Viscoelastic flows of Maxwell fluids with conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 807-831

We consider multi-dimensional extensions of Maxwell’s seminal rheological equation for 1D viscoelastic flows. We aim at a causal model for compressible flows, defined by semi-group solutions given initial conditions, and such that perturbations propagate at finite speed. We propose a symmetric hyperbolic system of conservation laws that contains the Upper-Convected Maxwell (UCM) equation as causal model. The system is an extension of polyconvex elastodynamics, with an additional material metric variable that relaxes to model viscous effects. Interestingly, the framework could also cover other rheological equations, depending on the chosen relaxation limit for the material metric variable. We propose to apply the new system to incompressible free-surface gravity flows in the shallow-water regime, when causality is important. The system reduces to a viscoelastic extension of Saint-Venant 2D shallow-water system that is symmetric-hyperbolic and that encompasses our previous viscoelastic extensions of Saint-Venant proposed with F. Bouchut.

DOI : 10.1051/m2an/2020076
Classification : 76A10, 35L45, 74D10
Keywords: Viscoelastic flows, Maxwell fluids, conservation laws, symmetric-hyperbolic systems
@article{M2AN_2021__55_3_807_0,
     author = {Boyaval, S\'ebastien},
     title = {Viscoelastic flows of {Maxwell} fluids with conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {807--831},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {3},
     doi = {10.1051/m2an/2020076},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020076/}
}
TY  - JOUR
AU  - Boyaval, Sébastien
TI  - Viscoelastic flows of Maxwell fluids with conservation laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 807
EP  - 831
VL  - 55
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020076/
DO  - 10.1051/m2an/2020076
LA  - en
ID  - M2AN_2021__55_3_807_0
ER  - 
%0 Journal Article
%A Boyaval, Sébastien
%T Viscoelastic flows of Maxwell fluids with conservation laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 807-831
%V 55
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020076/
%R 10.1051/m2an/2020076
%G en
%F M2AN_2021__55_3_807_0
Boyaval, Sébastien. Viscoelastic flows of Maxwell fluids with conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 3, pp. 807-831. doi: 10.1051/m2an/2020076

[1] S. Benzoni-Gavage and D. Serre, Muldimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs: First Order Systems and Applications. The Clarendon Press, Oxford University Press, Oxford (2007). | Zbl

[2] B. Bernstein, E. A. Kearsley and L. J. Zapas, A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7 (1963) 391–410. | Zbl | DOI

[3] B. Bernstein, E. A. Kearsley and L. J. Zapas, Thermodynamics of perfect elastic fluids. J. Res. Nat. Bureau Stand. Sect. B Math. Math. Phys. 68B (1964) 103. | Zbl | DOI

[4] E. C. Bingham, Fluidity and Plasticity. Mcgraw-Hill Book Company, Inc. (1922).

[5] R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Fluid Mechanics. John Wiley & Sons, New York (1987).

[6] R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids. In: Vol. 2 of Kinetic Theory. John Wiley & Sons, New York (1987).

[7] J. Bonet, A. J. Gil and R. Ortigosa, A computational framework for polyconvex large strain elasticity. Comput. Methods Appl. Mech. Eng. 283 (2015) 1061–1094. | DOI

[8] F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623–672. | Zbl | DOI

[9] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. In: Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | Zbl | DOI

[10] F. Bouchut and S. Boyaval, A new model for shallow viscoelastic fluids. M3AS 23 (2013) 1479–1526. | Zbl

[11] F. Bouchut and S. Boyaval, Unified derivation of thin-layer reduced models for shallow free-surface gravity flows of viscous fluids. Eur. J. Mech. B Fluids. 55 (2016) 116–131. | DOI

[12] S. Boyaval, Derivation and numerical approximation of hyperbolic viscoelastic flow systems: Saint-Venant 2D equations for Maxwell fluids. Technical report (2017). Working paper or preprint.

[13] S. Boyaval, Viscoelastic flows with conservation laws (2019). Working paper or preprint.

[14] H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics. Oxford University Press, New York (1941). | Zbl

[15] B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13 (1963) 167–178. | Zbl | DOI

[16] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Springer-Verlag, Berlin GM (2000) 325. | Zbl

[17] A. J. C. De Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sc. Paris 73 (1871) 147–154. | JFM

[18] T. W. Dewitt, A rheological equation of state which predicts non–newtonian viscosity, normal stresses, and dynamic moduli. J. Appl. Phys. 26 (1955) 889–894. | Zbl | DOI

[19] M. Doï and S. F. Edwards, The Theory of Polymer Dynamics. Oxford Science (1998).

[20] M. Dressler, B. J. Edwards and H. C. Öttinger, Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 38 (1999) 117–136. | DOI

[21] B. J. Edwards and A. N. Beris, Remarks concerning compressible viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 36 (1990) 411–417. | Zbl | DOI

[22] S. Ferrari and F. Saleri, A new two-dimensional shallow water model including pressure effects and slow varying bottom topography. ESAIM: M2AN 38 (2004) 211–234. | Zbl | Numdam | DOI

[23] S. Gavrilyuk, K. Ivanova and N. Favrie, Multi-dimensional shear shallow water flows: problems and solutions. J. Comput. Phys. 366 (2018) 252–280. | DOI

[24] A. Gloria, P. Le Tallec and M. Vidrascu, Foundation, analysis, and numerical investigation of a variational network-based model for rubber. Continuum Mech. Thermodyn. 26 (2014) 1–31. | DOI

[25] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. In: Vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (1996). | Zbl | DOI

