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ASYMPTOTIC ANALYSIS FOR PERIODIC PERFORATED SHELLS

Georges Griso1, Michael Hauck2,* and Julia Orlik2,*

Abstract. We consider a perforated half-cylindrical thin shell and investigate the limit behavior
when the period and the thickness simultaneously go to zero. By using the decomposition of shell
displacements presented in Griso [JMPA 89 (2008) 199–223] we obtain a priori estimates. With the
unfolding and rescaling operator we transform the problem to a reference configuration. In the end this
yields a homogenized limit problem for the shell.
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1. Introduction

We consider a thin heterogeneous half-cylindrical shell with an in-plane periodic porous structure, whereby
the periodicity 𝜀 is of the same order as the shell’s thickness 2𝛿 and small compared to its in-plane surface size.
This paper provides an analysis for homogenization and dimension reduction of the shell. We want to point

out that both tasks are performed simultaneously, where lim(𝜀,𝛿)→(0,0)
𝛿

𝜀
→ 𝜅 ∈ (0,∞). This is necessary since

homogenization and dimension reduction usually do not commute as it was shown e.g. in [5]. The presented
approach via the rescaling-unfolding operator is closely related to the one given in Chapter 11 of [10] for plates
and for heterogeneous beams in [15], but new in the context of a linear elastic shell. There are various different
homogenization techniques, as for example asymptotic expansions presented in [1,21], via Gamma-convergence
in [11] and the two-scale convergence introduced in [18]. Although, the homogenization of plates and shells is
in focus of interest of some other well-known research groups, our approach provides all the estimates and gives
the limit not in terms of energy bounds, but yields a computational tool for the effective shell coefficients on its
exact topology, which is important for applications.

Dimension reduction and homogenization of elastic plates via an asymptotic expansion technique can be found
in [20]. Dimension reduction and homogenization of a shell for the diffusion problem in the sense of two-scale
convergence was presented in [19], where it was shown that the curvature does not enter the homogenized model.
Moreover, the homogenization for piezoelectric perforated shells without dimension reduction was presented in
[12]. We want to mention, that the dimension reduction of a homogeneous shell was analyzed in [3, 8, 17]. For
some notions of classical results in functional analysis we refer to [22,23].
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In our analysis, we begin with a general extension technique (based on results developed in [14]) for displace-
ments acting on a perforated shell made of a network of thin cylinders to the full shell domain (see Prop. 1.1).
The result is crucial for the following analysis. We assume that the shell is fixed along the lateral boundary and
continue with a decomposition approach for thin structures introduced in [14]. This decomposition technique
allows to represent any 𝐻1-displacement of the shell through the displacement of its mid-surface, the rotations of
the small segments orthogonal to the mid-surface and a warping term which takes into account the deformation
of these small segments. This leads to Korn inequalities and estimates for each term of the decomposition.

In Sections 2–4, the rescaling and unfolding operators are introduced and the strain tensor is considered on
a reference domain. To describe the limit behavior of the strain tensor of the whole shell, we decompose the
mid-surface displacement as the sum of an inextentional displacement and an extentional (see Sect. 5). They
correspond respectively to the bending and to a generalization of the membrane displacements for a plate. This
decomposition has been introduced in [3]. A similar approach has been developed for curved beam in [4, 13].

Section 6.1 presents assumptions on forces in the right-hand side, rescaling them in a detailed manner.
At the end the limit problem is discussed. Especially Section 8.1 is important for applications, where the

variational problem for an anisotropic homogenized shell is presented together with an expression to compute
its effective coefficients via 6 auxiliary cell problems. The limit extensional and inextensional displacements
(𝒰𝐸 ∈ D𝐸 , 𝒰 ∈ D𝐼) solve the homogenized problem∫︁

𝜔

[︃
𝑎hom

𝛼𝛽𝛼′𝛽′𝑒𝛼𝛽(𝒰𝐸)𝑒𝛼′𝛽′(𝒱𝐸) + 𝑏hom
𝛼𝛽𝛼′𝛽′

(︃
𝑒𝛼𝛽(𝒰𝐸)

𝜕

𝜕𝑠𝛽′

(︂
𝜕𝒱
𝜕𝑠𝛼′

n
)︂

+
𝜕

𝜕𝑠𝛽

(︂
𝜕𝒰
𝜕𝑠𝛼

n
)︂
𝑒𝛼′𝛽′(𝒱𝐸)

)︃
+ 𝑐hom

𝛼𝛽𝛼′𝛽′
𝜕

𝜕𝑠𝛽

(︂
𝜕𝒰
𝜕𝑠𝛼

n
)︂

𝜕

𝜕𝑠𝛽′

(︂
𝜕𝒱
𝜕𝑠𝛼′

n
)︂]︃

d𝑠

=
|𝑌 ′*|
|𝑌 ′|

(︂∫︁
𝜔

(︂
𝑓 · 𝒱 +

𝜅2

3𝑎
𝑔𝛼𝒱𝛼 −

𝜅2

3
𝑔𝛼

𝜕𝒱
𝜕𝑠𝛼

n
)︂

d𝑠+ ⟨𝐹,𝒱𝐸⟩
)︂
, ∀(𝒱𝐸 ,𝒱) ∈ D𝐸 × D𝐼 .

In Section 9 we focus on the effects of the boundary conditions in our model, which play an important role.
Especially, if we fix the shell’s curved ends we obtain a membrane dominated limit equation. In that case
clamping the lateral boundary does not change the model.

1.1. Geometrical setting

We consider a cylindrical half-shell with constant radius 𝑎. We assume that our shell consists of a periodic
structure with a periodicity cell of size 𝜀 in its mid-plane, and is of thickness 2𝛿, with 𝛿 = 𝜅𝜀 ∈ (0, 𝛿0], 𝛿0 = 𝑎/3,
where 𝜅 is a strictly positive fixed constant.

Let 𝑌 ′ be a bounded domain in R2 having the paving property with respect to an additive subgroup
G .= p1Z ⊕ p2Z of R2 of dimension 2 and let 𝑇 be an open set such that 𝑇 ⊂ 𝑌 ′ (Fig. 1 gives an exam-
ple of such a cell 𝑌 ′). We assume the boundary of 𝑇 to be Lipschitz and for simplicity we also assume 𝑇
connected. Denote

𝜔
.= (0, 𝑎𝜋)× (0, 𝑙), 𝑌

.= 𝑌 ′ × (−𝜅, 𝜅), 𝑌
′* .= 𝑌 ′ ∖ 𝑇 , 𝑌 *

.= 𝑌
′* × (−𝜅, 𝜅).

In the periodic setting a.e. 𝑠′ ∈ R2 can be decomposed as

𝑠′ = 𝜀

[︂
𝑠′

𝜀

]︂
𝑌 ′

+ 𝜀

{︂
𝑠′

𝜀

}︂
𝑌 ′

(1.1)

where [·]𝑌 ′ belongs to G and {·}𝑌 ′ to 𝑌 ′.
Set

Ξ𝜀 =
{︀
𝜉 ∈ G | 𝜀𝜉 + 𝜀𝑌 ′ ⊂ 𝜔

}︀
, ̂︀𝜔𝜀 = interior

⎧⎨⎩ ⋃︁
𝜉∈Ξ𝜀

(︀
𝜀𝜉 + 𝜀𝑌 ′

)︀⎫⎬⎭ , Λ𝜀 = 𝜔 ∖ ̂︀𝜔𝜀.
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Figure 1. Cell 𝑌 ′ and the perforated domain 𝑌 ′*.

Figure 2. Periodic perforated plane domain transformed to a periodic shell. (a) Plane domain
𝜔*𝜀 with periodic hexagonal holes. (b) Shell 𝒬*𝜀 with periodic holes.

Let us also introduce some notations for the unions of all holes

𝑇𝜀
.=
{︁
𝑥 ∈ ̂︀𝜔𝜀

⃒⃒⃒ {︁𝑥
𝜀

}︁
𝑌 ′
∈ 𝑇

}︁
, 𝜔*𝜀 = 𝜔 ∖ 𝑇𝜀, ̂︀𝜔*𝜀 = ̂︀𝜔𝜀 ∖ 𝑇𝜀.

Consider the injective mapping 𝜑 : 𝜔 → R3 defined as

𝜑(𝑠1, 𝑠2) =

⎛⎜⎜⎝
𝑠2

𝑎 cos
(︁𝑠1
𝑎

)︁
𝑎 sin

(︁𝑠1
𝑎

)︁
⎞⎟⎟⎠ , (𝑠1, 𝑠2) ∈ 𝜔, (1.2)

and denote by 𝑆 = 𝜑(𝜔) the mid-surface of the whole shell (without the holes). Furthermore, we introduce the
vectors

t1 =

⎛⎜⎜⎝
0

− sin
(︁𝑠1
𝑎

)︁
cos
(︁𝑠1
𝑎

)︁
⎞⎟⎟⎠ , t2 =

⎛⎝1
0
0

⎞⎠ , n =
t1 ∧ t2

‖t1 ∧ t2‖2
=

⎛⎜⎜⎝
0

cos
(︁𝑠1
𝑎

)︁
sin
(︁𝑠1
𝑎

)︁
⎞⎟⎟⎠ . (1.3)

Obviously, t1 and t2 are linearly independent and are tangential vectors to the surface 𝑆 (Fig. 2).
Denote

∙ Ω𝜀 = 𝜔 × (−𝜅𝜀, 𝜅𝜀), Ω*𝜀 = 𝜔*𝜀 × (−𝜅𝜀, 𝜅𝜀),
∙ 𝒬*𝜀 = Φ(Ω*𝜀) the perforated shell,
∙ 𝒬𝜀 = Φ(Ω𝜀) the shell without the holes
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where Φ : Ω𝜀 ⊂ R3 → R3 is given by

Φ(𝑠) = 𝜑(𝑠1, 𝑠2) + 𝑠3n(𝑠1, 𝑠2), 𝑠 = (𝑠1, 𝑠2, 𝑠3) ∈ Ω𝜀. (1.4)

We easily check that if 𝛿 = 𝜅𝜀 ∈ (0, 𝛿0] the map Φ from Ω𝜀 onto 𝒬𝜀 is a 𝐶1-diffeomorphism. That means we
have

𝑐0 ≤ ‖∇𝑠Φ‖𝐿∞(Ω𝜀) ≤ 𝑐1 and 𝑐0 ≤ ‖∇𝑥Φ−1‖𝐿∞(𝒬𝜀) ≤ 𝑐1. (1.5)

The constants do not depend on 𝜀.
We denote by 𝑥 the running point of the shell while 𝑠, s.t. Φ(𝑠) = 𝑥, is the running point in the reference

domain. A function 𝑢 defined on 𝒬𝜀 (resp. 𝒬*𝜀) can also be considered as a function defined on Ω𝜀 (resp. Ω*𝜀)
which we also denote by 𝑢.

Proposition 1.1. There exists an extension operator 𝒫𝜀 from 𝐻1(𝒬*𝜀)3 into 𝐻1(𝒬𝜀)3 satisfying for all 𝑢 ∈
𝐻1(𝒬*𝜀)3

𝒫𝜀(𝑢)|𝒬*𝜀 = 𝑢,
⃦⃦
𝑒
(︀
𝒫𝜀(𝑢)

)︀⃦⃦
𝐿2(𝒬𝜀)

≤ 𝐶
⃦⃦
𝑒(𝑢)

⃦⃦
𝐿2(𝒬*𝜀)

. (1.6)

The constant does not depend on 𝜀.

The proof of Proposition 1.1 has been moved to the Appendix A.
Set 𝛾0 = {0} × [0, 𝑙] ∪ {𝜋} × [0, 𝑙] ⊂ 𝜕𝜔. The part Γ0,𝜀 = Φ(𝛾0 × (−𝜅𝜀, 𝜅𝜀)) of the lateral boundary of the

shell is clamped. The complementary of Γ0,𝜀 in the lateral boundary of the shell is a free boundary.
From now on, any displacement 𝑢 belonging to 𝐻1(𝒬*𝜀)3 will be extended to a displacement belonging to

𝐻1(𝒬𝜀)3. We will always denote by 𝑢 the extended displacement, which will satisfy (1.6). This displacement
(still denoted 𝑢) could also be considered as an element of 𝐻1(Ω*𝜀)3 or 𝐻1(Ω𝜀)3.

1.2. Decomposition of shell displacements

In this section we introduce a decomposition for every displacement 𝑢 of the shell 𝒬*𝜀 as it was shown in [14].

Definition 1.2. An elementary displacement 𝑈𝑒 associated to 𝑢 ∈ 𝐻1(Ω𝜀)3 is given by

𝑈𝑒 = 𝒰(𝑠1, 𝑠2) + 𝑠3ℛ(𝑠1, 𝑠2), (1.7)

where (𝛼 ∈ {1, 2})

𝒰 =
1

2𝜅𝜀

∫︁ 𝜅𝜀

−𝜅𝜀

𝑢(·, 𝑠3) d𝑠3, ℛ𝛼 =
3

2(𝜅𝜀)3

∫︁ 𝜅𝜀

−𝜅𝜀

𝑠3𝑢(·, 𝑠3) · t𝛼 d𝑠3, ℛ3 = 0 a.e. in 𝜔. (1.8)

Moreover, we have that 𝒰 = (𝒰1,𝒰2,𝒰3) ∈ 𝐻1(𝜔)3 and ℛ = (ℛ1,ℛ2) ∈ 𝐻1(𝜔)2. Every displacement 𝑢 is then
decomposed as

𝑈𝑒(·, 𝑠3) =
2∑︁

𝛼=1

(︀
𝒰𝛼 + 𝑠3ℛ𝛼)t𝛼 + 𝒰3n, 𝑢 = 𝑈𝑒 + 𝑢, (1.9)

where 𝑢 ∈ 𝐻1(Ω𝜀)3 is a residual displacement called warping.

Denote

𝑉𝜀
.= {𝑣 ∈ 𝐻1(𝒬𝜀)3 | 𝑣 = 0 on Γ0,𝜀

}︀
, 𝑉 *𝜀

.= {𝑣 ∈ 𝐻1(𝒬*𝜀)3 | 𝑣 = 0 on Γ0,𝜀

}︀
,

𝐻1
Γ0

(𝜔) .= {Φ ∈ 𝐻1(𝜔) | Φ = 0 on Γ0

}︀
.

One has
𝒰 ∈ 𝐻1

Γ0
(𝜔)3, ℛ ∈ 𝐻1

Γ0
(𝜔)2, 𝑢 ∈ 𝑉𝜀.
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Remark 1.3. The warping 𝑢 fulfills the following properties∫︁ 𝜅𝜀

−𝜅𝜀

𝑢(·, 𝑠3) d𝑠3 = 0,
∫︁ 𝜅𝜀

−𝜅𝜀

𝑠3𝑢(·, 𝑠3) · t𝛼 d𝑠3 = 0. (1.10)

For 𝒰 and ℛ holds
𝒰 = 𝒰1t1 + 𝒰2t2 + 𝒰3n, ℛ = ℛ1t1 +ℛ2t2.

In the next step we want to establish the strain tensor in the cylindrical coordinates. The derivatives of the
elementary displacement 𝑈𝑒 are calculated using

𝜕𝒰
𝜕𝑠1

=
𝜕𝒰1

𝜕𝑠1
t1 −

1
𝑎
𝒰1n +

𝜕𝒰2

𝜕𝑠1
t2 +

𝜕𝒰3

𝜕𝑠1
n +

1
𝑎
𝒰3t1,

𝜕𝒰
𝜕𝑠2

=
𝜕𝒰1

𝜕𝑠2
t1 +

𝜕𝒰2

𝜕𝑠2
t2 +

𝜕𝒰3

𝜕𝑠2
n,

(1.11)

and
𝜕ℛ
𝜕𝑠1

=
𝜕ℛ1

𝜕𝑠1
t1 −

1
𝑎
ℛ1n +

𝜕ℛ2

𝜕𝑠1
t2,

𝜕ℛ
𝜕𝑠2

=
𝜕ℛ1

𝜕𝑠2
t1 +

𝜕ℛ2

𝜕𝑠2
t2.

(1.12)

The strain tensor for a shell displacement 𝑢 ∈ 𝐻1(𝒬𝜀) is given by

𝑒𝑥(𝑢) =
∇𝑥𝑢+ (∇𝑥𝑢)𝑇

2
· (1.13)

A small computation yields, that ∇𝑠 in the coordinates of the reference domain is given by

∇𝑠 = ∇𝑥∇Φ. (1.14)

Furthermore, we still have that 𝑒𝑥(𝑢) is in the shell configuration. Therefore, we consider the transformation
matrix (t1|t2|n) and transfer our strain matrix into the reference domain by

(t1|t2|n)𝑇 𝑒𝑥(𝑢)(t1|t2|n). (1.15)

Definition 1.4. We define by 𝑒(𝑢) the strain tensor in the coordinates of the reference domain by

𝑒(𝑢) = (t1|t2|n)𝑇 ∇𝑠𝑢(∇Φ)−1 + (∇𝑠𝑢(∇Φ)−1)𝑇

2
(t1|t2|n). (1.16)

Hence, we obtain

(t1|t2|n)𝑇∇𝑠𝑢(∇Φ)−1(t1|t2|n) = (t1|t2|n)𝑇∇𝑠𝑢

⎛⎜⎝
𝑎

𝑎+ 𝑠3
0 0

0 1 0
0 0 1

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎

𝑎+ 𝑠3

𝜕𝑢

𝜕𝑠1
t1

𝜕𝑢

𝜕𝑠2
t1

𝜕𝑢

𝜕𝑠3
t1

𝑎

𝑎+ 𝑠3

𝜕𝑢

𝜕𝑠1
t2

𝜕𝑢

𝜕𝑠2
t2

𝜕𝑢

𝜕𝑠3
t2

𝑎

𝑎+ 𝑠3

𝜕𝑢

𝜕𝑠1
n

𝜕𝑢

𝜕𝑠2
n

𝜕𝑢

𝜕𝑠3
n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(1.17)
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where
𝜕𝑢

𝜕𝑠1
=
(︂
𝜕𝒰1

𝜕𝑠1
+ 𝑠3

𝜕ℛ1

𝜕𝑠1
+
𝜕𝑢1

𝜕𝑠1
+

1
𝑎

(︀
𝒰3 + 𝑢3

)︀)︂
t1 +

(︂
𝜕𝒰2

𝜕𝑠1
+ 𝑠3

𝜕ℛ2

𝜕𝑠1
+
𝜕𝑢2

𝜕𝑠1

)︂
t2

+
(︂
𝜕𝒰3

𝜕𝑠1
+
𝜕𝑢3

𝜕𝑠1
− 1
𝑎

(︀
𝒰1 + 𝑠3ℛ1 + 𝑢1

)︀)︂
n,

𝜕𝑢

𝜕𝑠2
=
(︂
𝜕𝒰1

𝜕𝑠2
+ 𝑠3

𝜕ℛ1

𝜕𝑠2
+
𝜕𝑢1

𝜕𝑠2

)︂
t1 +

(︂
𝜕𝒰2

𝜕𝑠2
+ 𝑠3

𝜕ℛ2

𝜕𝑠2
+
𝜕𝑢2

𝜕𝑠2

)︂
t2 +

(︂
𝜕𝒰3

𝜕𝑠2
+
𝜕𝑢3

𝜕𝑠2

)︂
n,

𝜕𝑢

𝜕𝑠3
=
(︂
ℛ1 +

𝜕𝑢1

𝜕𝑠3

)︂
t1 +

(︂
ℛ2 +

𝜕𝑢2

𝜕𝑠3

)︂
t2 +

𝜕𝑢3

𝜕𝑠3
n.

We get for the strain tensor 𝑒(𝑢) of a displacement 𝑢 ∈ 𝑉𝜀 the following components:

𝑒11(𝑢) =
𝑎

𝑎+ 𝑠3

[︂(︂
𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

)︂
+ 𝑠3

𝜕ℛ1

𝜕𝑠1
+
𝜕𝑢1

𝜕𝑠1
+

1
𝑎
𝑢3

]︂
,

𝑒22(𝑢) =
𝜕𝒰2

𝜕𝑠2
+ 𝑠3

𝜕ℛ2

𝜕𝑠2
+
𝜕𝑢2

𝜕𝑠2
,

𝑒12(𝑢) =
1
2

𝑎

𝑎+ 𝑠3

[︃(︂
𝜕𝒰2

𝜕𝑠1
+
𝜕𝒰1

𝜕𝑠2

)︂
+ 𝑠3

(︂
𝜕ℛ2

𝜕𝑠1
+
𝜕ℛ1

𝜕𝑠2

)︂
+
𝑠3
𝑎

𝜕𝒰1

𝜕𝑠2
+
𝑠23
𝑎

𝜕ℛ1

𝜕𝑠2

+
𝜕𝑢2

𝜕𝑠1
+
(︁

1 +
𝑠3
𝑎

)︁ 𝜕𝑢1

𝜕𝑠2

]︃
,

𝑒13(𝑢) =
1
2

𝑎

𝑎+ 𝑠3

[︂(︂
𝜕𝒰3

𝜕𝑠1
− 1
𝑎
𝒰1 +ℛ1

)︂
− 1
𝑎
𝑢1 +

𝜕𝑢3

𝜕𝑠1
+
(︁

1 +
𝑠3
𝑎

)︁ 𝜕𝑢1

𝜕𝑠3

]︂
,

𝑒23(𝑢) =
1
2

{︂(︂
𝜕𝒰3

𝜕𝑠2
+ℛ2

)︂
+
𝜕𝑢3

𝜕𝑠2
+
𝜕𝑢2

𝜕𝑠3

}︂
, 𝑒33(𝑢) =

𝜕𝑢3

𝜕𝑠3
·

Theorem 1.5. Let 𝑢 ∈ 𝐻1(𝒬*𝜀)3 and (𝒰 ,ℛ, 𝑢) be the terms of its decomposition, then the following inequalities
are satisfied:

‖𝑒(𝑈𝑒)‖𝐿2(Ω𝜀) ≤ 𝐶 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) (1.18)

‖𝑢‖𝐿2(𝒬𝜀) ≤ 𝐶𝜀 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) (1.19)

‖∇𝑢‖𝐿2(𝒬𝜀) ≤ 𝐶 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) . (1.20)

Proof. The proof is given in Theorem 4.1 of [14]. �

From [14] we also obtain the full estimates of 𝑢 and the components of the elementary displacement 𝑈𝑒.

