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SPACE TIME STABILIZED FINITE ELEMENT METHODS FOR A UNIQUE
CONTINUATION PROBLEM SUBJECT TO THE WAVE EQUATION

Erik Burman1,*, Ali Feizmohammadi1, Arnaud Münch2 and Lauri Oksanen1

Abstract. We consider a stabilized finite element method based on a spacetime formulation, where
the equations are solved on a global (unstructured) spacetime mesh. A unique continuation problem for
the wave equation is considered, where a noisy data is known in an interior subset of spacetime. For this
problem, we consider a primal-dual discrete formulation of the continuum problem with the addition
of stabilization terms that are designed with the goal of minimizing the numerical errors. We prove
error estimates using the stability properties of the numerical scheme and a continuum observability
estimate, based on the sharp geometric control condition by Bardos, Lebeau and Rauch. The order of
convergence for our numerical scheme is optimal with respect to stability properties of the continuum
problem and the approximation order of the finite element residual. Numerical examples are provided
that illustrate the methodology.
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1. Introduction

We consider a data assimilation problem for the acoustic wave equation, formulated as follows.
Let 𝑛 ∈ {1, 2, 3}, 𝑇 > 0 and Ω ⊂ R𝑛 be an open, connected, bounded set with smooth boundary 𝜕Ω. Let
𝑢 be the solution of the initial boundary value problem⎧⎪⎨⎪⎩

�𝑢 = 𝜕2
𝑡 𝑢−∆𝑢 = 0, on ℳ = (0, 𝑇 )× Ω,

𝑢 = 0, on Σ = (0, 𝑇 )× 𝜕Ω,

𝑢|𝑡=0 = 𝑢0, 𝜕𝑡𝑢|𝑡=0 = 𝑢1 on Ω.

(1.1)

The initial data 𝑢0, 𝑢1 are assumed to be a priori unknown functions, but the measurements of 𝑢 in some
spacetime subset 𝒪 = (0, 𝑇 )× 𝜔, where 𝜔 ⊂ Ω is open, is assumed to be known:

𝑢|𝒪 = 𝑢𝒪. (1.2)
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The data assimilation problem then reads as follows:
Find 𝑢 given 𝑢𝒪. (DA)

The existence of a solution to the (DA) problem is always implicitly guaranteed in the sense that the mea-
surements 𝑢𝒪 correspond to a physical solution to the wave equation (1.1). On the other hand, assuming that

𝑇 > 2 max{dist(𝑥, 𝜔) |𝑥 ∈ Ω}, (1.3)

with dist(𝑥, 𝜔) defined as the infimum over the lengths of continuous paths in Ω, joining 𝑥 and a point in 𝜔, it
follows from Holmgren’s unique continuation theorem that the solution to (DA) is unique. Although uniquely
solvable, (DA) might have poor stability properties if only (1.3) is assumed. We will require the (DA) problem
to be Lipschitz stable, and for this reason we make the stronger assumption that the so-called geometric control
condition holds. This condition originates from [3, 4] and we refer the reader to these works for the precise
definition. Roughly speaking, the condition requires that all geometric optic rays in ℳ, taking into account
their reflections at boundary, intersect the set (0, 𝑇 )× 𝜔.

We recall the following formulation of the observability estimates appearing in Theorem 3.3 of [4] and Propo-
sition 1.2 of [35]. For the explicit derivation of this version of the estimate, we refer the reader to Theorem 2.2
of [14].

Theorem 1.1. Let 𝜔 ⊂ Ω, 𝑇 > 0 and suppose that (0, 𝑇 ) × 𝜔 satisfies the geometric control condition. If
𝑢(0, ·) ∈ 𝐿2(Ω), 𝜕𝑡𝑢(0, ·) ∈ 𝐻−1(Ω), 𝑢|(0,𝑇 )×𝜕Ω ∈ 𝐿2(Σ), and �𝑢 ∈ 𝐻−1(ℳ), then

𝑢 ∈ 𝐶1([0, 𝑇 ]; 𝐻−1(Ω)) ∩ 𝐶([0, 𝑇 ]; 𝐿2(Ω)),

and

sup
𝑡∈[0,𝑇 ]

(︂
‖𝑢(𝑡, ·)‖𝐿2(Ω) + ‖𝜕𝑡𝑢(𝑡, ·)‖𝐻−1(Ω)

)︂
6 𝐶

(︀
‖𝑢‖𝐿2(𝒪) + ‖�𝑢‖𝐻−1(ℳ) + ‖𝑢‖𝐿2(Σ)

)︀
,

where 𝐶 > 0 is a constant depending on ℳ and 𝜔.

Let us remark that the geometric control condition is sharp in the sense that Theorem 1.1 fails to hold if the
geometric control condition does not hold on the set (0, 𝑇 )× 𝜔 [3].

The objective of the paper is to design a stabilized spacetime finite element method for the data assimilation
problem (DA), which allows for higher order approximation spaces. The method will also allow for an error
analysis exploiting the stability of Theorem 1.1 and the accuracy of the spaces in an optimal way. To the best
of our knowledge this is the first complete numerical analysis of the data assimilation problem for the wave
equation, using high order spaces. The statement of our main theoretical result appears as Theorem 4.4 in
Section 4.

1.1. Previous literature

Spacetime methods for inverse problems subject to the wave equation were introduced in [17] with an applica-
tion to the control problem in [18]. In those works however, the required 𝐻2 regularity of the constraint equation
was respected on the level of approximation leading to an approach using 𝐶1-continuous approximation spaces
in spacetime. Herein we instead use an approach where the approximating space is only 𝐻1-conforming and
we handle instabilities arising due to the lack of conformity of the space through the addition of stabilization
terms. This approach to stabilization of ill-posed problems draws on the works [8, 9], for the elliptic Cauchy
problem. In the context of time dependent problems, unique continuation for the heat equation was considered
in [11,12], with piecewise affine finite elements in space and finite differences for the time discretization. Finally
using a similar low order approach, with conventional, finite difference type time-discretization, the unique con-
tinuation and control problems for the wave equation were considered in [13,14] respectively. Another strategy
requiring only 𝐻1-regularity consists in reformulating the second order wave equation as a first order system;
it is examined in [37] for the corresponding controllability problem.
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Let us mention that the earlier works [13,14] studied the numerical implementation of data assimilation and
control problems for the wave equation using the similar idea of implementing numerical stabilization terms in
the discrete Lagrangian formulation. These earlier works are based on a first order finite element method in the
space variables and a finite difference scheme in the time variable. Analogously to the theory here, the error
estimates in these works are only based on the stability properties of the continuum problem along with the
numerical approximation errors. The main aim of the authors in the works [13,14] was to show that even under
a first order approximation scheme and with the simple time-stepping discretization in time, it is possible to
obtain optimal rates of convergence for the numerical solutions to the (DA) and control problems. In contrast,
the current work uses a mixed spacetime formulation, having the key advantage that it easily generalizes to
higher order approximation spaces while still obtaining optimal error bounds, without resorting to 𝐶1-type
approximation spaces.

There are several works that approach the data assimilation problem (DA), or its close variants, by solving a
sequence of classical initial–boundary value problems for the wave equation. Such methods have been proposed
independently in [43], in the context of a particular application to Photoacoustic tomography, and in [41], based
on the so-called Luenberger observers algorithm first introduced in an ODE context in [2]. An error estimate for
a discretization of a Luenberger observers based algorithm was proven in [28], giving logarithmic convergence
rate with respect to the mesh size. Better convergence rates can be proven if a stability estimate is available
on a scale of discrete spaces. Such discrete estimates were first derived in [30,38] and we refer the reader to the
survey articles [24,48] and the monograph [25], as well as the recent paper [26] for more details. Optimal-in-space
discrete estimates can be derived from continuous estimates [36], however, spacetime optimal discrete estimates
are known only for specific situations.

The data assimilation problem (DA) can also be solved using the quasi-reversibility method. This method
originates from [34], and it has been applied to data assimilation problems subject to the wave equation in
[31, 32], and more recently to the Photoacoustic tomography problem in [19]. We are not aware of any works
proving sharp convergence rates for the quasi-reversibility method with respect to mesh size.

The data assimilation problem (DA) arises in several applications. We mentioned already Photoacoustic
tomography (PAT), and refer to [47] for physical aspects of PAT, to [33] for a mathematical review, and to
[1,16,39,44] for the PAT problem in a cavity, the case closest to (DA). Another interesting application is given in
[6] where an obstacle detection problem is solved by using a level set method together with the quasi-reversibility
method applied to a variant of (DA).

1.2. Outline of the paper

The paper is organized as follows. In Section 2 we introduce a few notations used in the paper. In Section 3,
we start by introducing the mixed spacetime mesh followed by the discrete representation of (DA) in terms of a
primal dual Lagrangian formulation. The Euler–Lagrange equations are studied, showing in particular that there
exists a unique solution to the discrete formulation of (DA). Section 4 is concerned with proving the convergence
rates for the numerical error functions corresponding to the primal and dual variables. In Section 5, we provide
two numerical examples that illustrate the theory while also making a comparison with the 𝐻2-conformal finite
element method introduced in [17]. Finally, in Section 6 we provide some concluding remarks.

2. Notations

We write ∇𝑡,𝑥𝑢 = (𝜕𝑡𝑢,∇𝑢), where ∇𝑢 ∈ R𝑛 is the usual gradient with respect to the space variables. The
wave operator may be written as

�𝑢 = −∇𝑡,𝑥 · (𝐴∇𝑡,𝑥𝑢),

where 𝐴 is the matrix associated to the Minkowski metric in R1+𝑛, that is,

𝐴 =
[︂
−1 0[1,𝑛]

0[𝑛,1] I[𝑛,𝑛]

]︂
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with I[𝑛,𝑛] denoting the 𝑛× 𝑛 identity matrix. We introduce the notations

(𝑢, 𝑣)ℳ =
∫︁ 𝑇

0

∫︁
Ω

𝑢(𝑡, 𝑥)𝑣(𝑡, 𝑥) d𝑥 d𝑡, ‖𝑢‖ℳ = (𝑢, 𝑢)
1
2
ℳ

and

(𝑢, 𝑣)𝒪 =
∫︁ 𝑇

0

∫︁
𝜔

𝑢(𝑡, 𝑥)𝑣(𝑡, 𝑥) d𝑥 d𝑡, ‖𝑢‖𝒪 = (𝑢, 𝑢)
1
2
𝒪

and use an analogous notation for inner products over other subsets of ℳ, with the understanding that the
natural volume measures are used in the case of subdomains. We also use the shorthand notation

𝑎(𝑢, 𝑧) = (𝐴∇𝑡,𝑥𝑢,∇𝑡,𝑥𝑧)ℳ,

and note in passing that given any (𝑢0, 𝑢1) ∈ 𝐻1
0 (Ω)× 𝐿2(Ω), the solution 𝑢 to equation (1.1) satisfies

𝑎(𝑢, 𝑣) = 0, ∀𝑣 ∈ 𝐻1
0 (ℳ).

