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ASYMPTOTIC ANALYSIS AND TOPOLOGICAL DERIVATIVE FOR 3D
QUASI-LINEAR MAGNETOSTATICS

Peter Gangl1,* and Kevin Sturm2

Abstract. In this paper we study the asymptotic behaviour of the quasilinear curl-curl equation of
3D magnetostatics with respect to a singular perturbation of the differential operator and prove the
existence of the topological derivative using a Lagrangian approach. We follow the strategy proposed in
Gangl and Sturm (ESAIM: COCV 26 (2020) 106) where a systematic and concise way for the derivation
of topological derivatives for quasi-linear elliptic problems in 𝐻1 is introduced. In order to prove the
asymptotics for the state equation we make use of an appropriate Helmholtz decomposition. The evalu-
ation of the topological derivative at any spatial point requires the solution of a nonlinear transmission
problem. We discuss an efficient way for the numerical evaluation of the topological derivative in the
whole design domain using precomputation in an offline stage. This allows us to use the topological
derivative for the design optimization of an electrical machine.
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1. Introduction

The main result of this paper is the computation of the topological derivative for the tracking-type cost
function

𝐽(Ω) =
∫︁

Ω𝑔

| curl𝑢−𝐵𝑑|2 d𝑥 (1.1)

subject to the constraint that 𝑢 ∈ 𝑉 (D)3 := {𝑢 ∈ 𝐻0(D, curl) : div(𝑢) = 0 in D} solves∫︁
D

𝒜Ω(𝑥, curl𝑢) · curl 𝑣 d𝑥 = ⟨𝐹, 𝑣⟩ for all 𝑣 ∈ 𝑉 (D)3, (1.2)

where 𝒜Ω : D×R3 → R3 is a piecewise nonlinear function defined by

𝒜Ω(𝑥, 𝑦) :=
{︂
𝑎1(𝑦) for 𝑥 ∈ Ω,
𝑎2(𝑦) for 𝑥 ∈ D ∖ Ω, (1.3)

with two continuously differentiable functions 𝑎1, 𝑎2 : R3 → R3 satisfying the following assumption:
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Assumption A. There are constants 𝑐1, 𝑐2, 𝑐3 > 0 such that the functions 𝑎𝑖 : R3 → R3, 𝑖 = 1, 2 are differen-
tiable and satisfy:

(i) (𝑎𝑖(𝑥)− 𝑎𝑖(𝑦)) · (𝑥− 𝑦) ≥ 𝑐1|𝑥− 𝑦|2, for all 𝑥, 𝑦 ∈ R3,
(ii) |𝑎𝑖(𝑥)− 𝑎𝑖(𝑦)| ≤ 𝑐2|𝑥− 𝑦| for all 𝑥, 𝑦 ∈ R3,

(iii) |𝜕𝑎𝑖(𝑥)− 𝜕𝑎𝑖(𝑦)| ≤ 𝑐3|𝑥− 𝑦| for all 𝑥, 𝑦 ∈ R3.

The right hand side 𝐹 is a linear and continuous functional on 𝑉 (D)3 defined by

⟨𝐹, 𝑣⟩ :=
∫︁

Ω1

𝐽 · 𝑣 d𝑥+
∫︁

Ω2

𝑀 · curl 𝑣 d𝑥 for 𝑣 ∈ 𝑉 (D)3,

where Ω1,Ω2 ⊂ D are open sets (see Fig. 1) and 𝐽,𝑀 ∈ 𝐿2(D)3. Properties (i) and (ii) of Assumption A imply
that the operator 𝐴Ω : 𝑉 (D)3 → ℒ(𝑉 (D)3,R) defined by ⟨𝐴Ω𝜙,𝜓⟩ :=

∫︀
D
𝒜Ω(𝑥, curl𝜙) · curl𝜓 d𝑥 is Lipschitz

continuous and strongly monotone for all measurable Ω ⊂ D. Hence the state equation (1.2) admits a unique
solution by the theorem of Zarantonello; see page 504, Theorem 25.B of [36].

Among other applications the set of equations (1.2) models a 3D electrical machine and captures nonlinear
physical effects. A realistic physical model for which the above assumption are satisfied in practice will be
presented in the last section.

The topological derivative has already been computed for many linear PDEs and also the literature on its
numerical implementation is rich. We refer to the monograph [23] for many examples and also references therein.
For nonlinear PDEs the literature is far less complete and only few articles dealing with nonlinear constraints
exist. Here we would like to mention [2, 20], and more recently [33], where semilinear problems were studied.