Proposition 1.6. For every 𝑢 ∈ 𝑉 *𝜀

‖𝑢‖𝐻1(Ω𝜀) ≤
𝐶

𝜀
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) , ‖ℛ‖𝐻1(𝜔) + ‖𝒰‖𝐻1(𝜔) ≤

𝐶

𝜀3/2
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) . (1.21)

The constants do not depend on 𝜀.

From the expression of the strain tensor 𝑒(𝑢) one derives the following estimates:

Lemma 1.7. One has also the following estimates ((𝛼, 𝛽) ∈ {1, 2}2):⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝒰
𝜕𝑠𝛼
· t𝛽 +

𝜕𝒰
𝜕𝑠𝛽
· t𝛼
⃒⃒⃒⃒⃒⃒⃒⃒

𝐿2(𝜔)

+
⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝒰
𝜕𝑠𝛼
· n +ℛ · t𝛼

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 𝐶

𝜀1/2
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) . (1.22)

The constant does not depend on 𝜀.
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Proof. We will only show that ⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝒰2

𝜕𝑠1
+
𝜕𝒰1

𝜕𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 𝐶

𝜀1/2
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) , (1.23)

since the other inequalities follow in the same way.
First observe that

𝑎

𝑎+ 𝑠3
is uniformly bounded. Then, we start with the expression of 𝑒12(𝑢) given by (1.18).

Due to (1.19) and (1.20) we obtain∫︁
Ω𝜀

[︂(︂
𝜕𝒰2

𝜕𝑠1
+
𝜕𝒰1

𝜕𝑠2

)︂
+ 𝑠3

(︂
𝜕ℛ2

𝜕𝑠1
+
𝜕ℛ1

𝜕𝑠2

)︂
+
𝑠3
𝑎

𝜕𝒰1

𝜕𝑠2
+
𝑠23
𝑎

𝜕ℛ1

𝜕𝑠2

]︂2
d𝑠 ≤ 𝐶 ‖𝑒(𝑢)‖2𝐿2(𝒬*𝜀) .

Hence, using the estimates (1.21)

𝜀

∫︁
𝜔

(︂
𝜕𝒰2

𝜕𝑠1
+
𝜕𝒰1

𝜕𝑠2

)︂2

d𝑠 ≤ 𝐶 ‖𝑒(𝑢)‖2𝐿2(𝒬*𝜀) ,

which proves the inequality (1.23). �

2. The rescaling operator T𝜀

From now on we consider the reference domain

Ω = 𝜔 × (−𝜅, 𝜅) (2.1)

and we rescale the shell in its 𝑠3 direction.

Definition 2.1. Given a measurable function Ψ on Ω𝜀, we define the measurable function T𝜀(Ψ) on Ω as

T𝜀(Ψ)(𝑠1, 𝑠2, 𝑦3) = Ψ(𝑠1, 𝑠2, 𝜀𝑦3), for a.e. (𝑠1, 𝑠2, 𝑦3) ∈ Ω. (2.2)

Lemma 2.2. One has for every Ψ ∈ 𝐿2(Ω𝜀) and for the warping 𝑢

‖T𝜀(Ψ)‖𝐿2(Ω) ≤ 𝐶𝜀−1/2‖Ψ‖𝐿2(Ω𝜀), ‖T𝜀(𝑢)‖𝐿2(Ω) ≤ 𝐶𝜀
1/2 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,⃦⃦⃦⃦

𝜕T𝜀(𝑢)
𝜕𝑠𝛼

⃦⃦⃦⃦
𝐿2(Ω)

≤ 𝐶𝜀−1/2 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,

⃦⃦⃦⃦
𝜕T𝜀(𝑢)
𝜕𝑦3

⃦⃦⃦⃦
𝐿2(Ω)

≤ 𝐶𝜀1/2 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .
(2.3)

3. Asymptotic behavior of the strain tensor

Lemma 3.1. Let {𝑢𝜀}𝜀 be a sequence of displacements belonging to 𝑉 *𝜀 and satisfying3

‖𝑒(𝑢𝜀)‖𝐿2(𝒬*𝜀) ≤ 𝐶𝜀
3/2

with a constant independent of 𝜀.
There exists a subsequence (still denoted 𝜀) and 𝒰 ∈ 𝐻1

Γ0
(𝜔)3, ℛ ∈ 𝐻1

Γ0
(𝜔)2, 𝒵𝛼𝛽 ∈ 𝐿2(𝜔), 𝒵𝛼3 ∈ 𝐿2(𝜔) and

𝑢 ∈ 𝐿2(𝜔;𝐻1(−𝜅, 𝜅))3 satisfying∫︁ 𝜅

−𝜅

𝑢(·, 𝑦3) d𝑦3 = 0,
∫︁ 𝜅

−𝜅

𝑦3 𝑢𝛼(·, 𝑦3) d𝑦3 = 0 a.e. in 𝜔, (3.1)

3Or equivalently ‖𝑒(𝑢𝜀)‖𝐿2(𝒬𝜀) ≤ 𝐶𝜀3/2 since the displacements are extended to the whole shell.
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such that
𝒰𝜀 −→ 𝒰 strongly in 𝐻1

Γ0
(𝜔)3, ℛ𝜀,𝛼 ⇀ ℛ𝛼 weakly in 𝐻1

Γ0
(𝜔),

1
𝜀

(︂
𝜕𝒰𝜀

𝜕𝑠𝛼
· t𝛽 +

𝜕𝒰𝜀

𝜕𝑠𝛽
· t𝛼
)︂
⇀ 𝒵𝛼𝛽 weakly in 𝐿2(𝜔),

1
𝜀

(︂
𝜕𝒰𝜀

𝜕𝑠𝛼
· n +ℛ𝜀 · t𝛼

)︂
⇀ 𝒵𝛼3 weakly in 𝐿2(𝜔),

1
𝜀2

T𝜀(𝑢𝜀) ⇀ 𝑢 weakly in 𝐿2(𝜔;𝐻1(−𝜅, 𝜅))3,

1
𝜀
T𝜀

(︂
𝜕𝑢𝜀

𝜕𝑠𝛼

)︂
=

1
𝜀

𝜕

𝜕𝑠𝛼
T𝜀(𝑢𝜀) ⇀ 0 weakly in 𝐿2(𝜔 × (−𝜅, 𝜅))3,

1
𝜀
T𝜀

(︀
𝑒(𝑢𝜀)

)︀
⇀ ℰ(𝒰 ,𝒵, 𝑢) weakly in 𝐿2(𝜔)3×3.

(3.2)

Moreover, one has
𝜕𝒰3

𝜕𝑠1
− 1
𝑎
𝒰1 +ℛ1 = 0,

𝜕𝒰3

𝜕𝑠2
+ℛ2 = 0.

Proof. We start with the weak limits; they are the consequences of (1.21).

𝒰𝜀 ⇀ 𝒰 weakly in 𝐻1
Γ0

(𝜔)3, ℛ𝜀 ⇀ ℛ weakly in 𝐻1
Γ0

(𝜔)2. (3.3)

The results in (3.2)5,6 follow from Lemma 2.2 and equation (1.19).
Both convergences (3.2)3,4 follow directly from Lemma 1.7.
Now we prove

𝒰𝜀,3 −→ 𝒰3 strongly in 𝐻1
Γ0

(𝜔). (3.4)

By the Sobolev embedding and convergences (3.3), one has

𝒰𝜀 −→ 𝒰 strongly in 𝐿2(𝜔)3, ℛ𝜀 −→ ℛ strongly in 𝐿2(𝜔)2. (3.5)

Besides, from estimate (1.22)2, one obtains

𝜕𝒰𝜀,3

𝜕𝑠1
− 1
𝑎
𝒰𝜀,1 +ℛ𝜀,1 −→ 0 strongly in 𝐿2(𝜔),

𝜕𝒰𝜀,3

𝜕𝑠2
+ℛ𝜀,2 −→ 0 strongly in 𝐿2(𝜔).

Hence ∇𝒰𝜀,3 strongly converges to its limit in 𝐿2(𝜔)2, which ends the proof of (3.4). That also proves the last
equalities of the lemma.

Now, prove the strong convergences

𝒰𝜀,𝛼 −→ 𝒰𝛼 strongly in 𝐻1
Γ0

(𝜔), 𝛼 = 1, 2.

By estimate (1.22)1 one immediately has

𝜕𝒰𝜀,1

𝜕𝑠1
+

1
𝑎
𝒰𝜀,3 −→ 0 strongly in 𝐿2(𝜔),

𝜕𝒰𝜀,2

𝜕𝑠2
−→ 0 strongly in 𝐿2(𝜔),

𝜕𝒰𝜀,1

𝜕𝑠2
+
𝜕𝒰𝜀,2

𝜕𝑠1
−→ 0 strongly in 𝐿2(𝜔).
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Furthermore, from (3.5) and the above strong convergences, one obtains the strong convergence of the strain
tensor of the displacement

(︀
𝒰𝜀,1,𝒰𝜀,2

)︀
in 𝐿2(𝜔)3. Since 𝜔 is a Lipschitz domain, this displacement strongly

converges to its limit in 𝐻1
Γ0

(𝜔)2. The elements of the limit strain tensor are then particularly given by (𝛼 ∈
{1, 2})

1
𝜀
T𝜀(𝑒𝛼𝛼) ⇀ 𝒵𝛼𝛼 + 𝑦3

𝜕ℛ𝛼

𝜕𝑠𝛼
,

1
𝜀
T𝜀(𝑒12) ⇀

1
2

{︂
𝒵12 +

𝑦3
𝑎

𝜕𝒰1

𝜕𝑠2
+ 𝑦3

𝜕ℛ2

𝜕𝑠1
+ 𝑦3

𝜕ℛ1

𝜕𝑠2

}︂
,

1
𝜀
T𝜀(𝑒𝛼3) ⇀

1
2

{︂
𝒵𝛼3 +

𝜕𝑢𝛼

𝜕𝑦3

}︂
,

1
𝜀
T𝜀(𝑒33) ⇀

𝜕𝑢3

𝜕𝑦3
·

Putting everything together we obtain the symmetric tensor

ℰ(𝒰 ,𝒵, 𝑢) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝒵11 +

𝑦3
𝑎

𝜕𝒰1

𝜕𝑠1
− 𝑦3

𝜕2𝒰3

𝜕𝑠21

1
2
𝒵12 +

𝑦3
𝑎

𝜕𝒰1

𝜕𝑠2
− 𝑦3

𝜕2𝒰3

𝜕𝑠1𝜕𝑠2

1
2

(︂
𝒵13 +

𝜕𝑢1

𝜕𝑦3

)︂
* 𝒵22 − 𝑦3

𝜕2𝒰3

𝜕𝑠22

1
2

(︂
𝒵23 +

𝜕𝑢2

𝜕𝑦3

)︂
* * 𝜕𝑢3

𝜕𝑦3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which ends the proof of the lemma. �

As a consequence of the estimates in Lemma 1.7 and the above lemma, one has a.e. in 𝜔 with 𝒰𝑖 ∈ 𝐻1
Γ0

(𝜔)
and ℛ𝛼 ∈ 𝐻1

Γ0
(𝜔)

𝜕𝒰
𝜕𝑠𝛼
· t𝛽 +

𝜕𝒰
𝜕𝑠𝛽
· t𝛼 = 0,

𝜕𝒰
𝜕𝑠𝛼
· n +ℛ · t𝛼 = 0. (3.6)

From the first equation in (3.6) we obtain for (𝛼, 𝛽) = (2, 2) that
𝜕𝒰2

𝜕𝑠2
= 0. Hence 𝒰2 does not depend on 𝑠2,

𝒰2 = 𝑈2(𝑠1) and due to the boundary conditions, one has 𝑈2 ∈ 𝐻1
0 (0, 𝑎𝜋).

With that we conclude for (𝛼, 𝛽) = (1, 2) that

𝒰1(𝑠1, 𝑠2) = −𝑠2
d𝑈2

d𝑠1
(𝑠1) + 𝑈1(𝑠1).

Since 𝒰1 belongs to 𝐻1
Γ0

(𝜔), we get 𝑈2 ∈ 𝐻2
0 (0, 𝑎𝜋) and 𝑈1 ∈ 𝐻1

0 (0, 𝑎𝜋).
This yields for the last case, (𝛼, 𝛽) = (1, 1),

𝒰3(𝑠1, 𝑠2) = 𝑎𝑠2
d2𝑈2

d𝑠21
− 𝑎d𝑈1

d𝑠1
(𝑠1).

Since 𝒰3 belongs to 𝐻1
Γ0

(𝜔), this implies at this step

𝑈2 ∈ 𝐻3
0 (0, 𝑎𝜋), 𝑈1 ∈ 𝐻2

0 (0, 𝑎𝜋),

and 𝒰(𝑠1, 𝑠2) =
(︂
−𝑠2

d𝑈2

d𝑠1
(𝑠1) + 𝑈1(𝑠1), 𝑈2(𝑠1), 𝑎𝑠2

d2𝑈2

d𝑠21
− 𝑎d𝑈1

d𝑠1
(𝑠1)

)︂
.

(3.7)

We now focus on the second equality given in (3.6), where we obtain with our expression for 𝒰

ℛ1(𝑠1, 𝑠2) = −𝑠2
(︂

1
𝑎

d𝑈2

d𝑠1
(𝑠1) + 𝑎

d3𝑈2

d𝑠31
(𝑠1)

)︂
+

1
𝑎
𝑈1(𝑠1) + 𝑎

d2𝑈1

d𝑠21
(𝑠1), ℛ2(𝑠1, 𝑠2) = −𝑎d2𝑈2

d𝑠21
(𝑠1).
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Observe that due to the above conditions on 𝑈2, ℛ2 belongs to 𝐻1
Γ0

(𝜔). Now, since ℛ1 also belongs to 𝐻1
Γ0

(𝜔),
we finally obtain

𝑈2 ∈ 𝐻4
0 (0, 𝑎𝜋), 𝑈1 ∈ 𝐻3

0 (0, 𝑎𝜋).

Thus
ℛ1 ∈ 𝐻1

Γ0
(𝜔), ℛ2 ∈ 𝐻2(𝜔) ∩𝐻1

Γ0
(𝜔),

𝒰1 ∈ 𝐻2(𝜔) ∩𝐻1
Γ0

(𝜔), 𝒰2 ∈ 𝐻4(𝜔) ∩𝐻1
Γ0

(𝜔), 𝒰3 ∈ 𝐻2(𝜔) ∩𝐻1
Γ0

(𝜔).

4. Unfolding of the rescaled shell

Definition 4.1. The unfolding 𝒯𝜀(𝜓′) (resp. 𝒯𝜀(𝜓)) of a measurable function defined on 𝜔 (resp. Ω) is measur-
able on 𝜔 × 𝑌 ′ (resp. Ω× 𝑌 ′) and given by

𝒯𝜀(𝜓′)(𝑠′, 𝑦′) = 𝜓′
(︂
𝜀

[︂
𝑠′

𝜀

]︂
𝑌 ′

+ 𝜀𝑦′
)︂

for a.e. (𝑠′, 𝑦′) ∈ ̂︀𝜔𝜀 × 𝑌 ′,

𝒯𝜀(𝜓)(𝑠′, 𝑦′) = 0 for a.e. (𝑠′, 𝑦′) ∈ Λ𝜀 × 𝑌 ′,

and

𝒯𝜀(𝜓)(𝑠′, 𝑦′, 𝑦3) = 𝜓

(︂
𝜀

[︂
𝑠′

𝜀

]︂
𝑌 ′

+ 𝜀𝑦′, 𝑦3

)︂
for a.e. (𝑠′, 𝑦′, 𝑦3) ∈ ̂︀𝜔𝜀 × 𝑌,

𝒯𝜀(𝜓)(𝑠′, 𝑦′, 𝑦3) = 0 for a.e. (𝑠′, 𝑦′, 𝑦3) ∈ Λ𝜀 × 𝑌.

As shown in [9], for every 𝜓′ ∈ 𝐿2(𝜔) we have

‖𝒯𝜀(𝜓′)‖𝐿2(𝜔×𝑌 ′) ≤ ‖𝜓
′‖𝐿2(𝜔) . (4.1)

Definition 4.2. The rescaling-unfolding operator is defined by Π𝜀 = 𝒯𝜀 ∘ T𝜀.

Lemma 4.3. We obtain the following estimate for the warping:

‖Π𝜀(𝑢)‖𝐿2(𝜔;𝐻1(𝑌 )) ≤ 𝐶𝜀1/2 ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) . (4.2)

Denote 𝐻1
per(𝑌

′) (resp. 𝐻1
per(𝑌 )) the subspace of 𝐻1

loc(R2) (resp. 𝐻1
loc

(︀
R2 × (−𝜅, 𝜅)

)︀
∩𝐻1(𝑌 )) containing the

functions G periodic and

̂︁𝒲 .=
{︂̂︀𝜋 ∈ 𝐻1

per(𝑌 )3 |
∫︁ 𝜅

−𝜅

̂︀𝜋(·, 𝑦3) d𝑦3 = 0,
∫︁ 𝜅

−𝜅

𝑦3 ̂︀𝜋𝛼(·, 𝑦3) d𝑦3 = 0 a.e. in 𝜔 × 𝑌 ′
}︂
.

Lemma 4.4. There exists a subsequence of {𝜀} (still denoted {𝜀}) and ̂︀𝒰 ∈ 𝐿2(𝜔;𝐻1
per(𝑌

′))3,̂︀ℛ ∈ 𝐿2(𝜔;𝐻1
per(𝑌

′))2 and ̂︀𝑢 ∈ 𝐿2(𝜔;̂︁𝒲) such that

𝒯𝜀(𝒰𝜀) −→ 𝒰 strongly in 𝐿2(𝜔;𝐻1(𝑌 ′))3,
𝒯𝜀(ℛ𝜀) −→ ℛ strongly in 𝐿2(𝜔;𝐻1(𝑌 ′))2,

𝒯𝜀

(︂
𝜕𝒰𝜀

𝜕𝑠𝛼

)︂
−→ 𝜕𝒰

𝜕𝑠𝛼
strongly in 𝐿2(𝜔 × 𝑌 ′)3,

𝒯𝜀

(︂
𝜕ℛ𝜀

𝜕𝑠𝛼

)︂
⇀

𝜕ℛ
𝜕𝑠𝛼

+
𝜕 ̂︀ℛ
𝜕𝑦𝛼

weakly in 𝐿2(𝜔 × 𝑌 ′)2,

1
𝜀2

Π𝜀(𝑢𝜀) ⇀ ̂︀𝑢 weakly in 𝐿2(𝜔;𝐻1(𝑌 ))3.

(4.3)
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One has

𝑢(𝑠1, 𝑠2, 𝑦3) =
1
|𝑌 ′|

∫︁
𝑌 ′

̂︀𝑢(𝑠1, 𝑠2, 𝑦1, 𝑦2, 𝑦3) d𝑦1 d𝑦2 for a.e. (𝑠1, 𝑠2, 𝑦3) ∈ Ω.

Moreover,

1
𝜀
𝒯𝜀

(︂
𝜕𝒰𝜀

𝜕𝑠𝛼
· n +ℛ𝜀 · t𝛼

)︂
⇀ 𝒵𝛼3 + ̂︀𝑍𝛼3 weakly in 𝐿2(𝜔;𝐻1(𝑌 ′)),

1
𝜀
𝒯𝜀

(︂
𝜕𝒰𝜀

𝜕𝑠𝛼
· t𝛽 +

𝜕𝒰𝜀

𝜕𝑠𝛽
· t𝛼
)︂
⇀ 𝒵𝛼𝛽 + ̂︀𝑍𝛼𝛽 weakly in 𝐿2(𝜔;𝐻1(𝑌 ′)),

(4.4)

where

̂︀𝑍13 =
𝜕 ̂︀𝒰3

𝜕𝑦1
+ ̂︀ℛ1, ̂︀𝑍23 =

𝜕 ̂︀𝒰3

𝜕𝑦2
+ ̂︀ℛ2, ̂︀𝑍𝛼𝛽 = 𝑒𝑦,𝛼𝛽( ̂︀𝒰). (4.5)

Proof. The strong convergences of (4.3)1,2,3 follow from (3.2)1,2 and Proposition 3.4 of [9]. Convergence (4.3)4
is the consequence of Theorem 3.5 from [9] and (4.3)5 is obtained with Corollary 3.2 of [9].

The convergences of (4.4)1,2 follow from Lemma 3.1 and Theorem 3.5 of [9]. With Lemma A.2 we then obtain
the expression for ̂︀𝑍𝛼3 in (4.5) and Lemma A.3 yields the expression ̂︀𝑍𝛼𝛽 .

To do that, first we need to identify the different fields appearing in Lemma A.2. Here

𝑢𝜀 ←→ 𝒰𝜀,3, 𝑣𝜀 ←→
(︂
− 1

𝑎𝒰𝜀,1 +ℛ𝜀,1

ℛ𝜀,2

)︂
.