Finally, we fix an integer 𝑝, and make the standing assumption that the continuum solution 𝑢 to (DA) satisfies

𝑢 ∈ 𝐻𝑝+1(ℳ) for some 𝑝 ∈ N.

The index 𝑝 defined above will correspond to the highest order of the spacetime polynomial approximations
that can be used for the discrete solution to (DA), while still getting optimal convergence for the numerical
errors.

3. Discrete formulation of the data assimilation problem

Let us start this section by observing that the solution 𝑢 to the data assimilation problem (DA) can be
obtained by analyzing the saddle points for the continuum Lagrangian functional 𝒥 (𝑢, 𝑧) that is defined through

𝒥 (𝑢, 𝑧) =
1
2
‖𝑢− 𝑢𝒪‖2𝒪 + 𝑎(𝑢, 𝑧),

for any
𝑢 ∈ 𝐻1(0, 𝑇 ; 𝐿2(Ω)) ∩ 𝐿2(0, 𝑇 ; 𝐻1

0 (Ω)) and 𝑧 ∈ 𝐻1
0 (ℳ).

Here, the wave equation is imposed on the primal variable 𝑢 by introducing a Lagrange multiplier 𝑧. It is easy
to verify the the solution 𝑢 to (DA) together with 𝑧 = 0 is a saddle point for the Lagrangian functional.

Motivated by this example, we would like to present a discrete Lagrangian functional to numerically solve
(DA). It is well-known that a naive discrete approximation of the continuum Lagrangian 𝒥 (𝑢, 𝑧) above will fail
to work, due to the appearance of high frequency instabilities. This was first discovered by Glowinski et al. in
a series of works in the early 1990s in the context of numerical controllability for the wave equation. We refer
the reader to Sections 6.8 and 6.9 of [27] for a summary of these results. To remedy the issue of these spurious
modes arising at high frequencies, we will use discrete stabilizer (also called regularizer) terms that guarantee
the existence of a unique discrete saddle point. These terms will be designed with the goal of minimizing the
numerical error functions for the primal and dual variables. The exact form of the discrete Lagrangian will be
discussed later in Section 3.4.

We begin by introducing the spacetime mesh in Section 3.1. Then a discrete version of the bi-linear functional
𝑎(·, ·) is provided in Section 3.2, followed by the introduction of the stabilization terms in Section 3.3. Finally,
we present the discrete formulation of (DA) in Section 3.4.
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3.1. Spacetime discretization

In this section we will introduce the spacetime finite element method that we propose. The method is using
an 𝐻1-conforming piecewise polynomial space defined on a spacetime triangulation that can consist of simplices,
or prisms. Herein for simplicity we restrict the discussion to the simplicial case. To be able to handle the case
of curved boundaries without complicating the theory with estimations of the error in the approximation of the
geometry we impose boundary conditions using a technique introduced by Nitsche [40]. See also Theorem 2.1
of [46] for a discussion of the application of the method to curved boundaries.

Consider a family 𝒯 = {𝒯ℎ; ℎ > 0} of quasi uniform triangulations of ℳ consisting of simplices {𝐾} such
that the intersection of any two distinct simplices is either a common vertex, a common edge or a common
face. We let ℎ𝐾 = diam(𝐾) and ℎ = max𝐾∈𝒯 ℎ𝐾 , (see e.g. [22], Def. 1.140). By quasi-uniformity ℎ/ℎ𝐾 is
uniformly bounded, and therefore for simplicity the quasi-uniformity constant will be set to one below. Observe
that we do not consider discretization of the smooth boundary 𝜕ℳ, but instead we allow triangles adjacent to
the boundary to have curved faces, fitting ℳ. Finally, given any 𝑘 ∈ N, we let 𝑉 𝑘

ℎ be the 𝐻1(ℳ)-conformal
approximation space of polynomial degree less than or equal to 𝑘, that is,

𝑉 𝑘
ℎ = {𝑢 ∈ 𝐶(ℳ) : 𝑢|𝐾 ∈ P𝑘(𝐾), ∀𝐾 ∈ 𝒯ℎ}, (3.1)

where P𝑘(𝐾) denotes the set of polynomials of degree less than or equal to 𝑘 ≥ 1 on 𝐾.
Next, we record two inequalities that will be used in the paper. The family 𝒯 satisfies the following trace

inequality, see e.g. equation 10.3.9 of [7],

‖𝑢‖𝐿2(𝜕𝐾) . ℎ−
1
2 ‖𝑢‖𝐿2(𝐾) + ℎ

1
2 ‖∇𝑢‖𝐿2(𝐾), 𝑢 ∈ 𝐻1(𝐾). (3.2)

The family 𝒯 also satisfies the following discrete inverse inequality, see e.g. Lemma 1.138 of [22],

‖∇𝑢‖𝐿2(𝐾) . ℎ−1‖𝑢‖𝐿2(𝐾), 𝑢 ∈ P𝑝(𝐾). (3.3)

Remark 3.1. We will use the notations 𝐴 . 𝐵 (resp., 𝐴 & 𝐵) to imply that there exists a constant 𝐶 > 0
independent of the spacetime mesh parameter ℎ, such that the inequalities 𝐴 6 𝐶𝐵 (resp., 𝐴 > 𝐶𝐵) hold.

Remark 3.2. It is also possible to consider the space 𝑉 𝑘
ℎ ∩ 𝐶1(ℳ) with 𝑘 > 2, for the approximation of the

primal variable. In this case the method coincides with that of [17] and the analysis shows that optimal error
estimates are satisfied also in this case.

Remark 3.3. We will use the approximation space 𝑉 𝑝
ℎ for the primal variable 𝑢. We will also fix an integer

𝑞 6 𝑝 and use the space 𝑉 𝑞
ℎ for the approximation of the dual variable 𝑧. As we will see, using our method, the

approximation space of the dual variable can be quite coarse without sacrificing any rate of convergence for the
discrete primal variable (i.e. we can take 𝑞 = 1).

3.2. A discrete bi-linear formulation for the wave equation

Since no boundary conditions are imposed on the space 𝑉 𝑝
ℎ , the form 𝑎(𝑢, 𝑧) needs to be modified on the

discrete level. For the formulation to remain consistent we propose the following modified bilinear form on
𝑉 𝑝

ℎ × 𝑉 𝑞
ℎ ,

𝑎ℎ(𝑢ℎ, 𝑧ℎ) = 𝑎(𝑢ℎ, 𝑧ℎ)− (𝐴∇𝑡,𝑥𝑢ℎ · 𝑛𝜕ℳ, 𝑧ℎ)𝜕ℳ − (∇𝑧ℎ · 𝑛𝜕Ω, 𝑢ℎ)Σ.

Here 𝑛𝜕ℳ and 𝑛𝜕Ω are the outward unit normal vectors on 𝜕ℳ and 𝜕Ω respectively. The last term in the right
hand side is added to make the weak form of the Laplace operator symmetric even in the case where no boundary
conditions are imposed on the discrete spaces. Depending on how the stabilizing terms are chosen below, this
term is not strictly necessary in this work, but becomes essential if the formulation must be consistent also for
the adjoint equation.
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Observe that, using integration by parts, there holds

𝑎ℎ(𝑢, 𝑧ℎ) = (�𝑢, 𝑧ℎ)ℳ − (∇𝑧ℎ · 𝑛𝜕Ω, 𝑢)Σ⏟  ⏞  
=0

= (�𝑢, 𝑧ℎ)ℳ (3.4)

for all 𝑢 ∈ 𝐻2(ℳ) ∩ 𝐿2(0, 𝑇 ; 𝐻1
0 (Ω)).

3.3. Formulation of the discrete stabilization terms for primal and dual variables

We denote by ℱℎ the set of internal faces of 𝒯ℎ. For vector valued quantities 𝑢 we define the jump across a
face 𝐹 ∈ ℱℎ by

J𝑛 · 𝑢K𝐹 = 𝑛1 · 𝑢|𝐾1 + 𝑛2 · 𝑢|𝐾2 ,

where 𝐾1, 𝐾2 ∈ 𝒯ℎ are the two simplices satisfying 𝐾1 ∩𝐾2 = 𝐹 and 𝑛𝑗 is the outward unit normal vector of
𝐾𝑗 , 𝑗 = 1, 2. Associating an arbitrary but fixed normal 𝑛𝐹 to each face (𝑛𝐹 = 𝑛1 or 𝑛𝐹 = 𝑛2), the jump of a
scalar quantity 𝑢 over a face 𝐹 may be defined by

J𝑢K𝐹 = 𝑢|𝐾1𝑛𝐹 · 𝑛1 + 𝑢|𝐾2𝑛𝐹 · 𝑛2.

The jump of a vector quantity may also be defined by applying the definition of the scalar jump componentwise,
without modifications of the theory. Below we drop the normal to alleviate the notation. The norm over all the
faces in ℱℎ will be denoted by

‖𝑣‖ℱℎ
=

(︃ ∑︁
𝐹∈ℱℎ

‖𝑣‖2𝐹

)︃ 1
2

,

and the norm over all the simplices {𝐾} will be denoted by

‖𝑣‖𝒯ℎ
=

(︃ ∑︁
𝐾∈𝒯ℎ

‖𝑣‖2𝐾

)︃ 1
2

.

