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NUMERICAL UPSCALING FOR HETEROGENEOUS MATERIALS IN
FRACTURED DOMAINS

Fredrik Hellman1, Axel Målqvist1 and Siyang Wang2,*

Abstract. We consider numerical solution of elliptic problems with heterogeneous diffusion coeffi-
cients containing thin highly conductive structures. Such problems arise e.g. in fractured porous media,
reinforced materials, and electric circuits. The main computational challenge is the high resolution
needed to resolve the data variation. We propose a multiscale method that models the thin structures
as interfaces and incorporate heterogeneities in corrected shape functions. The construction results in
an accurate upscaled representation of the system that can be used to solve for several forcing functions
or to simulate evolution problems in an efficient way. By introducing a novel interpolation operator,
defining the fine scale of the problem, we prove exponential decay of the shape functions which allows
for a sparse approximation of the upscaled representation. An a priori error bound is also derived for
the proposed method together with numerical examples that verify the theoretical findings. Finally we
present a numerical example to show how the technique can be applied to evolution problems.
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1. Introduction

A major challenge when solving elliptic partial differential equations with rapidly varying coefficients is
to handle thin highly permeable structures. These structures appear e.g. as fractures in porous materials, as
reinforcements in composite materials, or as conducting parts in electric components. Even without the thin
structures we know from homogenization theory that the heterogeneous diffusion need to be well resolved
globally. Highly conductive thin structures lead to the additional complication of global couplings on a finer
scale that are not seen on coarse discretization levels. This poses problems both for iterative methods like
multigrid, that takes advantage of multiple levels of discretization, and for upscaling or multiscale methods
where a coarse and sparse representation is sought.

Several multiscale methods, addressing the issue of rapidly varying data, have been developed during the
last twenty years, see e.g. [11, 12] and more recently [15, 18]. In this work, we use the localized orthogonal
decomposition method (LOD) from [15]. See also [9] for a detailed description of the implementation. In this
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method, the solution space is split into a fine scale part, defined as the kernel of an interpolation operator,
and its orthogonal complement, defining the multiscale space. The multiscale solution is given as a Galerkin
approximation of the weak form in the multiscale space. The method is proven to give optimal convergence rate
in the absence of high contrast diffusion. In the recent work [13], a domain decomposition algorithm was proposed
which is related to [15] and gives an alternative iterative approach to upscaling. The methods mentioned so far
cannot be proven to converge if the diffusion coefficient has thin highly permeable structures. The high contrast
diffusion problem was studied in two recent works [10, 19] using diffusion weighted interpolation to define the
fine scales in a way that allows sparse but still accurate coarse scale representations. Still the issue of resolving
the thin structures locally remains.

A common strategy to represent thin structures is to use interface models that give asymptotically correct
representation as the width goes to zero. In [2], an asymptotic model for the case with very high fracture
permeability in Darcy flow is derived. The model is extended to handle both very high and very low fracture
permeabilities in [16]. Well-posedness of the asymptotic model is proved, and the error between the asymptotic
model and the original model is analyzed. In [3, 7], an asymptotic model is developed for the case when the
fractures are fully immersed in the porous media. A similar approach is taken in [6] with a focus on the high
fracture permeability case.

In this paper, we apply the localized orthogonal decomposition technique to a model problem with rapidly
varying diffusion and interfaces. Under approximation and stability assumptions on the interpolation operator
defining the fine scales, we prove exponential decay of the corresponding multiscale correctors, also at the
interfaces, and thereby optimal convergence of the full proposed method. We propose a Scott–Zhang type
interpolation operator that fulfills the assumptions when the fracture is a union of coarse element edges. The
construction is related to the diffusion dependent interpolation operator proposed in [10]. When the fracture
cuts through coarse elements, for the nodal variables close to the interface we determine the integration domain
by a computable indicator. This method gives an accurate and sparse coarse scale representation of the problem
that can be reused when solving for different right hand sides or time dependent problems. For the fine scale
discretization we use the simple finite element method proposed in [4].

The outline of the paper is as follows. In Section 2, we present the model problem. We then introduce the LOD
method in Section 3 and construct interpolation operators in Section 4. In Section 5, we prove exponential decay
for the corrected shape functions and an a priori error bound for the proposed method. Numerical experiments
are presented in Section 6 to verify the theoretical analysis, and demonstrate the effectiveness of the proposed
method.

2. Model problem

Let Ω be a polygonal domain in R2. We assume that the fracture Ω𝜖 ∈ Ω separates Ω to two subdomains Ω1,
Ω2 such that

Ω = Ω1 ∪ Ω2 ∪ Ω𝜖, Ω1 ∩ Ω2 = ∅,

with two interfaces
Γ1 = Ω1 ∩ Ω𝜖, Γ2 = Ω2 ∩ Ω𝜖.

Further, we assume that there exists a smooth curve Γ such that the fracture Ω𝜖 can be parametrized as

Ω𝜖 =
{︁

𝑧 ∈ Ω | 𝑧 = 𝑥 + 𝑐𝑛(𝑥), 𝑥 ∈ Γ and 𝑐 ∈
[︁
− 𝜖

2
,
𝜖

2

]︁}︁
,

where 𝑛(𝑥) is the unit normal vector to the interface Γ at 𝑥. The normal vector 𝑛(𝑥) varies along the interface
Γ, but the distances from 𝑥 to Γ1 and Γ2 are equal. The small constant 𝜖 represents the width of the fracture.
For a simplified notation, we write 𝑛 to denote the unit normal vector.

We consider a single incompressible flow described by mass conservation and Darcy’s law in both the bulk
domain and the fracture. The permeability 𝐴1,2 in the bulk domain oscillates rapidly and the fracture width
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Figure 1. Modeling the fracture domain Ω𝜖 as an interface Γ.

𝜖 is on an even smaller scale than the oscillation period of 𝐴1,2. The pressure field of the Darcy flow can be
written as

−∇ ·𝐴𝑖∇𝑢𝑖 = 𝑓𝑖, in Ω𝑖, 𝑖 = 1, 2, 𝜖. (2.1)

We consider homogeneous Dirichlet boundary condition,

𝑢𝑖 = 0, on 𝜕Ω, 𝑖 = 1, 2, 𝜖. (2.2)

At the interfaces Γ1 and Γ2, we impose continuity of pressure and continuity of flux in the normal direction,

𝑢𝑖 = 𝑢𝜖, 𝐴𝑖∇𝑢𝑖 · 𝑛𝑖 = 𝐴𝜖∇𝑢𝜖 · 𝑛𝑖, on Γ𝑖, 𝑖 = 1, 2, (2.3)

where 𝑛𝑖 is the outward unit normal vector of Ω𝑖 on Γ𝑖. The problem (2.1)–(2.3) is well posed.
In an asymptotic model, the fracture Ω𝜖 is modeled by an interface Γ as illustrated in Figure 1. The new

equation on Γ and interface coupling conditions are obtained by averaging (2.1) in Ω𝜖. Examples of asymptotic
models can be found in [2–7]. We refer to [16] for a more detailed discussion and error analysis of asymptotic
models.

When the permeability 𝐴𝜖 ∼ 𝒪(𝜖−1) is large, the asymptotic model problem can be stated as

−∇ ·𝐴𝑖∇𝑢𝑖 = 𝑓𝑖, in Ω𝑖, 𝑖 = 1, 2,
−∇𝜏 ·𝐴Γ∇𝜏𝑢Γ = 𝑓Γ − [[𝐴∇𝑢 · 𝑛]], on Γ,

𝑢1 = 𝑢2, on Γ,
𝑢𝑖 = 0, on 𝜕Ω, 𝑖 = 1, 2,Γ,

(2.4)

where the permeability on Γ is 𝐴Γ = 𝜖𝐴𝜖 ∼ 𝒪(1). We also have 𝑓𝜖 ∼ 𝒪(𝜖−1), thus 𝑓Γ ∼ 𝒪(1). The pressure
field is continuous across the interface and we have 𝑢Γ = 𝑢1 = 𝑢2 on Γ. The jump term, defined as [[𝐴∇𝑢 ·𝑛]] =
−𝐴2∇𝑢2 ·𝑛|Γ +𝐴1∇𝑢1 ·𝑛|Γ, takes the flow interaction between the bulk domain and the interface into account.
The symbol ∇𝜏 and ∇𝜏 · denote tangential gradient and tangential divergence, respectively. The accuracy of
the model is of order 𝜖.

We assume that the permeability parameters satisfy

0 < 𝛼 = ess inf 𝐴𝑖 ≤ ess sup 𝐴𝑖 =: 𝛽 <∞, 𝑖 = 1, 2,Γ, (2.5)

for some constants 𝛼 and 𝛽. In particular, we consider permeabilities 𝐴1 and 𝐴2 that are highly oscillatory. The
magnitudes of all permeability parameters 𝐴1, 𝐴2, and 𝐴Γ are on the same scale 𝒪(1).
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Remark 2.1. An asymptotic model can be derived in the same way for problems in three space dimensions
when the fractures are thin planes.

2.1. Weak formulation

Let 𝐻𝑚(𝜔) denote the Sobolev space of functions with weak derivatives of order 𝑚 bounded in 𝐿2-norm over
a domain 𝜔, and let 𝐻1

0 (𝜔) denote the space of functions in 𝐻1(𝜔) that vanish on 𝜕𝜔 in the sense of traces. We
also define the space 𝑉 = 𝐻1

0 (Ω) ∩𝐻1(Γ). The 𝐿2 inner product over the domain 𝜔 is denoted by (·, ·)𝜔. The
corresponding 𝐿2-norm of a function 𝑣 is ‖𝑣‖𝜔.

To derive a weak formulation, we multiply the first equation of (2.4) by a test function 𝑣 ∈ 𝑉 . Applying
Green’s first identity in Ω1 and Ω2, and using the homogeneous Dirichlet boundary condition, we obtain

(𝑓1, 𝑣)Ω1 + (𝑓2, 𝑣)Ω2 = −(∇ ·𝐴1∇𝑢1, 𝑣)Ω1 − (∇ ·𝐴2∇𝑢2, 𝑣)Ω2

= (𝐴1∇𝑢1,∇𝑣)Ω1 + (𝐴2∇𝑢2,∇𝑣)Ω2 − ([[𝐴∇𝑢 · 𝑛]], 𝑣)Γ.

The second equation of (2.4) leads to

(𝑓1, 𝑣)Ω1 + (𝑓2, 𝑣)Ω2 = (𝐴1∇𝑢1,∇𝑣)Ω1 + (𝐴2∇𝑢2,∇𝑣)Ω2 − (𝑓Γ +∇𝜏 ·𝐴Γ∇𝜏𝑢Γ, 𝑣)Γ.