From (3.2)1,4, one has

1
𝜀

(︂
∇𝒰𝜀,3 +

(︂
− 1

𝑎𝒰𝜀,1 +ℛ𝜀,1

ℛ𝜀,2

)︂)︂
⇀

(︂
𝒵13

𝒵23

)︂
weakly in 𝐿2(𝜔)2,

𝒯𝜀

[︃
∇
(︂
− 1

𝑎𝒰𝜀,1 +ℛ𝜀,1

ℛ𝜀,2

)︂]︃
⇀ ∇

(︂
− 1

𝑎𝒰1 +ℛ1

ℛ2

)︂
+∇𝑦

(︂ ̂︀ℛ1̂︀ℛ2

)︂
weakly in 𝐿2(𝜔 × 𝑌 ′)2.

Then, one can apply Lemma A.2. The function u is called ̂︀𝒰3.

Now we determine the ̂︀𝑍𝛼𝛽 ’s.

Let us identify

𝑢𝜀 ←→
(︂
𝒰𝜀,1

𝒰𝜀,2

)︂
, 𝑣𝜀 ←→

⎛⎝1
𝑎
𝒰𝜀,3 0

0 0

⎞⎠ .

Hence, by (3.2)1,3
1
𝜀

(𝑒(𝑢𝜀) + 𝑣𝜀) ⇀ 𝒳 , and 𝒯𝜀(∇𝑣𝜀) ⇀ ∇𝑣 +∇𝑦̂︀𝑣. Here, observe that ̂︀𝑣 = 0. The field (u1, u2)

given by Lemma A.3 is denoted ( ̂︀𝒰1, ̂︀𝒰2). �
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4.1. Limit of the rescaled-unfolded strain tensor

Proposition 4.5. Under the assumptions and the results of Lemma 4.4 we obtain the following weak conver-
gences in 𝐿2(𝜔 × 𝑌 ):

1
𝜀

Π𝜀(𝑒𝛼𝛼(𝑢𝜀)) ⇀ 𝒵𝛼𝛼 + 𝑒𝑦,𝛼𝛼( ̂︀𝒰) + 𝑦3

(︃
𝜕ℛ𝛼

𝜕𝑠𝛼
+
𝜕 ̂︀ℛ𝛼

𝜕𝑦𝛼

)︃
+
𝜕̂︀𝑢𝛼

𝜕𝑦𝛼
,

1
𝜀

Π𝜀(𝑒12(𝑢𝜀)) ⇀
1
2

(︃
𝒵12 + 2𝑒𝑦,22( ̂︀𝒰) + 𝑦3

(︃
𝜕ℛ1

𝜕𝑠2
+
𝜕 ̂︀ℛ1

𝜕𝑦2
+
𝜕ℛ2

𝜕𝑠1
+
𝜕 ̂︀ℛ2

𝜕𝑦1

)︃
+
𝜕̂︀𝑢1

𝜕𝑦2
+
𝜕̂︀𝑢2

𝜕𝑦1

)︃
,

1
𝜀

Π𝜀(𝑒𝛼3(𝑢𝜀)) ⇀
1
2

(︃
𝒵𝛼3 +

𝜕 ̂︀𝒰3

𝜕𝑦𝛼
+ ̂︀ℛ𝛼 +

𝜕̂︀𝑢𝛼

𝜕𝑦3
+
𝜕̂︀𝑢3

𝜕𝑦𝛼

)︃
,

1
𝜀

Π𝜀(𝑒33(𝑢𝜀)) ⇀
𝜕̂︀𝑢3

𝜕𝑦3
·

Proof. First, note that the function 𝑦3 −→
𝑎

𝑎+ 𝜀𝑦3
converges uniformly to 1 in 𝜔 × 𝑌 .

Below, we give the limits for 1
𝜀 Π𝜀(𝑒11(𝑢𝜀)) and 1

𝜀 Π𝜀(𝑒13(𝑢𝜀)), since other cases follow in a similar way. For
the calculation we combine the results obtained in Lemmas 3.1 and 4.4. We have,

1
𝜀

Π𝜀(𝑒11(𝑢𝜀)) =
1
𝜀

[︂
𝑎

𝑎+ 𝜀𝑦3

(︂
𝒯𝜀

(︂
𝜕𝒰𝜀,1

𝜕𝑠1
+

1
𝑎
𝒰𝜀,3

)︂
+ 𝜀𝑦3𝒯𝜀

(︂
𝜕ℛ𝜀,1

𝜕𝑠1

)︂
+ Π𝜀

(︂
𝜕𝑢𝜀,1

𝜕𝑠1

)︂
+

1
𝑎

Π𝜀(𝑢𝜀,3)
)︂]︂

.

Therefore, we get for each term in the limit

1
𝜀
𝒯𝜀

(︂
𝜕𝒰𝜀,1

𝜕𝑠1
+

1
𝑎
𝒰𝜀,3

)︂
⇀ 𝒵11 + 𝑒𝑦,11( ̂︀𝒰) weakly in 𝐿2(𝜔 × 𝑌 ′),

𝒯𝜀

(︂
𝜕ℛ𝜀,1

𝜕𝑠1

)︂
⇀

𝜕ℛ1

𝜕𝑠1
+
𝜕 ̂︀ℛ1

𝜕𝑦1
weakly in 𝐿2(𝜔 × 𝑌 ′),

1
𝜀

Π𝜀

(︂
𝜕𝑢𝜀,1

𝜕𝑠1

)︂
=

1
𝜀2
𝜕Π𝜀(𝑢𝜀,1)

𝜕𝑦1
⇀

𝜕̂︀𝑢1

𝜕𝑦1
weakly in 𝐿2(𝜔 × 𝑌 ),

1
𝜀

Π𝜀(𝑢𝜀,3) ⇀ 0 weakly in 𝐿2(𝜔 × 𝑌 ).

Hence,

1
𝜀

Π𝜀(𝑒11(𝑢𝜀)) ⇀ 𝒵11 + 𝑒𝑦,11( ̂︀𝒰) + 𝑦3

(︃
𝜕ℛ1

𝜕𝑠1
+
𝜕 ̂︀ℛ1

𝜕𝑦1

)︃
+
𝜕̂︀𝑢1

𝜕𝑦1
weakly in 𝐿2(𝜔 × 𝑌 ).

Now we focus on

1
𝜀

Π𝜀(𝑒13(𝑢𝜀)) =
1
2

1
𝜀

𝑎

𝑎+ 𝜀𝑦3

[︃
𝒯𝜀

(︂
𝜕𝒰𝜀,3

𝜕𝑠1
− 1
𝑎
𝒰𝜀,1 +ℛ𝜀,1

)︂

− 1
𝑎

Π𝜀(𝑢𝜀,1) + Π𝜀

(︂
𝜕𝑢𝜀,3

𝜕𝑠1

)︂
+
(︀
1 +

𝜀𝑦3
𝑎

)︀
Π𝜀

(︂
𝜕𝑢𝜀,1

𝜕𝑠3

)︂]︃
.
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Similar to the previous case we calculate the limits of each component, obtaining

1
𝜀
𝒯𝜀

(︂
𝜕𝒰𝜀,3

𝜕𝑠1
− 1
𝑎
𝒰𝜀,1 +ℛ𝜀,1

)︂
⇀ 𝒵13 +

𝜕 ̂︀𝒰3

𝜕𝑦1
+ ̂︀ℛ1 weakly in 𝐿2(𝜔 × 𝑌 ′),

1
𝜀

Π𝜀(𝑢𝜀,1) ⇀ 0 weakly in 𝐿2(𝜔 × 𝑌 ),

1
𝜀

Π𝜀

(︂
𝜕𝑢𝜀,3

𝜕𝑠1

)︂
=

1
𝜀2
𝜕Π𝜀(𝑢3)
𝜕𝑦1

⇀
𝜕̂︀𝑢3

𝜕𝑦1
weakly in 𝐿2(𝜔 × 𝑌 ),

1
𝜀2
𝜕Π𝜀(𝑢𝜀,1)

𝜕𝑦3
⇀

𝜕̂︀𝑢1

𝜕𝑦3
weakly in 𝐿2(𝜔 × 𝑌 ).

Hence,
1
𝜀

Π𝜀(𝑒13(𝑢𝜀)) ⇀
1
2

(︃
𝒵13 +

𝜕 ̂︀𝒰3

𝜕𝑦1
+ ̂︀ℛ1 +

𝜕̂︀𝑢3

𝜕𝑦1
+
𝜕̂︀𝑢1

𝜕𝑦3

)︃
·

�

Define the displacement ̂︀𝑢 belonging to 𝐿2(𝜔;𝐻1
per(𝑌 ))3 by

̂︀𝑢(·, 𝑦) = ̂︀𝒰(·, 𝑦1, 𝑦2) + 𝑦3 ̂︀ℛ(·, 𝑦1, 𝑦2) +
(︀
𝑦3(𝒵13t1 + 𝒵23t2) + ̂︀𝑢(·, 𝑦)

)︀
, for a.e. 𝑦 ∈ 𝑌 * and a.e. in 𝜔.

Hence, one obtains

1
𝜀

Π𝜀(𝑒(𝑢𝜀)) ⇀

⎛⎜⎜⎜⎜⎝
𝒵11 +

𝑦3
𝑎

𝜕𝒰1

𝜕𝑠1
− 𝑦3

𝜕2𝒰3

𝜕𝑠21

1
2
𝒵12 +

𝑦3
𝑎

𝜕𝒰1

𝜕𝑠2
− 𝑦3

𝜕2𝒰3

𝜕𝑠1𝜕𝑠2
0

* 𝒵22 − 𝑦3
𝜕2𝒰3

𝜕𝑠22
0

* * 0

⎞⎟⎟⎟⎟⎠
+ ℰ𝑦(̂︀𝑢) weakly in 𝐿2(𝜔 × 𝑌 )3×3,

where ℰ𝑦(̂︀𝑢) is the symmetric tensor whose components are the 𝑒𝑦,𝑖𝑗(̂︀𝑢)’s. We want to note here that we obtain
the same kind of result in [15].

The aim of the following section is to determine the 𝒵𝛼𝛽 ’s.

Remark 4.6. If we compare our results with Proposition 11.13 of [14], we see that

ℰ𝑦(̂︀𝑢) = 𝐸𝑤 (̊𝑢) + ℰ1
𝑦 (̂︀𝑢),

where the terms on the right hand side follow from the given definitions in [14].

5. Inextensional and extensional displacements

5.1. Inextensional displacements

Denote H .= [𝐻1
Γ0

(𝜔)]2 × 𝐿2(𝜔). We equip H with the scalar product

⟨𝒰 ,𝒱⟩ =
∫︁

𝜔

[︃
1
2

(︂
𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

)︂(︂
𝜕𝒱1

𝜕𝑠1
+

1
𝑎
𝒱3

)︂
+
𝜕𝒰2

𝜕𝑠2

𝜕𝒱2

𝜕𝑠2

+
1
2

(︂
𝜕𝒰1

𝜕𝑠2
+
𝜕𝒰2

𝜕𝑠1

)︂(︂
𝜕𝒱1

𝜕𝑠2
+
𝜕𝒱2

𝜕𝑠1

)︂
+ 𝒰3𝒱3

]︃
d𝑠1 d𝑠2.
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The associated norm is equivalent to the usual norm of [𝐻1
Γ0

(𝜔)]2 × 𝐿2(𝜔).
Denote 𝐷𝐼 the space of inextensional displacements

𝐷𝐼
.=
{︂

Φ ∈ H | 𝜕Φ1

𝜕𝑠1
+

1
𝑎

Φ3 = 0,
𝜕Φ2

𝜕𝑠2
= 0,

𝜕Φ1

𝜕𝑠2
+
𝜕Φ2

𝜕𝑠1
= 0

}︂
.

A displacement 𝒱 belongs to 𝐷𝐼 if and only if there exists (𝑉1, 𝑉2) ∈ 𝐻1
0 (0, 𝑎𝜋) ×𝐻2

0 (0, 𝑎𝜋) such that for a.e.
(𝑠1, 𝑠2) ∈ 𝜔

𝒱2(𝑠1, 𝑠2) = 𝑉2(𝑠1),
𝒱1(𝑠1, 𝑠2) = −𝑠𝑐

2𝑉
′
2(𝑠1) + 𝑉1(𝑠1),

𝒱3(𝑠1, 𝑠2) = 𝑎
(︀
𝑠𝑐
2𝑉

′′

2 (𝑠1)− 𝑉 ′1(𝑠1)
)︀
.

𝑉1 ∈ 𝐻1
0 (0, 𝑎𝜋), 𝑉2 ∈ 𝐻2

0 (0, 𝑎𝜋), (5.1)

Here we set
𝑠𝑐
1 = 𝑠1 −

𝑎𝜋

2
, 𝑠𝑐

2 = 𝑠2 −
𝑙

2
·

The map 𝒱 ∈ 𝐷𝐼 ↦−→ (𝑉1, 𝑉2) ∈ 𝐻1
0 (0, 𝑎𝜋)×𝐻2

0 (0, 𝑎𝜋) is one to one and onto.
Denote

D𝐼 = 𝐷𝐼 ∩
(︀
[𝐻1

Γ0
(𝜔)]2 ×𝐻2

Γ0
(𝜔)
)︀
.

Note that the limit of the mid surface displacement of the shell 𝒰 belongs to D𝐼 .
We equip 𝐷𝐼 (resp. D𝐼) with the semi-norm

‖𝒱‖𝐷𝐼
= ‖𝒱3‖𝐿2(𝜔), (resp. ‖𝒱‖D𝐼

= ‖𝒱3‖𝐻2(𝜔)).

Lemma 5.1. The semi-norm ‖ · ‖𝐷𝐼
(resp. ‖ · ‖D𝐼

) is a norm equivalent to the norm of the product space
[𝐻1(𝜔)]2 × 𝐿2(𝜔) (resp. [𝐻1(𝜔)]2 ×𝐻2(𝜔)).

Moreover, there exist two constants 𝑐, 𝐶 such that for every 𝒱 ∈ 𝐷𝐼 (resp. 𝒱 ∈ D𝐼) one has

𝑐
(︀
‖𝑉1‖2𝐻1

0 (0,𝑎𝜋) + ‖𝑉2‖2𝐻2
0 (0,𝑎𝜋)

)︀
≤ ‖𝒱‖2𝐷𝐼

≤ 𝐶
(︀
‖𝑉1‖2𝐻1

0 (0,𝑎𝜋) + ‖𝑉2‖2𝐻2
0 (0,𝑎𝜋)

)︀
,(︀

resp. 𝑐
(︀
‖𝑉1‖2𝐻3

0 (0,𝑎𝜋) + ‖𝑉2‖2𝐻4
0 (0,𝑎𝜋)

)︀
≤ ‖𝒱‖2D𝐼

≤ 𝐶
(︀
‖𝑉1‖2𝐻3

0 (0,𝑎𝜋) + ‖𝑉2‖2𝐻4
0 (0,𝑎𝜋)

)︀)︀
where (𝑉1, 𝑉2) are associated to 𝒱 by (5.1).

Proof. see Appendix A. �

5.2. Extensional displacements

Denote 𝐷𝐸 the orthogonal subspace of 𝐷𝐼 in H for the scalar product of H.
For every 𝜑 in 𝐿2(𝜔), denote

ℳ2(𝜑)(𝑠1) =
1
𝑙

∫︁ 𝑙

0

𝜑(𝑠1, 𝑠2) d𝑠2, ℳ𝑐
2(𝜑)(𝑠1) =

1
𝑙

∫︁ 𝑙

0

𝜑(𝑠1, 𝑠2)𝑠𝑐
2 d𝑠2 for a.e. 𝑠1 ∈ (0, 𝑎𝜋).

Note that for every 𝒰 ∈ 𝐷𝐸 , one has ℳ2(𝒰𝛼), ℳ𝑐
2(𝒰𝛼) ∈ 𝐻1

0 (0, 𝑎𝜋) while ℳ2(𝒰3), ℳ𝑐
2(𝒰3) ∈ 𝐿2(0, 𝑎𝜋)

(𝛼 ∈ {1, 2}).
Let 𝒰 be in 𝐷𝐸 , it satisfies < 𝒰 ,𝒱 >=

∫︀
𝜔
𝒰3𝒱3 d𝑠1 d𝑠2, ∀𝒱 ∈ 𝐷𝐼 . Thus,∫︁

𝜔

𝒰3(𝑠1, 𝑠2)
(︀
𝑠𝑐
2𝑉

′′

2 (𝑠1)− 𝑉
′

1 (𝑠1)
)︀

d𝑠1 d𝑠2 = 0, ∀𝑉1 ∈ 𝐻1
0 (0, 𝑎𝜋), ∀𝑉2 ∈ 𝐻2

0 (0, 𝑎𝜋).

That gives
ℳ2(𝒰3)(𝑠1) = 𝐶1, ℳ𝑐

2(𝒰3)(𝑠1) = 𝐶2𝑠
𝑐
1 + 𝐶3,

(𝐶1, 𝐶2, 𝐶3) ∈ R3 for a.e. 𝑠1 ∈ (0, 𝑎𝜋).
(5.2)
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Hence

𝐷𝐸 =
{︂
𝒰 ∈ H | dℳ2(𝒰3)

d𝑠1
=

d2ℳ𝑐
2(𝒰3)

d𝑠21
= 0 in (0, 𝑎𝜋)

}︂
.

We equip 𝐷𝐸 with the norm

‖Φ‖𝐸 =

√︃∫︁
𝜔

[︂
1
2

⃒⃒⃒𝜕Φ1

𝜕𝑠1
+

1
𝑎

Φ3

⃒⃒⃒2
+
⃒⃒⃒𝜕Φ2

𝜕𝑠2

⃒⃒⃒2
+

1
2

⃒⃒⃒𝜕Φ1

𝜕𝑠2
+
𝜕Φ2

𝜕𝑠1

⃒⃒⃒2]︂
d𝑠1 d𝑠2.

Endowed with this norm, 𝐷𝐸 is not a Hilbert space. We denote with D𝐸 the completion of 𝐷𝐸 for this norm.

Lemma 5.2. For every 𝒰 in D𝐸, one has

‖𝒰2‖𝐻1(0,𝑙;𝐿2(0,𝑎𝜋)) + ‖𝒰1‖𝐻1(0,𝑙;(𝐻1(0,𝑎𝜋))′) + ‖𝒰3‖𝐿2(0,𝑙;(𝐻2(0,𝑎𝜋))′) ≤ 𝐶‖𝒰‖𝐸 . (5.3)

Proof. See Appendix A. �

Now, consider the field 𝒰𝜀, the mid-surface displacement associated to 𝑢𝜀 the solution of the variational
problem (6.5). This field belongs to H. We decompose it as the sum of an inextensional displacement 𝒰𝐼,𝜀 and
an extensional one 𝒰𝐸,𝜀. By the definition of ‖·‖𝐸 and Lemma 1.7 we obtain

‖𝒰𝐸,𝜀‖𝐸 ≤
2∑︁

𝛼,𝛽=1

⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝒰𝜀

𝜕𝑠𝛼
· t𝛽 +

𝜕𝒰𝜀

𝜕𝑠𝛽
· t𝛼

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 𝐶

𝜀1/2
‖𝑒(𝑢𝜀)‖𝐿2(𝒬*𝜀) ≤ 𝐶𝜀.

Lemma 5.3. There exist a subsequence (still denoted {𝜀}) and 𝒰𝐸 ∈ D𝐸 such that

1
𝜀
𝒰𝐸,𝜀,1 ⇀ 𝒰𝐸,1 weakly in 𝐻1(0, 𝑙; (𝐻1(0, 𝑎𝜋))′),

1
𝜀
𝒰𝐸,𝜀,2 ⇀ 𝒰𝐸,2 weakly in 𝐻1(0, 𝑙;𝐿2(0, 𝑎𝜋)),

1
𝜀
𝒰𝐸,𝜀,3 ⇀ 𝒰𝐸,3 weakly in 𝐿2(0, 𝑙; (𝐻2(0, 𝑎𝜋))′).

Proof. From Lemma 5.2, one has

‖𝒰𝐸,𝜀,1‖𝐻1(0,𝑙;(𝐻1(0,𝑎𝜋))′) + ‖𝒰𝐸,𝜀,2‖𝐻1(0,𝑙;𝐿2(0,𝑎𝜋)) + ‖𝒰𝐸,𝜀,3‖𝐿2(0,𝑙;(𝐻2(0,𝑎𝜋))′) ≤ 𝐶𝜀,

which yields the claim. �

Going back to the expressions for 𝒵𝛼𝛽 introduced Lemma 3.1 and Proposition 4.5 we get with Lemma 5.3
that

𝒵𝛼𝛽 =
1
2

[︃
𝜕𝒰𝐸

𝜕𝑠𝛼
t𝛽 +

𝜕𝒰𝐸

𝜕𝑠𝛽
t𝛼

]︃
.

