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ASYMPTOTIC ANALYSIS FOR PERIODIC PERFORATED SHELLS

GEORGES GRISO!, MICHAEL HAUCK?* AND JULIA ORLIK?>*

Abstract. We consider a perforated half-cylindrical thin shell and investigate the limit behavior
when the period and the thickness simultaneously go to zero. By using the decomposition of shell
displacements presented in Griso [JMPA 89 (2008) 199-223] we obtain a priori estimates. With the
unfolding and rescaling operator we transform the problem to a reference configuration. In the end this
yields a homogenized limit problem for the shell.
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1. INTRODUCTION

We consider a thin heterogeneous half-cylindrical shell with an in-plane periodic porous structure, whereby
the periodicity ¢ is of the same order as the shell’s thickness 20 and small compared to its in-plane surface size.
This paper provides an analysis for homogenization and dimension reduction of the shell. We want to point

)
out that both tasks are performed simultaneously, where lim(. 5y_.(0,0) = — & € (0,00). This is necessary since
€

homogenization and dimension reduction usually do not commute as it was shown e.g. in [5]. The presented
approach via the rescaling-unfolding operator is closely related to the one given in Chapter 11 of [10] for plates
and for heterogeneous beams in [15], but new in the context of a linear elastic shell. There are various different
homogenization techniques, as for example asymptotic expansions presented in [1,21], via Gamma-convergence
in [11] and the two-scale convergence introduced in [18]. Although, the homogenization of plates and shells is
in focus of interest of some other well-known research groups, our approach provides all the estimates and gives
the limit not in terms of energy bounds, but yields a computational tool for the effective shell coefficients on its
exact topology, which is important for applications.

Dimension reduction and homogenization of elastic plates via an asymptotic expansion technique can be found
in [20]. Dimension reduction and homogenization of a shell for the diffusion problem in the sense of two-scale
convergence was presented in [19], where it was shown that the curvature does not enter the homogenized model.
Moreover, the homogenization for piezoelectric perforated shells without dimension reduction was presented in
[12]. We want to mention, that the dimension reduction of a homogeneous shell was analyzed in [3,8,17]. For
some notions of classical results in functional analysis we refer to [22,23].
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In our analysis, we begin with a general extension technique (based on results developed in [14]) for displace-
ments acting on a perforated shell made of a network of thin cylinders to the full shell domain (see Prop. 1.1).
The result is crucial for the following analysis. We assume that the shell is fixed along the lateral boundary and
continue with a decomposition approach for thin structures introduced in [14]. This decomposition technique
allows to represent any H!-displacement of the shell through the displacement of its mid-surface, the rotations of
the small segments orthogonal to the mid-surface and a warping term which takes into account the deformation
of these small segments. This leads to Korn inequalities and estimates for each term of the decomposition.

In Sections 24, the rescaling and unfolding operators are introduced and the strain tensor is considered on
a reference domain. To describe the limit behavior of the strain tensor of the whole shell, we decompose the
mid-surface displacement as the sum of an inextentional displacement and an extentional (see Sect. 5). They
correspond respectively to the bending and to a generalization of the membrane displacements for a plate. This
decomposition has been introduced in [3]. A similar approach has been developed for curved beam in [4,13].

Section 6.1 presents assumptions on forces in the right-hand side, rescaling them in a detailed manner.

At the end the limit problem is discussed. Especially Section 8.1 is important for applications, where the
variational problem for an anisotropic homogenized shell is presented together with an expression to compute
its effective coefficients wvia 6 auxiliary cell problems. The limit extensional and inextensional displacements
(Ug € Dg, U € Dy) solve the homogenized problem

N . 0 aV
/ [agﬁalﬁl @uﬁ(uE)ealﬁl(VE) + bgﬁa’ﬁ' <ea/8(UE) ((98 ln)

85,3/
o (U b O [ OU o [0V
* Bss (asa“> Ca'sy (VE>> * Cabar 5y (asa n) Dsg (asa, “) ]ds
Y’* 2 2 %
=L V4 Ve = 200 L) ds + (F,Vs) ), Y(Ve,V) € Dg x Dy.
|Y || fye 3a 377 0s

In Section 9 we focus on the effects of the boundary conditions in our model, which play an important role.
Especially, if we fix the shell’s curved ends we obtain a membrane dominated limit equation. In that case
clamping the lateral boundary does not change the model.

1.1. Geometrical setting

We consider a cylindrical half-shell with constant radius a. We assume that our shell consists of a periodic
structure with a periodicity cell of size ¢ in its mid-plane, and is of thickness 2§, with § = ke € (0, do], do = a/3,
where k is a strictly positive fixed constant.

Let Y’ be a bounded domain in R2? having the paving property with respect to an additive subgroup
G = p,;Z @ pyZ of R? of dimension 2 and let T' be an open set such that T C Y’ (Fig. 1 gives an exam-
ple of such a cell Y'). We assume the boundary of T to be Lipschitz and for simplicity we also assume T
connected. Denote

w=(0,am) x (0,1), Y =Y'x(—k,K), Y*=Y'\T, Y*=Y*x(—k,k).

In the periodic setting a.e. s’ € R? can be decomposed as

s=e [ﬂ y +€{i}y, (1.1)

where []y+ belongs to G and {-}y+ to Y.
Set

E.={¢cG|e+eY' Cw}, . = interior U(5§+€?) y Ae=w\ B
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FIGURE 1. Cell Y’ and the perforated domain Y'*.

(a) Plane domain w} with periodic (b) Shell QF with periodic holes
hexagonal holes

FIGURE 2. Periodic perforated plane domain transformed to a periodic shell. (a) Plane domain
w? with periodic hexagonal holes. (b) Shell @* with periodic holes.

Let us also introduce some notations for the unions of all holes

Tsi{xeﬁs‘ {g}y/eT}, wr=w\T,, o

*
Il
&)
)
—
o

Consider the injective mapping ¢ : @ — R? defined as
¢(s1,80) = | ¢ COS (s1,82) €W, (1.2)

and denote by S = ¢(w) the mid-surface of the whole shell (without the holes). Furthermore, we introduce the
vectors

0 . 0
_ 51 ti At (il)

(31) [t1 A tall . (sl>
cos | = sin ( =
a a

Obviously, t1 and to are linearly independent and are tangential vectors to the surface S (Fig. 2).
Denote

o o

o (). =w X (—ke,ke), O = wi X (—ke, ke),
o OF = &(}) the perforated shell,
e Q. = P(Q.) the shell without the holes
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where @ : Q. € R? — R? is given by
®(s) = ¢(s1,52) + s3n(sy,52), s=(s1,50,53) € Q. (1.4)

We easily check that if § = ke € (0, o] the map ® from Q. onto Q. is a Cl-diffeomorphism. That means we
have

o <[ Ve®lre(o) < i and ¢ < [[Vo® | pe(o,) < a1 (1.5)

The constants do not depend on €.

We denote by x the running point of the shell while s, s.t. ®(s) = z, is the running point in the reference
domain. A function u defined on Q. (resp. Q¥) can also be considered as a function defined on €. (resp. Q)
which we also denote by wu.

Proposition 1.1. There exists an extension operator P- from H'(QF)3 into H*(Q.)? satisfying for all u €
HY(Q:)?
Pe(w)ior =, [le(Pe(w)) | 12(q,) < Clle()] 12(gry- (L.6)

The constant does not depend on ¢.

The proof of Proposition 1.1 has been moved to the Appendix A.

Set vo = {0} x [0,{] U {7} x [0,{] C Ow. The part T'g. = (v x (—ke, ke)) of the lateral boundary of the
shell is clamped. The complementary of I'y . in the lateral boundary of the shell is a free boundary.

From now on, any displacement u belonging to H'(QX)? will be extended to a displacement belonging to
HY(Q.)®. We will always denote by u the extended displacement, which will satisfy (1.6). This displacement
(still denoted u) could also be considered as an element of H*(Q2)3 or HY(Q.)3.

1.2. Decomposition of shell displacements

In this section we introduce a decomposition for every displacement u of the shell QF as it was shown in [14].

Definition 1.2. An elementary displacement U, associated to u € H'(Q.)? is given by

Ue =U(81,82) + s3R(s1, 82), (1.7)
where (a € {1,2})
1 KE 3 KE
u = % L u(.7 33) (:1537 Ra = 72(/4;5)3 /7’%‘ 83’[1,(', 83) . toz ng, Rg = 0 a.e. in w. (18)

Moreover, we have that U = (Uy,Us,Us) € H'(w)3 and R = (R1,R2) € H(w)?. Every displacement u is then
decomposed as

2
Z Uy + 53Ra)te +Usn, u=U.+T1, (1.9)

where 7 € H'(€.)?3 is a residual displacement called warping.

Denote
Vgi{veHl(Qg)?’M:O on Fo,s}, V;.*i{veHl(Q:)SM:O on Fo,s},
H%O(w)i{QGHl(wH(I):O on I}

One has
U € Hp (w)®, Re€Hp(w)? weV..
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Remark 1.3. The warping w fulfills the following properties
KE KE
/ ﬂ(',Sg) d83 = 0, / Sgﬁ(',Sg) 'ta d83 =0. (110)
—KRE —KE
For U and R holds
U =Urt1 +Usts +Usn, R =Rit; + Roto.