We then apply Green’s first identity on Γ, and obtain

(𝑓1, 𝑣)Ω1 + (𝑓2, 𝑣)Ω2 + (𝑓Γ, 𝑣)Γ = (𝐴1∇𝑢1,∇𝑣)Ω1 + (𝐴2∇𝑢2,∇𝑣)Ω2 + (𝐴Γ∇𝜏𝑢Γ,∇𝜏 𝑣)Γ.

After merging the integration in Ω1 and Ω2, we obtain the weak form: find 𝑢 ∈ 𝑉 such that

𝑎(𝑢, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑉, (2.6)

where

𝑎(𝑢, 𝑣) = (𝐴∇𝑢,∇𝑣)Ω + (𝐴Γ∇𝜏𝑢,∇𝜏 𝑣)Γ, (2.7)
𝐹 (𝑣) = (𝑓, 𝑣)Ω + (𝑓Γ, 𝑣)Γ. (2.8)

In (2.6)–(2.8), we do not distinguish notations for 𝑢 in Ω and Γ. This is appropriate since 𝑢 is continuous
across the interface. The bilinear form 𝑎(·, ·) is an inner product in the Hilbert space 𝑉 with an induced energy
norm |||𝑣||| = 𝑎(𝑣, 𝑣), and 𝑎(·, ·) is bounded and coercive. It follows from the Lax–Milgram theorem that there
exists a unique solution to the weak form (2.6).

2.2. Intersected and immersed interfaces

The weak form (2.6) can be generalized to the case where multiple interfaces intersect with each other, and
to interfaces that are immersed in the domain. An example is depicted in Figure 2, where all three smooth
interfaces are intersected at one point, and Γ1 is immersed. To model the intersection, we augment the strong
form (2.4) by imposing the Kirchhoff condition

3∑︁
𝑖=1

𝐴Γ𝑖
∇𝜏 𝑖

𝑢 · 𝜏 𝑖 = 0 at Γ1 ∩ Γ2 ∩ Γ3,

where 𝜏 𝑖 is the outward pointing unit tangential vector of Γ𝑖 at the intersection. The Kirchhoff condition is
imposed in the same way when more interfaces intersect [4].

For the immersed interface Γ1, at the immersed end of Γ1, a homogeneous Neumann boundary condition is
applied [3]

∇𝜏0𝑢 · 𝜏 0 = 0,
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Figure 2. Intersected and immersed interfaces.

where 𝜏 0 is the outward pointing unit tangential vector of Γ1 at the immersed end.
Following the derivation in Section 2.1, the weak form of the problem with interfaces Γ1, Γ2 and Γ3 takes

exactly the same form as (2.6)–(2.8) with Γ = Γ1 ∪ Γ2 ∪ Γ3, but with the function space 𝑉 = {𝑣 ∈ 𝐻1
0 (Ω) ∩

𝐻1(Γ1)∩𝐻1(Γ2)∩𝐻1(Γ3) : 𝑣 is continuous in Γ}. This choice of function space in combination with the Kirchhoff
condition and the homogeneous Neumann boundary condition makes the boundary terms vanish when applying
Green’s first identity. Bifurcating interfaces with smooth branches can be treated in the same way, see [4] for a
more general and detailed derivation.

3. The multiscale method

In this section, we construct the LOD method for problem (2.6). To start, we consider a coarse scale finite
element discretization. Let 𝒯𝐻 be a quasi uniform conforming triangulation of Ω consisting of closed and shape
regular elements with mesh size parameter 𝐻. We assume there is a constant 𝛾 such that

max
𝑇∈𝒯𝐻

𝐻

𝑑𝑇
≤ 𝛾 and max

𝑇,𝑇 ′∈𝒯𝐻

𝑑𝑇 ′

𝑑𝑇
≤ 𝛾, (3.1)

where 𝑑𝑇 is the diameter of the inscribed circle in element 𝑇 .

3.1. Orthogonal decomposition

Let 𝑉𝐻 be a standard finite element space with continuous piecewise linear polynomials on 𝒯𝐻 that satisfies
the homogeneous Dirichlet boundary condition. The rapidly varying permeability 𝐴 need not to be resolved in
the coarse space 𝑉𝐻 .

The full space 𝑉 and the coarse space 𝑉𝐻 are linked by an interpolation operator ℐ𝐻 : 𝑉 → 𝑉𝐻 . It defines a
fine space 𝑉f as its kernel,

𝑉f = {𝑣 ∈ 𝑉 : ℐ𝐻(𝑣) = 0}. (3.2)
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We return to the exact assumptions needed on the interpolation operator ℐ𝐻 and give examples in Section 4.
The fine space contains fine scale features not resolved in 𝑉𝐻 , and will be used to construct a multiscale space
by using correctors for the coarse basis functions spanning 𝑉𝐻 . The correctors are defined as follows.

Definition 3.1. For a given coarse function 𝑣 ∈ 𝑉𝐻 , the corrector 𝜑𝑇 ∈ 𝑉f for 𝑇 ∈ 𝒯𝐻 is the solution to

𝑎(𝜑𝑇 , 𝑤) = 𝑎𝑇 (𝑣, 𝑤), ∀𝑤 ∈ 𝑉f , (3.3)

where
𝑎𝑇 (𝑣, 𝑤) =

∫︁
𝑇

𝐴∇𝑣 · ∇𝑤 +
∫︁

Γ𝑇

𝐴Γ∇𝜏 𝑣 · ∇𝜏𝑤,

and Γ𝑇 = Γ ∩ 𝑇 .

We use a correction operator 𝑄, which is defined as

𝑄𝑣 =
∑︁

𝑇∈𝒯𝐻

𝜑𝑇 , (3.4)

to construct the multiscale space
𝑉ms = {𝑄𝑣 − 𝑣 : 𝑣 ∈ 𝑉𝐻}. (3.5)

We note that 𝑉ms is orthogonal to the fine space 𝑉f in the 𝑎-scalar product, and the dimension of 𝑉ms is the
same as the dimension of 𝑉𝐻 . Using the low dimensional space 𝑉ms, the multiscale Galerkin approximation
reads: find 𝑢ms ∈ 𝑉ms such that

𝑎(𝑢ms, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑉ms, (3.6)

where 𝑎(·, ·) and 𝐹 (·) are defined in (2.7) and (2.8), respectively. The Galerkin orthogonality then follows

𝑎(𝑢− 𝑢ms, 𝑣) = 0, ∀𝑣 ∈ 𝑉ms. (3.7)

Since the error 𝑢− 𝑢ms ∈ 𝑉f , it satisfies
ℐ𝐻(𝑢− 𝑢ms) = 0. (3.8)

3.2. Localization

To construct the multiscale space 𝑉ms, we need to solve (3.3) for correctors 𝜑𝑇 for every 𝑇 ∈ 𝒯𝐻 . Since 𝜑𝑇 ∈ 𝑉f

in general has global support, each solve is computationally as expensive as solving the original problem on a
fine mesh that resolves all fine features. For problems without fractures and high contrast data, corresponding
to 𝐴Γ = 𝑓Γ = 0 in (2.6), it is proved in [15] that 𝜑𝑇 in (3.3) decays exponentially from its support. The fast
decay allows for a localized computation when constructing a basis for 𝑉ms, which is the key to the efficiency of
the LOD method. In the following, we investigate the decay property when 𝐴Γ > 0.

As an example, we consider the weak form (2.6) when the domain Ω is a unit square with an interface Γ at
𝑥 = 0.5, 0 ≤ 𝑦 ≤ 1. The permeability on the interface is 𝐴Γ = 5, and the permeability 𝐴 in the bulk domain
is piecewise constant with respect to a uniform Cartesian grid of width 2−7. The values are sampled from the
uniform distribution in [0.1, 0.9]. A triangulation 𝒯𝐻 of Ω is constructed such that the interface Γ is a union
of coarse element edges, but 𝐴 is not well-resolved by 𝒯𝐻 . The fine space 𝑉f is defined as the kernel of the
Scott–Zhang interpolation operator [20], whose nodal variables on each node of 𝒯𝐻 are computed by averaging
the function in neighboring elements or edges.

Let 𝜆𝑚 be the coarse basis function centered at (0.5, 0.5). First, we compute 𝑄𝜆𝑚 by using the standard
element-based Scott–Zhang interpolation operator. In this case, the integration domains are all elements con-
nected to the corresponding node. We observe in Figure 3a that 𝑄𝜆𝑚 decays slowly in the direction of the
interface Γ. If we instead use an edge-based Scott–Zhang interpolation operator, we see fast decay shown in
Figure 3b. Here, for the nodes on Γ, we only select neighboring edges that are also on Γ as the integration
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Figure 3. (A) Element-based Scott–Zhang. (B) Edge-based Scott–Zhang.

domains; for all the other nodes, we integration domains are all neighboring elements. In Section 4, we give a
proof for this case to justify that the decay is exponential. It turns out to be crucial to let nodal variables on
and close to the interface to integrate only on the interface. This is in agreement with the observations in [10].

The above observation motivates a localization of (3.3) by restricting 𝜑𝑇 to a patch. For this we need the
element neighbor operator 𝑈(𝜔) that maps the subdomain 𝜔 to a patch of elements that intersect with 𝜔 and
define

𝑈(𝜔) =
⋃︁
{𝑇 ∈ 𝒯𝐻 : 𝑇 ∩ 𝜔 ̸= ∅}. (3.9)

When applied recursively, we get a multi-layer element neighbor operator 𝑈𝑘(𝜔) = 𝑈(𝑈𝑘−1(𝜔)), where 𝑘 is the
patch size. We use the convention 𝑈1(𝜔) := 𝑈(𝜔) and 𝑈0(𝜔) := 𝜔,. We also define 𝑈Γ(𝑇 ) = 𝑈(𝑇 ) ∩ Γ.

The restricted fine space 𝑉f(𝑈𝑘(𝑇 )) ⊂ 𝑉f is defined as

𝑉f(𝑈𝑘(𝑇 )) = {𝑣 ∈ 𝑉 : ℐ𝐻𝑣 = 0, supp(𝑣) ⊂ 𝑈𝑘(𝑇 )}.