For each 𝐾 ∈ 𝒯ℎ, we define the elementwise stabilizing form

𝑠𝐾(𝑢ℎ, 𝑢ℎ) = ‖ℎ�𝑢ℎ‖2𝐾 + ‖ℎ− 1
2 𝑢ℎ‖2𝜕𝐾∩Σ +

∑︁
𝐹∈𝜕𝐾∩ℱℎ

‖ℎ 1
2 J𝐴∇𝑡,𝑥𝑢ℎK‖2𝐹 . (3.5)

A dual stabilizer is defined by

𝑠*𝐾(𝑧ℎ, 𝑧ℎ) = ‖∇𝑡,𝑥𝑧ℎ‖2𝐾 + ‖ℎ− 1
2 𝑧ℎ‖2𝜕𝐾∩𝜕ℳ. (3.6)

Subsequently, the global stabilizers are defined by summing over all the elements:

𝑠 =
∑︁

𝐾∈𝒯ℎ

𝑠𝐾 and 𝑠* =
∑︁

𝐾∈𝒯ℎ

𝑠*𝐾

and we define the semi norms |𝑢|𝑠 = 𝑠(𝑢, 𝑢)
1
2 and |𝑧|𝑠* = 𝑠*(𝑧, 𝑧)

1
2 . Observe that the following stability estimate

holds:
|𝑤ℎ|𝑠* . ‖∇𝑡,𝑥𝑤ℎ‖ℳ + ‖ℎ− 1

2 𝑤ℎ‖𝜕ℳ ∀𝑤ℎ ∈ 𝑉 𝑞
ℎ . (3.7)

We also point out for future reference that for a solution to the data assimilation problem 𝑢 ∈ 𝐻2(ℳ) and all
𝑢ℎ ∈ 𝑉 𝑝

ℎ , there holds

𝑠(𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) = 𝑠(𝑢ℎ, 𝑢ℎ). (3.8)
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Remark 3.4. There is some freedom in the choices of the discrete regularization terms that yield the same
error estimates as in Theorem 4.4 below. The choice is more flexible for the dual variable 𝑧 since the continuum
analogue for this variable is zero. For instance we can define the following stabilization term for the dual variable:

𝑠*𝐾(𝑧ℎ, 𝑧ℎ) = 𝑠𝐾(𝑧ℎ, 𝑧ℎ) + ‖ℎ− 1
2 𝑧ℎ‖𝜕𝐾∩(𝜕ℳ∖Σ) + ‖ℎ 1

2 𝜕𝑡𝑧ℎ‖2𝜕𝐾∩(𝜕ℳ∖Σ). (3.9)

It is also possible to use a stabilization that is exclusively carried by the faces of the computational mesh
provided 𝑞 ∈ {𝑝− 2, 𝑝− 1, 𝑝}. In this case we define

𝑠𝐾(𝑢ℎ, 𝑢ℎ) =
∑︁

𝐹∈𝜕𝐾∩ℱℎ

(︁
‖ℎ 1

2 J𝐴∇𝑡,𝑥𝑢ℎK‖2𝐹 + ‖ℎ
3
2
𝐹 J�𝑢ℎK‖2𝐹

)︁
+ ‖ℎ− 1

2 𝑢ℎ‖2𝜕𝐾∩Σ. (3.10)

In the second jump term we are allowed to split the operator in the time derivative and the Laplace operator
(or second order derivatives in space) without sacrificing stability or consistency since

‖ℎ
3
2
𝐹 J�𝑢ℎK‖2𝐹 6 ‖ℎ

3
2
𝐹 J𝜕2

𝑡 𝑢ℎK‖2𝐹 + ‖ℎ
3
2
𝐹 J∆𝑢ℎK‖2𝐹 .

Weak consistency of the right order still holds since for a sufficiently smooth solution 𝑢

‖ℎ
3
2
𝐹 J𝜕2

𝑡 𝑢K‖2𝐹 + ‖ℎ
3
2
𝐹 J∆𝑢K‖2𝐹 = 0.

3.4. The discrete Lagrangian formulation for the data assimilation problem

Our finite element method is defined by the discrete Lagrangian functional

ℒ : 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ → R,

through

ℒ(𝑢, 𝑧) =
1
2
‖𝑢− 𝑢̃𝒪‖2𝒪 +

𝛾

2
𝑠(𝑢, 𝑢)− 𝛾*

2
𝑠*(𝑧, 𝑧) + 𝑎ℎ(𝑢, 𝑧), (3.11)

where 𝛾, 𝛾* > 0 are fixed constants. Here,
𝑢̃𝒪 = 𝑢𝒪 + 𝛿𝑢𝒪,

with 𝑢𝒪 denoting the restriction to the subset𝒪 of a continuum solution 𝑢 ∈ 𝐻𝑝+1(ℳ) to (1.1) and 𝛿𝑢𝒪 ∈ 𝐿2(𝒪)
denoting some experimental noise in our observable data.

The corresponding Euler–Lagrange equations read as follows. Find (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ such that for all
(𝑣ℎ, 𝑤ℎ) ∈ 𝑉 𝑝

ℎ × 𝑉 𝑞
ℎ there holds

𝑎ℎ(𝑢ℎ, 𝑤ℎ)− 𝛾*𝑠*(𝑧ℎ, 𝑤ℎ) = 0, (3.12)
(𝑢ℎ, 𝑣ℎ)𝒪 + 𝛾𝑠(𝑢ℎ, 𝑣ℎ) + 𝑎ℎ(𝑣ℎ, 𝑧ℎ) = (𝑢̃𝒪, 𝑣ℎ)𝒪. (3.13)

To simplify the notation we introduce the bi-linear form

𝒜ℎ[(𝑢ℎ, 𝑧ℎ), (𝑣ℎ, 𝑤ℎ)] = (𝑢ℎ, 𝑣ℎ)𝒪 + 𝛾𝑠(𝑢ℎ, 𝑣ℎ) + 𝑎ℎ(𝑣ℎ, 𝑧ℎ) + 𝑎ℎ(𝑢ℎ, 𝑤ℎ)− 𝛾*𝑠*(𝑧ℎ, 𝑤ℎ).

The discrete problem (3.12) and (3.13) can then be recast as follows. Find 𝑢ℎ, 𝑧ℎ ∈ 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ such that

𝒜ℎ[(𝑢ℎ, 𝑧ℎ), (𝑣ℎ, 𝑤ℎ)] = (𝑢̃𝒪, 𝑣ℎ)𝒪, ∀(𝑣ℎ, 𝑤ℎ) ∈ 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ . (3.14)

Note that by definition,

𝒜ℎ[(𝑢ℎ − 𝑢, 𝑧ℎ), (𝑣ℎ, 𝑤ℎ)] = (𝑢ℎ − 𝑢, 𝑣ℎ)𝒪 + 𝛾𝑠(𝑢ℎ − 𝑢, 𝑣ℎ) + 𝑎ℎ(𝑣ℎ, 𝑧ℎ) + 𝑎ℎ(𝑢ℎ − 𝑢, 𝑤ℎ)− 𝛾*𝑠*(𝑧ℎ, 𝑤ℎ).
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By (3.4), 𝑎ℎ(𝑢, 𝑤ℎ) = 0. Together with (3.8) we can simplify the above expression to obtain

𝒜ℎ[(𝑢ℎ − 𝑢, 𝑧ℎ), (𝑣ℎ, 𝑤ℎ)] = (𝑢ℎ − 𝑢, 𝑣ℎ)𝒪 + 𝛾𝑠(𝑢ℎ, 𝑣ℎ) + 𝑎ℎ(𝑣ℎ, 𝑧ℎ) + 𝑎ℎ(𝑢ℎ, 𝑤ℎ)− 𝛾*𝑠*(𝑧ℎ, 𝑤ℎ).

Finally, applying (3.12) and (3.13) and the fact that 𝑢|𝒪 = 𝑢𝒪, we conclude that

𝒜ℎ[(𝑢ℎ − 𝑢, 𝑧ℎ), (𝑣ℎ, 𝑤ℎ)] = (𝛿𝑢𝒪, 𝑣ℎ)𝒪. (3.15)

Define the residual norm
|‖(𝑢, 𝑧)‖|2𝑆 = ‖𝑢‖2𝒪 + |𝑢|2𝑠 + |𝑧|2𝑠* ,

and a continuity norm
‖𝑢‖* = ‖∇𝑡,𝑥𝑢‖ℳ + ‖ℎ 1

2 𝐴∇𝑡,𝑥𝑢 · 𝑛‖𝜕ℳ + ‖ℎ− 1
2 𝑢‖Σ.

For the purpose of our error analysis later, we also introduce a family of interpolants 𝜋𝑘
ℎ, that are required

to satisfy

Assumption 3.5. 𝜋𝑘
ℎ : 𝐻𝑘(ℳ) → 𝑉 𝑘

ℎ preserves Dirichlet boundary conditions and additionally satisfies

‖𝑢− 𝜋𝑘
ℎ𝑢‖𝐻𝑚(ℳ) . ℎ𝑠−𝑚‖𝑢‖𝐻𝑠(ℳ) for all 𝑢 ∈ 𝐻𝑠(ℳ) with 𝑠 = 0, 1, . . . , 𝑘 + 1 and 𝑚 = 0, 1, . . . , 𝑠.

An example of such an interpolant is the Scott–Zhang interpolant [42]. For brevity, we will use the notations:

𝜋ℎ = 𝜋1
ℎ and Πℎ = 𝜋𝑝

ℎ.

We have the following lemma regarding the residual norm. We remind the reader that the notation . is as
defined in Remark 3.1.

Lemma 3.6. Let 𝑢 ∈ 𝐻𝑝+1(ℳ). There holds:

|‖(𝑢−Πℎ𝑢, 0)‖|𝑆 . ℎ𝑝‖𝑢‖𝐻𝑝+1(ℳ).

Proof. Note that
|‖(𝑢−Πℎ𝑢, 0)‖|𝑆 = ‖𝑢−Πℎ𝑢‖𝒪 + |𝑢−Πℎ𝑢|𝑠.

For the first term we immediately see that

‖𝑢−Πℎ𝑢‖𝒪 6 ‖𝑢−Πℎ𝑢‖ℳ . ℎ𝑝+1‖𝑢‖𝐻𝑝+1(ℳ).

To bound the contribution from the stabilization term, recall by definition that

|𝑢 − Πℎ𝑢|2𝑠 =
∑︁

𝐾∈𝒯ℎ

(︃
‖ℎ�(𝑢−Πℎ𝑢)‖2𝐾 + ‖ℎ− 1

2 (𝑢−Πℎ𝑢)‖2𝜕𝐾∩Σ +
∑︁

𝐹∈𝜕𝐾∩ℱℎ

‖ℎ 1
2 J𝐴∇𝑡,𝑥(𝑢−Πℎ𝑢)K‖2𝐹

)︃
.

We proceed to bound the three terms on the right hand side. For the first term, we note that∑︁
𝐾∈𝒯ℎ

‖ℎ�(𝑢−Πℎ𝑢)‖2𝐾 .
∑︁

𝐾∈𝒯ℎ

‖∇𝑡,𝑥(𝑢−Πℎ𝑢)‖2𝐾 . ℎ2𝑝‖𝑢‖2𝐻𝑝+1(ℳ).

For the second term, we define ∆𝐹 = {𝐾 : 𝐾̄ ∩ 𝐹 ̸= ∅}, ∆̃𝐹 = {𝐾 : 𝐾̄ ∩ ∆̄𝐹 ̸= ∅} and use (3.2) to write

‖ℎ− 1
2 (𝑢−Πℎ𝑢)‖2𝐹 . ℎ−1‖𝑢−Πℎ𝑢‖2Δ𝐹

+ ‖∇𝑡,𝑥(𝑢−Πℎ𝑢)‖2Δ𝐹
. ℎ2𝑝|𝑢|2

𝐻𝑝+1(Δ̃𝐹 )
.
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By collecting the above local bounds and using the fact that ∆̃𝐹 have finite overlaps, we conclude that∑︁
𝐾∈𝒯ℎ

‖ℎ− 1
2 (𝑢−Πℎ𝑢)‖2𝜕𝐾∩Σ . ℎ2𝑝|𝑢|2

𝐻𝑝+1(Δ̃𝐹 )
.

For the last term, observe that using (3.2) again, we have:

‖ℎ
1
2
𝐹 J𝐴∇𝑡,𝑥(𝑢−Πℎ𝑢)K‖2𝐹 .