6. The linear elasticity problem

Let 𝑎𝑖𝑗𝑘𝑙 ∈ 𝐿∞(𝑌 ), 𝑖, 𝑗, 𝑘, 𝑙 ∈ {1, 2, 3} and it should satisfy both the symmetry condition

𝑎𝑖𝑗𝑘𝑙(𝑦) = 𝑎𝑗𝑖𝑘𝑙(𝑦) = 𝑎𝑘𝑙𝑖𝑗(𝑦) for a.e. 𝑦 ∈ 𝑌, (6.1)

and the coercivity condition (𝑐0 > 0)

𝑎𝑖𝑗𝑘𝑙(𝑦)𝜏𝑖𝑗𝜏𝑘𝑙 ≥ 𝑐0𝜏𝑖𝑗𝜏𝑖𝑗 for a.e. 𝑦 ∈ 𝑌, (6.2)
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where 𝜏 is a 3× 3 symmetric real matrix.
The coefficients 𝑎𝜀

𝑖𝑗𝑘𝑙 of the Hooke’s tensor on the shell for 𝑥 = Φ(𝑠) are given by

𝑎𝜀
𝑖𝑗𝑘𝑙(𝑥) = 𝑎𝑖𝑗𝑘𝑙

(︂{︂
𝑠′

𝜀

}︂
𝑌 ′
,
𝑠3
𝜀

)︂
for a.e. 𝑥 ∈ 𝒬*𝜀, (6.3)

𝜎𝜀
𝑖𝑗(𝑣) = 𝑎𝜀

𝑖𝑗𝑘𝑙𝑒𝑘𝑙(𝑣) ∀𝑣 ∈ 𝑉 *𝜀 . (6.4)

For a given applied force 𝑓𝜀 the displacement 𝑢𝜀 of a shell is the solution to the linear elasticity problem⎧⎨⎩
Find 𝑢𝜀 ∈ 𝑉 *𝜀 such that∫︁
𝒬*𝜀
𝜎𝜀(𝑢𝜀) : 𝑒(𝑣) d𝑥 =

∫︁
𝒬*𝜀
𝑓𝜀 𝑣 d𝑥, ∀𝑣 ∈ 𝑉 *𝜀 ,

(6.5)

where the colon denotes the classical Frobenius scalar product.

6.1. Assumptions on the forces

We assume that the body forces are given by

𝑓𝜀(𝑠1, 𝑠2, 𝑠3) = 𝜀2𝑓(𝑠1, 𝑠2) + 𝜀𝐹 (𝑠1, 𝑠2) + 𝑠3𝑔(𝑠1, 𝑠2) for a.e. (𝑠1, 𝑠2) ∈ 𝜔,

where 𝑓 = 𝑓1t1 + 𝑓2t2 + 𝑓3n, (𝑓1, 𝑓2, 𝑓3) ∈ 𝐿2(𝜔)3 and 𝑔 = 𝑔1t1 + 𝑔2t2, (𝑔1, 𝑔2) ∈ 𝐿2(𝜔)2.
Regarding 𝐹 , we want to choose this field so that it does not act with inextensional displacements. First, in

view of Lemma 5.2, we take

𝐹1 ∈ 𝐿2(0, 𝑙;𝐻1(0, 𝑎𝜋)), 𝐹2 ∈ 𝐿2(𝜔), 𝐹3 ∈ 𝐿2(0, 𝑙;𝐻2(0, 𝑎𝜋)). (6.6)

Then ∫︁
𝜔

𝐹 (𝑠1, 𝑠2) · 𝑉 (𝑠1, 𝑠2) d𝑠1 d𝑠2, 𝑉 ∈ 𝐷𝐸 ,

will be written

⟨𝐹, 𝑉 ⟩ =
∫︁ 𝑙

0

⟨𝐹1, 𝑉1⟩𝐻1(0,𝑎𝜋),(𝐻1(0,𝑎𝜋))′) d𝑠2 +
∫︁

𝜔

𝐹2 𝑉2 d𝑠1 d𝑠2

+
∫︁ 𝑙

0

⟨𝐹3, 𝑉3⟩𝐻2(0,𝑎𝜋),(𝐻2(0,𝑎𝜋))′) d𝑠2,

for every 𝑉 ∈ D𝐸 . Due to Lemma 5.2, one has

|⟨𝐹, 𝑉 ⟩| ≤
(︀
‖𝐹1‖𝐿2(0,𝐿;𝐻1(0,𝑎𝜋)) + ‖𝐹2‖𝐿2(𝜔) + ‖𝐹3‖𝐿2(0,𝐿;𝐻2(0,𝑎𝜋))

)︀
‖𝑉 ‖𝐸 , ∀𝑉 ∈ D𝐸 . (6.7)

Recall that this field has to satisfy for all 𝒱 ∈ 𝐷𝐼 that∫︁
𝜔

𝐹 (𝑠1, 𝑠2) · 𝒱(𝑠1, 𝑠2) d𝑠 = 0.

Hence, for all (𝑉1, 𝑉2) ∈ 𝐻1
0 (0, 𝑎𝜋)×𝐻2

0 (0, 𝑎𝜋)

∫︁
𝜔

⎛⎝𝐹1(𝑠1, 𝑠2)
𝐹2(𝑠1, 𝑠2)
𝐹3(𝑠1, 𝑠2)

⎞⎠ ·
⎛⎝ −𝑠𝑐

2𝑉
′

2 (𝑠1) + 𝑉1(𝑠1)
𝑉2(𝑠1)

𝑎(𝑠𝑐
2𝑉

′′

2 (𝑠1)− 𝑉 ′1 (𝑠1))

⎞⎠ d𝑠 = 0.
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We then get with partial integration and the boundary conditions for 𝑉1 and 𝑉2 that∫︁
𝜔

[︂(︂
𝜕𝐹1

𝜕𝑠1
𝑠𝑐
2 + 𝐹2 + 𝑎

𝜕2𝐹3

𝜕𝑠21
𝑠𝑐
2

)︂
𝑉2 +

(︂
𝐹1 + 𝑎

𝜕𝐹3

𝜕𝑠1

)︂
𝑉1

]︂
d𝑠1 d𝑠2 = 0,

holds for all 𝑉1 ∈ 𝐻1
0 (0, 𝑎𝜋) and 𝑉2 ∈ 𝐻2

0 (0, 𝑎𝜋). Hence, the field 𝐹 ∈ 𝐿2(𝜔)3 has to satisfy4

ℳ2(𝐹1) + 𝑎
dℳ2(𝐹3)

d𝑠1
= 0,

dℳ𝑐
2(𝐹1)

d𝑠1
+ℳ2(𝐹2) + 𝑎

d2ℳ𝑐
2(𝐹3)

d𝑠21
= 0. (6.8)

In Lemma 9.3 we show that there exists a field F ∈ 𝐿2(𝜔)3 such that

⟨𝐹, 𝑉 ⟩ =
∫︁

𝜔

(︀
F11𝑒11(𝑉 ) + F12𝑒12(𝑉 ) + F22𝑒22(𝑉 )

)︀
d𝑠1 d𝑠2.

Taking into account the holes, we need an additional assumption on the forces 𝐹 . We will see this in the proof
of the lemma below.

From now on, we assume that 𝐹 satisfies (6.6) and moreover 𝐹 ∈ 𝐻1(𝜔)3.

Lemma 6.1. One has ⃒⃒⃒⃒
⃒ 1
2𝜅

∫︁
𝒬*𝜀
𝑓𝜀 · 𝑢d𝑥− 𝜀3

(︃∫︁
𝜔*𝜀

𝑓 · 𝒰 d𝑠1 d𝑠2 +
1
𝜀

∫︁
𝜔*𝜀

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2

+
𝜅2

3𝑎

∫︁
𝜔*𝜀

𝑔𝛼 𝒰𝛼 d𝑠1 d𝑠2 +
𝜅2

3

∫︁
𝜔*𝜀

𝑔𝛼 ℛ𝛼 d𝑠1 d𝑠2

)︃⃒⃒⃒⃒
⃒

≤ 𝐶𝜀5/2
(︀
‖𝑓‖𝐿2(𝜔) + ‖𝑔‖𝐿2(𝜔) + ‖𝐹‖𝐿2(𝜔)

)︀
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .

(6.9)

Furthermore⃒⃒⃒⃒
⃒
∫︁
𝒬*𝜀
𝑓𝜀 · 𝑢d𝑥

⃒⃒⃒⃒
⃒ ≤ 𝐶𝜀3/2

(︀
‖𝑓‖𝐿2(𝜔) + ‖𝑔‖𝐿2(𝜔) + ‖𝐹3‖𝐿2(0,𝐿;𝐻2(0,𝑎𝜋)) + ‖𝐹‖𝐻1(𝜔)

)︀
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) . (6.10)

The constants do not depend on 𝜀.

Proof. Using the decomposition of 𝑢 we can write (see Rem. 1.3)∫︁
𝒬*𝜀
𝑓𝜀 · 𝑢d𝑥 =

∫︁
Ω*𝜀

𝑓𝜀 · 𝑢det
(︁
t1 +

𝑠3
𝑎

t1|t2|n
)︁

d𝑠

= 𝜀32𝜅
∫︁

𝜔*𝜀

𝑓 · 𝒰 d𝑠1 d𝑠2 + 2𝜅𝜀2
∫︁

𝜔*𝜀

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2 +
2𝜀3𝜅3

3𝑎

∫︁
𝜔*𝜀

𝑔𝛼 𝒰𝛼 d𝑠1 d𝑠2

+
2𝜀3𝜅3

3

∫︁
𝜔*𝜀

𝑔𝛼 ℛ𝛼 d𝑠1 d𝑠2 +
2𝜀4𝜅3

3𝑎

∫︁
𝜔*𝜀

𝐹 · ℛ d𝑠1 d𝑠2 +
2𝜀5𝜅3

3𝑎

∫︁
𝜔*𝜀

𝑓𝛼 ℛ𝛼 d𝑠1 d𝑠2

+
∫︁

Ω*𝜀

𝑠23
𝑎
𝑔 · 𝑢 𝑑𝑠+

∫︁
Ω*𝜀

𝜀

𝑎
𝑠3𝐹 · 𝑢 𝑑𝑠+

∫︁
Ω*𝜀

𝑠3
𝑎
𝜀2 𝑓3 𝑢 · n d𝑠.

(6.11)

4As example, take (ℱ2,ℱ3) ∈ 𝐿2(0, 𝑎𝜋)×𝐻2(0, 𝑎𝜋) and set

𝐹 (𝑠1, 𝑠2) = 𝑠𝑐
2

(︂
−𝑎

dℱ3

d𝑠1
(𝑠1)t1 + ℱ2(𝑠1)𝜀2 + ℱ3(𝑠1)n

)︂
for a.e. (𝑠1, 𝑠2) ∈ 𝜔.
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First, using the estimates (1.19)2 and (1.21)2 one gets⃒⃒⃒ ∫︁
Ω*𝜀

𝜀𝑠23 𝑔 · 𝑢d𝑠
⃒⃒⃒
≤ 𝐶𝜀9/2 ‖𝑔‖𝐿2(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,

⃒⃒⃒ ∫︁
Ω*𝜀

𝜀𝑠3𝐹 · 𝑢d𝑠
⃒⃒⃒
≤ 𝐶𝜀7/2‖𝐹‖𝐿2(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,⃒⃒⃒ ∫︁

Ω*𝜀

𝜀2𝑠3 𝑓3 𝑢 · n d𝑠
⃒⃒⃒
≤ 𝐶𝜀9/2 ‖𝑓‖𝐿2(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,

⃒⃒⃒ ∫︁
𝜔*𝜀

𝜀4𝐹 · ℛ d𝑠1 d𝑠2
⃒⃒⃒
≤ 𝐶𝜀5/2‖𝐹‖𝐿2(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,⃒⃒⃒ ∫︁

𝜔*𝜀

𝜀5𝑓𝛼 ℛ𝛼 d𝑠1 d𝑠2
⃒⃒⃒
≤ 𝐶𝜀7/2‖𝐹‖𝐿2(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .

Hence, (6.9) is proved. Now, (1.21)2 also leads to⃒⃒⃒⃒
⃒𝜀32𝜅

∫︁
𝜔*𝜀

𝑓 · 𝒰 d𝑠1 d𝑠2 +
2𝜀3𝜅3

3𝑎

∫︁
𝜔*𝜀

𝑔𝛼 𝒰𝛼 d𝑠1 d𝑠2 +
2𝜀3𝜅3

3

∫︁
𝜔*𝜀

𝑔𝛼 ℛ𝛼 d𝑠1 d𝑠2

⃒⃒⃒⃒
⃒

≤ 𝐶𝜀3/2(‖𝑓‖𝐿2(𝜔) + ‖𝑔‖𝐿2(𝜔)) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .

Now, it remains to estimate
∫︁

𝜔*𝜀

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2. For every function 𝜑 in 𝐿1(𝜔), we denote

ℳ𝜀(𝜑)(𝑠′) =
1

𝜀2|𝑌 ′|

∫︁
𝑌 ′
𝜑

(︂
𝜀

[︂
𝑠′

𝜀

]︂
𝑌 ′

+ 𝜀𝑧

)︂
d𝑧1 d𝑧2, for a.e. 𝑠′ ∈ ̂︀𝜔𝜀.

Function ℳ𝜀(𝜑) belongs to 𝐿1(̂︀𝜔𝜀) (see [9, 10] for the properties of the operator ℳ𝜀).
Recall that by (1.22), (1.21)2, Lemma 5.1 and (5.3) one has

‖𝒰‖𝐸 ≤
𝐶

𝜀1/2
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) , ‖𝒰𝐸‖𝐻1(𝜔) ≤

𝐶

𝜀3/2
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .

One has (see [10], Prop. 1.38)⃒⃒⃒ ∫︁
̂︀𝜔*𝜀
𝐹 · 𝒰𝐸 d𝑠1 d𝑠2 −

∫︁
̂︀𝜔*𝜀
𝐹 · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2

⃒⃒⃒
≤ 𝐶𝜀‖∇𝒰𝐸‖𝐿2(𝜔)‖𝐹‖𝐿2(𝜔),⃒⃒⃒ ∫︁

̂︀𝜔*𝜀
𝐹 · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2 −

∫︁
̂︀𝜔*𝜀
ℳ𝜀(𝐹 ) · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2

⃒⃒⃒
≤ 𝐶𝜀‖𝒰𝐸‖𝐿2(𝜔)‖∇𝐹‖𝐿2(𝜔).

Hence⃒⃒⃒ ∫︁
̂︀𝜔*𝜀
𝐹 · 𝒰𝐸 d𝑠1 d𝑠2 −

∫︁
̂︀𝜔*𝜀
ℳ𝜀(𝐹 ) · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2

⃒⃒⃒
≤ 𝐶𝜀‖𝒰𝐸‖𝐻1(𝜔)‖𝐹‖𝐻1(Ω) ≤

𝐶

𝜀1/2
‖𝐹‖𝐻1(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .

Since ℳ𝜀(𝐹 ) · ℳ𝜀(𝒰𝐸) is constant on every 𝜀-cell, that gives∫︁
̂︀𝜔*𝜀
ℳ𝜀(𝐹 ) · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2 =

|𝑌 ′*|
|𝑌 ′|

∫︁
̂︀𝜔𝜀

ℳ𝜀(𝐹 ) · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2.

Proceeding as above, one shows that⃒⃒⃒ ∫︁
̂︀𝜔𝜀

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2 −
∫︁
̂︀𝜔𝜀

ℳ𝜀(𝐹 ) · ℳ𝜀(𝒰𝐸) d𝑠1 d𝑠2
⃒⃒⃒
≤ 𝐶

𝜀1/2
‖𝐹‖𝐻1(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) .

Summarizing the above estimates and using (6.7) give (recall that there are no holes in Λ𝜀)⃒⃒⃒ ∫︁
𝜔*𝜀

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2 −
|𝑌 ′*|
|𝑌 ′|

∫︁
𝜔

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2
⃒⃒⃒
≤ 𝐶

𝜀1/2
‖𝐹‖𝐻1(𝜔) ‖𝑒(𝑢)‖𝐿2(𝒬*𝜀) ,

and
⃒⃒⃒ ∫︁

𝜔

𝐹 · 𝒰𝐸 d𝑠1 d𝑠2
⃒⃒⃒
≤ 𝐶

𝜀1/2

(︀
‖𝐹3‖𝐿2(0,𝐿;𝐻2(0,𝑎𝜋)) + ‖𝐹‖𝐻1(𝜔)

)︀
‖𝑒(𝑢)‖𝐿2(𝒬*𝜀)

which leads to (6.10). �
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Using now 𝑢 = 𝑢𝜀 as test function in (6.5) we obtain

‖𝑒(𝑢𝜀)‖𝐿2(𝒬*𝜀) ≤ 𝐶𝜀
3/2(‖𝑓‖𝐿2(𝜔) + ‖𝑔‖𝐿2(𝜔) + ‖𝐹3‖𝐿2(0,𝐿;𝐻2(0,𝑎𝜋)) + ‖𝐹‖𝐻1(𝜔)).

7. Unfolded limit problems

For every (𝒱𝐸 ,𝒱) in D𝐸 × D𝐼 we define the symmetric tensor ℰ(𝒱𝐸 ,𝒱) by

ℰ(𝒱𝐸 ,𝒱) =

⎛⎝𝒵11(𝒱𝐸)− 𝑦3Λ11(𝒱) 𝒵12(𝒱𝐸)− 𝑦3Λ12(𝒱) 0
𝒵12(𝒱𝐸)− 𝑦3Λ12(𝒱) 𝒵22(𝒱𝐸)− 𝑦3Λ22(𝒱) 0

0 0 0

⎞⎠
with

𝒵𝛼𝛽(𝒱) =
1
2

[︂
𝜕𝒱
𝜕𝑠𝛼

t𝛽 +
𝜕𝒱
𝜕𝑠𝛽

t𝛼

]︂
and

Λ11(𝒱) =
𝜕2𝒱3

𝜕𝑠21
− 1
𝑎

𝜕𝒱1

𝜕𝑠1
=

𝜕

𝜕𝑠1

(︂
𝜕𝒱
𝜕𝑠1

n
)︂
, Λ22(𝒱) =

𝜕2𝒱3

𝜕𝑠22
=

𝜕

𝜕𝑠2

(︂
𝜕𝒱
𝜕𝑠2

n
)︂
,

Λ12(𝒱) =
𝜕2𝒱3

𝜕𝑠1𝜕𝑠2
− 1
𝑎

𝜕𝒱1

𝜕𝑠2
=

𝜕

𝜕𝑠2

(︂
𝜕𝒱
𝜕𝑠1

n
)︂
·

Denote 𝐻1
per(𝑌

*) the subspace of 𝐻1(𝑌 *) containing the functions G periodic and

D .=
{︀
𝑣 = (𝒱𝐸 ,𝒱, ̂︀𝑣) ∈ D𝐼 × D𝐸 × 𝐿2(Ω;𝐻1

per(𝑌
*))3

}︀
.

For every 𝑣 ∈ D we consider the symmetric tensor

ℰ(𝒱𝐸 ,𝒱) + ℰ𝑦(̂︀𝑣)

and the semi-norm
‖𝑣‖D = ‖ℰ(𝒱𝐸 ,𝒱) + ℰ𝑦(̂︀𝑣)‖𝐿2(𝜔×𝑌 *) .

Lemma 7.1. Given the expressions (3.7) for 𝒱 ∈ D𝐼 , there exist 𝑐, 𝐶 ∈ R+ such that

𝑐 ‖𝒱‖2D𝐼
≤

2∑︁
𝛼,𝛽=1

‖Λ𝛼𝛽(𝒱)‖2𝐿2(𝜔) ≤ 𝐶 ‖𝒱‖
2
D𝐼
.

Proof. First, one has
2∑︁

𝛼,𝛽=1

‖Λ𝛼𝛽(𝒱)‖2𝐿2(𝜔) ≤ 𝐶
(︀
‖𝐷2𝒱3‖𝐿2(𝜔) + ‖∇𝒱1‖𝐿2(𝜔)

)︀
.

This inequality and Lemma 5.1 give the inequality in the right-hand side.
We prove the left-hand side of the inequality by contradiction. We assume that there exists a sequence (𝒱𝑛)𝑛∈N

in D𝐼 , such that

‖𝒱𝑛‖D𝐼
= 1,

2∑︁
𝛼,𝛽=1

‖Λ𝛼𝛽(𝒱𝑛)‖2𝐿2(𝜔) → 0 as 𝑛→∞.

By Lemma 5.1 and the expressions in (5.1), we can also consider a sequence (𝑉1,𝑛, 𝑉2,𝑛)𝑛∈N in 𝐻3
0 (0, 𝑎𝜋) ×

𝐻4
0 (0, 𝑎𝜋) with

‖𝑉1,𝑛‖2𝐻3
0 (0,𝑎𝜋) + ‖𝑉2,𝑛‖2𝐻4

0 (0,𝑎𝜋) = 1
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and the components Λ𝛼𝛽 can be expressed as

Λ11(𝒱𝑛) =
1
𝑎

(︁
𝑠𝑐
2𝑉

′′

2,𝑛(𝑠1)− 𝑉
′

1,𝑛(𝑠1)
)︁

+ 𝑎
(︁
𝑠𝑐
2𝑉

′′′′

2,𝑛(𝑠1)− 𝑉
′′′

1,𝑛

)︁
,

Λ12(𝒱𝑛) =
1
𝑎
𝑉
′

2,𝑛(𝑠1) + 𝑎𝑉
′′′

2,𝑛(𝑠1), Λ22(𝒱𝑛) = 0.
(7.1)

We have then that there exists (𝑉1, 𝑉2) in 𝐻3
0 (0, 𝑎𝜋)×𝐻4

0 (0, 𝑎𝜋) such that

(𝑉1,𝑛, 𝑉2,𝑛) ⇀ (𝑉1, 𝑉2) weakly in 𝐻3
0 (0, 𝑎𝜋)×𝐻4

0 (0, 𝑎𝜋).

By Sobolev embedding we then get

(𝑉1,𝑛, 𝑉2,𝑛) −→ (𝑉1, 𝑉2) strongly in 𝐻2
0 (0, 𝑎𝜋)×𝐻3

0 (0, 𝑎𝜋).

