Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S853-S875

In this paper we study the asymptotic behaviour of the quasilinear curl-curl equation of 3D magnetostatics with respect to a singular perturbation of the differential operator and prove the existence of the topological derivative using a Lagrangian approach. We follow the strategy proposed in Gangl and Sturm (ESAIM: COCV 26 (2020) 106) where a systematic and concise way for the derivation of topological derivatives for quasi-linear elliptic problems in H1 is introduced. In order to prove the asymptotics for the state equation we make use of an appropriate Helmholtz decomposition. The evaluation of the topological derivative at any spatial point requires the solution of a nonlinear transmission problem. We discuss an efficient way for the numerical evaluation of the topological derivative in the whole design domain using precomputation in an offline stage. This allows us to use the topological derivative for the design optimization of an electrical machine.

DOI : 10.1051/m2an/2020060
Classification : 49Q10, 49Qxx, 90C46
Keywords: Topology optimisation, asymptotic analysis, singular perturbation, topological derivative, magnetostatics, Maxwell’s equation, electrical machines
@article{M2AN_2021__55_S1_S853_0,
     author = {Gangl, Peter and Sturm, Kevin},
     title = {Asymptotic analysis and topological derivative for {3D} quasi-linear magnetostatics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {S853--S875},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {Suppl\'ement},
     doi = {10.1051/m2an/2020060},
     mrnumber = {4221309},
     zbl = {1472.49061},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2020060/}
}
TY  - JOUR
AU  - Gangl, Peter
AU  - Sturm, Kevin
TI  - Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2021
SP  - S853
EP  - S875
VL  - 55
IS  - Supplément
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2020060/
DO  - 10.1051/m2an/2020060
LA  - en
ID  - M2AN_2021__55_S1_S853_0
ER  - 
%0 Journal Article
%A Gangl, Peter
%A Sturm, Kevin
%T Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2021
%P S853-S875
%V 55
%N Supplément
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2020060/
%R 10.1051/m2an/2020060
%G en
%F M2AN_2021__55_S1_S853_0
Gangl, Peter; Sturm, Kevin. Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 55 (2021), pp. S853-S875. doi: 10.1051/m2an/2020060

[1] H. Ammari, M. S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations. J. Math. Pures Appl. 80 (2001) 769–814. | MR | Zbl

[2] S. Amstutz, Topological sensitivity analysis for some nonlinear PDE systems. J. Math. Pures Appl. 85 (2006) 540–557. | MR | Zbl

[3] S. Amstutz and A. Bonnafé, Topological derivatives for a class of quasilinear elliptic equations. J. Math. Pures Appl. 107 (2017) 367–408. | MR

[4] S. Amstutz and P. Gangl, Topological derivative for the nonlinear magnetostatic problem. Electron. Trans. Numer. Anal. 51 (2019) 169–218. | MR | Zbl

[5] S. Bauer, D. Pauly and M. Schomburg, The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions. SIAM J. Math. Anal. 48 (2016) 2912–2943. | MR | Zbl

[6] A. Buffa, M. Costabel and D. Sheen, On traces for ( 𝐇 ( curl , Ω ) in Lipschitz domains. J. Math. Anal. App. 276 (2002) 845–867. | MR | Zbl

[7] A. P. Calderón and A. Zygmund, On the existence of certain singular integrals. Acta Math. 88 (1952) 85–139. | MR | Zbl

[8] A. P. Calderón and A. Zygmund, Singular integral operators and differential equations. Am. J. Math. 79 (1957) 901–921. | MR | Zbl

[9] M. Costabel and F. Le Louër, Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: application to scattering by a homogeneous dielectric obstacle. Integral Equ. Oper. Theory 73 (2012) 17–48. | MR | Zbl

[10] M. C. Delfour, Control, Shape, and Topological Derivatives Via Minimax Differentiability of Lagrangians. In Vol. 29 of Springer INdAM Series. Springer, Cham (2018) 137–164. | MR | Zbl

[11] J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier Grenoble 5 (1953–54) 305–370. | Numdam | Zbl

