I∘ℎ

[︁
𝑤(𝑡,·)−𝑤(𝑠,·)

𝑡−𝑠

]︁
∈ X∘ℎ.

First, we observe that

|𝜔|1,ℎ = 1
𝑡−𝑠

⃒⃒⃒⃒∫︁ 𝑡

𝑠

(Rℎ[𝑤𝑡(𝑠′, ·)]− I∘ℎ[𝑤𝑡(𝑠′, ·)]) d𝑠′
⃒⃒⃒⃒
1,ℎ

≤ 1
𝑡−𝑠

∫︁ 𝑡

𝑠

|Rℎ[𝑤𝑡(𝑠′, ·)]− I∘ℎ[𝑤𝑡(𝑠′, ·)]|1,ℎ d𝑠′,

and then we use (3.20) to have

|𝜔|1,ℎ ≤ L
3
2

12
ℎ2

𝑡−𝑠

(︂∫︁ 𝑡

𝑠

max
ℐ
|𝑤𝑥𝑥𝑥𝑥𝑡(𝑠′, ·)| d𝑠′

)︂
≤ L

3
2

12 ℎ2 max
𝑄
|𝑤𝑥𝑥𝑥𝑥𝑡|.

�

4. Convergence analysis

4.1. A mollifier

For 𝛿 > 0, let n𝛿 ∈ 𝐶3(R; R) (cf. [9, 15]) be an odd function defined by

n𝛿(𝑥) :=

⎧⎪⎨⎪⎩
𝑥, if 𝑥 ∈ [0, 𝛿],
𝑝𝛿(𝑥), if 𝑥 ∈ (𝛿, 2𝛿],
2 𝛿, if 𝑥 > 2𝛿,

∀𝑥 ≥ 0, (4.1)

where 𝑝𝛿 is the unique polynomial of P7[𝛿, 2𝛿] that satisfies the following conditions:

𝑝𝛿(𝛿) = 𝛿, 𝑝′𝛿(𝛿) = 1, 𝑝′′𝛿 (𝛿) = 𝑝′′′𝛿 (𝛿) = 0, 𝑝𝛿(2 𝛿) = 2 𝛿, 𝑝′𝛿(2 𝛿) = 𝑝′′𝛿 (2 𝛿) = 𝑝′′′𝛿 (2 𝛿) = 0.

4.2. The (MBRFD) scheme

The modified version of the (BRFD) method (cf. [1, 9, 15]) is a recursive procedure that, for given 𝛿 > 0,
derives approximations (𝑉 𝑛

𝛿 )𝑁
𝑛=0 ⊂ X∘ℎ of the solution 𝑢 by performing the steps below:

Step 1. Let 𝑉 0
𝛿 ∈ X∘ℎ be defined by

𝑉 0
𝛿 := 𝑢0 (4.2)

and 𝑉
1
2

𝛿 ∈ X∘ℎ be specified by

𝑉
1
2

𝛿 −𝑉 0
𝛿

(𝜏/2) = ∆ℎ

(︂
𝑉

1
2

𝛿 +𝑉 0
𝛿

2

)︂
+ 𝑔

(︀
𝑢0

)︀
⊗

(︂
𝑉

1
2

𝛿 +𝑉 0
𝛿

2

)︂
+ I∘ℎ

[︂
𝑓(𝑡

1
2 ,·)+𝑓(𝑡0,·)

2

]︂
· (4.3)

Step 2. Define Φ
1
2
𝛿 ∈ Xℎ by

Φ
1
2
𝛿 := 𝑔

(︁
n𝛿

(︁
𝑉

1
2

𝛿

)︁)︁
(4.4)

and find 𝑉 1
𝛿 ∈ X∘ℎ such that

𝑉 1
𝛿 −𝑉 0

𝛿

𝜏 = ∆ℎ

(︁
𝑉 1

𝛿 +𝑉 0
𝛿

2

)︁
+ n𝛿

(︁
Φ

1
2
𝛿

)︁
⊗

(︁
𝑉 1

𝛿 +𝑉 0
𝛿

2

)︁
+ I∘ℎ

[︁
𝑓(𝑡1,·)+𝑓(𝑡0,·)

2

]︁
· (4.5)
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Step 3. For 𝑛 = 1, . . . , 𝑁 − 1, first define Φ𝑛+ 1
2

𝛿 ∈ Xℎ by

Φ𝑛+ 1
2

𝛿 := 2 𝑔 (n𝛿 (𝑉 𝑛
𝛿 ))− Φ𝑛− 1

2
𝛿 (4.6)

and, then, find 𝑉 𝑛+1
𝛿 ∈ X∘ℎ such that

𝑉 𝑛+1
𝛿 −𝑉 𝑛

𝛿

𝜏 = ∆ℎ

(︁
𝑉 𝑛+1

𝛿 +𝑉 𝑛
𝛿

2

)︁
+ n𝛿

(︁
Φ𝑛+ 1

2
𝛿

)︁
⊗

(︁
𝑉 𝑛+1

𝛿 +𝑉 𝑛
𝛿

2

)︁
+ I∘ℎ

[︁
𝑓(𝑡𝑛+1,·)+𝑓(𝑡𝑛,·)

2

]︁
· (4.7)

Remark 4.1. Let 𝐴
1
4
𝛿 := 1

2 (𝑉
1
2

𝛿 + 𝑉 0
𝛿 ) and 𝐴

𝑛+ 1
2

𝛿 := 1
2 (𝑉 𝑛+1

𝛿 + 𝑉 𝑛
𝛿 ) for 𝑛 = 0, . . . , 𝑁 − 1. Then, (4.3), (4.5)

and (4.7) are, respectively, equivalent to

2 𝐴
1
4
𝛿 −

𝜏
2 ∆ℎ𝐴

1
4
𝛿 −

𝜏
2 𝑔

(︀
𝑢0

)︀
⊗𝐴

1
4
𝛿 = 2 𝑉 0

𝛿 + 𝜏
2 I∘ℎ

[︃
𝑓
(︁

𝑡
1
2 ,·
)︁
+𝑓(𝑡0,·)
2

]︃
(4.8)

and

2 𝐴
𝑛+ 1

2
𝛿 − 𝜏 ∆ℎ𝐴

𝑛+ 1
2

𝛿 − 𝜏 n𝛿

(︁
Φ𝑛+ 1

2
𝛿

)︁
⊗𝐴

𝑛+ 1
2

𝛿 = 2 𝑉 𝑛
𝛿 + 𝜏 I∘ℎ

[︁
𝑓(𝑡𝑛+1,·)+𝑓(𝑡𝑛,·)

2

]︁
, 𝑛 = 0, . . . , 𝑁 − 1. (4.9)

4.3. Existence and uniqueness of the (MBRFD) approximations

Proposition 4.2. Let 𝑔0
max := max

ℐ
|𝑔 ∘ 𝑢0|, 𝛿 ≥ 𝑔0

max and CBR,I

𝛿 := 1
4 max

R
|n𝛿|. When 𝜏 CBR,I

𝛿 ≤ 1
2 , then the

(BRFD) approximations are well-defined.

Proof. Let 𝜁 ∈ Xℎ, 𝜀 ∈ (0, 1] and T[𝜀, 𝜁] : X∘ℎ → X∘ℎ be a linear operator given by

T[𝜀, 𝜁]𝑣 := 2 𝑣 − 𝜀 𝜏 ∆ℎ𝑣 − 𝜀 𝜏 [n𝛿(𝜁)⊗ 𝑣] ∀ 𝑣 ∈ X∘ℎ.

Since 𝛿 ≥ 𝑔0
max, the definition of n𝛿 yields that n𝛿

(︀
𝑔

(︀
𝑢0

)︀)︀
= 𝑔

(︀
𝑢0

)︀
. Thus, from (4.9) and (4.8) it is easily seen

that the well-posedness of 𝑉
1
2

𝛿 and (𝑉 𝑛
𝛿 )𝑁

𝑛=1 follows easily by securing that T[𝜀, 𝜁] is invertible. In particular,

(4.9) corresponds to the choice (𝜀, 𝜁) =
(︁

1, Φ𝑛+ 1
2

)︁
and (4.8) to the choice (𝜀, 𝜁) =

(︀
1
2 , 𝑔(𝑢0)

)︀
.

Assuming that 𝜏 C⋆
𝛿 ≤ 1

2 and using (2.5) we obtain

(T[𝜀, 𝜁]𝑣, 𝑣)0,ℎ = 2 ‖𝑣‖20,ℎ + 𝜏 𝜀 |𝑣|21,ℎ − 𝜏 𝜀 (n𝛿(𝜁)⊗ 𝑣, 𝑣)0,ℎ

≥ 2 ‖𝑣‖20,ℎ + 𝜏 𝜀 |𝑣|20,ℎ − 𝜏 𝜀 ‖𝑣‖20,ℎ |n𝛿(𝜁)|∞,ℎ

≥ 𝜏 𝜀 |𝑣|20,ℎ + 4 ‖𝑣‖20,ℎ

(︁
1
2 −

𝜏
4 max

R
|n𝛿|

)︁
≥ 𝜏 𝜀 |𝑣|21,ℎ + 4 ‖𝑣‖20,ℎ

(︀
1
2 − 𝜏 CBR,I

𝛿

)︀
≥ 𝜏 𝜀 |𝑣|21,ℎ ∀ 𝑣 ∈ X∘ℎ.

(4.10)

When 𝑣 ∈ Ker(T[𝜀, 𝜁]), then (T[𝜀, 𝜁]𝑣, 𝑣)0,ℎ = 0, which, along with (4.10) yields |𝑣|1,ℎ = 0 and thus 𝑣 = 0. The
latter argument shows that Ker(T[𝜀, 𝜁]) = {0} and, thus, T[𝜀, 𝜁] is invertible, since X∘ℎ has finite dimension. �

Remark 4.3. Let us assume that 𝜏 CBR,I

𝛿 ≤ 1
2 and 𝛿 ≥ 𝑔0

max. Since 𝑉 0
𝛿 := 𝑢0 and 𝑉

1
2

𝛿 is well-defined, in view of

(4.3) and (1.6), we conclude that 𝑈
1
2 is, also, well-defined and 𝑈

1
2 = 𝑉

1
2

𝛿 .
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4.4. Convergence of the (MBRFD) scheme

First, we establish convergence of the (MBRFD) approximations.

Theorem 4.4. Let 𝑔 ∈ 𝐶4(R), 𝑢 ∈ 𝐶3,0
𝑡,𝑥 (𝑄), 𝜕ℓ

𝑡𝑢 ∈ 𝐶0,1
𝑡,𝑥 (𝑄) for ℓ = 1, 2, 3, and 𝜕𝑡𝑢 ∈ 𝐶0,4

𝑡,𝑥 (𝑄). Also, let 𝑢max :=
max

𝑄
|𝑢|, 𝑔max := max

𝑄
|𝑔∘𝑢|, 𝑔0

max := max
ℐ
|𝑔∘𝑢0|, 𝛿⋆ ≥ max{𝑢max, 𝑔max} and 𝜏 CBR,I

𝛿⋆
≤ 1

2 , where CBR,I

𝛿⋆
:= 1

4 max
R
|n𝛿|.

Then, there exist constants CBCV,1
𝛿⋆

≥ CBR,I

𝛿⋆
, CBCV,2

𝛿⋆
> 0, CBCV,3

𝛿⋆
> 0 and CBCV,4

𝛿⋆
> 0, independent of 𝜏 and ℎ, such

that: if 𝜏 CBCV,1
𝛿⋆

≤ 1
2 , then

|𝑢 1
2 − 𝑉

1
2

𝛿⋆
|1,ℎ ≤ CBCV,2

𝛿⋆

(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁
, (4.11)

max
0≤𝑚≤𝑁−1

‖𝑔
(︁
𝑢𝑚+ 1

2

)︁
− Φ𝑚+ 1

2
𝛿⋆

‖0,ℎ + max
0≤𝑚≤𝑁

|𝑢𝑚 − 𝑉 𝑚
𝛿⋆
|1,ℎ ≤ CBCV,3

𝛿⋆

(︀
𝜏2 + ℎ2

)︀
(4.12)

and

max
0≤𝑚≤𝑁−1

⃒⃒
𝑔

(︁
𝑢𝑚+ 1

2

)︁
− Φ𝑚+ 1

2
𝛿⋆

⃒⃒
1,ℎ

+ max
0≤𝑚≤𝑁

|𝑢𝑚 − 𝑉 𝑚
𝛿⋆
|2,ℎ ≤ CBCV,4

𝛿⋆

(︀
𝜏2 + ℎ2

)︀
. (4.13)

Proof. To simplify the notation, we set 𝑒
1
2 := 𝑢

1
2 − 𝑉

1
2

𝛿⋆
∈ X∘ℎ, 𝑒𝑚 := 𝑢𝑚 − 𝑉 𝑚

𝛿⋆
∈ X∘ℎ for 𝑚 = 0, . . . , 𝑁 , and

𝑒𝑚
mid := 𝑔(𝑢𝑚+ 1

2 )−Φ𝑚+ 1
2

𝛿⋆
∈ X∘ℎ for 𝑚 = 0, . . . , 𝑁 −1. In the sequel, we will use the symbol 𝐶 to denote a generic

constant that is independent of 𝜏 , ℎ and 𝛿⋆, and may changes value from one line to the other. Also, we will use
the symbol 𝐶𝛿⋆ to denote a generic constant that depends on 𝛿⋆ but is independent of 𝜏 , ℎ, and may changes
value from one line to the other. We note that the constants 𝐶 and 𝐶𝛿⋆

may depend on the solution 𝑢 and its
partial derivatives.

