Numerical upscaling for heterogeneous materials in fractured domains
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S761-S784

We consider numerical solution of elliptic problems with heterogeneous diffusion coefficients containing thin highly conductive structures. Such problems arise e.g. in fractured porous media, reinforced materials, and electric circuits. The main computational challenge is the high resolution needed to resolve the data variation. We propose a multiscale method that models the thin structures as interfaces and incorporate heterogeneities in corrected shape functions. The construction results in an accurate upscaled representation of the system that can be used to solve for several forcing functions or to simulate evolution problems in an efficient way. By introducing a novel interpolation operator, defining the fine scale of the problem, we prove exponential decay of the shape functions which allows for a sparse approximation of the upscaled representation. An a priori error bound is also derived for the proposed method together with numerical examples that verify the theoretical findings. Finally we present a numerical example to show how the technique can be applied to evolution problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020061
Classification : 35J15, 65N12, 65N15, 65N30
Keywords: Generalized finite element method, localized orthogonal decomposition, porous media, fracture, Darcy flow
@article{M2AN_2021__55_S1_S761_0,
     author = {Hellman, Fredrik and M\r{a}lqvist, Axel and Wang, Siyang},
     title = {Numerical upscaling for heterogeneous materials in fractured domains},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S761--S784},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020061},
     mrnumber = {4221307},
     zbl = {1491.65138},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020061/}
}
TY  - JOUR
AU  - Hellman, Fredrik
AU  - Målqvist, Axel
AU  - Wang, Siyang
TI  - Numerical upscaling for heterogeneous materials in fractured domains
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S761
EP  - S784
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020061/
DO  - 10.1051/m2an/2020061
LA  - en
ID  - M2AN_2021__55_S1_S761_0
ER  - 
%0 Journal Article
%A Hellman, Fredrik
%A Målqvist, Axel
%A Wang, Siyang
%T Numerical upscaling for heterogeneous materials in fractured domains
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S761-S784
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020061/
%R 10.1051/m2an/2020061
%G en
%F M2AN_2021__55_S1_S761_0
Hellman, Fredrik; Målqvist, Axel; Wang, Siyang. Numerical upscaling for heterogeneous materials in fractured domains. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S761-S784. doi: 10.1051/m2an/2020061

[1] A. Abdulle and P. Henning, Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comput. 86 (2017) 549–587. | MR | Zbl

[2] C. Alboin, J. Jaffré, J. E. Eoberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media. Contemp. Math. 295 (2002) 13–24. | MR | Zbl

[3] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43 (2009) 239–275. | MR | Zbl | Numdam

[4] E. Burman, P. Hansbo and M. G. Larson, A simple finite element method for elliptic bulk problems with embedded surfaces. Comput. Geosci. 23 (2019) 189–199. | MR | Zbl

[5] E. Burman, P. Hansbo, M. G. Larson and D. Samvin, A cut finite element method for elliptic bulk problems with embedded surfaces. Int. J. Geomath. 10 (2019) 10. | MR | Zbl

[6] D. Capatina, R. Luce, H. El-Otmany and N. Barrau, Nitsche’s extended finite element method for a fracture model in porous media. Appl. Anal. 95 (2016) 2224–2242. | MR | Zbl

[7] C. D’Angelo and A. Scotti, A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46 (2012) 465–489. | Zbl | Numdam

[8] D. Elfverson, E. H. Georgoulis, A. Målqvist and D. Peterseim, Convergence of a discontinuous Galerkin multiscale method. SIAM J. Numer. Anal. 51 (2013) 3351–3372. | MR | Zbl

[9] C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153. | MR | Zbl

[10] F. Hellman and A. Målqvist, Contrast independent localization of multiscale problems. Multiscale Model. Simul. 15 (2017) 1325–1355. | MR | Zbl | DOI

[11] T. Y. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. | MR | Zbl | DOI

[12] T. J. R. Hughes, G. R. Feijóo, L. Mazzei and J. Quincy, The variational multiscale method – paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. | MR | Zbl | DOI

[13] R. Kornhuber, D. Peterseim and H. Yserentant, An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87 (2018) 2765–2774. | MR | Zbl | DOI

[14] R. Maier and D. Peterseim, Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math. 59 (2019) 443–462. | MR | Zbl | DOI

[15] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. | MR | Zbl | DOI

[16] V. Martin, J. Jaffré and J. E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. | MR | Zbl | DOI

[17] L. H. Odsæter, T. Kvamsdal and M. G. Larson, A simple embedded discrete fracture-matrix model for a coupled flow and transport problem in porous media. Comput. Methods Appl. Mech. Eng. 343 (2019) 572–601. | MR | Zbl | DOI

[18] H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: M2AN 48 (2014) 517–552. | MR | Zbl | Numdam | DOI

[19] D. Peterseim and R. Scheichl, Robust numerical upscaling of elliptic multiscale problems at high contrast. Comput. Methods Appl. Math. 16 (2016) 579–603. | MR | Zbl | DOI

[20] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI

Cité par Sources :