In the next step we want to establish the strain tensor in the cylindrical coordinates. The derivatives of the
elementary displacement U, are calculated using

ou U 1 U ou 1
= oty — Ui+ oty + —on+ —Usty,
0s1 0s1 a 0s1 0s1 a (1.11)
o, | |
332 o 332 ! 852 2 882 ’
and OR  OR., 1 oR
T = oy — —Rin+ -t
0s1 0s1 a 0s1 (1.12)
IR _ IRy ¢ ORs ¢ ’
682 o 682 ! 882 z
The strain tensor for a shell displacement v € H'(Q,) is given by
Vaeu+ (Veu) T
ex(u) = % (1.13)
A small computation yields, that Vg in the coordinates of the reference domain is given by
Vs =V, V. (1.14)

Furthermore, we still have that e,(u) is in the shell configuration. Therefore, we consider the transformation
matrix (t1]tz|n) and transfer our strain matrix into the reference domain by

(1t2/n)" ez () (1 [t2|n). (1.15)
Definition 1.4. We define by e(u) the strain tensor in the coordinates of the reference domain by

e(u) = (t1]ten)” Vau(VO)~! + (Vu(Ve)~HT

(t1[t2[n). (1.16)

2
Hence, we obtain
afs 0
(t1|t2\n)TVSu(V<I>)71(t1|t2|n) = (t1|t2|n)TVsu 0 3 1 0
0 0 1
o« ou, o oug o Ou,
a+ s3 0s1 ! 059 ! 0s3 ! (1.17)
_ a @ 8ut ou

a+ s3 0s1 2 089 2 0s3 21
a Ou ou ou
—n
a+ s3 0s1 0sa 0s3
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where P o, OR, 0w 1 oy, IR, Ou
u 1 1 U1 2 2 U2
(S s t+ [ 22 22 ) ¢
D51 (881+S3851 T s Ta (”3“‘3)) 1+(al+ *8 Der +881) 2
8“3 8u3
+ (881+ 37 - *(ul +53R1+U1)>

352 652 882 352 882 852 352 652

ou oty Oty Ous
683 <R1+63>t1+<7€2+83>t2+883n

We get for the strain tensor e(u) of a displacement u € V. the following components:

ou 1 OR ou 1
ell(u) = a |:(1 + au;g) + 83 ! + g + au;>,:| ,

ou (O ORy O Uy IRy D s 0
u=<1+33 1+“1>t1+<2+3 2 4 “2>t2+(3+“3>n

a+s3 [\ 0s; ds, | 0Os,
G

+ g—uf + (1+ ) g;;]
ol [ -luen) 00 E)
- 3{(Bm) 20 ) -2

Theorem 1.5. Let u € H'(Q?)3 and (U, R,u) be the terms of its decomposition, then the following inequalities
are satisfied:

leWe)llL2(a.y < Clle(w)lL2(q) (1.18)

[l p2g.y < Celle(w)llp2(gr) (1.19)

IVl 20,y < Clle(w)ll 2gs) - (1.20)

Proof. The proof is given in Theorem 4.1 of [14]. a

From [14] we also obtain the full estimates of u and the components of the elementary displacement U..

Proposition 1.6. For every u € V

C C
lellis ey < 2 le@lzas s IRlms + Mls) < =75 le@llzaor (1.21)
The constants do not depend on .
From the expression of the strain tensor e(u) one derives the following estimates:

Lemma 1.7. One has also the following estimates ((«, 3) € {1,2}?):

C

Jove sl

L2 (w)

The constant does not depend on €.



ASYMPTOTIC ANALYSIS FOR PERIODIC PERFORATED SHELLS 7

Proof. We will only show that

‘ ‘ U, Oy

C
6781—’_8782 < ﬁ”e(u)“LZ(Q;w (1.23)

L?(w)

since the other inequalities follow in the same way.
First observe that
+ 83

a
Due to (1.19) and (1.20) we obtain

81/{2 8U1 8722 0721 S3 8U1 S% 8721 2 2
P P P P I I < 2 * .
/QE {(851 + 852) + 83 (851 + 089 ) + a 0ss + a 08y ds < Clle(w)llz (Q2)

is uniformly bounded. Then, we start with the expression of e13(u) given by (1.18).

Hence, using the estimates (1.21)

Uy U\’ 2
[ (Ge e TR) as < Ol

which proves the inequality (1.23). O

2. THE RESCALING OPERATOR ¥.
From now on we consider the reference domain
D =wx (=K, k) (2.1)
and we rescale the shell in its s3 direction.
Definition 2.1. Given a measurable function ¥ on €., we define the measurable function T.(¥) on Q as
T (U)(s1,82,y3) = U(s1, $2,€y3), for a.e. (s1,82,y3) € Q. (2.2)
Lemma 2.2. One has for every ¥ € L%(Q).) and for the warping u

IZ=(9) |20y < Ce™ 2| ¥ |2y, I1Fe @l 20y < Ce™? lle(w)ll 2 gy »
0% (u) 0% ()
054 0ys3

(2.3)

< Ce'/? le(w)ll L2 (g2 -
L2(Q)

< Cé"*l/QH(i(u)HLz(Q;w H

L2()

3. ASYMPTOTIC BEHAVIOR OF THE STRAIN TENSOR

Lemma 3.1. Let {u:}e be a sequence of displacements belonging to V2 and satisfying®

lle(ue)llL2(gs) < Ce/?

with a constant independent of €.
There exists a subsequence (still denoted €) and U € H} (w)?, R € Hp (w)?, Zap € L?(w), Zas € L*(w) and
u € L*(w; HY (—k, k))? satisfying

/ (-, ys) dys = 0, / Y Tiaoys)dys =0 ae. i w, (3.1)

—K —K

30r equivalently lle(ue)llp2(g,) < Ce3/2 since the displacements are extended to the whole shell.
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such that
U. — U strongly in Hp ()3, Rea — Ro weakly in Hp, (w),
1 (0U. Uk
z ot .
€ <8sa B+ 0sp

ta)ézaﬁ weakly in L?*(w),

1 /0U
- ( S n4+R.- ta> — Z,3 weakly in LQ(W),
e \ 08,

1 (3.2)

gfg(ﬂa)éﬂ weakly in L?(w;H'(—k,k))?,

1 Ju.\ 1 0 L . ) 3
EKE (asa) = gaTaTE(uE) 0 weakly in L*(w X (—k,k))°,

1
g‘Ig(e(ug))—\E(U,Z,ﬂ) weakly in  L?(w)3*3.

Moreover, one has

s 1 ou
S 4Ry =0, =2 4+Ry=0.
0s1  a 082

Proof. We start with the weak limits; they are the consequences of (1.21).
U —=U weakly in Hf (w)?, R.—=R weakly in Hp (w)°. (3.3)

The results in (3.2); ¢ follow from Lemma 2.2 and equation (1.19).
Both convergences (3.2)3 4 follow directly from Lemma 1.7.
Now we prove
U, 3 — U3 strongly in H%U (w). (3.4)

By the Sobolev embedding and convergences (3.3), one has
U. — U strongly in L*(w)?, R.— R strongly in L*(w)>. (3.5)

Besides, from estimate (1.22)s, one obtains

0 1

Ue iz U1 +Roq — 0 strongly in  L?%(w),
0s1 a
ag€’3 +Reo — 0 strongly in L*(w).

52

Hence VU, 3 strongly converges to its limit in L?(w)?, which ends the proof of (3.4). That also proves the last
equalities of the lemma.
Now, prove the strong convergences

U:o — U, strongly in H%O(w), a=12.

By estimate (1.22); one immediately has

ou 1

75714_,@{673—&) strongly in  L*(w),
881 a

OUe 2 — 0 strongly in LQ(W)v

882

o O

u5’1_|_ u5’2—>0 strongly in Lg(w)-

882 881



ASYMPTOTIC ANALYSIS FOR PERIODIC PERFORATED SHELLS 9

Furthermore, from (3.5) and the above strong convergences, one obtains the strong convergence of the strain
tensor of the displacement (Z/{&l,ue,g) in L?(w)3. Since w is a Lipschitz domain, this displacement strongly
converges to its limit in H%O (w)?. The elements of the limit strain tensor are then particularly given by (o €

{1,2})

1
ggs(eaa) - Zaa + Y3

1 1 Ys 81/{1 8R2 8R1
-7 -~ <K Z g0 - - __“ - -
. (e12) 5 { 12 + @ 95, + Y3 s, + Y3 sy [
1 1 Oty
7T€ o -z Za .. (>
6 (€as) 5 { 3+ E }
1 Jus
*Ta a) — — 2.
€ (€3) dys3
Putting everything together we obtain the symmetric tensor
Y3 oy 822/[3 1 Y3 oUy 622/{3 1 ou
Z e —y3—— =Z = —y3— = Z —
1+ a 0s1 Ya 0s? 912 + a 0sg 2y3351352 2 13+ Y3
— 0°Us3 1 Oy
EU, Z,u) = Z — | Z — )
( ) * 22 — Y3 D52 5 | %23 + 8y3)
. . s
Ay
which ends the proof of the lemma. O

As a consequence of the estimates in Lemma 1.7 and the above lemma, one has a.e. in w with ¢; € Hf (w)
and R € Hf ()
ou ou ou

ot = t,=0, —. t, = 0. )
054 ﬁ+855 0 054 n+R 0 (3.6)

ou
From the first equation in (3.6) we obtain for (a, 8) = (2,2) that 872 = 0. Hence Uy does not depend on so,
52

Uy = Us(s1) and due to the boundary conditions, one has Uy € H{ (0, ar).
With that we conclude for (o, 8) = (1,2) that
dU-
Uy (s1,82) = —82d72(51) + Ui (s1).
S1
Since U; belongs to Hf (w), we get Uy € H§(0,am) and Uy € Hj(0, ar).
This yields for the last case, (a, 8) = (1,1),
d2U, dU;

Us(s1,82) = aSQTS% — ad—‘ﬁ(sl).

Since Us belongs to H%O (w), this implies at this step

Uy € H3(0,arr), Uy € H2(0,ar),

dU: d2U. dU (3.7)
and U(sy,$2) = (_82(21812(81) + Ui(s1), Us(s1), CLSQ?; — adsi(sl)> .

We now focus on the second equality given in (3.6), where we obtain with our expression for U

1dU a3U. 1 a2U a2U.
2 (s)) +adsg(sl)) +—Ui(s1) —&—a?{(sl), Ra(s1,52) = _aﬁ(sl).

R1(81,82) = —S82 (a dsy
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Observe that due to the above conditions on Uy, Ry belongs to Hf (w). Now, since Ry also belongs to H} (),
we finally obtain
Uy, € Hy(0,ar), Uy € H3(0,ar).

Thus
Ry € Hp (w), Ry € H*(w) N Hp, (w),

Uy € H*(w) N HY (), Us € HY(w)NH} (w), Us € H*(w) N HP (w).

4. UNFOLDING OF THE RESCALED SHELL

Definition 4.1. The unfolding 7 (¢’) (resp. 7z(¢)) of a measurable function defined on w (resp. 2) is measur-
able on w X Y’ (resp. Q x Y’) and given by

/
TP y) = (5 [Z} +Ey'> for ae (') €. xY’,
Y/

T.(¥)(s',y) =0 for a.e. (s,y') € A x Y,
and /
T()(s' 9 y3) = ¢ (6 [SJ +6y’7y3) for a.e (5,9 y3) €D x Y,
Y/
T()(s', ', y3) =0 for a.e. (s,9y,y3) € A x Y.