Concerning quasi-linear problems, in which the topological perturbation enters in the main part of the non-
linearity, even less work has been done. Here we mention [3] where the authors consider a regularised version
of the 𝑝-Poisson equation and also [4] where the topological derivative for the quasi-linear equation of 2D
magnetostatics was derived. More recently, in [13] the topological derivative for a class of quasi-linear equations
under fairly general assumptions in an 𝐻1 setting was presented.

Shape optimisation for the linear Maxwell’s equation has been studied in the context of time-harmonic
electromagnetic waves [17], magnetic impedance tomography [18], in electromagentic scattering [9] and [19],
where the last work takes a geometric viewpoint using differential forms. All these articles deal with linear
problems and as far as the present authors knowledge no work has been done in the nonlinear case. In the
context of optimal control in a quasi-linear 𝐻(curl) setting we mention [34], where also numerical analysis is
presented.

The topological sensitivity of 2D nonlinear magnetostatics, which is a simplification of Maxwell’s equation
in 3D, was treated in [4]. The topological sensitivity of three dimensional linear Maxwell’s equations has been
studied in [22] and is based on asymptotics derived in [1]. In the nonlinear context it seems no work has been
done so far.

To our knowledge the asymptotics for (1.2) with respect to a singular perturbation of the operator is unknown.
Accordingly also the topological derivative for the functional (1.1) and its numerical implementation are new.
These are the main contribution of this paper.

The structure of the paper is as follows. In Section 2 we recall a regular Helmholtz decomposition and prove
a Helmholtz-type decomposition in R3 which will be essential for the asymptotic analysis of the next section. In
Section 3 we present the asymptotic analysis of the state equation (1.2). In Section 4 we compute the topological
derivative for the cost function (1.1) using a Lagrangian method. In Section 5 we discuss the efficient numerical
realisation of the obtained topological derivative. Finally, in the last section, we apply our results to a 3D electric
machine and verify the pertinence of our approach in several numerical experiments.

Notation and definitions

Standard 𝐿𝑝 spaces and Sobolev spaces on an open set D ⊂ R3 are denoted 𝐿𝑝(D) and 𝑊 𝑘
𝑝 (D), respectively,

where 𝑝 ≥ 1 and 𝑘 ≥ 1. In case 𝑝 = 2 and 𝑘 ≥ 1 we set as usual 𝐻𝑘(D) := 𝑊 𝑘
2 (D). Vector valued spaces
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are denoted 𝐿𝑝(D)3 := 𝐿𝑝(D,R3) and 𝑊 𝑘
𝑝 (D)3 := 𝑊 𝑘

𝑝 (D,R3). Given a normed vector space 𝑉 we denote by
ℒ(𝑉,R) the space of linear and continuous functions on 𝑉 . We recall the definition of the space 𝐻(D, curl) =
{𝑢 ∈ 𝐿2(D)3 : curl ∈ 𝐿2(D)3} and also

𝐻0(D, curl) =
{︂
𝑢 ∈ 𝐻(D, curl) :

∫︁
D

curl𝑢 · 𝑣 =
∫︁

D

𝑢 · curl 𝑣 for all 𝑣 ∈ 𝐻1(D)3
}︂

(1.4)

equipped with the norm ‖𝑢‖2𝐻(D,curl) := ‖𝑢‖2𝐿2(D)3 + ‖ curl𝑢‖2𝐿2(D)3 . It can be shown that 𝐻0(D, curl) = {𝑢 ∈
𝐿2(D)3| curl𝑢 ∈ 𝐿2(D)3 and 𝑢× 𝑛 = 0 on 𝜕D}. Moreover, we define the subspace

𝑉 (D)3 := {𝑢 ∈ 𝐻0(D, curl) : div(𝑢) = 0 on D}. (1.5)

Recall that the Friedrich’s inequality ‖𝑢‖𝐿2(D)3 ≤ 𝐶‖ curl𝑢‖𝐿2(D)3 holds for all 𝑢 ∈ 𝑉 (D)3 provided D is a simply
connected bounded Lipschitz domain; see [30], Corollary 3.2 or [5], Theorem 5.1.