Part 1 : Since 𝑒0 = 0, after subtracting (4.3) from (3.12) we obtain

𝑒
1
2 = 𝜏

4 ∆ℎ𝑒
1
2 + 𝜏

4 𝑔
(︀
𝑢0

)︀
⊗ 𝑒

1
2 + 𝜏

2 s
1
4 . (4.14)

Next, take the (·, ·)0,ℎ-inner product of (4.14) with 𝑒
1
2 , and then use (2.5), the Cauchy–Schwarz inequality, (3.4),

(3.8), (3.16) and the arithmetic mean inequality to get

‖𝑒 1
2 ‖20,ℎ + 𝜏

4 |𝑒
1
2 |21,ℎ = 𝜏

4

(︁
𝑔

(︀
𝑢0

)︀
⊗ 𝑒

1
2 , 𝑒

1
2

)︁
0,ℎ

+ 𝜏
2

(︁
s

1
4 , 𝑒

1
2

)︁
0,ℎ

≤ 𝜏
4 𝑔0

max ‖𝑒
1
2 ‖20,ℎ + 𝜏

2

[︁
‖s 1

4 − r
1
4 ‖0,ℎ + ‖r 1

4 ‖0,ℎ

]︁
‖𝑒 1

2 ‖0,ℎ

≤ 𝜏
4 𝑔0

max ‖𝑒
1
2 ‖20,ℎ + 𝐶

(︀
𝜏2 + 𝜏 ℎ2

)︀
‖𝑒 1

2 ‖0,ℎ

≤ 𝜏
4 𝑔0

max ‖𝑒
1
2 ‖20,ℎ + 𝐶

(︀
𝜏2 + 𝜏 ℎ2

)︀2
+ 1

2 ‖𝑒
1
2 ‖20,ℎ.

Let CBR,II

𝛿⋆
:= max{ 1

2 𝑔0
max, C

BR,I

𝛿⋆
} and 𝜏 CBR,II

𝛿⋆
≤ 1

2 . Then, the inequality above yields that

‖𝑒 1
2 ‖20,ℎ + 𝜏 |𝑒 1

2 |21,ℎ ≤ 𝐶
(︀
𝜏2 + 𝜏 ℎ2

)︀2
. (4.15)

Taking the (·, ·)0,ℎ−inner product of (4.14) with ∆ℎ𝑒
1
2 , and then using (2.5), we obtain

4 |𝑒 1
2 |21,ℎ + 𝜏 ‖∆ℎ𝑒

1
2 ‖20,ℎ = a1 + a2, (4.16)



312 G.E. ZOURARIS

where a1 := −𝜏
(︁
𝑔

(︀
𝑢0

)︀
⊗ 𝑒

1
2 , ∆ℎ𝑒

1
2

)︁
0,ℎ

and a2 := −2 𝜏
(︁
s

1
4 , ∆ℎ𝑒

1
2

)︁
0,ℎ

. Now, we use the Cauchy–Schwarz

inequality, the arithmetic mean inequality and (4.15), to have

a1 ≤ 𝜏 𝑔0
max ‖𝑒

1
2 ‖0,ℎ ‖∆ℎ𝑒

1
2 ‖0,ℎ

≤ 𝜏

[︂
3 (𝑔0

max)2

2 ‖𝑒 1
2 ‖20,ℎ + 1

6 ‖∆ℎ𝑒
1
2 ‖20,ℎ

]︂
≤ 𝐶 𝜏

(︀
𝜏2 + 𝜏 ℎ2

)︀2
+ 𝜏

6 ‖∆ℎ𝑒
1
2 ‖20,ℎ

≤ 𝐶
(︁
𝜏

5
2 + 𝜏

3
2 ℎ2

)︁2

+ 𝜏
6 ‖∆ℎ𝑒

1
2 ‖20,ℎ.

(4.17)

Also, (3.4), the Cauchy–Schwarz inequality, (3.8) and (3.16) yield

a2 = −2 𝜏
(︁
s

1
4 − r

1
4 , ∆ℎ𝑒

1
2

)︁
0,ℎ
− 2 𝜏

(︁
r

1
4 , ∆ℎ𝑒

1
2

)︁
0,ℎ

= −2 𝜏
(︁
s

1
4 − r

1
4 , ∆ℎ𝑒

1
2

)︁
0,ℎ
− 2 𝜏

(︁
r

1
4
𝐴 , ∆ℎ𝑒

1
2

)︁
0,ℎ

+ 2 𝜏
(︁
r

1
4
𝐵 , ∆ℎ𝑒

1
2

)︁
0,ℎ

≤ 2 𝜏
[︁
‖s 1

4 − r
1
4 ‖0,ℎ + ‖r

1
4
𝐴‖0,ℎ

]︁
‖∆ℎ𝑒

1
2 ‖0,ℎ + 2 𝜏

(︁
r

1
4
𝐵 , ∆ℎ𝑒

1
2

)︁
0,ℎ

≤ 𝐶
(︀
ℎ2 + 𝜏2

)︀
‖∆ℎ𝑒

1
2 ‖0,ℎ + 2 𝜏

(︁
r

1
4
𝐵 , ∆ℎ𝑒

1
2

)︁
0,ℎ

.

Since r
1
4
𝐵 ∈ X∘ℎ, using (2.4), the Cauchy–Schwarz inequality, (3.9) and the arithmetic mean inequality we arrive

at

a2 ≤ 𝐶 𝜏
(︀
𝜏2 + ℎ2

)︀
‖∆ℎ𝑒

1
2 ‖0,ℎ − 2 𝜏

(︁(︁
𝛿ℎr

1
4
𝐵 , 𝛿ℎ𝑒

1
2

)︁)︁
0,ℎ

≤ 𝐶 𝜏
(︀
𝜏2 + ℎ2

)︀
‖∆ℎ𝑒

1
2 ‖0,ℎ + 2 𝜏 |r

1
4
𝐵 |1,ℎ |𝑒

1
2 |1,ℎ

≤ 𝐶 𝜏
(︀
𝜏2 + ℎ2

)︀
‖∆ℎ𝑒

1
2 ‖0,ℎ + 𝐶 𝜏2 |𝑒 1

2 |1,ℎ

≤ 𝜏
[︁
𝐶

(︀
𝜏2 + ℎ2

)︀2
+ 1

6 ‖∆ℎ𝑒
1
2 ‖20,ℎ

]︁
+

[︁
𝐶 𝜏4 + |𝑒 1

2 |21,ℎ

]︁
≤ 𝐶

[︂(︁
𝜏

5
2 + 𝜏

1
2 ℎ2

)︁2

+ 𝜏4

]︂
+ 𝜏

6 ‖∆ℎ𝑒
1
2 ‖20,ℎ + |𝑒 1

2 |21,ℎ

≤ 𝐶
(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁2

+ 𝜏
6 ‖∆ℎ𝑒

1
2 ‖20,ℎ + |𝑒 1

2 |21,ℎ.

(4.18)

In view of (4.16)–(4.18), we arrive at

|𝑒 1
2 |21,ℎ + 𝜏 ‖∆ℎ𝑒

1
2 ‖20,ℎ ≤ 𝐶

(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁2

, (4.19)

which, obviously, yields (4.11).

Since 𝛿⋆ ≥ 𝑢max, we have n𝛿⋆

(︁
𝑢

1
2

)︁
= 𝑢

1
2 , which we use, along with (4.4), (4.1) and (4.15), to obtain

‖𝑒0
mid‖20,ℎ =

⃦⃦
𝑔

(︁
n𝛿⋆

(︁
𝑢

1
2

)︁)︁
− 𝑔

(︁
n𝛿⋆

(︁
𝑉

1
2

𝛿⋆

)︁)︁ ⃦⃦2

0,ℎ

≤ sup
R
| (𝑔 ∘ n𝛿⋆

)′ |2 ‖𝑒 1
2 ‖20,ℎ

≤ 𝐶𝛿⋆

(︀
𝜏2 + 𝜏 ℎ2

)︀2
.

(4.20)
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Also, using (2.7) (with g = 𝑔 ∘ n𝛿⋆
), (2.3) and (4.19), we get

|𝑒0
mid|21,ℎ =

⃒⃒
𝑔

(︁
n𝛿⋆

(︁
𝑢

1
2

)︁)︁
− 𝑔

(︁
n𝛿⋆

(︁
𝑉

1
2

𝛿⋆

)︁)︁ ⃒⃒2
1,ℎ

≤ 2 sup
R
| (𝑔 ∘ n𝛿⋆

)′ |2 |𝑒 1
2 |21,ℎ + 2 sup

R
| (𝑔 ∘ n𝛿⋆

)′′ |2 |||𝛿ℎ𝑔
(︁
𝑢

1
2

)︁
|||2∞,ℎ ‖𝑒

1
2 ‖20,ℎ

≤ 𝐶𝛿⋆
|𝑒 1

2 |21,ℎ

≤ 𝐶𝛿⋆

(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁2

.

(4.21)

Part 2 : We subtract (4.5) and (4.7) from (3.13), to obtain the following error equations:

2
(︀
𝑒𝑛+1 − 𝑒𝑛

)︀
= 𝜏 ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
+

3∑︁
𝜅=1

Q𝜅,𝑛, 𝑛 = 0, . . . , 𝑁 − 1, (4.22)

where Q1,𝑛 := 2 𝜏 s𝑛+ 1
2 , Q2,𝑛 := 𝜏 n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
⊗

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
and

Q3,𝑛 := 𝜏
[︁
𝑔(𝑢𝑛+ 1

2 )− n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁]︁
⊗

(︀
𝑢𝑛+1 + 𝑢𝑛

)︀
.

Taking the inner product (·, ·)0,ℎ of (4.22) with (𝑒𝑛+1 − 𝑒𝑛), and then, use (2.4), we arrive at

2 ‖𝑒𝑛+1 − 𝑒𝑛‖20,ℎ + 𝜏
[︀
|𝑒𝑛+1|21,ℎ − |𝑒𝑛|21,ℎ

]︀
=

3∑︁
𝜅=1

(︀
Q𝜅,𝑛, 𝑒𝑛+1 − 𝑒𝑛

)︀
0,ℎ

, 𝑛 = 0, . . . , 𝑁 − 1. (4.23)

Let 𝑛 ∈ {0 . . . , 𝑁−1}. Using the Cauchy–Schwarz inequality, the arithmetic mean inequality, (3.8) and (3.16),
we have (︀

Q1,𝑛, 𝑒𝑛+1 − 𝑒𝑛
)︀
0,ℎ

≤ 2 𝜏
[︁
‖s𝑛+ 1

2 − r𝑛+ 1
2 ‖0,ℎ + ‖r𝑛+ 1

2 ‖0,ℎ

]︁
‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶 𝜏
(︀
𝜏2 + ℎ2

)︀
‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶 𝜏2
(︀
𝜏2 + ℎ2

)︀2
+ 1

6 ‖𝑒
𝑛+1 − 𝑒𝑛‖20,ℎ.

(4.24)

Next, we use the Cauchy–Schwarz inequality, (2.3), (4.1) and the arithmetic mean inequality, to get(︀
Q2,𝑛, 𝑒𝑛+1 − 𝑒𝑛

)︀
0,ℎ

≤ 𝜏 |n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
|∞,ℎ ‖𝑒𝑛+1 + 𝑒𝑛‖0,ℎ ‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶𝛿⋆ 𝜏 |𝑒𝑛+1 + 𝑒𝑛|1,ℎ ‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶𝛿⋆
𝜏2

[︀
|𝑒𝑛+1|21,ℎ + |𝑒𝑛|21,ℎ

]︀
+ 1

6 ‖𝑒
𝑛+1 − 𝑒𝑛‖20,ℎ.

(4.25)

Finally, taking into account that 𝛿⋆ ≥ 𝑔max, we apply the Cauchy–Schwarz inequality, (4.1) and the arithmetic
mean inequality to obtain(︀

Q3,𝑛, 𝑒𝑛+1 − 𝑒𝑛
)︀
0,ℎ

≤ 2 𝜏 𝑢max ‖n𝛿⋆

(︁
𝑔

(︁
𝑢𝑛+ 1

2

)︁)︁
− n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
‖0,ℎ ‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶 𝜏 max
R
|n′𝛿⋆

|
⃦⃦
𝑔

(︁
𝑢𝑛+ 1

2

)︁
− Φ𝑛+ 1

2
𝛿⋆

⃦⃦
0,ℎ
‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶𝛿⋆
𝜏 ‖𝑒𝑛

mid‖0,ℎ ‖𝑒𝑛+1 − 𝑒𝑛‖0,ℎ

≤ 𝐶𝛿⋆ 𝜏2 ‖𝑒𝑛
mid‖20,ℎ + 1

6 ‖𝑒
𝑛+1 − 𝑒𝑛‖20,ℎ.

