Quantification of model uncertainty on path-space via goal-oriented relative entropy
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 131-169

Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g., for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times.

DOI : 10.1051/m2an/2020070
Classification : 62F35, 62B10, 60G40, 60J60, 93E20, 91G20
Keywords: Uncertainty quantification, relative entropy, non-reversible diffusion processes, semi-Markov queueing models, stochastic control
@article{M2AN_2021__55_1_131_0,
     author = {Birrell, Jeremiah and Katsoulakis, Markos A. and Rey-Bellet, Luc},
     title = {Quantification of model uncertainty on path-space \protect\emph{via} goal-oriented relative entropy},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {131--169},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020070},
     mrnumber = {4216833},
     zbl = {1472.62042},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020070/}
}
TY  - JOUR
AU  - Birrell, Jeremiah
AU  - Katsoulakis, Markos A.
AU  - Rey-Bellet, Luc
TI  - Quantification of model uncertainty on path-space via goal-oriented relative entropy
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 131
EP  - 169
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020070/
DO  - 10.1051/m2an/2020070
LA  - en
ID  - M2AN_2021__55_1_131_0
ER  - 
%0 Journal Article
%A Birrell, Jeremiah
%A Katsoulakis, Markos A.
%A Rey-Bellet, Luc
%T Quantification of model uncertainty on path-space via goal-oriented relative entropy
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 131-169
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020070/
%R 10.1051/m2an/2020070
%G en
%F M2AN_2021__55_1_131_0
Birrell, Jeremiah; Katsoulakis, Markos A.; Rey-Bellet, Luc. Quantification of model uncertainty on path-space via goal-oriented relative entropy. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 131-169. doi: 10.1051/m2an/2020070

[1] M. Abundo, On the representation of an integrated Gauss–Markov process. Sci. Math. Jpn. 77 (2015) 357–361. | MR | Zbl

[2] D. Anderson, An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM J. Numer. Anal. 50 (2012) 2237–2258. | MR | Zbl | DOI

[3] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Dover Books on Engineering. Dover Publications (2007).

[4] G. Arampatzis and M. A. Katsoulakis, Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations. J. Chem. Phys. 140 (2014) 124108. | DOI

[5] S. Asmussen, O. Nerman and M. Olsson, Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23 (1996) 419–441. | Zbl

[6] R. Atar, K. Chowdhary and P. Dupuis, Robust bounds on risk-sensitive functionals via Rényi divergence. SIAM/ASA J. Uncertainty Quantif. 3 (2015) 18–33. | MR | Zbl | DOI

[7] R. Atar, A. Budhiraja, P. Dupuis and R. Wu, Robust bounds and optimization at the large deviations scale for queueing models via Rényi divergence. Preprint (2020). | arXiv | MR

[8] D. Bakry and M. Emery, Hypercontractivité do semi-groups de diffusion. C.R. Acad. Sci. Paris Sér I Math. 299 (1984) 775–778. | MR | Zbl

[9] H. Bijl and T. B. Schön, Optimal controller/observer gains of discounted-cost LQG systems. Automatica 101 (2019) 471–474. | MR | Zbl | DOI

[10] J. Birrell and L. Rey-Bellet, Uncertainty quantification for markov processes via variational principles and functional inequalities. SIAM/ASA J. Uncertainty Quantif. 8 (2020) 539–572. | MR | Zbl | DOI

[11] M. Bladt and B. F. Nielsen, Matrix-exponential distributions in applied probability. In: Probability Theory and Stochastic Modelling, Springer, New York (2017). | MR | Zbl | DOI

[12] S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities. Oxford University Press, Oxford (2013). | MR | Zbl | DOI

[13] S. Boyd, S. P. Boyd and L. Vandenberghe, Convex optimization. Berichte über verteilte messysteme, no. pt. 1, Cambridge University Press (2004).

[14] T. Breuer and I. Csiszár, Measuring distribution model risk. Math. Finance 26 (2013) 395–411. | MR | Zbl | DOI

[15] T. Breuer and I. Csiszár, Systematic stress tests with entropic plausibility constraints. J. Banking Finance 37 (2013) 1552–1559. | DOI

[16] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn and L. Zhao, Statistical analysis of a telephone call center. J. Am. Stat. Assoc. 100 (2005) 36–50. | MR | Zbl | DOI

[17] K. Chowdhary and P. Dupuis, Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification. ESAIM: M2AN 47 (2013) 635–662. | MR | Zbl | Numdam | DOI

[18] T. Dankel, On the distribution of the integrated square of the Ornstein-Uhlenbeck process. SIAM J. Appl. Math. 51 (1991) 568–574. | MR | Zbl | DOI

[19] P. Dupuis and R. S. Ellis, A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics, John Wiley & Sons, New York (2011). | MR | Zbl

[20] P. Dupuis, M. A. Katsoulakis, Y. Pantazis and P. Plecháč, Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. SIAM/ASA J. Uncertainty Quantif. 4 (2016) 80–111. | MR | Zbl | DOI

[21] P. Dupuis, M. A. Katsoulakis, Y. Pantazis and L. Rey-Bellet, Sensitivity analysis for rare events based on Rényi divergence. Ann. Appl. Probab. 30 (2020) 1507–1533. | MR | Zbl | DOI

[22] B. Engelmann and R. Rauhmeier, The Basel II Risk Parameters: Estimation, Validation, Stress Testing – With Applications to Loan Risk Management. Springer, Berlin-Heidelberg (2011). | DOI

[23] M. J. Faddy, Examples of fitting structured phase-type distributions. Appl. Stochastic Models Data Anal. 10 (1994) 247–255. | Zbl | DOI

[24] M. I. Freidlin, Functional integration and partial differential equations. In: Vol. 109 of Annals of Mathematics Studies. Princeton University Press (2016).