[26] M. Grmela and P. J. Carreau, Conformation tensor rheological models. J. Non-Newtonian Fluid Mech. 23 (1987) 271–294. | Zbl | DOI

[27] J. B. Haddow and H. A. Erbay, Some aspects of finite amplitude transverse waves in a compressible hyperelastic solid. Quart. J. Mech. Appl. Math. 55 (2002) 17–28. | Zbl | DOI

[28] M. A. Hulsen, A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newtonian Fluid Mech. 38 (1990) 93–100. | DOI

[29] F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances. Comm. Pure Appl. Math. 41 (1988) 615–666. | Zbl | DOI

[30] D. D. Joseph and J.-C. Saut, Change of type and loss of evolution in the flow of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 20 (1986) 117–141. | Zbl | DOI

[31] D. D. Joseph, M. Renardy and J.-C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids. Arch. Ration. Mech. Anal. 87 (1985) 213–251. | Zbl | DOI

[32] T. Kato, The cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58 (1975) 181–205. | Zbl | DOI

[33] A. Kaye, Non-newtonian flow in incompressible fluids. Technical Report 142. College of Aeronautics, Cranfield, England (1962).

[34] V. I. Kondaurov, On conservation laws and symmetrization of equations of the nonlinear theory of thermoelasticity. Dokl. Akad. Nauk SSSR 256 (1981) 819–823. | Zbl

[35] J. Krishnan and D. J. Steigmann, A polyconvex formulation of isotropic elastoplasticity theory. IMA J. Appl. Math. 79 (2014) 722–738. | Zbl | DOI

[36] R. Kupferman, E. Olami and R. Segev, Continuum dynamics on manifolds: application to elasticity of residually-stressed bodies. J. Elasticity 128 (2017) 61–84. | DOI

[37] R. G. Larson, Constitutive Equations for Polymer Melts and Solutions. Biotechnology Series. Butterworths (1988).

[38] E. H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11 (1973) 267–288. | Zbl | DOI

[39] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. In: Vol. 3 of Oxford Lecture Series in Mathematics and its Applications: Incompressible Models. The Clarendon Press, Oxford University Press, New York (1996). | Zbl

[40] A. T. Mackay and T. N. Phillips, On the derivation of macroscopic models for compressible viscoelastic fluids using the generalized bracket framework. J. Non-Newton. Fluid Mech. 266 (2019) 59–71. | DOI

[41] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. In: Vol. 53 of Applied Mathematical Sciences. Springer-Verlag, New York (1984). | Zbl | DOI

[42] J. E. Marsden and T. J. R. Hughes, Mathematical foundations of elasticity. Dover Civil and Mechanical Engineering, Dover Publications (2012). | Zbl

[43] G. A. Maugin, Continuum mechanics through the ages – from the renaissance to the twentieth century: from hydraulics to plasticity. In: Solid Mechanics and Its Applications. Springer International Publishing (2015).

[44] J. C. Maxwell, IV. on the dynamical theory of gases. Philos. Trans. R. Soc. London 157 (1867) 49–88. | DOI

[45] A. Morando, Y. Trakhinin and P. Trebeschi, Structural stability of shock waves in 2d compressible elastodynamics. Math. Ann. 378 (2020) 1471–1504. | DOI

[46] J. G. Oldroyd, On the formulation of rheological equations of state. Proc. R. Soc. London Ser. A. Math. Phys. Sci. 200 (1950) 523–541. | Zbl

[47] F. Olsson, A solver for time-dependent viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 51 (1994) 309–340. | DOI

[48] R. G. Owens and T. N. Philips, Computational Rheology. Imperial College Press/World Scientific (2002). | Zbl | DOI

[49] I. Peshkov, W. Boscheri, R. Loubère, E. Romenski and M. Dumbser, Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for eulerian non-linear elastoplasticity. J. Comput. Phys. 387 (2019) 481–521. | DOI

[50] F. R. Phelan, M. F. Malone and H. H. Winter, A purely hyperbolic model for unsteady viscoelastic flow. J. Non-Newtonian Fluid Mech. 32 (1989) 197–224. | Zbl | DOI

[51] S.-D. Poisson, Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. J. Ec. Polytech. 20 (1831) 1–174.

[52] M. Renardy, Mathematical analysis of viscoelastic flows. In: Vol. 73 of CBMS-NSF Conference Series in Applied Mathematics. SIAM (2000). | Zbl

[53] M. Renardy, A local existence and uniqueness theorem for a K-BKZ-fluid. Arch. Ration. Mech. Anal. 88 (1985) 83–94. | Zbl | DOI

[54] C. Speziale, On Maxwell models in viscoelasticity that are more computable. Int. J. Non Linear Mech. 35 (2000) 567–571. | Zbl | DOI

[55] V. Te Chow, Open-channel Hydraulics. Mc Graw Hill (1959).

[56] D. H. Wagner, Symmetric-hyperbolic equations of motion for a hyperelastic material. J. Hyperbolic Differ. Equ. 6 (2009) 615–630. | Zbl | DOI

[57] D. H. Wagner,Conservation laws, coordinate transformations, and differential forms, edited by J. Glimm, M. J. Graham, J. W. Grove and B. J. Plohr. In: Hyperbolic Problems: Theory, Numerics, Applications. World Scientific (1994) 471–477. | Zbl

[58] C. C. Wang and C. Truesdell, Introduction to rational elasticity. In: Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics of Continua. Noordhoff International Publishing, Leyden (1973). | Zbl

[59] W.-A. Yong, Newtonian limit of Maxwell fluid flows. Arch. Ration. Mech. Anal. 214 (2014) 913–922. | Zbl | DOI

Cité par Sources :