We let BL(R3) := {𝑢 ∈ 𝐻1
loc(R

3) : ∇𝑢 ∈ 𝐿2(R3)3} and define the Beppo–Levi space or homogeneous Sobolev
space as the quotient space ḂL(R3) := BL(R3)/R, where /R means that we quotient out the constant functions.
We denote by [𝑢] the equivalence classes of ḂL(R3). Equipped with the norm

‖[𝑢]‖ḂL(R3) := ‖∇𝑢‖𝐿2(R3)3 , 𝑢 ∈ [𝑢], (1.6)

the Beppo–Levi space is a Hilbert space (see [11, 24]) and 𝐶∞𝑐 (R3)/R is dense in ḂL(R3). The vector valued
Beppo–Levi space ḂL(R3,R3) will be denoted by ḂL(R3)3 and equipped with the standard norm. Whenever
no confusion is possible we will not distinguish between an equivalence class [𝑢] and a representative 𝑢 and use
the same notation. This will be clear from the context.

In the whole paper we equip R𝑑 with the Euclidean norm | · | and use the same notation for the corresponding
matrix (operator) norm. We denote by 𝐵𝛿(𝑥) the Euclidean ball centred at 𝑥 with radius 𝛿 > 0.

Remark 1.1. As remarked in Remark 2.2 of [13], it follows from Assumption A that the non-linearity 𝑎𝑖

satisfies:

|𝑎𝑖(𝑥)| ≤ |𝑎𝑖(0)|+ 𝑐2|𝑥|, (1.7)
|𝜕𝑎𝑖(𝑥)| ≤ |𝜕𝑎𝑖(0)|+ 𝑐3|𝑥|, (1.8)
|𝜕𝑎𝑖(𝑥)𝑣| ≤ 𝑐2|𝑣|, (1.9)

for 𝑖 = 1, 2 and for all 𝑥, 𝑣 ∈ R3.

2. Helmholtz-type decompositions in BL(R3)3

In this section we develop the function space setting for the exterior equation that will appear in the asymp-
totic expansion of the state equation (see Sect. 3). In particular we will study a subspace of the Beppo–Levi space
ḂL(R3)3 and derive a Helmholtz-type decomposition, which will be essential later on. We recall the following
regular Helmholtz decomposition of functions in 𝐻0(D, curl); see, e.g., [16], Lemma 3.4, [28, 30], Theorem 29.
Throughout this section we assume that D ⊂ R3 is a simply connected bounded Lipschitz domain.

Lemma 2.1 (Regular decomposition of 𝐻0(D, curl)). For every 𝑢 ∈ 𝐻0(D, curl) there exist 𝜑 ∈ 𝐻1
0 (D),

𝑢* ∈ 𝐻1
0 (D)3 such that

𝑢 = ∇𝜑+ 𝑢*.

Moreover, the following estimates hold:

‖𝜑‖𝐻1(D) ≤ 𝐶‖𝑢‖𝐻(D,curl) and ‖𝑢*‖𝐻1(D)3 ≤ 𝐶‖ curl𝑢‖𝐿2(D)3 .
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Figure 1. Setting for topological derivative: Inclusion 𝜔𝜀 of radius 𝜀 > 0 containing material
𝑎1 around point 𝑧 ∈ D ∖ Ω (where material 𝑎2 is present).

The following Helmholtz decomposition is standard.

Lemma 2.2. For every 𝑢 ∈ 𝐻1
0 (D)3 we find 𝜑 ∈ 𝐻1

0 (D) and 𝜓 ∈ 𝑉 (D)3, such that

𝑢 = ∇𝜑+ 𝜓. (2.1)

Proof. This follows directly by solving for given 𝑢 ∈ 𝐻1
0 (D)3: find 𝜑 ∈ 𝐻1

0 (D), such that∫︁
D

∇𝜑 · ∇𝑣 d𝑥 =
∫︁

D

𝑢 · ∇𝑣 d𝑥 for all 𝑣 ∈ 𝐻1
0 (D). (2.2)

Then 𝜓 := 𝑢 −∇𝜑 satisfies (2.1) and div(𝜓) = 0. To see the boundary condition note that since 𝑢 ∈ 𝐻1
0 (D)3,

we have by partial integration∫︁
D

curl𝜓 · 𝑣 d𝑥 =
∫︁

D

curl𝑢 · 𝑣 d𝑥 =
∫︁

D

𝑢 · curl 𝑣 d𝑥 =
∫︁

D

𝑢 · curl 𝑣 d𝑥−
∫︁

D

∇𝜑 · curl 𝑣 d𝑥 (2.3)

for all 𝑣 ∈ 𝐻1(D)3. Here we used that the last integral vanishes, which can be seen by partial integration due
to 𝜑 ∈ 𝐻1

0 (D). Noting that 𝜓 +∇𝜑 = 𝑢, it follows 𝜓 ∈ 𝑉 (D)3; see (1.4). This finishes the proof. �

We will now introduce a subspace of the space ḂL(R3)3. The reason why we cannot work with 𝐻(R3, curl)
directly is that we do not have control over the function 𝑢 itself, but only over its curl. In order to get around this
difficulty we introduce the following function space. We also refer to [1] for a different approach using weighted
spaces.

