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VISCOELASTIC FLOWS OF MAXWELL FLUIDS WITH CONSERVATION LAWS

Sébastien Boyaval*

Abstract. We consider multi-dimensional extensions of Maxwell’s seminal rheological equation for
1D viscoelastic flows. We aim at a causal model for compressible flows, defined by semi-group solutions
given initial conditions, and such that perturbations propagate at finite speed. We propose a symmetric
hyperbolic system of conservation laws that contains the Upper-Convected Maxwell (UCM) equation as
causal model. The system is an extension of polyconvex elastodynamics, with an additional material
metric variable that relaxes to model viscous effects. Interestingly, the framework could also cover
other rheological equations, depending on the chosen relaxation limit for the material metric variable.
We propose to apply the new system to incompressible free-surface gravity flows in the shallow-water
regime, when causality is important. The system reduces to a viscoelastic extension of Saint-Venant
2D shallow-water system that is symmetric-hyperbolic and that encompasses our previous viscoelastic
extensions of Saint-Venant proposed with F. Bouchut.
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1. Introduction

In 1867, when viscosity was already an important concept to model friction within fluid flows at the human
scale following Poisson’s theory of friction [51], Maxwell introduced a seminal relaxation equation for the rheology
of one-dimensional (1D) flows where viscosity is defined from elasticity and a characteristic time [44]. The
viscoelastic model of Maxwell is long known as an interesting model for 1D flows: given initial conditions, fluid
motions are well-defined [31] that are genuinely causal, i.e. causal and local in particular.

By contrast, nowadays, viscosity is often introduced in continuum mechanics as a material parameter into the
momentum balance of motions described in spatial coordinates [15]. It still allows to define causal viscous flows
as semi-group solutions to Cauchy problems. However, it uses diffusive Partial Differential Equations (PDEs)
like the celebrated Navier–Stokes equations [39], and the latter viscous flows do not satisfy the desirable principle
of locality (i.e. motions are not genuinely causal) because information propagates at infinite speed. Now, locality
is important in geophysics e.g. when unstationary processes associated with internal friction obviously have a
local character (the migration of suspended particles, the production of turbulent energy . . . ).

In this work, to model viscosity in fluid flows, we follow Maxwell’s approach and we look for a good (hyper-
bolic) viscoelastic model.
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Many viscoelastic models have been proposed after Maxwell, in particular to explain non-Newtonian flows
of polymeric rubber-like liquids after [18] that are mostly steady. For multi-dimensional flows, there is now a
consensus about the need for a rheological equation with objective derivatives, like the famous Upper-Convected
Maxwell (UCM) equation. But flow models with UCM equations are usually formulated as quasilinear systems
without more structure; and solutions to Cauchy problems have remained difficult to analyze or simulate beyond
1D. In practice, the UCM models – mostly used for incompressible flows – are often modified with an additional
“background viscosity” (equiv. a retardation time) e.g. as in the Oldroyd-B model, which spoils the local
character of Maxwell’s model. See Section 2 for more details about standard viscoelastic models.

In this work, we propose the first formulation of the compressible UCM model as a symmetric-hyperbolic
system of conservation laws in Section 3.

Starting with the elastodynamics system like the K-BKZ theory for viscoelastic models [2,3,33], a new system
of physically-meaningful conservation laws is proposed for the compressible UCM model in Section 3.1.

In Section 3.2, it is then proved that the system is symmetric-hyperbolic, using conservative variables adequate
for the application of Godunov-Mock theorem. Recall that symmetric-hyperbolic systems of conservation laws
are essential to the analysis and to the numerical simulation of solutions to quasilinear systems [1], and to
polyconvex elastodynamics in particular [7, 16,56].

The new system is not simply a sound mathematical framework for the viscoelastic models under develop-
ment [40]. It is also one particular viscoelastic case in a class of mathematically-sound models that unifies the
hyperelastic solids with viscous fluids.

In Section 3.3, we show that the new system has not only a physical interpretation as one extension of the
polyconvex elastodynamics system (usually modelling solids), but also one particular extension towards fluids,
that uses an additional material metric variable like other well-known extensions (e.g. the elastoplastic systems).
That latter interpretation shows the potentialities of the new symmetric-hyperbolic system of conservation laws,
to soundly unify the solid and fluid dynamics of various materials.

Unifying fluid and solid dynamics has of course been the goal of many previous works in the literature, and
it is not the aim of the present work to review and compare them with our new system. Here, unification is
simply mentioned as a potentiality of our new system. Let us nevertheless mention the recent work [49]. As for
unification, that work is the only one we are aware of which, like ours, first looks for a symmetric-hyperbolic
system of conservation laws extending polyconvex elastodynamics to viscoelastic Maxwell fluids. In comparison
with [49], we extend polyconvex elastodynamics to a hyperbolic quasilinear system with a different structure,
using a different additional variable.

Last, we believe our new system will have very useful applications in the shallow-water regime, to model
free-surface gravity flows with viscosity.

In Section 4, we precisely show how our new system can be reduced to a symmetric-hyperbolic system of 2D
conservation laws that is a physically-meaningful viscoelastic extension of Saint-Venant models. The new 2D
system encompasses our former viscoelastic extensions of Saint-Venant models with F. Bouchut [10–12], without
a conservative formulation in 2D.

Developing 2D shallow-water models for free-surface flows with large vertical vortices and viscous dissipation
has also been the goal of many previous works in the literature, see [11, 22] and references therein. Again, it is
not the goal of the present article to review and compare those numerous 2D works with ours. Here, we simply
mention an important application of our new 3D UCM system, which delivers a symmetric-hyperbolic system
of 2D conservation laws in contrast to [23] and our former works [11,12] e.g., see details in Section 4.

2. Viscoelastic flows in continuum mechanics

First recall standard viscoelastic constitutive assumptions to model smooth compressible material fluid
motions (equiv. flows) in continuum mechanics setting.
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2.1. Continuum mechanics needs constitutive assumptions

Continuum mechanics aims at modelling the motions of “matter” as flows of “continuous bodies” at the
human scale (unlike “discrete particles” at the molecular scale). A prerequisite is the definition of material
bodies and their flows.

The classical theory considers bodies ℬ that are Riemannian manifolds, and flows that are collections of
“configurations” i.e. mappings 𝜑𝑡(ℬ) indexed by time 𝑡 ∈ R into the Euclidean ambiant space [42]. For future
reference, recall that on bodies ℬ with a coordinate system {𝑎𝛼} and a material (or body) metric defined
by a positive symmetric 2-tensor 𝐺𝛼𝛽 ∈ 𝑆+(R𝑑×𝑑) (𝑑 = 2, 3), div𝑎 𝑣 = 𝜕𝛼(

√︀
|𝐺|𝑣𝛼𝛽...)/

√︀
|𝐺| for 𝑣(𝑎) =

𝑣𝛼𝛽...𝑒𝛼 ⊗ 𝑒𝛽 . . . is well-defined when 𝐺𝛼𝛽 ∈ 𝑆++(R𝑑×𝑑) i.e. the determinant is stricly positive |𝐺𝛼𝛽 | > 0, and
an inverse metric 𝐺𝛼𝛽𝐺

𝛽𝛾 = 𝛿𝛼𝛾 exists – 𝛿𝛼𝛾 denoting Kronecker’s symbol –.
Next, one establishes a precise description of bodies motions i.e. “flows” using axioms and assumptions.

Viscoelastic flows arise from particular constitutive assumptions, see Section 2.3. But let us first recall the
continuum mechanics setting and simpler consitutive equations (some notions need to be assumed though, like
those in quotes “. . . ”, and we refer to [16,42,58] for more details).

Given a force field 𝑓 in the Euclidean ambiant space with a coordinate system {𝑥𝑖}, one assumes a Galilean
frame-invariant balance of total energy 𝐸 ≥ 0 as follows for bodies, with 𝑅 the heat supplied during the process:

𝜕𝑡(𝐸 ∘ 𝜑𝑡) = 𝜕𝑎(𝑆𝑖𝛼𝜕𝑡𝜑
𝑖
𝑡) + 𝜕𝑡𝜑

𝑖
𝑡(𝑓

𝑖 ∘ 𝜑𝑡) +𝑅. (2.1)

where 𝑆 is the (first) Piola-Kirchoff stress tensor, 𝑆𝑖𝛼 in coordinates. Bodies are characterized by a mass-density
𝜌(𝑎) ≥ 0, and their motions 𝜑𝑡 : 𝑎 ∈ ℬ → 𝑥 = 𝜑𝑡(𝑎) ∈ R𝑑 (𝑑 = 2, 3) satisfy the momentum balance:

𝜌(𝜕2
𝑡𝑡𝜑𝑡) = div𝑎 𝑆 + 𝜌(𝑓 ∘ 𝜑𝑡). (2.2)

For non-polar bodies, it holds 𝑆𝑖𝛼𝜕𝛼𝜑
𝑗 = 𝑆𝑗𝛼𝜕𝛼𝜑

𝑖, and introducing 𝑟 ∘ 𝜑𝑡 = 𝑅/𝜌,

𝜌(𝜕𝑡𝑒 ∘ 𝜑𝑡)− 𝑆𝑖𝛼𝜕2
𝑡𝛼𝜑

𝑖
𝑡 = 𝜌(𝑟 ∘ 𝜑𝑡) (2.3)

where 𝑒 ∘𝜑𝑡 := 𝐸 ∘𝜑𝑡/𝜌− 1
2 |𝜕𝑡𝜑𝑡|2 is the internal energy. Note that we assume adiabatic processes (i.e. no heat

flux within bodies, assumed heat insulators), and we use Einstein summation convention for repeated indices.
Next, if constitutive assumptions specify 𝑒 as a function of 𝜕𝛼𝜑

𝑖
𝑡 – thus also 𝑆 by (2.3) –, motions 𝜑𝑡 can

be defined as solutions to (2.2) for 𝑡 ∈ [0, 𝑇 ) given 𝜑𝑡=0 = 𝜑0. Some constitutive assumptions and well-defined
motions have shown the practical interest of the theory for applications to various materials, see e.g. [7]. But
specifying constitutive assumptions that are both mathematically and physically meaningful is a difficult task
since the beginning of the theory. Despite many rationalization efforts guided by mathematical soundness, we are
not aware of a definitive approach to model particular real materials (many practical constitutive assumptions
exist, scattered in a vast literature). We recall standard constitutive assumptions for viscoelastic fluids in
Section 2.3.

In Section 2.2, we first recall fundamental constitutive assumptions for elastic and viscous material bodies in
the “solid” or “fluid” states, when 𝑒 is function of 𝜕𝛼𝜑

𝑖
𝑡 or |𝜕𝛼𝜑

𝑖
𝑡|. Viscoelasticity arises as a unifying concept in

between. We consider smooth motions 𝜑𝑡, diffeomorphisms with inverse 𝜑−1
𝑡 , and we denote:

– 𝐹 𝑖
𝛼 := 𝜕𝛼𝜑

𝑖
𝑡 ∘ 𝜑−1

𝑡 the deformation gradient in component form given two coordinates systems {𝑥𝑖} and
{𝑎𝛼}, i.e. the matrix representation of the tensor 𝐹 = 𝐹 𝑖

𝛼𝑒𝑖 ⊗ 𝑒𝛼 with rows labelled by a Roman letter like
𝑖, 𝑗, 𝑘, . . . to precise coordinates in the spatial frame and with columns labelled by a Greek letter 𝛼, 𝛽, 𝛾, . . .
to precise coordinates in the material frame,

– |𝐹 𝑖
𝛼| the determinant of 𝐹 𝑖

𝛼, also sometimes denoted |𝐹 |,
– 𝐶𝛼

𝑖 the cofactor matrix (or transpose adjugate) of 𝐹 𝑖
𝛼,

– 𝑢𝑖 := 𝜕𝑡𝜑
𝑖
𝑡 ∘ 𝜑−1

𝑡 the velocity,
– 𝐷(𝑢)𝑖𝑗 := 1

2

(︀
𝜕𝑖𝑢

𝑗 + 𝜕𝑗𝑢
𝑖
)︀

the strain-rate tensor,
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– div 𝑢 = 𝜕𝑖𝑢
𝑖 the Euclidean divergence for a vector field 𝑢, and

– 𝛿 the identity tensor compatible with the Kronecker symbol notation in coordinates so 𝛿𝑗
𝑖 = |𝐹 𝑖

𝛼|−1𝐹 𝑗
𝛼𝐶

𝛼
𝑖 for

instance.

We classically assume that (2.1) and (2.2) are the Euler-Lagrange equations of a variational principle for a
Lagrangian density 𝜌

(︀
1
2 |𝜕𝑡𝜑𝑡|2 − 𝑒 ∘ 𝜑𝑡

)︀
with 𝑒 a function of 𝜕𝛼𝜑

𝑖
𝑡, [42], and 𝐺𝛼𝛽 = 𝛿𝛼𝛽 . Then, (2.3) holds with

𝑟 = 0 and 𝑆 a function of 𝐹 𝑖
𝛼 ∘ 𝜑𝑡 as

𝑆𝑖𝛼 = 𝜌𝜕𝐹 𝑖
𝛼
𝑒. (2.4)

Moreover, when 𝜌 is constant, (2.2) rewrites within a system of conservation laws:

𝜕𝑡

(︀
𝜌 𝑢𝑖 ∘ 𝜑𝑡

)︀
− 𝜕𝛼𝑆

𝑖𝛼 = 𝜌𝑓 𝑖

𝜕𝑡

(︀
𝐹 𝑖

𝛼 ∘ 𝜑𝑡

)︀
− 𝜕𝛼

(︀
𝑢𝑖 ∘ 𝜑𝑡

)︀
= 0

𝜕𝑡

(︀
|𝐹 𝑖

𝛼| ∘ 𝜑𝑡

)︀
− 𝜕𝛼

(︀
𝐶𝛼

𝑗 ∘ 𝜑𝑡 𝑢
𝑗 ∘ 𝜑𝑡

)︀
= 0

(2.5)

that fully defines causal motions in the so-called material (or Lagrangian) description as semi-group solutions,
possibly after adding (2.6) to (2.5) when 𝑑 = 3

𝜕𝑡 (𝐶𝛼
𝑖 ∘ 𝜑𝑡) + 𝜎𝑖𝑗𝑘𝜎𝛼𝛽𝛾𝜕𝛽

(︀
𝐹 𝑗

𝛾 ∘ 𝜑𝑡 𝑢
𝑘 ∘ 𝜑𝑡

)︀
= 0 (2.6)

where 𝐶𝛼
𝑖 = 𝜎𝑖𝑗𝑘𝜎𝛼𝛽𝛾𝐹

𝑗
𝛽𝐹

𝑘
𝛾 , and 𝜎 is Levi-Civita’s symbol – so it holds e.g.

|𝐹 𝑖
𝛼| = 𝜎𝑖𝑗𝜎𝛼𝛽𝐹

𝑖
𝛼𝐹

𝑗
𝛽 𝐶𝛼

𝑖 = |𝐹 𝑖
𝛼|𝜎𝑖𝑗𝜎𝛼𝛽𝐹

𝑗
𝛽

when 𝑑 = 2. Also, when 𝜌 is constant, smooth motions with a material (or Lagrangian) description have a
spatial (or Eulerian) description:

𝜕𝑡

(︀
𝜌𝑢𝑖
)︀

+ 𝜕𝑗

(︀
𝜌𝑢𝑗𝑢𝑖 − 𝜎𝑖𝑗

)︀
= 𝜌𝑓 𝑖

𝜕𝑡

(︀
𝜌𝐹 𝑖

𝛼

)︀
+ 𝜕𝑗

(︀
𝜌𝑢𝑗𝐹 𝑖

𝛼 − 𝜌𝐹 𝑗
𝛼𝑢

𝑖
)︀

= 0

𝜕𝑡𝜌+ 𝜕𝑗

(︀
𝜌𝑢𝑗
)︀

= 0

(2.7)

with Cauchy stress 𝜎𝑖𝑗 := |𝐹 𝑖
𝛼|−1𝐹 𝑗

𝛼𝑆
𝑖𝛼 ∘ 𝜑−1

𝑡 function of 𝐹 𝑖
𝛼, and 𝜌 := |𝐹 𝑖

𝛼|−1𝜌 [56], possibly complemented
when 𝑑 = 3 by

𝜕𝑡 (𝜌𝐶𝛼
𝑖 ) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝐶𝛼

𝑖

)︀
+ 𝜎𝑖𝑗𝑘𝜎𝛼𝛽𝛾𝜕𝑙

(︀
|𝐹 𝑖

𝛼|−1𝐹 𝑙
𝛽𝐹

𝑗
𝛾𝑢

𝑘
)︀

= 0. (2.8)

The Lagrangian and Eulerian descriptions of smooth motions are equivalent as long as the following Piola’s
identities hold [56]:

𝜕𝑗(|𝐹 𝑖
𝛼|−1𝐹 𝑗

𝛼) = 0 ∀ 𝑖 = 1 . . . 𝑑. (2.9)

2.2. Constitutive assumptions for elastic bodies and fluids

Elastic motions have been considered since the beginnings of continuum mechanics for “solids” [43,58]. Some
elastic constitutive assumptions efficiently summarize the molecular structure of matter at a human scale and
are useful to predict real solid behaviours. In particular, smooth motions of hyperelastic materials with an
energy 𝑒(𝐹 𝑖

𝛼 ∘𝜑𝑡) can be well defined when 𝑟 = 0 as solutions to (a Cauchy problem for) either the second-order
equation (2.2) [29], or a first-order system of conservation laws: (2.5) in material coordinates, or (2.7) in spatial
coordinates, e.g. when 𝑒 is polyconvex and both are symmetric-hyperbolic [56].

Postulating indifference to Galilean changes of spatial frames as usual in classical physics requires that 𝑒
is function of 𝐹 𝑖

𝛼 through the right Cauchy-Green deformation tensor 𝐹 𝑘
𝛼𝐹

𝑘
𝛽 . Then, for homogeneous isotropic

bodies with 𝐺𝛼𝛽 = 𝛿𝛼𝛽 Euclidean, a useful polyconvex energy is the neo-Hookean

𝑒
(︀
𝐹 𝑘

𝛼𝐹
𝑘
𝛼

)︀
:=

𝜇

2
(︀
𝐹 𝑘

𝛼𝐹
𝑘
𝛼 − 𝑑

)︀
(2.10)
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with both molecular and phenomenological justifications [24].
The neo-Hookean model is simplistic, but it is already quantitativaly useful for practical applications. More-

over, it has many refinements. For instance, the neo-Hookean model cannot capture volumetric changes observed
simultaneously with elongation. But one can either use the model along with the incompressibility constraint
|𝐹 𝑖

𝛼| = 1 (if relevant) as a remedy. Or one can add a compressible term function of |𝐹 𝑖
𝛼| in the energy (2.10)

that preserves polyconvexity.
Non-reversible motions with 𝑟 ̸= 0 can moreover be considered when 𝑒 is a function of 𝐹 𝑖

𝛼 and entropy 𝜂 such
that it holds for some dissipation 𝐷 ≥ 0:

𝑟 ∘ 𝜑𝑡 = (𝜃 ∘ 𝜑𝑡)𝜕𝑡(𝜂 ∘ 𝜑𝑡)−𝐷 ∘ 𝜑𝑡. (2.11)

Usual elongations with volumetric changes are indeed non-reversible, with heat exchanges 𝑟 ̸= 0; (2.11) means
that the heat supply may be either dissipated by irreversible processes (“inelasticities”) or compensated for by
variations in the body state (through entropy). Using (2.11) as an additional constitutive assumption leads one
to introduce the temperature 𝜃 = −𝜕𝜂𝑒 [15]. Then, further constitutive assumptions about inelasticities and 𝐷
allow to close (2.2) (or (2.5), or (2.7)) complemented by (2.3)–(2.11) when 𝑟 ̸= 0. For instance, smooth isentropic
motions such that 𝜕𝑡(𝜂 ∘ 𝜑𝑡) = 0 can be defined for polyconvex hyperelastic bodies with 𝑒 jointly convex in 𝐹 𝑖

𝛼

and 𝜂, as well as non-smooth motions like 1D shocks using the inequality associated with (2.3)–(2.11) [16].
Thermo-elastic models in fact use the Helmholtz free energy 𝜓 = 𝑒− 𝜃𝜂 as a function of 𝜃 more often than 𝑒

as a function of 𝜂, with a constitutive assumption precising the temperature evolution rather than the entropy
evolution. Then

𝜌 ((𝜂 ∘ 𝜑𝑡)𝜕𝑡(𝜃 ∘ 𝜑𝑡) + 𝜕𝑡(𝜓 ∘ 𝜑𝑡))− 𝑆𝑖𝛼𝜕𝛼(𝑢𝑖 ∘ 𝜑𝑡) = −𝜌𝐷 ∘ 𝜑𝑡 (2.12)

complements (2.2) (or (2.5), or (2.7)) rather than (2.3)–(2.11). It allows one to define (smooth and non-smooth)
isothermal motions for polyconvex hyperelastic bodies when 𝜓 is jointly convex in 𝐹 𝑖

𝛼 and 𝜃 using 𝜂 = −𝜕𝜃𝜓
and 𝑆𝑖𝛼 = 𝜌𝜕𝐹 𝑖

𝛼
𝜓.

Non-reversible motions however need a more accurate description in many applications. And it remains an
active research field how to specify inelasticities, especially over a range of temperatures where the material
properties change a lot (throughout phase transitions) and for large deformations of flowing bodies when the
fluidity concept enters [4]. Viscoelasticity is one example of inelasticity. This will be very clear in Section 3 with
our new UCM system. We show in Section 3.3 that the UCM model is only one viscoelastic instance within a
large class of mathematically-sound models with inelasticities. But first, let us recall a standard introduction of
viscosity alone, without elasticity, as a constitutive assumption for imperfections in irreversible flows of fluids.

Fluid flows have long been considered in continuum mechanics. The molecular structure of fluids is more
difficult to summarize than that of solids, because they are much more deformable. Useful constitutive assump-
tions for simple enough fluid materials have been proposed – though usually without a clear link to solids, the
fluid-solid transition being a well-identified difficulty [4].

A useful constitutive law for “perfect” fluids is the polytropic law

𝑒(𝜌) :=
𝐶0

𝛾 − 1
𝜌𝛾−1. (2.13)

Smooth motions can be defined with (2.13) in the reduced spatial description

𝜕𝑡𝜌+ 𝜕𝑖(𝑢𝑖𝜌) = 0
𝜌
(︀
𝜕𝑡𝑢

𝑖 + 𝑢𝑗𝜕𝑗𝑢
𝑖
)︀
− 𝜕𝑗 𝜎

𝑖𝑗 = 𝜌𝑓 𝑖
(2.14)

where the Cauchy stress tensor reduces to a pure pressure 𝑝 ≡ −𝜕𝜌−1𝑒 = 𝐶0𝜌
𝛾

𝜎𝑖𝑗 = −𝑝 𝛿𝑖𝑗 . (2.15)
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The system (2.14) is indeed symmetric-hyperbolic, and it is useful e.g. for the dynamics of simple (monoatomic)
gases. But note that (2.14) is strictly contained in the Eulerian system (2.7), and motions are not equivalently
described by the larger Lagrangian system (2.5) which is not symmetric hyperbolic.

Non-smooth irreversible motions can also be considered with (2.14) complemented by (2.11) and an entropy
variable 𝜂. When 𝑒 is (jointly) convex in 𝜌 and 𝜂, one can consider isentropic motions through weak solutions,
and define univoque 1D shocks [41]. Isomorphocally, one can define isothermal motions using Helmholtz free
energy 𝜓, the spatial version of (2.12)

𝜌
(︀
𝜂(𝜕𝑡 + 𝑢𝑖𝜕𝑖)𝜃 + (𝜕𝑡 + 𝑢𝑖𝜕𝑖)𝜓

)︀
= −𝜌𝐷 + 𝜎𝑖𝑗𝜕𝑗𝑢

𝑖 (2.16)

and a temperature variable 𝜃. However, more constitutive assumptions are often needed to precisely describe
irreversible fluid motions, like the vortices observed in many viscous real fluid flows. To that aim, viscous stresses
have been introduced in (2.14) by adding an extra-stress 𝜏 as 𝜎 = −𝑝𝛿 + 𝜏 in (2.15) i.e.

𝜎𝑖𝑗 = −𝑝 𝛿𝑖𝑗 + 𝜏 𝑖𝑗 (2.17)

provided it is “objective” (invariant to Galilean change of spatial frames) and “dissipative” i.e. 𝐷 := 𝜏 𝑖𝑗𝜕𝑗𝑢
𝑖 ≥ 0

[15]. The Newtonian extra-stress e.g.

𝜏 𝑖𝑗 = 2𝜇̇𝐷(𝑢)𝑖𝑗 + ℓ 𝐷(𝑢)𝑘𝑘 𝛿𝑖𝑗 (2.18)

is admissible with 𝐷 = 2𝜇̇𝐷(𝑢)𝑖𝑗𝐷(𝑢)𝑖𝑗 + ℓ|𝜕𝑖𝑢
𝑖|2 ≥ 0, in 𝜕𝑡𝜂 + (𝑢𝑗𝜕𝑗)𝜂 = 𝐷/𝜃 when the entropy 𝜂 is chosen as

additional state variable [39], or in
𝜕𝑡𝜃 + (𝑢𝑗𝜕𝑗)𝜃 = −𝐷/𝜂 (2.19)

when the temperature 𝜃 is the additional state variable. The NS equations have an interpretation at the same
molecular level as the polytropic law, with 𝜇̇ > 0 & ℓ > 0 the shear & bulk viscosities typically measured for
a fluid close to its rest-state at given pressure and temperature. But although useful in many cases, the flows
defined by NS or any momentum balance with diffusion are not local unlike the motions defined by (2.5) for
polyconvex hyperelastic bodies.

To describe local viscous motions, we next follow Maxwell and consider viscoelastic fluids relaxing to an elastic
equilibrium, where viscosity arises asymptotically only – just like the steady flows where it is actually measured!
For fast relaxing fluid flows, one may prefer the standard extra-stress approach, leading to the “simple” NS
equations, at the price of losing locality. But that preference depends on what “fast” means in comparison with
the physically-relevant speeds. For applications when time-dependence is particularly important, one should
prefer the viscoelastic models below to the viscous fluid model above.

2.3. Standard viscoelastic flow models with Maxwell fluids

Standard viscoelastic constitutive assumptions for the extra-stress are formulated as extensions of viscous
fluids, first constrained by “objectivity” like in [15]. Viscoelastic fluids of Maxwell type [44] thus use differential
equations like

𝜆
♦
𝜏 +𝜏 = 2𝜇̇𝐷 (2.20)

for the extra-stress in (2.17), with 𝜆 > 0 a relaxation time scale and
♦
𝜏 an objective time-rate [5, 46, 52]. The

extra-stress governed by (2.20) is well understood in small deformations when
♦
𝜏≈ 𝜕𝑡𝜏 : high-frequency motions

are elastic with modulus 𝜇 := 𝜇̇/𝜆 (in stress units), and low-frequency motions are viscous with viscosity 𝜇̇.
More generally, it evolves nonlinearly, using as time-rate in (2.20)

♦

𝜏 𝑖𝑗= 𝜕𝑡𝜏
𝑖𝑗 + 𝑢𝑘𝜕𝑘𝜏

𝑖𝑗 − 𝜕𝑘𝑢
𝑖𝜏𝑘𝑗 − 𝜏 𝑖𝑘𝜕𝑘𝑢

𝑗 + 𝜁
(︀
𝐷(𝑢)𝑖𝑘𝜏𝑘𝑗 + 𝜏 𝑖𝑘𝐷(𝑢)𝑘𝑗

)︀
(2.21)
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for some 𝜁 ∈ [0, 2]. The nonlinear terms in (2.21) are believed responsible for non-Newtonian motions observed
experimentally, like rod-climbing (equiv. Weissenberg effect) with polymeric liquids [18]. Moreover, the “dissi-
pativity” of the extra-stress 𝜏 is standardly analyzed on introducing a conformation tensor 𝑐 [26] interpreted
as E(𝑅 ⊗ 𝑅) where 𝑅(𝑡,𝑥) is the end-to-end vector of “dumbbells” modelling statistically macromolecules
suspended in the fluid [6, 52].