∑︁
𝐾∈Δ𝐹

(︂
‖∇𝑡,𝑥(𝑢−Πℎ𝑢)‖2𝐾 + ℎ2‖𝐷2

𝑡,𝑥(𝑢−Πℎ𝑢)‖2𝐾
)︂
. ℎ2𝑝|𝑢|2

𝐻𝑝+1(Δ̃𝐹 )
,

where 𝐷2
𝑡,𝑥 denotes the Hessian matrix consisting of second order derivatives in space and time variables. The

claim follows by collecting the above local bounds analogously to the second term above. �

The next lemma is concerned with approximation properties of the continuity norm ‖ · ‖* defined earlier.
The proof is analogous to the proof of the previous lemma and follows from the definition of the interpolant Πℎ

together with (3.2) and is therefore omitted.

Lemma 3.7. Let 𝑢 ∈ 𝐻𝑝+1(ℳ). There holds:

‖𝑢−Πℎ𝑢‖* . ℎ𝑝‖𝑢‖𝐻𝑝+1(ℳ),

where we recall that
‖𝑢‖* = ‖∇𝑡,𝑥𝑢‖ℳ + ‖ℎ 1

2 𝐴∇𝑡,𝑥𝑢 · 𝑛‖𝜕ℳ + ‖ℎ− 1
2 𝑢‖Σ.

We end this section by proving that the solution to (3.14) exists and is unique.

Proposition 3.8. The Euler–Lagrange equation (3.14) has a unique solution (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ .

Proof. Since equation (3.14) defines a square system of linear equations, existence is equivalent to uniqueness
and we only need to show that for 𝑢𝒪 ≡ 0, the solution (𝑢ℎ, 𝑧ℎ) = (0, 0) is unique. Indeed, suppose that equation
(3.14) with 𝑢𝒪 ≡ 0 holds for some (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝

ℎ × 𝑉 𝑞
ℎ . First observe that

|‖𝑢ℎ, 𝑧ℎ‖|2𝑆 . 𝒜ℎ((𝑢ℎ, 𝑧ℎ), (𝑢ℎ,−𝑧ℎ)) = 0.

This means that |𝑧ℎ|𝑠* = 0. Consequently, 𝑧ℎ = 0 follows immediately by the Poincaré inequality. Next,
considering 𝑢ℎ we immediately have that 𝑢ℎ|𝒪 = 0 and 𝑢ℎ|Σ = 0. Using the definition of the stabilization (3.5)
we see that by partial integration, followed by the Cauchy–Schwarz inequality and the trace inequality (3.2)
there holds for all 𝑤 ∈ 𝐻1

0 (ℳ)

𝑎(𝑢ℎ, 𝑤) = (�𝑢ℎ, 𝑤)𝒯ℎ
+
∑︁

𝐾∈𝒯ℎ

(𝐴∇𝑡,𝑥𝑢ℎ · 𝑛𝜕𝐾 , 𝑤)𝜕𝐾 . ℎ−1(‖ℎ�𝑢ℎ‖𝒯ℎ⏟  ⏞  
=0

+ ‖ℎ 1
2 J𝐴∇𝑡,𝑥𝑢ℎK‖ℱℎ⏟  ⏞  

=0

)‖𝑤‖𝐻1(ℳ).

As a consequence
‖�𝑢ℎ‖𝐻−1(ℳ) = sup

𝑤∈𝐻1
0 (ℳ)

‖𝑤‖𝐻1(ℳ)=1

𝑎(𝑢ℎ, 𝑤) = 0.

Byconstruction𝑢ℎ ∈ 𝐶0(ℳ)∩𝐻1(ℳ) and inparticular𝑢ℎ(0, ·) ∈ 𝐿2(Ω),𝜕𝑡𝑢ℎ(0, ·) ∈ 𝐿2(Ω),𝑢ℎ|(0,𝑇 )×𝜕Ω ∈ 𝐿2(Σ).
We conclude that 𝑢ℎ vanishes thanks to Theorem 1.1. �
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4. Error estimates

We will consider the derivation of error estimates in three steps. First, we will establish the continuity of 𝑎ℎ( )
with respect to |‖ · ‖|𝑆 and ‖ · ‖* on the one hand (see Lem. 4.1) and then a continuity for the exact solution
with respect to |‖ · ‖|𝑆 and 𝐻1 norms (see Lem. 4.2) on the other hand. Then, we will prove convergence of the
error in the |‖ · ‖|𝑆 norm. Finally, we will use these results to prove a posteriori and a priori error estimates
based on the observability estimate of Theorem 1.1.

Lemma 4.1. Let 𝑣 ∈ 𝐻2(ℳ) + 𝑉 𝑝
ℎ and 𝑤ℎ ∈ 𝑉 𝑞

ℎ . Then there holds

|𝑎ℎ(𝑣, 𝑤ℎ)| . ‖𝑣‖*|𝑤ℎ|𝑠* .

Proof. First, observe that by (3.2) and (3.3) there holds

‖ℎ 1
2 𝐴∇𝑡,𝑥𝑤ℎ · 𝑛‖Σ . ‖∇𝑡,𝑥𝑤ℎ‖ℳ. (4.1)

Next, using the Cauchy–Schwarz inequality we write:

|𝑎ℎ(𝑣, 𝑤ℎ)| 6 ‖∇𝑡,𝑥𝑣‖ℳ‖∇𝑡,𝑥𝑤ℎ‖ℳ + ‖ℎ 1
2∇𝑡,𝑥𝑣 · 𝑛‖𝜕ℳ‖ℎ−

1
2 𝑤ℎ‖𝜕ℳ + ‖ℎ 1

2∇𝑡,𝑥𝑤ℎ · 𝑛‖Σ‖ℎ−
1
2 𝑣‖Σ.

The claim follows by combining the previous two bounds. �

Lemma 4.2. Let 𝑢 ∈ 𝐻𝑝+1(ℳ) be the exact solution of (1.1) satisfying (1.2) and let (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ be
the unique solution of the discrete Euler–Lagrange equation (3.14). There holds

‖�(𝑢− 𝑢ℎ)‖𝐻−1(ℳ) = sup
𝑤∈𝐻1

0 (ℳ)
‖𝑤‖𝐻1(ℳ)=1

𝑎(𝑢ℎ, 𝑤) . |‖(𝑢ℎ, 𝑧ℎ)‖|𝑆 .

Proof. First observe that
‖�(𝑢− 𝑢ℎ)‖𝐻−1(ℳ) = sup

𝑤∈𝐻1
0 (ℳ)

‖𝑤‖𝐻1(ℳ)=1

𝑎(𝑢− 𝑢ℎ, 𝑤).

Since �𝑢 = 0, we have 𝑎(𝑢, 𝑤) = 0 for all 𝑤 ∈ 𝐻1
0 (ℳ) thus establishing the first equality in the claim. Using

(3.12) we see that,

𝑎(𝑢ℎ, 𝑤) = 𝑎(𝑢ℎ, 𝑤 − 𝜋ℎ𝑤) + 𝑎(𝑢ℎ, 𝜋ℎ𝑤)− 𝑎ℎ(𝑢ℎ, 𝜋ℎ𝑤) + 𝛾*𝑠*(𝑧ℎ, 𝜋ℎ𝑤). (4.2)

Using integration by parts in the first term of the right hand side we see that

𝑎(𝑢ℎ, 𝑤 − 𝜋ℎ𝑤) + 𝑎(𝑢ℎ, 𝜋ℎ𝑤)− 𝑎ℎ(𝑢ℎ, 𝜋ℎ𝑤) = (�𝑢ℎ, 𝑤 − 𝜋ℎ𝑤)𝒯ℎ
+
∑︁

𝐾∈𝒯ℎ

(𝐴∇𝑡,𝑥𝑢ℎ · 𝑛𝜕𝐾 , 𝑤 − 𝜋ℎ𝑤)𝜕𝐾

+ (𝐴∇𝑡,𝑥𝑢ℎ · 𝑛𝜕ℳ, 𝜋ℎ𝑤)𝜕ℳ + (𝑢ℎ,∇𝜋ℎ𝑤 · 𝑛)Σ = I + II + III + IV.

For the term I we have

|I| = |(�𝑢ℎ, 𝑤 − 𝜋ℎ𝑤)𝒯ℎ
| 6 ‖ℎ�𝑢ℎ‖𝒯ℎ

(ℎ−1‖𝑤 − 𝜋ℎ𝑤‖𝒯ℎ
) . ‖ℎ�𝑢ℎ‖𝒯ℎ

‖𝑤‖𝐻1(ℳ).

Observe that the term III is absorbed by the same quantity with opposite sign in II, eliminating all terms 𝜋ℎ𝑤
on the boundary. Since also 𝑤|𝜕ℳ = 0, we see that

|II + III| = |
∑︁

𝐾∈𝒯ℎ

(𝐴∇𝑡,𝑥𝑢ℎ · 𝑛𝜕𝐾 , 𝑤 − 𝜋ℎ𝑤)𝜕𝐾∖𝜕ℳ| 6 ‖ℎ
1
2 J𝐴∇𝑡,𝑥𝑢ℎK‖ℱℎ

‖𝑤‖𝐻1(ℳ),
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where we are using (3.2) and the approximation properties of the interpolant 𝜋ℎ. Finally, for the term IV we
use the Cauchy–Schwarz inequality to get the bound

|IV| = |(∇𝑡,𝑥𝜋ℎ𝑤 · 𝑛, 𝑢ℎ)Σ| 6 ‖ℎ−
1
2 𝑢ℎ‖Σ ‖ℎ

1
2∇𝑡,𝑥𝜋ℎ𝑤 · 𝑛‖Σ . ‖ℎ−

1
2 𝑢ℎ‖Σ ‖𝑤‖𝐻1(ℳ),

where we used the bound (4.1) in the last step.
Collecting the above bounds we have that

𝑎(𝑢ℎ, 𝑤 − 𝜋ℎ𝑤) + 𝑎(𝑢ℎ, 𝜋ℎ𝑤)− 𝑎ℎ(𝑢ℎ, 𝜋ℎ𝑤) . (‖ℎ�𝑢ℎ‖𝒯ℎ
+ ‖ℎ 1

2 J𝐴∇𝑡,𝑥𝑢ℎK‖ℱℎ
+ ‖ℎ− 1

2 𝑢ℎ‖Σ)‖𝑤‖𝐻1(ℳ).

Using the definition of |‖(𝑢ℎ, 0)‖|𝑆 , we may rewrite this as

𝑎(𝑢ℎ, 𝑤 − 𝜋ℎ𝑤) + 𝑎(𝑢ℎ, 𝜋ℎ𝑤)− 𝑎ℎ(𝑢ℎ, 𝜋ℎ𝑤) . |‖(𝑢ℎ, 0)‖|𝑆‖𝑤‖𝐻1(Ω).