[12] L. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[13] P. Gangl and K. Sturm, A simplified derivation technique of topological derivatives for quasi-linear transmission problems. ESAIM: COCV 26 (2020) 106. | MR | Zbl | Numdam

[14] P. Gangl, U. Langer, A. Laurain, H. Meftahi and K. Sturm, Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37 (2015) B1002–B1025. | MR | Zbl

[15] D. Gilbarg and N. Grudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin-Heidelberg (2001). | MR | Zbl

[16] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin-Heidelberg (1986). | MR | Zbl

[17] F. Hettlich, The domain derivative of time-harmonic electromagnetic waves at interfaces. Math. Methods Appl. Sci. 35 (2012) 1681–1689. | MR | Zbl

[18] M. Hintermüller, A. Laurain and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Prob. 31 (2015) 065006. | MR | Zbl

[19] R. Hiptmair and J. Li, Shape derivatives for scattering problems. Inverse Prob. 34 (2018) 105001. | MR | Zbl

[20] M. Iguernane, S. Nazarov, J.-R. Roche, J. Sokołowski and K. Szulc, Topological derivatives for semilinear elliptic equations. Int. J. Appl. Math. Comput. Sci. 19 (2009) 191–205. | MR | Zbl

[21] A. Kost, Numerische Methoden in der Berechnung elektromagnetischer Felder. Springer, Berlin-Heidelberg (1994).

[22] M. Masmoudi, J. Pommier and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications. Inverse Prob. 21 (2005) 547–564. | MR | Zbl

[23] A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization. Springer, Berlin-Heidelberg (2013). | MR | Zbl

[24] C. Ortner and E. Süli, A note on linear elliptic systems on ℝ$$. Preprint (2012). | arXiv

[25] C. Pechstein, Multigrid-Newton-methods for nonlinear magnetostatic problems, Master’s thesis. Johannes Kepler University Linz (2004).

[26] C. Pechstein and B. Jüttler, Monotonicity-preserving interproximation of B - H -curves. J. Comput. Appl. Math. 196 (2006) 45–57. | MR | Zbl

[27] T. Samrowski and W. Varnhorn, The Poisson equation in homogeneous Sobolev spaces. Int. J. Math. Math. Sci. 2004 (2004) 1909–1921. | MR | Zbl

[28] J. Schöberl, Numerical Methods for Maxwell Equations. Lecture Notes. TU Vienna (2009).

[29] J. Schöberl, C++11 implementation of finite elements in NGSolve. Technical Report 30. Institute for Analysis and Scientific Computing, Vienna University of Technology (2014).

[30] B. Schweizer, On Friedrichs Inequality, Helmholtz Decomposition, Vector Potentials, and the Div-Curl Lemma. In Vol.27 of Springer INdAM Series. Springer, Cham (2018) 65–79. | MR | Zbl | DOI

[31] A. Seyfert, The Helmholtz-Hodge decomposition in Lebesgue spaces on exterior domains and evolution equations on the whole real time axis, Ph.D. thesis. Technische Universität, Darmstadt (2018). | Zbl

[32] C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains: A New Approach to Weak, Strong and (2+k)-Solutions in Sobolev-Type Spaces. In Vol. 360 of Pitman Research Notes in Mathematics Series. Longman, Harlow (1996). | MR | Zbl

[33] K. Sturm, Topological sensitivities via a Lagrangian approach for semi-linear problems. Nonlinearity 33 (2020) 4310. | MR | Zbl | DOI

[34] I. Yousept, Optimal control of quasilinear 𝐇 ( curl ) -elliptic partial differential equations in magnetostatic field problems. SIAM J. Control Optim. 51 (2013) 3624–3651. | MR | Zbl | DOI

[35] S. Zaglmayr, High order finite elements for electromagnetic field computation, Ph.D. thesis. Johannes Kepler University Linz (2006).

[36] E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer, Berlin-Heidelberg (1990). | MR | Zbl

[37] W. P. Ziemer, Weakly Differentiable Functions. Springer, New York (1989). | MR | Zbl | DOI

Cité par Sources :