Assume dumbbells are governed by the (overdamped) Langevin equation

𝑑𝑅𝑖 =
(︂
−(𝑢𝑗𝜕𝑗)𝑅𝑖 + (𝜕𝑗𝑢

𝑖)𝑅𝑗 − 2𝐾
𝜉
𝐹 𝑖(𝑅)

)︂
d𝑡+

√︃
4𝑘B𝜃

𝜉
𝑑𝑊 𝑖(𝑡) (2.22)

given friction 𝜉 and spring factor 𝐾(𝜃) at 𝜃. Using (2.21) with 𝜁 = 0, it leads to

♦

𝑐𝑖𝑗= −4𝐾ℋ′

𝜉
𝑐𝑖𝑗 +

4𝑘B𝜃

𝜉
𝛿𝑖𝑗 (2.23)

for 𝑐. Precisely, when 𝐹 𝑖 in (2.22) is non-linear, a good approximation (2.23) should postulate a non-linear
potential ℋ (𝑡𝑟(𝑐)) i.e. ℋ′ (𝑡𝑟(𝑐)) non-constant so that 𝑐 remains strictly positive, see e.g. [28]. The particular
case when 𝐹 𝑖(𝑅) = ℋ′𝑅𝑖 with ℋ′ constant does not need approximation: the random vector 𝑅 is Gaussian
and (2.23) is exact. It is the consitutive assumption for Upper-Convected Maxwell (UCM) fluids. The motions
defined with smooth solutions to (2.23) indeed satisfy

(𝜕𝑡 + 𝑢𝑗𝜕𝑗)ℱ(𝑐) = 2
(︀
𝐾ℋ′𝑐𝑖𝑗 − 𝑘B𝜃𝛿𝑖𝑗

)︀
𝜕𝑖𝑢

𝑗 − 4
𝜉
𝒟 (2.24)

on denoting [𝑐−1]𝑘𝑙 the matrix inverse of 𝑐𝑖𝑗 symmetric positive definite, with

ℱ = 𝐾ℋ (𝑡𝑟(𝑐))− 𝑘B𝜃 log |𝑐|, (2.25)

𝒟 = (𝐾ℋ′𝑐𝑖𝑗 − 𝑘B𝜃𝛿𝑖𝑗)[𝑐−1]𝑗𝑘(𝐾ℋ′𝑐𝑖𝑘 − 𝑘B𝜃𝛿
𝑖𝑘) ≥ 0. (2.26)

So 𝐷 ≡ 4
𝜉𝒟 can be a dissipation in (2.16) for isothermal flows, and ℱ a dumbbell contribution to the Helmholtz

free energy 𝜓 = 𝑒0(𝜌, 𝜃) + ℱ(𝑐, 𝜃) where 𝑒0(𝜌, 𝜃) is a solvent contribution like the polytropic law (2.13), while
the extra-stress

𝜏 𝑖𝑗 = 2𝜌(𝐾ℋ′𝑐𝑖𝑗 − 𝑘B𝜃𝛿𝑖𝑗) (2.27)

is admissible in (2.17) and has a molecular interpretation through 𝑅, 𝑘B being the same Boltzmann constant1

as in (2.22) [6, 19]. For incompressible isothermal flows (𝜕𝑖𝑢
𝑖 ≡ 0) with 𝜌 constant, the evolution of 𝜏 satisfies

exactly Maxwell upper-convected equation (2.20) with 𝜆 = 𝜉
4𝐾ℋ′ and 𝜇̇ = 2𝜆𝜌𝑘B𝜃. For general flows, 𝜏 satisfies

(2.20) with additional terms in RHS, see (3.14) in Section 3.3.
Multi-dimensional models that are extensions of Maxwell seminal ideas often use the UCM model (2.14)–

(2.17)–(2.27)–(2.23) as a starting point, up to the recent efforts [20, 40] toward non-isothermal flows, or some
variations of UCM [37, 52], using for instance another force 𝐹 𝑖 in (2.22) than linear (which leads to a different
viscoelastic flow model with a different free energy), or another Langevin equation (which could lead to an
evolution of conformation (2.23) using 𝜁 = 2 rather than 𝜁 = 0). General compressible viscoelastic motions
have however hardly been analyzed or simulated so far, with the full compressible UCM system or any other
similar viscoelastic model. We are aware of a 2D hyperbolic quasilinear UCM model, but it is not a system of
conservation laws, and its numerical simulation relies on some empirical diffusion [21,47,50]. One difficulty with
the (multi-dimensional, compressible) viscoelastic models proposed so far might be the lack of a mathematical
structure to properly define motions through Cauchy problems, such as a symmetric hyperbolic system of
conservation laws [32,41].

1In (2.22), 𝑘B𝜃 has the dimension of a squared velocity like the usual Boltzmann constant divided by the mass of a dumbbell.
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Viscoelastic motions have mostly been studied under the incompressibility assumption and with additional
diffusion so far, whether for UCM or other fluids [48]. Indeed, incompressible viscoelastic motions with 𝜕𝑖𝑢

𝑖 = 0
and 𝜌 constant have been well defined as solutions to Cauchy problems for the UCM model (2.7)–(2.17)–(2.27)–
(2.23), as well as other quasilinear systems provided they are regular enough [53]. Still, numerical simulations
of the incompressible UCM system have shown unstable in applications [30, 31] and most viscoelastic flows
have in fact been computed for incompressible fluids of Jeffrey type with an additional retardation time (i.e. a
rate-dependent term in (2.20) which induces velocity diffusion with a “background viscosity”) [48]. In any case,
assuming incompressibility prevents locality and limits applications to non-isothermal flows. Diffusion does not
restore the locality of motions, on the contrary.

So the question thus remains how to usefully extend Maxwell’s seminal viscoelastic model to general (com-
pressible, multi-dimensional) motions.

3. Symmetrizing Upper-Convected Maxwell

We now propose to rewrite the UCM model as a useful symmetric-hyperbolic system of conservation laws
which extends the elastodynamics of polyconvex hyperelastic materials using an additional material metric
variable. The new system of conservation laws is introduced in Section 3.1. It is shown symmetric-hyperbolic in
Section 3.2. Finally, the physics of UCM is discussed using that new system in Section 3.3. It allows to interpret
UCM as one particular extension of elastodynamics using an additional material metric variable, with much
more potentialities (beyond fluid viscoelasticity) to be discussed in future works.

The present new system already has interesting applications, see Section 4.

3.1. Conservation laws for UCM

A reformulation of the standard UCM model was already proposed by the K-BKZ theory [2,3,33], to establish
a clear link between the viscoelastic UCM fluids and (elastic) solids, and to next improve the UCM model. But
it leads to an integro-differential systems that is not much more easily used for general flows than standard
UCM. Still, to get a useful formulation, we can follow K-BKZ theory and first interpret the UCM model with
the help of the full Eulerian description (2.7) of (smooth) motions for continuous bodies as follows.

Proposition 1. Consider smooth motions of UCM fluids such that 𝑐𝑖𝑗 satisfies (2.23) with 𝜁 = 0 in (2.21).
Denote [𝐹−1]𝛼𝑖 the matrix inverse of 𝐹 𝑖

𝛼. It holds for 𝐴𝛼𝛽 = [𝐹−1]𝛼𝑖 𝑐
𝑖𝑗 [𝐹−1]𝛽𝑗 in the material description:

𝜕𝑡

(︀
𝐴𝛼𝛽 ∘ 𝜑𝑡

)︀
=

4𝑘B𝜃

𝜉

(︁
[𝐹−1 ∘ 𝜑𝑡]

𝛼
𝑖 [𝐹−1 ∘ 𝜑𝑡]

𝛽
𝑖

)︁
− 4𝐾ℋ′

𝜉
𝐴𝛼𝛽 ∘ 𝜑𝑡. (3.1)

Proof. Recalling (2.5), the deformation gradient 𝐹 𝑖
𝛼 satisfies

(𝜕𝑡 + 𝑢𝑖𝜕𝑖)𝐹 𝑖
𝛼 − (𝜕𝑗𝑢

𝑖)𝐹 𝑗
𝛼 = 0 (3.2)

in spatial description. Then, the inverse satisfies

(𝜕𝑡 + 𝑢𝑖𝜕𝑖)[𝐹−1]𝛼𝑖 − [𝐹−1]𝛼𝑖 (𝜕𝑗𝑢
𝑖) = 0 (3.3)

which can be combined with (2.23) to yield

(𝜕𝑡 + 𝑢𝑖𝜕𝑖)𝐴𝛼𝛽 = −4𝐾ℋ′

𝜉
𝐴𝛼𝛽 +

4𝑘B𝜃

𝜉

(︁
[𝐹−1]𝛼𝑖 [𝐹−1]𝛽𝑖

)︁
. (3.4)

It follows (3.1) in the material description. �
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Corollary 1. Consider smooth motions of UCM fluids like in Proposition 1 given positive constants 𝐾, ℋ′, 𝜉,
𝜃. Then, denoting 𝜆 = 𝜉

4𝐾𝐻 , it holds for 𝑡 ≥ 𝑡0:

𝑐𝑖𝑗(𝑡) ∘ 𝜑𝑡 = 𝑒
𝑡0−𝑡

𝜆 𝐹 𝑖
𝛼(𝑡) ∘ 𝜑𝑡[𝐹

−1]𝛼𝑘 (𝑡0) ∘ 𝜑𝑡0 [𝐹−1]𝛽𝑘(𝑡0) ∘ 𝜑𝑡0𝐹
𝑗
𝛽(𝑡) ∘ 𝜑𝑡

+
𝑘B𝜃

𝐾ℋ′

∫︁ 𝑡

𝑡0

d𝑠
1
𝜆
𝑒

𝑠−𝑡
𝜆 𝐹 𝑖

𝛼(𝑡) ∘ 𝜑𝑡[𝐹
−1]𝛼𝑘 (𝑠) ∘ 𝜑𝑠[𝐹−1]𝛽𝑘(𝑠) ∘ 𝜑𝑠𝐹

𝑗
𝛽(𝑡) ∘ 𝜑𝑡. (3.5)

Proof. One straightforwardly obtains (3.5) on injecting the exact solution to the linear first-order differential
equation (3.1) in 𝑐𝑖𝑗 = 𝐹 𝑖

𝛼𝐴
𝛼𝛽𝐹 𝑗

𝛽 . �

Next, K-BKZ theory assumes

𝐹 𝑖
𝛼(𝑡) ∘ 𝜑𝑡[𝐹

−1]𝛼𝑘 (𝑡0) ∘ 𝜑𝑡0 [𝐹−1]𝛽𝑘(𝑡0) ∘ 𝜑𝑡0𝐹
𝑗
𝛽(𝑡) ∘ 𝜑𝑡 → 𝛿𝑖𝑗 as 𝑡0 → −∞, (3.6)

and rewrites the free energy (2.25) and the extra-stress (2.27) of UCM fluids with the (history of) relative
deformation gradients 𝐹 𝑖

𝛼(𝑡)[𝐹−1]𝛼𝑘 (𝑠), 𝑡 ≥ 𝑠 only, i.e. without using explicitly material coordinates [2, 3, 33].
The resulting integro-differential system has allowed one to compute viscoelastic UCM motions and also other
viscoelastic motions after generalizing (3.5) to other “kernels” than 1

𝜆𝑒
𝑠−𝑡

𝜆 , when incompressible (therefore not
local) [53].

Here, to define local UCM motions, we propose a new purely differential approach to compute multi-
dimensional (compressible) flows with a symmetric-hyperbolic system of conservation laws inspired by poly-
convex elastodynamics. Unlike K-BKZ theory, we do not avoid material coordinates. We propose to use 𝐴𝛼𝛽 as
a variable of the system and to write 𝑐𝑖𝑗 as a function of 𝐹 𝑖

𝛼 and 𝐴𝛼𝛽 :

Proposition 2. The smooth isothermal viscoelastic motions solutions to the Eulerian model (2.7)–(2.17)–
(2.27)–(2.23) for compressible UCM fluids are equivalently solutions to the system of conservation laws with
algebraic source terms (3.7):

𝜕𝑡(𝜌𝑢𝑖) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝑢𝑖

)︀
− 𝜕𝑗

(︁
−𝑝𝛿𝑖𝑗 + 2𝜌(𝐾ℋ′𝐹 𝑖

𝛼𝐴
𝛼𝛽𝐹 𝑗

𝛽 − 𝑘B𝜃𝛿𝑖𝑗)
)︁

= 𝜌𝑓 𝑖

𝜕𝑡(𝜌𝐹 𝑖
𝛼) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝐹 𝑖

𝛼 − 𝜌𝑢𝑖𝐹 𝑗
𝛼

)︀
= 0

𝜕𝑡𝜌+ 𝜕𝑖(𝑢𝑖𝜌) = 0

𝜕𝑡(𝜌𝐴𝛼𝛽) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝐴𝛼𝛽

)︀
=

4𝜌
𝜉

(︁
𝑘B𝜃

(︁
[𝐹−1]𝛼𝑖 [𝐹−1]𝛽𝑖

)︁
−𝐾ℋ′𝐴𝛼𝛽

)︁
(3.7)

with 𝐴𝛼𝛽 = [𝐹−1]𝛼𝑖 𝑐
𝑖𝑗 [𝐹−1]𝛽𝑗 ∈ 𝑆++(R𝑑×𝑑). Furthermore, they satisfy

𝜕𝑡𝐸 + 𝜕𝑗

(︀
𝑢𝑗𝐸

)︀
− 𝜕𝑗

(︀
𝑢𝑖𝜎𝑖𝑗

)︀
= 𝑓 𝑖𝑢𝑖 − 4𝜌

𝜉
𝒟 (3.8)

with 𝐸 = 𝜌
(︁
|𝑢|2
2 + 𝜓

)︁
, 𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜌𝐹 𝑖

𝛼𝐹
𝑗
𝛽𝜕𝐹 𝑘

𝛼𝐹 𝑘
𝛽
𝜓, 𝑝 = −𝜕𝜌−1𝑒0(𝜌, 𝜃),

𝜓(𝜌, 𝐹 𝑖
𝛼, 𝐴

𝛼𝛽) = 𝑒0(𝜌) +𝐾ℋ′𝐹 𝑖
𝛼𝐹

𝑖
𝛽𝐴

𝛼𝛽 − 𝑘B𝜃 log |𝐹 𝑖
𝛼𝐴

𝛼𝛽𝐹 𝑖
𝛽 | (3.9)

= 𝑒0(𝜌) +𝐾ℋ′𝐹 𝑖
𝛼𝐹

𝑖
𝛽𝐴

𝛼𝛽 + 2𝑘B𝜃(log 𝜌/𝜌− log |𝐴𝛼𝛽 |) (3.10)

and 𝒟 ≥ 0 the same dissipation as given by (2.26).

Proof. We have already shown that the smooth isothermal viscoelastic motions described in spatial coordinates
by the compressible UCM model (2.7)–(2.17)–(2.27)–(2.23) satisfy (3.1). Now, smooth motions also satisfy (3.2)
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by definition, thus the last line of (2.7) using the Piola identities (2.9) for smooth motions like in elastodynamics
[57]. So finally, the full system (3.7) is satisfied.

Reciprocally, the standard formulation of UCM is recovered from (3.7) using 𝑐𝑖𝑗 = 𝐹 𝑖
𝛼𝐴

𝛼𝛽𝐹 𝑗
𝛽 and Piola

identities for smooth motions 𝜑𝑖
𝑡 such that 𝑢𝑖 ∘ 𝜑𝑡 = 𝜕𝑡𝜑

𝑖
𝑡, 𝐹

𝑖
𝛼 ∘ 𝜑𝑡 = 𝜕𝛼𝜑

𝑖
𝑡, |𝐹 𝑖

𝛼| = 𝜌−1𝜌 > 0 with a constant
𝜌 > 0.

Last, one can check (3.8) with (3.9) or (3.10) directly for smooth motions, on recalling 𝜌−1 = |𝐹 𝑖
𝛼|𝜌−1. The

total energy balance (3.8) is also exactly that satisfied by UCM using (2.16) with (2.25), 𝑐𝑖𝑗 = 𝐹 𝑖
𝛼𝐴

𝛼𝛽𝐹 𝑗
𝛽 and

(2.26). �

The UCM reformulation (3.7) is an interesting system of conservation laws. When 𝜉 → ∞ and 𝐴𝛼𝛽 ≡ 𝛿𝛼𝛽

is constant, the system (3.7) coincides with a spatial description for compressible motions of homogeneous
neo-Hookean materials the so called elastodynamics system, see [34] or [56]. Inspired by the latter, we show
that a further reformulation of (3.7) allows one to define flows of compressible UCM fluids as solutions to a
symmetric-hyperbolic system of conservation laws.