Moreover, since ‖Λ𝛼𝛽‖ −→ 0 for (𝛼, 𝛽) ∈ {(1, 1), (1, 2), (2, 2)} we have that

1
𝑎

(𝑠𝑐
2𝑉

′′

2 (𝑠1)− 𝑉
′

1 (𝑠1)) + 𝑎(𝑠𝑐
2𝑉

′′′′

2 (𝑠1)− 𝑉
′′′

1 ) = 0,
1
𝑎
𝑉
′

2 (𝑠1) + 𝑎𝑉
′′′

2 (𝑠1) = 0. (7.2)

Solving the differential equations with the respective boundary conditions we obtain that 𝑉2 = 𝑉1 = 0. Therefore,
we have that (𝑉1,𝑛, 𝑉2,𝑛) converges strongly to (0, 0) in 𝐻2

0 (0, 𝑎𝜋)×𝐻3
0 (0, 𝑎𝜋).

Considering again equation (7.1) and with our assumption that ‖Λ11(𝒱𝑛)‖𝐿2(𝜔) → 0, we also get (𝑉
′′′

1,𝑛, 𝑉
′′′′

2,𝑛)→
(0, 0) strongly in 𝐿2(0, 𝑎𝜋)2 and then the convergence (𝑉1,𝑛, 𝑉2,𝑛) → (0, 0) strongly in 𝐻3

0 (0, 𝑎𝜋) × 𝐻4
0 (0, 𝑎𝜋),

which contradicts the fact that ‖𝑉1‖2𝐻3
0 (0,𝑎𝜋) + ‖𝑉2‖2𝐻4

0 (0,𝑎𝜋) = 1 coming from the assumption ‖𝑉1,𝑛‖2𝐻3
0 (0,𝑎𝜋) +

‖𝑉2,𝑛‖2𝐻4
0 (0,𝑎𝜋) = 1 for all 𝑛 ∈ N. �

Lemma 7.2. Consider the space S .= R3 × R3 ×𝐻1
𝑝𝑒𝑟,0(𝑌 *)3 with the seminorm

‖(𝜏𝐴, 𝜏𝐵 , ̂︀𝑤)‖2S =
2∑︁

𝛼,𝛽=1
𝛼≤𝛽

⃦⃦⃦
𝜏𝛼𝛽
𝐴 + 𝑦3𝜏

𝛼𝛽
𝐵 + 𝑒𝛼𝛽,𝑦( ̂︀𝑤)

⃦⃦⃦2

𝐿2(𝑌 *)

+ ‖𝑒13,𝑦( ̂︀𝑤)‖2𝐿2(𝑌 *) + ‖𝑒23,𝑦( ̂︀𝑤)‖2𝐿2(𝑌 *) + ‖𝑒33,𝑦( ̂︀𝑤)‖2𝐿2(𝑌 *) .

Then this expression actually defines a norm on S equivalent to the product-norm.

Proof. We consider the field Φ ∈ 𝐻1(R3)3 given by

Φ1(𝑦) = 𝑦1
(︀
𝜏11
𝐴 + 𝑦3𝜏

11
𝐵

)︀
+ 𝑦2

(︀
𝜏12
𝐴 + 𝑦3𝜏

12
𝐵

)︀
,

Φ2(𝑦) = 𝑦2
(︀
𝜏22
𝐴 + 𝑦3𝜏

22
𝐵

)︀
+ 𝑦1

(︀
𝜏12
𝐴 + 𝑦3𝜏

12
𝐵

)︀
,

Φ3(𝑦) = −
[︂

(𝑦1)2

2
𝜏11
𝐵 +

(𝑦2)2

2
𝜏22
𝐵 + 𝑦2𝑦1𝜏

12
𝐵

]︂
.

Hence, we have
‖(𝜏𝐴, 𝜏𝐵 , ̂︀𝑤)‖S = ‖ℰ𝑦(Φ + ̂︀𝑤)‖𝐿2(𝑌 *) .

We will now show that ‖ℰ𝑦(Φ + ̂︀𝑤)‖𝐿2(𝑌 *) = 0 =⇒ Φ = 0, ̂︀𝑤 = 0.
Consider the case that ℰ𝑦(Φ + ̂︀𝑤) = 0, which yields that Φ + ̂︀𝑤 is a rigid displacement. Hence, there exist

𝑎, 𝑏 ∈ R3 such that

Φ + ̂︀𝑤 = 𝑟, 𝑟(𝑦) =

⎛⎝𝑎1 + 𝑏2𝑦3 − 𝑏3𝑦2
𝑎2 + 𝑏3𝑦1 − 𝑏1𝑦3
𝑎3 + 𝑏1𝑦2 − 𝑏2𝑦1

⎞⎠ .
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Since, ̂︀𝑤 is a periodic function with period p1, p2, one has (Φ − 𝑟)(𝑦 + p𝑖) = (Φ − 𝑟)(𝑦) for a.e. 𝑦 ∈
(︀
R2 ∖⋃︀

𝜉∈G(𝜉 + 𝑆)
)︀
× (−𝜅, 𝜅). Considering the first two components yields the equations

𝜏11
𝐴 + 𝑦3𝜏

11
𝐵 = 0, 𝜏12

𝐴 + 𝑦3𝜏
12
𝐵 = −𝑏3,

𝜏22
𝐴 + 𝑦3𝜏

22
𝐵 = 0, 𝜏12

𝐴 + 𝑦3𝜏
12
𝐵 = 𝑏3.

for a.e. 𝑦3 ∈ (−𝜅, 𝜅),

Therefore, we obtain 𝜏11
𝐴 = 𝜏11

𝐵 = 𝜏22
𝐴 = 𝜏22

𝐵 = 𝜏12
𝐴 = 𝜏12

𝐵 = 0 and 𝑏3 = 0. Now, the equality of the third
component yields 𝑏1 = 𝑏2 = 0. Finally, we conclude that Φ = 0, 𝑟 is a constant displacement and sincê︀𝑤 ∈ 𝐻1

𝑝𝑒𝑟,0(𝑌 *)3 the displacement 𝑟 = 0 and therefore ̂︀𝑤 = 0, which proves that ‖ · ‖S is a norm.
By contradiction we easily prove that there exists a constant 𝐶 > 0 such that

𝐶
(︀
|𝜏𝐴|+ |𝜏𝐵 |+ ‖ ̂︀𝑤‖𝐻1(𝑌 *)

)︀
≤ ‖(𝜏𝐴, 𝜏𝐵 , ̂︀𝑤)‖S , ∀(𝜏𝐴, 𝜏𝐵 , ̂︀𝑤)) ∈ S,

which ends the proof. �

Lemma 7.3. The semi-norm ‖·‖D is a norm equivalent to the product-norm of D𝐼 × D𝐸 × 𝐿2(Ω;𝐻1
per(𝑌

*))3.

Proof. By the definition of ‖·‖D𝐼
, we have that

‖𝑣‖2D =
2∑︁

𝛼,𝛽=1

‖𝒵𝛼𝛽(𝒱𝐸)− 𝑦3Λ𝛼𝛽(𝒱) + 𝑒𝛼𝛽,𝑦(̂︀𝑣)‖2𝐿2(𝜔×𝑌 *)

+ 2 ‖𝑒13,𝑦(̂︀𝑣)‖2𝐿2(𝜔×𝑌 *) + 2 ‖𝑒23,𝑦(̂︀𝑣)‖2𝐿2(𝜔×𝑌 *) + 2 ‖𝑒33,𝑦(̂︀𝑣)‖2𝐿2(𝜔×𝑌 *) .

We may further note that we have

‖ℰ(𝒱𝐸 ,𝒱)‖2𝐿2(Ω) =
2∑︁

𝛼,𝛽=1

∫︁
Ω

(𝑍𝛼𝛽(𝒱𝐸) + 𝑦3Λ𝛼𝛽(𝒱𝐼))2 d𝑠

= 2𝜅
2∑︁

𝛼,𝛽=1

‖𝒵𝛼𝛽(𝒱𝐸)‖2𝐿2(𝜔) +
2𝜅3

3

2∑︁
𝛼,𝛽=1

‖Λ𝛼𝛽(𝒱)‖2𝐿2(𝜔) .

We obtain with Lemma 7.2 and the equivalence of norms that

𝑐

⎛⎝ 2∑︁
𝛼,𝛽=1

‖𝒵𝛼𝛽‖𝐿2(𝜔) +
2∑︁

𝛼,𝛽=1

‖Λ𝛼𝛽‖𝐿2(𝜔) + ‖̂︀𝑣‖𝐿2(𝜔×𝑌 *)

⎞⎠ ≤ ‖𝒱‖D𝐼

≤ 𝐶

⎛⎝ 2∑︁
𝛼,𝛽=1

‖𝒵𝛼𝛽‖𝐿2(𝜔) +
2∑︁

𝛼,𝛽=1

‖Λ𝛼𝛽‖𝐿2(𝜔) + ‖̂︀𝑣‖𝐿2(𝜔×𝑌 *)

⎞⎠ .

Further note that
2∑︁

𝛼,𝛽=1

‖𝒵𝛼𝛽(𝒱𝐸)‖2𝐿2(𝜔) = ‖𝒱𝐸‖2𝐸 .

Besides, with Lemma 7.1 we obtain that

𝑐 ‖𝒱‖2D𝐼
≤

2∑︁
𝛼,𝛽=1

‖Λ𝛼𝛽(𝒱)‖2𝐿2(𝜔) ≤ 𝐶 ‖𝒱‖
2
D𝐼
.

Finally, we can conclude

𝑐
(︁
‖𝒱𝐸‖𝐸 + ‖𝒱‖D𝐼

+ ‖̂︀𝑣‖𝐿2(𝜔×𝑌 *)

)︁
≤ ‖𝑣‖D ≤ 𝐶

(︁
‖𝒱𝐸‖𝐸 + ‖𝒱‖D𝐼

+ ‖̂︀𝑣‖𝐿2(𝜔×𝑌 *)

)︁
.

�
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Theorem 7.4. Let 𝑢𝜀 be the solution of the elasticity problem (6.5). Then the following convergence holds:

1
𝜀

Π𝜀

(︀
𝑒(𝑢𝜀)

)︀
→ ℰ(𝒰𝐸 ,𝒰) + ℰ𝑦(̂︀𝑢) strongly in 𝐿2(𝜔 × 𝑌 *)9, (7.3)

where (𝒰𝐸 ,𝒰 , ̂︀𝑢) ∈ D is the unique solution of the rescaled and unfolded problem

1
2𝜅

∫︁
𝜔×𝑌 *

𝑎𝑖𝑗𝑘𝑙 (𝐸𝑆,𝑖𝑗(𝒰𝐸 ,𝒰) + ℰ𝑖𝑗,𝑦(̂︀𝑢)) (𝐸𝑆,𝑘𝑙(𝒱𝐸 ,𝒱) + ℰ𝑘𝑙,𝑦(̂︀𝑣)) d𝑠′ d𝑦

= |𝑌
′*|
(︂∫︁

𝜔

(︂
𝑓 · 𝒱 +

𝜅2

3𝑎
𝑔𝛼𝒱𝛼 −

𝜅2

3
𝑔𝛼

𝜕𝒱
𝜕𝑠𝛼

n

)︂
d𝑠′ + ⟨𝐹,𝒱𝐸⟩

)︂
, ∀(𝒱𝐸 ,𝒱, ̂︀𝑣) ∈ D.

(7.4)

Proof. Take 𝑣 = (𝒱𝐸 ,𝒱, ̂︀𝑣) such that

𝒱𝐸 ∈ 𝒞1(𝜔)3 ∩ D𝐸 , 𝒱 ∈ 𝒞2(𝜔)3 ∩ D𝐼 ,

and consider the test function 𝑣𝜀 = 𝑣𝜀,1 + 𝑣𝜀,2, where

𝑣𝜀,1(𝑠) = 𝒱(𝑠′) + 𝜀𝒱𝐸(𝑠′)− 𝑠3
[︂
𝜕(𝒱 + 𝜀𝒱𝐸)

𝜕𝑠𝛼
(𝑠′) · n(𝑠′)

]︂
t𝛼(𝑠′),

𝑣𝜀,2(𝑠) = 𝜀2̂︀𝑣 (︁𝑠′,{︁𝑠
𝜀

}︁)︁
,

for a.e. 𝑠 ∈ Ω𝜀

with ̂︀𝑣 ∈ 𝒞1(𝜔;𝐻1
per(𝑌

*)3) satisfying ̂︀𝑣(0, 𝑠2, 𝑦) = ̂︀𝑣(𝑎𝜋, 𝑠2, 𝑦) for a.e. (𝑠2, 𝑦) ∈ (0, 𝐿)× 𝑌 *.
We calculate the elements 𝑒12(𝑣𝜀,1) and 𝑒13(𝑣𝜀,1), since the rest follows in a similar way. We obtain

𝑒12(𝑣𝜀,1) =
1
2

𝑎

𝑎+ 𝑠3

[︂
𝜕𝒱2

𝜕𝑠1
+ 𝜀

𝜕𝒱𝐸,2

𝜕𝑠1
− 𝑠3

(︂
𝜕2𝒱3

𝜕𝑠1𝜕𝑠2
+ 𝜀

𝜕2𝒱𝐸,3

𝜕𝑠1𝜕𝑠2

)︂
+
(︁

1 +
𝑠3
𝑎

)︁(︂𝜕𝒱1

𝜕𝑠2
+ 𝜀

𝜕𝒱𝐸,1

𝜕𝑠2

)︂
−
(︂
𝑠3 +

𝑠23
𝑎

)︂(︂
𝜕2𝒱3

𝜕𝑠1𝜕𝑠2
− 1
𝑎

𝜕𝒱1

𝜕𝑠2
+ 𝜀

(︂
𝜕2𝒱𝐸,3

𝜕𝑠1𝜕𝑠2
− 1
𝑎

𝜕𝒱𝐸,1

𝜕𝑠2

)︂)︂]︂
.

Applying the rescaling-unfolding operator Π𝜀 and dividing by 𝜀 yields with the properties for D𝐼 that

1
𝜀

Π𝜀(𝑒12(𝑣𝜀,1)) =
1
2

𝑎

𝑎+ 𝜀𝑦3

[︂(︂
𝜕𝒱𝐸,2

𝜕𝑠1
+
𝜕𝒱𝐸,1

𝜕𝑠2

)︂
− 2𝑦3

𝜕2𝒱3

𝜕𝑠1𝜕𝑠2
+ 2

𝑦3
𝑎

𝜕𝒱1

𝜕𝑠2

+
𝜀𝑦3
𝑎

𝜕𝒱𝐸,1

𝜕𝑠2
− 𝜀𝑦3

𝑎

𝜕2𝒱3

𝜕𝑠1𝜕𝑠2
+
𝜀𝑦3
𝑎

𝜕𝒱1

𝜕𝑠2
− 𝜀𝑦3

𝜕2𝒱𝐸,3

𝜕𝑠1𝜕𝑠2
−
(︂
𝜀+

𝜀2

𝑎

)︂(︂
𝜕2𝒱𝐸,3

𝜕𝑠1𝜕𝑠2
− 1
𝑎

𝜕𝒱𝐸,1

𝜕𝑠2

)︂]︂
−→ 1

2
𝒵12(𝒱𝐸)− 𝑦3

(︂
𝜕2𝒱3

𝜕𝑠1𝜕𝑠2
− 𝜕𝒱1

𝜕𝑠2

)︂
strongly in 𝐿2(𝜔 × 𝑌 *)9.

For 𝑒13(𝑣𝜀,1) we then obtain

𝑒13(𝑣𝜀,1) =
1
2

𝑎

𝑎+ 𝑠3

[︃(︂
𝜕𝒱3

𝜕𝑠1
− 1
𝑎
𝒱1

)︂
+ 𝜀

(︂
𝜕𝒱𝐸,3

𝜕𝑠1
− 1
𝑎
𝒱1

)︂
+
𝑠3
𝑎

(︂
𝜕𝒱3

𝜕𝑠1
− 1
𝑎
𝒱1

)︂

+
𝑠3𝜀

𝑎

(︂
𝜕𝒱𝐸,3

𝜕𝑠1
− 1
𝑎
𝒱1

)︂
+
(︁

1 +
𝑠3
𝑎

)︁(︂
−
(︂
𝜕𝒱3

𝜕𝑠1
− 1
𝑎
𝒱1

)︂
− 𝜀

(︂
𝜕𝒱𝐸,3

𝜕𝑠1
− 1
𝑎
𝒱1

)︂)︂]︃
= 0.

In conclusion we get that

1
𝜀

Π𝜀(𝑒(𝑣𝜀,1)) −→ ℰ(𝒱𝐸 ,𝒱) strongly in 𝐿2(𝜔 × 𝑌 *)9.



ASYMPTOTIC ANALYSIS FOR PERIODIC PERFORATED SHELLS 23

In the next step we focus on the calculation for 𝑒𝑖𝑗(𝑣𝜀,2), where we once again just focus on 𝑒12 and 𝑒13. One
has

𝑒12(𝑣𝜀,2)(𝑠) =
𝜀2

2

(︂
𝑎

𝑎+ 𝑠3

𝜕̂︀𝑣
𝜕𝑠1

t2 +
𝜕̂︀𝑣
𝜕𝑠2

t1

)︂(︁
𝑠′,
{︁𝑠
𝜀

}︁)︁
+
𝜀

2

(︂
𝑎

𝑎+ 𝑠3

𝜕̂︀𝑣
𝜕𝑦1

t2 +
𝜕̂︀𝑣
𝜕𝑦2

t1

)︂(︁
𝑠′,
{︁𝑠
𝜀

}︁)︁
,

𝑒13(𝑣𝜀,2)(𝑠) =
𝜀2

2

(︂
𝑎

𝑎+ 𝑠3

𝜕̂︀𝑣
𝜕𝑠1

n +
𝜕̂︀𝑣
𝜕𝑠3

t1

)︂(︁
𝑠′,
{︁𝑠
𝜀

}︁)︁
+
𝜀

2

(︂
𝑎

𝑎+ 𝑠3

𝜕̂︀𝑣
𝜕𝑦1

n +
𝜕̂︀𝑣
𝜕𝑦3

t1

)︂(︁
𝑠′,
{︁𝑠
𝜀

}︁)︁
·

Considering now
1
𝜀

Π𝜀(𝑒12(𝑣𝜀,2)) and
1
𝜀

Π𝜀(𝑒13(𝑣𝜀,2)), we obtain

1
𝜀

Π𝜀(𝑒12(𝑣𝜀,2)) −→ 𝑒𝑦,12(̂︀𝑣) strongly in 𝐿2(𝜔 × 𝑌 *),

1
𝜀

Π𝜀(𝑒13(𝑣𝜀,2)) −→ 𝑒𝑦,13(̂︀𝑣) strongly in 𝐿2(𝜔 × 𝑌 *),

which then yields
1
𝜀

Π𝜀(𝑒(𝑣𝜀,2)) −→ ℰ𝑦(̂︀𝑣) strongly in 𝐿2(𝜔 × 𝑌 *)9,

therefore
1
𝜀

Π𝜀(𝑒(𝑣𝜀)) −→ ℰ(𝒱𝐸 ,𝒱) + ℰ𝑦(̂︀𝑣) strongly in 𝐿2(𝜔 × 𝑌 *)9.

Plugging in our test function 𝑣𝜀 into the weak formulation (6.5), applying the rescaling-unfolding operator on
both sides. Dividing by 2𝜅𝜀3 and passing to the limit, we obtain (7.4) with the chosen test functions (regarding
the right-hand side, we use the results from Lem. 6.1 and [10], Prop. 4.8 to get an integral over the whole
domain 𝜔 at the limit). Then, by density of 𝒞1(𝜔)3 ∩ D𝐸 in D𝐸 , 𝒞2(𝜔)3 ∩ D𝐼 in D𝐼 and 𝒞1(𝜔;𝐻1

per(𝑌
*)3) in

𝐿2(𝜔;𝐻1
per(𝑌

*)3), this yields (7.4) for every (𝒱𝐸 ,𝒱, ̂︀𝑣) ∈ D.
Due to the coercivity of 𝑎𝑖𝑗𝑘𝑙 and Lemma A.1, we can apply Lax–Milgram theorem to the weak formulation

(7.4). Therefore, this problem has an unique solution. �

8. Homogenization of the shell

In this section we want to express the warping-microscopic displacement ̂︀𝑢 with respect to the macroscopic
𝒰𝐸 and 𝒰 . Therefore, choosing 𝒱 = 0 in equation (6.5) leads to∫︁

𝑌 *
𝑎𝑖𝑗𝑘𝑙 (𝐸𝑆,𝑖𝑗(𝒰𝐸 ,𝒰) + ℰ𝑖𝑗,𝑦(̂︀𝑢)) ℰ𝑘𝑙,𝑦(̂︀𝑣) d𝑦 = 0 ∀̂︀𝑣 ∈ 𝐻1

per(𝑌
*)3.

Hence, we can write ̂︀𝑢 in terms of (𝒰𝐸 ,𝒰). We define the 3 matrices

M11 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , M12 = M21 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , M22 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ ,

and introduce the 6 distinct correctors ((𝛼, 𝛽) ∈ {1, 2}2)̃︂
𝜒𝛼𝛽

𝐸 ∈ 𝐻1
per(𝑌

*)3, ̃︂
𝜒𝛼𝛽

𝐼 ∈ 𝐻1
per(𝑌

*)3, wherẽ︂𝜒12
𝐸 = ̃︂𝜒21

𝐸 ,
̃︂𝜒12

𝐼 = ̃︂𝜒21
𝐼 ,

and which are defined by∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙

(︂
M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂)︂
ℰ𝑘𝑙,𝑦( ̃︀𝜓) d𝑦 = 0,∫︁

𝑌 *
𝑎𝑖𝑗𝑘𝑙

(︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂)︂
ℰ𝑘𝑙,𝑦( ̃︀𝜓) d𝑦 = 0.