For the remaining term in the right hand side of (4.2) we observe that by Cauchy–Schwarz inequality

𝑠*(𝑧ℎ, 𝜋ℎ𝑤) 6 |‖(0, 𝑧ℎ)‖|𝑆 |𝜋ℎ𝑤|𝑠* .

We can now use (3.7) to deduce

|𝜋ℎ𝑤|𝑠* . ‖∇𝑡,𝑥𝑤‖ℳ + ‖ℎ− 1
2 𝜋ℎ𝑤‖𝜕ℳ . ‖𝑤‖𝐻1(ℳ).

�

We now prove convergence in the residual norm.

Proposition 4.3. Let 𝑢 be the solution to (1.1), satisfying (1.2). Let (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝
ℎ × 𝑉 𝑞

ℎ be the solution of
(3.14). Then

|‖(𝑢− 𝑢ℎ, 𝑧ℎ)‖|𝑆 . ℎ𝑝‖𝑢‖𝐻𝑝+1(ℳ) + ‖𝛿𝑢𝒪‖𝐿2(𝒪).

Proof. Let 𝑢ℎ − 𝑢 = 𝑢ℎ −Πℎ𝑢⏟  ⏞  
𝑒ℎ

+ Πℎ𝑢− 𝑢⏟  ⏞  
𝑒Π

= 𝑒ℎ + 𝑒Π. Using the triangle inequality we write

|‖(𝑢ℎ − 𝑢, 𝑧ℎ)‖|𝑆 6 |‖(𝑒Π, 0)‖|𝑆 + |‖(𝑒ℎ, 𝑧ℎ)‖|𝑆 .

Recalling Lemma 3.6 we only need an estimate for |‖(𝑒ℎ, 𝑧ℎ)‖|𝑆 . There holds

𝐶|‖(𝑒ℎ, 𝑧ℎ)‖|2𝑆 6 𝒜ℎ[(𝑒ℎ, 𝑧ℎ), (𝑒ℎ,−𝑧ℎ)],

where 𝐶 > 0 only depends on 𝛾 and 𝛾*. Using (3.15) we have

𝒜ℎ[(𝑒ℎ, 𝑧ℎ), (𝑒ℎ,−𝑧ℎ)] = −𝒜ℎ[(𝑒Π, 0), (𝑒ℎ,−𝑧ℎ)] + (𝛿𝑢𝒪, 𝑒ℎ)𝒪.

Clearly,
|(𝛿𝑢𝒪, 𝑒ℎ)𝒪| 6 ‖𝛿𝑢𝒪‖𝒪‖𝑒ℎ‖𝒪 6 ‖𝛿𝑢𝒪‖𝒪|‖(𝑒ℎ, 𝑧ℎ)‖|𝑆 .

Also, by definition
𝒜ℎ[(𝑒Π, 0), (𝑒ℎ,−𝑧ℎ)] = (𝑒Π, 𝑒ℎ)𝒪 + 𝛾𝑠(𝑒Π, 𝑒ℎ)− 𝑎ℎ(𝑒Π, 𝑧ℎ).

As a consequence, applying the Cauchy–Schwarz inequality in the two first terms in the right hand side and the
continuity of Lemma 4.1 in the last term we get the bound

|𝒜ℎ[(𝑒Π, 0), (𝑒ℎ,−𝑧ℎ)]| . (‖𝑒Π‖𝒪 + |𝑒Π|𝑠 + ‖𝑒Π‖*)(‖𝑒ℎ‖𝒪 + |𝑒ℎ|𝑠 + |𝑧ℎ|𝑠*)
. (‖𝑒Π‖𝒪 + |𝑒Π|𝑠 + ‖𝑒Π‖*)|‖(𝑒ℎ, 𝑧ℎ)‖|𝑆 .

Collecting the above bounds and applying Lemmas 3.6 and 3.7 we conclude that

|‖(𝑒ℎ, 𝑧ℎ)‖|𝑆 . ‖𝑒Π‖𝒪 + |𝑒Π|𝑠 + ‖𝑒Π‖* . ℎ𝑝‖𝑢‖𝐻𝑝+1(ℳ) + ‖𝛿𝑢𝒪‖𝒪.

�



S980 E. BURMAN ET AL.

We are now ready to state our main theorem as follows.

Theorem 4.4. Let 𝑝, 𝑞 ∈ N, let ℳ = (0, 𝑇 ) × Ω and 𝜔 ⊂ Ω be such that the set 𝒪 = (0, 𝑇 ) × 𝜔 satisfies the
geometric control condition. Let 𝑢 ∈ 𝐻𝑝+1(ℳ) solve the continuum equation (1.1) subject to some unknown
initial data 𝑢0, 𝑢1 and assume that 𝑢𝒪 = 𝑢|𝒪 is a priori known modulo some observable noise 𝛿𝑢𝒪 ∈ 𝐿2(𝒪).
Let the discrete Lagrangian ℒ : 𝑉 𝑝

ℎ ×𝑉 𝑞
ℎ → R be defined by (3.11). Let (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝

ℎ ×𝑉 𝑞
ℎ be the unique solution

to the Euler–Lagrange equations (3.14). Then we have the a posteriori error estimate

sup
𝑡∈[0,𝑇 ]

(︂
‖(𝑢− 𝑢ℎ)(𝑡, ·)‖𝐿2(Ω) + ‖𝜕𝑡(𝑢− 𝑢ℎ)(𝑡, ·)‖𝐻−1(Ω)

)︂
.

(︃∑︁
𝐾∈𝒯

𝜂2
𝐾

)︃ 1
2

where
𝜂2

𝐾 = ‖𝑢ℎ − 𝑢𝒪‖2𝒪∩𝐾 + 𝑠𝐾(𝑢ℎ, 𝑢ℎ) + 𝑠*𝐾(𝑧ℎ, 𝑧ℎ).

Moreover, the following a priori error estimate holds for the primal variable3

sup
𝑡∈[0,𝑇 ]

(︂
‖(𝑢− 𝑢ℎ)(𝑡, ·)‖𝐿2(Ω) + ‖𝜕𝑡(𝑢− 𝑢ℎ)(𝑡, ·)‖𝐻−1(Ω)

)︂
. ℎ𝑝‖𝑢‖𝐻𝑝+1(ℳ) + ‖𝛿𝑢𝒪‖𝒪.

Proof. Taking the square of the inequality of Theorem 1.1 we see that with 𝑒 = 𝑢− 𝑢ℎ

sup
𝑡∈[0,𝑇 ]

(‖𝑒(𝑡, ·)‖𝐿2(Ω) + ‖𝜕𝑡𝑒(𝑡, ·)‖𝐻−1(Ω))2 . ‖𝑒‖2𝒪 + ‖�𝑒‖2𝐻−1(ℳ) + ‖𝑒‖2Σ.

First we observe that
‖𝑒‖2𝒪 =

∑︁
𝐾∈𝒯ℎ

‖𝑢ℎ − 𝑢𝒪‖2𝒪∩𝐾

and
‖𝑒‖2Σ =

∑︁
𝐾∈𝒯ℎ

‖𝑢ℎ‖2Σ∩𝐾 6
∑︁

𝐾∈𝒯ℎ

‖ℎ− 1
2 𝑢ℎ‖2Σ∩𝐾 6 |𝑢ℎ|2𝑠.

Applying Lemma 4.2 we see that
‖�𝑒‖2𝐻−1(ℳ) .

∑︁
𝐾∈𝒯ℎ

𝜂2
𝐾

which proves the first claim.
For the a priori error estimate observe that by definition and by (3.8) we have(︃ ∑︁

𝐾∈𝒯ℎ

𝜂2
𝐾

)︃ 1
2

. ‖𝑒‖𝒪 + |‖(𝑒, 𝑧ℎ)‖|𝑆

and we conclude by applying the error bound of Proposition 4.3 to the right hand side. This concludes the
proof. �

Remark 4.5. Tracking the influence of the stabilization parameters on the hidden constants in Theorem 4.4
leads to factors of the form 𝛾

1
2 , 𝛾−

1
2 , (𝛾*)

1
2 , (𝛾*)−

1
2 , showing that the present analysis does not allow either

parameter to vanish or to become too large. The sensitivity to the parameter choice is explored in the numerical
section.

3The convergence for the dual variable 𝑧ℎ is given by Proposition 4.3.
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Remark 4.6. Theorem 4.4 can be used to make a number of observations. Firstly, the discrete algorithm is
stable in the presence of the noise 𝛿𝑢𝒪. Secondly, when the size of the noise is comparable to ℎ𝑝 the method
converges optimally with respect to the approximation order of the finite element spaces that are used. Finally,
this latter observation suggests that in cases where some a priori knowledge of the sizes of the physical solution
and the noise is known, the mesh size ℎ should be taken to be of order ‖𝛿𝑢𝒪‖𝒪/‖𝑢‖𝐻𝑝+1(ℳ).

Remark 4.7. Observe that the preceding analysis shows that the order of the discretization space for the dual
variable 𝑧ℎ, namely 𝑞, can be taken to be one without sacrificing any rate of convergence for the primal variable 𝑢ℎ.
This is advantageous since then the system size only grows with increasing 𝑝.

5. Numerical experiments

We implement the stabilized finite element method introduced and analyzed in the previous sections with
𝑝 ≥ 𝑞 and assuming no noise in the observed data, that is to say 𝛿𝑢𝒪 = 0. We also discuss the rate obtained
according, notably, to the regularity of the initial condition to be reconstructed in the case 𝑛 = 1. The results
are compared with those obtained with the 𝐻2-conformal finite element method introduced in [17] which reads
as follows:

Find (𝑢, 𝑧) ∈ 𝑉 × 𝐿2(0, 𝑇 ; 𝐻1
0 (Ω)), with 𝑉 = {𝑢 ∈ 𝐿2(ℳ),�𝑢 ∈ 𝐿2(0, 𝑇 ; 𝐻−1(Ω)}, solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑢, 𝑣)𝒪 + 𝛾

∫︁ 𝑇

0

(�𝑢,�𝑣)𝐻−1(Ω)d𝑡 +
∫︁ 𝑇

0

(𝑧,�𝑣)𝐻1
0 (Ω),𝐻−1(Ω)d𝑡 = (𝑢𝒪, 𝑣)𝒪, ∀𝑣 ∈ 𝑉,∫︁ 𝑇

0

(𝑤,�𝑢)𝐻1
0 (Ω),𝐻−1(Ω)d𝑡 = 0, ∀𝑤 ∈ 𝐿2(0, 𝑇 ; 𝐻1

0 (Ω)),

(5.1)

where (·, ·)𝐻1
0 (Ω),𝐻−1(Ω) denotes the dual pairing between 𝐻1

0 (Ω) and 𝐻−1(Ω) so that

(𝑧,�𝑢)𝐻1
0 (Ω),𝐻−1(Ω) =

(︀
∇𝑧,∇(−∆−1�𝑢)

)︀
𝐿2(Ω)

, ∀𝑧 ∈ 𝐻1
0 (Ω), 𝑢 ∈ 𝑉.