We localize 𝜑𝑇 by defining 𝜑𝑘
𝑇 ∈ 𝑉f(𝑈𝑘(𝑇 )) that satisfies

𝑎𝑘(𝜑𝑘
𝑇 , 𝑤) =

∫︁
𝑇

𝐴∇𝑣 · ∇𝑤 +
∫︁

Γ𝑇

𝐴Γ∇𝜏 𝑣 · ∇𝜏𝑤, (3.10)

for all 𝑤 ∈ 𝑉f(𝑈𝑘(𝑇 )). The bilinear form 𝑎𝑘(·, ·) is defined on a patch of size 𝑘 as

𝑎𝑘(𝜑𝑘
𝑇 , 𝑤) = (𝐴∇𝜑𝑘

𝑇 ,∇𝑤)𝑈𝑘(𝑇 ) + (𝐴Γ∇𝜏𝜑
𝑘
𝑇 ,∇𝜏𝑤)Γ∩𝑈𝑘(𝑇 ),

and the values of 𝜑𝑘
𝑇 outside the patch is zero. We have the best approximation property⃒⃒⃒⃒ ⃒⃒

𝜑𝑇 − 𝜑𝑘
𝑇

⃒⃒⃒⃒ ⃒⃒
≤ |||𝜑𝑇 − 𝑣|||, ∀𝑣 ∈ 𝑉f(𝑈𝑘(𝑇 )). (3.11)

We define the localized correction operator 𝑄𝑘 as

𝑄𝑘𝑣 =
∑︁

𝑇∈𝒯𝐻

𝜑𝑘
𝑇 , (3.12)

for all 𝑣 ∈ 𝑉𝐻 . By applying the localized correction operator 𝑄𝑘 to every basis function 𝜆𝑖 of 𝑉𝐻 , we obtain
{𝑄𝑘𝜆𝑖 − 𝜆𝑖} as a basis for the localized multiscale space 𝑉 𝑘

ms.
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3.3. The localized orthogonal decomposition method

Given the space 𝑉 𝑘
ms we are ready to present the localized version of the method. The LOD method then

reads: find 𝑢𝑘
ms ∈ 𝑉 𝑘

ms such that
𝑎(𝑢𝑘

ms, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑉 𝑘
ms. (3.13)

Since 𝑉 𝑘
ms ⊂ 𝑉 , we have the Galerkin orthogonality

𝑎(𝑢− 𝑢𝑘
ms, 𝑣) = 0, ∀𝑣 ∈ 𝑉 𝑘

ms,

and the best approximation property ⃒⃒⃒⃒ ⃒⃒
𝑢− 𝑢𝑘

ms

⃒⃒⃒⃒ ⃒⃒
≤ |||𝑢− 𝑣|||, ∀𝑣 ∈ 𝑉 𝑘

ms.

We have intentionally not discretized the restricted fine spaces 𝑉f(𝑈𝑘(𝑇 )), 𝑇 ∈ 𝒯𝐻 at this stage to allow for
different discretization methods to be used. In Section 6, we present the particular choice made in our numerical
experiments. We choose a simple finite element discretization resolving the interfaces and the rapidly varying
diffusion, see [4]. More sophisticated techniques as CutFEM [5] could be considered using a non-conforming
LOD formulation similar to [8].

4. Interpolation operator

Our proof for exponential decay of correctors requires the interpolation operator to satisfy a stability bound
and an error bound presented in Assumption 4.1. Throughout the paper, we use 𝐶 to denote a constant in the
error bound, and specify its dependence by subscript. Two constants 𝐶 with the same subscript need not to be
equal.

Assumption 4.1. For any 𝑣 ∈ 𝑉 , the interpolation operator ℐ𝐻 satisfies the error bound

‖𝑣 − ℐ𝐻𝑣‖𝑇 + ‖𝑣 − ℐ𝐻𝑣‖Γ𝑇
≤ 𝐶𝐻(‖∇𝑣‖𝑈(𝑇 ) + ‖∇𝜏 𝑣‖𝑈Γ(𝑇 )), (4.1)

and the 𝐻1 stability bound

‖∇ℐ𝐻𝑣‖𝑇 + ‖∇𝜏ℐ𝐻𝑣‖Γ𝑇
≤ 𝐶(‖∇𝑣‖𝑈(𝑇 ) + ‖∇𝜏 𝑣‖𝑈Γ(𝑇 )), (4.2)

where 𝐶 is independent of 𝐻.

We present a node averaging Scott–Zhang type interpolation operator that integrates specifically over the
fracture Γ in order to satisfy the assumption. In Lemma 4.2, we prove that the interpolation operator satisfies
the assumption when Γ is a union of the coarse element edges. The operator can, however, be used also when Γ
is arbitrarily shaped, but without guarantees on satisfying the assumption. Both cases are studied numerically
in Section 6.

Following [20], for any free node 𝑁 and any integration domain 𝜎 ⊂ 𝑇 with 𝑇 ∈ 𝒯𝐻 , we define the 𝐿2(𝜎)-dual
basis 𝜓𝑁,𝜎 ∈ 𝑉𝐻 |𝜎 such that, for all fixed and free nodes 𝑁 ′, it holds∫︁

𝜎

𝜓𝑁,𝜎𝜆𝑁 ′ = 𝛿𝑁𝑁 ′ , (4.3)

where 𝛿 is the Kronecker delta and 𝜆𝑁 ′ is the finite element basis function for node 𝑁 ′. The integration domain
𝜎 can be either 𝑑- or (𝑑− 1)-dimensional. In the following, it will be either a subset of Γ or a coarse triangle.

The interpolation operator is defined by the choice of the sets (one for each node) 𝒯 Γ(𝑁) ⊂ 𝒯 (𝑁) := {𝑇 ∈
𝒯𝐻 : 𝑁 ∈ 𝑇}. Examples of such sets will be specified below. Based on the definition of 𝒯 Γ(𝑁), we let

𝒩Γ = {𝑁 ∈ 𝒩 : 𝒯 Γ(𝑁) ̸= ∅},
𝒩Ω = {𝑁 ∈ 𝒩 : 𝒯 Γ(𝑁) = ∅},
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Figure 4. Integration domains 𝜎 for a node 𝑁 (center point) when Γ (dashed line) is a union
of coarse element edges. (A) The node 𝑁 is in 𝒩Ω since Γ is not along any edges connecting
with the node, which means that 𝒯 Γ(𝑁) is empty. All adjacent triangles are used as integration
domains 𝜎. (B) The node𝑁 is in𝒩Γ since Γ contains𝑁 and 𝑇1, 𝑇2, 𝑇3 ∈ 𝒯 Γ(𝑁). The integration
domains 𝜎 are marked in solid red.

be the sets of nodes 𝑁 that do have, and do not have, respectively, any triangles in their 𝒯 Γ(𝑁).
The interpolation operator is defined as

ℐ𝐻𝑣 =
∑︁

𝑁∈𝒩Γ

1
card(𝒯 Γ(𝑁))

∑︁
𝑇∈𝒯 Γ(𝑁)

(︂∫︁
Γ𝑇

𝜓𝑁,Γ𝑇
𝑣

)︂
𝜆𝑁

+
∑︁

𝑁∈𝒩Ω

1
card(𝒯 (𝑁))

∑︁
𝑇∈𝒯 (𝑁)

(︂∫︁
𝑇

𝜓𝑁,𝑇 𝑣

)︂
𝜆𝑁 .

(4.4)

Below, when the node 𝑁 and the integration domain 𝜎 are clear from the context, we discard those subscripts
and let 𝜓 = 𝜓𝑁,𝜎 and 𝜓𝑖 = 𝜓𝑁𝑖,𝜎.

4.1. The fracture is a union of edges

First, we consider the case when the fracture Γ is a union of edges. Let ℰΓ
𝐻 be the set of all closed element

edges comprising Γ, i.e. Γ =
⋃︀
ℰΓ

𝐻 . We let 𝒯 Γ(𝑁) = {𝑇 ∈ 𝒯 (𝑁) : 𝑁 ∈ 𝐸 and 𝐸 ⊂ 𝑇 for some 𝐸 ∈ ℰΓ
𝐻}, i.e. the

adjacent triangles with at least one edge connected to the node also intersecting the fracture. With this choice,
𝒩Γ contains the free nodes that intersect with Γ and 𝒩Ω contains the remaining free nodes. See Figure 4 for
illustrations of the resulting integration domains for a node in each set.

Before providing the proof that ℐ𝐻 satisfies Assumption 4.1 for this case, we make a few notes regarding the
solution of (4.3). If Γ is a union of coarse element edges, then 𝜎 is either a coarse triangle or a union of coarse
edges. If 𝜎 is a coarse triangle, then (4.3) is a (𝑑+ 1)× (𝑑+ 1) linear system with the coarse basis mass matrix
integrated over the coarse triangle. If 𝜎 is a union of 𝑛 edges then (4.3) is a (𝑛+ 1)× (𝑛+ 1) linear system with
the coarse basis mass matrix integrated over those edges.

Lemma 4.2. If Γ is a union of coarse edges of the elements in 𝒯𝐻 , then interpolation operator ℐ𝐻 in (4.4)
with 𝒯 Γ(𝑁) = {𝑇 ∈ 𝒯 (𝑁) : 𝑁 ∈ 𝐸 and 𝐸 ⊂ 𝑇 for some 𝐸 ∈ ℰΓ

𝐻} satisfies Assumption 4.1.
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Figure 5. Illustration of the geometry when 𝑎 = 3 in Example 4.3. (A) Shape 1. (B) Shape 2.

Proof. To establish

‖𝑣 − ℐ𝐻𝑣‖𝑇 ≤ 𝐶𝛾𝐻‖∇𝑣‖𝑈(𝑇 ),

‖∇ℐ𝐻𝑣‖𝑇 ≤ 𝐶𝛾‖∇𝑣‖𝑈(𝑇 ),

we apply the proof in [20].
Although the integration domains 𝜎 are only considered to be a single edge (or subsimplex) in that paper,

the proof still holds with 𝜎 being a union of edges: The argument with an affine transformation to a reference
element can again be applied when 𝜎 is a union of edges and thus the bound of the 𝐿∞-norm of 𝜓 that is
established in Lemma 3.1 of [20] holds also in our case.

In [20], they pick a single triangle or edge per node to be used in the nodal variable, while ℐ𝐻 averages over
multiple triangles. This does not affect the stability and approximability result, since if it holds for all triangles
and edges individually, it holds also for their average.

We further note that ℐ𝐻 is also a Scott–Zhang interpolation operator from ̃︀𝑉 to ̃︀𝑉𝐻 , where ̃︀𝑉 and ̃︀𝑉𝐻 are 𝑉
and 𝑉𝐻 restricted to interface Γ, respectively. Therefore, the stability and error bounds in [20] are valid on Γ
such that

‖𝑣 − ℐ𝐻𝑣‖Γ𝑇
≤ 𝐶𝛾𝐻‖∇𝜏 𝑣‖𝑈Γ(𝑇 ),

‖∇𝜏ℐ𝐻𝑣‖Γ𝑇
≤ 𝐶𝛾‖∇𝜏 𝑣‖𝑈Γ(𝑇 ).