∀ ̃︀𝜓 ∈ 𝐻1
per(𝑌

*)3, (8.1)
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Hence, we can write ̂︀𝑢 as

̂︀𝑢(𝑠′, 𝑦) = 𝑒𝛼𝛽(𝒰𝐸)(𝑠′)̃︂𝜒𝛼𝛽
𝐸 (𝑦) + Λ𝛼𝛽(𝒰)(𝑠′)̃︂𝜒𝛼𝛽

𝐼 (𝑦) for a.e. (𝑠′, 𝑦) ∈ 𝜔 × 𝑌 *.

8.1. The limit problems in the shell’s mid surface

Theorem 8.1. The limit displacement (𝒰𝐸 ,𝒰) ∈ D𝐸 × D𝐼 solves the homogenized problem∫︁
𝜔

[︁
𝑎hom

𝛼𝛽𝛼′𝛽′𝑒𝛼𝛽(𝒰𝐸)𝑒𝛼′𝛽′(𝒱𝐸) + 𝑏hom
𝛼𝛽𝛼′𝛽′

(︁
𝑒𝛼𝛽(𝒰𝐸)Λ𝛼′𝛽′(𝒱) (8.2)

+ Λ𝛼𝛽(𝒰)𝑒𝛼′𝛽′(𝒱𝐸)
)︁

+ 𝑐hom
𝛼𝛽𝛼′𝛽′Λ𝛼𝛽(𝒰)Λ𝛼′𝛽′(𝒱)

]︁
d𝑠′

=
|𝑌 ′*|
|𝑌 ′|

(︂∫︁
𝜔

(︂
𝑓 · 𝒱 +

𝜅2

3𝑎
𝑔𝛼𝒱𝛼 −

𝜅2

3
𝑔𝛼

𝜕𝒱
𝜕𝑠𝛼

n

)︂
d𝑠′ + ⟨𝐹,𝒱𝐸⟩

)︂
, ∀(𝒱𝐸 ,𝒱) ∈ D𝐸 × D𝐼 ,

where

𝑎hom
𝛼𝛽𝛼′𝛽′ =

1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂]︂
M𝛼′𝛽′

𝑘𝑙 d𝑦,

𝑏hom
𝛼𝛽𝛼′𝛽′ =

1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂]︂
M𝛼′𝛽′

𝑘𝑙 d𝑦,

𝑐hom
𝛼𝛽𝛼′𝛽′ =

1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂]︂
𝑦3M

𝛼′𝛽′

𝑘𝑙 d𝑦.

Proof. Consider equation (6.5) and choose the test function such that (𝒱𝐸 ,𝒱) ∈ D𝐸 ×D𝐼 and ̂︀𝑣 = 0. Moreover,
with the expression for ̂︀𝑢 we obtain for the left hand side in (6.5)

1
2𝜅

∫︁
𝜔×𝑌 *

𝑎𝑖𝑗𝑘𝑙(𝑦) (𝐸𝑆,𝑖𝑗(𝒰𝐸 ,𝒰) + ℰ𝑖𝑗,𝑦(̂︀𝑢))𝐸𝑆,𝑘𝑙(𝒱𝐸 ,𝒱) d𝑠′ d𝑦.

Hence, ∫︁
𝜔×𝑌 *

𝑎𝑖𝑗𝑘𝑙(𝑦)

[︃
𝑒𝛼𝛽(𝒰𝐸)(𝑠′)(M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂
(𝑦)) + Λ𝛼𝛽(𝒰)(𝑠′)

(︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂
(𝑦)
)︂]︃

×M𝛼′𝛽′

𝑘𝑙 [𝑒𝛼′𝛽′(𝒱𝑀 )(𝑠′) + 𝑦3Λ𝛼′𝛽′(𝒱)(𝑠′)] d𝑠′ d𝑦

= |𝑌 *|
(︂∫︁

𝜔

(︂
𝑓 · 𝒱 +

𝜅2

3𝑎
𝑔𝛼𝒱𝛼 −

𝜅2

3
𝑔𝛼

𝜕𝒱
𝜕𝑠𝛼

n
)︂

d𝑠′ + ⟨𝐹,𝒱𝐸⟩
)︂
. (8.3)

Computing the expression yields,

1
|𝑌 *|

∫︁
𝜔×𝑌 *

𝑎𝑖𝑗𝑘𝑙(𝑦)𝑒𝛼𝛽(𝒰𝐸)
(︂
M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂)︂
M𝛼′𝛽′

𝑘𝑙 𝑒𝛼′𝛽′(𝒱𝐸)

+ 𝑎𝑖𝑗𝑘𝑙(𝑦)Λ𝛼𝛽(𝒰)
(︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂)︂
M𝛼′𝛽′

𝑘𝑙 𝑒𝛼′𝛽′(𝒱𝐸)

+ 𝑎𝑖𝑗𝑘𝑙(𝑦)𝑒𝛼𝛽(𝒰𝐸)
(︂
M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂)︂
𝑦3M

𝛼′𝛽′

𝑘𝑙 Λ𝛼′𝛽′(𝒱)

+ 𝑎𝑖𝑗𝑘𝑙(𝑦)Λ𝛼𝛽(𝒰)
(︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂)︂
𝑦3M

𝛼′𝛽′

𝑘𝑙 Λ𝛼′𝛽′(𝒱) d𝑦 d𝑠′

=
|𝑌 ′*|
|𝑌 ′|

(︂∫︁
𝜔

(︂
𝑓 · 𝒱 +

𝜅2

3𝑎
𝑔𝛼𝒱𝛼 −

𝜅2

3
𝑔𝛼

𝜕𝒱
𝜕𝑠𝛼

n
)︂

d𝑠′ + ⟨𝐹,𝒱𝐸⟩
)︂
.

With the expressions for the homogenized coefficients we end up with equation (8.2). �
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Denote S2 the set of 2× 2 symmetric matrices.

Lemma 8.2. There exists a constant 𝐶 > 0 such that the homogenized coefficients satisfy

𝑎hom
𝛼𝛽𝛼′𝛽′ 𝜏

𝛼𝛽
𝐸 𝜏𝛼′𝛽′

𝐸 + 𝑏hom
𝛼𝛽𝛼′𝛽′

(︀
𝜏𝛼𝛽
𝐸 𝜏𝛼′𝛽′

𝐼 + 𝜏𝛼𝛽
𝐼 𝜏𝛼′𝛽′

𝐸

)︀
+ 𝑐hom

𝛼𝛽𝛼′𝛽′𝜏
𝛼𝛽
𝐼 𝜏𝛼′𝛽′

𝐼 ≥ 𝐶
(︀
𝜏𝛼𝛽
𝐸 𝜏𝛼𝛽

𝐸 + 𝜏𝛼𝛽
𝐼 𝜏𝛼𝛽

𝐼

)︀
∀(𝜏𝐸 , 𝜏𝐼) ∈ S2 × S2.

Proof. We first note that with the variational formulations (8.1) we can calculate the homogenized coefficients
as

𝑎hom
𝛼𝛽𝛼′𝛽′ =

1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂]︂[︂
M𝛼′𝛽′

𝑘𝑙 + ℰ𝑘𝑙,𝑦

(︂
𝜒𝛼′𝛽′

𝐸

)︂]︂
d𝑦,

𝑏hom
𝛼𝛽𝛼′𝛽′ =

1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂]︂[︂
M𝛼′𝛽′

𝑘𝑙 + ℰ𝑘𝑙,𝑦

(︂
𝜒𝛼′𝛽′

𝐸

)︂]︂
d𝑦

=
1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
M𝛼𝛽

𝑖𝑗 + ℰ𝑖𝑗,𝑦
(︂̃︂
𝜒𝛼𝛽

𝐸

)︂]︂[︂
𝑦3M

𝛼′𝛽′

𝑘𝑙 + ℰ𝑘𝑙,𝑦

(︂
𝜒𝛼′𝛽′

𝐼

)︂]︂
d𝑦,

𝑐hom
𝛼𝛽𝛼′𝛽′ =

1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦)

[︂
𝑦3M

𝛼𝛽
𝑖𝑗 + ℰ𝑖𝑗,𝑦

(︂̃︂
𝜒𝛼𝛽

𝐼

)︂]︂[︂
𝑦3M

𝛼′𝛽′

𝑘𝑙 + ℰ𝑘𝑙,𝑦

(︂
𝜒𝛼′𝛽′

𝐼

)︂]︂
d𝑦.

For every (𝜏𝐸 , 𝜏𝐼) ∈ S2 × S2, one has

𝑎hom
𝛼𝛽𝛼′𝛽′𝜏

𝛼𝛽
𝐸 𝜏𝛼′𝛽′

𝐸 + 𝑏hom
𝛼𝛽𝛼′𝛽′

(︁
𝜏𝛼𝛽
𝐸 𝜏𝛼′𝛽′

𝐼 + 𝜏𝛼𝛽
𝐼 𝜏𝛼′𝛽′

𝐸

)︁
+ 𝑐hom

𝛼𝛽𝛼′𝛽′𝜏
𝛼𝛽
𝐼 𝜏𝛼′𝛽′

𝐼

=
1
|𝑌 *|

∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙 [𝑀𝑖𝑗 + ℰ𝑖𝑗,𝑦(Ψ)] [𝑀𝑘𝑙 + ℰ𝑘𝑙,𝑦(Ψ)] d𝑦,

with 𝑀 =
(︁
𝜏𝛼𝛽
𝐸 + 𝑦3𝜏

𝛼𝛽
𝐼

)︁
M𝛼𝛽 , and Ψ = 𝜏𝛼𝛽

𝐸
̃︂
𝜒𝛼𝛽

𝐸 + 𝜏𝛼𝛽
𝐼
̃︂
𝜒𝛼𝛽

𝐼 . By the coercivity of 𝑎𝑖𝑗𝑘𝑙, see (6.2), we obtain∫︁
𝑌 *
𝑎𝑖𝑗𝑘𝑙(𝑦) [𝑀𝑖𝑗 + ℰ𝑖𝑗,𝑦(Ψ)] [𝑀𝑘𝑙 + ℰ𝑘𝑙,𝑦(Ψ)] d𝑦 ≥ 𝑐0

∫︁
𝑌 *

[𝑀𝑖𝑗 + ℰ𝑖𝑗,𝑦(Ψ)] [𝑀𝑖𝑗 + ℰ𝑖𝑗,𝑦(Ψ)] d𝑦.

Here we are again in the context of Lemma 7.2. This then yields with the equivalence of the norms that∫︁
𝑌 *

[𝑀𝑖𝑗 + ℰ𝑖𝑗,𝑦(Ψ)] [𝑀𝑖𝑗 + ℰ𝑖𝑗,𝑦(Ψ)] d𝑦 ≥ 𝐶
(︁
|𝜏𝐸 |2 + |𝜏𝐼 |2 + ‖Ψ‖2𝐿2(𝑌 *)

)︁
≥ 𝐶

(︁
𝜏𝛼𝛽
𝐸 𝜏𝛼𝛽

𝐸 + 𝜏𝛼𝛽
𝐼 𝜏𝛼𝛽

𝐼

)︁
∀(𝜏𝐸 , 𝜏𝐼) ∈ S2 × S2.

�

9. Different boundary condition

In this section we want to emphasize on a change of the boundary condition, such that the previously free
part is clamped, i.e. Γ0 = 𝜑([0, 𝜋]× {0} ∪ [0, 𝜋]× {𝑙}). We may note, that all presented estimates and resulting
limits are not affected by the change of boundary conditions until we consider the split of 𝒰 = 𝒰𝐼 + 𝒰𝐸 . As
in (5.1), we first obtain that 𝒰𝐼 can be presented as

𝒰2(𝑠1, 𝑠2) = 𝑈2(𝑠1), 𝒰1(𝑠1, 𝑠2) = −𝑠𝑐
2𝑈

′
2(𝑠1) + 𝑈1(𝑠1), 𝒰3(𝑠1, 𝑠2) = 𝑎

(︀
𝑠𝑐
2𝑈

′′

2 (𝑠1)− 𝑈 ′1(𝑠1)
)︀
,

𝑈1 ∈ 𝐻1(0, 𝑎𝜋), 𝑈2 ∈ 𝐻2(0, 𝑎𝜋). With respect to our new boundary conditions we need that 𝒰2(𝑠1, 0) =
𝒰2(𝑠1, 𝑙) = 0, for a.e. 𝑠1. Hence, we have 𝑈2(𝑠1) = 0 for a.e. 𝑠1 ∈ (0, 𝑎𝜋). With the same reasoning we get
𝑈1(𝑠1) = 0 for a.e. 𝑠1 ∈ (0, 𝑎𝜋). Therefore 𝐷𝐼 = D𝐼 = {0}.
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Remark 9.1. In the applied forces we consider 𝐹 such that

𝐹1 ∈ 𝐿2(0, 𝑙;𝐻1
0 (0, 𝑎𝜋)) ∩𝐻1(𝜔), 𝐹2 ∈ 𝐻1(𝜔), 𝐹3 ∈ 𝐿2(0, 𝑙;𝐻2

0 (0, 𝑎𝜋)) ∩𝐻1(𝜔). (9.1)

In the case of a fully clamped shell along 𝜕𝜔 the assumptions on the forces do not change and we obtain
𝐷𝐼 = D𝐼 = 0. Hence, we immediately get equation (9.2).

Lemma 9.2. For every 𝒰 in D𝐸, where Γ0 is given above, one has

‖𝒰2‖𝐻1(0,𝑙;𝐿2(0,𝑎𝜋)) + ‖𝒰1‖𝐻1(0,𝑙;(𝐻1(0,𝑎𝜋))′) + ‖𝒰3‖𝐿2(0,𝑙;(𝐻2(0,𝑎𝜋))′) ≤ 𝐶‖𝒰‖𝐸 .

Proof. This estimate is an immediate consequence of the fact that 𝐷𝐸 = 𝐻1
0 (𝜔) × 𝐻1

0 (𝜔) × 𝐿2(𝜔) and
Lemma 5.2. �

If we consider the linear elasticity problem presented in Section 6 and getting to the limit, as presented
earlier, we obtain that the limit homogenized equation is given by∫︁

𝜔

𝑎hom
𝛼𝛽𝛼′𝛽′𝑒𝛼𝛽(𝒰𝐸)𝑒𝛼′𝛽′(𝒱𝐸) d𝑠′ =

|𝑌 ′*|
|𝑌 ′|
⟨𝐹,𝒱𝐸⟩, ∀𝒱𝐸 ∈ D𝐸 . (9.2)

Now, we show that ⟨𝐹,𝒱𝐸⟩ can be expressed in terms of 𝑒𝛼′𝛽′(𝒱𝐸) for every 𝑉 ∈ D𝐸 .
Denote ℱ and ̃︀ℱ the fields defined by

ℱ(·, 0) = 0,
𝜕ℱ
𝜕𝑠2

= 𝐹, ̃︀ℱ(·, 0) = 0,
𝜕 ̃︀ℱ
𝜕𝑠2

= ℱ .

Recall that the components of 𝐹 are given by (9.1).

Lemma 9.3. For every 𝑉 ∈ D𝐸 one has

⟨𝐹,𝒱𝐸⟩ =
∫︁

𝜔

(︀
F11𝑒11(𝑉 ) + F12𝑒12(𝑉 ) + F22𝑒22(𝑉 )

)︀
d𝑠1 d𝑠2,

where F11 = 𝑎𝐹3, F12 = −2(ℱ1 + 𝑎𝜕1ℱ3), F22 = −ℱ2 + 𝜕1
̃︀ℱ1 + 𝑎𝜕11

̃︀ℱ3.

Proof. Consider 𝑉 ∈ 𝐷𝐸 . One has∫︁
𝜔

𝐹3 𝑉3 d𝑠1 d𝑠2 = 𝑎

∫︁
𝜔

𝐹3 𝑒11(𝑉 ) d𝑠1 d𝑠2 − 𝑎
∫︁

𝜔

𝐹3 𝜕1𝑉1 d𝑠1 d𝑠2,

= 𝑎

∫︁
𝜔

𝐹3 𝑒11(𝑉 ) d𝑠1 d𝑠2 + 𝑎

∫︁
𝜔

𝜕1𝐹3 𝑉1 d𝑠1 d𝑠2.

Then ∫︁
𝜔

(𝐹1 + 𝑎𝜕1𝐹3)𝑉1 d𝑠1 d𝑠2 = −
∫︁

𝜔

(︀
ℱ1 + 𝑎𝜕1ℱ3

)︀
𝜕2𝑉1 d𝑠1 d𝑠2

= −2
∫︁

𝜔

(︀
ℱ1 + 𝑎𝜕1ℱ3

)︀
𝑒12(𝑉 ) d𝑠1 d𝑠2 +

∫︁
𝜔

(︀
ℱ1 + 𝑎𝜕1ℱ3

)︀
𝜕1𝑉2 d𝑠1 d𝑠2

= −2
∫︁

𝜔

(︀
ℱ1 + 𝑎𝜕1ℱ3

)︀
𝑒12(𝑉 ) d𝑠1 d𝑠2 −

∫︁
𝜔

(︀
𝜕1ℱ1 + 𝑎𝜕11ℱ3

)︀
𝑉2 d𝑠1 d𝑠2

and finally ∫︁
𝜔

(︀
𝐹2 − 𝜕1ℱ1 − 𝑎𝜕11ℱ3

)︀
𝑉2 d𝑠1 d𝑠2 = −

∫︁
𝜔

(︀
ℱ2 − 𝜕1

̃︀ℱ1 − 𝑎𝜕11
̃︀ℱ3

)︀
𝜕2𝑉2 d𝑠1 d𝑠2.
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Figure A.1. Cell 𝑌 ′ and the perforated domain 𝑌 ′*.

With those calculations we obtain for every 𝑉 in 𝐷𝐸∫︁
𝜔

𝐹 · 𝑉 d𝑠1 d𝑠2 =
∫︁

𝜔

(︀
𝐹1𝑉1 + 𝐹2𝑉2 + 𝐹3𝑉3

)︀
d𝑠1 d𝑠2

=
∫︁

𝜔

(︀
(𝐹1 + 𝑎𝜕1𝐹3)𝑉1 + 𝐹2𝑉2 + 𝑎𝐹3𝑒11(𝑉 )

)︀
d𝑠1 d𝑠2

=
∫︁

𝜔

(︀
− 2(ℱ1 + 𝑎𝜕1ℱ3)𝑒12(𝑉 ) + (𝐹2 − 𝜕1ℱ1 − 𝑎𝜕11ℱ3)𝑉2 + 𝑎𝐹3𝑒11(𝑉 )

)︀
d𝑠1 d𝑠2

=
∫︁

𝜔

(︀
− 2(ℱ1 + 𝑎𝜕1ℱ3)𝑒12(𝑉 ) + (−ℱ2 + 𝜕1

̃︀ℱ1 + 𝑎𝜕11
̃︀ℱ3)𝑒22(𝑉 ) + 𝑎𝐹3𝑒11(𝑉 )

)︀
d𝑠1 d𝑠2.

We conclude the proof by the density of 𝐷𝐸 in D𝐸 . �

Appendix A.

A.1. Proof of Proposition 1.1

There exists 𝜅0 > 0 such that

𝒪′𝜅0
=
{︀
𝑠 ∈ R2 ∖ 𝑇 | dist(𝑠, 𝑇 ) < 𝜅0

}︀
⊂ 𝑌

′*.

Since the boundary of 𝑇 is Lipschitz, there exist 𝑅′, 𝑅′1 > 0 and 𝑁 ≥ 2 open sets 𝒪′1, . . ., 𝒪′𝑁 such that

∙ 𝒪′𝑖 is included in a ball of radius 𝑅′ and is star-shaped with respect to a ball of radius 𝑅′1, 𝑖 ∈ {1, . . . , 𝑁},
∙ 𝒪′𝑖 ∩ 𝒪′𝑖+1 ̸= ∅, 𝑖 ∈ {1, . . . , 𝑁 − 1}, and 𝒪′𝑁 ∩ 𝒪′1 ̸= ∅,
∙ 𝒪′𝜅0

⊂
⋃︀𝑁

𝑖=1𝒪′𝑖 ⊂ 𝑌
′*.

Set 𝒪𝜅0 = 𝒪′𝜅0
× (−𝜅, 𝜅), 𝒪𝑖 = 𝒪′𝑖 × (−𝜅, 𝜅), 𝑖 ∈ {1, . . . , 𝑁}. One has

∙ P1: 𝒪𝑖 is included in a ball of radius 𝑅 = 𝑅′ + 𝜅 and is star-shaped with respect to a ball of radius
𝑅1 = inf{𝑅′1, 𝜅}, 𝑖 ∈ {1, . . . , 𝑁},

∙ P2: 𝒪𝑖 ∩ 𝒪𝑖+1 ̸= ∅, 𝑖 ∈ {1, . . . , 𝑁 − 1}, and 𝒪𝑁 ∩ 𝒪1 ̸= ∅,
∙ P3: 𝒪𝜅0 ⊂

⋃︀𝑁
𝑖=1𝒪𝑖 ⊂ 𝑌 *.

Set 𝒪◇𝜅0
= 𝒪𝜅0 ∪

(︀
𝑇 × (−𝜅, 𝜅)

)︀
. Below, we will use the classical extension result (Fig. A.1).

Lemma A.1. There exists an extension operator 𝒫 from 𝐻1(𝒪𝜅0) into 𝐻1(𝒪◇𝜅0
) satisfying for all 𝜑 ∈ 𝐻1(𝒪𝜅0)

𝒫(𝜑)|𝒪𝜅0
= 𝜑,

⃦⃦
∇
(︀
𝒫(𝜑)

)︀⃦⃦
𝐿2(𝒪◇𝜅0

)
≤ 𝐶

⃦⃦
∇𝜑
⃦⃦

𝐿2(𝒪𝜅0 )
.

