Asymptotic analysis for periodic perforated shells
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 1-36

We consider a perforated half-cylindrical thin shell and investigate the limit behavior when the period and the thickness simultaneously go to zero. By using the decomposition of shell displacements presented in Griso [JMPA 89 (2008) 199–223] we obtain a priori estimates. With the unfolding and rescaling operator we transform the problem to a reference configuration. In the end this yields a homogenized limit problem for the shell.

DOI : 10.1051/m2an/2020067
Classification : 35B27, 74Q05, 74K25, 74B05
Keywords: Homogenization, dimension reduction, linear elasticity, shell, perforated domains
@article{M2AN_2021__55_1_1_0,
     author = {Griso, Georges and Hauck, Michael and Orlik, Julia},
     title = {Asymptotic analysis for periodic perforated shells},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1--36},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {1},
     doi = {10.1051/m2an/2020067},
     mrnumber = {4216831},
     zbl = {1470.35037},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020067/}
}
TY  - JOUR
AU  - Griso, Georges
AU  - Hauck, Michael
AU  - Orlik, Julia
TI  - Asymptotic analysis for periodic perforated shells
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - 1
EP  - 36
VL  - 55
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020067/
DO  - 10.1051/m2an/2020067
LA  - en
ID  - M2AN_2021__55_1_1_0
ER  - 
%0 Journal Article
%A Griso, Georges
%A Hauck, Michael
%A Orlik, Julia
%T Asymptotic analysis for periodic perforated shells
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P 1-36
%V 55
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020067/
%R 10.1051/m2an/2020067
%G en
%F M2AN_2021__55_1_1_0
Griso, Georges; Hauck, Michael; Orlik, Julia. Asymptotic analysis for periodic perforated shells. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021) no. 1, pp. 1-36. doi: 10.1051/m2an/2020067

[1] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. In: Vol. 5 of Studies in Mathematics and its Applications, North Holland (1978). | MR | Zbl

[2] M. Bernadou, P. G. Ciarlet and B. Miara, Existence theorems for two-dimensional linear shell theories. J. Elast. 34 (1994) 111–138. | MR | Zbl | DOI

[3] D. Blanchard and G. Griso, Decomposition of the deformations of a thin shell. Asymptotic behavior of the Green-St Venant’s strain tensor. J. Elast. 101 (2010) 179–205. | MR | Zbl | DOI

[4] D. Blanchard and G. Griso, Decomposition of deformations of thin rods: application to nonlinear elasticity. Anal. Appl. 7 (2009) 21–71. | MR | Zbl | DOI

[5] D. Caillerie, Thin elastic and periodic plates. Math. Methods Appl. Sci. 6 (1984) 159–191. | MR | Zbl | DOI

[6] P.G. Ciarlet, Mathematical Elasticity. Vol. III. Theory of shells. In: Vol. 29 of Studies in Mathematics and its Applications, North-Holland (2000). | MR | Zbl

[7] P. G. Ciarlet and V. Lods, Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ratio. Mech. Anal. 136 (1996) 119–161. | MR | Zbl | DOI

[8] P. G. Ciarlet and B. Miara, On the ellipticity of linear shell models. Z. Angew. Math. Phys. 43 (1992) 243–253. | MR | Zbl | DOI

[9] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585–1620. | MR | Zbl | DOI

[10] D. Cioranescu, A. Damlamian and G. Griso, The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems. Vol. 3 of Series in Contemporary Mathematics. Springer, Singapore (2018). | MR | DOI

[11] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 4 (1973) 391–411. | MR | Zbl

[12] M. Ghergu, G. Griso, H. Mechkour and B. Miara, Homogenization of thin piezoelectric perforated shells. ESAIM: M2AN 41 (2007) 875–895. | MR | Zbl | Numdam | DOI

[13] G. Griso, Asymptotic behaviour of curved rods by the unfolding method. Math. Methods Appl. Sci. 27 (2004) 2081–2110. | MR | Zbl | DOI

[14] G. Griso, Decompositions of displacements of thin structures. J. Math. Pure Appl. 89 (2008) 199–223. | MR | Zbl | DOI

[15] G. Griso and B. Miara, Homogenization of periodically heterogeneous thin beams. Chin. Ann. Math. Ser. B 39 (2018) 397–426. | MR | Zbl | DOI

[16] G. Griso, J. Orlik and S. Wackerle, Asymptotic behavior for textiles in von-Kármán regime (to appear in JMPA). Preprint (2019). | arXiv | MR | Zbl

[17] B. Miara and V. Valente, Exact controllability of a Koiter shell by a boundary action. J. Elast. 52 (1998/1999) 267–287. | MR | Zbl | DOI

[18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–629. | MR | Zbl | DOI

[19] M. Neuss-Radu, Mathematical modelling and multi-scale analysis of transport processes through membranes, Diss. Habilitation thesis. University of Heidelberg (2017).

[20] G. Panasenko, Multi-Scale Modelling for Structures and Composites. Springer, Dordrecht (2005). | MR | Zbl

[21] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory. In: Lecture Notes in Physics, Springer, Berlin-Heidelberg (1980). | MR | Zbl

[22] K. Yosida, Functional Analysis. Springer, Berlin-Heidelberg (1980). | MR | Zbl

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B. Nonlinear Monotone Operators. Translated from the German by the author and Leo F. Boron. Springer, New York, NY (1990). | MR | Zbl

Cité par Sources :