As a consequence, Assumption 4.1 is satisfied with 𝐶 = 𝐶𝛾 . �

4.2. The fracture intersects with the interior of triangles

Next, we consider the case when the fracture Γ is not a union of edges in 𝒯𝐻 , but intersects with the interior
of triangles. We will then pick integration domains 𝜎 to be in the interior of the triangles as well. The shape
of the integration domain influences the dual basis norm ‖𝜓‖𝜎, which in turn influences the stability of the
interpolation operator as a whole. For instance, the linear system (4.3) that determines 𝜓 will be rank deficient
if 𝜎 is a straight line in the intersection with the interior of 𝑇 . For almost straight lines, the dual basis norm
can become very large. In case the system is rank deficient but has infinitely many solutions, it is easy to see
that any two solutions 𝜓 and 𝜓′ have the same 𝐿2(𝜎)-norm ‖𝜓‖𝜎 = ‖𝜓′‖𝜎. Infinite number of solutions arise,
for example, when 𝜎 intersects with the interior of 𝑇 , is a straight line and passes through the node 𝑁 . Next,
we study an example where this norm is computed for two parametrized shapes of 𝜎 that degenerate to straight
lines as the parameter increases.

Example 4.3 (Dual basis norm). Let a triangle 𝑇 have vertices 𝑁1 = (0, 0), 𝑁2 = (−1, 1), and 𝑁3 = (1, 1).
The fracture Γ is defined as a circle with midpoint (0, 𝑎) and radius 𝑟 such that the circle intersects with the
triangle. The intersection of 𝑇 and Γ is the arc 𝜎. For Shape 1, we let 𝑟 = 𝑟(𝑎) be determined by 𝑎 so that
the arc 𝜎 connects the two nodes (−1, 1) and (1, 1). For Shape 2, we let 𝑟 = 𝑟(𝑎) take the value that makes 𝜎
connect (−0.5, 0.5) and (0.5, 0.5). See Figure 5 for an illustration. Note that both Shape 1 and 2 degenerate to
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Table 1. Behaviour of dual basis norm when 𝜎 degenerates to a straight line in Example 4.3.

𝑎 Shape 1 Shape 2
‖𝜓1‖𝜎 ‖𝜓2‖𝜎 ‖𝜓1‖𝜎 ‖𝜓2‖𝜎

2 3.9 2.0 1.8× 101 2.3× 101

20 8.9× 101 2.1 2.6× 102 2.6× 102

200 9.4× 102 2.1 2.7× 103 2.7× 103

2000 9.5× 103 2.1 3.8× 104 3.8× 104

Figure 6. Integration domains 𝜎 for a node 𝑁 (center point) when Γ (dashed line) is not a
union of element edges. Γ is in the node patch but far from the node. (A) Σ is large so that
𝑇3 ∈ 𝒯 Γ(𝑁) and 𝑁 ∈ 𝒩Γ. The red solid line will be 𝜎. (B) Σ is small so that 𝒯 Γ(𝑁) is empty
and 𝑁 ∈ 𝒩Ω. All adjacent triangles are used as integration domains 𝜎.

straight lines as 𝑎→∞. Shape 1 degenerates to an element edge, while Shape 2 degenerates to a straight line
in the middle of the triangle. The values of ‖𝜓1‖𝜎 and ‖𝜓2‖𝜎 ( = ‖𝜓3‖𝜎 due to symmetry) for a few values of 𝑎
and the two shapes are presented in Table 1.

Because of this interplay between the mesh and the fracture geometry, we define 𝒯 Γ(𝑁) to adaptively discard
(by the means of an indicator) integration domains that give rise to large dual basis norms. We recall from [20]
or Lemma 3.4 of [10] how the dual basis for (𝑑 − 1)-dimensional 𝜎, the norm of 𝜓 scales with the triangle
diameter as follows

‖𝜓‖𝜎 ≤ 𝐶𝛾 diam(𝑇 )(1−𝑑)/2‖𝜓‖𝜎̂,

where 𝜓 is the solution to (4.3) in a transformed coordinate system such that 𝑇 is transformed to the simplex
reference element 𝑇 of diameter 1. When considering a node 𝑁 , we define an indicator for all 𝑇 ∈ 𝒯 (𝑁),

𝑠𝑁,𝑇 =

{︃
diam(𝑇 )(𝑑−1)/2‖𝜓𝑁,Γ𝑇

‖Γ𝑇
if there is a 𝜓𝑁,𝜎 solving (4.3) with 𝜎 = 𝑇 ∩ Γ,

+∞ otherwise.

Given a threshold value Σ, we let

𝒯 Γ(𝑁) = {𝑇 ∈ 𝒯 (𝑁) : 𝑠𝑁,𝑇 < Σ} (4.5)

and use this 𝒯 Γ(𝑁) to define ℐ𝐻 in (4.4). See Figure 6 for an illustration of how Σ affects the choice of integration
domain. For the previously discussed special case that the fracture is a union of edges, we obtain the same set
as in Lemma 4.2 by 𝒯 Γ(𝑁) = {𝑇 ∈ 𝒯 (𝑁) : 𝑠𝑁,𝑇 is finite}.

5. Error analysis

In this section, we derive error bounds for the proposed method. First, we prove that the correctors decay
exponentially fast from the support. Next, we analyze the local and global truncation error. Finally, we derive
an a priori error bound for the full LOD method.
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We state a stability bound for the correctors in Definition 3.1.

Lemma 5.1. The corrector 𝜑𝑇 defined in (3.3) satisfies the bound

‖∇𝜑𝑇 ‖2Ω + ‖∇𝜏𝜑𝑇 ‖2Γ ≤ 𝐶𝛼,𝛽(‖∇𝑣‖2𝑇 + ‖∇𝜏 𝑣‖2Γ𝑇
), (5.1)

with 𝛼 and 𝛽 from (2.5).

Proof. From (2.7), we obtain

𝑎(𝜑𝑇 , 𝜑𝑇 ) = (𝐴∇𝜑𝑇 ,∇𝜑𝑇 )Ω + (𝐴Γ∇𝜏𝜑𝑇 ,∇𝜏𝜑𝑇 )Γ
≥ 𝐶𝛼(‖∇𝜑𝑇 ‖2Ω + ‖∇𝜏𝜑𝑇 ‖2Γ).

Using (3.3) with 𝑤 = 𝜑𝑇 and the Cauchy–Schwarz inequality yields,

𝑎(𝜑𝑇 , 𝜑𝑇 ) =
∫︁

𝑇

𝐴∇𝑣 · ∇𝜑𝑇 +
∫︁

Γ𝑇

𝐴Γ∇𝜏 𝑣 · ∇𝜏𝜑𝑇

≤ ‖𝐴∇𝑣‖𝑇 ‖∇𝜑𝑇 ‖𝑇 + ‖𝐴Γ∇𝜏 𝑣‖Γ𝑇
‖∇𝜏𝜑𝑇 ‖Γ𝑇

≤ 𝐶𝛽(‖∇𝑣‖𝑇 ‖∇𝜑𝑇 ‖𝑇 + ‖∇𝜏 𝑣‖Γ𝑇
‖∇𝜏𝜑𝑇 ‖Γ𝑇

).

We combine the above two inequalities to obtain

‖∇𝜑𝑇 ‖2Ω + ‖∇𝜏𝜑𝑇 ‖2Γ ≤ 𝐶𝛼,𝛽(‖∇𝑣‖𝑇 ‖∇𝜑𝑇 ‖𝑇 + ‖∇𝜏 𝑣‖Γ𝑇
‖∇𝜏𝜑𝑇 ‖Γ𝑇

).

It then follows that,
‖∇𝜑𝑇 ‖2Ω + ‖∇𝜏𝜑𝑇 ‖2Γ ≤ 𝐶𝛼,𝛽(‖∇𝑣‖2𝑇 + ‖∇𝜏 𝑣‖2Γ𝑇

).

�

5.1. Exponential decay of the correctors

We define the closure of the complement of 𝑈𝑘(𝑇 ) as 𝑈𝑘
𝑐 (𝑇 ) := Ω∖𝑈𝑘(𝑇 ). In the error analysis, we will

frequently restrict functions to patches. It is helpful to consider a Lipschitz continuous cutoff function 𝜂𝑘
𝑇 : Ω →

[0, 1] such that

𝜂𝑘
𝑇 =

{︃
0 in 𝑈𝑘(𝑇 )
1 in 𝑈𝑘+1

𝑐 (𝑇 ),
(5.2)

and satisfies
‖∇𝜂𝑘

𝑇 ‖𝐿∞(Ω) ≤ 𝐶𝜂𝐻
−1. (5.3)

An example of such a cutoff function is 𝜂𝑘
𝑇 ∈ 𝑉𝐻 with nodal values 0 in 𝑈𝑘(𝑇 ) and 1 in 𝑈𝑘+1

𝑐 (𝑇 ).
The following theorem states that the correctors decay exponentially fast away from the corresponding

support.

Theorem 5.2. The corrector 𝜑𝑇 defined in (3.3) decays exponentially fast away from element 𝑇 in the sense
that the following bound holds for 𝑘 ≥ 5,

‖∇𝜑𝑇 ‖𝑈𝑘
𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖Γ∩𝑈𝑘

𝑐 (𝑇 ) ≤ 𝐶𝛼,𝛽,𝛾,𝜂 exp(−𝐶𝑘)(‖∇𝑣‖𝑇 + ‖∇𝜏 𝑣‖Γ𝑇
),

with 𝛼, 𝛽 from (2.5) and 𝛾 from (3.1). Here, 𝐶 is a constant independent of 𝑘.
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Proof. We define a related cutoff function 𝜃𝑇 = 𝜂𝑘−3
𝑇 , and note that 𝜃𝑇 and ∇𝜃𝑇 have support

supp(𝜃𝑇 ) = 𝑈𝑘−3
𝑐 (𝑇 ) and supp(∇𝜃𝑇 ) = 𝑈𝑘−2(𝑇 )∖𝑈𝑘−3(𝑇 ).