Definition 2.3. We define the space

BLC(R3) := {𝜙 ∈ 𝐶∞𝑐 (R3)3 : div(𝜙) = 0}
|·|𝐻(R3,curl) , (2.4)

where |𝜙|2𝐻(R3,curl) :=
∫︀
R3 | curl𝜙|2 d𝑥. We set ˙BLC(R3) := BLC(R3)/R, where /R means that we quotient

out constants.

We have the following result.

Lemma 2.4. (i) We have BLC(R3) ⊂ BL(R3)3 and hence ˙BLC(R3) ⊂ ḂL(R3)3.
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(ii) The space ˙BLC(R3) becomes a Hilbert space when equipped with | · |𝐻(R3,curl).
(iii) We have ˙BLC(R3) = {𝑢 ∈ ḂL(R3)3 : div(𝑢) = 0}.

Proof. We start by observing that (see [30], Rem. 1.1)∫︁
R3
|div(𝜙)|2 + | curl(𝜙)|2 d𝑥 =

∫︁
R3
|∇𝜙|2 d𝑥 (2.5)

holds for all test functions 𝜙 ∈ 𝐶∞𝑐 (R3)3. Therefore we have

|𝜙|2𝐻(R3,curl) =
∫︁
R3
| curl(𝜙)|2 d𝑥 =

∫︁
R3
|∇𝜙|2 d𝑥 (2.6)

for all test functions 𝜙 ∈ 𝐶∞𝑐 (R3)3 satisfying div(𝜙) = 0. Let (𝜙𝑛) be a sequence in 𝐶∞𝑐 (R3)3 with div(𝜙𝑛) = 0
that is Cauchy with respect to | · |𝐻(R3,curl). Then in view of (2.6) it also converges in ḂL(R3)3 and hence its
limit belongs to ḂL(R3)3, which shows the inclusion (i). Also (ii) follows at once since a closed subspace of a
Hilbert space is a Hilbert space itself.

To see (iii) we can use standard mollifier techniques; see page 21 of [37]. Let 𝑢 ∈ 𝐿2,𝑙𝑜𝑐(R3)3 with
∇𝑢 ∈ 𝐿2(R3)3×3 and div(𝑢) = 0. Let 𝜉 ∈ 𝐶∞𝑐 (𝐵1(0)) with

∫︀
R3 𝜉 d𝑥 = 1. Set 𝜉𝜀(𝑥) := 𝜀−3𝜉(𝑥/𝜀) and define

the convolution of 𝑢 with 𝜉𝜀 by 𝑢𝜀(𝑥) := (𝜉𝜀 * 𝑢)(𝑥) :=
∫︀
R3 𝜉𝜀(𝑥 − 𝑦)𝑢(𝑦) d𝑦. Then 𝑢𝜀 is smooth, has compact

support and satisfies 𝜕𝑥𝑖𝑢𝜀(𝑥) = 𝜉𝜀 * (𝜕𝑥𝑖𝑢)(𝑥) and thus div(𝑢𝜀) = 𝜉𝜀 * (div(𝑢)) = 0. Since 𝜕𝑥𝑖𝑢 ∈ 𝐿2(R3)3 we
conclude from [37], Theorem 1.6.1, (iii) that 𝜕𝑥𝑖

𝑢𝜀 → 𝜕𝑥𝑖
𝑢 strongly in 𝐿2(R3)3 as 𝜀 ↘ 0. But this means that

𝑢 ∈ ˙BLC(R3) and finishes the proof. �

We now prove a Helmholtz-type decomposition in ḂL(R3)3. It can be seen as an analogue of Lemma 2.2 in
case D = R3. We also refer to [31,32] for Helmholtz decompositions in exterior domains.