The constant only depends on 𝜕𝑇 5.

5Note that if we transform the domain 𝒪𝜅0 by a dilation, the constant does not change.
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Proof of Proposition 1.1. For every 𝜉 ∈ Ξ𝜀 and 𝒪𝑖, 𝑖 ∈ {1, . . . , 𝑁}, if 𝜀 s small enough, the domain Φ(𝜀𝜉+ 𝜀𝒪𝑖)
is included in a ball of radius 2𝑅𝜀 and is star-shaped with respect to a ball of radius 𝑅1𝜀/4 (due to property
P1 and Lemma A2 in [14]).

Now, let 𝑢 be a displacement belonging to 𝐻1(𝒬𝜀)3. For every
(︀
𝜉, 𝑖
)︀
∈ Ξ𝜀 × {1, . . . , 𝑁} there exists a rigid

displacement 𝑟𝜉,𝑖 such that

‖𝑢− 𝑟𝜉,𝑖‖𝐿2(Φ(𝜀𝜉+𝜀𝒪𝑖)) + 𝜀‖∇𝑥(𝑢− 𝑟𝜉,𝑖)‖𝐿2(Φ(𝜀𝜉+𝜀𝒪𝑖)) ≤ 𝐶𝜀‖𝑒(𝑢)‖𝐿2(Φ(𝜀𝜉+𝜀𝒪𝑖)). (A.1)

The constant does not depend on 𝜀, 𝜉 and 𝒪𝑖, it only depends on the ratio 𝑅/𝑅1 (see [14], Thm. 2.3). Then,
step by step we compare the rigid displacements 𝑟𝜉,1, 𝑟𝜉,2, . . ., 𝑟𝜉,𝑁 thanks to the properties P2 and P3. To do
that, observe that there exist two constants independent of 𝜀 and 𝜉 such that

𝑐𝜀3|𝒪𝑖 ∩ 𝒪𝑖+1| ≤
⃒⃒
Φ
(︀
𝜀𝜉 + 𝜀𝒪𝑖 ∩ 𝒪𝑖+1

)︀⃒⃒
≤ 𝐶𝜀3|𝒪𝑖 ∩ 𝒪𝑖+1|, 𝑖 ∈ {1, . . . , 𝑁 − 1},

𝑐𝜀3|𝒪𝑁 ∩ 𝒪1| ≤
⃒⃒
Φ
(︀
𝜀𝜉 + 𝜀𝒪𝑁 ∩ 𝒪1

)︀⃒⃒
≤ 𝐶𝜀3|𝒪𝑁 ∩ 𝒪1|.

As a consequence, there exists a rigid displacement 𝑟𝜉 such that

‖𝑢− 𝑟𝜉‖𝐿2(Φ(𝜀𝜉+𝜀𝑌 *)) + 𝜀‖∇𝑥(𝑢− 𝑟𝜉)‖𝐿2(Φ(𝜀𝜉+𝜀𝑌 *)) ≤ 𝐶𝜀‖𝑒(𝑢)‖𝐿2(Φ(𝜀𝜉+𝜀𝑌 *)). (A.2)

The constant does not depend on 𝜀 and 𝜉. Then, taking mean values, one can replace 𝑟𝜉 by r𝜉 with the same
estimate

r𝜉(𝑥) =ℳΦ(𝜀𝜉+𝜀𝑌 *)(𝑢) +ℳΦ(𝜀𝜉+𝜀𝑌 *)

(︀
∇𝑢− (∇𝑢)𝑇

)︀
(𝑥−𝐺𝜉)

where ℳΦ(𝜀𝜉+𝜀𝑌 *)(𝜑) is the mean value of 𝜑 ∈ 𝐿1
(︀
Φ(𝜀𝜉 + 𝜀𝑌 *)

)︀
in the open set Φ(𝜀𝜉 + 𝜀𝑌 *) and 𝐺𝜉 is its

center of mass.
At this point, transform the domain Φ(𝜀𝜉 + 𝜀𝑌 *) by the inverse map 𝑧 ∈ 𝑌 * ↦−→ Φ(𝜀𝜉 + 𝜀𝑧), then apply

Lemma A.1 in order to extend the function in the hole 𝑇 and finally transform by the map 𝑧 ∈ 𝑌 ↦−→ Φ(𝜀𝜉+𝜀𝑧)
and to the result add the displacement 𝑟𝜉. The 𝐿2 norm of the strain tensor of the extended displacement (now
defined in Φ(𝜀𝜉 + 𝜀𝑌 )) is bounded by a constant (independent of 𝜀 and 𝜉) multiply by ‖𝑒(𝑢)‖𝐿2(Φ(𝜀𝜉+𝜀𝑌 *)).

We apply this process to every domain of 𝜀𝜉+𝜀𝑌 *, 𝜉 ∈ Ξ𝜀. Finally, we obtain an extension of the displacement
𝑢 satisfying (1.6). �

A.2. Two lemmas

For the definitions and properties of the unfolding operators 𝒯𝜀, ℳ𝜀 we refer to [9, 10] and Lemma A.2
is proved in [10]. Let Ω be a bounded domain in ℛ𝑁 with Lipschitz boundary and 𝑌 = Π𝑁

𝑖=1(0, 𝑙𝑖), 𝑙𝑖 > 0,
𝑖 = 1, . . . , 𝑁 .

Lemma A.2. Suppose 𝑝 ∈ (1,+∞). Let {(u𝜀,𝛿, v𝜀,𝛿)}𝜀,𝛿 be a sequence in 𝑊 1,𝑝(Ω)𝑁 ×𝑊 1,𝑝(Ω)𝑁×𝑁 (with v𝜀,𝛿

a symmetric matrix) converging weakly to (u, v) in 𝑊 1,𝑝(Ω)𝑁 ×𝑊 1,𝑝(Ω)𝑁×𝑁 .
Assume furthermore that there exist 𝒳 in 𝐿𝑝(Ω)𝑁×𝑁 and ̂︀𝑣 in 𝐿𝑝(Ω;𝑊 1,𝑝

𝑝𝑒𝑟,0(𝑌 ))𝑁×𝑁 such that as (𝜀, 𝛿) →
(0, 0)

1
𝛿

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
⇀ 𝒳 weakly in 𝐿𝑝(Ω)𝑁×𝑁 ,

𝒯𝜀,𝛿(∇v𝜀,𝛿) ⇀ ∇v +∇𝑦̂︀v weakly in 𝐿𝑝(Ω× 𝑌 )𝑁×𝑁×𝑁 .
(A.3)

Then u belongs to 𝑊 2,𝑝(Ω)𝑁 and there exists u ∈ 𝐿𝑝(Ω;𝑊 1,𝑝
𝑝𝑒𝑟,0(𝑌 ))𝑁 such that, up to a subsequence,

if
𝜀

𝛿
→ 𝜃 ∈ [0,+∞),

1
𝛿
𝒯𝜀,𝛿

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
⇀ 𝒳 + 𝑒𝑦(u) + 𝜃 ̂︀v weakly in 𝐿𝑝(Ω× 𝑌 )𝑁×𝑁 ,

if
𝜀

𝛿
→ +∞, ̂︀v = 𝑒𝑦(u).

(A.4)
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Proof. First, from (A.3) one obtains that 𝑒(u) + v = 0, then since Ω is a bounded domain with Lipschitz
boundary u belongs to 𝑊 2,𝑝(Ω)𝑁 . We also deduce from this convergence and the Korn inequality that u𝜀,𝛿

strongly converges to u in 𝑊 1,𝑝(Ω)𝑁 .
Then, up to a subsequence, there exists ̂︀𝒳 ∈ 𝐿𝑝(Ω× 𝑌 )𝑁 such that

1
𝛿
𝒯𝜀,𝛿

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
⇀ ̂︀𝒳 weakly in 𝐿𝑝(Ω× 𝑌 )𝑁×𝑁 .

Step 1. In this first step we assume that
𝜀

𝛿
→ 𝜃 ∈ [0,+∞).

Introduce the function Z𝜀,𝛿 belonging to 𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 ))𝑁 , defined as

Z𝜀,𝛿 =
1
𝜀
𝒯𝜀

(︀
u𝜀,𝛿 −ℳ𝜀(u𝜀,𝛿)

)︀
−ℳ𝜀

(︀
∇u𝜀,𝛿

)︀
· 𝑦𝑐. (A.5)

Its gradient and symmetric gradient with respect to 𝑦 are

∇𝑦Z𝜀,𝛿 = 𝒯𝜀

(︀
∇u𝜀,𝛿

)︀
−ℳ𝜀

(︀
∇u𝜀,𝛿

)︀
𝑒𝑦(Z𝜀,𝛿) = 𝒯𝜀

(︀
𝑒(u𝜀,𝛿)

)︀
−ℳ𝜀

(︀
𝑒(u𝜀,𝛿)

)︀
= 𝒯𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
−
(︀
𝒯𝜀(v𝜀,𝛿)−ℳ𝜀(v𝜀,𝛿)

)︀
−ℳ𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
.

(A.6)

Convergence (A.3)1 on one side together with the fact that ‖∇v𝜀,𝛿‖𝐿𝑝(Ω) and
𝜀

𝛿
are bounded, give

‖𝑒𝑦(Z𝜀,𝛿)‖𝐿𝑝(Ω×𝑌 )𝑁 ≤ 𝐶(𝛿 + 𝜀) ≤ 𝐶𝛿.

The Korn inequality implies
‖Z𝜀,𝛿‖𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 )) ≤ 𝐶𝛿.

Consequently, up to a subsequence, there exists ̂︀Z in 𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 ))𝑁 such that,

1
𝛿
Z𝜀,𝛿 ⇀ ̂︀Z weakly in 𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 ))𝑁 . (A.7)

By (A.6) one has

1
𝛿
𝒯𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
=

1
𝛿
𝑒𝑦(Z𝜀,𝛿) +

𝜀

𝛿

𝒯𝜀(v𝜀,𝛿)−ℳ𝜀(v𝜀,𝛿)
𝜀

+
1
𝛿
ℳ𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
.

Then going to the limit using (A.7) and Proposition 1.25 and Theorem 1.41 in [10]

1
𝛿
𝒯𝜀

(︀
∇u𝜀,𝛿 + v𝜀,𝛿

)︀
⇀ ̂︀𝒳 = 𝑒𝑦(̂︀Z) + 𝜃

(︀
∇v 𝑦𝑐 + ̂︀v)︀+ 𝒳 weakly in 𝐿𝑝(Ω×𝑌 )𝑁×𝑁 . (A.8)

Now, we prove that

u = ̂︀Z− 𝜃

2

𝑁∑︁
𝑗,𝑘=1

𝜕2u
𝜕𝑥𝑗𝜕𝑥𝑘

(︀
𝑦𝑐

𝑗𝑦
𝑐
𝑘 −ℳ𝑌 (𝑦𝑐

𝑗𝑦
𝑐
𝑘)
)︀

is periodic (note that this function belongs to 𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 ))𝑁 ).
We proceed as in the proof of Theorem 1.36 in [10], one first evaluates the difference of the traces of Z𝜀,𝛿 on
the faces 𝑌1 = {0}×(0, 1)𝑁−1 and 𝑌1 + e1. For a.e. (𝑥, 𝑦′) ∈ Ω×𝑌1, one has

Z𝜀,𝛿(𝑥, 𝑦′ + e𝑖)− Z𝜀,𝛿(𝑥, 𝑦′)

=
1
𝜀

(︀
𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′ + e1)− 𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′)

)︀
−ℳ𝜀

(︂
𝜕u𝜀,𝛿

𝜕𝑥1

)︂
(𝑥)

=
1
𝜀

(︀
𝒯𝜀(u𝜀,𝛿)(𝑥+ 𝜀e1, 𝑦

′)− 𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′)
)︀
−ℳ𝜀

(︂
𝜕u𝜀,𝛿

𝜕𝑥1

)︂
(𝑥).
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Let Φ be in 𝒟(Ω×𝑌1)𝑁 , one has successively∫︁
Ω×𝑌1

(︀
Z𝜀,𝛿(𝑥, 𝑦′ + e𝑖)− Z𝜀,𝛿(𝑥, 𝑦′)

)︀
· Φ(𝑥, 𝑦′) d𝑥d𝑦′

=
∫︁

Ω×𝑌1

[︂
1
𝜀

(𝒯𝜀(u𝜀,𝛿)(𝑥+ 𝜀e1, 𝑦
′)− 𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′))−ℳ𝜀

(︂
𝜕u𝜀,𝛿

𝜕𝑥1

)︂
(𝑥)
]︂
· Φ(𝑥, 𝑦′) d𝑥d𝑦′

=
∫︁

Ω×𝑌1

𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′) · Φ(𝑥− 𝜀e1, 𝑦
′)− Φ(𝑥, 𝑦′)
𝜀

d𝑥d𝑦′ −
∫︁

Ω×𝑌1

ℳ𝜀

(︂
𝜕u𝜀,𝛿

𝜕𝑥1

)︂
(𝑥) · Φ(𝑥, 𝑦′) d𝑥d𝑦′

=
∫︁

Ω×𝑌1

(︀
u𝜀,𝛿(𝑥)− 𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′)

)︀
· 𝜕Φ
𝜕𝑥1

(𝑥, 𝑦′) d𝑥 d𝑦′ +
∫︁

Ω×𝑌1

(︂
𝜕u𝜀,𝛿

𝜕𝑥1
−ℳ𝜀

(︂
𝜕u𝜀,𝛿

𝜕𝑥1

)︂)︂
· Φ(𝑥, 𝑦′) d𝑥d𝑦′

+
∫︁

Ω×𝑌1

𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′) · Φ(𝑥− 𝜀e1, 𝑦
′)− Φ(𝑥, 𝑦′) + 𝜀e1 · ∇𝑥Φ(𝑥, 𝑦′)

𝜀
d𝑥 d𝑦′

then

=
∫︁

Ω×𝑌1

(︀
ℳ𝜀(u𝜀,𝛿)(𝑥)− 𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′)

)︀
· 𝜕Φ
𝜕𝑥1

(𝑥, 𝑦′) d𝑥d𝑦′

+
∫︁

Ω×𝑌1

(︀
u𝜀,𝛿(𝑥)−ℳ𝜀(u𝜀,𝛿)(𝑥) · 𝜕Φ

𝜕𝑥1
(𝑥, 𝑦′) d𝑥d𝑦′ +

∫︁
Ω×𝑌1

(︂
𝜕u𝜀,𝛿

𝜕𝑥1
−ℳ𝜀

(︂
𝜕u𝜀,𝛿

𝜕𝑥1

)︂)︂
· Φ(𝑥, 𝑦′) d𝑥 d𝑦′

+
∫︁

Ω×𝑌1

𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′) · Φ(𝑥− 𝜀e1, 𝑦
′)− Φ(𝑥, 𝑦′) + 𝜀e1 · ∇𝑥Φ(𝑥, 𝑦′)

𝜀
d𝑥d𝑦′.

The last right-hand side is equal to (see [10], Prop. 1.24)∫︁
Ω×𝑌1

(︀
ℳ𝜀(u𝜀,𝛿)(𝑥)− 𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′)

)︀
· 𝜕Φ
𝜕𝑥1

(𝑥, 𝑦′) d𝑥d𝑦′

+
∫︁

Ω

u𝜀,𝛿(𝑥) ·
(︂∫︁

𝑌

𝜕Φ
𝜕𝑥1

(𝑥, 𝑦′) d𝑦′
)︂
−ℳ𝜀

(︂∫︁
𝑌

𝜕Φ
𝜕𝑥1

(𝑥, 𝑦′) d𝑦′
)︂

d𝑥

+
∫︁

Ω

𝜕u𝜀,𝛿

𝜕𝑥1
(𝑥) ·

(︂∫︁
𝑌

Φ(𝑥, 𝑦′) d𝑦′
)︂
−ℳ𝜀

(︂∫︁
𝑌

Φ(𝑥, 𝑦′) d𝑦′
)︂

d𝑥

+
∫︁

Ω×𝑌1

𝒯𝜀(u𝜀,𝛿)(𝑥, 𝑦′) · Φ(𝑥− 𝜀e1, 𝑦
′)− Φ(𝑥, 𝑦′) + 𝜀e1 · ∇𝑥Φ(𝑥, 𝑦′)

𝜀
d𝑥d𝑦′.

Divide by 𝛿 and then pass to the limit using Propositions 1.38 and 1.39 [10]. It yields∫︁
Ω×𝑌1

Z𝜀,𝛿(𝑥, 𝑦′ + e𝑖)− Z𝜀,𝛿(𝑥, 𝑦′)
𝛿

· Φ(𝑥, 𝑦) d𝑥d𝑦′

−→
∫︁

Ω×𝑌1

−𝜃
(︀
∇u(𝑥) 𝑦𝑐

)︀
· 𝜕Φ
𝜕𝑥1

(𝑥, 𝑦′) d𝑥d𝑦′ +
𝜃

2

∫︁
Ω×𝑌1

u(𝑥) · 𝜕
2Φ
𝜕𝑥2

1

(𝑥, 𝑦′) d𝑥d𝑦′

=
∫︁

Ω×𝑌1

𝜃

𝑁∑︁
𝑘=2

𝜕2u
𝜕𝑥1𝜕𝑥𝑘

(𝑥)𝑦
′𝑐
𝑘 · Φ(𝑥, 𝑦′) d𝑥d𝑦′.

Hence, for a.e. (𝑥, 𝑦′) ∈ Ω×𝑌1, ̂︀Z(𝑥, 𝑦′+e𝑖)− ̂︀Z(𝑥, 𝑦′) = 𝜃
∑︁𝑁

𝑘=2

𝜕2u
𝜕𝑥1𝜕𝑥𝑘

(𝑥)𝑦
′𝑐
𝑘 . We obtain similar equalities

for the difference of the traces of ̂︀Z over the other faces of 𝑌 . That proves the claim. Then, a straightforward
calculation gives (using ∇𝑒(u) +∇v = 0)

𝑒𝑦(u) = 𝑒𝑦(̂︀Z)− 𝜃
𝑁∑︁

𝑘=1

𝜕𝑒(u)
𝜕𝑥𝑘

𝑦𝑐
𝑘 = 𝑒𝑦(̂︀Z) + 𝜃

𝑁∑︁
𝑘=1

𝜕v
𝜕𝑥𝑘

𝑦𝑐
𝑘.



ASYMPTOTIC ANALYSIS FOR PERIODIC PERFORATED SHELLS 31

With (A.8), that gives the convergence (A.4)1.
Step 2. In this step we assume that

𝜀

𝛿
→ +∞.

Again we consider the function Z𝜀,𝛿 introduced in (A.5). Now, it satisfies

‖Z𝜀,𝛿‖𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 )) ≤ 𝐶𝜀.

Hence, up to a subsequence, there exists ̂︀Z in 𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 ))𝑁 such that,

1
𝜀
Z𝜀,𝛿 ⇀ ̂︀Z weakly in 𝐿𝑝(Ω;𝑊 1,𝑝(𝑌 ))𝑁 . (A.9)

Observe that
1
𝜀
𝒯𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
=
𝛿

𝜀

1
𝛿
𝒯𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
−→ 0 strongly in 𝐿𝑝(Ω× 𝑌 )𝑁×𝑁 ,

1
𝜀
ℳ𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
=
𝛿

𝜀

1
𝛿
ℳ𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
−→ 0 strongly in 𝐿𝑝(Ω)𝑁×𝑁 .

One has
1
𝜀
𝒯𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
=

1
𝜀
𝑒𝑦(Z𝜀,𝛿) +

𝒯𝜀(v𝜀,𝛿)−ℳ𝜀(v𝜀,𝛿)
𝜀

+
1
𝜀
ℳ𝜀

(︀
𝑒(u𝜀,𝛿) + v𝜀,𝛿

)︀
.

Passing to the limit in the above equality gives

𝑒𝑦(̂︀Z) +∇v 𝑦𝑐 + ̂︀v = 0.

Then, as in the previous step we prove that

v = ̂︀Z− 1
2

𝑁∑︁
𝑗,𝑘=1

𝜕2u
𝜕𝑥𝑗𝜕𝑥𝑘

(︀
𝑦𝑐

𝑗𝑦
𝑐
𝑘 −ℳ𝑌 (𝑦𝑐

𝑗𝑦
𝑐
𝑘)
)︀

is periodic. Thus (A.4)2 is proved with u = −v.
�

As a consequence of Lemma A.2 one has (see also [10], Lem. 11.11).

Lemma A.3. Suppose 𝑝 ∈ (1,+∞). Let {(𝑢𝜀,𝛿, 𝑣𝜀,𝛿)}𝜀,𝛿 be a sequence in 𝑊 1,𝑝(Ω)×𝑊 1,𝑝(Ω)𝑁 converging weakly
to (𝑢, 𝑣) in 𝑊 1,𝑝(Ω)×𝑊 1,𝑝(Ω)𝑁 . Assume furthermore that there exist 𝒳 in 𝐿𝑝(Ω)𝑁 and ̂︀𝑣 in 𝐿𝑝(Ω;𝑊 1,𝑝

𝑝𝑒𝑟,0(𝑌 ))𝑁

such that as (𝜀, 𝛿)→ (0, 0)

1
𝛿

(︀
∇𝑢𝜀,𝛿 + 𝑣𝜀,𝛿

)︀
⇀ 𝒳 weakly in 𝐿𝑝(Ω)𝑁 ,

𝒯𝜀,𝛿(∇𝑣𝜀,𝛿) ⇀ ∇𝑣 +∇𝑦̂︀𝑣 weakly in 𝐿𝑝(Ω× 𝑌 )𝑁×𝑁 .