For convenience, we define ℛ𝑚
𝑙 (𝑇 ) := 𝑈𝑚(𝑇 )∖𝑈 𝑙(𝑇 ) for integers 𝑚 > 𝑙 > 0, and write supp(∇𝜃𝑇 ) = ℛ𝑘−2

𝑘−3(𝑇 ),
which is a ring-shaped domain. As will be seen later, the cutoff function 𝜃𝑇 has the desired support region to
derive the exponential decay of correctors. We have

‖∇𝜑𝑇 ‖2𝑈𝑘
𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘

𝑐 (𝑇 ) ≤ 𝐶𝛼(‖𝐴1/2∇𝜑𝑇 ‖2𝑈𝑘
𝑐 (𝑇 ) + ‖𝐴1/2

Γ ∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘
𝑐 (𝑇 ))

≤ 𝐶𝛼((𝐴∇𝜑𝑇 , 𝜃𝑇∇𝜑𝑇 )Ω + (𝐴Γ∇𝜏𝜑𝑇 , 𝜃𝑇∇𝜏𝜑𝑇 )Γ).

The last inequality can be justified by 𝜃𝑇 = 1 in 𝑈𝑘
𝑐 (𝑇 ), and 𝜃𝑇 ≥ 0 in 𝑈𝑘(𝑇 ). By using

𝜃𝑇∇𝜑𝑇 = ∇(𝜃𝑇𝜑𝑇 )− 𝜑𝑇∇𝜃𝑇

= ∇(1− ℐ𝐻)(𝜃𝑇𝜑𝑇 ) +∇ℐ𝐻(𝜃𝑇𝜑𝑇 )− 𝜑𝑇∇𝜃𝑇 ,

we obtain
‖∇𝜑𝑇 ‖2𝑈𝑘

𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘
𝑐 (𝑇 ) ≤ 𝐶𝛼(|𝑀1|+ |𝑀2|+ |𝑀3|),

where

𝑀1 = (𝐴∇𝜑𝑇 ,∇(1− ℐ𝐻)(𝜃𝑇𝜑𝑇 ))Ω + (𝐴Γ∇𝜏𝜑𝑇 ,∇𝜏 (1− ℐ𝐻)(𝜃𝑇𝜑𝑇 ))Γ,
𝑀2 = (𝐴∇𝜑𝑇 ,∇ℐ𝐻(𝜃𝑇𝜑𝑇 ))Ω + (𝐴Γ∇𝜏𝜑𝑇 ,∇𝜏ℐ𝐻(𝜃𝑇𝜑𝑇 ))Γ,
𝑀3 = (𝐴∇𝜑𝑇 , 𝜑𝑇∇𝜃𝑇 )Ω + (𝐴Γ∇𝜏𝜑𝑇 , 𝜑𝑇∇𝜏 𝜃𝑇 )Γ.

In what follows, we derive bounds for 𝑀1, 𝑀2 and 𝑀3 separately.

𝑀1 : We note that (1 − ℐ𝐻)(𝜃𝑇𝜑𝑇 ) ∈ 𝑉f because ℐ𝐻(1 − ℐ𝐻)(𝜃𝑇𝜑𝑇 ) = ℐ𝐻(𝜃𝑇𝜑𝑇 ) − ℐ𝐻ℐ𝐻(𝜃𝑇𝜑𝑇 ) = 0. As a
consequence, we obtain

𝑀1 = 𝑎(𝜑𝑇 , 𝑤) =
∫︁

𝑇

𝐴∇𝑣 · ∇𝑤 +
∫︁

Γ𝑇

𝐴Γ∇𝜏 𝑣∇𝜏𝑤,

where 𝑤 = (1−ℐ𝐻)(𝜃𝑇𝜑𝑇 ). Since supp(𝜃𝑇𝜑𝑇 ) = 𝑈𝑘−3
𝑐 (𝑇 ), we have supp(ℐ𝐻𝜃𝑇𝜑𝑇 ) = 𝑈𝑘−4

𝑐 (𝑇 ) because the
interpolation operator uses neighboring elements. Consequently, supp(𝑤) = 𝑈𝑘−4

𝑐 (𝑇 ) and supp(𝑤)∩𝑇 = ∅.
Hence, we have 𝑀1 = 0.

𝑀2 : In the region, where the cutoff function 𝜃𝑇 is constant, we have ℐ𝐻(𝜃𝑇𝜑𝑇 ) = 0 for 𝜑𝑇 ∈ 𝑉f . From
supp(∇𝜃𝑇 ) = ℛ𝑘−2

𝑘−3(𝑇 ), we have supp(∇ℐ𝐻(𝜃𝑇𝜑𝑇 )) = ℛ𝑘−1
𝑘−4(𝑇 ), because the interpolation operator uses

neighboring elements. With the notation Γ𝑚
𝑙 (𝑇 ) = Γ ∩ ℛ𝑚

𝑙 (𝑇 ), and by Cauchy–Schwarz inequality, we
have

𝑀2 = (𝐴∇𝜑𝑇 ,∇ℐ𝐻(𝜃𝑇𝜑𝑇 ))ℛ𝑘−1
𝑘−4(𝑇 ) + (𝐴Γ∇𝜏𝜑𝑇 ,∇𝜏ℐ𝐻(𝜃𝑇𝜑𝑇 ))Γ𝑘−1

𝑘−4(𝑇 )

≤ ‖𝐴∇𝜑𝑇 ‖ℛ𝑘−1
𝑘−4(𝑇 )‖∇ℐ𝐻(𝜃𝑇𝜑𝑇 )‖ℛ𝑘−1

𝑘−4(𝑇 )

+ ‖𝐴Γ∇𝜏𝜑𝑇 ‖Γ𝑘−1
𝑘−4(𝑇 )‖∇𝜏ℐ𝐻(𝜃𝑇𝜑𝑇 )‖Γ𝑘−1

𝑘−4(𝑇 )

≤ 1
2

(︁
‖𝐴∇𝜑𝑇 ‖2ℛ𝑘−1

𝑘−4(𝑇 )
+ ‖𝐴Γ∇𝜏𝜑𝑇 ‖2Γ𝑘−1

𝑘−4(𝑇 )

+ ‖∇ℐ𝐻(𝜃𝑇𝜑𝑇 )‖2ℛ𝑘−1
𝑘−4(𝑇 )

+ ‖∇𝜏ℐ𝐻(𝜃𝑇𝜑𝑇 )‖2
Γ𝑘−1

𝑘−4(𝑇 )

)︁
.
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Next, we use the 𝐻1 stability property (4.2) to obtain

‖∇ℐ𝐻(𝜃𝑇𝜑𝑇 )‖2ℛ𝑘−1
𝑘−4(𝑇 )

+ ‖∇𝜏ℐ𝐻(𝜃𝑇𝜑𝑇 )‖2
Γ𝑘−1

𝑘−4(𝑇 )

≤ 𝐶𝛾

(︁
‖∇(𝜃𝑇𝜑𝑇 )‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖∇𝜏 (𝜃𝑇𝜑𝑇 )‖2Γ𝑘
𝑘−5(𝑇 )

)︁
≤ 𝐶𝛾

(︁
‖𝜃𝑇∇𝜑𝑇 ‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖𝜑𝑇∇𝜃𝑇 ‖2ℛ𝑘−2
𝑘−3(𝑇 )

+ ‖𝜃𝑇∇𝜏𝜑𝑇 ‖2Γ𝑘
𝑘−5(𝑇 ) + ‖𝜑𝑇∇𝜏 𝜃𝑇 ‖2Γ𝑘−2

𝑘−3(𝑇 )

)︁
≤ 𝐶𝛾,𝜂

(︁
‖∇𝜑𝑇 ‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ𝑘
𝑘−5(𝑇 )

+ 𝐻−2
(︁
‖𝜑𝑇 ‖2ℛ𝑘−2

𝑘−3(𝑇 )
+ ‖𝜑𝑇 ‖2Γ𝑘−2

𝑘−3(𝑇 )

)︁)︁
.

In the last step, we have used ‖𝜃𝑇 ‖𝐿∞(Ω) ≤ 1, ‖∇𝜃𝑇 ‖𝐿∞(Ω) ≤ 𝐶𝜂𝐻
−1 and ‖∇𝜏 𝜃𝑇 ‖𝐿∞(Ω) ≤ 𝐶𝜂𝐻

−1. Then,
using that ℐ𝐻𝜑𝑇 = 0, the error bound (4.1) gives

𝐻−2 ( ‖𝜑𝑇 ‖2ℛ𝑘−2
𝑘−3(𝑇 )

+ ‖𝜑𝑇 ‖2Γ𝑘−2
𝑘−3(𝑇 )

)︁
= 𝐻−2

(︁
‖𝜑𝑇 − ℐ𝐻𝜑𝑇 ‖2ℛ𝑘−2

𝑘−3(𝑇 )
+ ‖𝜑𝑇 − ℐ𝐻𝜑𝑇 ‖2Γ𝑘−2

𝑘−3(𝑇 )

)︁
≤ 𝐶𝛾

(︁
‖∇𝜑𝑇 ‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ𝑘
𝑘−5(𝑇 )

)︁
.

By combining the bounds above, we get

𝑀2 ≤ 𝐶𝛼,𝛾,𝜂

(︁
‖∇𝜑𝑇 ‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ𝑘
𝑘−5(𝑇 )

)︁
.

𝑀3 : In the derivation of the bound for 𝑀2, we have already derived a bound for 𝑀3 such that

𝑀3 ≤ 𝐶𝛼,𝛾,𝜂

(︁
‖∇𝜑𝑇 ‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ𝑘
𝑘−5(𝑇 )

)︁
.

With the bounds of 𝑀1, 𝑀2 and 𝑀3, we have

‖∇𝜑𝑇 ‖2𝑈𝑘
𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘

𝑐 (𝑇 ) ≤ 𝐶𝛼,𝛾,𝜂

(︁
‖∇𝜑𝑇 ‖2ℛ𝑘

𝑘−5(𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ𝑘
𝑘−5(𝑇 )

)︁
. (5.4)

To see that the left-hand side of (5.4) decays exponentially fast, we use the relation between patches,

𝑈𝑘
𝑐 (𝑇 ) ∪ℛ𝑘

𝑘−5(𝑇 ) = 𝑈𝑘−5
𝑐 (𝑇 ),

and rewrite (5.4) to

‖∇𝜑𝑇 ‖2𝑈𝑘
𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘

𝑐 (𝑇 )

≤
(︀
1 + 𝐶−1

𝛼,𝛾,𝜂

)︀−1
(︁
‖∇𝜑𝑇 ‖2𝑈𝑘−5

𝑐 (𝑇 )
+ ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘−5

𝑐 (𝑇 )

)︁
.