(4.26)

From (4.23)–(4.26), we conclude that there exists a constant CBR,III

𝛿⋆
> 0, such that

‖𝑒𝑛+1 − 𝑒𝑛‖20,ℎ + 𝜏 |𝑒𝑛+1|21,ℎ ≤ 𝜏 |𝑒𝑛|21,ℎ + CBR,III

𝛿⋆
𝜏2

[︀
|𝑒𝑛+1|21,ℎ + |𝑒𝑛|21,ℎ + ‖𝑒𝑛

mid‖20,ℎ

]︀
+ 𝐶 𝜏2

(︀
𝜏2 + ℎ2

)︀2
, 𝑛 = 0, . . . , 𝑁 − 1.

(4.27)
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Let us find an error equation governing the midpoint error 𝑒𝑛
mid. Subtracting (4.6) from (3.1) and using (4.1)

and the assumption 𝛿⋆ ≥ 𝑢max, we obtain

𝑒𝑛
mid + 𝑒𝑛−1

mid = 2
[︀
𝑔 (n𝛿⋆(𝑢𝑛))− 𝑔

(︀
n𝛿⋆

(︀
𝑉 𝑛

𝛿⋆

)︀)︀]︀
+ 2 r𝑛, 𝑛 = 1, . . . , 𝑁 − 1, (4.28)

which, easily, yields that

𝑒𝑛
mid − 𝑒𝑛−2

mid = 2 𝜎𝑛 + 2
(︀
r𝑛 − r𝑛−1

)︀
, 𝑛 = 2, . . . , 𝑁 − 1, (4.29)

where 𝜎𝑛 ∈ X∘ℎ is defined by

𝜎𝑛 := 𝑔
(︀
n𝛿⋆

(︀
𝑉 𝑛−1

𝛿⋆

)︀)︀
− 𝑔

(︀
n𝛿⋆

(𝑉 𝑛
𝛿⋆

)
)︀
− 𝑔

(︀
n𝛿⋆

(︀
𝑢𝑛−1

)︀)︀
+ 𝑔 (n𝛿⋆

(𝑢𝑛)) . (4.30)

Then, we use (2.8) (with g = 𝑔 ∘ n𝛿⋆
), (4.1) and the mean value theorem, to get

‖𝜎𝑛‖0,ℎ ≤ sup
R
| (𝑔 ∘ n𝛿⋆)′ | ‖𝑒𝑛 − 𝑒𝑛−1‖0,ℎ

+ sup
R
| (𝑔 ∘ n𝛿⋆

)′′ | |𝑢𝑛−1 − 𝑢𝑛|∞,ℎ

[︀
‖𝑒𝑛 − 𝑒𝑛−1‖0,ℎ + ‖𝑒𝑛‖0,ℎ

]︀
≤ 𝐶𝛿⋆

[︀
‖𝑒𝑛 − 𝑒𝑛−1‖0,ℎ + 𝜏 ‖𝑒𝑛‖0,ℎ

]︀
, 𝑛 = 2, . . . , 𝑁 − 1.

(4.31)

Taking the (·, ·)0,ℎ inner product of both sides of (4.29) with 𝜏
(︀
𝑒𝑛
mid + 𝑒𝑛−2

mid

)︀
, and then using the Cauchy–Schwarz

inequality, (4.31), (3.11) and (2.3), it follows that

𝜏 ‖𝑒𝑛
mid‖20,ℎ − 𝜏 ‖𝑒𝑛−2

mid ‖20,ℎ ≤
[︀
2 𝜏 ‖𝜎𝑛‖0,ℎ + 2 𝜏 ‖r𝑛 − r𝑛−1‖0,ℎ

]︀
‖𝑒𝑛

mid + 𝑒𝑛−2
mid ‖0,ℎ

≤ 𝐶𝛿⋆

[︀
𝜏 ‖𝑒𝑛 − 𝑒𝑛−1‖0,ℎ + 𝜏2 ‖𝑒𝑛‖0,ℎ

]︀
‖𝑒𝑛

mid + 𝑒𝑛−2
mid ‖0,ℎ

+ 𝐶 𝜏4 ‖𝑒𝑛
mid + 𝑒𝑛−2

mid ‖0,ℎ

≤ 𝐶𝛿⋆ 𝜏 ‖𝑒𝑛 − 𝑒𝑛−1‖0,ℎ

(︀
‖𝑒𝑛

mid‖0,ℎ + ‖𝑒𝑛−2
mid ‖0,ℎ

)︀
+ 𝐶𝛿⋆

𝜏2 |𝑒𝑛|1,ℎ

(︀
‖𝑒𝑛

mid‖0,ℎ + ‖𝑒𝑛−2
mid ‖0,ℎ

)︀
+ 𝐶 𝜏4

(︀
‖𝑒𝑛

mid‖0,ℎ + ‖𝑒𝑛−2
mid ‖0,ℎ

)︀
, 𝑛 = 2, . . . , 𝑁 − 1.

Now, we apply the arithmetic mean inequality to obtain

𝜏 ‖𝑒𝑛
mid‖20,ℎ − 𝜏 ‖𝑒𝑛−2

mid ‖20,ℎ ≤ 𝐶𝛿⋆
𝜏2

(︀
‖𝑒𝑛

mid‖0,ℎ + ‖𝑒𝑛−2
mid ‖0,ℎ

)︀2
+ ‖𝑒𝑛 − 𝑒𝑛−1‖20,ℎ

+ 𝐶𝛿⋆ 𝜏2
[︁
|𝑒𝑛|21,ℎ +

(︀
‖𝑒𝑛

mid‖0,ℎ + ‖𝑒𝑛−2
mid ‖0,ℎ

)︀2
]︁

+ 𝐶𝜏6 + 𝜏2
(︀
‖𝑒𝑛

mid‖0,ℎ + ‖𝑒𝑛−2
mid ‖0,ℎ

)︀2

≤ 𝐶𝛿⋆
𝜏2

(︀
‖𝑒𝑛

mid‖20,ℎ + ‖𝑒𝑛−2
mid ‖20,ℎ

)︀
+ ‖𝑒𝑛 − 𝑒𝑛−1‖20,ℎ

+ 𝐶𝛿⋆ 𝜏2
(︀
|𝑒𝑛|21,ℎ + ‖𝑒𝑛

mid‖20,ℎ + ‖𝑒𝑛−2
mid ‖20,ℎ

)︀
+ 𝐶 𝜏6 + 2 𝜏2

(︀
‖𝑒𝑛

mid‖20,ℎ + ‖𝑒𝑛−2
mid ‖20,ℎ

)︀
, 𝑛 = 2, . . . , 𝑁 − 1.

Thus, we arrive at

𝜏 ‖𝑒𝑛
mid‖20,ℎ + 𝜏 ‖𝑒𝑛−1

mid ‖20,ℎ ≤ 𝜏 ‖𝑒𝑛−1
mid ‖20,ℎ + 𝜏 ‖𝑒𝑛−2

mid ‖20,ℎ + ‖𝑒𝑛 − 𝑒𝑛−1‖20,ℎ + 𝐶 𝜏6

+ 𝐶𝛿⋆
𝜏2

[︀
|𝑒𝑛|21,ℎ + ‖𝑒𝑛

mid‖20,ℎ + ‖𝑒𝑛−2
mid ‖20,ℎ

]︀
, 𝑛 = 2, . . . , 𝑁 − 1.

(4.32)

From (4.27) and (4.32), we conclude that there exists a constant CBR,IV

𝛿⋆
> 0 such that:(︀

1− CBR,IV

𝛿⋆
𝜏
)︀

E𝑛+1 ≤
(︀
1 + CBR,IV

𝛿⋆
𝜏
)︀

E𝑛 + 𝐶 𝜏2
(︀
𝜏2 + ℎ2

)︀2
, 𝑛 = 2, . . . , 𝑁 − 1, (4.33)
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where
E𝑚 := ‖𝑒𝑚 − 𝑒𝑚−1‖20,ℎ + 𝜏

(︀
|𝑒𝑚|21,ℎ + ‖𝑒𝑚−1

mid ‖20,ℎ + ‖𝑒𝑚−2
mid ‖20,ℎ

)︀
, 𝑛 = 2, . . . , 𝑁. (4.34)

Assuming that 𝜏 CBR,V

𝛿⋆
≤ 1

2 with CBR,V

𝛿⋆
:= max{CBR,III

𝛿 , CBR,IV

𝛿⋆
}, and applying a standard discrete Gronwall argument,

from (4.33) we arrive at
max

2≤𝑚≤𝑁

E𝑚 ≤ 𝐶𝛿⋆

[︁
E2 + 𝜏

(︀
𝜏2 + ℎ2

)︀2
]︁
.

Since 𝑒0 = 0, the later inequality along with (4.34) obviously yield that

𝜏

[︂
max

0≤𝑚≤𝑁

|𝑒𝑚|21,ℎ + max
0≤𝑚≤𝑁−1

‖𝑒𝑚
mid‖20,ℎ

]︂
≤ 𝐶𝛿⋆

[︀
‖𝑒2 − 𝑒1‖20,ℎ + 𝜏 |𝑒2|21,ℎ + 𝜏 |𝑒1|21,ℎ

+ 𝜏 ‖𝑒1
mid‖20,ℎ + 𝜏 ‖𝑒0

mid‖20,ℎ + 𝜏
(︀
𝜏2 + ℎ2

)︀2
]︁
.

(4.35)

Setting 𝑛 = 0 in (4.27) and using that 𝑒0 = 0, we obtain

𝜏 |𝑒1|21,ℎ ≤ 𝐶𝛿⋆

[︁
𝜏2

(︀
𝜏2 + ℎ2

)︀2
+ 𝜏2 ‖𝑒0

mid‖20,ℎ

]︁
. (4.36)

Now, we set 𝑛 = 1 in (4.27) and use (4.36), to have

‖𝑒2 − 𝑒1‖20,ℎ + 𝜏 |𝑒2|21,ℎ ≤ 𝐶𝛿⋆

[︁
𝜏2

(︀
𝜏2 + ℎ2

)︀2
+ 𝜏 |𝑒1|21,ℎ + 𝜏2 ‖𝑒1

mid‖20,ℎ

]︁
≤ 𝐶𝛿⋆

[︁
𝜏2

(︀
𝜏2 + ℎ2

)︀2
+ 𝜏2 ‖𝑒0

mid‖20,ℎ + 𝜏2 ‖𝑒1
mid‖20,ℎ

]︁
.

(4.37)

Also, we set 𝑛 = 1 in (4.28) and then use (3.10), (2.3) and (4.36), to get

‖𝑒1
mid‖20,ℎ ≤

[︂
‖𝑒0

mid‖0,ℎ + 2 sup
R
|(𝑔 ∘ n𝛿⋆

)′| ‖𝑒1‖0,ℎ + 2 ‖r1‖0,ℎ

]︂2

≤ 𝐶𝛿⋆

(︀
‖𝑒0

mid‖20,ℎ + ‖𝑒1‖20,ℎ + 𝜏4
)︀

≤ 𝐶𝛿⋆

(︀
‖𝑒0

mid‖20,ℎ + |𝑒1|21,ℎ + 𝜏4
)︀

≤ 𝐶𝛿⋆

[︁
‖𝑒0

mid‖20,ℎ +
(︀
𝜏2 + ℎ2

)︀2
]︁
.

(4.38)

From (4.35) to (4.38), we arrive at

max
0≤𝑚≤𝑁

|𝑒𝑚|21,ℎ + max
0≤𝑚≤𝑁−1

‖𝑒𝑚
mid‖20,ℎ ≤ 𝐶𝛿⋆

[︁(︀
𝜏2 + ℎ2

)︀2
+ ‖𝑒0

mid‖20,ℎ

]︁
. (4.39)

Thus, (4.12) follows, easily, from (4.39) and (4.20).
Part 3 : Let us define 𝜌𝑚 := Rℎ[𝑢(𝑡𝑚, ·)] − 𝑢𝑚 ∈ X∘ℎ and 𝜂𝑚 := 𝑉 𝑚

𝛿⋆
− Rℎ[𝑢(𝑡𝑚, ·)] ∈ X∘ℎ for 𝑚 = 0, . . . , 𝑁 .