As shown in [9], for every ¥ € L?(w) we have

1T @ L2 vy < M1l 2y - (4.1)
Definition 4.2. The rescaling-unfolding operator is defined by Il = 7. o ¥..

Lemma 4.3. We obtain the following estimate for the warping:
1TLe (@) || 2 (s (v)) < ce'/? He(U)HL?(Q;) : (4.2)

Denote H}..(Y') (resp. H...(Y)) the subspace of H} (R?) (resp. H} (R? x (—k,x)) N H'(Y)) containing the

per per loc
functions G periodic and

W = {7? € H}ier(y)g | %(a y3) dy3 = 07 / Y3 %Oz('vy?)) dy3 =0 ae in wx Y/} .

—K —K

Lemma 4.4. There ezists a subsequence of {e} (still denoted {}) and U € L*(w;HL (Y"))3,

p
R € L2(w; HL,(Y")? and @ € L*(w; W) such that

T.(U.) — U strongly in L*(w; H'(Y'))?,
T.(R.) — R strongly in L*(w;H'(Y'))?,

Sa

Osa (4.3)
IR\ OR  OR _ 9 o
7. <8sa > D5, + o weakly in L*(w xY")=

1 ~
?Hs(ﬂs)—\ﬁ weakly in L?(w; H'(Y))3.
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One has
_ 1 ~
U(s1,82,y3) = v /s u(s1,82,Y1,92,y3) dyrdya  for a.e. (s1,82,93) € Q.
Moreover,
OU. ~
fT <83 ‘n+ R - ta> — Zu3+ Za3 weakly in  L*(w; H'(Y')),
“ (4.4)
ou, ou, = .
gTe (as; - tg &9; ~ta> — Zog+ Zap weakly in  L*(w; HY(Y)),
where
- oy ~ - oy ~ ~ .
Zis= 22 4Ry, Zos= 22 4Ry, Zap = eyapl). 45
13 o + R 23 B + Ra 5= €yapU) (4.5)

Proof. The strong convergences of (4.3), , 5 follow from (3.2), , and Proposition 3.4 of [9]. Convergence (4.3),
is the consequence of Theorem 3.5 from [9] and (4.3) 5 is obtained with Corollary 3.2 of [9].

The convergences of (4.4), , follow from Lemma 3.1 and Theorem 3.5 of [9]. With Lemma A.2 we then obtain
the expression for 2a3 in (4.5) and Lemma A.3 yields the expression 2a5~
To do that, first we need to identify the different fields appearing in Lemma A.2. Here

(11“5,1 + Rs,l) .

Ueg < Ve <
£ £,3» [ < REQ

From (3.2)1 4, one has

1 — U1 + R Z .
E(VZ/I&ng( a Rl:; 1>)A(Z;2) weakly in L?*(w)?,

U+ R i +R R :
7. V( a 87%5,2 L) =V a,;zQ Y+ v, ﬁ; weakly in L%*(w x Y’)%

Then, one can apply Lemma A.2. The function u is called L73.
Now we determine the Zw’s.

Let us identify

1

(Z/{E 1) 71/[573 0
Ueg ’ s Ve < a
u&,2 0 0

1

Hence, by (3.2)1,3 —(e(ue) +v:) = &, and 7:(Vv.) = Vv + V, 0. Here, observe that v = 0. The field (11, uz)
€

given by Lemma A.3 is denoted (U,Us). O
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4.1. Limit of the rescaled-unfolded strain tensor

Proposition 4.5. Under the assumptions and the results of Lemma 4.4 we obtain the following weak conver-
gences in L?(w x Y):

1 —~
gHs(eaa(ue)) - Zaa + ey,aa(u) + Y3 (

1 1 . OR, OR, O0R, OR,\ 0w Ous
gHa(em(Ue)) 3 (Zm +2ey22(U) +ys3 (832 + 9 + s, + o0 ) + 9 + 8@/1> ;

ORe  OR. N O,
0sa  O0Ya o’

1 1 8&;», ~ 8ﬁa a/ﬂ\?)
gﬂe(ea&}(ue)) 5 (Za?) + @ + Ra + aiy;g + ayg) )

ous

1
gHa(€33(ue)) s

Proof. First, note that the function y3 — converges uniformly to 1 in w x Y.

a+ €ys

Below, we give the limits for 21I.(e11(uc)) and 21Ic(e13(u.)), since other cases follow in a similar way. For
the calculation we combine the results obtained in Lemmas 3.1 and 4.4. We have,

1 1] a MUy 1 OR., Ouca) 1
gHs(en(Ue)) =2 Ll-f-&yg ('Ta ( 05, + aU5,3> +eysTe ( Bs, ) + 1L ( 05, ) + aHE(uE’?’))} :

Therefore, we get for each term in the limit

1 ou 1 ~
-7 ( &l + u8)3> — Z1 + 6%11(2/{) weakly in LQ((U X Y/),
€ 0s1 a :

ORe OR,  ORy ,

7. =)~ kl L? Y’

- < D5, ) D5, + an weakly in (wxY"),

1 O, 1 1 oIl (ﬂg 1) 851 . 2
—1I : = — s ——— kl L Y

6 5( D5, ) = op o weakly in (wxY),

1
gﬂg(ﬂag) —0 weakly in L*(wxY).

Hence,

1 - OR,  ORi\  Ou :
gns(ell(us)) — Zn+ey;uU) +ys (8311 + 8y11> + (’Tyi weakly in  L*(w xY).

Now we focus on

11 a
 2ca+eys

1
EHE(613(’U/E>) D1

ou, 1
,Ts ( =3 - aua,l + Re,l)
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Similar to the previous case we calculate the limits of each component, obtaining

1 (o 1 s -
-7, Ue s — U1+ Req1 | = 213+ ﬁ 4+ Ry weakly in Lg(w xY'),
€ 0s1  a ° ' oy

1

gﬂg(ﬂ€71) —0 weakly in L%*(wxY),

1 1 Ol (u u
= (aﬂsﬁ) _ 19 (ts) | Ouy weakly in  L?(wxY),

€ a51 g2 Tyl 8y1
1 8HE(HE,1) 851 . 9
?Tyd — Tys weakly in L%(wxY).
Hence,
1 U ous Ou
—Ic(er3(ue)) — ) (Zl?, + 873 + R Tyf + <9y3-1,>

Define the displacement @ belonging to L*(w; H}..(Y))? by
u(-y) = Zj(-,yl, y2) + y37€(-, y1,Y2) + (y3(213t1 + Za3to) —|—ﬁ(-, y)), for a.e. y € Y* and a.e. in w.

Hence, one obtains

Y3 87/{1 82Z/[3 1 Y3 8111 821/{3
Z = —y3——e =2 =
1 1+ a 0s; Y 0s? 2 12+ a 089 y3881852
,H N 821/[
- c(e(ue)) % Zoo — Y3 5 23 0
52
* * 0

+&,(W) weakly in L*(w x Y)3*3,

where &£,(@) is the symmetric tensor whose components are the e, ;;(%)’s. We want to note here that we obtain

the same kind of result in [15].
The aim of the following section is to determine the Z,3’s.

Remark 4.6. If we compare our results with Proposition 11.13 of [14], we see that
&y(u) = Eu(u) + &, (@),
where the terms on the right hand side follow from the given definitions in [14].
5. INEXTENSIONAL AND EXTENSIONAL DISPLACEMENTS

5.1. Inextensional displacements

Denote H = [H}, (w)]* x L?(w). We equip H with the scalar product

e 1 o 1 Oy OV,
wy) = [ [2 (7 +a0) (5o +a%) * G e

LU U (OVi | OV
+2(1+ 2)( 1+2>+u3v3

— —_— dsq dss.
852 881 852 881 51 G52
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The associated norm is equivalent to the usual norm of [Hp (w)]? x L?(w).
Denote D; the space of inextensional displacements
. 0%, 1 OBy 0B,  Ob,y
Dr=<decH —+-93=0, — =0, —+-—=0,.
! { | 0s1 + a ’ Jsa 059 + 0s1
A displacement V belongs to Dy if and only if there exists (Vi,Va) € H}(0,ar) x HZ(0,ar) such that for a.e.

(81,82) Ew
Va(s1,52) = Va(s1),

Vi(s1,82) = —s5V5(s1) + Vi(s1), Vi € Hy(0,am), Vi€ HZ(0,ar), (5.1)
Vs(s1,82) = a(s5Vy (s1) = V{(s1)).
Here we set
. am . l
si=s1- 4, s5=s- g
The map V € Dy — (V1,Va) € H}(0,an) x HZ(0,ar) is one to one and onto.

Denote
D; = D; N ([Hf, (w)]? x HE (w)).

Note that the limit of the mid surface displacement of the shell &/ belongs to Dy.
We equip Dy (resp. D) with the semi-norm

Vlipr = IVsllL2w),  (vesp. VI, = [Vslla2(w))-

Lemma 5.1. The semi-norm || - ||p, (resp. || - |lp;) is a norm equivalent to the norm of the product space
[H' (w)]? x L*(w) (resp. [H'(w)]* x H?*(w))-
Moreover, there exist two constants ¢, C such that for every V € Dy (resp. V € Dy) one has
c(IVillZa 0,0m) + 1V2llEr2(0,0my) < IVID, < CUIVAIZ 0,0m) + 1Vellir20,0m)
(resp- <(IVils 0.0 + 1Valasiom) < VIR, < CUVilrs 0am + 1V igi0am)
where (V1,Va) are associated to V by (5.1).
Proof. see Appendix A. |

5.2. Extensional displacements

Denote Dpg the orthogonal subspace of D in H for the scalar product of H.
For every ¢ in L?(w), denote

1/ 1/
Ma(¢)(s1) = 7/ o(s1,52)dsa,  M5(¢)(s1) = 7/ B(s1,82)55dsy  for a.e. s1 € (0,an).
0 0

Note that for every U € Dg, one has Ms(Uy,), MS5U,) € HE(0,ar) while Mo(Us), MS5Us) € L?(0,an)

(ae{1,2}).
Let U be in D, it satisfies <U,V >= [ UsVsds;dsy, VYV e D;. Thus,

/ug(sm)(sgv;”(sl) —V,(s1))dsidss =0, ¥V € H}(0,ar), WVi e H2(0,an).