Then 𝑢 belongs to 𝑊 2,𝑝(Ω) and there exists u ∈ 𝐿𝑝(Ω;𝑊 1,𝑝
𝑝𝑒𝑟,0(𝑌 )) such that, up to a subsequence,

if
𝜀

𝛿
→ 𝜃 ∈ [0,+∞),

1
𝛿
𝒯𝜀,𝛿

(︀
∇𝑢𝜀,𝛿 + 𝑣𝜀,𝛿

)︀
⇀ 𝒳 +∇𝑦u + 𝜃 ̂︀𝑣 weakly in 𝐿𝑝(Ω× 𝑌 )𝑁 ,

if
𝜀

𝛿
→ +∞, ̂︀𝑣 = ∇𝑦u.

(A.10)

Proof. Consider the field u𝜀,𝛿 ∈𝑊 1,𝑝(Ω)𝑁 and the symmetric matrix field v𝜀,𝛿 ∈𝑊 1,𝑝(Ω)𝑁×𝑁 defined by

u𝜀,𝛿 = (𝑢𝜀,𝛿, 0, . . . , 0), (v𝜀,𝛿)11 = 𝑣1,𝜀,

(v𝜀,𝛿)1𝑖 = (v𝜀,𝛿)𝑖1 =
1
2
𝑣𝑖,𝜀, (v𝜀,𝛿)𝑖𝑗 = 0 if (𝑖, 𝑗) ∈ {2, . . . , 𝑁}2.

These fields satisfy the assumptions of Lemma A.2 and the convergences (A.3). Therefore, the results in (A.4)
give (A.10). �
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A.3. Postponed proofs

Proof of Proposition 5.1. Step 1. We start by showing the norm equivalences.
Take 𝒱 ∈ 𝐷𝐼 (resp. D𝐼), one has

𝑒11(𝒱) = −1
𝑎
𝒱3, 𝑒12(𝒱) = 𝑒22(𝒱) = 0.

Now, the 2𝐷-Korn inequality gives (recall that 𝒱1 = 𝒱2 = 0 on Γ0)

‖𝒱1‖2𝐻1(𝜔) + ‖𝒱2‖2𝐻1(𝜔) ≤ 𝐶‖𝒱3‖2𝐿2(𝜔).

Then we obtain

‖𝒱‖2[𝐻1(𝜔)]2×𝐿2(𝜔) = ‖𝒱1‖2𝐻1(𝜔) + ‖𝒱2‖2𝐻1(𝜔) + ‖𝒱3‖2𝐿2(𝜔) ≤ 𝐶 ‖𝒱3‖2𝐿2(𝜔) = 𝐶 ‖𝒱‖2𝐷𝐼
.

On the contrary, to estimate ‖·‖𝐷𝐼
by ‖·‖[𝐻1(𝜔)]2×𝐿2(𝜔) from above, we can use Young’s inequality such that

‖𝒱‖2𝐷𝐼
= ‖𝒱3‖2𝐿2(𝜔) =

∫︁
𝜔

𝒱2
3 d𝑠′

≤
∫︁

𝜔

[︃(︂
𝜕𝒱1

𝜕𝑠1

)︂2

+
1
𝑎2
𝒱2

3 +
(︂
𝜕𝒱2

𝜕𝑠2

)︂2

+
(︂
𝜕𝒱1

𝜕𝑠2

)︂2

+
(︂
𝜕𝒱2

𝜕𝑠1

)︂
+ 𝒱2

3

]︃
d𝑠′

≤ 𝐶
(︁
‖𝒱1‖2𝐻1(𝜔) + ‖𝒱2‖2𝐻1(𝜔) + ‖𝒱3‖2𝐿2(𝜔)

)︁
= 𝐶 ‖𝒱‖2[𝐻1(𝜔)]2×𝐿2(𝜔) .

Step 2. We prove the inequalities.
With expression (5.1)3 we get

‖𝒱‖2𝐷𝐼
= ‖𝒱3‖2𝐿2(𝜔) =

∫︁
𝜔

𝒱2
3 d𝑠1 d𝑠2

= 𝑎2

∫︁ 𝑎𝜋

0

∫︁ 𝑙

0

[︀
(𝑠𝑐

2𝑉
′′

2 (𝑠1))2 − 2𝑠𝑐
2𝑉

′′

2 (𝑠1)𝑉
′

1 (𝑠1) + (𝑉
′

1 (𝑠1))2
]︀

d𝑠2 d𝑠1

≤ 𝐶
(︂⃦⃦⃦
𝑉
′′

2

⃦⃦⃦2

𝐿2(0,𝑎𝜋)
+
⃦⃦⃦
𝑉
′

1

⃦⃦⃦2

𝐿2(0,𝑎𝜋)

)︂
.

First we note that 𝑉2(𝑠1) = 𝑉
′

2 (𝑠1) = 0 for 𝑠1 ∈ {0, 𝑎𝜋}, which follows by the expressions in (5.1) and since
𝒱1(0, 𝑠2) = 𝒱1(𝑎𝜋, 𝑠2) = 𝒱2(0, 𝑠2) = 𝒱2(𝑎𝜋, 𝑠2) = 0 for a.e. 𝑠2 ∈ (0, 𝑙). Moreover, we obtain with the Poincaré
inequality in 𝐻1

0 (0, 𝑎𝜋) and 𝐻2
0 (0, 𝑎𝜋) that,

‖𝑉2‖2𝐻2(0,𝑎𝜋) + ‖𝑉1‖2𝐻1(0,𝑎𝜋) ≤ 𝐶
(︂⃦⃦⃦
𝑉
′′

2

⃦⃦⃦2

𝐿2(0,𝑎𝜋)
+
⃦⃦⃦
𝑉
′

1

⃦⃦⃦2

𝐿2(0,𝑎𝜋)

)︂
≤ 𝐶

∫︁
𝜔

(︀
(𝑠𝑐

2𝑉
′′

2 )2 − 2𝑠𝑐
2𝑉

′′

2 𝑉
′

1 + (𝑉
′

1 )2
)︀

d𝑠′

≤ 𝐶
∫︁

𝜔

𝑎2(𝑠𝑐
2𝑉

′′

2 − 𝑉
′

1 )2 d𝑠′ = 𝐶 ‖𝒱‖2𝐷𝐼
.

The second inequality is again obtained in a similar way, where we need to use that

‖𝑉2‖2𝐻4(0,𝑎𝜋) + ‖𝑉1‖2𝐻3(0,𝑎𝜋) ≤ 𝐶
(︂⃦⃦⃦
𝑉
′′

2

⃦⃦⃦2

𝐻2(0,𝑎𝜋)
+
⃦⃦⃦
𝑉
′

1

⃦⃦⃦2

𝐻2(0,𝑎𝜋)

)︂
,

which follows from the Poincaré inequality.
�
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Proof of Lemma 5.2. Since D𝐸 is the completion of 𝐷𝐸 for the norm ‖ · ‖𝐸 , if we prove the estimates of the
lemma for 𝒰 ∈ 𝐷𝐸 , then by density they will be satisfied for every element in D𝐸 .

Let 𝒰 be in 𝐷𝐸 , recall that⃦⃦⃦𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

⃦⃦⃦
𝐿2(𝜔)

≤ ‖𝒰‖𝐸 ,
⃦⃦⃦𝜕𝒰2

𝜕𝑠2

⃦⃦⃦
𝐿2(𝜔)

≤ ‖𝒰‖𝐸 ,
⃦⃦⃦𝜕𝒰1

𝜕𝑠2
+
𝜕𝒰2

𝜕𝑠1

⃦⃦⃦
𝐿2(𝜔)

≤ ‖𝒰‖𝐸 . (A.11)

Recall also that there exists (𝐶1, 𝐶2, 𝐶3) ∈ R3 such that

ℳ2(𝒰3)(𝑠1) = 𝐶1, ℳ𝑐
2(𝒰3)(𝑠1) = 𝐶2𝑠

𝑐
1 + 𝐶3, for a.e. 𝑠1 ∈ (0, 𝑎𝜋).

Step 1. In this step we prove

‖ℳ2(𝒰1)‖𝐻1(0,𝑎𝜋) + ‖ℳ𝑐
2(𝒰1)‖𝐻1(0,𝑎𝜋) + ‖ℳ2(𝒰2)‖𝐿2(0,𝑎𝜋)

+ |ℳ2(𝒰3)|+ ‖ℳ𝑐
2(𝒰3)‖𝐿2(0,𝑎𝜋) ≤ 𝐶‖𝒰‖𝐸 .

(A.12)

Set ̃︁ℳ𝑐
2(𝒰3)(𝑠1) = 𝐶2

𝑠1(𝑠1 − 𝑎𝜋)
2

,

ℳ22(𝒰2)(𝑠1) =
1
𝑙

∫︁ 𝑙

0

𝒰2(𝑠1, 𝑠2)
𝑠2(𝑠2 − 𝑙)

2
d𝑠2.

for a.e. 𝑠1 ∈ (0, 𝑎𝜋), (A.13)

One has ̃︁ℳ𝑐
2(𝒰3), ℳ22(𝒰2) ∈ 𝐻1

0 (0, 𝑎𝜋).
We first show that ⃒⃒⃒⃒⃒⃒⃒⃒

dℳ2(𝒰1)
d𝑠1

+
1
𝑎
ℳ2(𝒰3)

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

≤ 1√
𝑙
‖𝒰‖𝐸 .

By plugging in the definition for ℳ2(𝒰𝑖) we get⃒⃒⃒⃒⃒⃒⃒⃒
1
𝑙

d
d𝑠1

∫︁ 𝑙

0

𝒰1(𝑠1, 𝑠2) d𝑠2 +
1
𝑎𝑙

∫︁ 𝑙

0

𝒰3(𝑠1, 𝑠2) d𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

.

We interchange differentiation and integration, s.t. with Jensen⃒⃒⃒⃒⃒⃒⃒⃒
1
𝑙

∫︁ 𝑙

0

(︂
𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

)︂
d𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

≤ 1√
𝑙

⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 1√
𝑙
‖𝒰‖𝐸 .

Moreover, we have⃒⃒⃒⃒⃒⃒⃒⃒
dℳ2(𝒰1)

d𝑠1

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

+
⃒⃒⃒⃒⃒⃒⃒⃒

1
𝑎
ℳ2(𝒰3)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

=
∫︁ 𝑎𝜋

0

(︂
dℳ2(𝒰1)

d𝑠1
+

1
𝑎
ℳ2(𝒰3)

)︂2

d𝑠1

=
⃒⃒⃒⃒⃒⃒⃒⃒

dℳ2(𝒰1)
d𝑠1

+
1
𝑎
ℳ2(𝒰3)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

,

since by partial integration∫︁ 𝑎𝜋

0

dℳ2(𝒰1)
d𝑠1

ℳ2(𝒰3)d𝑠1 = [ℳ2(𝒰1)ℳ2(𝒰3)]𝑎𝜋
0 −

∫︁ 𝑎𝜋

0

ℳ2(𝒰1)
dℳ2(𝒰3)

d𝑠1 d𝑠1 = 0.

Therefore, we obtain ⃒⃒⃒⃒⃒⃒⃒⃒
dℳ2(𝒰1)

d𝑠1

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

+
⃒⃒⃒⃒⃒⃒⃒⃒

1
𝑎
ℳ2(𝒰3)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

≤ 𝐶 ‖𝒰‖2𝐸 .
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The Poincaré inequality in 𝐻1
0 (0, 𝑎𝜋) and the previous results lead to

‖ℳ2(𝒰1)‖𝐻1(0,𝑎𝜋) ≤ 𝐶
⃒⃒⃒⃒⃒⃒⃒⃒

dℳ2(𝒰1)
d𝑠1

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

≤ 𝐶 ‖𝒰‖𝐸

and since ℳ2(𝒰3) is independent of 𝑠1 we obtain |ℳ2(𝒰3)| ≤ 𝐶 ‖𝒰‖𝐸 . Below we show the inequality⃒⃒⃒⃒⃒⃒⃒⃒
dℳ𝑐

2(𝒰1)
d𝑠1

+
1
𝑎

d̃︁ℳ𝑐
2(𝒰3)

d𝑠1
+
𝐶3

𝑎

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

≤ 𝐶 ‖𝒰‖𝐸 . (A.14)

Plugging in the definition for ℳ𝑐
2 and ̃︁ℳ𝑐

2 we get again with Jensen and since 𝑠𝑐
2 ∈ (−𝑙/2, 𝑙/2)⃒⃒⃒⃒⃒⃒⃒⃒

dℳ𝑐
2(𝒰1)

d𝑠1
+

1
𝑎

d̃︁ℳ𝑐
2(𝒰3)

d𝑠1
+
𝐶3

𝑎

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

=
⃒⃒⃒⃒⃒⃒⃒⃒

1
𝑙

∫︁ 𝑙

0

(︂
𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

)︂
𝑠𝑐
2 d𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

≤
⃒⃒⃒⃒⃒⃒⃒⃒

1√
𝑙

(︂
𝜕𝒰1

𝜕𝑠1
+

1
𝑎
𝒰3

)︂
𝑠𝑐
2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 𝐶 ‖𝒰‖𝐸 .

Now, we prove the inequality⃦⃦⃦
ℳ𝑐

2(𝒰1) +
1
𝑎
̃︁ℳ𝑐

2(𝒰3)
⃦⃦⃦2

𝐿2(0,𝑎𝜋)
+ |𝐶3|2 ≤ 𝐶 ‖𝒰‖2𝐸 . (A.15)

With the Poincaré inequality and since 𝐶3 ∈ R and ℳ𝑐
2(𝒰1), ̃︁ℳ𝑐

2(𝒰3) ∈ 𝐻1
0 (0, 𝑎𝜋) we obtain⃦⃦⃦

ℳ𝑐
2(𝒰1) +

1
𝑎
̃︁ℳ𝑐

2(𝒰3)
⃦⃦⃦2

𝐿2(0,𝑎𝜋)
+ |𝐶3|2

≤ 𝐶

(︃⃒⃒⃒⃒⃒⃒⃒⃒
d

d𝑠1
ℳ𝑐

2(𝒰1) +
1
𝑎

d
d𝑠1

̃︁ℳ𝑐
2(𝒰3)

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

+
⃒⃒⃒⃒⃒⃒⃒⃒
𝐶3

𝑎

⃒⃒⃒⃒⃒⃒⃒⃒2
𝐿2(0,𝑎𝜋)

)︃
≤ 𝐶 ‖𝒰‖𝐸 ,

using ∫︁ 𝑎𝜋

0

(︂
d

d𝑠1
ℳ𝑐

2(𝒰1) +
1
𝑎

d
d𝑠1

̃︁ℳ𝑐
2(𝒰3)

)︂
𝐶3

𝑎
d𝑠1 = 0.

In the following we show the inequality⃒⃒⃒⃒⃒⃒⃒⃒
dℳ22(𝒰2)

d𝑠1
+

1
𝑎
̃︁ℳ𝑐

2(𝒰3)
⃒⃒⃒⃒⃒⃒⃒⃒

𝐿2(0,𝑎𝜋)

≤ 𝐶 ‖𝒰‖𝐸 . (A.16)

With the previous result, partial integration and (A.11) we get⃒⃒⃒⃒⃒⃒⃒⃒
dℳ22(𝒰2)

d𝑠1
+

1
𝑎
̃︁ℳ𝑐

2(𝒰3)
⃒⃒⃒⃒⃒⃒⃒⃒

𝐿2(0,𝑎𝜋)

=
⃒⃒⃒⃒⃒⃒⃒⃒

dℳ22(𝒰2)
d𝑠1

−ℳ𝑐
2(𝒰1) +ℳ𝑐

2(𝒰1) +
1
𝑎
̃︁ℳ𝑐

2(𝒰3)
⃒⃒⃒⃒⃒⃒⃒⃒

𝐿2(0,𝑎𝜋)

≤
⃒⃒⃒⃒⃒⃒⃒⃒

dℳ22(𝒰2)
d𝑠1

−ℳ𝑐
2(𝒰1)

⃒⃒⃒⃒⃒⃒⃒⃒
+
⃒⃒⃒⃒⃒⃒⃒⃒
ℳ𝑐

2(𝒰1) +
1
𝑎
̃︁ℳ𝑐

2(𝒰3)
⃒⃒⃒⃒⃒⃒⃒⃒

𝐿2(0,𝑎𝜋)

,

where we have for the first term by plugging in the definition and swapping integration with differentiation⃒⃒⃒⃒⃒⃒⃒⃒
1
𝑙

∫︁ 𝑙

0

𝜕𝒰2

𝜕𝑠1

𝑠2(𝑠2 − 𝑙)
2

d𝑠2 −
1
𝑙

∫︁ 𝑙

0

𝒰1(·, 𝑠2)
(︂
𝑠2 −

𝑙

2

)︂
d𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

=
⃒⃒⃒⃒⃒⃒⃒⃒

1
𝑙

∫︁ 𝑙

0

(︂
𝜕𝒰2

𝜕𝑠1
+
𝜕𝒰1

𝜕𝑠2

)︂
𝑠2(𝑠2 − 𝑙)

2
d𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(0,𝑎𝜋)

≤ 𝐶
⃒⃒⃒⃒⃒⃒⃒⃒
𝜕𝒰2

𝜕𝑠1
+
𝜕𝒰1

𝜕𝑠2

⃒⃒⃒⃒⃒⃒⃒⃒
𝐿2(𝜔)

≤ 𝐶 ‖𝒰‖𝐸 .
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Integrating
dℳ22(𝒰2)

d𝑠1
+

1
𝑎
̃︁ℳ𝑐

2(𝒰3) over (0, 𝑎𝜋) and due to the above estimate (A.16), one obtains |𝐶2| ≤
𝐶‖𝒰‖𝐸 and then again with (A.16) and (A.14), (A.15)

‖̃︁ℳ𝑐
2(𝒰3)‖𝐿2(0,𝑎𝜋) + ‖ℳ𝑐

2(𝒰3)‖𝐿2(0,𝑎𝜋) + ‖ℳ𝑐
2(𝒰1)‖𝐻1(0,𝑎𝜋) ≤ 𝐶‖𝒰‖𝐸 +

⃦⃦⃦dℳ22(𝒰2)
d𝑠1

⃦⃦⃦
𝐿2(0,𝑎𝜋)

≤ 𝐶‖𝒰‖𝐸 .

Since ℳ22(𝒰2) ∈ 𝐻1
0 (0, 𝑎𝜋),

⃦⃦
ℳ22(𝒰2)

⃦⃦
𝐿2(0,𝑎𝜋)

≤ 𝐶
⃦⃦⃦dℳ22(𝒰2)

d𝑠1

⃦⃦⃦
𝐿2(0,𝑎𝜋)

≤ 𝐶‖𝒰‖𝐸 . The Poincaré–

Wirtinger inequality gives
‖𝒰2 −ℳ2(𝒰2)‖𝐿2(𝜔) ≤ 𝐶‖𝒰‖𝐸 . (A.17)

Multiply 𝒰2 −ℳ2(𝒰2) by
𝑠2(𝑠2 − 𝑙)

2
and then integrate with respect to 𝑠2 to get

⃦⃦⃦
ℳ22(𝒰2) +

𝑙2

12
ℳ2(𝒰2)

⃦⃦⃦
𝐿2(0,𝑎𝜋)

≤ 𝐶‖𝒰‖𝐸 .

Therefore
‖ℳ2(𝒰2)‖𝐿2(0,𝑎𝜋) ≤ 𝐶‖𝒰‖𝐸 . (A.18)

Step 2. We show the 3 inequalities in equation (5.3) by using Poincaré–Wirtinger inequality. We start with
‖𝒰2‖𝐿2(𝜔) ≤ 𝐶 ‖𝒰‖𝐸 . With the inequalities in (A.17) and (A.18) we get

‖𝒰2‖𝐿2(𝜔) ≤ ‖𝒰2 −ℳ2(𝒰2)‖𝐿2(𝜔) + ‖ℳ2(𝒰2)‖𝐿2(𝜔) ≤ 𝐶 ‖𝒰‖𝐸 . (A.19)

Recall that if 𝑋 is a separable Hilbert space, then the Poincaré–Wirtinger inequality is valid in 𝑊 1,𝑝(0, 𝑙;𝑋)
(𝑝 ∈ [1,+∞]). From (A.19) and (A.11)3 we get⃦⃦⃦𝜕𝒰2

𝜕𝑠1

⃦⃦⃦
𝐿2(0,𝑙;(𝐻1(0,𝑎𝜋))′)

+
⃦⃦⃦𝜕𝒰1

𝜕𝑠2

⃦⃦⃦
𝐿2(0,𝑙;(𝐻1(0,𝑎𝜋))′)

≤ 𝐶‖𝒰‖𝐸 .

Then the Poincaré–Wirtinger inequality and estimate (A.12)1 in 𝐻1(0, 𝑙; (𝐻1(0, 𝑎𝜋))′) give

‖𝒰1‖𝐿2(0,𝑙;(𝐻1(0,𝑎𝜋))′) ≤ ‖𝒰1 −ℳ2(𝒰1)‖𝐿2(0,𝑙;(𝐻1(0,𝑎𝜋))′) + ‖ℳ2(𝒰1)‖𝐿2(0,𝑙;(𝐻1(0,𝑎𝜋))′) ≤ 𝐶 ‖𝒰‖𝐸 .

The above inequality leads to
⃦⃦⃦𝜕𝒰1

𝜕𝑠1

⃦⃦⃦
𝐿2(0,𝑙;(𝐻2(0,𝑎𝜋))′)

≤ 𝐶‖𝒰‖𝐸 , which together with (A.11)1 yields

‖𝒰3‖𝐿2(0,𝑙;(𝐻2(0,𝑎𝜋))′) ≤ 𝐶 ‖𝒰‖𝐸 .

This ends the proof of the lemma.

�
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