Then, using (4.5), (4.7), (3.3) and (2.1) we get

2 (𝜂𝑛+1 − 𝜂𝑛) = 𝜏 ∆ℎ

(︀
𝜂𝑛+1 + 𝜂𝑛

)︀
+

4∑︁
𝜅=1

B𝜅,𝑛, 𝑛 = 0, . . . , 𝑁 − 1, (4.40)

where
B1,𝑛 := 2 𝜏

(︁
𝑢𝑛+1−𝑢𝑛

𝜏 − Rℎ

[︁
𝑢(𝑡𝑛+1,·)−𝑢(𝑡𝑛,·)

𝜏

]︁)︁
,

B2,𝑛 := − 2 𝜏 r𝑛+ 1
2 ,

B3,𝑛 := − 𝜏 n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
⊗ (𝑒𝑛+1 + 𝑒𝑛),

B4,𝑛 := 𝜏
[︁
n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
− n𝛿⋆

(𝑔(𝑢𝑛+ 1
2 ))

]︁
⊗ (𝑢𝑛+1 + 𝑢𝑛).
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Take the (·, ·)0,ℎ-inner product of (4.40) with ∆ℎ(𝜂𝑛+1 − 𝜂𝑛), and then, use (2.5) and (2.4), to have

2 |𝜂𝑛+1 − 𝜂𝑛|21,ℎ + 𝜏
[︀
‖∆ℎ𝜂𝑛+1‖20,ℎ − ‖∆ℎ𝜂𝑛‖20,ℎ

]︀
=

4∑︁
𝜅=1

(︀(︀
𝛿ℎB𝜅,𝑛, 𝛿ℎ

(︀
𝜂𝑛+1 − 𝜂𝑛

)︀)︀)︀
0,ℎ

(4.41)

for 𝑛 = 0, . . . , 𝑁 − 1.
Let 𝑛 ∈ {0 . . . , 𝑁−1}. Using the Cauchy–Schwarz inequality, the arithmetic mean inequality, (3.9) and (3.21),

we have (︀(︀
𝛿ℎB1,𝑛, 𝛿ℎ

(︀
𝜂𝑛+1 − 𝜂𝑛

)︀)︀)︀
0,ℎ

≤ |B1,𝑛|1,ℎ |𝜂𝑛+1 − 𝜂𝑛|1,ℎ

≤ 𝐶 𝜏 ℎ2 |𝜂𝑛+1 − 𝜂𝑛|1,ℎ

≤ 𝐶 𝜏2 ℎ4 + 1
6 |𝜂

𝑛+1 − 𝜂𝑛|21,ℎ

(4.42)

and (︀(︀
𝛿ℎB2,𝑛, 𝛿ℎ

(︀
𝜂𝑛+1 − 𝜂𝑛

)︀)︀)︀
0,ℎ

≤ 2 𝜏 |r𝑛+ 1
2 |1,ℎ |𝜂𝑛+1 − 𝜂𝑛|1,ℎ

≤ 𝐶 𝜏3 |𝜂𝑛+1 − 𝜂𝑛|1,ℎ

≤ 𝐶 𝜏6 + 1
6 |𝜂

𝑛+1 − 𝜂𝑛|21,ℎ.

(4.43)

Using, again, the Cauchy–Schwarz inequality and the arithmetic mean inequality, we get(︀(︀
𝛿ℎ

(︀
B3,𝑛 + B4,𝑛

)︀
, 𝛿ℎ

(︀
𝜂𝑛+1 − 𝜂𝑛

)︀)︀)︀
0,ℎ

≤ 3
2 𝜏2

(︀
|c3,𝑛|21,ℎ + |c4,𝑛|21,ℎ

)︀
+ 2

6 |𝜂
𝑛+1 − 𝜂𝑛|21,ℎ (4.44)

where
c3,𝑛 := n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
⊗

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
,

c4,𝑛 :=
(︁
𝑔

(︁
𝑢𝑛+ 1

2

)︁
− n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁)︁
⊗

(︀
𝑢𝑛+1 + 𝑢𝑛

)︀
.

Using (4.1), (2.2), (4.12), (3.20) and (2.6), we get

|c3,𝑛|21,ℎ ≤
[︁
|n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
|1,ℎ |𝑒𝑛+1 + 𝑒𝑛|∞,ℎ + |n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
|∞,ℎ |𝑒𝑛+1 + 𝑒𝑛|1,ℎ

]︁2

≤ 𝐶
[︁
|n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
|1,ℎ + |n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
|∞,ℎ

]︁2

|𝑒𝑛+1 + 𝑒𝑛|21,ℎ

≤ 𝐶

[︂
sup

R
|n′𝛿⋆

|
⃒⃒
Φ𝑛+ 1

2
𝛿⋆

⃒⃒
1,ℎ

+ sup
R
|n𝛿⋆

|
]︂2 (︀

|𝑒𝑛+1|21,ℎ + |𝑒𝑛|21,ℎ

)︀
≤ 𝐶𝛿⋆

[︁
1 +

⃒⃒
Φ𝑛+ 1

2
𝛿⋆

− 𝑔
(︁
𝑢𝑛+ 1

2

)︁ ⃒⃒
1,ℎ

+ |𝑔
(︁
𝑢𝑛+ 1

2

)︁
|1,ℎ

]︁2 (︀
|𝑒𝑛+1|21,ℎ + |𝑒𝑛|21,ℎ

)︀
≤ 𝐶𝛿⋆

(︀
1 + |𝑒𝑛

mid|21,ℎ

)︀ (︀
|𝑒𝑛+1|21,ℎ + |𝑒𝑛|21,ℎ

)︀
≤ 𝐶𝛿⋆

[︀
|𝑒𝑛

mid|21,ℎ + |𝑒𝑛+1|21,ℎ + |𝑒𝑛|21,ℎ

]︀
≤ 𝐶𝛿⋆

[︀
|𝑒𝑛

mid|21,ℎ + |𝜌𝑛+1|21,ℎ + |𝜌𝑛|21,ℎ + |𝜂𝑛+1|21,ℎ + |𝜂𝑛|21,ℎ

]︀
≤ 𝐶𝛿⋆

[︀
|𝑒𝑛

mid|21,ℎ + ℎ4 + |𝜂𝑛+1|22,ℎ + |𝜂𝑛|22,ℎ

]︀
.

(4.45)

Also, combining (2.2), (2.3), (2.7) (with g = n𝛿⋆
) and the assumption 𝛿⋆ > 𝑔max we obtain

|c4,𝑛|21,ℎ ≤ 𝐶
[︁⃒⃒

n𝛿⋆

(︁
𝑔

(︁
𝑢𝑛+ 1

2

)︁)︁
− n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁ ⃒⃒
1,ℎ
|𝑢𝑛+1 + 𝑢𝑛|∞,ℎ

+ ‖n𝛿⋆

(︁
𝑔

(︁
𝑢𝑛+ 1

2

)︁)︁
− n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
‖0,ℎ |||𝛿ℎ

(︀
𝑢𝑛+1 + 𝑢𝑛

)︀
|||∞,ℎ

]︁2

≤ 𝐶
⃒⃒
n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
− n𝛿⋆

(︁
𝑔

(︁
𝑢𝑛+ 1

2

)︁)︁ ⃒⃒2
1,ℎ

≤ 𝐶

[︂
sup

R
|n′𝛿⋆

| |𝑒𝑛
mid|1,ℎ + max

R
|n′′𝛿⋆

| |||𝛿ℎ

(︁
𝑔

(︁
𝑢𝑛+ 1

2

)︁)︁
|||∞,ℎ ‖𝑒𝑛

mid‖0,ℎ

]︂2

≤ 𝐶𝛿⋆
|𝑒𝑛

mid|21,ℎ.

(4.46)
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Thus, (4.44)–(4.46) yield(︀(︀
𝛿ℎ

(︀
B3,𝑛 + B4,𝑛

)︀
, 𝛿ℎ

(︀
𝜂𝑛+1 − 𝜂𝑛

)︀)︀)︀
0,ℎ

≤ 𝐶𝛿⋆
𝜏2

[︀
ℎ4 + |𝑒𝑛

mid|21,ℎ + |𝜂𝑛+1|22,ℎ + |𝜂𝑛|22,ℎ

]︀
+ 1

3 |𝜂
𝑛+1 − 𝜂𝑛|21,ℎ.

(4.47)

From (4.41) to (4.43) and (4.47), we conclude that there exists a constant CBR,VI

𝛿⋆
> 0, such that

|𝜂𝑛+1 − 𝜂𝑛|21,ℎ + 𝜏 |𝜂𝑛+1|22,ℎ ≤ 𝜏 |𝜂𝑛|22,ℎ + CBR,VI

𝛿⋆
𝜏2

(︀
|𝑒𝑛

mid|21,ℎ + |𝜂𝑛+1|22,ℎ + |𝜂𝑛|22,ℎ

)︀
+ 𝐶 𝜏2

(︀
𝜏2 + ℎ2

)︀2
, 𝑛 = 0, . . . , 𝑁 − 1.

(4.48)

Taking the (·, ·)0,ℎ inner product of both sides of (4.29) by 𝜏 ∆ℎ(𝑒𝑛
mid + 𝑒𝑛−2

mid ), and using (2.4), the Cauchy–
Schwarz inequality and (3.11), we have

𝜏 |𝑒𝑛
mid|21,ℎ − 𝜏 |𝑒𝑛−2

mid |21,ℎ = 2 𝜏
(︀(︀
𝛿ℎ𝜎𝑛, 𝛿ℎ

(︀
𝑒𝑛
mid + 𝑒𝑛−2

mid

)︀)︀)︀
0,ℎ

+ 2 𝜏
(︀(︀
𝛿ℎ

(︀
r𝑛 − r𝑛−1

)︀
, 𝛿ℎ

(︀
𝑒𝑛
mid + 𝑒𝑛−2

mid

)︀)︀)︀
0,ℎ

≤ 2 𝜏
(︀
|𝜎𝑛|1,ℎ + |r𝑛 − r𝑛−1|1,ℎ

)︀ (︀
|𝑒𝑛

mid|1,ℎ + |𝑒𝑛−2
mid |1,ℎ

)︀
≤ 2 𝜏

(︀
|𝜎𝑛|1,ℎ + 𝜏3

)︀ (︀
|𝑒𝑛

mid|1,ℎ + |𝑒𝑛−2
mid |1,ℎ

)︀
, 𝑛 = 2, . . . , 𝑁 − 1.

(4.49)

Using (4.30), (2.9) (with g = 𝑔 ∘ n𝛿⋆), (2.3), (4.12) and (3.21), we get

|𝜎𝑛|1,ℎ ≤ 𝐶𝛿⋆

(︀
|𝑒𝑛 − 𝑒𝑛−1|1,ℎ + 𝜏 |𝑒𝑛|1,ℎ

)︀
≤ 𝐶𝛿⋆

[︀
|𝜂𝑛 − 𝜂𝑛−1|1,ℎ + |𝜌𝑛 − 𝜌𝑛−1|1,ℎ + 𝜏

(︀
𝜏2 + ℎ2

)︀]︀
≤ 𝐶𝛿⋆

[︀
|𝜂𝑛 − 𝜂𝑛−1|1,ℎ + 𝜏

(︀
𝜏2 + ℎ2

)︀]︀
, 𝑛 = 2, . . . , 𝑁 − 1.

(4.50)

Then, (4.49), (4.50) and the arithmetic mean inequality, yield

𝜏 |𝑒𝑛
mid|21,ℎ + 𝜏 |𝑒𝑛−1

mid |21,ℎ ≤ 𝜏 |𝑒𝑛−1
mid |21,ℎ + 𝜏 |𝑒𝑛−2

mid |21,ℎ + 𝐶𝛿⋆
𝜏 |𝜂𝑛 − 𝜂𝑛−1|1,ℎ

(︀
|𝑒𝑛

mid|1,ℎ + |𝑒𝑛−2
mid |1,ℎ

)︀
+ 𝐶𝛿⋆ 𝜏2

(︀
𝜏2 + ℎ2

)︀ (︀
|𝑒𝑛

mid|1,ℎ + |𝑒𝑛−2
mid |1,ℎ

)︀
≤ 𝜏 |𝑒𝑛−1

mid |21,ℎ + 𝜏 |𝑒𝑛−2
mid |21,ℎ + |𝜂𝑛 − 𝜂𝑛−1|21,ℎ + 𝐶𝛿⋆

𝜏2
(︀
|𝑒𝑛

mid|1,ℎ + |𝑒𝑛−2
mid |1,ℎ

)︀2

+ 𝐶𝛿⋆
𝜏2

[︁ (︀
|𝑒𝑛

mid|1,ℎ + |𝑒𝑛−2
mid |1,ℎ

)︀2
+

(︀
𝜏2 + ℎ2

)︀2
]︁

≤ 𝜏 |𝑒𝑛−1
mid |21,ℎ + 𝜏 |𝑒𝑛−2

mid |21,ℎ + |𝜂𝑛 − 𝜂𝑛−1|21,ℎ

+ 𝐶𝛿⋆

[︁
𝜏2

(︀
|𝑒𝑛

mid|21,ℎ + |𝑒𝑛−2
mid |21,ℎ

)︀
+ 𝜏2

(︀
𝜏2 + ℎ2

)︀2
]︁

(4.51)

for 𝑛 = 2, . . . , 𝑁 − 1. Combining (4.48) and (4.51), we conclude that there exists a positive constant CBR,VII

𝛿⋆
such

that: (︀
1− CBR,VII

𝛿⋆
𝜏
)︀

E𝑛+1
⋆ ≤

(︀
1 + CBR,VII

𝛿⋆
𝜏
)︀

E𝑛
⋆ + 𝐶𝛿⋆

𝜏2
(︀
𝜏2 + ℎ2

)︀2
, 𝑛 = 2, . . . , 𝑁 − 1, (4.52)

where
E𝑚

⋆ := |𝜂𝑚 − 𝜂𝑚−1|21,ℎ + 𝜏 |𝜂𝑚|22,ℎ + 𝜏 |𝑒𝑚−1
mid |21,ℎ + 𝜏 |𝑒𝑚−2

mid |21,ℎ, 𝑚 = 2, . . . , 𝑁. (4.53)

Let us assume that 𝜏 CBR,VIII

𝛿⋆
≤ 1

2 , where CBR,VIII

𝛿⋆
:= max{CBR,VII

𝛿⋆
, CBR,VI

𝛿⋆
}. Then, employing a standard discrete

Gronwall argument based on (4.52), it follows that

max
2≤𝑚≤𝑁

E𝑚
⋆ ≤ 𝐶𝛿⋆

[︁
E2

⋆ + 𝜏
(︀
𝜏2 + ℎ2

)︀2
]︁
,



318 G.E. ZOURARIS

which, along with (4.53), yields

𝜏

[︂
max

1≤𝑚≤𝑁

|𝜂𝑚|22,ℎ + max
0≤𝑚≤𝑁−1

|𝑒𝑚
mid|21,ℎ

]︂
≤ 𝐶𝛿⋆

[︀
|𝜂2 − 𝜂1|21,ℎ + 𝜏 |𝜂2|22,ℎ + 𝜏 |𝜂1|22,ℎ

+ 𝜏 |𝑒1
mid|21,ℎ + 𝜏 |𝑒0

mid|21,ℎ + 𝜏
(︀
𝜏2 + ℎ2

)︀2
]︁
.