3.2. A strictly convex extension for UCM

Proposition 3. The isothermal viscoelastic motions of compressible UCM fluids defined by smooth solutions
to the system (3.7) with 𝐴 ∈ 𝑆++(R𝑑×𝑑) are also equivalently defined by smooth solutions to

𝜕𝑡(𝜌𝑢𝑖) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝑢𝑖

)︀
− 𝜕𝑗

(︁
−𝑝𝛿𝑖𝑗 + 2𝜌(𝐾ℋ′𝐹 𝑖

𝛼𝐴
𝛼𝛽𝐹 𝑗

𝛽 − 𝑘B𝜃𝛿𝑖𝑗)
)︁

= 𝜌𝑓 𝑖

𝜕𝑡(𝜌𝐹 𝑖
𝛼) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝐹 𝑖

𝛼 − 𝜌𝑢𝑖𝐹 𝑗
𝛼

)︀
= 0

𝜕𝑡𝜌+ 𝜕𝑖(𝑢𝑖𝜌) = 0

𝜕𝑡(𝜌𝑌 𝛼𝛽) + 𝜕𝑗

(︀
𝜌𝑢𝑗𝑌 𝛼𝛽

)︀
= −4𝜌

𝜉
𝑌 𝛼𝛾

(︀
𝑘B𝜃𝑍

𝛾𝛿 − 2𝐾ℋ′𝛿𝛾𝛿
)︀
𝑌 𝛿𝛽

(3.11)
where 𝐴 = 𝑌 − 1

2 is defined componentwise by identification with the square-root matrix-inverse of 𝑌 = 𝑌 𝛼𝛽𝑒𝛼⊗
𝑒𝛽 ∈ 𝑆++(R𝑑×𝑑) and 𝑍 = 𝐹−𝑇 𝐹−1𝐴−1 + 𝐴−1𝐹−1𝐹−𝑇 . Furthermore, if 𝑝 = −𝜕𝜌−1𝑒0 is given by 𝑒0 strictly
convex in 𝜌−1, then the following additional conservation law is also satisfied

𝜕𝑡𝐸̃ + 𝜕𝑗

(︁
𝑢𝑗𝐸̃

)︁
− 𝜕𝑗

(︀
𝑢𝑖𝜎𝑖𝑗

)︀
= 𝑓 𝑖𝑢𝑖 − 4𝜌

𝜉
𝒟̃ (3.12)

with 𝐸̃ = 𝜌
(︁
|𝑢|2
2 + 𝑒0(𝜌) +𝐾ℋ′𝐹 𝑖

𝛼𝐹
𝑖
𝛽𝐴

𝛼𝛽 + 𝑌 𝛼𝛽𝑌 𝛼𝛽
)︁
, an algebraic source 𝒟̃ without sign a priori, and 𝜎𝑖𝑗 =

−(𝑝+2𝜌𝑘B𝜃)𝛿𝑖𝑗 +2𝜌𝐾ℋ′𝐹 𝑖
𝛼𝐹

𝑗
𝛽𝐴

𝛼𝛽. So the strictly convex function 𝐸̃(𝜌, 𝜌𝑢𝑖, 𝜌𝐹 𝑖
𝛼, 𝜌𝑌

𝛼𝛽) defines a mathematical
entropy for (3.11), (3.12) is a strictly convex extension for (3.11), and (3.11) is a symmetric-hyperbolic system
of conservation laws on 𝒜+ := {𝜌 > 0, 𝑌 = 𝑌 𝑇 > 0}.

Proof. First, recalling 𝜕𝑡𝐴
−2 = −𝐴−2(𝜕𝑡𝐴)𝐴−1 −𝐴−1(𝜕𝑡𝐴)𝐴−2 for smooth matrix-valued functions 𝐴(𝑡) one

straightforwardly establishes the equivalence between formulations (3.11) and (3.7) when 𝑌 ,𝐴 ∈ 𝑆++(R𝑑×𝑑).
Note that 𝐴𝛼𝛽𝐴𝛽𝛾𝑌 𝛾𝛿 = 𝛿𝛼𝛿 defines a bi-univoque relationship on the open set 𝒜+. Next, one shows directly
(3.12): the computation is similar to that for 𝐸 in Proposition 2.

Then, Godunov-Mock theorem ([25], Chap. 3) implies that 𝐸̃ is a mathematical entropy and (3.12) a strictly
convex extension for the symmetric-hyperbolic system (3.11) provided 𝐸̃(𝜌, 𝜌𝑢𝑖, 𝜌𝐹 𝑖

𝛼, 𝜌𝑌
𝛼𝛽) is strictly convex on

the convex set 𝒜+ ⊂ R1+𝑑+𝑑(𝑑+1)/2+𝑑2
. We recall that the (strict) convexity of 𝐸̃ function of (𝜌, 𝜌𝑢𝑖, 𝜌𝐹 𝑖

𝛼, 𝜌𝑌
𝛼𝛽)

on 𝒜+ is equivalent to the (strict) convexity of 𝐸̃/𝜌 function of (𝜌−1, 𝑢𝑖, 𝐹 𝑖
𝛼, 𝑌

𝛼𝛽) on 𝒜+, see Theorem 3.1
of [56] or Lemma 1.4 of [9]. As a matter of fact, 𝐸/𝜌 is a mathematical entropy for an equivalent system of
conservation laws in material coordinates which we detail later, see (3.17).

Now, 𝑒0 and |𝑢|2
2 are strictly convex in 𝜌−1 > 0 and 𝑢𝑖, respectively. Then, 𝐸/𝜌 is a strictly convex function of

(𝜌−1, 𝑢𝑖, 𝑌 𝛼𝛽 , 𝐹 𝑖
𝛼) on 𝒜+ if 𝐹 𝑖

𝛼𝐹
𝑖
𝛽𝐴

𝛼𝛽 + 𝑌 𝛼𝛽𝑌 𝛼𝛽 is a strictly convex function of (𝑌 𝛼𝛽 , 𝐹 𝑖
𝛼) on 𝒜+. We conclude
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in two steps. On the one hand, (𝐹 ,𝑌 ) ∈ R𝑑×𝑑 × 𝑆++(R𝑑×𝑑) → 𝑡𝑟(𝐹𝑌 − 1
2 𝐹 𝑇 ) is a (jointly) convex function of

its 𝑑2 + 𝑑(𝑑 + 1)/2 arguments by Theorem 2 in [38], p. 276 with 𝑟 = 1
2 and 𝑝 = 0. On the other hand, strict

convexity holds since 𝑌 𝛼𝛽𝑌 𝛼𝛽 is strictly convex in 𝑌 𝛼𝛽 , and 𝐹 𝑖
𝛼𝐹

𝑖
𝛽𝐴

𝛼𝛽 is strictly convex in 𝐹 𝑖
𝛼. �

Corollary 2. Consider the UCM formulation (3.11) i.e. the conservation laws

𝜕𝑡𝑞 + ∇𝑞𝐹𝑖(𝑞)𝜕𝑖𝑞 = 𝐵(𝑞) (3.13)

with 𝐹𝑖, 𝐵 𝐶∞ in 𝑞 = (𝜌, 𝜌𝑢𝑖, 𝜌𝑌 𝛼𝛽 , 𝜌𝐹 𝑖
𝛼) when 𝑞 ∈ 𝒜+ lies in an open convex set, and (3.13) is symmetric-

hyperbolic, recall Proposition 3. For all state 𝑞0 ∈ 𝒜+, and for all
(︀
1 + 𝑑+ 𝑑(𝑑+ 1)/2 + 𝑑2

)︀
-dimensional per-

turbation 𝑞0 ∈ 𝐻𝑠(R𝑑) in Sobolev space 𝐻𝑠 with 𝑠 > 1 + 𝑑/2 such that 𝑞0 + 𝑞0 is compactly supported in 𝒜+,
there exists 𝑇 > 0 and a unique classical solution 𝑞 ∈ 𝐶1([0, 𝑇 ) × R𝑑) to (3.13) such that 𝑞(𝑡 = 0) = 𝑞0 + 𝑞0.
Furthermore, 𝑞 − 𝑞0 ∈ 𝐶0([0, 𝑇 ), 𝐻𝑠) ∩ 𝐶1([0, 𝑇 ), 𝐻𝑠−1).

Proof. When the UCM reformulation (3.11) is a symmetric-hyperbolic system of conservation laws with a smooth
source term as in Proposition 3, the small-time existence of smooth classical solutions is straightforward, see
e.g. Theorem 10.1 in Chapter 10 of [1]. In Corollary 2, one should however take care of the domain 𝒜+. Now,
it is open, convex and can be treated similarly to {𝜌 > 0} for the Euler equations of gas dynamics like in
Theorem 13.1 of Chapter 13 from [1]. �

To our knowledge, Corollary 2 is the first well-posedness result for the Cauchy problem of the compressible
multi-dimensional UCM model without background viscosity, i.e. the first well-posedness result for a model of
genuinely causal viscoelastic flows (of Maxwell fluids) satisfying the locality principle. Similarly to elastody-
namics [56], that latter result straightforwardly extends to the non-isothermal compressible UCM models where
(3.11) is complemented with (2.19) when 𝐸̃ remains a convex extension, i.e. is strictly convex jointly for 𝑞 and 𝜃.

The “relaxation” form of source terms in (3.11) also suggests the possibility of damping, and the existence
of global (strong) solutions for sufficiently small initial data close to an equilibrium 𝑞∞ such that 𝐵(𝑞∞) = 0.
However, we leave this question for future works. Note that our symmetrizer has been obtained with the convex
extension (3.12), which is not dissipative like (3.8). But physically, dissipativity should be required, for instance
the inequality ≤ in (3.8). So the setting is non-standard [16]. In particular, difficulties are also to be expected
for numerical simulations by the standard discretization of symmetric-hyperbolic systems. Thus discretization
will also be the object of future specialized works.

In any case, our new UCM formulation has promising applications in geophysics that can already be discussed
here, see Section 4. To that aim, let us first interpret physically the new variable 𝐴𝛼𝛽 in Section 3.3 below,
which also shows the many potentialities of our new system as an extension of elastodynamics.

3.3. UCM as extended elastodynamics and beyond

Let us recall that the system (3.7) models viscoelastic “fluid” flows (with stress relaxation) insofar as the
stress component 𝜏 defined in (2.27) satisfies an equation of the type (2.20), with 𝜉 = 0 and additional terms
due to compressibility.

Proposition 4. In smooth motions defined by (3.7) the Cauchy stress 𝜎 in the spatial momentum balance has
a viscoelastic component

𝜏 = 2𝜌
(︁
𝐾ℋ′𝐹 𝑖

𝛼𝐴
𝛼𝛽𝐹 𝑗

𝛽 − 𝑘B𝜃𝛿𝑖𝑗

)︁
(3.14)

solution to the modified Maxwell equation (2.20) with one additional term

𝜆
♦
𝜏 + div 𝑢 𝜆 𝜏 + 𝜏 = 2𝜇̇𝐷, (3.15)

an upper-convected time-rate with 𝜉 = 0 in (2.21) and 𝜆 = 4𝐾ℋ′/𝜁, 𝜇̇ = 2𝜌𝑘B𝜃𝜆.
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Proof. This is a direct computation on recalling 𝜃,𝐾,𝐻 are constants (in the considered isothermal motions) so

𝑡 := 𝜏
2𝜌𝑘B𝜃 is solution to 𝜆

♦
𝑡 +𝑡 = 2𝜆𝐷. �

So formally, the stress in the compressible UCM model (3.7) is then either “elastic” (like the stress in
hyperelastic solids) or “viscous” (like extra-stress in Newtonian fluids) asymptotically as expected. This is usual
for a “Maxwell fluid”: it tends to a Newtonian fluid at a characteristic time-scale 𝜆 > 0, and it is elastic at
shorter times (recall the K-BKZ theory).

But our UCM system (3.7) can be precisely interpreted as an extension of the elastodynamics of hyperelastic
solids using an additional “material” metric variable 𝐴 (attached to matter, 𝐴𝛼𝛽 in coordinates) that describes
locally the physical state of the material body, and our UCM fluid becomes Newtonian with viscosity 𝜇̇ > 0
at “large-time” equilibrium thanks to a specific form of the relaxation limit for 𝐴𝛼𝛽 . On the one hand, other
relaxation limits for 𝐴𝛼𝛽 are possible, which are physically meaningful and reminiscent of complex materials
in the literature. The system (3.7) with one particular viscoelastic relaxation limit for 𝐴𝛼𝛽 is only one instance
in a class that extends elastodynamics to complex materials with inelasticities, see Section 3.3.2. On the other
hand, it suggests a new understanding of the Newtonian fluid, as explained below.

3.3.1. The Newtonian viscous limit regime

In smooth motions our formulation (3.7) of UCM contains standard formulations of Section 2.3, and the
viscoelastic stress component then formally converges to 𝜏 ≈ 2𝜇̇𝐷 when 𝜆 ≪ 1, 𝜌𝜃 ≫ 1 and 𝜇̇ = 2𝜌𝑘B𝜃𝜆 is
fixed, like in standard cases.

But moreover, unlike standard cases, our symmetric-hyperbolic system allows the (first) proof that the com-
pressible UCM mode is mathematically sensible, with univoque (strong) solutions to the Cauchy problem given
smooth initial values. So our system is also a new starting point to establish mathematically the NS equations
as a precise limit of viscoelastic equations, of UCM in particular. We will elaborate on this elsewhere, see [59]
for a recent mathematical justification of NS starting from a slightly modified UCM model.

Furthermore, our formulation with conservation laws suggests one to study the formation and stability of
shocks, i.e. weak solutions with jumps across a discontinuity surface, which are physically relevant for fluids.
Some conservation laws could be irrelevant, but our new formulation at least suggests one an approach how
to perform shock computations inline with seminal studies using (2.14) for gases, and inline with more recent
studies using (2.7) for solids [45]. This will be the subject of future works, as well as other quantitative studies
discretizing our conservation laws with standard techniques.

3.3.2. The Hookean elastic limit regime and its inelastic extensions

Unlike the standard UCM systems of Section 2.3, the formal limit of the viscoelastic stress 𝜏 ≈
𝜇
(︁

𝐾ℋ′
𝑘B𝜃 𝐹

𝑖
𝛼𝐴

𝛼𝛽𝐹 𝑗
𝛽 − 𝛿𝑖𝑗

)︁
in (3.7) when 𝜆 ≫ 1, 𝜇̇ ≫ 1 and 𝜇 = 𝜇̇/𝜆 is clearly the same neo-Hookean elastic

contribution as in elastodynamics for a Riemannian body with inverse metric 𝐺𝛼𝛽 = 𝐾ℋ′
𝑘B𝜃 𝐴

𝛼𝛽 . Indeed, in the
limit 𝜆 ≫ 1 where 𝐴𝛼𝛽 becomes time-independent in the material description, 𝐴𝛼𝛽 can indeed be interpreted
as the inner metric (inverse) 𝐺𝛼𝛽 of a Riemannian body, possibly non-Euclidean 𝐺𝛼𝛽 ̸= 𝛿𝛼𝛽 when the body
is pre-stressed [36]. But note that in general, the variable 𝐴𝛼𝛽 solution to (3.7) is not time-independent in the
material description. So it cannot be a material metric like 𝐺𝛼𝛽 for the Riemannian flowing body as long as
the mass balance in (3.7) reads as usual for 𝜌 = |𝐹 𝑖

𝛼|−1
√︀
|𝐺|𝜌. In an evolution problem, the initial value of 𝐴𝛼𝛽

could nevertheless model pre-stress similarly to 𝐺𝛼𝛽 when non-Euclidean.
In general, the new metric variable 𝐴𝛼𝛽 should rather be compared with the metric 𝐾𝛼

𝑘𝐾
𝛽
𝑘 that arises in

elasto-plasticity, after adding a plastic deformation 𝐾−1 and a “flow rule” governing its evolution like in e.g.
[35] and many references therein, to extend elastodynamics with some inelasticities.

This may be seen more easily in the material (or Lagrangian) description.