That gives
Ma(Uz)(s1) = C1,  M5(Us)(s1) = Casi + Cs,

5.2
(01702,03) S R3 for a.e. S1 € (O,CLTF). ( )
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Hence

dM(Us) _ d2 M (Us)
dsy ds?

DE:{U€H| =0 in (O,aw)}.

We equip Dg with the norm

1100, 1.2 (002 1,08, 02
1] = \// ! @‘+2\+1+2}d31d32.

2 881 3 0s2 21 0sy  0sy
Endowed with this norm, Dg is not a Hilbert space. We denote with Dg the completion of Dg for this norm.

Lemma 5.2. For every U in Dg, one has

lUa || 10,1522 (0,am)) + UL (0,050 (0,0m))) + U3 20,1552 (0,a7))) < ClIU||E- (5.3)
Proof. See Appendix A. |

Now, consider the field U., the mid-surface displacement associated to u. the solution of the variational
problem (6.5). This field belongs to H. We decompose it as the sum of an inextensional displacement U; . and
an extensional one Ug .. By the definition of ||-|| ; and Lemma 1.7 we obtain

2

WUpells< Y

a,f=1

oU. ¢ +8leE
950 " O0sa

c
“to < o7 lle(ue)ll L2z < Ce.

L2 (w)

Lemma 5.3. There exist a subsequence (still denoted {e}) and Ug € Dg such that

1
gL{E,EJAUEJ weakly in  H'(0,l;(H(0,am))"),
1

—Upe2 —~Ug weakly in Hl(O,l;LZ(O,aﬂ)),
I3

1

“Upe—Usgz weakly in L2(0,1; (H*(0,ar))’).
Proof. From Lemma 5.2, one has

0L(H2(0,am))y) = CF

(0,5;(H*(0,am))’ (0,5;L2(0,am)

which yields the claim. O

Going back to the expressions for Z,g introduced Lemma 3.1 and Proposition 4.5 we get with Lemma 5.3
that
1| oUg oUg

Za —tg+ —
A= 650 + 35[3

to|.

6. THE LINEAR ELASTICITY PROBLEM
Let a;ji € L>(Y), 4,4, k,1 € {1,2,3} and it should satisfy both the symmetry condition
aijkl(y) = ¢jini(y) = arij(y) for ae yevy, (6.1)
and the coercivity condition (co > 0)

aijkl(y)rijml > CoTijTij for a.e yeYy, (6.2)



16 Q. GRISO ET AL.

where 7 is a 3 X 3 symmetric real matrix.
The coefficients af;;, of the Hooke’s tensor on the shell for x = ®(s) are given by

/
a5 (T) = aijr ({S} 7S3> for a.e. ze€Ql, (6.3)
YI

€ €
o (v) = ajpen(v) Yo e V] (6.4)
For a given applied force f. the displacement u. of a shell is the solution to the linear elasticity problem

Find u. € V" such that

/ o (ue) e(v)da = fevdz, VYveV],
Qr Q:

where the colon denotes the classical Frobenius scalar product.

6.1. Assumptions on the forces
We assume that the body forces are given by
fe(s1,52,83) = €2f(s1,52) + eF(s1,52) + s3g(s1,52) for a.e. (s1,52) € w,
where f = fit1 + fota + fan, (f1, f2, f3) € L?(w)3 and g = g1t1 + gata, (g1, 92) € L?(w)?.
Regarding F', we want to choose this field so that it does not act with inextensional displacements. First, in
view of Lemma 5.2, we take

Fy € L*(0,1; H(0,am)), Fy€ L*(w), F3¢€ L*(0,1; H*(0,an)). (6.6)

Then
/F(81,82)~V(81,82)d81d82, V e Dg,

will be written

!
<F7V>=/ <F17‘/1>H1(O,a7r),(H1(O,arr))’)dsZ+/F2‘/2d51 dsg
0 w

1
+/ (F3, V3) i2(0,am),(H2(0,ax))") dS2,
0
for every V € Dg. Due to Lemma 5.2, one has

KE V) < (1Pl 200,01 0,am)) + 1F2ll 2@y + |1 F5ll 2200, 520,000 ) [V [ B2, YV € D (6.7)

Recall that this field has to satisfy for all V € Dy that
/ F(s1,82) - V(s1,82)ds =0.

Hence, for all (Vi,V2) € HE(0,ar) x H3(0,ar)

F2(81,82) . ‘/2(81) ds = 0.

/ Fi(s1,52) —s5Vy (s1) + Vi(s1)
w \ F3(s1,52) a(s§Vy (s1) = V4 (s1))
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We then get with partial integration and the boundary conditions for V; and V5 that

8F1 82F3 . 8F3
/w[(a&sg-l-FQ—l-aas%Sg Va+ Fl+a(‘T§1 Vi| dspdsy =0,

holds for all V; € H}(0,ar) and Vo € HE(0,ar). Hence, the field F € L?(w)? has to satisfy*

F. S(F;
Mz(pl)_,_am:o’ M+M2(F2)+a
d51 d51

d? M5 (F)

=0.
ds%

In Lemma 9.3 we show that there exists a field F € L?(w)? such that

<F, V> = / (F11611(V) + F12612(V) + F22€22(V)) d51 dSQ.

17

Taking into account the holes, we need an additional assumption on the forces F. We will see this in the proof

of the lemma below.
From now on, we assume that F satisfies (6.6) and moreover F € H'(w)3.
2

1
— fE-udx—e3</
2K Qr w
ol

:‘i2
— o Uy dsp d
+3a/w:gu S1 82+3

Lemma 6.1. One has

1
f'UdSldSQ—Fg/ F-Z/{Edsld32

* *
= We

Jo Ra dsy d82> ‘

wz
< 655/2( ”fHL?(w) + HQHLZ(@ + ||F||L2(w)) ||€(u)||L2(Q;) :

Furthermore

ferudz| < 053/2( ||fHL2(w) + ||9||L2(w) + 15| L2 (0,12 (0,a7)) + ||F||H1(w)) H@(U)HL2(Q;) :

Q:
The constants do not depend on €.

Proof. Using the decomposition of u we can write (see Rem. 1.3)

ferudx = fe - udet (t1 +§t1|t2\n) ds
Qr Qx a

3 9 2633
=e”2K f-Udsydss + 2ke F -Ug dsydss + 3 Jo Uy dsy dso
w? w? @ Jur

233 243 253
4 E£E / o Ry dsy dsg + 53: / F-Rds;dsy + Z: Fo R dsy dss

3
E53F~ﬂds—|—/ 8—352 fsu-nds.
a

52
+/ ig-adﬁ/
Qx @ Qx @ Q

* *
€ €

* *
€ We

*
€

4As example, take (Fa, F3) € L2(0,ar) x H2(0,ar) and set

d.F:
F(s1,82) = s§ (—aﬁ(sl)tl + Fa(s1)e2 + fg(sl)n) for a.e. (s1,82) €w.
1

(6.10)

(6.11)
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First, using the estimates (1.19)2 and (1.21)3 one gets

‘/*asgg-ﬂds < Ce%?|gl 2wy lle(@)ll 2oz - ‘/*553F.ﬂds‘ < O\ Fll 2o lle(u) | 12 s -

‘/5233 f3u-nds| < Ce”? 11l 2wy el p2(gy » ‘/54F.Rd51 dSQ‘ < O\ F| 120 le(w)llp2¢gs) »
: wg

‘/ &” fo Ra ds1 dss| < C™2||F | p2(0) lle(w)l] 2 ) -

Hence, (6.9) is proved. Now, (1.21)3 also leads to

31%3 31%3

2
5325/ f-Udsidss + <
o a

2
/ o Usy dsy sy + == / o Ry dsy dso

< O (11 £l g2y + 19l 2 () (@)l 2(qx)

Now, it remains to estimate / F -Ug ds; dsy. For every function ¢ in L (w), we denote

*
We

/
Mc(p)(s") 1 ® <s [S] +€Z> dzydzy, for ae. s €.
Y/

- EQ‘Y/| vy’ g

Function M. (¢) belongs to L1(&.) (see [9,10] for the properties of the operator M.).
Recall that by (1.22), (1.21)2, Lemma 5.1 and (5.3) one has

C C
Ulle < o7 He(u)HL2(Q;) o UElH W) < 2372 He(u>||L2(Q§) :
One has (see [10], Prop. 1.38)

wE

‘/ F'ME<UE)dS]_d82—

w

F UE d81 d82 —/ F- ME(ME) d51 ng‘ S CEHVZ/{E’”L?(w)||F||L2(w)7

*
=

M(F) - M.(Ug) ds dSQ‘ < Ce|Ugl| 2 () IV F 22w

o*
We

Hence
’/F.uEdsldsr/
Since M (F) - M (Ug) is constant on every e-cell, that gives

y'*
ME(F) 'ME(UE) ds;dsy = |y/||

C
M (F) - Mc(Ug) dsy d52‘ < Celldpll @ IFlm @) < G I1F @) ey -

¢
=

/A ME(F) . ME(UE) d81 dSQ.
Proceeding as above, one shows that
C
‘ /AF UE dsl d82 - /AME(F) ME(ME) dSl ng‘ S WHFHHl(w) HG(U)HLQ(Q;) .

Summarizing the above estimates and using (6.7) give (recall that there are no holes in A.)
Y
Y7

)/F~L{Edsld52—

*
€

C
[t dsidsa| < o el ey
w

c
and | [Pt dsy dsa| < 5 (1Falliao o am + 1F ) el e

which leads to (6.10).
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Using now u = u,. as test function in (6.5) we obtain

||€(Us)||L2(Q;) < 053/2(||f”L2(w) + ||9||L2(w) + 1 F3l 20, 1:82(0,am)) + 1|1 ()

7. UNFOLDED LIMIT PROBLEMS

For every (Vg,V) in Dg x D; we define the symmetric tensor £(Vg, V) by

with

and

Denote H}

Z11(Ve) —ysA1 (V) Z12(Ve) —ysAi2(V) 0
EWVr, V) = | Z212VE) —yshi2(V)  Z22(VE) —ysAaa(V) 0
0 0 0

1[ov )%

0%Vs 10V 0 oy 0%Vs 0 oy
A = _——_—— = — —_— A — e p— —_
() ds?  ads1  Os; (851 n) ’ 2(V) 0s3 059 (832 n) ’
0?Vs 10V, 0 <8V ) _

- 881382 - 8751]0

A1 (V) a dsy 8752

(Y*) the subspace of H!(Y*) containing the functions G periodic and

D= {v=(Vg,V,0) € D; x Dg x L*(Q; H,.(Y*))*}.