(4.54)

Combining (4.48) (with 𝑛 = 0) and (3.19), we obtain

𝜏 |𝜂1|22,ℎ ≤ 𝐶𝛿⋆

[︁
𝜏 |𝜂0|22,ℎ + 𝜏2 |𝑒0

mid|21,ℎ + 𝜏2
(︀
𝜏2 + ℎ2

)︀2
]︁

≤ 𝐶𝛿⋆

[︁
𝜏 ℎ4 + 𝜏2 |𝑒0

mid|21,ℎ + 𝜏2
(︀
𝜏2 + ℎ2

)︀2
]︁

≤ 𝐶𝛿⋆

[︁
𝜏2 |𝑒0

mid|21,ℎ + 𝜏
(︀
𝜏2 + ℎ2

)︀2
]︁
.

(4.55)

Using (4.48) (with 𝑛 = 1) and (4.55) we have

|𝜂2 − 𝜂1|21,ℎ + 𝜏 |𝜂2|22,ℎ ≤ 𝐶𝛿⋆

[︁
𝜏 |𝜂1|22,ℎ + 𝜏2 |𝑒1

mid|21,ℎ + 𝜏2
(︀
𝜏2 + ℎ2

)︀2
]︁

≤ 𝐶𝛿⋆

[︁
𝜏2 |𝑒1

mid|21,ℎ + 𝜏2 |𝑒0
mid|21,ℎ + 𝜏

(︀
𝜏2 + ℎ2

)︀2
]︁
.

(4.56)

Also, from (4.28) (with 𝑛 = 1), (2.7) (with g = 𝑔 ∘ n𝛿⋆), (2.3), (3.19), (2.6) and (3.10), we conclude that

|𝑒1
mid|21,ℎ ≤

[︀
|𝑒0

mid|1,ℎ + 2 |𝑔
(︀
n𝛿⋆(𝑢1)

)︀
− 𝑔

(︀
n𝛿⋆

(︀
𝑉 1

𝛿⋆

)︀)︀
|1,ℎ + 2 |r1|1,ℎ

]︀2
≤ 𝐶𝛿⋆

(︀
|𝑒0

mid|21,ℎ + |𝑒1|21,ℎ + 𝜏4
)︀

≤ 𝐶𝛿⋆

(︀
|𝑒0

mid|21,ℎ + |𝜌1|21,ℎ + |𝜂1|21,ℎ + 𝜏4
)︀

≤ 𝐶𝛿⋆

[︁
|𝑒0

mid|21,ℎ + |𝜂1|22,ℎ +
(︀
ℎ2 + 𝜏2

)︀2
]︁

≤ 𝐶𝛿⋆

[︁
|𝑒0

mid|21,ℎ +
(︀
ℎ2 + 𝜏2

)︀2
]︁
.

(4.57)

Since 𝑒0 = 0, using (3.19), we get

max
0≤𝑚≤𝑁

|𝑒𝑚|22,ℎ ≤ max
1≤𝑚≤𝑁

(|𝜌𝑚|2,ℎ + |𝜂𝑚|2,ℎ)2

≤𝐶 ℎ4 + max
1≤𝑚≤𝑁

|𝜂𝑚|22,ℎ.
(4.58)

Thus, from (4.54) to (4.58), it follows that

max
0≤𝑚≤𝑁

|𝑒𝑚|22,ℎ + max
0≤𝑚≤𝑁−1

|𝑒𝑚
mid|21,ℎ ≤ 𝐶𝛿⋆

[︁
|𝑒0

mid|21,ℎ +
(︀
𝜏2 + ℎ2

)︀2
]︁
. (4.59)

Finally, (4.13) follows, easily, from (4.59) and (4.21). �

Next, we investigate the influence on the convergence rate of a different construction of Φ
1
2
𝛿⋆

(see [4, 5]).

Corollary 4.5. Let 𝑔 ∈ 𝐶4(R), 𝑢 ∈ 𝐶3,0
𝑡,𝑥 (𝑄), 𝜕ℓ

𝑡𝑢 ∈ 𝐶0,1
𝑡,𝑥 (𝑄) for ℓ = 1, 2, 3, and 𝜕𝑡𝑢 ∈ 𝐶0,4

𝑡,𝑥 (𝑄). Also, let
𝑢max := max

𝑄
|𝑢|, 𝑔max := max

𝑄
|𝑔(𝑢)|, 𝛿⋆ ≥ max{𝑢max, 𝑔max}, CBR,I

𝛿⋆
:= 1

4 max
R
|n𝛿| and 𝜏 CBR,I

𝛿⋆
≤ 1

2 . If

Φ
1
2
𝛿⋆

:= 𝑔
(︀
𝑢0

)︀
, (4.60)

then, there exist constants CB,1
𝛿⋆
≥ CBR,I

𝛿⋆
and CB,2

𝛿⋆
> 0, independent of 𝜏 and ℎ, such that: if 𝜏 CB,1

𝛿⋆
≤ 1

2 , then

max
0≤𝑚≤𝑁−1

⃒⃒
𝑔(𝑢𝑚+ 1

2 )− Φ𝑚+ 1
2

𝛿⋆

⃒⃒
1,ℎ

+ max
0≤𝑚≤𝑁

|𝑢𝑚 − 𝑉 𝑚
𝛿⋆
|2,ℎ ≤ CB,2

𝛿⋆
(𝜏 + ℎ2). (4.61)
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Proof. Since 𝛿⋆ ≥ 𝑢max, estimate (4.61) is a simple consequence of (4.60), (2.7) (with g = 𝑔 ∘ n𝛿⋆
)

and (4.59). �

4.5. Convergence of the (BRFD) method

Theorem 4.6. Let 𝑔 ∈ 𝐶4(R), 𝑢 ∈ 𝐶3,0
𝑡,𝑥 (𝑄), 𝜕ℓ

𝑡𝑢 ∈ 𝐶0,1
𝑡,𝑥 (𝑄) for ℓ = 1, 2, 3, and 𝜕𝑡𝑢 ∈ 𝐶0,4

𝑡,𝑥 (𝑄). Also, let
𝑢max := max

𝑄
|𝑢|, 𝑔max := max

𝑄
|𝑔 ∘ 𝑢|, 𝑔0

max := max
ℐ
|𝑔 ∘ 𝑢0|, 𝛿⋆ ≥ 2 max{𝑢max, 𝑔max}, CBR,I

𝛿⋆
:= 1

4 max
R
|n𝛿|, CBCV,1

𝛿⋆
,

CBCV,2
𝛿⋆

, CBCV,3
𝛿⋆

and CBCV,4
𝛿⋆

be the constants specified in Theorem 4.4, where CBCV,1
𝛿⋆

≥ CBR,I

𝛿⋆
. If 𝜏 CBCV,1

𝛿⋆
≤ 1

2 and

CBCV,2
𝛿⋆

√
L

(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁
≤ 𝛿⋆

2 , max{CBCV,3
𝛿⋆

, CBCV,4
𝛿⋆

}
√

L
(︀
𝜏2 + ℎ2

)︀
≤ 𝛿⋆

2 , (4.62)

then, the method (BRFD) is well-defined and the following error estimates hold

|𝑢 1
2 − 𝑈

1
2 |1,ℎ ≤ CBCV,2

𝛿⋆

(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁
(4.63)

and

max
0≤𝑚≤𝑁−1

|𝑔
(︁
𝑢𝑚+ 1

2

)︁
− Φ𝑚+ 1

2 |1,ℎ + max
0≤𝑚≤𝑁

|𝑢𝑚 − 𝑈𝑚|2,ℎ ≤ max{CBCV,3
𝛿⋆

, CBCV,4
𝛿⋆

}
(︀
𝜏2 + ℎ2

)︀
. (4.64)

Proof. Since 𝛿⋆ ≥ 2 max{𝑔max, 𝑢max} ≥ 𝑔0
max and 𝜏 CBR,1

𝛿⋆
≤ 𝜏 CBCV,1

𝛿⋆
≤ 1

2 , Proposition 4.2 yields the existence and
uniqueness of the (MBRFD) approximations when 𝛿 = 𝛿⋆. Using the convergence estimates (4.11)–(4.13), the
discrete Sobolev inequality (2.2) and the mesh size conditions (4.62) we have⃒⃒

Φ𝑛+ 1
2

𝛿⋆

⃒⃒
∞,ℎ

≤
⃒⃒
𝑔

(︁
𝑢𝑛+ 1

2

)︁
− Φ𝑛+ 1

2
𝛿⋆

⃒⃒
∞,ℎ

+
⃒⃒
𝑔

(︁
𝑢𝑛+ 1

2

)︁
|∞,ℎ

≤
√

L
⃒⃒
𝑔

(︁
𝑢𝑛+ 1

2

)︁
− Φ𝑛+ 1

2
𝛿⋆

⃒⃒
1,ℎ

+ 𝑔max

≤ CBCV,4
𝛿⋆

√
L

(︀
𝜏2 + ℎ2

)︀
+ 𝛿⋆

2 ≤ 𝛿⋆, 𝑛 = 0, . . . , 𝑁 − 1,⃒⃒
𝑉 𝑛

𝛿⋆

⃒⃒
∞,ℎ

≤
⃒⃒
𝑢𝑛 − 𝑉 𝑛

𝛿⋆

⃒⃒
∞,ℎ

+ |𝑢𝑛|∞,ℎ

≤
√

L |𝑢𝑛 − 𝑉 𝑛
𝛿⋆
|1,ℎ + 𝑢max

≤ CBCV,3
𝛿⋆

√
L

(︀
𝜏2 + ℎ2

)︀
+ 𝛿⋆

2 ≤ 𝛿⋆, 𝑛 = 1, . . . , 𝑁 − 1,

and ⃒⃒
𝑉

1
2

𝛿⋆

⃒⃒
∞,ℎ

≤
⃒⃒
𝑢

1
2 − 𝑉

1
2

𝛿⋆

⃒⃒
∞,ℎ

+
⃒⃒
𝑢

1
2 |∞,ℎ

≤
√

L
⃒⃒
𝑢

1
2 − 𝑉

1
2

𝛿⋆

⃒⃒
1,ℎ

+ 𝑢max

≤ CBCV,2
𝛿⋆

√
L

(︁
𝜏2 + 𝜏

1
2 ℎ2

)︁
+ 𝛿⋆

2 ≤ 𝛿⋆,

which, along with (4.1), yield

n𝛿⋆

(︀
𝑉 ℓ

𝛿⋆

)︀
= 𝑉 ℓ

𝛿⋆
, ℓ = 1

2 , 1, . . . , 𝑁 − 1,

n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
= Φ𝑛+ 1

2
𝛿⋆

, 𝑛 = 0, . . . , 𝑁 − 1.
(4.65)

Thus, for 𝛿 = 𝛿⋆ the (MBRFD) approximations are (BRFD) approximations, i.e., (1.5)–(1.10) hold after replac-

ing 𝑈
1
2 by 𝑉

1
2

𝛿⋆
, 𝑈𝑛 by 𝑉 𝑛

𝛿⋆
for 𝑛 = 0, . . . , 𝑁 , and Φ𝑛+ 1

2 by Φ𝑛+ 1
2

𝛿⋆
for 𝑛 = 0, . . . , 𝑁 − 1.