Proposition 5. When 𝜌 is constant, the smooth isothermal (viscoelastic, compressible) UCM motions are equiv-
alently described in spatial coordinates, by either (2.7)–(2.17)–(2.27)–(2.23), or (3.7), or (3.11), and in material



VISCOELASTIC FLOWS WITH CONSERVATION LAWS 819

coordinates, by

𝜕𝑡

(︀
𝑢𝑖 ∘ 𝜑𝑡

)︀
− 𝜕𝛼

(︀[︀
−(𝑝/𝜌)[𝐹−1]𝛼𝑖 + 2

(︀
𝐾ℋ′𝐴𝛼𝛽𝐹 𝑖

𝛽 − 𝑘B𝜃[𝐹−1]𝛼𝑖
]︀
∘ 𝜑𝑡

)︀)︀
= 𝜌𝑓 𝑖 ∘ 𝜑𝑡

𝜕𝑡(𝐹 𝑖
𝛼 ∘ 𝜑𝑡)− 𝜕𝛼(𝑢𝑖 ∘ 𝜑𝑡) = 0

𝜕𝑡(𝜌−1 ∘ 𝜑𝑡)− 𝜕𝛼(𝜌𝐶𝛼
𝑖 ∘ 𝜑𝑡𝑢

𝑖 ∘ 𝜑𝑡) = 0

𝜕𝑡(𝐴𝛼𝛽 ∘ 𝜑𝑡) =
4
𝜉

(︁
𝑘B𝜃

(︁
[𝐹−1]𝛼𝑖 [𝐹−1]𝛽𝑖

)︁
− 𝐾𝐻𝐴𝛼𝛽

)︀
∘ 𝜑𝑡

(3.16)

with 𝐴𝛼𝛽 = [𝐹−1]𝛼𝑖 𝑐
𝑖𝑗 [𝐹−1]𝛽𝑗 ∈ 𝑆++(R𝑑×𝑑). Furthermore, if 𝑝 = 𝜕𝜌−1𝑒0(𝜌, 𝜃),

𝜕𝑡([𝐸/𝜌] ∘ 𝜑𝑡)− 𝜕𝛼

(︀
[𝑢𝑖𝜎𝑖𝑗 ] ∘ 𝜑𝑡

)︀
= −4

𝜉
𝒟 ∘ 𝜑𝑡 (3.17)

then holds with 𝐸/𝜌 = |𝑢|2
2 + 𝜓, 𝜎𝑖𝑗 = 𝜕𝐹 𝑖

𝛼
𝜓, 𝜓 as in (3.9) and 𝒟 ≥ 0 as in (2.26).

Proof. Recalling Piola identities (2.9), the system (3.16) and the additional law (3.17) for 𝑢𝑖, 𝐴𝛼𝛽 , 𝐹 𝑖
𝛼 and 𝐸/𝜌

as functions of 𝑡,𝑎 are straightfrowardly derived from (3.7) and (3.8) for 𝑢𝑖, 𝐴𝛼𝛽 , 𝐹 𝑖
𝛼 and 𝐸/𝜌 as functions of

𝑡,𝑥 = 𝜑𝑡(𝑎). �

When 𝐴𝛼𝛽 is time-independent (𝜆≫ 1), the stress in (3.16) is the sum of[︀
−(𝑝/𝜌+ 2𝑘B𝜃)[𝐹−1]𝛼𝑖 + 2𝐾ℋ′𝐴𝛼𝛽𝐹 𝑖

𝛽

]︀
∘ 𝜑𝑡

i.e. Piola-Kirchhoff stress 𝑆𝑖
𝛼 for neo-Hookean materials, plus an additional term to account for volumetric

changes, recall Section 2.2. More generally, the viscoelastic stress (3.14) can be interpreted as the mean-field
approximation 𝐴𝛼𝛽 = E

(︁
K𝛼

𝑘 K𝛽
𝑘

)︁
of an elastoplastic model [35] with stochastic flow rule

[K−1]𝑖𝛼
(︀
𝑑K𝛼

𝑗 + 𝑢𝑘𝜕𝑘K𝛼
𝑗

)︀
= −𝛿𝑖

𝑗

2𝐾ℋ′

𝜉
d𝑡+ [K−1]𝑖𝛼[𝐹−1]𝛼𝑘

√︃
2𝑘B𝜃

𝜉 𝑑
𝑑𝑊 𝑘

𝑗 (𝑡) (3.18)

in Ito notation, using a probability space with expectation E, and 𝑑2 Wiener processes denoted 𝑊 𝑘
𝑗 (𝑡), 𝑘, 𝑗 =

1, . . . , 𝑑.
The interpretation of white noise in (3.18) is left to future works, as well as the comparison with the kinetic

theory of dumbbells in rheology to establish viscoelastic models [6], recall Section 2.3. But one can already note
here the potential of the new system, with a new metric variable 𝐴𝛼𝛽 to unify various physically-relevant exten-
sions of elastodynamics towards inelastic bodies. In particular, UCM can be interpreted from the elastoplastic
viewpoint with (3.18), as a rate-dependent flow rule which models Newtonian viscous “fluid inelasticities” when
𝜆 ≪ 1. Reciprocally, the standard rate-independent elastoplastic flow rules can be interpreted from the vis-
coelastic viewpoint as yielding materials with permanently-fading memory. Variations of the relaxation limit of
𝐴 to model various inelasticities (i.e. rheologies) as extensions of polyconvex elastodynamics will be investigated
in future works. Here, we focus on viscoelasticity.

4. Application to geophysical water flows

Numerous geophysical flows are hardly-compressible shallow gravity flows with a free surface, well described
by the two-dimensional (2D) shallow-water equations attributed to Saint-Venant [17] for many purposes. For
instance, the Saint-Venant systems usually forecast well river floods, in particular when the equations are non-
diffusive and local [55]. However, for some hydraulic applications, it is still unsure how to account for viscous
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effects like large vortices and recirculation zones. We next show that, in the frame of free-boundary flows, our
compressible UCM formulation can serve such a purpose without introducing diffusion and losing the local
character of useful Saint-Venant equations, after reduction à la Saint-Venant to a viscoelastic shallow-water
system that generalizes the usual shallow-water systems. But first, let us recall in Section 4.1 the standard
Saint-Venant equations with and without diffusion (of velocity).

4.1. Standard Saint-Venant models for shallow water flows

Let us equip the Euclidean ambiant space with Cartesian coordinates (𝑒𝑥, 𝑒𝑦, 𝑒𝑧) so (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) := (0, 0,−𝑔)
is a constant gravity field with magnitude 𝑔.

We consider a fluid filling 𝒟𝑡 := {𝑧𝑏(𝑥, 𝑦) < 𝑧 < 𝑧𝑏(𝑥, 𝑦) +𝐻(𝑡, 𝑥, 𝑦)} supposedly a smooth layer with surface
of outward unit normal

𝑛𝑧𝑏+𝐻 =
1√︀

1 + |∇𝐻(𝑧𝑏 +𝐻)|2
(︀
−𝜕𝑥(𝑧𝑏 +𝐻),−𝜕𝑦(𝑧𝑏 +𝐻), 1

)︀
where ∇𝐻 = (𝜕𝑥, 𝜕𝑦) is the gradient associated with horizontal divergence div𝐻 .

The fluid flow is assumed governed by the reduced spatial description (2.14) in the moving layer 𝒟𝑡 (as usual
for fluids) and by the so-called kinematic condition

𝜕𝑡𝐻 + 𝑢𝑥𝜕𝑥(𝑧𝑏 +𝐻) + 𝑢𝑦𝜕𝑦(𝑧𝑏 +𝐻) = 𝑢𝑧
√︁

1 + |∇𝐻(𝑧𝑏 +𝐻)|2 (4.1)

at 𝑧 = 𝑧𝑏 +𝐻. Then, along with the free-surface condition

𝜎𝑖𝑗𝑛𝑗
𝑧𝑏+𝐻

𝑛𝑖
𝑧𝑏+𝐻 = 0, (4.2)

some constitutive assumptions for the fluid are known to close the 3D evolution system (4.1)–(2.14). For instance,
if the fluid is incompressible – which gives a special meaning to 𝑝 in (2.17) –, with Newtonian extra-stress (2.18),
then one can define unique solutions to Cauchy problems for (4.1)–(2.14) on requiring impermeability 𝑢·𝑛𝑧𝑏 = 0
at 𝑧 = 𝑧𝑏, plus Navier friction conditions at 𝑧 = 𝑧𝑏, 𝑧𝑏 +𝐻

𝜎𝑖𝑗𝑛𝑗
𝑧 − (𝜎𝑘𝑗𝑛𝑗

𝑧𝑛
𝑘
𝑧)𝑛𝑖

𝑧 = −𝑘𝑧

(︀
𝑢𝑖 − (𝑢𝑗𝑛𝑗

𝑧)𝑛𝑖
𝑧

)︀
(4.3)

with 𝑘𝑧𝑏+𝐻 = 0 (pure slip at free surface) and 𝑘𝑧𝑏 ≥ 0 (dissipation at bottom). But the incompressible Navier–
Stokes free-surface model is barely tractable for numerical applications, let alone the propagation of information
at infinite speed. For the computation of hardly-compressible thin-layer (i.e. shallow) geophysical water flows
with uniform mass density 𝜌 > 0, one often prefers a 2D model reduced after Saint-Venant [17], moreover local.
Indeed, let us recall:

Proposition 6. Given a family 𝑧𝑏
𝜖 , 𝜖→ 0+ of smooth topographies, assume there exist bounded regular solutions

𝐻𝜖, 𝜌𝜖, 𝑢𝜖, 𝑝𝜖 𝜏𝜖 to (4.1)–(2.14)–(2.17)–(4.2)–(4.3) for (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇 ) × R × R, 𝑧 ∈ (𝑧𝑏
𝜖 , 𝑧

𝑏
𝜖 + 𝐻𝜖) such that

𝑋𝜖 = 𝑋0 + 𝜖𝑋1 +𝑂(𝜖2) holds pointwise2 for 𝑋 ∈ {𝑧𝑏, 𝐻, 𝜌,𝑢, 𝑝, 𝜏} as well as

– ∇𝐻𝑧
𝑏
𝜖 = 𝑂(𝜖) = 𝐻𝜖, i.e. 𝑋𝜖 = 𝜖𝑋1 +𝑂(𝜖2) for 𝑋 ∈ {𝑧𝑏, 𝐻}

– 𝜌0 is constant for all 𝑡, 𝑥, 𝑦 and 𝑧𝑏
𝜖 < 𝑧 < 𝑧𝑏

𝜖 +𝐻𝜖, hence

div 𝑢𝜖 = 𝑂(𝜖) as 𝜖→ 0 (4.4)

– at 𝑧 = 𝑧𝑏
𝜖 , 𝑢𝜖 · 𝑛𝑧𝑏

𝜖
= 0 and (4.3) with 𝑘𝑧𝑏

𝜖
= 𝑂(𝜖)

– at 𝑧 = 𝑧𝑏
𝜖 +𝐻𝜖, (4.2) and (4.3) with 𝑘𝑧𝑏

𝜖+𝐻𝜖
= 𝑂(𝜖2).

2We recall it means in (𝑡, 𝑥, 𝑦, 𝑧) ∈ [0, 𝑇 )× R× R× [0, 1] for 𝑋𝜖(𝑡, 𝑥, 𝑦, 𝑧 = 𝑧𝑏
𝜖 + 𝐻𝜖𝑧), 𝑋 ∈ {𝜌,𝑢, 𝑝, 𝜏}.
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Then, denoting 𝑢𝐻 = (𝑢𝑥, 𝑢𝑦), it holds

𝜕𝑡𝐻𝜖 + div𝐻 (𝐻𝜖𝑈 𝜖) = 𝑂(𝜖2), (4.5)

𝜕𝑡 (𝐻𝜖𝑈 𝜖) + div𝐻

(︃∫︁ 𝑧𝑏
𝜖+𝐻𝜖

𝑧𝑏
𝜖

d𝑧 𝑢𝐻
𝜖 ⊗ 𝑢𝐻

𝜖

)︃
= 𝑂(𝜖3)

+ div𝐻

(︁
𝐻𝜖

(︁
Σ𝑧𝑧

𝜖 𝐼 −Σ𝐻
𝜖

)︁)︁
− 𝑔𝐻𝜖∇𝐻

(︀
𝑧𝑏
𝜖 +𝐻𝜖

)︀
− 𝑢𝐻

𝜖 𝑘𝑧𝑏
𝜖
/𝜌0, (4.6)

where Σ𝐻
𝜖 = Σ𝑥𝑥

𝜖 𝑒𝑥⊗𝑒𝑥+Σ𝑦𝑦
𝜖 𝑒𝑦⊗𝑒𝑦+Σ𝑥𝑦

𝜖 𝑒𝑥⊗𝑒𝑦+Σ𝑦𝑥
𝜖 𝑒𝑦⊗𝑒𝑥, Σ𝑧𝑧

𝜖 and 𝑈 𝜖(𝑡, 𝑥, 𝑦) = 𝑈𝑥
𝜖 (𝑡, 𝑥, 𝑦)𝑒𝑥+𝑈𝑦

𝜖 (𝑡, 𝑥, 𝑦)𝑒𝑦

are defined by

𝑈 𝑖
𝜖 =

1
𝐻𝜖

∫︁ 𝑧𝑏
𝜖+𝐻𝜖

𝑧𝑏
𝜖

d𝑧 𝑢𝑖
𝜖 Σ𝑖𝑗

𝜖 =
1
𝜌0

1
𝐻𝜖

∫︁ 𝑧𝑏
𝜖+𝐻𝜖

𝑧𝑏
𝜖

d𝑧 𝜏 𝑖𝑗
𝜖 . (4.7)

Proposition 6 rephrases a result that can be found in many places, see [11,22] and references therein. But we
briefly recall its proof below for future reference.

Proof. The proof classically consists in three main steps:

(1) ∇𝐻𝑧
𝑏
𝜖 = 𝑂(𝜖) = 𝐻𝜖 first imply 𝑢𝑧

𝜖 = 𝑂(𝜖), at 𝑧 = 𝑧𝑏
𝜖 +𝐻𝜖 with (4.1) or at 𝑧 = 𝑧𝑏

𝜖 with impermeability and
in the whole layer by (4.4), then (4.5),

(2) (4.3) first imply 𝜏𝑥𝑧
𝜖 , 𝜏𝑦𝑧

𝜖 = 𝑂(𝜖), at 𝑧 = 𝑧𝑏
𝜖 + 𝐻𝜖 with 𝑘𝑧𝑏

𝜖+𝐻𝜖
= 𝑂(𝜖2) and in the whole layer by the

horizontal momentum balance

𝜌0(𝜕𝑡 + 𝑢𝑗
𝜖𝜕𝑗)𝑢𝑖

𝜖 + 𝜕𝑖𝑝𝜖 − 𝜕𝑗𝜏
𝑖𝑗
𝜖 − 𝜕𝑧𝜏

𝑖𝑧
𝜖 = 𝜌0𝑓

𝑖 +𝑂(𝜖) (4.8)

with 𝑖, 𝑗 ∈ {𝑥, 𝑦}, then 𝑝𝜖− 𝜏𝜖 = 𝜌0𝑔(𝑧𝑏
𝜖 +𝐻𝜖− 𝑧) +𝑂(𝜖2) with (4.8) for 𝑖 = 𝑧 and (4.2) i.e. 𝑝𝜖− 𝜏𝑧𝑧

𝜖 = 𝑂(𝜖2)
at 𝑧 = 𝑧𝑏

𝜖 +𝐻𝜖

(3) Depth-averageing the horizontal momentum balance (4.8) for 𝑖 ∈ {𝑥, 𝑦} with (4.3) and (4.5) yields (4.6).