For any 𝛾 > 0, this well-posed mixed formulation is associated to the Lagrangiañ︀ℒ : 𝑉 × 𝐿2(0, 𝑇 ; 𝐻1
0 (Ω)) → R

defined as follows

̃︀ℒ(𝑢, 𝑧) =
1
2
‖𝑢− 𝑢𝒪‖2𝒪 +

𝛾

2
‖�𝑢‖2𝐿2(𝐻−1) −

∫︁ 𝑇

0

(𝑧,�𝑢)𝐻1
0 (Ω),𝐻−1(Ω)d𝑡. (5.2)

At the finite dimensional level, the formulation reads: find (𝑢ℎ, 𝑧ℎ) ∈ 𝑉ℎ × 𝑃ℎ solution of{︃
(𝑢ℎ, 𝑣ℎ)𝒪 + 𝛾ℎ2(�𝑢ℎ,�𝑣ℎ)ℳ + (𝑧ℎ,�𝑣ℎ)ℳ = (𝑢𝒪, 𝑣ℎ)𝒪, ∀𝑣ℎ ∈ 𝑉ℎ,

(𝑤ℎ,�𝑢ℎ)ℳ = 0, ∀𝑤ℎ ∈ 𝑃ℎ,
(5.3)

where 𝑉ℎ ⊂ 𝑉 and 𝑃ℎ ⊂ 𝐿2(0, 𝑇 ; 𝐻1
0 (Ω)) for all ℎ > 0. As in [17], we shall use a conformal approximation 𝑉ℎ

based on the 𝐶1 triangular reduced HCT element (see [5]). Concerning the approximation of the multiplier 𝑧,
we consider 𝑃ℎ = {𝑧 ∈ 𝐶(ℳ) : 𝑢|𝐾 ∈ P1(𝐾),∀𝐾 ∈ 𝒯ℎ}. This method does not enter the above framework,
however if a dual stabilizer as in (3.6) is added, the above theory may be applied and leads to error bounds also
in this case.

The experiments are performed with the FreeFem++ package developed at the University Paris 6 (see [29]),
very well-adapted to the spacetime formulation. In Table 1 we collect some data on the meshes that were used
in the numerical experiments.

Remark 5.1. The cases where 𝑝 < 𝑞 were included in the numerical study. Although the expected convergence
rates were observed, such methods turned out to be very sensitive to the choice of stabilization parameters.
This locking phenomenon lead to unsatisfactory results and the results are not reported here.
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5.1. Example 1

For our first example, we take simply Ω = (0, 1) and first consider an observation 𝑢𝒪 based on the smooth
initial condition (𝑢0(𝑥), 𝑢1(𝑥)) = (sin(3𝜋𝑥), 0) completed with 𝑇 = 2 and 𝜔 = (0.1, 0.3). Observe that the
corresponding solution is simply the smooth function

(Ex1) 𝑢(𝑡, 𝑥) = sin(3𝜋𝑥) cos(3𝜋𝑡).

In view of Theorem 4.4, we expect a rate equal to 𝑝 for the primal variable 𝑢 when approximated with elements
in 𝑉 𝑝

ℎ . Tables 2–5 provide the norms

‖𝑢− 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ), ‖(𝑢− 𝑢ℎ)(0, ·)‖𝐿2(0,1)/‖𝑢(0, ·)‖𝐿2(0,1), ‖(𝑢− 𝑢ℎ)𝑡(0, ·)‖𝐻−1(0,𝑇 )

with respect to ℎ for the primal variable and the norm ‖𝑧ℎ‖𝐿2(0,𝑇 ;𝐻1
0 (0,1)) with respect to ℎ for the dual variable.

These are obtained from the formulation (5.3) based on a conformal approximation with 𝛾 = 10−3 and from
the formulation (3.14) based on a non conformal approximation with 𝑝, 𝑞 ∈ {1, 2, 3}, 𝑝 ≥ 𝑞 (see (3.1)). For
the latter, we use the dual stabilizer (3.6) with 𝛾 = 10−3, 𝛾⋆ = 1. The linear system associated to the mixed
formulation (3.12) and (3.13) is solved using the multi-frontal LU direct solver UMFPACK.

Concerning the primal variable 𝑢, we obtain the following behavior

‖𝑢− 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) ≈ 𝛽 × ℎ𝜏

with
𝛽 = 𝑒1.40, 𝜏 = 1.66, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 1

ℎ × 𝑉 1
ℎ ,

𝛽 = 𝑒1.38, 𝜏 = 3.06, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 2
ℎ × 𝑉 1

ℎ ,

𝛽 = 𝑒1.16, 𝜏 = 4.06, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 3
ℎ × 𝑉 1

ℎ ,

𝛽 = 𝑒1.81, 𝜏 = 3.35, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 2
ℎ × 𝑉 2

ℎ ,

𝛽 = 𝑒1.01, 𝜏 = 4.01, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 3
ℎ × 𝑉 2

ℎ ,

𝛽 = 𝑒1.21, 𝜏 = 4.08, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 3
ℎ × 𝑉 3

ℎ ,

𝛽 = 𝑒1.02, 𝜏 = 3.67, (𝑢ℎ, 𝑧ℎ) ∈ HCT× 𝑉 1
ℎ ,

(5.4)

in agreement with Theorem 4.4. We observe actually a super convergence in all cases, very likely due to the
regularity of the solution to be reconstructed. Figure 1 (left) depicts the evolution of the relative error ‖𝑢 −
𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) with respect to ℎ for the approximation 𝑉 𝑝

ℎ × 𝑉 1
ℎ , 𝑝 ∈ 1, 2, 3 and for the HCT element

based on a 𝐻2(𝑄𝑇 ) approximation. We notice that the case 𝑝 = 3 produces similar results than the 𝐻2(𝑄𝑇 )
based approximation HCT× 𝑉 1

ℎ . We also observe that the value of 𝑞 does not affect the rate in agreement with
Remark 4.7 (see Fig. 1 (right)). Table 6 collects the CPU time observed for various discretization and indicates
that the use of the space 𝑉 2

ℎ × 𝑉 1
ℎ seems very appropriate.

Since 𝑢𝒪 is a well-prepared solution, we check from Table 2 that the approximation 𝑧ℎ of the dual variable
(which has the meaning of a Lagrange multiplier for the weak formulation of the wave equation) goes to zero
with ℎ for the 𝐿2(0, 𝑇 ; 𝐻1

0 (0, 1)) norm.
With respect to the role of 𝛾 and 𝛾⋆, here taken equal to 10−3 and 1 respectively, we have observed the

following phenomenon: when 𝑝 is strictly larger than 𝑞, i.e. when the primal variable is approximated in a richer
space than the dual one, the value of 𝛾⋆ has no influence on the quality of the result. In particular 𝛾⋆ = 0
still leads to a well-posed discrete formulation and provides the same results compared to for instance 𝛾⋆ = 1.
This suggests, as least in the one dimensional setting for which 𝑑 = 1, that the finite element spaces satisfy an
inf-sup condition and that the stabilized term 𝑠⋆(𝑧ℎ, 𝑧ℎ) for the dual variable 𝑧 is not necessary. Moreover, in
that case, whatever be the value of 𝛾⋆, 𝛾 must be small but strictly positive; the choice 𝛾 = 0 leads to a non
invertible formulation. Still in the case 𝑝 > 𝑞, we also observed that the rate of convergence with respect to ℎ
is independent of the value of the parameter 𝛾. Small values strictly positive leads however to better constants
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Table 1. Data of five triangular meshes associated to ℳ = (0, 1)× (0, 2).

Mesh ♯1 ♯2 ♯3 ♯4 ♯5

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

card (𝒯ℎ) 442 1750 7164 29 182 116 300
♯vertices 252 936 3703 14 832 58 631
card (𝑉ℎ) – P2 945 3621 14 569 58 845 233 561
card (𝑉ℎ) – P3 2080 8056 32 599 132 040 524 791
card (𝑉ℎ) – HCT 1449 5493 21 975 88 509 350 823

Table 2. (Ex1); ‖𝑧ℎ‖𝐿2(0,𝑇 ;𝐻1
0 (0,1)) w.r.t ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 9.88× 10−4 1.22× 10−4 1.83× 10−5 2.49× 10−6 3.52× 10−7

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 4.64× 10−2 4.79× 10−2 3.03× 10−2 1.51× 10−2 7.76× 10−3

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 6.14× 10−3 1.45× 10−3 4.07× 10−4 9.96× 10−5 2.64× 10−5

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 2.23× 10−4 3.02× 10−5 4.02× 10−6 4.99× 10−7 6.85× 10−8

(3.14) – 𝑉 2
ℎ × 𝑉 2

ℎ 4.10× 10−2 1.16× 10−2 2.68× 10−3 6.49× 10−4 1.61× 10−4

(3.14) – 𝑉 3
ℎ × 𝑉 2

ℎ 2.57× 10−3 3.98× 10−4 4.83× 10−5 6.43× 10−6 7.76× 10−7

(3.14) – 𝑉 3
ℎ × 𝑉 3

ℎ 9.06× 10−3 1.10× 10−3 1.25× 10−4 1.55× 10−5 1.92× 10−6

Table 3. (Ex1); ‖𝑢− 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 1.32× 10−2 9.24× 10−4 8.72× 10−5 8.37× 10−6 1.20× 10−6

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 8.07× 10−1 4.94× 10−1 1.81× 10−1 4.90× 10−2 1.25× 10−2

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 1.00× 10−1 9.41× 10−3 1.23× 10−3 2.12× 10−4 4.03× 10−5

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 7.61× 10−3 5.16× 10−4 4.15× 10−5 2.64× 10−6 2.63× 10−7

(3.14) – 𝑉 2
ℎ × 𝑉 2

ℎ 1.58× 10−1 1.27× 10−2 1.21× 10−3 2.05× 10−4 3.01× 10−5

(3.14) – 𝑉 3
ℎ × 𝑉 2

ℎ 6.49× 10−3 3.97× 10−4 3.21× 10−5 2.29× 10−6 2.52× 10−7

(3.14) – 𝑉 3
ℎ × 𝑉 3

ℎ 9.07× 10−3 5.31× 10−4 3.92× 10−5 2.74× 10−6 3.01× 10−7

as reported in Figure 2. It should be noted that smaller value of 𝛾 leads to an increasing amount of CPU time
needed to solve the formulation (3.14) through the UMFPACK solver (in view of the ill-posedeness for 𝛾 = 0).

On the contrary, when the same finite element space is used for primal and dual variables, i.e. when 𝑝 = 𝑞,
we observe that the stabilization of the dual variable, i.e. 𝛾⋆ > 0 is compulsory to achieve well-posedness. In
that case, the choice 𝛾 = 0 provides excellent results (except for 𝑝 = 𝑞 = 1 and ℎ not small enough). We remark
that similar qualitative and quantitative conclusions are observed with structured meshes.