Let 𝑈
1
2 , (𝑈𝑛)𝑁

𝑛=0 and
(︁

Φ𝑛+ 1
2

)︁𝑁−1

𝑛=0
be approximations derived by the (BRFD) method. Then, we introduce

the errors q
1
2 := 𝑉

1
2

𝛿⋆
− 𝑈

1
2 , q𝑛 := 𝑉 𝑛

𝛿⋆
− 𝑈𝑛 for 𝑛 = 0, . . . , 𝑁 , and q𝑛

mid := Φ𝑛+ 1
2

𝛿⋆
− Φ𝑛+ 1

2 for 𝑛 = 0, . . . , 𝑁 − 1.
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Since 𝜏 CBR,I

𝛿⋆
≤ 1

2 and 𝛿⋆ ≥ 𝑔max ≥ 𝑔0
max, Remark 4.3 and (1.5) yield q0 = 0, q

1
2 = 0 and q0

mid = 0. Now, we assume
that for a given 𝑚 ∈ {0, . . . , 𝑁 − 1} it holds that q𝑚 = 0 and q𝑚

mid = 0. Subtracting (1.10) from (4.7) (or (1.8)
from (4.5) when 𝑚 = 0), and then using (4.65), we obtain

q𝑚+1 = 𝜏
2 ∆ℎq𝑚+1 + 𝜏

2

[︁
n𝛿⋆

(︁
Φ𝑚+ 1

2
𝛿⋆

)︁
⊗ q𝑚+1

]︁
. (4.66)

Next, taking the inner product (·, ·)0,ℎ with q𝑚+1 and then using (2.5), the Cauchy–Schwarz inequality, (4.1)
and the definition of CBR,I

𝛿⋆
, we get

0 = ‖q𝑚+1‖20,ℎ + 𝜏
2 |q

𝑚+1|21,ℎ − 𝜏
2

(︁
n𝛿⋆

(︁
Φ𝑚+ 1

2
𝛿⋆

)︁
⊗ q𝑚+1, q𝑚+1

)︁
0,ℎ

≥ 𝜏
2 |q

𝑚+1|21,ℎ + 2 ‖q𝑚+1‖20,ℎ

(︂
1
2 −

𝜏
4 sup

R
|n𝛿⋆ |

)︂
≥ 𝜏

2 |q
𝑚+1|21,ℎ + 2 ‖q𝑚+1‖20,ℎ

(︀
1
2 − 𝜏 CBR,I

𝛿⋆

)︀
≥ 𝜏

2 |q
𝑚+1|21,ℎ,

which, obviously, yields that q𝑚+1 = 0. When 𝑚 ≤ 𝑁 − 2, observing that

q𝑚+1
mid = 2

[︀
𝑔

(︀
𝑉 𝑚+1

𝛿⋆

)︀
− 𝑔

(︀
𝑈𝑚+1

)︀]︀
− q𝑚

mid,

we arrive at q𝑚+1
mid = 0. The induction argument above, shows that, under our assumptions the (BRFD) approx-

imations are only those derived from the (MBRFD) scheme when 𝛿 = 𝛿⋆, and thus the error estimates (4.63)
and (4.64) follow as a natural outcome of (4.11) and (4.13). �

Theorem 4.7. Let 𝑔 ∈ 𝐶4(R), 𝑢 ∈ 𝐶3,0
𝑡,𝑥 (𝑄), 𝜕ℓ

𝑡𝑢 ∈ 𝐶0,1
𝑡,𝑥 (𝑄) for ℓ = 1, 2, 3, and 𝜕𝑡𝑢 ∈ 𝐶0,4

𝑡,𝑥 (𝑄).
Also, let 𝑢max := max

𝑄
|𝑢|, 𝑔max := max

𝑄
|𝑔(𝑢)|, 𝑔0

max := maxℐ |𝑔 ∘ 𝑢0|, 𝛿⋆ ≥ 2 max{𝑢max, 𝑔max}, CBR,I

𝛿⋆
:=

1
4 max

R
|n𝛿|, and CB,1

𝛿⋆
and CB,2

𝛿⋆
be the constants specified in Corollary 4.5, where CB,1

𝛿⋆
≥ CBR,I

𝛿⋆
. If 𝜏 CB,1

𝛿⋆
≤ 1

2

and
CB,2

𝛿⋆
max

{︀
L3/2, L1/2

}︀ (︀
𝜏 + ℎ2

)︀
≤ 𝛿⋆

2 , (4.67)

then, the method (BRFD) with Φ
1
2 := 𝑔

(︀
𝑢0

)︀
is well-defined and the following error estimates hold

max
0≤𝑚≤𝑁−1

|𝑔(𝑢𝑚+ 1
2 )− Φ𝑚+ 1

2 |1,ℎ ≤ CB,2
𝛿⋆

(𝜏 + ℎ2) (4.68)

and, there exist constants CB,3
𝛿⋆
≥ CB,1

𝛿⋆
and CB,4

𝛿⋆
, such that: if 𝜏 CB,3

𝛿⋆
≤ 1

2 , then

max
0≤𝑚≤𝑁

(‖𝑢𝑚 − 𝑈𝑚‖0,ℎ + |𝑢𝑚 − 𝑈𝑚|1,ℎ) ≤ CB,4
𝛿⋆

(︀
𝜏2 + ℎ2

)︀
. (4.69)

Proof. Since 𝛿⋆ ≥ 2 max{𝑔max, 𝑢max} ≥ 𝑔0
max and 𝜏 CBR,1

𝛿⋆
≤ 𝜏 CB,1

𝛿⋆
≤ 1

2 , Proposition 4.2 yields the existence and

uniqueness of the (MBRFD) approximations when 𝛿 = 𝛿⋆ and Φ
1
2
𝛿⋆

= 𝑔
(︀
𝑢0

)︀
. Then, moving along the lines of

the proof of Theorem 4.6, and using (4.67), (4.61), (2.2) and (2.6) we conclude that

max
0≤𝑚≤𝑁−1

|Φ𝑚+ 1
2

𝛿⋆
|∞,ℎ ≤ 𝛿⋆, max

1≤𝑚≤𝑁−1
|𝑉 𝑚

𝛿⋆
|∞,ℎ ≤ 𝛿⋆ (4.70)

and, in view of (4.1), we obtain

n𝛿⋆

(︀
𝑉 𝑛

𝛿⋆

)︀
= 𝑉 𝑛

𝛿⋆
, 𝑛 = 1, . . . , 𝑁 − 1 and n𝛿⋆

(︁
Φ𝑛+ 1

2
𝛿⋆

)︁
= Φ𝑛+ 1

2
𝛿⋆

, 𝑛 = 0, . . . , 𝑁 − 1. (4.71)
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In addition, we conclude that the (BRFD) approximations with Φ
1
2 = 𝑔

(︀
𝑢0

)︀
are well-defined and are those

derived from the (MBRFD) scheme when 𝛿 = 𝛿⋆ and Φ
1
2
𝛿⋆

= 𝑔
(︀
𝑢0

)︀
, and thus the error estimate (4.68) follow as

a natural outcome of (4.61).
Recalling (4.22) and using (4.71), we have

𝑒𝑛+1 − 𝑒𝑛 = 𝜏
2 ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
+

3∑︁
𝜅=1

Q𝜅,𝑛, 𝑛 = 0, . . . , 𝑁 − 1, (4.72)

where Q1,𝑛 := 𝜏 s𝑛+ 1
2 , Q2,𝑛 := 𝜏

2 Φ𝑛+ 1
2

𝛿⋆
⊗

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
and Q3,𝑛 := 𝜏

2 𝑒𝑛
mid ⊗

(︀
𝑢𝑛+1 + 𝑢𝑛

)︀
.

Since 𝑒0 = 0, after taking the (·, ·)0,ℎ-inner product of (4.72) with
(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
, using (2.5) and then summing

with respect to 𝑛, we get

‖𝑒𝑚‖20,ℎ ≤
3∑︁

𝜅=1

[︃
𝑚−1∑︁
𝑛=0

(Q𝜅,𝑛, 𝑒𝑛+1 + 𝑒𝑛)0,ℎ

]︃
, 𝑚 = 1, . . . , 𝑁. (4.73)

Let 𝑚 ∈ {1 . . . , 𝑁}. Using the Cauchy–Schwarz inequality, the arithmetic mean inequality, (3.8), (3.16) and
(4.70), we have

𝑚−1∑︁
𝑛=0

(︀
Q1,𝑛, 𝑒𝑛+1 + 𝑒𝑛

)︀
0,ℎ

≤ 𝜏

𝑚−1∑︁
𝑛=0

(︁
‖s𝑛+ 1

2 − r𝑛+ 1
2 ‖0,ℎ + ‖r𝑛+ 1

2 ‖0,ℎ

)︁
‖𝑒𝑛+1 + 𝑒𝑛‖0,ℎ

≤ 𝐶 𝜏

𝑚−1∑︁
𝑛=0

(︀
𝜏2 + ℎ2

)︀ (︀
‖𝑒𝑛+1‖0,ℎ + ‖𝑒𝑛‖0,ℎ

)︀
≤ 𝐶

(︀
𝜏2 + ℎ2

)︀2
+ 2 𝜏

𝑚−1∑︁
𝑛=0

(︀
‖𝑒𝑛+1‖20,ℎ + ‖𝑒𝑛‖20,ℎ

)︀
≤ 𝐶

(︀
𝜏2 + ℎ2

)︀2
+ 2 𝜏 ‖𝑒𝑚‖20,ℎ + 4 𝜏

𝑚−1∑︁
𝑛=0

‖𝑒𝑛‖20,ℎ

(4.74)

and
𝑚−1∑︁
𝑛=0

(Q2,𝑛, 𝑒𝑛+1 + 𝑒𝑛)0,ℎ ≤ 𝜏
2 𝛿⋆

𝑚−1∑︁
𝑛=0

(︀
‖𝑒𝑛+1‖0,ℎ + ‖𝑒𝑛‖0,ℎ

)︀2

≤ 𝜏 𝛿⋆ ‖𝑒𝑚‖20,ℎ + 𝜏 𝛿⋆

𝑚−1∑︁
𝑛=0

‖𝑒𝑛‖20,ℎ.

(4.75)

Observing that

𝑚−1∑︁
𝑛=0

(︀
Q3,𝑛, 𝑒𝑛+1 + 𝑒𝑛

)︀
0,ℎ

= 𝜏
2

𝑚∑︁
𝑛=1

(︀
𝑒𝑛−1
mid ⊗

(︀
𝑢𝑛 + 𝑢𝑛−1

)︀
, 𝑒𝑛

)︀
0,ℎ

+ 𝜏
2

𝑚−1∑︁
𝑛=0

(︀
𝑒𝑛
mid ⊗

(︀
𝑢𝑛+1 + 𝑢𝑛

)︀
, 𝑒𝑛

)︀
0,ℎ

= 𝜏
2

(︀
𝑒𝑚−1
mid ⊗

(︀
𝑢𝑚 + 𝑢𝑚−1

)︀
, 𝑒𝑚

)︀
0,ℎ

+ 𝜏
2

𝑚−1∑︁
𝑛=1

(︀(︀
𝑒𝑛−1
mid + 𝑒𝑛

mid

)︀
⊗

(︀
𝑢𝑛 + 𝑢𝑛−1

)︀
, 𝑒𝑛

)︀
0,ℎ

+ 𝜏
2

𝑚−1∑︁
𝑛=1

(︀
𝑒𝑛
mid ⊗

(︀
𝑢𝑛+1 − 𝑢𝑛−1

)︀
, 𝑒𝑛

)︀
0,ℎ

,
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and then using the Cauchy–Schwarz inequality, the error bound (4.61) along with (2.3), (4.28), (3.10), (4.70)
and the arithmetic mean inequality, we arrive at

𝑚−1∑︁
𝑛=0

(︀
Q3,𝑛, 𝑒𝑛+1 + 𝑒𝑛

)︀
0,ℎ

≤ 𝐶𝛿⋆

(︀
𝜏2 + 𝜏 ℎ2

)︀
‖𝑒𝑚‖0,ℎ + 𝐶𝛿⋆

𝜏

𝑚−1∑︁
𝑛=1

(︀
𝜏2 + 𝜏 ℎ2

)︀
‖𝑒𝑛‖0,ℎ

+ 𝐶 𝜏

𝑚−1∑︁
𝑛=1

(‖r𝑛‖0,ℎ + ‖𝑒𝑛‖0,ℎ) ‖𝑒𝑛‖0,ℎ

≤ 𝐶𝛿⋆

(︀
𝜏2 + 𝜏 ℎ2

)︀2
+ 1

2 ‖𝑒
𝑚‖20,ℎ + 𝐶𝛿⋆

𝜏

𝑚−1∑︁
𝑚=0

‖𝑒𝑛‖20,ℎ.