�

Given Proposition 6, the next step is to infer a 2D model of evolution form

𝜕𝑡𝐻 + div𝐻(𝐻𝑈) = 0 (4.9)

𝜕𝑡(𝐻𝑈) + div𝐻 (𝐻𝑈 ⊗𝑈) = −div𝐻

(︁
𝐻
(︁

Σ𝑧𝑧𝐼 −Σ𝐻
)︁)︁

− 𝑔𝐻∇𝐻(𝑧𝑏
0 +𝐻)− 𝑘𝐻𝑈 (4.10)

that is closed (with equations for the friction parameter 𝑘 > 0 and stresses) so that it can be used for fast and
simple predictions of free-surface gravity flows.

Corollary 3. Assume the family of solutions in Proposition 6 also satisfies∫︁ 𝑧𝑏
𝜖+𝐻𝜖

𝑧𝑏
𝜖

d𝑧 𝑢𝐻
𝜖 = 𝐻𝜖𝑢

𝐻
0 +𝑂(𝜖3) (4.11)

and 𝑢𝐻
𝜖 𝑘𝑧𝑏

𝜖
/𝜌0 = 𝑘𝐻𝜖𝑈 𝜖 +𝑂(𝜖3) then, for small 𝜖, 𝐻1 can be approximated by a solution 𝐻 ≈ 𝐻1, 𝑈 ≈ 𝑢𝐻

0 to
the Saint-Venant system (4.9) and (4.10) where

(a) Σ𝑧𝑧𝐼 = Σ𝐻 , if 𝜏 𝑖𝑧
𝜖 = 𝑂(𝜖2) = 𝜏 𝑖𝑖

𝜖 − 𝜏𝑧𝑧
𝜖 for 𝑖 ∈ {𝑥, 𝑦};

(b) Σ𝑧𝑧 = −2𝜈𝜖(𝜕𝑥𝑈
𝑥 + 𝜕𝑦𝑈

𝑦), Σ𝑖𝑗 = 𝜈𝜖(𝜕𝑖𝑈
𝑗 + 𝜕𝑗𝑈

𝑖) for 𝑖, 𝑗 ∈ {𝑥, 𝑦}, if 𝜏 𝑖𝑗
𝜖 = 𝜈𝜖(𝜕𝑗𝑢

𝑖
𝜖 + 𝜕𝑖𝑢

𝑗
𝜖) with 𝜈𝜖 = 𝑂(𝜖)

for 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}.
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Proof. To show Corollary 3 starting from Proposition 3, see that (4.11) implies∫︁ 𝑧𝑏
𝜖+𝐻𝜖

𝑧𝑏
𝜖

d𝑧 𝑢𝐻
𝜖 ⊗ 𝑢𝐻

𝜖 = 𝐻𝜖𝑈 𝜖 ⊗𝑈 𝜖 +𝑂(𝜖3)

and 𝑈 𝜖 = 𝑢𝐻
0 +𝑂(𝜖2) so 𝑘 :=

𝑢𝐻
𝜖 𝑘

𝑧𝑏
𝜖

𝜌0𝐻𝜖𝑈𝜖
+𝑂(𝜖2) is well-defined as long as 𝑢𝐻

0 ̸= 0. �

So the flows of slightly viscous fluids with (quasi-)Newtonian extra-stress (case b) could be approximated
through a diffusive Saint-Venant system (4.9) and (4.10) where 𝑘 = 𝑘𝑧𝑏

𝜖
(1 − 𝐻𝑘𝑧𝑏

𝜖
/3𝜈𝜖), or the non-diffusive

limit system with 𝑘 = 𝑘𝑧𝑏
𝜖

when the extra-stress is negligible (case a). In any case, the 2D system admits smooth
causal solutions to Cauchy problems that preserve 𝐻 ≥ 0 and satisfy

𝜕𝑡

(︂
𝐻

(︂
1
2
|𝑈 |2 +

1
2
𝑔𝐻 + 𝑔𝑧𝑏

0

)︂)︂
+ div𝐻

(︂
𝐻

(︂
1
2
|𝑈 |2 + 𝑔𝐻 + 𝑔𝑧𝑏 + Σ𝑧𝑧

)︂
𝑈 −𝐻Σ𝐻 ·𝑈

)︂
= −𝑘𝐻|𝑈 |2 −𝐻𝐷 (4.12)

with 𝐷 = 2𝜈𝜖

(︁
|∇𝐻𝑈 + ∇𝐻𝑈𝑇 |2/4 + 2|div𝐻 𝑈 |2

)︁
≥ 0, indeed.

But the latter 2D flows suffer the same problems as their 3D counterparts. The diffusive shallow-water system
is a 2D version of damped Navier–Stokes equations, with a tensor viscosity as diffusion coefficients: it does not
produce local causal motions. And the non-diffusive shallow-water system exactly coincides with a 2D version
of the Euler equations with damping 𝑘, for polytropic fluids with 𝑒𝐻 = 𝑔𝐻/2 and energy 𝐸 ≡ 𝐻

2

(︀
|𝑈 |2 + 𝑒𝐻

)︀
:

it lacks viscosity to control vortices. Then, the same question arises as in the full 3D framework: could causal
motions also be local using a viscoelastic 2D flow model?

4.2. Viscoelastic Saint-Venant models with UCM fluids

Viscoelastic shallow-water models have been proposed in the literature, but we are not aware of 2D models
with well-posed Cauchy problems. For instance, to close (4.9)–(4.10) with Maxwell equations for Cauchy stress,
we proposed in [11]:

(𝜕𝑡 + 𝑈𝑥𝜕𝑥 + 𝑈𝑦𝜕𝑦) Σ𝐻 − (∇𝐻𝑈)Σ𝐻 −Σ𝐻(∇𝐻𝑈)𝑇 =
(︁
𝜈𝜖

(︁
∇𝐻𝑈 + ∇𝐻𝑈𝑇

)︁
−Σ𝐻

)︁
/𝜆 (4.13)

(𝜕𝑡 + 𝑈𝑥𝜕𝑥 + 𝑈𝑦𝜕𝑦) Σ𝑧𝑧 + 2(div𝐻 𝑈)Σ𝑧𝑧 = (−2𝜈𝜖 div𝐻 𝑈 − Σ𝑧𝑧) /𝜆 (4.14)

for 𝜈𝜖 = 𝑂(𝜖) and a 𝜆 > 0 given, which for UCM is the natural 2D generalization of our 1D viscoelastic Saint-
Venant model [10]. But similarly to the standard system for 3D flows of UCM fluids, the quasilinear 2D system
(4.9)–(4.10)–(4.13)–(4.14) lacks additional structure such as symmetric hyperbolicity and we do not know how
to define solutions to Cauchy problems with that system.

On the contrary, we show in the sequel that the new 3D (compressible) UCM model of Section 3 can be used to
derive a symmetric-hyperbolic viscoelastic 2D Saint-Venant model with UCM fluids, having (4.9)–(4.10)–(4.13)–
(4.14) as a subsystem. To that aim, we first revise Proposition 6 with assumptions allowing to depth-average
all equations in (2.7), guided by the interest of (4.11) for closure.

Proposition 7. Given a family 𝑧𝑏
𝜖 , 𝜖→ 0+ of smooth topographies, assume there exist bounded regular solutions

𝐻𝜖, 𝐹 𝜖, 𝑢𝜖, 𝜏𝜖 to (4.1)–(2.7)–(4.2)–(4.3) in (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇 )× R× R, 𝑧 ∈ (𝑧𝑏
𝜖 , 𝑧

𝑏
𝜖 +𝐻𝜖) that define the motions

of fluid layers with reference configurations {𝑐 ∈ (0, 𝜖)} in a Cartesian frame (𝑒𝑎, 𝑒𝑏, 𝑒𝑐), such that 𝑋𝜖 =
𝑋0 + 𝜖𝑋1 +𝑂(𝜖2) holds pointwise for 𝑋 ∈ {𝑧𝑏, 𝐻,𝐹 ,𝑢, 𝑝, 𝜏} as well as

– ∇𝐻𝑧
𝑏
𝜖 = 𝑂(𝜖) = 𝐻𝜖, which means 𝑋𝜖 = 𝜖𝑋1 +𝑂(𝜖2) for 𝑋 ∈ {𝑧𝑏, 𝐻}

– |𝐹 0| = 1 for all 𝑡, 𝑥, 𝑦 and 𝑧𝑏
𝜖 < 𝑧 < 𝑧𝑏

𝜖 +𝐻𝜖, hence it holds (4.4)
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– at 𝑧 = 𝑧𝑏
𝜖 , 𝑢𝜖 · 𝑛𝑧𝑏

𝜖
= 0 and (4.3) with 𝑘𝑧𝑏

𝜖
= 𝑂(𝜖)

– at 𝑧 = 𝑧𝑏
𝜖 +𝐻𝜖, (4.2) and (4.3) with 𝑘𝑧𝑏

𝜖+𝐻𝜖
= 𝑂(𝜖2)

– 𝜕𝑧𝑢
𝐻
𝜖 = 𝑂(𝜖) hence (4.11) and

– at 𝑡 = 0, 𝐹 𝑖
𝜖,𝑐 = 𝑂(𝜖) = 𝐹 𝑧

𝜖,𝛼 for 𝑖 ∈ {𝑥, 𝑦}, 𝛼 ∈ {𝑎, 𝑏}, and for 𝐻̂ > 0

𝐻1/𝐻̂ = 𝐹 𝑧
0,𝑐 ≡ |𝐹

𝐻
0 |−1. (4.15)

Then, as 𝜖→ 0, 𝐻𝜖,𝑈 𝜖,Σ𝐻
𝜖 ,Σ

𝑧𝑧
𝜖 defined as in (4.7) and

𝐹 𝐻
𝜖 =

∑︁
𝑖∈{𝑥,𝑦},𝛼∈{𝑎,𝑏}

(︃
1
𝐻𝜖

∫︁ 𝑏𝜖+𝐻𝜖

𝑏𝜖

d𝑧𝐹 𝑖
𝛼

)︃
𝑒𝑖 ⊗ 𝑒𝛼

can be approximated by 𝐻 ≈ 𝐻1 ≡ 𝐻̂𝐹 𝑧
0,𝑐, 𝑈 ≈ 𝑢𝐻

0 , Σ𝐻 ≈ Σ𝐻
0 , Σ𝑧𝑧 ≈ Σ𝑧𝑧

0 and 𝐹 𝐻 ≈ 𝐹 𝐻
0 solution to

(4.9)–(4.10)–(4.16) such that 𝐻 = 𝐻̂|𝐹 𝐻 |−1 and

𝜕𝑡

(︁
𝐻𝐹 𝐻

)︁
+ div𝐻

(︁
𝐻𝑈 ⊗ 𝐹 𝐻 −𝐻𝐹 𝐻 ⊗𝑈

)︁
= 0. (4.16)

Moreover, if the 2D Piola identities (4.17) hold at 𝑡 = 0

𝐻̂ div𝐻

(︁
|𝐹 𝐻 |−1𝐹 𝐻

)︁
≡ div𝐻

(︁
𝐻𝐹 𝐻

)︁
≡ 𝜕𝑖

(︀
𝐻𝐹 𝑖

𝛼

)︀
= 0 (4.17)

the motions defined by smooth and solutions to (4.9)–(4.10)–(4.16) have an equivalent 2D Lagrangian description
using Φ𝐻

𝑡 such that 𝜕𝑡Φ𝐻
𝑡 = 𝑈 ∘Φ𝐻

𝑡 , ∇𝐻Φ𝐻
𝑡 = 𝐹 𝐻 ∘Φ𝐻

𝑡 .

Proof. It suffices to complement the proof of Proposition 6 and Corollary3 as follows.

(1) The hypothesis 𝜕𝑧𝑢
𝐻 = 𝑂(𝜖), and the intermediary result ∇𝐻𝑢𝑧 = 𝑂(𝜖) in the proof of Proposition 6,

imply that 𝐹 𝑖
𝜖,𝑐 = 𝑂(𝜖) = 𝐹 𝑧

𝜖,𝛼 hold for 𝑖 ∈ {𝑥, 𝑦}, 𝛼 ∈ {𝑎, 𝑏} and all 𝑡 ≥ 0 if they hold at 𝑡 = 0, recall (2.7).
(2) Then, by (2.7), the hypothesis 𝐻1/𝐻̂ = 𝐹 𝑧

0,𝑐 in (4.15) is also preserved for all 𝑡 ≥ 0 if it holds at 𝑡 = 0.
(3) Last, (2.7) yields (4.16) for 𝐹 𝐻 = lim𝜖→0 𝐹 𝐻

𝜖 insofar as 𝐹 𝑧
0,𝑐 = 1/|𝐹 𝐻

0 | holds for all 𝑡 ≥ 0 by assumption
|𝐹 0| = |𝐹 𝐻

0 |𝐹 𝑧
0,𝑐 = 1.

The equivalence of a Eulerian description with a Lagrangian description when the Piola identities (4.17) hold
for all 𝑡 ≥ 0 is classical, see e.g. [56]. Now, note that by (4.16), (4.17) hold for all 𝑡 ≥ 0 if they hold at 𝑡 = 0. �

Corollary 4. Assume that the solutions considered in Proposition 7 also satisfy 𝑢𝐻
𝜖 𝑘𝑧𝑏

𝜖
/𝜌0 = 𝑘𝐻𝜖𝑈 𝜖 + 𝑂(𝜖2).

Assume moreover that 𝜏 𝑖𝑗
𝜖 = 𝑂(𝜖) satisfy

𝜏 𝑖𝑗
𝜖 = 𝒢𝜖𝐹

𝑖
𝜖,𝛼𝐴

𝛼𝛽
𝜖 𝐹 𝑗

𝜖,𝛽 +𝑂(𝜖2) (4.18)

with 𝒢𝜖 = 𝑂(𝜖) and 𝐴𝜖 = 𝐴𝛼𝛽
𝜖 𝑒𝛼 ⊗ 𝑒𝛽 ∈ 𝑆++(R𝑑×𝑑) such that

𝜆(𝜕𝑡 + 𝑢𝑖𝜕𝑖)𝐴𝛼𝛽
𝜖 =

[︀
𝐹−1

𝜖

]︀𝛼
𝑖

[︀
𝐹−1

𝜖

]︀𝛽
𝑖
−𝐴𝛼𝛽

𝜖 +𝑂(𝜖) (4.19)

for some 𝜆 > 0 while at 𝑡 = 0, it holds

𝐴𝛼𝛽
𝜖 = 𝑂(𝜖) if either 𝛼 or 𝛽 equals 𝑐. (4.20)
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Then, for small 𝜖, 𝐻1 can be approximated by a solution 𝐻 ≡ 𝐻̂|𝐹 𝐻 |−1 ≈ 𝐻1, 𝑈 ≈ 𝑢𝐻
0 , 𝐹 𝐻 ≈ 𝐹 𝐻

0 ,
𝐴𝑐𝑐 ≈ 𝐴𝑐𝑐

0 > 0, 𝐴𝐻 = 𝐴𝛼𝛽𝑒𝛼 ⊗ 𝑒𝛽 ∈ 𝑆++(R𝑑×𝑑), 𝐴𝛼𝛽 ≈ 𝐴𝛼𝛽
0 , 𝛼, 𝛽 ∈ {𝑎, 𝑏} to (4.9)–(4.10)–(4.16)–(4.21)–

(4.22)–(4.23)

Σ𝑧𝑧 = 𝒢𝜖𝐴
𝑐𝑐𝐻2 Σ𝐻 = 𝒢𝜖𝐹

𝐻𝐴𝐻
(︁
𝐹 𝐻

)︁𝑇

(4.21)

𝜆(𝜕𝑡 + 𝑈 ·∇𝐻)𝐴𝐻 = (
(︁
𝐹 𝐻

)︁𝑇

𝐹 𝐻)−1 −𝐴𝐻 (4.22)

𝜆(𝜕𝑡 + 𝑈 ·∇𝐻)𝐴𝑐𝑐 = 𝐻−2 −𝐴𝑐𝑐 (4.23)

where the source terms for 𝐴𝐻 = (𝐴𝐻)𝑇 > 0 are defined using matrix products.
Moreover, the full Saint-Venant system (4.9)–(4.10)–(4.16)–(4.22)–(4.23) has an equivalent in material coor-

dinates for smooth motions Φ𝐻
𝑡 such that 𝜕𝑡Φ𝐻

𝑡 = 𝑈 ∘Φ𝐻
𝑡 , ∇𝐻Φ𝐻

𝑡 = 𝐹 𝐻 ∘Φ𝐻
𝑡 if Piola’s identities (4.17) hold

at 𝑡 = 0.