(5.5)

The inequality (5.5) can be repeated so that

‖∇𝜑𝑇 ‖2𝑈𝑘
𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘

𝑐 (𝑇 )

≤
(︀
1 + 𝐶−1

𝛼,𝛾,𝜂

)︀−𝑘5 (︀
‖∇𝜑𝑇 ‖2Ω + ‖∇𝜏𝜑𝑇 ‖2Γ

)︀
,

(5.6)

where 𝑘5 is the largest integer smaller or equal to 𝑘/5. We apply Lemma 5.1 to the right-hand side of (5.6), and
obtain

‖∇𝜑𝑇 ‖2𝑈𝑘
𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖2Γ∩𝑈𝑘

𝑐 (𝑇 ) ≤
(︁

1 + 𝐶−1
𝛼,𝛽,𝛾,𝜂

)︁−𝑘5 (︀
‖∇𝑣‖2𝑇 + ‖∇𝜏 𝑣‖2Γ𝑇

)︀
.
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Setting
(︁

1 + 𝐶−1
𝛼,𝛽,𝛾,𝜂

)︁−𝑘5

= exp(−2𝐶𝑘) for some constant 𝐶, we see the exponential decay property with

𝐶𝑘 = 𝑘5/2 log
(︁

1 + 𝐶−1
𝛼,𝛽,𝛾,𝜂

)︁
. �

5.2. Local and global truncation error analysis

The exponential decay of 𝜑𝑇 motivates using a localized version 𝜑𝑘
𝑇 to reduce the computational cost. We

now analyze the error 𝜑𝑇 − 𝜑𝑘
𝑇 due to localization.

Theorem 5.3. The local truncation error 𝜑𝑇 − 𝜑𝑘
𝑇 can be bounded as

‖∇(𝜑𝑇 − 𝜑𝑘
𝑇 )‖Ω + ‖∇𝜏 (𝜑𝑇 − 𝜑𝑘

𝑇 )‖Γ ≤ 𝐶𝛼,𝛽,𝛾,𝜂 exp(−𝐶𝑘)(‖∇𝑣‖𝑇 + ‖∇𝜏 𝑣‖Γ𝑇
),

for any 𝑇 ∈ 𝒯𝐻 and 𝑘 ≥ 7.

Proof. We introduce a new cutoff function

𝜒 = 1− 𝜂𝑘−1
𝑇 =

{︃
0 in 𝑈𝑘

𝑐 (𝑇 )
1 in 𝑈𝑘−1(𝑇 ),

where 𝜂𝑘
𝑇 is defined in (5.2). We use the best approximation estimate (3.11) with 𝑣 = (1−ℐ𝐻)(𝜒𝜑𝑇 ) ∈ 𝑉f(𝑈𝑘(𝑇 )),

and obtain ⃒⃒⃒⃒ ⃒⃒
𝜑𝑇 − 𝜑𝑘

𝑇

⃒⃒⃒⃒ ⃒⃒
≤ |||𝜑𝑇 − (1− ℐ𝐻)(𝜒𝜑𝑇 )|||
= |||(1− ℐ𝐻)𝜑𝑇 − (1− ℐ𝐻)(𝜒𝜑𝑇 )|||
= |||(1− ℐ𝐻)(1− 𝜒)𝜑𝑇 |||
=

⃒⃒⃒⃒ ⃒⃒
(1− ℐ𝐻)(𝜂𝑘−1

𝑇 𝜑𝑇 )
⃒⃒⃒⃒ ⃒⃒
.

The 𝐻1 stability of the interpolation operator ℐ𝐻 leads to⃒⃒⃒⃒ ⃒⃒
𝜑𝑇 − 𝜑𝑘

𝑇

⃒⃒⃒⃒ ⃒⃒
≤ 𝐶𝛼,𝛽,𝛾

⃒⃒⃒⃒ ⃒⃒
𝜂𝑘−1

𝑇 𝜑𝑇

⃒⃒⃒⃒ ⃒⃒
≤ 𝐶𝛼,𝛽,𝛾

(︁
‖𝐴1/2∇(𝜂𝑘−1

𝑇 𝜑𝑇 )‖Ω + ‖𝐴1/2
Γ ∇𝜏 (𝜂𝑘−1

𝑇 𝜑𝑇 )‖Γ
)︁

≤ 𝐶𝛼,𝛽,𝛾

(︁
‖𝐴1/2𝜂𝑘−1

𝑇 ∇𝜑𝑇 ‖Ω + ‖𝐴1/2
Γ 𝜂𝑘−1

𝑇 ∇𝜏𝜑𝑇 ‖Γ
)︁

+ 𝐶𝛼,𝛽,𝛾

(︁
‖𝐴1/2𝜑𝑇∇𝜂𝑘−1

𝑇 ‖Ω + ‖𝐴1/2
Γ 𝜑𝑇∇𝜏𝜂

𝑘−1
𝑇 ‖Γ

)︁
.

By using the chain rule, the properties of the cutoff function supp(𝜂𝑘−1
𝑇 ) = 𝑈𝑘−1

𝑐 (𝑇 ), and supp(∇𝜂𝑘−1
𝑇 ) =

ℛ𝑘
𝑘−1(𝑇 ), we have

‖𝐴1/2𝜂𝑘−1
𝑇 ∇𝜑𝑇 ‖Ω + ‖𝐴1/2

Γ 𝜂𝑘−1
𝑇 ∇𝜏𝜑𝑇 ‖Γ

≤ 𝐶𝛽,𝛾

(︁
‖∇𝜑𝑇 ‖𝑈𝑘−1

𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖Γ∩𝑈𝑘−1
𝑐 (𝑇 )

)︁
.

In addition, by the error bound (4.1), we have

‖𝐴1/2𝜑𝑇∇𝜂𝑘−1
𝑇 ‖Ω + ‖𝐴1/2

Γ 𝜑𝑇∇𝜏𝜂
𝑘−1
𝑇 ‖Γ

≤ 𝐶𝛽,𝛾,𝜂𝐻
−1

(︁
‖𝜑𝑇 ‖ℛ𝑘

𝑘−1(𝑇 ) + ‖𝜑𝑇 ‖Γ𝑘
𝑘−1(𝑇 )

)︁
≤ 𝐶𝛽,𝛾,𝜂𝐻

−1
(︁
‖𝜑𝑇 − ℐ𝐻(𝜑𝑇 )‖ℛ𝑘

𝑘−1(𝑇 ) + ‖𝜑𝑇 − ℐ𝐻(𝜑𝑇 )‖Γ𝑘
𝑘−1(𝑇 )

)︁
≤ 𝐶𝛽,𝛾,𝜂

(︁
‖∇𝜑𝑇 ‖ℛ𝑘+1

𝑘−2(𝑇 ) + ‖∇𝜏𝜑𝑇 ‖Γ𝑘+1
𝑘−2(𝑇 )

)︁
.
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Combining the two bounds above, we obtain⃒⃒⃒⃒ ⃒⃒
𝜑𝑇 − 𝜑𝑘

𝑇

⃒⃒⃒⃒ ⃒⃒
≤ 𝐶𝛼,𝛽,𝛾,𝜂

(︁
‖∇𝜑𝑇 ‖𝑈𝑘−2

𝑐 (𝑇 ) + ‖∇𝜏𝜑𝑇 ‖Γ∩𝑈𝑘−2
𝑐 (𝑇 )

)︁
.

Together with the exponential decay property of 𝜑𝑇 in Theorem 5.2 with 𝑘−2 ≥ 5, we obtain the desired bound
for the local truncation error. �

With the bound for the local truncation error, we proceed to derive an error bound for the correction operator
applied to any function in 𝑉𝐻 , which is referred to as the global truncation error.

Theorem 5.4. For any 𝑣 ∈ 𝑉𝐻 , the global truncation error 𝑄𝑣−𝑄𝑘𝑣, with 𝑄𝑣 from (3.4) and 𝑄𝑘𝑣 from (3.12),
can be bounded as

‖∇(𝑄𝑣 −𝑄𝑘𝑣)‖Ω + ‖∇𝜏 (𝑄𝑣 −𝑄𝑘𝑣)‖Γ ≤ 𝐶𝛼,𝛽,𝛾,𝜂𝑘
1/2 exp(−𝐶𝑘)(‖∇𝑣‖Ω + ‖∇𝜏 𝑣‖Γ)

for 𝑘 ≥ 7.

Proof. We define the global truncation error to be

𝑔 = 𝑄𝑣 −𝑄𝑘𝑣 =
∑︁

𝑇∈𝒯𝐻

(︀
𝜑𝑇 − 𝜑𝑘

𝑇

)︀
.

We also define a cutoff function 𝜅 = 1 + 𝜂𝑘+1
𝑇 − 𝜂𝑘−2

𝑇 . Since (1− ℐ𝐻)(𝜅𝑔) ∈ 𝑉f , by (3.3) we have

𝑎(𝜑𝑇 (1− ℐ𝐻)(𝜅𝑔)) =
∫︁

𝑇

𝐴∇𝑣 · ∇(1− ℐ𝐻)(𝜅𝑔) +
∫︁

Γ𝑇

𝐴Γ(∇𝜏 𝑣)(∇𝜏 (1− ℐ𝐻)(𝜅𝑔)). (5.7)

Next, the definition of the cutoff function 𝜂𝑘
𝑇 in (5.2) gives

1− 𝜂𝑘−2
𝑇 =

{︃
1 in 𝑈𝑘−2(𝑇 )
0 in 𝑈𝑘−1

𝑐 (𝑇 ).

We note that supp(1 − 𝜂𝑘−2
𝑇 ) = 𝑈𝑘−1(𝑇 ), and supp(𝜂𝑘+1

𝑇 ) = 𝑈𝑘+1
𝑐 (𝑇 ). Therefore, (1 − ℐ𝐻)((1 − 𝜂𝑘−2

𝑇 )𝑔) ∈
𝑉f(𝑈𝑘(𝑇 )). Hence,

𝑎(𝜑𝑘
𝑇 , (1− ℐ𝐻)((1− 𝜂𝑘−2

𝑇 )𝑔)) =
∫︁

𝑇

𝐴∇𝑣 · ∇(1− ℐ𝐻)((1− 𝜂𝑘−2
𝑇 )𝑔)

+
∫︁

Γ𝑇

𝐴Γ(∇𝜏 𝑣)(∇𝜏 (1− ℐ𝐻)((1− 𝜂𝑘−2
𝑇 )𝑔)).

We also note that (1− ℐ𝐻)(𝜂𝑘+1
𝑇 𝑔) = 0 in 𝑈𝑘(𝑇 ), i.e. it has no common support with 𝜑𝑘

𝑇 . This leads to

𝑎(𝜑𝑘
𝑇 , (1− ℐ𝐻)(𝜂𝑘+1

𝑇 𝑔)) = 0,

and ∫︁
𝑇

𝐴∇𝑣 · ∇(1− ℐ𝐻)(𝜂𝑘+1
𝑇 𝑔) +

∫︁
Γ𝑇

𝐴Γ(∇𝜏 𝑣)(∇𝜏 (1− ℐ𝐻)(𝜂𝑘+1
𝑇 𝑔)) = 0.