We also emphasize that the spacetime discretization introduced in the previous sections is very well-suited
for mesh adaptivity. Using the 𝑉 2

ℎ × 𝑉 1
ℎ approximation, Figure 4 (left) depicts the mesh obtained after seven

adaptive refinements based on the local values of gradient of the primal variable 𝑢ℎ. Starting with a coarse
mesh composed of 288 triangles and 166 vertices, the final mesh is composed by 13 068 triangles and 6700
vertices. We obtain the following values: ‖𝑧ℎ‖𝐿2(𝐻1

0 ) = 4.32 × 10−4; ‖𝑢 − 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) = 8.42 × 10−3;
‖(𝑢− 𝑢ℎ)(0)‖𝐿2(0,1)/‖𝑢(0)‖𝐿2(0,1) = 8.30× 10−3; ‖(𝑢− 𝑢ℎ)𝑡(0)‖𝐻−1(0,1) = 1.47× 10−3 for a CPU time equal to
3.01.
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Table 4. (Ex1); ‖(𝑢− 𝑢ℎ)(·, 0)‖𝐿2(0,1)/‖𝑢(·, 0)‖𝐿2(0,1) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 6.64× 10−3 6.23× 10−4 6.55× 10−5 6.25× 10−6 1.20× 10−6

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 8.02× 10−1 4.94× 10−1 1.81× 10−1 4.89× 10−2 1.25× 10−2

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 1.04× 10−1 8.45× 10−3 9.30× 10−4 1.57× 10−4 2.32× 10−5

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 4.81× 10−3 3.48× 10−4 3.68× 10−5 2.46× 10−6 1.85× 10−7

(3.14) – 𝑉 2
ℎ × 𝑉 2

ℎ 1.55× 10−1 9.29× 10−2 1.03× 10−3 1.85× 10−4 2.00× 10−5

(3.14) – 𝑉 3
ℎ × 𝑉 2

ℎ 4.22× 10−3 3.26× 10−4 2.23× 10−5 1.93× 10−6 1.65× 10−7

(3.14) – 𝑉 3
ℎ × 𝑉 3

ℎ 5.23× 10−3 3.52× 10−4 2.87× 10−5 2.50× 10−6 1.99× 10−7

Table 5. (Ex1); ‖(𝑢− 𝑢ℎ)𝑡(·, 0)‖𝐻−1(0,1) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 1.74× 10−1 9.29× 10−2 3.81× 10−2 1.85× 10−2 8.96× 10−3

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 2.85× 10−2 4.57× 10−2 2.68× 10−2 1.48× 10−2 7.09× 10−3

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 3.87× 10−2 8.56× 10−3 2.03× 10−3 4.95× 10−4 1.19× 10−4

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 6.10× 10−3 6.71× 10−4 6.32× 10−5 6.89× 10−6 8.32× 10−7

(3.14) – 𝑉 2
ℎ × 𝑉 2

ℎ 3.18× 10−2 8.20× 10−3 2.01× 10−3 4.82× 10−4 1.14× 10−4

(3.14) – 𝑉 3
ℎ × 𝑉 2

ℎ 6.82× 10−3 6.50× 10−4 6.24× 10−5 6.94× 10−6 8.28× 10−7

(3.14) – 𝑉 3
ℎ × 𝑉 3

ℎ 7.36× 10−3 6.69× 10−4 6.26× 10−5 6.87× 10−6 8.26× 10−7
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Figure 1. (Ex1) – Relative error ‖𝑢 − 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) with respect to ℎ for various
approximation spaces (see Tab. 3); 𝛾 = 10−3, 𝛾⋆ = 1.

Table 6. (Ex1); CPU time (in second) to solve (3.12) and (3.13) with the mesh ♯4.

𝑉 1
ℎ × 𝑉 1

ℎ 𝑉 2
ℎ × 𝑉 1

ℎ 𝑉 2
ℎ × 𝑉 2

ℎ 𝑉 3
ℎ × 𝑉 1

ℎ 𝑉 3
ℎ × 𝑉 2

ℎ 𝑉 3
ℎ × 𝑉 3

ℎ HCT× 𝑉 1
ℎ

1.74 4.78 8.46 16.19 19.27 28.59 10.76
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Figure 2. (Ex1) – Relative error ‖𝑢 − 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) with respect to ℎ and 𝛾 for the
approximation spaces 𝑉 1

ℎ × 𝑉 1
ℎ (left), 𝑉 2

ℎ × 𝑉 1
ℎ (right) and 𝑉 3

ℎ × 𝑉 1
ℎ (bottom); 𝛾⋆ = 1.

5.1.1. Iterative solution using a conjugate gradient algorithm

Finally, we recall that the mixed formulation (3.12) and (3.13) associated to the Lagrangian ℒ defined in
(3.11) may be reformulated into an equivalent extremal problem involving only the dual variable 𝑧ℎ: precisely,
if (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 𝑝

ℎ × 𝑉 𝑞
ℎ is the saddle-point of ℒ, then 𝑧ℎ ∈ 𝑉 𝑞

ℎ is the minimizer of the functional 𝒥 ⋆ : 𝑉 𝑞
ℎ → R

defined by

𝒥 ⋆(𝑧) :=
1
2

(𝑢𝑧, 𝑢𝑧)𝒪 +
𝛾

2
𝑠(𝑢𝑧, 𝑢𝑧) +

𝛾⋆

2
𝑠⋆(𝑧, 𝑧)− 𝑎ℎ(𝑢𝑧0 , 𝑧)

where, for any 𝑧 ∈ 𝑉 𝑞
ℎ , 𝑢𝑧 ∈ 𝑉 𝑝

ℎ solves, for all 𝑣ℎ ∈ 𝑉 𝑝
ℎ

(𝑢𝑧, 𝑣ℎ)𝒪 + 𝛾𝑠(𝑢𝑧, 𝑣ℎ) + 𝑎ℎ(𝑣ℎ, 𝑧) = 0 (5.5)

and where 𝑢𝑧0 ∈ 𝑉 𝑝
ℎ solves, for all 𝑣ℎ ∈ 𝑉 𝑝

ℎ

(𝑢𝑧0 , 𝑣ℎ)𝒪 + 𝛾𝑠(𝑢𝑧0 , 𝑣ℎ) = (𝑢̃𝒪, 𝑣ℎ)𝒪.
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Table 7. (Ex1); Number of iterations for the CG algorithm w.r.t. ℎ and 𝛾; 𝛾⋆ = 1.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ – 𝛾 = 10−3 98 160 275 496 922
(3.14) – 𝑉 2

ℎ × 𝑉 1
ℎ – 𝛾 = 10−3 69 124 261 561 1257

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ – 𝛾 = 10−3 49 101 216 474 997

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ – 𝛾 = 10−2 37 54 92 168 314
(3.14) – 𝑉 2

ℎ × 𝑉 1
ℎ – 𝛾 = 10−2 50 89 169 338 699

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ – 𝛾 = 10−2 43 82 174 357 682

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ – 𝛾 = 10−1 24 41 74 140 280
(3.14) – 𝑉 3

ℎ × 𝑉 1
ℎ – 𝛾 = 10−1 25 46 85 160 292

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ – 𝛾 = 1. 11 18 31 58 102

Table 8. (Ex2); ‖𝑧ℎ‖𝐿2(0,𝑇 ;𝐻1
0 (0,1)) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 4.70× 10−4 2.69× 10−4 1.48× 10−4 8.80× 10−5 2.44× 10−5

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 1.41× 10−2 9.02× 10−3 4.31× 10−3 2.37× 10−3 1.43× 10−3

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 9.47× 10−4 5.27× 10−4 3.13× 10−4 1.64× 10−4 9.55× 10−5

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 2.15× 10−4 1.23× 10−4 7.24× 10−5 4.70× 10−5 6.61× 10−6

Table 9. (Ex2); ‖(𝑢− 𝑢ℎ)‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 2.15× 10−2 9.80× 10−3 4.70× 10−3 2.34× 10−3 4.90× 10−4

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 1.34× 10−1 7.34× 10−2 4.22× 10−2 2.62× 10−2 1.60× 10−2

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 3.84× 10−2 2.02× 10−2 1.01× 10−1 5.30× 10−2 2.68× 10−3

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 2.10× 10−2 9.30× 10−3 4.33× 10−3 1.88× 10−3 1.79× 10−4

The minimization of 𝒥 ⋆ may be done iteratively through the conjugate gradient algorithm. Each iteration
requires the resolution of the well-posed problem (5.5), simpler – notably in terms of computational ressource
– than the direct resolution of (3.12) and (3.13). This reformulation is mainly of interest for multi-dimensional
cases for which 𝑛 > 1. We refer for instance to Section 2.2 of [17] where this is employed. The conjugate
gradient is initialized with the zero function and stopped as soon as the gradient 𝑔𝑘 ∈ 𝑉 𝑞

ℎ at the iteration 𝑘
satisfies |𝑔𝑘|𝑠⋆/|𝑔0|𝑠⋆ < 10−4. Moreover, at each iteration, problem (5.5) is solved with the Cholesky solver.
Once the minimizer 𝑧𝑐𝑔

ℎ of 𝒥 ⋆ is obtained, the corresponding primal solution is defined as 𝑢𝑐𝑔
ℎ = 𝑢𝑧𝑐𝑔

ℎ
+ 𝑢𝑧0 . We

checked that the above stopping criterion ensures a value of ‖𝑢ℎ − 𝑢𝑐𝑔
ℎ ‖𝐿2(ℳ) + 𝛾|𝑢ℎ − 𝑢𝑐𝑔

ℎ |𝑠 + 𝛾⋆|𝑧ℎ − 𝑧𝑐𝑔
ℎ |𝑠⋆

of the order 10−5, 10−6 and 10−7 when the approximations 𝑉 1
ℎ × 𝑉 1

ℎ , 𝑉 2
ℎ × 𝑉 1

ℎ and 𝑉 3
ℎ × 𝑉 1

ℎ are employed
respectively. Consequently, we simply report in Table 7 the number of iterations of the algorithm for 𝛾⋆ = 1 and
𝛾 ∈ {1, 10−1, 10−2, 10−3}. As expected, a larger value of 𝛾 increases the coercivity property of the functional
𝒥 ⋆. In view of Figure 2, the approximation 𝑉 3

ℎ × 𝑉 1
ℎ combined with 𝛾 = 1. leads to an appropriate choice.