Proof.

(1) First observe 𝐹−1
𝜖 = 𝐹−1

0 +𝑂(𝜖) after using e.g. the Neumann series expansion of (𝐼+𝜖𝐹−1
0 𝑅)−1 := 𝐹−1

𝜖 𝐹 0.
(2) Then recall from the proof of Proposition 7 that 𝐹 𝑖

𝜖,𝑐 = 𝑂(𝜖) = 𝐹 𝑧
𝜖,𝛼 hold for 𝑖 ∈ {𝑥, 𝑦}, 𝛼 ∈ {𝑎, 𝑏} and all

𝑡 ≥ 0 in so far it holds at 𝑡 = 0, so (4.18) is preserved for all 𝑡 ≥ 0 if it holds at 𝑡 = 0.
(3) With 𝐻1 = 𝐻̂𝐹 𝑧

0,𝑐 = 𝐻̂|𝐹 𝐻
0 |−1 > 0, the first result above yields (4.22) and (4.23). Moreover, with the

second result above, (4.18) yields (4.21).

Last, motions remain sufficiently smooth for changing to material coordinates without more constraint than
in Proposition 7. �

We have thus obtained a 2D system for the shallow flows of UCM fluids which is a natural viscoelastic
extension of the standard Saint-Venant system (for the shallow flows of Newtonian fluids), and which we term
Saint-Venant Maxwell (SVM in short). Let us now show that the system of equations is a useful symmetric-
hyperbolic system of conservation laws.

Proposition 8. Smooth solutions to (4.9)–(4.10)–(4.16)–(4.22)–(4.23)–(4.21) i.e. to

𝜕𝑡(𝐻𝑈) + div𝐻

(︂
𝐻𝑈 ⊗𝑈 +

(︁𝑔
2
𝐻2 + 𝒢𝜖𝐴

𝑐𝑐𝐻3
)︁

𝐼 − 𝒢𝜖𝐻𝐹 𝐻𝐴𝐻
(︁
𝐹 𝐻

)︁𝑇
)︂

= −𝑔𝐻∇𝐻𝑧𝑏 − 𝑘𝐻𝑈

𝜕𝑡𝐻 + div𝐻(𝐻𝑈) = 0

𝜕𝑡

(︁
𝐻𝐹 𝐻

)︁
+ div𝐻

(︁
𝐻𝑈 ⊗ 𝐹 𝐻 −𝐻𝐹 𝐻 ⊗𝑈

)︁
= 0

𝜕𝑡(𝐻𝐴𝐻) + div𝐻

(︁
𝐻𝑈𝐴𝐻

)︁
= 𝐻

(︃(︂(︁
𝐹 𝐻

)︁𝑇

𝐹 𝐻

)︂−1

−𝐴𝐻

)︃
/𝜆

𝜕𝑡(𝐻𝐴𝑐𝑐) + div𝐻 (𝐻𝑈𝐴𝑐𝑐) = 𝐻
(︀
𝐻−2 −𝐴𝑐𝑐

)︀
/𝜆

(4.24)
are equivalently solutions to (4.9)–(4.10)–(4.13)–(4.14) (our former formulation in [11] of a viscoelastic Saint-
Venant system for Maxwell fluids) when 𝜈𝜖 = 𝒢𝜖𝜆 > 0 and the latter is complemented by (4.16)–(4.21), or to
a Lagrangian description in material coordinates using 𝑈 ∘Φ𝐻

𝑡 = 𝜕𝑡Φ𝐻
𝑡 , 𝐹 𝐻 ∘Φ𝐻

𝑡 = ∇𝐻Φ𝐻
𝑡 when moreover

(4.17) holds with 𝐻|𝐹 𝐻 | = 𝐻̂ > 0 constant. Furthermore, they satisfy

𝜕𝑡𝐸 + div𝐻

(︁
𝑈
(︁
𝐸 +

𝑔

2
𝐻2
)︁

+ 𝒢𝜖𝐻
(︁

Σ𝑧𝑧 −Σ𝐻
)︁
·𝑈
)︁

= −𝑘𝐻|𝑈 |2 − 𝑔𝐻𝑈 ·∇𝐻𝑧𝑏 −𝐻𝐷 (4.25)
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with 𝒢𝜖𝜆𝐷 = tr Σ𝐻 + tr(Σ𝐻)−1 + Σ𝑧𝑧 + (Σ𝑧𝑧)−1 − 6 ≥ 0 and

𝐸 =
𝐻

2

(︁
|𝑈 |2 + 𝑔𝐻 +

(︁
tr Σ𝐻 + Σ𝑧𝑧 − log

(︁
Σ𝑧𝑧|Σ𝐻 |

)︁)︁)︁
. (4.26)

Proof. The equivalence between the Eulerian descriptions of viscoelastic 2D Saint-Venant flows for Maxwell
fluids can be seen e.g. on introducing

𝑐𝐻 = 𝐹 𝐻𝐴𝐻
(︁
𝐹 𝐻

)︁𝑇

𝑐𝑧𝑧 = 𝐻2𝐴𝑐𝑐 > 0 (4.27)

which can be thought as the first-order approximation (i.e. the depth-average) of the conformation tensor 𝑐
classically used for the viscoelastic modelling of polymeric flows, recall Section 2.3. On noting 𝑐𝐻 = 𝜆Σ𝐻/𝜈𝜖 +𝐼,
𝑐𝑧𝑧 = 𝜆Σ𝑧𝑧/𝜈𝜖 + 1, and starting from the system of conservation laws, one obtains

𝜕𝑡𝐻 + div𝐻(𝐻𝑈) = 0
𝜕𝑡(𝐻𝑈) + div𝐻

(︀
𝐻𝑈 ⊗𝑈 +

(︀
𝑔𝐻2/2 + 𝒢𝜖𝐻𝑐𝑧𝑧

)︀
𝐼 − 𝒢𝜖𝐻𝑐𝐻

)︀
= −𝑘𝐻𝑈 − 𝑔𝐻∇𝐻𝑧𝑏

𝜕𝑡𝑐𝐻 + 𝑈 ·∇𝐻𝑐𝐻 − (∇𝐻𝑈)𝑐𝐻 − 𝑐𝐻(∇𝐻𝑈)𝑇 = (𝐼 − 𝑐𝐻)/𝜆
𝜕𝑡𝑐𝑧𝑧 + 𝑈 ·∇𝐻𝑐𝑧𝑧 + 2𝑐𝑧𝑧 div𝐻 𝑈 = (1− 𝑐𝑧𝑧)/𝜆

(4.28)

which is obviously equivalent to the 2D system proposed in [11] as an extension of the 1D viscoelastic system
in [10] when it is complemented by (4.16)–(4.27).

Reciprocally, the quasilinear system (4.28) complemented by (4.27)–(4.16) rewrites as the system of conser-
vation laws (4.24) i.e.

𝜕𝑡(𝐻𝑈 𝑖) + 𝜕𝑗

(︁
𝐻𝑈 𝑗𝑈 𝑖 +

(︁
𝑔𝐻2

2 + 𝒢𝜖𝐻
3𝐴𝑐𝑐

)︁
𝛿𝑖=𝑗 − 𝒢𝜖𝐻𝐹

𝑖
𝛼𝐴

𝛼𝛽𝐹 𝑗
𝛽

)︁
= −𝐻𝑘𝑈 𝑖 − 𝑔𝐻𝜕𝑖𝑧𝑏

𝜕𝑡

(︀
𝐻𝐹 𝑖

𝛼

)︀
+ 𝜕𝑗

(︀
𝐻𝑈 𝑗𝐹 𝑖

𝛼 −𝐻𝐹 𝑗
𝛼𝑈

𝑖
)︀

= 0

𝜕𝑡𝐻 + 𝜕𝑗

(︀
𝐻𝑈 𝑗

)︀
= 0

𝜕𝑡

(︀
𝐻𝐴𝛼𝛽

)︀
+ 𝜕𝑗

(︀
𝐻𝑈 𝑗𝐴𝛼𝛽

)︀
= 𝐻

(︀
|𝐹 ℎ|−2𝜎𝛼𝛼′𝜎𝛽𝛽′𝐹

𝑘
𝛼′𝐹

𝑘
𝛽′ −𝐴𝛼𝛽

)︀
/𝜆

𝜕𝑡 (𝐻𝐴𝑐𝑐) + 𝜕𝑗

(︀
𝐻𝑈 𝑗𝐴𝑐𝑐

)︀
= 𝐻

(︀
𝐻−2 −𝐴𝑐𝑐

)︀
/𝜆

(4.29)
in coordinates using 𝛼 ∈ {𝑎, 𝑏}, 𝑖 ∈ {𝑥, 𝑦} (note that adding (4.27), (4.16) was not necessary in 1D [10]).
Moreover, if Piola’s identities (4.17) hold and 𝐻|𝐹 𝐻 | = 𝐻̂ then one has the equivalent Lagrangian description

𝜕𝑡𝑈
𝑖 + 𝜕𝛼

(︁(︀
𝑔𝐻2/2 + 𝒢𝜖𝐻

3𝐴𝑐𝑐
)︀
𝜎𝑖𝑗𝜎𝛼𝛽𝐹

𝑗
𝛽 − 𝒢𝜖𝐹

𝑖
𝛽𝐴𝛽𝛼

)︁
= −𝑘𝑈 𝑖 − 𝑔𝜕𝑖𝑧𝑏

𝜕𝑡𝐹
𝑖
𝛼 − 𝜕𝛼𝑈

𝑖 = 0

𝜕𝑡𝐻
−1 − 𝜕𝛼

(︀
𝑈 𝑗𝜎𝑗𝑘𝜎𝛼𝛽𝐹

𝑘
𝛽

)︀
= 0

𝜕𝑡𝐴
𝛼𝛽 =

(︁
|𝐹 𝐻 |−2𝜎𝛼𝛼′𝜎𝛽𝛽′𝐹

𝑘
𝛼′𝐹

𝑘
𝛽′ −𝐴𝛼𝛽

)︁
/𝜆

𝜕𝑡𝐴
𝑐𝑐 =

(︀
𝐻−2 −𝐴𝑐𝑐

)︀
/𝜆

(4.30)

using fields functions of material coordinates (defined in a reference configuratio of the body) – i.e. for the sake
of clarity we abusively used the same notation in (4.30) as in the Eulerian description (4.29), omitting ∘Φ𝐻

𝑡 .
Last, one easily computes the following balance in the Lagrangian description

𝜕𝑡

(︃
1
2

∑︁
𝑖

|𝑈 𝑖|2 +
1
2
𝑔𝐻 +

1
2
𝒢𝜖

(︀
𝐹 𝑖

𝛼𝐴
𝛼𝛽𝐹 𝑖

𝛽 +𝐻2𝐴𝑐𝑐
)︀)︃

+ 𝜕𝛼

(︁
𝑈 𝑖
(︁(︁𝑔

2
𝐻2 + 𝒢𝜖𝐻

3𝐴𝑐𝑐
)︁
𝜎𝑖𝑗𝜎𝛼𝛽𝐹

𝑗
𝛽 − 𝒢𝜖𝐹

𝑖
𝛼𝐴

𝛼𝛽
)︁)︁

= −𝑘|𝑈 |2 − 𝑈 𝑖 (𝜕𝑖𝑧𝑏) +
(︀
𝛿𝛼𝛽 − 𝐹 𝑘

𝛼𝐹
𝑘
𝛽𝐴

𝛼𝛽
)︀
/𝜆+

(︀
1−𝐻2𝐴𝑐𝑐

)︀
/𝜆 (4.31)
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hence (4.25) in spatial coordinates on noting(︁
𝜕𝑡 + 𝑈𝐻 ·∇𝐻

)︁
log |𝐹 𝑖

𝛼𝐴
𝛼𝛽𝐹 𝑖

𝛽 | =
(︁
𝜕𝑡 + 𝑈𝐻 ·∇𝐻

)︁
log |𝑐𝐻 |

= tr
(︁

(𝑐𝐻)−1
(︁
𝜕𝑡 + 𝑈𝐻 ·∇𝐻

)︁
𝑐𝐻

)︁
= 2 (div𝐻 𝑈) +

(︀
tr(𝑐𝐻)−1 − 2

)︀
/𝜆 (4.32)(︁

𝜕𝑡 + 𝑈𝐻 ·∇𝐻

)︁
log
(︀
𝐻2𝐴𝑐𝑐

)︀
= 𝑐−1

𝑧𝑧

(︁
𝜕𝑡 + 𝑈𝐻 ·∇𝐻

)︁
𝑐𝑧𝑧

= −2(div𝐻 𝑈) +
(︀
𝑐−1
𝑧𝑧 − 1

)︀
/𝜆 (4.33)

and 𝑥+ 𝑥−1 ≥ 2, ∀𝑥 > 0. �

Remark 1 (Saint-Venant extension to weakly-sheared RANS models). Despite the similarity between (4.9)–
(4.10)–(4.21)–(4.13)–(4.14) and the 2D system in the recent work [23] that extends Saint-Venant to weakly-
sheared RANS models, the latter has no known conservative formulation as opposed to the former. This is a
well-known “apparent similarity” between RANS and Maxwell equations, see e.g. [54].

