Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S969-S991

We consider a stabilized finite element method based on a spacetime formulation, where the equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for the wave equation is considered, where a noisy data is known in an interior subset of spacetime. For this problem, we consider a primal-dual discrete formulation of the continuum problem with the addition of stabilization terms that are designed with the goal of minimizing the numerical errors. We prove error estimates using the stability properties of the numerical scheme and a continuum observability estimate, based on the sharp geometric control condition by Bardos, Lebeau and Rauch. The order of convergence for our numerical scheme is optimal with respect to stability properties of the continuum problem and the approximation order of the finite element residual. Numerical examples are provided that illustrate the methodology.

DOI : 10.1051/m2an/2020062
Classification : 65M32, 35R30
Keywords: Unique continuation, data assimilation, wave equation, finite element method, geometric control, condition, observability estimate
@article{M2AN_2021__55_S1_S969_0,
     author = {Burman, Erik and Feizmohammadi, Ali and M\"unch, Arnaud and Oksanen, Lauri},
     title = {Space time stabilized finite element methods for a unique continuation problem subject to the wave equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S969--S991},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020062},
     mrnumber = {4221321},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020062/}
}
TY  - JOUR
AU  - Burman, Erik
AU  - Feizmohammadi, Ali
AU  - Münch, Arnaud
AU  - Oksanen, Lauri
TI  - Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S969
EP  - S991
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020062/
DO  - 10.1051/m2an/2020062
LA  - en
ID  - M2AN_2021__55_S1_S969_0
ER  - 
%0 Journal Article
%A Burman, Erik
%A Feizmohammadi, Ali
%A Münch, Arnaud
%A Oksanen, Lauri
%T Space time stabilized finite element methods for a unique continuation problem subject to the wave equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S969-S991
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020062/
%R 10.1051/m2an/2020062
%G en
%F M2AN_2021__55_S1_S969_0
Burman, Erik; Feizmohammadi, Ali; Münch, Arnaud; Oksanen, Lauri. Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S969-S991. doi: 10.1051/m2an/2020062

[1] S. Acosta and C. Montalto, Multiwave imaging in an enclosure with variable wave speed. Inverse Prob. 31 (2015) 065009. | MR | DOI

[2] D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Math. Acad. Sci. Paris 340 (2005) 873–878. | MR | Zbl | DOI

[3] C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue) (1988) 11–31. | MR | Zbl

[4] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. | MR | Zbl | DOI

[5] M. Bernadou and K. Hassan, Basis functions for general Hsieh–Clough–Tocher triangles, complete or reduced. Int. J. Numer. Methods Eng. 17 (1981) 784–789. | MR | Zbl | DOI

[6] L. Bourgeois, D. Ponomarev and J. Dardé, An inverse obstacle problem for the wave equation in a finite time domain. Inverse Prob. Imaging 13 (2019) 377–400. | MR | DOI

[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). | MR | Zbl

[8] E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: elliptic equations. SIAM J. Sci. Comput. 35 (2013) A2752–A2780. | MR | Zbl | DOI

[9] E. Burman, Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352 (2014) 655–659. | MR | Zbl | DOI

[10] E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem. Math. Comput. 86 (2017) 75–96. | MR | DOI

[11] E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods. Numer. Math. 139 (2018) 505–528. | MR | DOI

[12] E. Burman, J. Ish-Horowicz and L. Oksanen, Fully discrete finite element data assimilation method for the heat equation. ESAIM: M2AN 52 (2018) 2065–2082. | MR | Zbl | Numdam | DOI

[13] E. Burman, A. Feizmohammadi and L. Oksanen, A fully discrete numerical control method for the wave equation. SIAM J. Control Optim.. Preprint (2019). | arXiv | MR

[14] E. Burman, A. Feizmohammadi and L. Oksanen, A finite element data assimilation method for the wave equation. Math. Comput. 89 (2020) 1681–1709. | MR | DOI

[15] C. Castro, N. Cîndea and A. Münch, Controllability of the linear one-dimensional wave equation with inner moving forces. SIAM J. Control Optim. 52 (2014) 4027–4056. | MR | DOI

[16] O. Chervova and L. Oksanen, Time reversal method with stabilizing boundary conditions for photoacoustic tomography., Inverse Prob. 32 (2016) 125004. | MR | DOI

[17] N. Cîndea and A. Münch, Inverse problems for linear hyperbolic equations using mixed formulations. Inverse Prob. 31 (2015) 075001. | MR | DOI

