@article{AIHPB_2000__36_4_435_0,
author = {Wu, Liming},
title = {A deviation inequality for non-reversible {Markov} processes},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {435--445},
year = {2000},
publisher = {Gauthier-Villars},
volume = {36},
number = {4},
mrnumber = {1785390},
zbl = {0972.60003},
language = {en},
url = {https://www.numdam.org/item/AIHPB_2000__36_4_435_0/}
}
TY - JOUR AU - Wu, Liming TI - A deviation inequality for non-reversible Markov processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 435 EP - 445 VL - 36 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_2000__36_4_435_0/ LA - en ID - AIHPB_2000__36_4_435_0 ER -
Wu, Liming. A deviation inequality for non-reversible Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 4, pp. 435-445. https://www.numdam.org/item/AIHPB_2000__36_4_435_0/
[1] , , The rate function of hypoelliptic diffusions, Comm. Pure Appl. Math. XLVII (6) (1994) 843-860. | Zbl | MR
[2] , , On the convergence of averages of mixing sequences, J. Theoret. Probab. 6 (3) (1993) 473-484. | Zbl | MR
[3] , , , Martingale representation and a simple proof of logarithmic Sobolev inequality on path spaces, Elect. Comm. Probab. 2 (7) (1997). | Zbl | MR
[4] , , Large deviations, Pure and Appl. Math. 137 (1989). | Zbl
[5] , Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1984; (2nd corrected printing). | Zbl | MR
[6] , Concentration of measure and logarithmic Sobolev inequalities, in: Séminaire de Probab. XXXIII, Lecture Notes in Math., Vol. 1709, Springer, 1999, pp. 120-216. | Zbl | MR | Numdam
[7] , Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1) (1994) 202-231. | Zbl | MR
[8] , An introduction to large deviations, in: Yan J.A., Peng S., Fang S., Wu L. (Eds.), Several Topics in Stochastic Analysis, Academic Press of China, Beijing, 1997, pp. 225-336; (in chinese).
[9] , Functional Analysis, 3rd edn., Springer, 1971. | Zbl