Proposition 9. Smooth solutions to (4.24) with 𝐴𝐻 ∈ 𝑆++
(︀
R𝑑×𝑑

)︀
, 𝐴𝑐𝑐 > 0 are in bijection with smooth

solutions 𝑞 =
(︁
𝐻,𝐻𝑈 , 𝐻𝐹 𝐻 , 𝐻𝑌 𝐻 , 𝐻𝑌 𝑐𝑐

)︁
to

𝜕𝑡(𝐻𝑈) + div𝐻

(︂
𝐻𝑈 ⊗𝑈 +

(︁𝑔
2
𝐻2 + 𝒢𝜖𝐴

𝑐𝑐𝐻3
)︁

𝐼 − 𝒢𝜖𝐻𝐹 𝐻𝐴𝐻
(︁
𝐹 𝐻

)︁𝑇
)︂

= −𝑔𝐻∇𝐻𝑧𝑏 − 𝑘𝐻𝑈

𝜕𝑡𝐻 + div𝐻(𝐻𝑈) = 0

𝜕𝑡

(︁
𝐻𝐹 𝐻

)︁
+ div𝐻

(︁
𝐻𝑈 ⊗ 𝐹 𝐻 −𝐻𝐹 𝐻 ⊗𝑈

)︁
= 0

𝜕𝑡

(︁
𝐻𝑌 𝐻

)︁
+ div𝐻(𝐻𝑈𝑌 𝐻) = −𝐻𝑌 𝐻

(︁
𝑍𝐻 − 𝑌 𝐻

)︁
𝑌 𝐻/𝜆

𝜕𝑡(𝐻𝑌 𝑐𝑐) + div𝐻(𝐻𝑈𝑌 𝑐𝑐) = 𝐻
(︀
𝐻−2(𝑌 𝑐𝑐)−3 − 𝑌 𝑐𝑐

)︀
/4𝜆
(4.34)

when 𝐴𝐻 =
(︁
𝑌 𝐻

)︁− 1
2
, 𝐴𝑐𝑐 = (𝑌 𝑐𝑐)4 is defined componentwise by identification with the square-root matrix-

inverse of 𝑌 𝐻 = 𝑌 𝛼𝛽𝑒𝛼 ⊗ 𝑒𝛽 ∈ 𝑆++
(︀
R𝑑×𝑑

)︀
, 𝑍𝐻 :=

(︂
𝐴𝐻𝐹 𝐻

(︁
𝐹 𝐻

)︁𝑇
)︂−1

+
(︂

𝐹 𝐻
(︁
𝐹 𝐻

)︁𝑇

𝐴𝐻

)︂−1

, and we

recall 𝐻|𝐹 𝐻 | = 𝐻̂ > 0. Furthermore, for some algebraic term 𝒟̃ without sign a priori, the functional

𝐸̃ =
𝐻

2

(︁
|𝑈 |2 + 𝑔𝐻 +

(︁
tr Σ𝐻 + Σ𝑧𝑧 + tr

(︁
𝑌 𝐻𝑌 𝐻

)︁)︁)︁
(4.35)

strictly convex in 𝑞 ∈ 𝒜+
𝐻 :=

{︂
𝐻 > 0, 𝑌 𝐻 =

(︁
𝑌 𝐻

)︁𝑇

> 0, 𝑌𝑐𝑐 > 0
}︂

satisfies

𝜕𝑡𝐸̃ + div𝐻

(︁
𝑈
(︁
𝐸̃ +

𝑔

2
𝐻2
)︁

+𝐻
(︁

Σ𝑧𝑧 −Σ𝐻
)︁
·𝑈
)︁

= −𝑘𝐻|𝑈 |2 − 𝑔𝐻𝑈 ·∇𝐻𝑧𝑏 −𝐻𝐷̃. (4.36)

Thus 𝐸̃ defines a mathematical entropy for (4.34), (4.36) defines a strictly convex extension for
(4.34), and (4.34) is a symmetric-hyperbolic system of conservation laws on the open set 𝒜+

𝐻 ≡{︁
𝐻 > 0, 𝐴𝐻 = 𝐴𝐻 > 0, 𝐴𝑐𝑐 > 0

}︁
.

Proof. It is a lengthy but straightforward computation to show the bijection between smooth solutions,
i.e. the equivalence between (4.24) and (4.34). Next, recalling Godunov-Mock theorem [25], it suffices to
show that 𝐸̃ is (jointly) strictly convex in 𝑞 i.e. the Lagrangian energy 𝐸̃/𝐻 is (jointly) strictly convex in
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𝐻−1,𝑈 ,𝐹 𝐻 ,𝑌 𝐻 , 𝑌 𝑐𝑐

)︁
, recall e.g. [8]. Now, to that aim, note that 𝐸̃/𝐻 is the sum of (a) |𝑈 |2/2 strictly

convex in 𝑈 , plus (b) 𝑔𝐻 + 𝒢𝜖𝐻
2 (𝑌 𝑐𝑐)−4 strictly convex in

(︀
𝐻−1, 𝑌 𝑐𝑐

)︀
∈ (R+

* )2 – compute for instance the
Hessian matrix (︃

2𝑔𝐻3 + 6𝜇𝐻4𝐴𝑐𝑐 −2𝜇𝐻3𝐴
3/4
𝑐𝑐

−2𝜇𝐻3𝐴
3/4
𝑐𝑐 2𝜇𝐻2𝐴

1/2
𝑐𝑐

)︃
–,

and (c) tr
(︂

𝐹 𝐻
(︁
𝑌 𝐻

)︁− 1
2
(︁
𝐹 𝐻

)︁𝑇
)︂

+ tr
(︁
𝑌 𝐻𝑌 𝐻

)︁
which is strictly convex in

(︁
𝐹 𝐻 ,𝑌 𝐻

)︁
on 𝒜+

𝐻 as we already

proved (for any dimension!) in Proposition 3. �

Corollary 5. Consider the SVM system (4.34)

𝜕𝑡𝑞 + ∇𝑞𝐹𝑖(𝑞)𝜕𝑖𝑞 = 𝐵(𝑞) (4.37)

with the smooth functionals 𝐹𝑖, 𝐵. For all state 𝑞0 ∈ 𝒜+
𝐻 , and for all perturbation 𝑞0 ∈ 𝐻𝑠(R2) in Sobolev space

𝐻𝑠 with 𝑠 > 2 such that 𝑞0 +𝑞0 is compactly supported in 𝒜+
𝐻 , there exists 𝑇 > 0 and a unique classical solution

𝑞 ∈ 𝐶1
(︀
[0, 𝑇 )× R2

)︀
to (4.37) such that 𝑞(𝑡 = 0) = 𝑞0 + 𝑞0.

Furthermore, 𝑞 − 𝑞0 ∈ 𝐶0 ([0, 𝑇 ), 𝐻𝑠) ∩ 𝐶1
(︀
[0, 𝑇 ), 𝐻𝑠−1

)︀
.

Proof. The proof is the same as Corollary (2) in the general (non shallow) case. �

To our knowledge, Corollary 5 is the first well-posedness result for the Cauchy problem of a 2D viscoelastic
Saint-Venant system with Maxwell fluids. Moreover, note that the structure of the 2D viscoelastic Saint-Venant
system is similar to the 3D full UCM system of Section 3.2. Then, damping can be similarly expected on large
time for 𝐸, in a similar non-standard way since 𝐸 is different from 𝐸̃ yielding a convex extension of SVM. And
numerical difficulties with standard discretization can also be expected. However, note (4.26) simplifies to

𝐸 =
𝐻

2

(︁
|𝑈 |2 + 𝑔𝐻 +

(︁
tr Σ𝐻 + Σ𝑧𝑧 − log

(︁
𝐴𝑐𝑐|𝐴𝐻 |

)︁)︁)︁
(4.38)

here on using the incompressibility condition 𝐻|𝐹 ℎ| = 𝐻̂.
Last, recalling that our full UCM formulation is a viscoelastic extension of polyconvex elastodynamics, note

that our 2D viscoelastic Saint-Venant system is obtained from a different reduction procedure than e.g. shell and
plate models from (standard) elastodynamics. It uses non-standard boundary conditions for elastodynamics (i.e.
free-surface on top of the layer). It may thus be interesting to study applications of the non-standard, apparently
new, 2D reduction of (standard) elastodynamics in the formal limit 𝜆→∞ when 𝐴𝐻 , 𝐴𝑐𝑐 is constant.

4.3. Illustrative flow examples

To probe the viscoelastic Saint-Venant-Maxwell model (4.24) in a context, it is useful to first imagine simple
flows in idealized settings.

For instance, let us look for a 1D shear flow 𝑈 ∘Φ𝐻
𝑡 = 𝜕𝑡Φ𝐻

𝑡 ,𝐹
𝐻∘Φ𝐻

𝑡 = ∇𝐻Φ𝐻
𝑡 where Φ𝐻

𝑡 (𝑎) = 𝑎+𝑋(𝑡, 𝑏)𝑒𝑎

is a solution to the Lagrangian description (4.30) for 𝑡, 𝑎 ∈ R, 𝑏 > 0 using 𝑋(𝑡, 𝑏 = 0) = ∆𝑋𝐻(𝑡), ∆𝑋 > 0, and
Φ𝐻

𝑡 (𝑎) = 𝑎 if 𝑡 ≤ 0. We denoted 𝐻(𝑡) ≡ 1𝑡>0 Heaviside step function.
Such a 1D solution with |𝐹 𝐻 | = 1 = 𝐻/𝐻̂ has already been considered using various incompressible viscoelas-

tic flow models, of course. Assuming 𝐴𝐻(𝑎) = 𝐼 if 𝑡 ≤ 0, one gets with 𝐴𝑎𝑎(𝑡, 𝑏) = 1+ |𝜕𝑏𝑋|2, 𝐴𝑎𝑏(𝑡, 𝑏) = −𝜕𝑏𝑋,
𝐴𝑏𝑏 = 1:

𝐴𝐻 =
∫︁ 𝑡

0

d𝑠 𝑀 ′(𝑡− 𝑠)𝐴𝛼,𝛽𝑒𝑎 ⊗ 𝑒𝑏 𝑀(𝜏) = 𝑒−𝜏/𝜆.

When ∇𝐻𝑧𝑏 = 0 and 𝑘 = 0, it naturally leads, for the displacement 𝑋(𝑡, 𝑏), to the same “Stokes first problem”
as e.g. in K-BKZ theory

𝜕2
𝑡𝑡𝑋(𝑡, 𝑏) = 𝒢𝜖𝜕

2
𝑏𝑏𝑋(𝑡, 𝑏) + 𝒢𝜖

∫︁ 𝑡

0

d𝑠 𝑀 ′(𝑡− 𝑠)𝜕2
𝑏𝑏𝑋(𝑠, 𝑏) 𝑡, 𝑏 > 0.
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Figure 1. Solution 𝑋/∆𝑋 of the Stokes first problem given by (4.39) as a function of 𝑦 =
𝑏/𝜆

√
𝒢𝜖 at 𝑡/𝜆 ∈ {.1, .2, . . . , .7} using numerical integration.

Then, on recalling 𝜕2
𝑏𝑏𝑋(𝑡, 𝑏) = 0 = 𝜕𝑡𝑋(𝑡, 𝑏) when 𝑡 ≤ 0, we solve

𝜕𝑡𝑋(𝑡, 𝑏) = 𝒢𝜖

∫︁ 𝑡

0

d𝑠 𝑀(𝑡− 𝑠)𝜕2
𝑏𝑏𝑋(𝑠, 𝑏) 𝑡, 𝑏 > 0

using Laplace transform 𝑋̂(𝜔, 𝑏) =
∫︀∞
0

d𝑡 𝑒−𝜔𝑡𝑋(𝑡, 𝑏) ([14], p. 197) and obtain:

𝑋(𝑡, 𝑏 = 𝜆
√︀
𝒢𝜖𝑦) = ∆𝑋

⎛⎝𝑒−𝑦 + 𝑦

∫︁ 𝑡
𝜆

𝑦

𝑑𝑟𝑒−𝑟
𝐼1

(︁√︀
𝑟2 − 𝑦2

)︁
√︀
𝑟2 − 𝑦2

⎞⎠𝐻
(︁
𝑡− 𝑏/

√︀
𝒢𝜖

)︁
(4.39)

where 𝐼1 denotes the fist-order modified Bessel function of the first kind.
That is, to probe (4.24) in hydraulics, one could first try to apply the 1D solution above e.g. to the flow

generated in a shallow reservoir by sudden longitudinal displacements of a flat wall, choosing
√
𝒢𝜖 > 0 as the

front speed and 𝜆 > 0 so that the amplitude decays like in Figure 1 on small times. But letting alone the
assumptions about the dynamics, the assumed 1D kinematics is a strong limitation for application to real flows.
And the new systems proposed in this work should definitely improve the latter limitation!

Now, to probe (4.24) in a more realistic multi-dimensional setting, one may want to first compute simple
multi-dimensional solutions possessing symmetries. For instance, using cylindrical coordinates (𝑅,Θ) and (𝑟, 𝜃)
for both the material and spatial frames, one may want to compute supposedly axisymmetric (also called
azimuthal or rotational) 𝑟 = 𝑅, 𝜃 = Θ + 𝜓(𝑡, 𝑅) shear waves [27]:

−𝑅|𝜕𝑡𝜓|2 = 𝜕𝑅𝑆
𝑟𝑅 + (𝑆𝑟𝑅 − 𝑆𝜃Θ − 𝜅𝑆𝜃𝑅)/𝑅 (4.40)

𝜕2
𝑡𝑡𝜓 = 𝑅𝜕𝑅𝑆

𝜃𝑅 + 2𝑆𝜃𝑅 (4.41)

with 𝜅(𝑡, 𝑅) := 𝑅𝜕𝑅𝜓, 𝑆𝑟𝑅(𝑡) uniform in space, and

𝑆𝜃𝑅 = 𝜅−
∫︁ 𝑡

0

d𝑠 𝑒
𝑠−𝑡

𝜆 𝜅, 𝑆𝜃Θ =
∫︁ 𝑡

0

d𝑠 𝑒
𝑠−𝑡

𝜆 𝜅2 − 𝜅

∫︁ 𝑡

0

d𝑠 𝑒
𝑠−𝑡

𝜆 𝜅.

But even if such axisymmetric solutions exist, they do not seem easily constructed anyway. In practice, it is
easier to numerically simulate multi-dimensional shear waves with a generic discretization method. This will be
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the subject of future specialized works. Recall indeed that standard discretization methods need to be adapted,
so as to generically simulate SVM on large times with the dissipative inequality as a stability property for the
discrete system (indeed, the latter inequality does not correspond to the convex extension of the symmetric-
hyperbolic system).

5. Conclusion

In this work, we have derived new symmetric hyperbolic systems of conservation laws to model viscoelastic
flows with Upper-Convected Maxwell fluids, either 3D compressible or 2D incompressible with hydrostatic
pressure and a free surface. The systems yield the first well-posedness results for causal multi-dimensional
viscoelastic motions satisfying the locality principle (i.e. information propagates at finite-speed) as small-time
smooth solutions to Cauchy initial-value problems.

The systems also suggest a promising route to unify models for solid and fluid motions. Like K-BKZ theory
for viscoelastic fluids with fading memory, they extend standard symmetric-hyperbolic systems (polyconvex
elastodynamics and Saint-Venant shallow-water systems). However, they are formulated differently, with the
help of an additional material metric variable. Now, using the same methodology, other viscoelastic models
with a K-BKZ integro-differential formulation could in fact be similarly formulated as systems of conservation
laws. Moreover, varying the relaxation limit of the additional material metric variable should yield (symmetric-
hyperbolic formulations of) many possible flow models in between elastic solids and fluids, like elasto-plastic
models. New rheological extensions of the polyconvex elastodynamics and Saint-Venant shallow-water systems
will be studied in future works.

To precisey apply our new system, in hydraulics in particular, future works shall also consider numerical
simulations. Note then that standard discretization methods shall first be adapted like e.g. in [13] to handle
large-time motions, since the physical energy functional that dissipates is not the strictly convex functional
yielding a strictly convex extension.

Acknowledgements. The author acknowledges the partial support of the ANR project 15-CE01-0013 SEDIFLO: “Mod-
elling and simulation of solid transport in rivers”.
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