For every v € D we consider the symmetric tensor

EWVE, V) + &)

and the semi-norm

[ollp = 1€VE: V) + Ey(O) 2 (v -

Lemma 7.1. Given the expressions (3.7) for V € Dy, there exist ¢,C € Ry such that

2
clVIB, € D7 IIRagMW)llz2,) < CIVIE, -
a,B=1

Proof. First, one has

2
D 1AMz < CUIDVslL2w) + VY1l 22(w))-
a,B=1

This inequality and Lemma 5.1 give the inequality in the right-hand side.
We prove the left-hand side of the inequality by contradiction. We assume that there exists a sequence (Vy,)nen

in Dy, such that

2

2
||VnH]D)I = 17 Z HAaﬁ(Vn)HLz(w) —0 as n — oo.
a,B=1

By Lemma 5.1 and the expressions in (5.1), we can also consider a sequence (Vi ,, Van)nen in Hg(0,am) x

H(0,ar) with

2 2
||V17"||H8(O,a7r) + ||‘/27"||H61(0,a7r) =1



20 Q. GRISO ET AL.

and the components A, can be expressed as

1 1" ’ " "
Aia(V) = = (s5Vain(s1) = Vi (s1)) +a (5Varn(s0) = Vi)

1, iy (7.1)
Aa(Vp) = gVZn(Sl) +aVy,(51), A(Vn) =0.
We have then that there exists (Vi, Va) in H(0,ar) x Hi(0,an) such that
(Vi Vo) = (Vi,Va) weakly in  H(0,ar) x Hy(0,an).
By Sobolev embedding we then get
(Vin, Vo) — (V1,Va) strongly in  HZ(0,ar) x H3(0,ar).
Moreover, since ||Aqg|| — 0 for (o, 8) € {(1,1),(1,2),(2,2)} we have that
D68V (50) — Vi (s0) a5V (1) = ) =0, TV (s1) + ¥y (51) =0. (72)

Solving the differential equations with the respective boundary conditions we obtain that Vo = V; = 0. Therefore,
we have that (Vi,, Va,,) converges strongly to (0,0) in H3(0,ar) x H3(0,ar).

Considering again equation (7.1) and with our assumption that [[A11(Vy) | 12(,) — 0, we also get (Vlu;” VQH;;) —
(0,0) strongly in L?*(0,an)? and then the convergence (Vi n, Va.,) — (0,0) strongly in Hg(0,ar) x H§(0,ar),
which contradicts the fact that HV1||?qg(o,M) + ||V2||§1§(
Vel 774(0,0m) = 1 for all n € N. O

0,am) = 1 coming from the assumption ||V17n||§{g(o,a7r) +

Lemma 7.2. Consider the space S =R3 x R3 x H!

ner0(Y)? with the seminorm

2

2
Irasre,@)lE = 3 |7+ 9575 + eana (@)]

a,B=1
a<lp

L2(Y™)

2 112 112
+ ||613,y(w)||L2(y*) + H6237y(w)HL2(y*) + ||€33,y(w)||L2(y*) .
Then this expression actually defines a norm on S equivalent to the product-norm.

Proof. We consider the field ® € H'(R3)3 given by

1(y) =y1 (TA" +ysm8") + 2 (74> + ys78 )
Do(y) = yo (T3> + y378) + 11 (T4° + y37h )
2 2

Dy(y) = — (y;) 7_]131 + (ZU;) 7_]232 + y2y1T1132

Hence, we have
(T, 78, )[lg = 1€y (P + @)l L2y~ -

We will now show that [|€,(® + @) 2(y.) = 0= ® =0, w = 0.
Consider the case that &,(® + @) = 0, which yields that ® + @ is a rigid displacement. Hence, there exist
a,b € R? such that
ay + bayz — b3y
d+w=r 71y =|az+bsyr —biys
az +biyz — bayr
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Since, @ is a periodic function with period py, py, one has (® — 7)(y + p;) = (® — r)(y) for a.e. y € (R?\
Ueea(§+ S)) x (=&, k). Considering the first two components yields the equations
T,}xl +ysh =0, TA +ysT = —bs,

for a.e. ys € (—k,K
TA +y3TB =0, T}‘2+y37']§2:b3. ( )7

Therefore, we obtain 74! = 74! = 732 = 7% = 7}2 = 74 = 0 and b3 = 0. Now, the equality of the third
component yields by = by = 0. Finally, we conclude that ® = 0, r is a constant displacement and since
@€ H},, o (Y*)? the displacement r = 0 and therefore @ = 0, which proves that || - | is a norm.

By contradiction we easily prove that there exists a constant C' > 0 such that
C(Iral + 78] + @l 1 (v)) < (7a, 78, @D)lg, V(7. 75,0)) €S,
which ends the proof. O
Lemma 7.3. The semi-norm |-||, is a norm equivalent to the product-norm of Dy x D x L*(Q; H} . (Y*))3.

Proof. By the definition of [|-||, , we have that

2
2 112
lolls = >~ 11Zas(VE) = 438as(V) + €apy O 12 (ny-)
a,B=1

12 12 2
+2 Heli’»,y(v)Hm(wxy*) +2 He23,y(v)HL2(wxy*) +2 He33,y(v)HL2(wxy*) .

We may further note that we have

eV V) = 3 [ 2astVe) + paasv)

a,f=1
e Y 1 Zas Wl + 2 Z as M), -
a,f=1 a,f=1

We obtain with Lemma 7.2 and the equivalence of norms that

2 2
¢ Z HzaﬁHLz(w) + Z HAaB”Lz(w) + H6||L2(wa*) < ||V||]D>,

a,B=1 a,f=1
2 2
<C Z HzaﬁHm(w) + Z HAa[?”Lz(w) + Hi)\”L?(wa*)
a,B=1 a,f=1

2
Further note that Z ||Zaﬁ(VE)||iZ(w) = ||VE||?3

a,B=1
Besides, with Lemma 7.1 we obtain that

VI € S I8asW)Ea, < CIVIE,
a,B=1

Finally, we can conclude

¢ (IVels + VI, + 18l 2xy)) < I0lp < € (IVelp + VIn, + 17 2xy-)) -
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22
Theorem 7.4. Let u. be the solution of the elasticity problem (6.5). Then the following convergence holds:
1
“T(e(ue)) — EUR,U) + E, (@) strongly in  L*(w x Y*)?, (7.3)
where (Ug,U,w) € D is the unique solution of the rescaled and unfolded problem
1 A ~
o aiji (Bsi;Up,U) + iy (40) (Es(Ve, V) + Exy(0)) ds’dy
WXY/ K}2 H2 8V (74)
=Y (/w (f V4 %gava - 39aasan> ds’ + (F, VE>) , V(Ve,V,0) €D.

Proof. Take v = (Vg,V,?) such that
Ve € CH@)?NDg, Vel?@)?nDhy,

and consider the test function v. = v, 1 + ve 2, Where

ve1(s) = V(') + eVr(s') — s3 {W(s’) . n(s’)} to(s),

Veo(s) = %0 (s’, {g}) ,

with 0 € C'(w; H}.,(Y*)?) satisfying 0(0, s2,y) = 0(am, s, y) for a.e. (s2,y) € (0,L) x Y.
We calculate the elements e12(ve 1) and e13(ve 1), since the rest follows in a similar way. We obtain

e (1} ) - } a % +€8VE,2 s 32V3 +532VE,3
el T ot s3 | Os1 081 3 081089 051089
S3 8V1 3VE71 S% 82V3 1 8121 82VE,3 1 GVEJ
+ (1 * ) ( te > <53 + 081082  a 0so te 081082  a 0so '

a 089 0589 a

for a.e. se€Q.

Applying the rescaling-unfolding operator II. and dividing by € yields with the properties for D; that

1 1 a 8VE 2 8VE i 82V3 Y3 8V1
CIL c)) = - : 1) 2 Ll
5 (e12(ve)) 2a+eys [ ( 0s1 * 0s2 ) ys 051052 a 0sy
ysOVer eys Vs ey Vs () (0Vps 10V
a 0so a 051089 a 0sg Ys 0510589 a 081082 a 0ss

1 2V, oV, A
N §Z12(VE) — Y3 (851632 - 852) strongly in L*(w x Y*)°.

For e13(ve 1) we then obtain

1 1 1
Vs _ Vi) +e Ve _ Vi |+ s (Vs _ Vi
ds; a sy a a \0s1 a
1 1 1
L8 (s Ly (1+i3) (D Ly e (Pes Ly,
a a 0s1  a 0s1 a

In conclusion we get that

éﬂg(e(vsyl)) — E(Vg,V) strongly in L*(w x Y*)?.
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In the next step we focus on the calculation for e;;(v. 2), where we once again just focus on ej2 and ej3. One
has . .
(002)(5) 2 a 8v ( { }) a Ovt +8Ut (,{8})
e1a(v s) = hd _- il s 420,
12172 a+ s 831 a+s30y1 > Oyp €

z(afsgaafl at> LD G ) (D)

1
Considering now —II.(ej2(v; 2)) and *H€(€13(U5’2)), we obtain
€ ’ 5

n

Y

e13(ve,2)(s) =

1
EHE(elg(vag)) — e,12(0) strongly in L*(w x Y*),

1
—TI.(e13(ve2)) — ey13(D) strongly in L*(w x Y™*),
€

which then yields
1
EHE(e(vg,g)) — &,(0) strongly in L*(wxY*)?,

therefore 1
gHs(e(vs)) — E(VE, V) +&,(0) strongly in L*(wx Y*)?.
Plugging in our test function v. into the weak formulation (6.5), applying the rescaling-unfolding operator on
both sides. Dividing by 2ke? and passing to the limit, we obtain (7.4) with the chosen test functions (regarding
the right-hand side, we use the results from Lem. 6.1 and [10], Prop. 4.8 to get an integral over the whole
domain w at the limit). Then, by density of C'(@)* NDg in D, C*(@)*> ND; in D; and C'(w; H),.(Y*)?) in
L?(w; HY,.(Y*)?), this yields (7.4) for every (Vg,V,0) € D.