[25] V. Girardin and N. Limnios, On the entropy for semi-Markov processes. J. Appl. Probab. 40 (2003) 1060–1068. | MR | Zbl | DOI

[26] P. Glasserman, Monte Carlo methods in financial engineering. In: Stochastic Modelling and Applied Probability, Springer, New York (2013). | MR | Zbl

[27] P. Glasserman and X. Xu, Robust risk measurement and model risk. Quant. Finance 14 (2014) 29–58. | MR | Zbl | DOI

[28] P. W. Glynn, Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33 (1990) 75–84. | DOI

[29] K. Gourgoulias, M. A. Katsoulakis and L. Rey-Bellet, Information metrics for long-time errors in splitting schemes for stochastic dynamics and parallel kinetic Monte Carlo. SIAM J. Sci. Comput. 38 (2016) A3808–A3832. | MR | Zbl | DOI

[30] K. Gourgoulias, M. A. Katsoulakis, L. Rey-Bellet and J. Wang, How biased is your model? Concentration inequalities, information and model bias. IEEE Trans. Inf. Theory 66 (2020) 3079–3097. | MR | Zbl | DOI

[31] M. Hairer and A. J. Majda, A simple framework to justify linear response theory. Nonlinearity 23 (2010) 909–922. | MR | Zbl | DOI

[32] S. Heinz and H. Bessaih, Stochastic equations for complex systems: theoretical and computational topics. In: Mathematical Engineering, Springer International Publishing (2015). | MR | Zbl | DOI

[33] J. Janssen and R. Manca, Applied semi-Markov Processes. Springer, New York (2006). | MR | Zbl

[34] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus. in: Graduate Texts in Mathematics, Springer, New York (2014).

[35] M. A. Katsoulakis, L. Rey-Bellet and J. Wang, Scalable information inequalities for uncertainty quantification. J. Comput. Phys. 336 (2017) 513–545. | MR | Zbl | DOI

[36] D. Kim, B. J. Debusschere and H. N. Najm, Spectral methods for parametric sensitivity in stochastic dynamical systems. Biophys. J. 92 (2007) 379–393. | DOI

[37] H. Kushner and P. G. Dupuis, Numerical methods for stochastic control problems in continuous time. In: Stochastic Modelling and Applied Probability, Springer, New York (2013). | MR | Zbl

[38] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9 (1998) 112–147. | MR | Zbl | DOI

[39] H. Lam, Robust sensitivity analysis for stochastic systems. Math. Oper. Res. 41 (2016) 1248–1275. | MR | Zbl | DOI

[40] F. Liese and I. Vajda, On divergences and informations in statistics and information theory. IEEE Trans. Inf. Theory 52 (2006) 4394–4412. | MR | Zbl | DOI

[41] N. Limnios and G. Oprişan, Semi-Markov processes and reliability. In: Statistics for Industry and Technology, Birkhäuser Boston (2012). | MR | Zbl

[42] W. M. Mceneaney, A robust control framework for option pricing. Math. Oper. Res. 22 (1997) 202–221. | MR | Zbl | DOI

[43] J. A. Nelder and R. Mead, A simplex method for function minimization. Comput. J. 7 (1965) 308–313. | MR | Zbl | DOI

[44] H. Owhadi, C. Scovel, T. J. Sullivan, M. Mckerns and M. Ortiz, Optimal uncertainty quantification. SIAM Rev. 55 (2013) 271–345. | MR | Zbl | DOI

[45] W. Page, Applications of mathematics in economics. MAA notes, Mathematical Association of America (2013). | MR | Zbl | DOI

[46] Y. Pantazis and M. A. Katsoulakis, A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. J. Chem. Phys. 138 (2013) 054115. | DOI

[47] H. L. Peter and S.T. J, Uncertainty within economic models. In: World Scientific Series In Economic Theory, World Scientific Publishing Company (2014). | Zbl

[48] S. Plyasunov and A. P. Arkin, Efficient stochastic sensitivity analysis of discrete event systems. J. Comput. Phys. 221 (2007) 724–738. | MR | Zbl | DOI

[49] H. Qian, Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J. Phys. Chem. B 110 (2006) 15063–15074. | DOI

[50] L. Rey-Bellet and K. Spiliopoulos, Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity 28 (2015) 2081–2103. | MR | Zbl | DOI

[51] P. W. Sheppard, M. Rathinam and M. Khammash, A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems. J. Chem. Phys. 136 (2012) 034115. | DOI

[52] S. E. Shreve, Stochastic Calculus for Finance II: Continuous-time Models. In: Vol. 11 of Springer Finance Textbooks, Springer, New York (2004). | MR | Zbl

[53] L. Wu, A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri Poincare (B) Probab. Statistics 36 (2000) 435–445. | MR | Zbl | Numdam | DOI

Cité par Sources :