Consequently, we have

𝑎(𝜑𝑘
𝑇 , (1− ℐ𝐻)(𝜅𝑔)) =

∫︁
𝑇

𝐴∇𝑣 · ∇(1− ℐ𝐻)(𝜅𝑔) +
∫︁

Γ𝑇

𝐴Γ(∇𝜏 𝑣)(∇𝜏 (1− ℐ𝐻)(𝜅𝑔)). (5.8)
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Since the right-hand side of (5.7) and (5.8) are the same, we obtain

𝑎(𝜑𝑇 − 𝜑𝑘
𝑇 , (1− ℐ𝐻)(𝜅𝑔)) = 0.

The global truncation error in the energy norm can be bounded as

|||𝑔|||2 = 𝑎(𝑔, 𝑔)

=
∑︁

𝑇∈𝒯𝐻

𝑎(𝑔, 𝜑𝑇 − 𝜑𝑘
𝑇 )

=
∑︁

𝑇∈𝒯𝐻

𝑎(𝑔 − ℐ𝐻𝑔 + (1− ℐ𝐻)(𝜅𝑔), 𝜑𝑇 − 𝜑𝑘
𝑇 )

=
∑︁

𝑇∈𝒯𝐻

𝑎((1− ℐ𝐻)(𝑔 − 𝜅𝑔), 𝜑𝑇 − 𝜑𝑘
𝑇 )

≤ 𝐶𝛽

∑︁
𝑇∈𝒯𝐻

‖∇(1− ℐ𝐻)(𝑔 − 𝜅𝑔)‖Ω‖∇
(︀
𝜑𝑇 − 𝜑𝑘

𝑇

)︀
‖Ω

+ 𝐶𝛽

∑︁
𝑇∈𝒯𝐻

‖∇𝜏 (1− ℐ𝐻)(𝑔 − 𝜅𝑔)‖Γ‖∇𝜏

(︀
𝜑𝑇 − 𝜑𝑘

𝑇

)︀
‖Γ.

We note that
supp(1− 𝜅) = supp(𝜂𝑘−2

𝑇 − 𝜂𝑘+1
𝑇 ) = ℛ𝑘+2

𝑘−2(𝑇 ).

Together with the 𝐻1 stability of ℐ𝐻 (4.2) and using that ℐ𝐻𝑔 = 0, we have

‖∇(1−ℐ𝐻)(𝑔 − 𝜅𝑔)‖Ω + ‖∇𝜏 (1− ℐ𝐻)(𝑔 − 𝜅𝑔)‖Γ
≤ 𝐶𝛾 (‖∇(𝑔 − 𝜅𝑔)‖Ω + ‖∇𝜏 (𝑔 − 𝜅𝑔)‖Γ)

= 𝐶𝛾

(︁
‖∇(𝑔 − 𝜅𝑔)‖ℛ𝑘+2

𝑘−2(𝑇 ) + ‖∇𝜏 (𝑔 − 𝜅𝑔)‖Γ𝑘+2
𝑘−2(𝑇 )

)︁
≤ 𝐶𝛾

(︁
‖𝑔∇𝜅‖ℛ𝑘+2

𝑘−2(𝑇 ) + ‖(1− 𝜅)∇𝑔‖ℛ𝑘+2
𝑘−2(𝑇 )

)︁
+ 𝐶𝛾

(︁
‖𝑔∇𝜏𝜅‖Γ𝑘+2

𝑘−2(𝑇 ) + ‖(1− 𝜅)∇𝜏 𝑔‖Γ𝑘+2
𝑘−2(𝑇 )

)︁
≤ 𝐶𝛾

(︁
‖∇𝑔‖ℛ𝑘+2

𝑘−2(𝑇 ) + ‖∇𝜏 𝑔‖Γ𝑘+2
𝑘−2(𝑇 )

)︁
+ 𝐶𝛾,𝜂𝐻

−1
(︁
‖𝑔 − ℐ𝐻𝑔‖ℛ𝑘+2

𝑘−2(𝑇 ) + ‖𝑔 − ℐ𝐻𝑔‖Γ𝑘+2
𝑘−2(𝑇 )

)︁
≤ 𝐶𝛾,𝜂

(︁
‖∇𝑔‖ℛ𝑘+3

𝑘−3(𝑇 ) + ‖∇𝜏 𝑔‖Γ𝑘+3
𝑘−3(𝑇 )

)︁
.

In the last inequality, we have used the interpolation error estimate (4.1).
Combining the above bound with the local truncation error bound in Theorem 5.3, we have

|||𝑔|||2 ≤ 𝐶𝛼,𝛽,𝛾,𝜂 exp(−𝐶𝑘)∑︁
𝑇∈𝒯𝐻

(︁
‖∇𝑔‖ℛ𝑘+3

𝑘−3(𝑇 ) + ‖∇𝜏 𝑔‖Γ𝑘+3
𝑘−3(𝑇 )

)︁
(‖∇𝑣‖𝑇 + ‖∇𝜏 𝑣‖Γ𝑇

)

≤ 𝐶𝛼,𝛽,𝛾,𝜂𝑘
1/2 exp(−𝐶𝑘)(‖∇𝑣‖Ω + ‖∇𝜏 𝑣‖Γ)|||𝑔|||.

In the last step, we have used that the number of elements in ℛ𝑘+3
𝑘−3 is proportional to 𝑘. Too see this, we note

that ℛ𝑘+3
𝑘−3 is a ring-shaped domain with an area ∼ 𝜋((𝑘+ 3)𝐻)2− 𝜋((𝑘− 3)𝐻)2 = 12𝑘𝜋𝐻2. Since the area of a

single element is proportional to 𝐻2, we have the number of elements proportional to 𝑘. In conclusion, we have

‖∇𝑔‖Ω + ‖∇𝜏 𝑔‖Γ ≤ 𝐶𝛼,𝛽,𝛾,𝜂𝑘
1/2 exp(−𝐶𝑘)(‖∇𝑣‖Ω + ‖∇𝜏 𝑣‖Γ),

which completes the proof. �
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5.3. A priori error bound

An error bound for the localized multiscale solution can be established using the global truncation error
analysis. We summarize the result in the following theorem.

Theorem 5.5. The error between the weak solution of equation (2.6) and its LOD approximation satisfies⃒⃒⃒⃒ ⃒⃒
𝑢− 𝑢𝑘

ms

⃒⃒⃒⃒ ⃒⃒
≤ 𝐶𝛼,𝛽,𝛾,𝜂(𝐻 + 𝑘1/2 exp(−𝐶𝑘))(‖𝑓‖Ω + ‖𝑓Γ‖Γ). (5.9)

for 𝑘 ≥ 7.

Proof. The best approximation property (3.11) gives⃒⃒⃒⃒ ⃒⃒
𝑢− 𝑢𝑘

ms

⃒⃒⃒⃒ ⃒⃒
≤ |||𝑢− 𝑣|||
≤ |||𝑢− 𝑢ms + 𝑢ms − 𝑣|||
≤ |||𝑢− 𝑢ms|||+ |||𝑢ms − 𝑣|||

for all 𝑣 ∈ 𝑉 𝑘
ms. The first term on the right-hand side, 𝑒ms = 𝑢−𝑢ms, is the error in the non-localized multiscale

solution. By using the Galerkin orthogonality (3.7), we obtain

𝑎(𝑒ms, 𝑒ms) = 𝑎(𝑒ms, 𝑢) = 𝐹 (𝑒ms) = (𝑒ms, 𝑓)Ω + (𝑒ms, 𝑓Γ)Γ
= (𝑒ms − ℐ𝐻𝑒ms, 𝑓)Ω + (𝑒ms − ℐ𝐻𝑒ms, 𝑓Γ)Γ.

We use the Cauchy–Schwarz inequality, and then the interpolation error bound (4.1), to obtain

|||𝑒ms|||2 ≤ ‖𝑒ms − ℐ𝐻𝑒ms‖Ω‖𝑓‖Ω + ‖𝑒ms − ℐ𝐻𝑒ms‖Γ‖𝑓‖Γ
≤ 𝐶𝛾𝐻‖∇𝑒ms‖Ω‖𝑓‖Ω + 𝐶𝛾𝐻‖∇𝜏 𝑒ms‖Γ‖𝑓‖Γ.

Therefore, we have
|||𝑢− 𝑢ms||| ≤ 𝐶𝛽,𝛾𝐻(‖𝑓‖Ω + ‖𝑓Γ‖Γ).

To bound the second term, we pick a particular 𝑣 = (1−𝑄𝑘)ℐ𝐻𝑢 ∈ 𝑉 𝑘
ms, and use the relation 𝑢ms = (1−𝑄)ℐ𝐻𝑢

to obtain

|||𝑢ms − 𝑣|||2 = |||(1−𝑄)ℐ𝐻𝑢− (1−𝑄𝑘)ℐ𝐻𝑢|||2

= |||𝑄ℐ𝐻𝑢−𝑄𝑘ℐ𝐻𝑢|||2

= ‖𝐴1/2∇(𝑄ℐ𝐻𝑢−𝑄𝑘ℐ𝐻𝑢)‖2Ω + ‖𝐴1/2
Γ ∇𝜏 (𝑄ℐ𝐻𝑢−𝑄𝑘ℐ𝐻𝑢)‖2Γ.

By using the global truncation error in Theorem 5.4, we have

|||𝑢ms − 𝑣||| ≤ 𝐶𝛼,𝛽,𝛾,𝜂𝑘
1/2 exp(−𝑐𝑘)(‖∇(ℐ𝐻𝑢)‖Ω + ‖∇𝜏 (ℐ𝐻𝑢)‖Γ).

The 𝐻1 stability of the interpolation operator ℐ𝐻 in (4.2) gives

|||𝑢ms − 𝑣||| ≤ 𝐶𝛼,𝛽,𝛾,𝜂𝑘
1/2 exp(−𝐶𝑘)(‖∇𝑢‖Ω + ‖∇𝜏𝑢‖Γ)

≤ 𝐶𝛼,𝛽,𝛾,𝜂𝑘
1/2 exp(−𝐶𝑘)(‖𝑓‖Ω + ‖𝑓Γ‖Γ).