5.2. Example 2

For our second numerical example, we consider the observation 𝑢𝒪 based on the initial condition
𝑢0(𝑥) = 1 − |2𝑥 − 1| ∈ 𝐻1

0 (Ω), 𝑢1(𝑥) = 1(1/3,2/3)(𝑥) ∈ 𝐿2(Ω) and 𝑇 = 2, 𝜔 = (0.1, 0.3), considered in
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Table 10. (Ex2); ‖(𝑢− 𝑢ℎ)(·, 0)‖𝐿2(0,1)/‖𝑢(·, 0)‖𝐿2(0,1) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 1.84× 10−2 9.08× 10−3 4.20× 10−3 1.96× 10−3 1.33× 10−3

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 1.30× 10−1 6.84× 10−2 4.10× 10−2 2.57× 10−2 1.57× 10−2

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 3.70× 10−2 1.94× 10−2 9.69× 10−3 4.88× 10−3 2.36× 10−3

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 1.72× 10−2 8.38× 10−3 3.65× 10−3 1.67× 10−3 1.73× 10−3

Table 11. (Ex2); ‖(𝑢− 𝑢ℎ)𝑡(·, 0)‖𝐻−1(0,1)/‖(𝑢𝑡(·, 0)‖𝐻−1(0,1) w.r.t. ℎ.

ℎ 1.57× 10−1 8.22× 10−2 4.03× 10−2 2.29× 10−2 1.25× 10−2

(5.3) – HCT× 𝑉 1
ℎ 6.20× 10−1 4.28× 10−1 3.68× 10−1 3.26× 10−1 4.54× 10−1

(3.14) – 𝑉 1
ℎ × 𝑉 1

ℎ 6.47× 10−1 4.35× 10−1 3.63× 10−1 3.21× 10−1 3.05× 10−1

(3.14) – 𝑉 2
ℎ × 𝑉 1

ℎ 3.01× 10−1 2.85× 10−1 2.96× 10−1 2.90× 10−1 2.94× 10−1

(3.14) – 𝑉 3
ℎ × 𝑉 1

ℎ 3.15× 10−1 2.87× 10−1 2.98× 10−1 2.91× 10−1 3.01× 10−1

Section 5.1 of [17]. The corresponding solution 𝑢 belongs to 𝐻1(ℳ) but not 𝐻2(ℳ) and is given by

(Ex2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢(𝑡, 𝑥) =

∑︁
𝑘>0

(︂
𝑎𝑘 cos(𝑘𝜋𝑡) +

𝑏𝑘

𝑘𝜋
sin(𝑘𝜋𝑡)

)︂√
2 sin(𝑘𝜋𝑡),

𝑎𝑘 =
4
√

2
𝜋2𝑘2

sin(𝜋𝑘/2), 𝑏𝑘 =
1
𝜋𝑘

(︀
cos(𝜋𝑘/3)− cos(2𝜋𝑘/3)

)︀
, 𝑘 > 0.

We define the observation 𝑢𝒪 as the restriction over (0.1, 0.3)× (0, 2) of the first fifty terms in the previous
sum. Tables 9–11 provide the norms

‖𝑢− 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ), ‖(𝑢− 𝑢ℎ)(0, ·)‖𝐿2(0,1), ‖(𝑢− 𝑢ℎ)𝑡(0, ·)‖𝐻−1(0,𝑇 )

with respect to ℎ for the primal variable, obtained from the formulation (5.3) and from the formulation (3.14)
with 𝑝 ∈ {1, 2, 3}, 𝑞 ∈ {1, 2} and 𝑞 6 𝑝 (see (3.1)). We use again the dual stabilizer (3.6) with 𝛾 = 10−3 and
𝛾⋆ = 1. The convergence of the dual variable 𝑧ℎ is reported in Table 8.

Figure 3 (left) depicts the relative error ‖𝑢 − 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) ≈ 𝛽 × ℎ𝜏 with respect to ℎ. We get a
convergence rate around one, independent of approximation order or smoothness of the approximation space.
More precisely

𝛽 = 𝑒−0.20, 𝜏 = 0.83, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 1
ℎ × 𝑉 1

ℎ ,

𝛽 = 𝑒−0.58, 𝜏 = 1.02, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 2
ℎ × 𝑉 1

ℎ ,

𝛽 = 𝑒−0.68, 𝜏 = 1.23, (𝑢ℎ, 𝑧ℎ) ∈ 𝑉 3
ℎ × 𝑉 1

ℎ ,

𝛽 = 𝑒−0.75, 𝜏 = 1.17, (𝑢ℎ, 𝑧ℎ) ∈ HCT× 𝑉 1
ℎ ,

(5.6)

and confirm, in agreement with Theorem 4.4, that the rate of convergence depends on the regularity of the
solution 𝑢. Note that the observed rate also here is better than what is predicted by Theorem 4.4. We also check
that increasing the order of the space for the dual variable does not improve the accuracy. Moreover, we observe
the same property as the first example with respect to the choice of the parameter 𝛾 and 𝛾⋆. In particular, as
depicted in Figure 3 (left), a lower value of 𝛾 allows to improve the reconstruction of the solution.

We remark that, since the solution 𝑢 to be reconstructed, develops singularities along characteristic lines
starting from the point 𝑥 = 1/2 (due to the initial position 𝑢0) and from the points 𝑥 = 1/3, 2/3 (due to
the initial velocity 𝑢1), the adaptative refinement of the mesh mentioned in the previous subsection is of
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Figure 3. (Ex2) – Left : relative error ‖𝑢− 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) with respect to ℎ for various
approximation spaces (see Tab. 9); Right : relative error ‖𝑢− 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) with respect
to ℎ and 𝛾 for the approximation 𝑉 2

ℎ × 𝑉 1
ℎ .

particular interest here. Using the 𝑉 2
ℎ × 𝑉 1

ℎ approximation, Figure 4 (left) depicts the mesh obtained after ten
adaptative refinements based on the local values of gradient of the primal variable 𝑢ℎ. Starting with a coarse
mesh composed of 288 triangles and 166 vertex, the final mesh is composed with 12118 triangles and 6213
vertices. We obtain the following values: ‖𝑧ℎ‖𝐿2(𝐻1

0 ) = 5.15 × 10−5; ‖𝑢 − 𝑢ℎ‖𝐿2(ℳ)/‖𝑢‖𝐿2(ℳ) = 1.74 × 10−3;
‖(𝑢−𝑢ℎ)(0, ·)‖𝐿2(0,1)/‖𝑢(0, ·)‖𝐿2(0,1) = 7.63×10−4; ‖(𝑢−𝑢ℎ)𝑡(0, ·)‖𝐻−1(0,1)/‖𝑢𝑡(0, ·)‖𝐻−1(0,1) = 2.93×10−1 for
a CPU time equal to 3.13. The final mesh clearly exhibits the singularities generated by the initial data (𝑢0, 𝑢1).
On the contrary, the refinement strategy coupled with the HCT element does not permit to capture so clearly
such singularities, in particular the weaker ones starting from the point 𝑥 = 1/3 and 𝑥 = 2/3 (see [17], Fig. 1).

6. Concluding remarks

We have introduced and analyzed a spacetime finite element approximation of a data assimilation problem
for the wave equation. Based on an 𝐻1-approximation that is nonconformal in 𝐻2, the analysis yields error
estimates for the natural norm

𝐿∞(0, 𝑇 ; 𝐿2(Ω)) ∩𝐻1(0, 𝑇 ; 𝐻−1(Ω))

of order ℎ𝑝, where 𝑝 is the degree of the polynomials used to describe the primal variable 𝑢 to be reconstructed.
The numerical experiments performed for two initial data, the first one in 𝐻𝑘 ×𝐻𝑘−1 for all 𝑘 ∈ N, the second
one in 𝐻1 × 𝐿2, exhibit the efficiency of the method.

We emphasize that spacetime formulations are easier to implement than time-marching methods, since in
particular, there is no kind of CFL condition between the time and space discretization parameters. Moreover,
as shown in the numerical section, they are well-suited for mesh adaptivity.

In comparison with the formulation introduced in [17], the 𝐻1-formulation of the present work does not
require the introduction of sophisticated finite element spaces. On the other hand, the formulation requires
additional stabilized terms which are function of the jump of the gradient across the boundary of each element,
see the definition of 𝑠𝑘 in (3.5). These kinds of terms are known from non-conforming approximation of fourth
order problems [21]. So the approach can be interpreted as a non-conforming, stabilized version of the method
in [17]. The implementation of the stabilized terms is not straightforward, in particular, in higher dimension,
and is usually not available in finite element softwares. In such cases one can apply the so-called orthogonal
sub-scale stabilization [20], which can be shown to be equivalent, but requires the introduction of additional
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Figure 4. Locally refine spacetime meshes for the example 1 (left) and the example 2 (right).

degrees of freedom, one for each component of the spacetime gradient. Another possible way to circumvent the
introduction of the gradient jump terms is to consider non-conforming approximation of the Crouzeix–Raviart
type as in [10]. A penalty is then needed on the solution jump instead to control the 𝐻1-conformity error. For
the time discretization one could also explore the possibility of using discontinuous Petrov–Galerkin methods
(see for instance [23,45]).

The analysis performed can easily be extended to more general wave equations of the form

𝑢𝑡𝑡 − div(𝑎(𝑥)∇𝑢) + 𝑝(𝑥, 𝑡)𝑢 = 0

with 𝑎 ∈ 𝐿∞(Ω, R+
⋆ ) and 𝑝 ∈ 𝐿∞(ℳ) allowing to consider, through appropriate linearization techniques, data

assimilation problem for nonlinear wave equation of the form 𝑢𝑡𝑡−∆𝑢 + 𝑔(𝑢) = 0. From application viewpoint,
it is also interesting to explore if a spacetime approach based on a non conformal 𝐻1-approximation can be
efficient to address data assimilation problem from boundary observation. We refer to [18] where a 𝐻2 conformal
approximation – similar to (5.3) – is discussed, assuming that the normal derivative 𝜕𝜈𝑢 ∈ 𝐿2(Σ) is available on
a part large enough of Σ = (0, 𝑇 )×𝜕Ω. Eventually, the issue of the approximation of controllability problems for
the wave equation through non conformal spacetime approach can very likely be addressed as well: remember
that the control of minimal 𝐿2(𝒪×(0, 𝑇 )) norm for the initial data (𝑧0, 𝑧1) ∈ 𝐻1

0 (Ω)×𝐿2(Ω) is given by 𝑣 = 𝑢1𝒪
where 𝑢 together with 𝑧 is the saddle point of the following Lagrangian ̂︀ℒ : 𝑉 × 𝐿2(0, 𝑇 ; 𝐻1

0 (Ω)) → R

̂︀ℒ(𝑢, 𝑧) =
1
2
‖𝑢‖2𝒪 +

𝛾

2
‖�𝑢‖2𝐿2(0,𝑇 ;𝐻−1(Ω)) −

∫︁ 𝑇

0

(𝑧,�𝑢)𝐻1
0 (Ω),𝐻−1(Ω)d𝑡

+ ⟨𝑢𝑡(·, 0), 𝑧0⟩𝐻−1(Ω),𝐻1
0 (Ω) − ⟨𝑢(·, 0), 𝑧1⟩𝐿2(Ω),

very close to (5.2). We refer to [15].
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