(4.76)

From (4.73) to (4.76), we conclude that there exists a constant CB,⋆

𝛿⋆
≥ CB,1

𝛿⋆
such that

(︀
1− 𝜏 CB,⋆

𝛿⋆

)︀
‖𝑒𝑚‖20,ℎ ≤ 𝐶𝛿⋆

(︀
𝜏2 + ℎ2

)︀
+ 𝐶𝛿⋆ 𝜏

𝑚−1∑︁
𝑛=0

‖𝑒𝑛‖20,ℎ, 𝑚 = 1, . . . , 𝑁. (4.77)

Assuming that 𝜏 CB,⋆

𝛿⋆
≤ 1

2 , and applying a discrete Gronwall argument (4.77) yields

max
0≤𝑚≤𝑁

‖𝑒𝑚‖0,ℎ ≤ 𝐶𝛿⋆

(︀
𝜏2 + ℎ2

)︀
. (4.78)

Since 𝑒0 = 0, after taking the (·, ·)0,ℎ-inner product of (4.72) with ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀
, using (2.5), and then

summing with respect to 𝑛, we get

|𝑒𝑚|21,ℎ + 𝜏
2

𝑚−1∑︁
𝑛=0

|𝑒𝑛+1 + 𝑒𝑛|2,ℎ ≤ −
3∑︁

𝜅=1

[︃
𝑚−1∑︁
𝑛=0

(︀
Q𝜅,𝑛, ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀)︀
0,ℎ

]︃
, 𝑚 = 1, . . . , 𝑁. (4.79)

Let 𝑚 ∈ {1 . . . , 𝑁}. Using the Cauchy–Schwarz inequality, (3.8), (3.16), (4.70), (4.78) and the arithmetic mean
inequality, we have

−
𝑚−1∑︁
𝑛=0

(︀
Q1,𝑛, ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀)︀
0,ℎ

≤ 𝜏

𝑚−1∑︁
𝑛=0

(︁
‖s𝑛+ 1

2 − r𝑛+ 1
2 ‖0,ℎ + ‖r𝑛+ 1

2 ‖0,ℎ

)︁
|𝑒𝑛+1 + 𝑒𝑛|2,ℎ

≤ 𝐶 𝜏
𝑚−1∑︁
𝑛=0

(︀
𝜏2 + ℎ2

)︀
|𝑒𝑛+1 + 𝑒𝑛|2,ℎ

≤ 𝐶
(︀
𝜏2 + ℎ2

)︀2
+ 𝜏

4

𝑚−1∑︁
𝑛=0

|𝑒𝑛+1 + 𝑒𝑛|22,ℎ

(4.80)

and

−
𝑚−1∑︁
𝑛=0

(︀
Q2,𝑛, ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀)︀
0,ℎ

≤ 𝜏
2 𝛿⋆

𝑚−1∑︁
𝑛=0

|Φ𝑛+ 1
2

𝛿⋆
|∞,ℎ ‖𝑒𝑛+1 + 𝑒𝑛‖0,ℎ |𝑒𝑛+1 + 𝑒𝑛|2,ℎ

≤ 𝐶𝛿⋆
𝜏

𝑚−1∑︁
𝑛=0

(︀
𝜏2 + ℎ2

)︀
|𝑒𝑛+1 + 𝑒𝑛|2,ℎ

≤ 𝐶
(︀
𝜏2 + ℎ2

)︀2
+ 𝜏

4

𝑚−1∑︁
𝑛=0

|𝑒𝑛+1 + 𝑒𝑛|22,ℎ.

(4.81)
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Using (2.5) and rearranging the terms in the sums, we get

−
𝑚−1∑︁
𝑛=0

(︀
Q3,𝑛, ∆ℎ

(︀
𝑒𝑛+1 + 𝑒𝑛

)︀)︀
0,ℎ

= − 𝜏
2

𝑚∑︁
𝑛=1

(︀
𝑒𝑛−1
mid ⊗

(︀
𝑢𝑛 + 𝑢𝑛−1

)︀
, ∆ℎ𝑒𝑛

)︀
0,ℎ

− 𝜏
2

𝑚−1∑︁
𝑛=0

(︀
𝑒𝑛
mid ⊗

(︀
𝑢𝑛+1 + 𝑢𝑛

)︀
, ∆ℎ𝑒𝑛

)︀
0,ℎ

= 𝒯1 + 𝒯2 + 𝒯3,

(4.82)

where
𝒯1 := 𝜏

2

(︀(︀
𝛿ℎ

(︀
𝑒𝑚−1
mid ⊗

(︀
𝑢𝑚 + 𝑢𝑚−1

)︀)︀
, 𝛿ℎ𝑒𝑚

)︀)︀
0,ℎ

𝒯2 := 𝜏
2

𝑚−1∑︁
𝑛=1

(︀(︀
𝛿ℎ

(︀(︀
𝑒𝑛−1
mid + 𝑒𝑛

mid

)︀
⊗

(︀
𝑢𝑛 + 𝑢𝑛−1

)︀)︀
, 𝛿ℎ𝑒𝑛

)︀)︀
0,ℎ

𝒯3 := 𝜏
2

𝑚−1∑︁
𝑛=1

(︀(︀
𝛿ℎ

(︀
𝑒𝑛
mid ⊗

(︀
𝑢𝑛+1 − 𝑢𝑛−1

)︀)︀
, 𝛿ℎ𝑒𝑛

)︀)︀
0,ℎ

.

Now, we apply the Cauchy–Schwarz inequality, (2.3), (4.61), (4.28), (3.10), (2.7) (with g = 𝑔 ∘ n𝛿⋆
) and the

arithmetic mean inequality, to obtain

𝒯1 ≤ 𝜏
2

[︀
|𝑒𝑚−1

mid |1,ℎ |𝑢𝑚+1 + 𝑢𝑚|∞,ℎ + ‖𝑒𝑚−1
mid ‖0,ℎ |||𝛿ℎ

(︀
𝑢𝑚+1 + 𝑢𝑚

)︀
|||∞,ℎ

]︀
|𝑒𝑚|1,ℎ

≤ 𝐶 𝜏 |𝑒𝑚−1
mid |1,ℎ |𝑒𝑚|1,ℎ

≤ 𝐶
(︀
𝜏2 + 𝜏 ℎ2

)︀
|𝑒𝑚|1,ℎ

≤ 𝐶
(︀
𝜏2 + 𝜏 ℎ2

)︀2
+ 1

3 |𝑒
𝑚|21,ℎ (4.83)

𝒯2 ≤ 𝜏
2

𝑚−1∑︁
𝑛=1

|𝑒𝑛−1
mid + 𝑒𝑛

mid|1,ℎ |𝑒𝑛|1,ℎ

≤ 𝜏

𝑚−1∑︁
𝑛=1

[︀
|𝑔(𝑢𝑛)− 𝑔

(︀
𝑉 𝑛

𝛿⋆

)︀
|1,ℎ + |r𝑛|1,ℎ

]︀
|𝑒𝑛|1,ℎ

≤ 𝐶𝛿⋆ 𝜏

𝑚−1∑︁
𝑛=1

(︀
|𝑒𝑛|1,ℎ + 𝜏2

)︀
|𝑒𝑛|1,ℎ

≤ 𝐶𝛿⋆
𝜏4 + 𝐶𝛿⋆

𝜏

𝑚−1∑︁
𝑛=1

|𝑒𝑛|21,ℎ (4.84)

and

𝒯3 ≤ 𝜏
2

𝑚−1∑︁
𝑛=1

[︀
|𝑒𝑛

mid|1,ℎ |𝑢𝑛+1 − 𝑢𝑛−1|∞,ℎ + ‖𝑒𝑛
mid‖0,ℎ |||𝛿ℎ

(︀
𝑢𝑛+1 − 𝑢𝑛−1

)︀
|||∞,ℎ

]︀
|𝑒𝑛|1,ℎ

≤ 𝐶 𝜏2
𝑚−1∑︁
𝑛=1

|𝑒𝑛
mid|1,ℎ |𝑒𝑛|1,ℎ

≤ 𝐶𝛿⋆
𝜏

𝑚−1∑︁
𝑛=1

(︀
𝜏2 + 𝜏 ℎ2

)︀
|𝑒𝑛|1,ℎ

≤ 𝐶𝛿⋆

(︀
𝜏2 + 𝜏 ℎ2

)︀2
+ 𝐶𝛿⋆

𝜏

𝑚−1∑︁
𝑛=1

|𝑒𝑛|21,ℎ.

(4.85)
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From (4.79) to (4.85), we conclude that there exists a constant CB,⋆⋆

𝛿⋆
≥ CB,⋆

𝛿⋆
such that

(︀
1− 𝜏 CB,⋆⋆

𝛿⋆

)︀
|𝑒𝑚|21,ℎ ≤ 𝐶𝛿⋆

(︀
𝜏2 + ℎ2

)︀
+ 𝐶𝛿⋆ 𝜏

𝑚−1∑︁
𝑛=0

‖𝑒𝑛‖20,ℎ, 𝑚 = 1, . . . , 𝑁. (4.86)

Assuming that 𝜏 CB,⋆⋆

𝛿⋆
≤ 1

2 , and applying a discrete Gronwall argument (4.86) yields

max
0≤𝑚≤𝑁

|𝑒𝑚|1,ℎ ≤ 𝐶𝛿⋆

(︀
𝜏2 + ℎ2

)︀
. (4.87)

Thus, (4.69) follows easily from (4.78) and (4.87). �

5. Numerical results

We implemented the finite difference method (BRFD) in a FORTRAN 77 program which uses double precision
real arithmetic and employs the subroutine dgtsl from LINPACK (see [7]) to solve the resulting tridiagonal linear
systems of algebraic equations. Also, the program gives to its user the option to set Φ

1
2 = 𝑔

(︀
𝑢0

)︀
, or Φ

1
2 = 𝑔(𝑈

1
2 )

after computing 𝑈
1
2 via (1.6). When the exact solution to the problem is available, the program computes the

following discrete 𝐿∞𝑡 (𝐻1
𝑥)-norm approximation errors:

𝐸Φ(𝑁, 𝐽 + 1) := max
0≤𝑛≤𝑁−1

⃒⃒
Φ𝑛+ 1

2 − 𝑔
(︁
𝑢𝑛+ 1

2

)︁ ⃒⃒
1,ℎ

and

𝐸𝑈(𝑁, 𝐽 + 1) := max
{︂
|𝑈 1

2 − 𝑢
1
2 |1,ℎ, max

0≤𝑛≤𝑁

⃒⃒
𝑈𝑛 − 𝑢𝑛

⃒⃒
1,ℎ

}︂
when Φ

1
2 = 𝑔

(︁
𝑈

1
2

)︁
, or

𝐸⋆
𝑈(𝑁, 𝐽 + 1) := max

0≤𝑛≤𝑁

⃒⃒
𝑈𝑛 − 𝑢𝑛

⃒⃒
1,ℎ

when Φ
1
2 = 𝑔

(︀
𝑢0

)︀
. Finally, letting 𝑁 be proportional to (𝐽 + 1) (i.e., 𝑁 = 𝑞 (𝐽 + 1) for a given 𝑞 ∈ Q), we

compute the experimental order of convergence for successive values values 𝐽1 and 𝐽2 of 𝐽 , using the formula

log (𝐸 (𝑞 (𝐽1 + 1), (𝐽1 + 1)) /𝐸 (𝑞 (𝐽2 + 1), (𝐽2 + 1))) / log ((𝐽2 + 1)/(𝐽1 + 1)) ,

where 𝐸 = 𝐸𝑈 , 𝐸Φ or 𝐸⋆
𝑈 .

Let us now consider the problem (1.1)–(1.4) with: 𝑔(𝑥) = 1− 𝑥2 and load 𝑓 such that the function 𝑢(𝑡, 𝑥) =
𝑒

𝑡
10 (𝑥− 𝑥𝑏) sin(𝜋 (𝑥− 𝑥𝑎)) to be its exact solution. In the first set of numerical experiments we choose 𝑇 = 1,

[𝑥𝑎, 𝑥𝑏] = [0, 1], (𝑁, 𝐽 + 1) = (𝜈, 𝜈) for 𝜈 = 20, 40, 80, 160, 320, 640, 1280, Φ
1
2 = 𝑔

(︁
𝑈

1
2

)︁
and compute the

approximation errors 𝐸𝑈(𝜈, 𝜈) and 𝐸Φ(𝜈, 𝜈). The results we obtain are shown on Table 1 and confirm that the
experimental order of convergence with respect to 1

𝜈 is equal to 2, which is in agreement with the results of the
convergence analysis (see Thm. 4.6). In the second set of numerical experiments we choose 𝑇 = 1, [𝑥𝑎, 𝑥𝑏] = [0, 1],
(𝑁, 𝐽 + 1) = (𝜈, 𝜈) for 𝜈 = 20, 40, 80, 160, 320, 640, 1280, Φ

1
2 = 𝑔

(︀
𝑢0

)︀
and compute the approximation errors

𝐸⋆
𝑈(𝜈, 𝜈) and 𝐸Φ(𝜈, 𝜈). We display the results obtained on Table 2, where it is obvious that the experimental

order of convergence with respect to 1
𝜈 is equal to 1 for the error approximating 𝑔(𝑢) at the intermediate time

nodes and is equal to 2 for the error approximating 𝑢 at the time nodes. Again, the behaviour of the method is
in agreement with the results of the convergence analysis (see Thm. 4.7).
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Table 1. Discrete 𝐻1 norm convergence when with Φ
1
2 = 𝑔(𝑈

1
2 ).