This completes the proof. �

We recall from Theorem 5.2 that 𝐶𝑘 = 𝑘5/2 log(1+𝐶−1
𝛼,𝛽,𝛾,𝜂). For optimal convergence and efficient computation,

the patch size 𝑘 shall be chosen proportional to log(𝐻−1). The theorem holds only for 𝑘 ≥ 7, suggesting that
there is a minimum required size of the patches for the method to be accurate. However, for the problems
studied in the numerical experiments section below it was sufficient to use patch sizes in the range 1–4 to obtain
accurate solutions. It is not clear if the theorem is sharp with respect to the bound on 𝑘 for the class of problems
studied or if it can be improved.
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6. Numerical experiments

We present three numerical experiments. In the first experiment, we verify the a priori error bound derived in
Theorem 5.5 by considering two interfaces composed of piecewise line segments. An unstructured mesh is used
to align the interfaces with the element edges. In this case, the assumptions on the Scott–Zhang interpolation
operators are satisfied, and Theorem 5.5 is valid. We then proceed with the second experiment where both
intersected interfaces and immersed interfaces are present in the domain. We investigate how the accuracy of
the LOD method depends on the number of layers in the patches. In the third experiment, we apply the proposed
LOD method to the upscaling of the spatial discretization of the wave equation.

In Section 3, the LOD method is described using the full space 𝑉 . In computer implementation, we discretize
𝑉 to a fine scale finite element space, with a mesh size small enough so that rapid oscillation in the permeability
is well-resolved. The computed solution 𝑢ℎ in the fine scale finite element space is considered to be the reference
solution. To measure the relative error in the LOD solution 𝑢LOD, we use the formula

|||𝑢ℎ − 𝑢LOD|||rel =
|||𝑢ℎ − 𝑢LOD|||

|||𝑢ℎ|||
, (6.1)

where the energy norm is induced from the scalar product in (2.7).
In [4], a simple finite element method (SFEM) is developed for simulation of Darcy flows in fractured media,

which is also applied to a coupled flow and transport problem [17]. With the bilinear form (2.6), the SFEM can
be written as: find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎(𝑢ℎ, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑉ℎ,

where the fine scale finite element space 𝑉ℎ consists of piecewise linear functions that vanish on 𝜕Ω. In the
SFEM, interfaces do not need to be aligned with the fine mesh and may cut through the fine scale elements
in an arbitrary fashion. When the variation of permeability in the bulk domain and geometry of the fracture
are resolved, optimal first order convergence in the energy norm is obtained with a locally refined mesh near
interfaces; otherwise the convergence rate is 0.5 with immersed interfaces. This is because continuous elements
are used in the entire triangulation. However, SFEM is very easy to implement, and is well-suited to test the
proposed LOD method in this paper. Since 𝑉ℎ ⊂ 𝑉 it is straightforward to replace 𝑉 by 𝑉ℎ in the analysis
resulting in an error bound for 𝑢ℎ − 𝑢LOD. For these reasons we use SFEM for the fine scale discretization in
the following experiments. We note that the proposed LOD method is not restricted to this particular type of
discretization.

6.1. Verification of convergence rate

We consider two interface as shown in Figure 7a, that are union of coarse element edges. We pick this mesh
as the coarsest, and refine it five times to obtain the reference mesh associated with 𝑉ℎ. The number of nodes
in the coarsest and the finest meshes are 237 and 219 345, respectively. In a mesh refinement, each triangle is
divided into four triangles by using the midpoints of the three edges.

The permeability 𝐴, plotted in Figure 7b, is a sample of a random field in [0.1, 0.9] with a variation on the
scale of the second finest mesh. We use different random fields for the subdomains divided by the two interfaces,
modeling a layered structure of the porous media. On the interface, the permeability 𝐴Γ = 2. The forcing
functions are 9 + sin(𝑥+ 𝑦) on the left interface, and 9 + cos(𝑥+ 𝑦) on the right interface. In the bulk domain,
the forcing function is 1 in [0.4, 0.6]2, and 0 elsewhere. The reference solution, computed on the finest mesh, is
shown in Figure 8a. The effect of the two interfaces is clearly visible.

In Figure 8b, we plot the relative error for several mesh resolutions. The 𝑥-label denotes the number of mesh
refinements from the coarsest mesh. We observe the convergence rate is higher than first order. In contrast, the
solution by the standard finite element method does not converge when the rapid oscillation in the permeability
is not resolved.
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Figure 7. (A) Two interfaces on the element edges of an unstructured mesh. (B) The coefficient 𝐴.

Figure 8. (A) Reference solution. (B) Error.

6.2. Intersected and immersed interfaces

Next we investigate the proposed LOD method with intersected and immersed interfaces, and interfaces that
are not on the element edges in the coarse mesh. The five interfaces are shown in Figure 9a, together with
the permeability 𝐴, which is piecewise constant varying on the scale 2−7 with values sampled from a uniform
distribution in [0.1, 0.9]. The permeability on the interfaces is 2. The forcing functions are 𝑓 = 2 and 𝑓Γ = 10.
As presented in Section 2.2, the weak form of the governing equation takes the form (2.6) to (2.8).

We are interested in how the error behaves with respect to the patch size used in the computation of correctors.
To this end, we use a coarse mesh with mesh size 𝐻 = 2−5, and a fine mesh with mesh size ℎ = 2−9. The five
interfaces are constructed such that they are on the element edges of the mesh with mesh size 2−7. Therefore,
all interfaces are on the element edges of the fine mesh, but some interfaces are not on the element edges of the
coarse mesh.

We consider a small threshold value Σ = 10 and a large threshold value 500, where Σ is used in (4.5) in the
definition of the interpolation operator. As shown in Figures 10a and 10b, the threshold influences the selection
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Figure 9. (A) The permeability 𝐴. (B) Error.

Figure 10. (A) Σ = 10. (B) Σ = 500.

of interface nodal variables marked by black circles. With a small Σ, interface nodal variables are only computed
for the nodes on the interfaces. When Σ is increased to 500, interface nodal variables are computed on all nodes
in the elements that overlap with the interfaces. Note the difference for the nodes not on the coarse edges.

In Figure 9b, we plot the relative error (6.1) versus the patch size. We observe that with the proposed Scott–
Zhang type interpolation operator, the error with threshold value 500 is smaller than the error with threshold
value 10. This observation suggests to use a large threshold. We also observe that two patches 𝑘 = 2 is adequate
to obtain fast decaying multiscale basis functions for this problem. Since the degree of freedom of a local problem
is proportional to 𝑘2, a small patch size 𝑘 leads to a small computational cost. For two layers and more the
discretization error depending on 𝐻 is dominating. In contrast, with a standard element-based Scott–Zhang
interpolation operator, the error does not decay with increased patch size, indicating a lack of decay of the
multiscale basis functions.
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Figure 11. (A) The solution of the wave equation at 𝑡 = 0.1. (B) Error at 𝑡 = 0.1.

6.3. The wave equation

We consider the wave equation with weak form: for each 𝑡 > 0 find 𝑢 ∈ 𝑉 such that

(𝐵𝑢̈, 𝑣)Ω + (𝐵Γ𝑢̈, 𝑣)Γ = −(𝐴∇𝑢,∇𝑣)Ω − (𝐴Γ∇𝜏𝑢,∇𝜏 𝑣)Γ + (𝑓, 𝑣)Ω + (𝑓Γ, 𝑣)Γ,

for all 𝑣 ∈ 𝑉 . The symbol 𝑢̈ denotes the second derivative of 𝑢 in time.
We choose a highly oscillatory wave speed by using the same coefficient 𝐴 and interfaces as in the previous

numerical example, that is, 𝐴 is sampled from a uniform distribution in [0.1, 0.9] with a variation on the scale
2−7, and 𝐴Γ = 2. The coefficient 𝐴 and interfaces are depicted in Figure 9a. The wave propagation starts from
rest with homogeneous initial conditions and Dirichlet boundary conditions, and is driven by external forcing.
In particular, we choose 𝑓 = 1 in the domain Ω0 = [0.375, 0.625]2, and 𝑓 = 0 in Ω∖Ω0. For the forcing on the
interfaces, we use 𝑓Γ = 1 in Ω0 ∩Γ, and 𝑓Γ = 0 in (Ω∖Ω0)∩Γ. With 𝐵 = 1 and 𝐵Γ = 0.1, the wave speed in the
fractures is higher than in the bulk domain. We note the the data is well-prepared according to Definition 4.5
in [1].

For spatial approximation, the SFEM is used to compute the reference solution on a fine mesh with mesh size
2−9. We then use the proposed LOD method for the upscaling of the spatial discretization on coarse meshes
with mesh sizes 2−3, 2−4, 2−5, 2−6. The solution is integrated in time by the Crank–Nicolson method. We note
that explicit time integrator such as the leap-frog method can also be used [1, 14].

The reference solution at 𝑡 = 0.1 is shown in Figure 11a. We observe that the wave propagates faster in the
interfaces than in the bulk domain. The relative error of the LOD solution, shown in Figure 11b, gives a first
order convergence rate.

In Figure 12a, we show the reference solution at 𝑡 = 1, when the wave has interacted with the outer boundary.
The relative error in the LOD solution has the same behavior, and converges at first order, see Figure 12b.
This experiment demonstrates that the proposed LOD method works well for the upscaling of the spatial
discretization for the acoustic wave equation.

The computation of the basis spanning the localized multiscale space require solution of 𝒪(𝐻−2) local prob-
lems (3.3). The computational cost of each local problem is 𝒪((𝑘2(𝐻/ℎ)2)𝑠), where 𝑠 ≥ 1 gives the com-
plexity 𝑁𝑠 of solving a linear system with 𝑁 unknowns and depends on the method used, and 𝑘 is the
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Figure 12. (A) The solution of the wave equation at 𝑡 = 1. (B) Error at 𝑡 = 1.

patch size. Consequently, the offline computational cost of the LOD method is 𝒪(𝑘2𝑠𝐻2𝑠−2ℎ−2𝑠). Let 𝑚 be
the number of time steps, then the total computational cost of the LOD method for the wave equation is
𝐶1𝑘

2𝑠𝐻2𝑠−2ℎ−2𝑠 + 𝐶2𝑚𝐻
−2𝑠. The computational cost of the standard finite element method is 𝐶3𝑚ℎ

−2𝑠,
which is much higher than the LOD cost if 𝑚 is large and ℎ is small. In addition, the offline computational
cost in the LOD method, 𝐶1𝑘

2𝑠𝐻2𝑠−2ℎ−2𝑠, can be reduced straightforwardly by solving the local problems on
a parallel machine, which further improves the computational efficiency of the LOD method.
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[9] C. Engwer, P. Henning, A. Målqvist and D. Peterseim, Efficient implementation of the localized orthogonal decomposition
method. Comput. Methods Appl. Mech. Eng. 350 (2019) 123–153.
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