Due to the coercivity of a;;r; and Lemma A.1, we can apply Lax—Milgram theorem to the weak formulation
(7.4). Therefore, this problem has an unique solution. a

8. HOMOGENIZATION OF THE SHELL

In this section we want to express the warping-microscopic displacement u with respect to the macroscopic
Ug and U. Therefore, choosing V = 0 in equation (6.5) leads to

[ o (BssU,t) + €310 @) €@ dy =0 D € HL ()"

Hence, we can write @ in terms of (Ug,U). We define the 3 matrices

1 0 0 0 1 0 0 0 0
Mt=10 0o o), M2=mM*"=[1 0 o, M2=[0 1 0},
0 0 O 0 0 O 0 0 O
and introduce the 6 distinct correctors ((a, 3) € {1,2}?)
CVB 1 *\3 ﬁ 1 *\3
€ Hyo, (Y7)?, € H,,(Y")?, where
X2 =2, X}szf,
and which are defined by
(MY g Jaf & (D) dy = 0
aijrl | My + &ijy | XE Kty () dy =0,
v Vi€ Hy (Y, (8.1)

/ Qijkl <y3M%ﬁ +&ijy (X?ﬁ)) gkl,y({/;) dy = 0.
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Hence, we can write U as

(', y) = easUe)(IXE W) + Aap@U) ()N (y) for ace. (s'y) €wx V™.
8.1. The limit problems in the shell’s mid surface

Theorem 8.1. The limit displacement (Ug,U) € D x D; solves the homogenized problem

/ |58 Cap(Ui)eary (Vi) + Vit (eas(Ue) Aarir (V) (8.2)

+ RagU)eary (Vi) ) + i AapU) Ao (V)] d

/

B
id

K2 )
(/w (f VL gaVa - 3gaasan) ds' + (F,Ve)), Y(Ve,V) € Dg x Dy,

where 1 “aB
ag%rg/ﬁ/ = |Y7*| V- aijkl(y) |:M’Lajﬁ + gijvy (X%’B>:| Mzélﬁ dy7

hom _ /EB
aﬁalﬂl = ‘Y*‘ / az]kl {nga +61 ( >:|
aﬁa’ﬁ' = |Y*| / aukl Y) {ZBM& + Eijy ( )} ng‘,jl/ﬂ dy.

Proof. Consider equation (6.5) and choose the test function such that (Vg,V) € Dg x Dy and © = 0. Moreover,
with the expression for & we obtain for the left hand side in (6.5)

i e aijri(y) (Es,ij Ug,U) + Eijy (@) Esu(Ve, V) ds’ dy.
Hence,
[ i) |cape) )0 + 5 (5 ) 00) 4 Aas)(s) (a0 + 5 (37 ) ) ]
x Mgy fears (Van)(8) + yshovr (V)(5))] ds' dy
= Y7 </w (f Y+ g—zgava - f%iin) ds’ + (F, vE>> . (8.3)
Computing the expression yields,
) N

csa)ean@he) (MY + €5 (27 ) ) M2 e V)

|Y*| wXY x

+ aijri(y)Nap(U) (ySM?jﬁ + Eijy (X?B>) Milﬁ/ea/ﬁ' (Ve)
+asulean(te) (M3 + €y (X2 ) ) M A 9)
+ aijri(y) Aap(U) (ysM?f + Eijy (x?ﬁ >) ysMy” Ao (V) dy ds’
Y| / K2 K2 OV ,
- Y A F .
v\ f-v+ SagaVa 3 gaasan ds" + (F, Vg)

With the expressions for the homogenized coefficients we end up with equation (8.2). (I
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Denote S, the set of 2 x 2 symmetric matrices.
Lemma 8.2. There exists a constant C' > 0 such that the homogenized coefficients satisfy
hom
aa%a/ﬁ/ Tgﬁ TE + baﬂa/ﬁ’ (TEﬁTI ﬁ + Ozﬁ Ot ﬁ )
af_ao'p’ >C 04/3 af 0/3 v S S
+Caﬂa’ﬁ/7—] TI ( +7' ) (TE,T]) € D2 X 9.

Proof. We first note that with the variational formulations (8.1) we can calculate the homogenized coefficients
as

1 r — 1l L
b, 5 = Vel /Y aijii(y) (M5 + Eijy <X%ﬁ> {Mglﬁ * Erty <X%B ﬂ w

1 [ T\ [ s “oF
hom
baparp = il /Y aijr(y) ysMy + iy (X?ﬁ> M+ Eray ( )} dy

1 —\ ] g L
e it ()] o e (77)
Y+ L -
1 - ——\1T 1Al /\//’
o = Y*/ air(y) |ysM + iy (X?ﬁ> usMG” o+ Euay (X? i ﬂ w
Y L

For every (7g,77) € So X S, one has

h af o' g B8 o3 h B8 o'
aa%’g,ﬁ,TE TE baﬁa,ﬁ, (TE 7+ )—i—ca%rg,ﬁ,rf 7

= W /Y ikt [Mij + Eijy (V)] [Miy + Eriy (V)] dy,

with M = (7’;6 + ygrfﬁ) M and ¥ = TE XE +7 B. By the coercivity of a;jki, see (6.2), we obtain

*

/ Caijr(y) [Mij + Eijy (V)] [Mit + Epay (V)] dy = Co/ [Mij + Eijy ()] [Mij + Eijy (V)] dy.

Here we are again in the context of Lemma 7.2. This then yields with the equivalence of the norms that

/* [Mij + Eijy (V)] [My5 + Eijy (V)] dy > C (|TE\2 + | + H‘I’HiZ(y*))

>C( b aﬁ+ aﬁ) V(TE,T[>ES2XSQ.

9. DIFFERENT BOUNDARY CONDITION

In this section we want to emphasize on a change of the boundary condition, such that the previously free
part is clamped, i.e. Tg = ¢([0, 7] x {0} U [0, 7] x {l}). We may note, that all presented estimates and resulting
limits are not affected by the change of boundary conditions until we consider the split of U = Uy + Ug. As
n (5.1), we first obtain that U; can be presented as

Us(s1,82) = Uz(s1), Us(s1,50) = —s5U5(s1) + Ui(s1), Us(s1,82) = a(s5U5 (s1) — Ui(s1)),

Uy € HY(0,ar), Uy € H?(0,ar). With respect to our new boundary conditions we need that Us(sq,0) =
Us(s1,l) =0, for a.e. s;. Hence, we have Uz(s;) = 0 for a.e. s; € (0,am). With the same reasoning we get
Ui(s1) =0 for a.e. s € (0,am). Therefore Dy = D; = {0}.
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Remark 9.1. In the applied forces we consider F' such that
Fy € L*0,1; Hy(0,an)) N HY(w), Fy € H'(w), Fs€ L*(0,1; H3(0,ar)) N H (w). (9.1)

In the case of a fully clamped shell along Ow the assumptions on the forces do not change and we obtain
Dy =Dy = 0. Hence, we immediately get equation (9.2).

Lemma 9.2. For every U in Dg, where T'y is given above, one has
1Uall r1.(0,1:22(0,a7)) + ULz 0,052 (0,am))) + 1 Usl L2 (0,152 (0,0m))) < ClU| B

Proof. This estimate is an immediate consequence of the fact that Dy = H}(w) x Hg(w) x L?(w) and
Lemma 5.2. ]

If we consider the linear elasticity problem presented in Section 6 and getting to the limit, as presented
earlier, we obtain that the limit homogenized equation is given by
Y|
Y7

/ AR, o (Un)ears (Vi) ds' = (R V), WV € D, 9.2)
Now, we show that (F,Vg) can be expressed in terms of ey g (Vg) for every V € Dg.
Denote F and F the fields defined by
OF
L0)=0, == =F
(-,0) D55

)
e
|
o
|
|
|
N

Recall that the components of F' are given by (9.1).

Lemma 9.3. For every V € Dg one has
<F, VE> = / (Fnell(V) + F12€12(V) -+ F22€22(V)) d51 dSQ,

where F11 = aFg, F12 = —2(.7:1 + a@lfg), F22 = —.7:2 + 81.%1 + a&llfg,.
Proof. Consider V' € Dg. One has

/Fg V3d81 d82 :a/F3 611(V)d81 dSQ—a/Fg 81V1 d81 dSQ,
w w

w

:a/F3 611(V)d81 d52+a/81F3 Vi dsy dss.
w w

Then
/(F1 + a0y F3) Vi dsy dsy = f/ (F1 + ad1 F3) 8,V dsy dsa
= 72/ (F1 4+ adi Fs) e12(V) dsy ds, +/ (F1 + ad1 F3) 01 V2 dsi dss
= —2/ (F1 + ad1F3) e12(V) dsy dsg — / (O F1 + ady1 F3) Vadsy dsy
and finally

/ (F2 — 81.7:1 - a@llfg) va dsl d82 = —/ (.7:2 - 81.7":1 - 0,611.%3) 82‘/2 dSl ng.

w
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Y/

FIGURE A.1. Cell Y’ and the perforated domain Y'*.

With those calculations we obtain for every V in Dg

/ F-Vdsidsy = / (F1V1 + FyVo + Fg‘/;g) dsy dsg

w

/ ((F1 + aang)Vl + FyVy + (lF3€11(V)) dsq dso
w

( — 2(.7:1 + aalj:g)elg(V) + (F2 —OWF1 — a811.7:3)V2 + aF3611(V)) dsq dso

e—

( — 2(.7:1 + aalfg)(?lg(V) + (—.7:2 + 61]?1 + aallj':g)egg(‘/) =+ aFgell(V)) dsq dss.
We conclude the proof by the density of Dg in Dg. O

APPENDIX A.

A.1. Proof of Proposition 1.1
There exists kg > 0 such that
O ={seR>*\T|dist(s,T) < Ko} C Y *.
Since the boundary of T' is Lipschitz, there exist R, R} > 0 and N > 2 open sets Of, ..., O such that
e O} is included in a ball of radius R’ and is star-shaped with respect to a ball of radius R}, i € {1,..., N},
e O/NOI  #0,ie{l,...,N =1}, and O N O} # 0,
e O, cUY,0lcY™
Set Ok, = Oy, X (=K, k), O;=0;x (—k,k), i€{l,...,N}. One has
e P;: O; is included in a ball of radius R = R’ + k and is star-shaped with respect to a ball of radius
Ry =inf{R},k},ie{l,...,N},
e Py O;N0;1 £0,i€{l,...,N—1},and Oy N O1 # 0,
o« P30, cUY,0, cY~.
Set OF = Oy, U (T x (—k,)). Below, we will use the classical extension result (Fig. A.1).