𝜈 𝐸𝑈(𝜈, 𝜈) Rate 𝜈 𝐸Φ(𝜈, 𝜈) Rate

20 4.087(−3) – 20 5.509(−3) –
40 1.025(−3) 1.994 40 1.255(−3) 2.133
80 2.565(−4) 1.999 80 3.152(−4) 1.999
160 6.414(−5) 1.999 160 7.921(−5) 1.999
320 1.603(−5) 1.999 320 1.983(−5) 1.999
640 4.009(−6) 2.000 640 4.961(−6) 1.999
1280 1.002(−6) 1.999 1280 1.240(−6) 1.999

Table 2. Discrete 𝐻1 norm convergence with Φ
1
2 = 𝑔

(︀
𝑢0

)︀
.

𝜈 𝐸⋆
𝑈(𝜈, 𝜈) Rate 𝜈 𝐸Φ(𝜈, 𝜈) Rate

20 4.210(−3) – 20 1.673(−2) –
40 1.049(−3) 2.004 40 5.995(−3) 1.480
80 2.623(−4) 2.000 80 2.559(−3) 1.228
160 6.559(−5) 1.999 160 1.189(−3) 1.105
320 1.640(−5) 1.999 320 5.748(−4) 1.049
640 4.101(−6) 1.999 640 2.827(−4) 1.023
1280 1.025(−6) 1.999 1280 1.402(−4) 1.011

6. Conclusions

Coupling the Besse Relaxation Scheme [4] with a finite difference scheme for space discretization, we arrive at
a linearly implicit, fully discrete method for the approximation of the solution to a semilinear heat equation. For
the proposed method, we derive optimal, second order error estimates in various discrete norms. Investigating
the first order initial choice Φ

1
2 = 𝑔

(︀
𝑢0

)︀
, we develop a re-estimation argument that leads to a new, second order

error estimate at the time nodes and to a first order error estimate at the intermediate nodes, which are in
agreement with results obtained from numerical experiments.

Appendix A.

Proof of Lemma 2.2. Let 𝑣, 𝑤 ∈ X∘ℎ. First, we define a𝑠, b𝑠 ∈ Gℎ by a𝑠
𝑗 := 𝑠 𝑣𝑗+1 + (1 − 𝑠) 𝑣𝑗 and b𝑠

𝑗 :=
𝑠 𝑤𝑗+1 + (1− 𝑠) 𝑤𝑗 for 𝑗 = 0, . . . , 𝐽 and 𝑠 ∈ [0, 1]. Then, we use the mean value theorem, to conclude that

𝛿ℎ(g(𝑣)− g(𝑤)) = ℒ𝐴 + ℒ𝐵 (A.1)

where ℒ𝐴,ℒ𝐵 ∈ Gℎ given by ℒ𝐴
𝑗 := (𝛿ℎ(𝑣 − 𝑤))𝑗

∫︀ 1

0
g′(a𝑠

𝑗) d𝑠 and ℒ𝐵
𝑗 := 𝛿ℎ𝑤𝑗

∫︀ 1

0

[︀
g′(a𝑠

𝑗)− g′(b𝑠
𝑗)

]︀
d𝑠 for

𝑗 = 0, . . . , 𝐽 . Observing that
⃒⃒
ℒ𝐴

𝑗

⃒⃒
≤ supR |g′| |(𝛿ℎ(𝑣 − 𝑤))𝑗 | for 𝑗 = 0, . . . , 𝐽 , and

⃒⃒
ℒ𝐵

𝑗

⃒⃒
≤ | (𝛿ℎ𝑤)𝑗 | sup

R
|g′′|

⃒⃒⃒⃒∫︁ 1

0

[𝑠 (𝑣𝑗+1 − 𝑤𝑗+1) + (1− 𝑠) (𝑣𝑗 − 𝑤𝑗)] d𝑠

⃒⃒⃒⃒
≤ 1

2 |(𝛿ℎ𝑤)𝑗 | sup
R
|g′′| (|𝑣𝑗+1 − 𝑤𝑗+1|+ |𝑣𝑗 − 𝑤𝑗 |) , 𝑗 = 0, . . . , 𝐽,



326 G.E. ZOURARIS

we, easily, arrive at

|||ℒ𝐴|||0,ℎ ≤ sup
R
|g′| |||𝛿ℎ(𝑣 − 𝑤)|||0,ℎ, (A.2)

|||ℒ𝐵|||0,ℎ ≤ |||𝛿ℎ𝑤|||∞,ℎ sup
R
|g′′| ‖𝑣 − 𝑤‖0,ℎ. (A.3)

Thus, (2.7) follows as a simple consequence of (A.1)–(A.3). �

Appendix B.

Proof of Lemma 2.3. Let 𝑣𝑎, 𝑣𝑏, 𝑧𝑎, 𝑧𝑏 ∈ X∘ℎ. We simplify the notation, first, by defining a𝑠, b𝑠 ∈ X∘ℎ by a𝑠 :=
𝑠 𝑣𝑎 + (1− 𝑠) 𝑣𝑏 and b𝑠 := 𝑠 𝑧𝑎 + (1− 𝑠) 𝑧𝑏 for 𝑠 ∈ [0, 1], and then, by introducing f ∈ Xℎ by f :=

∫︀ 1

0
g′ (a𝑠) d𝑠

and t ∈ X∘ℎ by t :=
∫︀ 1

0
[g′ (a𝑠)− g′ (b𝑠)] d𝑠. Also, we set 𝑒𝑎 := 𝑣𝑎 − 𝑧𝑎 and 𝑒𝑏 := 𝑣𝑏 − 𝑧𝑏.

Part I. First, we use the definition of f and the mean value theorem, to get

|f|∞,ℎ ≤ sup
R
|g′| (B.1)

and

|𝛿ℎf𝑗 | ≤ 1
ℎ

∫︁ 1

0

|g′
(︀
a𝑠

𝑗+1

)︀
− g′

(︀
a𝑠

𝑗

)︀
| d𝑠

≤ sup
R
|g′′|

∫︁ 1

0

⃒⃒
𝑠 𝛿ℎ𝑣𝑎

𝑗 + (1− 𝑠) 𝛿ℎ𝑣𝑏
𝑗

⃒⃒
d𝑠

≤ 1
2 sup

R
|g′′|

(︀
|𝛿ℎ𝑣𝑎

𝑗 |+ |𝛿ℎ𝑣𝑏
𝑗 |

)︀
, 𝑗 = 0, . . . , 𝐽,

which, obviously, yields
|f|1,ℎ ≤ 1

2 sup
R
|g′′|

(︀
|𝑣𝑎|1,ℎ + |𝑣𝑏|1,ℎ

)︀
. (B.2)

Next, we use the definition of t and the mean value theorem, to obtain

|t𝑗 | ≤ sup
R
|g′′|

∫︁ 1

0

|a𝑠
𝑗 − b𝑠

𝑗 | d𝑠

≤ sup
R
|g′′|

∫︁ 1

0

|𝑠
(︀
𝑣𝑎

𝑗 − 𝑣𝑏
𝑗 − 𝑧𝑎

𝑗 + 𝑧𝑏
𝑗

)︀
+

(︀
𝑣𝑏

𝑗 − 𝑧𝑏
𝑗

)︀
| d𝑠

≤ sup
R
|g′′|

(︀
|𝑣𝑎

𝑗 − 𝑣𝑏
𝑗 − 𝑧𝑎

𝑗 + 𝑧𝑏
𝑗 |+ |𝑣𝑏

𝑗 − 𝑧𝑏
𝑗 |

)︀
, 𝑗 = 1, . . . , 𝐽,

which, leads to
‖t‖0,ℎ ≤ sup

R
|g′′|

(︀
‖𝑒𝑎 − 𝑒𝑏‖0,ℎ + ‖𝑒𝑏‖0,ℎ

)︀
. (B.3)

Finally, for 𝑠 ∈ [0, 1], we apply (2.7) and (2.3), to arrive at

|g′ (a𝑠)− g′ (b𝑠) |1,ℎ ≤ sup
R
|g′′| |a𝑠 − b𝑠|1,ℎ + sup

R
|g′′′| |||𝛿ℎb𝑠|||∞,ℎ ‖a𝑠 − b𝑠‖0,ℎ

≤
(︂

sup
R
|g′′|+ L sup

R
|g′′′| |||𝛿ℎb𝑠|||∞,ℎ

)︂
|a𝑠 − b𝑠|1,ℎ

≤
(︂

sup
R
|g′′|+ L sup

R
|g′′′| |||𝛿ℎb𝑠|||∞,ℎ

)︂ (︀
|𝑒𝑎 − 𝑒𝑏|1,ℎ + |𝑒𝑏|1,ℎ

)︀
.

(B.4)
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Observing that 𝛿ℎt =
∫︀ 1

0
𝛿ℎ [g′ (a𝑠)− g′ (b𝑠)] d𝑠 and using (B.4) we have

|t|1,ℎ ≤
∫︁ 1

0

|g′ (a𝑠)− g′ (b𝑠) |1,ℎ d𝑠

≤
[︂
sup

R
|g′′|+ L sup

R
|g′′′|

(︀
|||𝛿ℎ𝑧𝑎|||∞,ℎ + |||𝛿ℎ𝑧𝑏|||∞,ℎ

)︀]︂ (︀
|𝑒𝑎 − 𝑒𝑏|1,ℎ + |𝑒𝑏|1,ℎ

)︀
.

(B.5)

Part II. Using the mean value theorem, we obtain

g(𝑣𝑎)− g(𝑣𝑏)− g(𝑧𝑎) + g(𝑧𝑏) = L𝐴 + L𝐵, (B.6)

where L𝐴, L𝐵 ∈ X∘ℎ are defined by L𝐴 :=
(︀
𝑣𝑎 − 𝑣𝑏 − 𝑧𝑎 + 𝑧𝑏

)︀
⊗ f and L𝐵 :=

(︀
𝑧𝑎 − 𝑧𝑏

)︀
⊗ t. Thus, using (B.1) and

(B.3), we have
‖L𝐴‖0,ℎ ≤ sup

R
|g′| ‖𝑒𝑎 − 𝑒𝑏‖0,ℎ,

‖L𝐵‖0,ℎ ≤ sup
R
|g′′| |𝑧𝑎 − 𝑧𝑏|∞,ℎ

(︀
‖𝑒𝑎 − 𝑒𝑏‖0,ℎ + ‖𝑒𝑏‖0,ℎ

)︀
.

(B.7)

The desired inequality (2.8) follows, easily, as a simple outcome of (B.6) and (B.7).

Part III. For the discrete derivative of L𝐴 and L𝐵, we, easily, obtain the following formulas:

(𝛿ℎL𝐴)𝑗 = 𝛿ℎ

(︀
𝑣𝑎 − 𝑣𝑏 − 𝑧𝑎 + 𝑧𝑏

)︀
𝑗

f𝑗+1 +
(︀
𝑣𝑎

𝑗 − 𝑣𝑏
𝑗 − 𝑧𝑎

𝑗 + 𝑧𝑏
𝑗

)︀
(𝛿ℎf)𝑗 ,

(𝛿ℎL𝐵)𝑗 = 𝛿ℎ

(︀
𝑧𝑎 − 𝑧𝑏

)︀
𝑗

t𝑗+1 +
(︀
𝑧𝑎 − 𝑧𝑏

)︀
𝑗

(𝛿ℎt)𝑗

for 𝑗 = 0, . . . , 𝐽 , which yield

|L𝐴|1,ℎ ≤ |𝑒𝑎 − 𝑒𝑏|1,ℎ |f|∞,ℎ + |𝑒𝑎 − 𝑒𝑏|∞,ℎ |f|1,ℎ,

|L𝐵|1,ℎ ≤ |||𝛿ℎ

(︀
𝑧𝑎 − 𝑧𝑏

)︀
|||∞,ℎ ‖t‖0,ℎ + |𝑧𝑎 − 𝑧𝑏|∞,ℎ |t|1,ℎ.

(B.8)

Using (B.8), (2.2), (B.1) and (B.2), we have

|L𝐴|1,ℎ ≤
[︂
sup

R
|g′|+ L1/2

2 sup
R
|g′′| (|𝑣𝑎|1,ℎ + |𝑣𝑏|1,ℎ)

]︂
|𝑒𝑎 − 𝑒𝑏|1,ℎ. (B.9)

Combining (B.8), (B.3) and (B.5), we arrive at

|L𝐵|1,ℎ ≤ sup
R
|g′′| |||𝛿ℎ

(︀
𝑧𝑎 − 𝑧𝑏

)︀
|||∞,ℎ

(︀
‖𝑒𝑎 − 𝑒𝑏‖0,ℎ + ‖𝑒𝑏‖0,ℎ

)︀
+ |𝑧𝑎 − 𝑧𝑏|∞,ℎ

[︂
sup

R
|g′′|+ L sup

R
|g′′′|

(︀
|||𝛿ℎ𝑧𝑎|||∞,ℎ + |||𝛿ℎ𝑧𝑏|||∞,ℎ

)︀]︂ (︀
|𝑒𝑎 − 𝑒𝑏|1,ℎ + |𝑒𝑏|1,ℎ

)︀
.

(B.10)

Finally, (2.9) follows, easily, in view of (B.6), (B.9) and (B.10). �
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