[18] N. Cîndea and A. Münch, A mixed formulation for the direct approximation of the control of minimal L 2 -norm for linear type wave equations. Calcolo 52 (2015) 245–288. | MR | DOI

[19] C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30 (2007/2008) 1–23. | MR | Zbl | DOI

[20] R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190 (2000) 1579–1599. | MR | Zbl | DOI

[21] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191 (2002) 3669–3750. | MR | Zbl | DOI

[22] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. In: Vol. 159 of Applied Mathematical Sciences. Springer, New York (2004). | MR | Zbl | DOI

[23] J. Ernesti and C. Wieners, Space-time discontinuous Petrov-Galerkin methods for linear wave equations in heterogeneous media. Comput. Methods Appl. Math. 19 (2019) 465–481. | MR | DOI

[24] S. Ervedoza and E. Zuazua, The wave equation: control and numerics. In: Vol. 2048 of Lecture Notes in Mathematics. Control of Partial Differential Equations. Berlin-Heidelberg, Springer (2012) 245–339. | MR | DOI

[25] S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves. Springer Briefs in Mathematics. Springer, New York (2013). | MR | Zbl | DOI

[26] S. Ervedoza, A. Marica and E. Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016) 503–542. | MR | DOI

[27] R. Glowinski and J.-L. Lions, Exact and Approximate Controllability for Distributed Parameter Systems. In: Acta Numerica. Cambridge University Press, Cambridge (1994) 269–378. | MR | Zbl | DOI

[28] G. Haine and K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120 (2012) 307–343. | MR | Zbl | DOI

[29] F. Hecht, New development in Freefem++. J. Numer. Math. 20 (2012) 251–265. | MR | Zbl | DOI

[30] J. A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation. M2AN 33 (1999) 407–438. | MR | Zbl | Numdam | DOI

[31] M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for three-dimensional potential inverse scattering problem and stability of the hyperbolic Cauchy problem with time-dependent data. Inverse Prob. 7 (1991) 577–596. | MR | Zbl | DOI

[32] M. Klibanov and Rakesh, Numerical solution of a time-like Cauchy problem for the wave equation. Math. Methods Appl. Sci. 15 (1992) 559–570. | MR | Zbl | DOI

[33] P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19 (2008) 191–224. | MR | Zbl | DOI

[34] R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. In: Vol. 15 of Travaux et Recherches Mathématiques. Dunod, Paris (1967). | MR | Zbl

[35] J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. PDE 10 (2017) 983–1015. | MR | DOI

[36] L. Miller, Resolvent conditions for the control of unitary groups and their approximations. J. Spectr. Theory 2 (2012) 1–55. | MR | Zbl | DOI

[37] S. Montaner and A. Münch, Approximation of controls for linear wave equations: a first order mixed formulation. Math. Control Relat. Fields 9 (2019) 729–758. | MR | DOI

[38] A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation. M2AN 39 (2005) 377–418. | MR | Zbl | Numdam | DOI

[39] L. V. Nguyen and L. A. Kunyansky, A dissipative time reversal technique for photoacoustic tomography in a cavity. SIAM J. Imaging Sci. 9 (2016) 748–769. | MR | DOI

[40] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. [Collection of articles dedicated to Lothar Collatz on his sixtieth birthday]. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. | MR | Zbl | DOI

[41] K. Ramdani, M. Tucsnak and G. Weiss, Recovering and initial state of an infinite-dimensional system using observers. Automatica J. IFAC 46 (2010) 1616–1625. | MR | Zbl | DOI

[42] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions., Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI

[43] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed. Inverse Prob. 25 (2009) 075011. | MR | Zbl | DOI

[44] P. Stefanov and Y. Yang, Multiwave tomography in a closed domain: averaged sharp time reversal. Inverse Prob. 31 (2015) 065007. | MR | DOI

[45] O. Steinnach and M. Zank, A stabilized space-time finite element method for the wave equation. Technische Universität Graz Report 2018/5 (2018) 1–27. | MR

[46] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. In: Vol. 25 of Springer Series in Computational Mathematics. Springer, Berlin-Heidelberg (1997). | MR | Zbl

[47] L. V. Wang, Photoacoustic Imaging and Spectroscopy. CRC Press (2009).

[48] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. | MR | Zbl | DOI

Cité par Sources :