Lemma A.1. There exists an extension operator P from H'(Oy,) into H'(OF,) satisfying for all ¢ € H*(O,,)
P(QS)\OHO =9, ||V(P(¢))||L2(ogo) < OHV(me(oRO)'
The constant only depends on OT”.

5Note that if we transform the domain Ok, by a dilation, the constant does not change.
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Proof of Proposition 1.1. For every £ € =, and O;, i € {1,..., N}, if ¢ s small enough, the domain ®(££ 4 0;)
is included in a ball of radius 2Re and is star-shaped with respect to a ball of radius Rie/4 (due to property
P; and Lemma A2 in [14]).

Now, let u be a displacement belonging to H'(Q.)?. For every (&,i) € Z. x {1,..., N} there exists a rigid
displacement 7¢ ; such that

[u = 7eillL2(@eete0,)) T EIVa(u —rei)llL2(@eere0.)) < Celle(u)lL2(@(eer<0,))- (A1)

The constant does not depend on ¢, £ and O;, it only depends on the ratio R/R; (see [14], Thm. 2.3). Then,
step by step we compare the rigid displacements r¢ 1, 7¢ 2, ..., r¢, v thanks to the properties Py and P3. To do
that, observe that there exist two constants independent of € and £ such that

C83|OZ‘ n OH—I‘ < |(I)(8£+€Oi N Oi+1)| < C€3|Oi ﬂOi+1|, 1€ {1,...,N — 1},
c3|lON N Oy < ‘@(554—5(91\/ NOy)| < C¥|On N Oy].

As a consequence, there exists a rigid displacement r¢ such that

lu = rellp2(@(eerey=)) +€llVa(u = re) | L2@(ceqev)) < Cclle(w)|| 2 (@(eetey))- (A.2)

The constant does not depend on ¢ and £. Then, taking mean values, one can replace r¢ by re with the same
estimate

re(z) = Mo(eerey =) (1) + Mooy =) (Vu — (Vu) ") (z — Ge)

where M (c¢4oy+) (@) is the mean value of ¢ € L*(®(c€ 4+ €Y™)) in the open set ®(ef + Y*) and G is its
center of mass.

At this point, transform the domain ®(¢£ 4+ £Y™*) by the inverse map z € Y* — ®(e£ + £2), then apply
Lemma A.1 in order to extend the function in the hole T and finally transform by the map z € Y —— ®(e+¢2)
and to the result add the displacement 7¢. The L? norm of the strain tensor of the extended displacement (now
defined in ® (g€ 4 €Y')) is bounded by a constant (independent of £ and &) multiply by ||e(w)|| 2 (s (c¢+ev+))-

We apply this process to every domain of e£+cY ™, £ € =.. Finally, we obtain an extension of the displacement
u satisfying (1.6). O

A.2. Two lemmas

For the definitions and properties of the unfolding operators 7., M. we refer to [9,10] and Lemma A.2
is proved in [10]. Let © be a bounded domain in RN with Lipschitz boundary and Y = TIY,(0,1;), I; > 0,
i=1,...,N.

Lemma A.2. Suppose p € (1,+00). Let {(ucs5,v-6)}es be a sequence in WHP(Q)N x WP (Q)N XN (with v, 5
a symmetric matriz) converging weakly to (u,v) in WHP(Q)N x Whp(Q)N*N,
Assume furthermore that there exist X in LP(Q)N*N and T in LP(Q; W2 (Y )N*N such that as (¢,6) —

per,0
(0,0)
1 .
g(e(us,a) +o.5) =X weakly in LP(Q)M*V, .
T.5(Vv.5) = Vo+ V, 5 weakly in LP(Qx Y)N*NVXN,
Then u belongs to W2P(Q)N and there exists u € LP(§); W;}ézr),o(y))N such that, up to a subsequence,
1
if % — 0 €0, +00), 57'5,5 (e(ues) + vo5) = X +ey(u) +0% weakly in LP(Qx Y)VN
(A4)
if %*}4»00’ 5zey(u).
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Proof. First, from (A.3) one obtains that e(u) + v = 0, then since Q is a bounded domain with Lipschitz
boundary u belongs to W2P?(Q)N. We also deduce from this convergence and the Korn inequality that u. s
strongly converges to u in W1?(Q)N,

Then, up to a subsequence, there exists Xe LP(Q x Y)N such that

1 -
57;,5(6(11575) +v.s) =X weakly in LP(Qx Y)V*N,

Step 1. In this first step we assume that % — 0 € [0,+00).
Introduce the function Z. 5 belonging to LP(Q; WP(Y))N | defined as

1
Z.s= ETE (u575 — Mg(ue,a)) - M. (Vu575) -y©. (A.5)

Its gradient and symmetric gradient with respect to y are
Vyzs,é = Ta (Vus,(i) - ME (vua,é)

ey(Zes) = To(e(ucs)) — Mc(e(uzs)) (A.6)
= 7:5 (e(llg,é) + V575) — ('TE(V&[;) — ME(VE,g)) — ./\/la (6(11575) + V€75).

Convergence (A.3); on one side together with the fact that ||Vve 5| 1rq) and % are bounded, give

lley(Zes)llr@xyyy < C(6+¢) < C6.
The Korn inequality implies
|Ze 5| Lr (:wrr(v)) < C6.
Consequently, up to a subsequence, there exists Z in LP (Q; WHP(Y))N such that,
1 ~
5Zes 7 weakly in LP(Q; WP (V)N (A7)
By (A.6) one has

1 ) s My
=T (e(ucs) +ves) = wey(Zes) + € Te(Ves) = Me(Veys)

1
+ SME (6(11575) + Vs,&)-

) ) 0 €

Then going to the limit using (A.7) and Proposition 1.25 and Theorem 1.41 in [10]

1 = 5 -~ .

57; (Vu&(s + VE75) —~ X =e,(Z)+ H(Vv y© + v) + X weakly in LP(QxY)V*N, (A.8)
Now, we prove that

N
5 0 0%u
—z_7Z _TU eyl — cprc
M=B5 D Gryom Uit~ My )

is periodic (note that this function belongs to LP(Q; W1r(Y))N).
We proceed as in the proof of Theorem 1.36 in [10], one first evaluates the difference of the traces of Z. 5 on
the faces Y1 = {0}x(0,1)V~! and Y; + e;. For a.e. (z,9') € QxY1, one has

Ze,é (1’, yl + ei) - Ze,é (LC, yl)
1

= ~(Te(ue)(@,y + 1) = Te(ue ) (2,9/)) = Me (851515> (z)

— L (Tus)(o + cens) - Towes)(o) - Me (52 ) o)

8.731
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Let ® be in D(2xY7)Y, one has successively
/ (Zes(z,y' + &) — Zes(2,y)) - ®(z,y') dedy’
QXYl

-/ . [1 (T: (o) (& + 2e1,9') — To(e ) (2,9')) — M. (3;;1’5) <x>] - 0(z,y') drdy

g
_ AN /
_ Z(u5}5)(x,y/) ) @(.’IJ Eelay) (I)(-Tyy ) dﬂ?dy/ _/ ME (aalla,ti) (.T) . @(m,y’) de dy/
QxY; € QxY; 1
0P 8115 6 8“5 S
= € - 7::‘ € ) ' G ! ! — — £ - P ) ! !
[ s = T ) o) - S ey + [ (G a () ) bty oy
— 7y ! . !
+ T (uc5)(2,y) - oz —cery) — 2wy) +eer- Vod(z,y) dzr dy’
QxY; >
then
0P
- / (Ms(u5,5>(m) - Ts(us,&)(xay/)) : ai(xu y/) dz dyl
QXY T
o du, du,
(el = Metueo)@) Sy dray + [ (G (GE2) ) ety deay
QxY; ox X1 QOxY; 8.%1 ({91'1

q)(x — &€,y ) — (D(J?, y/) +cey - vi(b(x’ y/) dx dy/
£

+ [ Te(ues)(x,y) -
axy,
The last right-hand side is equal to (see [10], Prop. 1.24)

| Mues)o) - Tlaes)les) - g (o oy

e ([ Srctn) o )
—|—98;;1’5(x)-(/y¢(wy dy> </Y (,y/ dy)dx

D(x —cer,y) = Blay) + 2o Vablwy) |

+ T (ucs)(z,y') -
QxY;

Divide by ¢ and then pass to the limit using Propositions 1.38 and 1.39 [10]. It yields

Z 'te)—Z /
/ E,5(x?y +el) E,&(x?y) . ‘I)(.’E,y) dxdyl
QXYl

)

oP 0 9%2d
— [ —o(Vulyy) gy dedy + 5 [ ula) G ) drdy

0%u

= 0 )y, ®(z,y) dz dy’.
L. > Gy O Vo) oy
8%u

N ,
Hence, for a.e. (z,y') € OxY1, Z(z,y +e;) — Z(z,y) = sz ) W(x)ykc We obtain similar equalities
= 10X}

for the difference of the traces of Z over the other faces of Y. That proves the claim. Then, a straightforward

calculation gives (using Ve(u) + Vv = 0)

N
() = e,(2) 0y 20
k=1

<
ke
I

= N ov
y(Z) + 92 D
k=1
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With (A.8), that gives the convergence (A.4);.
Step 2. In this step we assume that g — +00.

Again we consider the function Z,. 5 introduced in (A.5). Now, it satisfies
1Zc 5|l e (swrr(vy) < Ce.

Hence, up to a subsequence, there exists Z in LP(Q; WLP(Y))N such that,

éZ&g —~ 7 weakly in LP(Q;WHP(Y))N. (A.9)
Observe that
%’Z; (e(uws) + Vsyg) 01 (5T ( (ucs) + ve 5) — 0 strongly in LP(Q x Y)V*N,
%Ms (e(uws) + Vsyg) ./\/l ( e(uss) + V575) — 0 strongly in LP(Q)NXN.

One has

T.(ves) _EME(Ve,é) + %Ma(e(ue,(g) +Ves).

ST () Vi) = éey(ze,a) T
Passing to the limit in the above equality gives
e(Z) + Vv + 9= 0.

Then, as in the previous step we prove that

2

N
>3 v (v5ui — My (y597)

j,k=1

:2—

l\D\’—‘

is periodic. Thus (A.4), is proved with u = —b.

As a consequence of Lemma A.2 one has (see also [10], Lem. 11.11).

Lemma A.3. Supposep € (1,+00). Let {(uc s,ve.5)}e.s be a sequence in WP (Q) le’p(Q) converging weakly
to (u,v) in WHP(Q) x WLP(Q)N . Assume furthermore that there exist X in LP(Q)N and v in LP(€); Wplef oYV
such that as (g,6) — (0,0)

1
S(Vug’g + vg,(g) — X weakly in L”(Q)N7

7. 5(Vves) = Vo+ V0 weakly in LP(Q x Y)NXN.

Then u belongs to W2P(Q) and there exists u € LP(; Wplefo( )) such that, up to a subsequence,

—-
=

1
7., (Vu55+v8 5) —~X+V,u+60v weakly in LP(Qx Y)N7

0 (A.10)
U= Vyu.

— 0 €[0,+0),

—-
=i
S| S| ™

— +00,

Proof. Consider the field u. 5 € WhP(Q)N and the symmetric matrix field Ve € WhP(Q)N*N defined by
e 5 = (Ue,s5,0,...,0),  (Ves)n =vie,

(Ves)1i = (Ves)in = %%, (Ves)ij = 0if (i,5) € {2,...,N}>.

These fields satisfy the assumptions of Lemma A.2 and the convergences (A.3). Therefore, the results in (A.4)
give (A.10). O
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A.3. Postponed proofs

Proof of Proposition 5.1. Step 1. We start by showing the norm equivalences.
Take V € Dy (resp. D), one has

en(V) = —%v?,, e1s(V) = exn(V) = 0.
Now, the 2D-Korn inequality gives (recall that V3 = Vo = 0 on T)
Vil ) + 1Vellin ) < ClVslZ2 (-
Then we obtain
HV”[QHl(w)]?XL?(w) = HV1||§11(W) + |\V2||?11(w) + ||V3||iz(w) <C ||V3HiZ(w) =C ||V||2DI :

On the contrary, to estimate |-|| , by H.||[H1(w)]2><L2(w) from above, we can use Young’s inequality such that

2 2
me:mww@:/%M'

WN> 1., [(OW\® [ovi\® [0V, )
< hld) — hild) hild hild)
*/w [(851> +a2V3+(682) + 059 + 0s1 +Vs

< C (M) + IVl + MlE20)) = CIV I ez

ds’

Step 2. We prove the inequalities.
With expression (5.1)3 we get

VI, = WVallfaey = [ Vs dse

w

am l
= 0,2/0 /(; [(SSVZN (31))2 _ 285‘/2”(81)‘/1/(51) + (Vll (51))2] dsy dsq

2
L2 (O,aﬂ')) ’

First we note that Va(s1) = Vj (s1) = 0 for s; € {0,ar}, which follows by the expressions in (5.1) and since
V1(0,s2) = Vi(am, s2) = Va2(0, s2) = Va(am, s2) = 0 for a.e. so € (0,1). Moreover, we obtain with the Poincaré
inequality in Hg(0,ar) and HZ(0,ar) that,

2

L2(0,a7r)>

((SEVQ )2 =255V, Vi + (V1)2) ds’

2 ’
+ |
L2(0,am)

<c(Jw

2 ’
v

2 2 1
Vel + Vil <€ ([

IN

T~

C

IA

C [ a®(s5V, —V1)2ds' =C VI3, -

The second inequality is again obtained in a similar way, where we need to use that

2 112
H HZ2(0,am) ’

Vi

2 2 "
||‘/2HH4(0,0.7T) + “‘/1||H3(O,a7r) S C (H‘/Q H2(0,a7)

which follows from the Poincaré inequality.
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Proof of Lemma 5.2. Since Dg is the completion of Dg for the norm || - ||z, if we prove the estimates of the

lemma for U € Dg, then by density they will be satisfied for every element in Dp.
Let U be in Dg, recall that

oy
882

ol 82/{2

61/11 1
5 + 24! Ios " Ons

851 a < e, H

< s, ||

L2(w) L?(w) L2(w)

Recall also that there exists (O, Cy, C3) € R3 such that
MQ(Z/[3)(81) = Cl, ME(U3)(81) = 023(13 + 037 for a.e. S1 € (0, a7r).
Step 1. In this step we prove

Mo (Ul m10,0r) + MU 1 (0,0m) + M2(U2) [ 22(0,am)
+ Mo (Us)| + [ M5(U3)|[22(0,ax) < ClU||E-

Set
s1(s1 — am)

M5 (Us)(s1) = Co 2= 5
—1)
Mo (Us)( / Up (51, 59) ————=dsa.

One has M§(Us), Mas(Uhs) € H (0, ar).

We first show that AMa(d .
[ 141

L2(0,am) l

By plugging in the definition for My (U;) we get

Hld51/2/{1 51,82)(21824-*/ Us 81782)(182

We interchange differentiation and integration, s.t. with Jensen

1 [t/o 1
H/ (ul+u3) dsy
l 0 851 a

Moreover, we have

L2(0,am)

ou 1
< — ’ ‘ L U
L2(0,am) \/Z 881 a

2w V0

o

L2(0,am)

L2(0,am)
2

1
+ EMQ(Z/{,?,)

since by partial integration

/OM %5(1”1) Mo(Uhs)dsy = [Mo(th) Ms(Us)]2™ /OM Moty M2Us)

Therefore, we obtain
2

le(Us)

a

d
HM?W SCHUHQ

L2(0,am)

L2(0, a7r)

< [l -

for a.e. s €(0,arm),

1
< — g -

2 _ /O‘”r (dM?Wl) + iMz(U3)>2 ds

L2(0,am)

d81 d81 =0.

(A.11)

(A.12)

(A.13)
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The Poincaré inequality in H}(0,ar) and the previous results lead to

HdM?Wl) < C Ul

L2(0,am)

MUl 11 0,0m) < C

and since My (Us) is independent of s; we obtain |[My(Us)| < C ||U|| ;. Below we show the inequality

HdM%(Lﬁ) L LdMs@Us) | G
a

dsy a

<l (A.14)

L2(0,am)

Plugging in the definition for M$§ and /Wg we get again with Jensen and since s§ € (—1/2,1/2)

HdMg(m) L LAM5@s) | G

a ds; a

L2(0,am)

ou, 1 > H 1 (8241 1 )

=||- — 4+ U3 ) s5ds <I||—= =+ -U3 ] s§ <C|U| -

Hl /O <831 a ’ 2 L2(0,am) N \ﬂ 681 a ’ ? L2(w) B || ”E

Now, we prove the inequality
1~ 2 ) )
S - M5 < . Al
[Msea) + M5, ICs? <Ol (A.15)

With the Poincaré inequality and since C € R and MS(Uy), MS(Us) € HE(0, ar) we obtain

1~ 2
[ Msen) + —Msas)| +1Csf
L2(0,am)
1d ~ 2 Cs
M5 (U —— M5 (U + ||— <C|\U|lg,
(Hd @+ e +|| L2(OM)>_ s

using
@ d 1 d —~., Cs
—ds; =0.
/0 (d 1M <UI) a dSlMQ(UB)) a 51
In the following we show the inequality

’ AMa(th) | 1

<C|\U|g- A.16
dsy a < Gl ( )
With the previous result, partial integration and (A.11) we get

L2(0,am)

AMao(Us) 1 ~
| eth) 2 Rt
51 a L2(0,am)
dM s (U 1~
‘22(2') MEU) + M () + — M5 (Us)
L2(0,a)

— M5 (U)

)

L2(0,am)

dMaa(Us)
d51

’ HM (Uy) + M < (Us)

where we have for the first term by plugging in the definition and swapping integration with differentiation

1 " OUy so(s2 — 1) 1/ I
it 222872 ds, — = . —~1d
Hz ) ds1 2 2 z/oul(’”) %275 ) G52

L2(0,am)
l
|| [ (G gty 2] <o TG <o
l 0 651 852 2 L2(0,aw) 851 a52 L2(w)
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d U
Integrating M%M + MC(U3) over (0,ar) and due to the above estimate (A.16), one obtains |Cs| <
C||U|| g and then again Wlth (A.16) and (A.14), (A.15)
dM22 Z/fz)
M5 @) 220,0m) + M5 @) 12 0.0m) + IME @) 2 0.0m) < ClU + | 52522 < Ol
. dMaa(Us) . .
Since MQQ(UQ) € HO(O CL7T HMQQ UQ HL2 (O,am) = CHT‘ L2(0,a7) ~ CHUHE The Poincaré—
Wirtinger inequality gives
s — Ma(ths) 2 < U5 (A.17)
. s2(s2 — 1) . )
Multiply Us — Ma(Us) b — 5 and then integrate with respect to so to get
l2
Up) + 15 Ma(lhe)| < Clu||g.
|Moze) + et < Ol
Therefore
Mo (Ua)|L2(0,am) < ClIU|| - (A.18)

Step 2. We show the 3 inequalities in equation (5.3) by using Poincaré-Wirtinger inequality. We start with
Us|| 12wy < C U . With the inequalities in (A.17) and (A.18) we get

o]l 20y < U2 = Ma(Us)l 20y + IM2(U2)l 20y < C U g - (A.19)

Recall that if X is a separable Hilbert space, then the Poincaré-Wirtinger inequality is valid in W1?(0,1; X)
(p € [1,400]). From (A.19) and (A.11)3 we get

oy

OUy
u
H L2(0,1;(H(0,am))) H 0s2 Clt]z-

881

L2(0,1;(H(0,am))’ )

Then the Poincaré-Wirtinger inequality and estimate (A.12); in H'(0,; (H(0,am))’) give

”ul||L2(O,l;(H1(O,a7r))’) < Hul - M2(ul)||L2(0,l;(H1(0,a7r))f) + HM2(Z/[1)HL?(o,l;(Hl(o,arr))') <cC ||u||E

The above inequality leads to < C||U|| g, which together with (A.11); yields

L2(0,5;(H2(0,am))) —

H 0s1

U] L2 0,152 (0,0m))y < C U -

This ends the proof of the lemma.
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