Let us introduce

BL2(R3) := {𝜙 ∈ 𝐿2,𝑙𝑜𝑐(R3) : 𝜕2
𝑥𝑖𝑥𝑗

𝜙 ∈ 𝐿2(R3), 𝑖, 𝑗 ∈ {1, 2, 3}}, (2.7)

and the associated second order Beppo–Levi space ḂL
2
(R3) := BL2(R3)/𝑃 , where 𝑃 := {𝑥 ↦→ 𝑏 + 𝑥 · 𝑎 : 𝑏 ∈

R, 𝑎 ∈ R3} denotes the space of linear functions in R3. The function

‖𝜑‖BL2 := ‖𝜕2𝜑‖𝐿2(R3)3×3 , 𝜑 ∈ ḂL
2
(R3) (2.8)

is a norm on ḂL
2
(R3) and makes it a Hilbert space; see [11], Section III and Theorem 2.1.

Remark 2.5. We note that it makes sense to say that an equivalence class 𝜙 ∈ ḂL(R3)3 has zero divergence
div(𝜙) = 0, since the divergence of a constant function is zero and hence the divergence free property is
independent of the representative.

Lemma 2.6. For every 𝑢 ∈ ḂL(R3)3 there is 𝜑 ∈ ḂL
2
(R3) and 𝑢* ∈ ḂL(R3)3 with div(𝑢*) = 0, such that

𝑢 = ∇𝜑+ 𝑢* (in ḂL(R3)3). (2.9)

In fact, we have the direct sum ḂL(R3)3 = ∇(ḂL
2
(R3))⊕ ˙BLC(R3)3.

Proof. We will use arguments from [27], Theorem 3.3. Given 𝑢 ∈ 𝐶∞𝑐 (R3)3 we define 𝜑 ∈ 𝐶∞(R3) as

𝜑(𝑥) = − 1
4𝜋

∫︁
R3

div 𝑢(𝑦)
|𝑥− 𝑦|

d𝑦, 𝑥 ∈ R3. (2.10)
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Since 𝑢 is smooth and has compact support we have ∆𝜑 = div 𝑢 pointwise in R3 (see [12], p. 21, Thm. 1). The
Caldéron-Zygmund theorem (see [7, 8] and also [15], Para. 9.4) implies that

‖𝜕2𝜑‖𝐿2(R3)3×3 ≤ 𝐶‖div 𝑢‖𝐿2(R3). (2.11)

However, this means that 𝜑 ∈ ḂL
2
(R3) and hence 𝑢* := ∇𝜑 − 𝑢 satisfies div(𝑢*) = 0 and ∇𝑢* ∈ 𝐿2(R3)3.

Therefore 𝑢* ∈ ˙BLC(R3) and 𝑢* satisfies (2.9).
Let now 𝑢 ∈ ḂL(R3)3 and (𝑢𝑛) ⊂ 𝐶∞𝑐 (R3)3 with ∇𝑢𝑛 → ∇𝑢 strongly in 𝐿2(R3)3×3 as 𝑛 → ∞. The first

part of the proof shows that we can split 𝑢𝑛 = ∇𝜑𝑛 + 𝑢*𝑛 with 𝜑𝑛 ∈ ḂL(R3) and 𝑢*𝑛 ∈ ḂL(R3)3 satisfying
div(𝑢*𝑛) = 0. In view of (2.11) it follows that (𝜑𝑛) is a Cauchy sequence in ḂL

2
(R3) and thus converging to

some 𝜑 ∈ ḂL
2
(R3). From this it follows that also (𝑢*𝑛) is a Cauchy sequence in ḂL(R3)3 and converges to some

𝑢* ∈ ḂL(R3)3 satisfying div(𝑢*) = 0. Now we can pass to the limit in 𝜕𝑥𝑖𝑢𝑛 = 𝜕𝑥𝑖∇𝜑𝑛 + 𝜕𝑥𝑖𝑢
*
𝑛, 𝑖 = 1, 2, 3 with

respect to the 𝐿2(R3)3 norm to obtain

𝜕𝑥𝑖
(𝑢−∇𝜑− 𝑢*) = 0, 𝑎.𝑒. on R3, 𝑖 = 1, 2, 3. (2.12)

It follows that 𝑢−∇𝜑− 𝑢* is constant on R3. Therefore 𝑢 = ∇𝜑+ 𝑢* in ḂL(R3)3.
To show that the sum is direct, we let 𝜑, 𝜑 ∈ ḂL

2
(R3) and 𝑢̃*, 𝑢* ∈ ˙BLC(R3)3, such that

𝑢 = ∇𝜑 + 𝑢* = ∇𝜑 + 𝑢̃*. Set 𝜑 := 𝜑 − 𝜑 and 𝑢̂* := 𝑢̃* − 𝑢*. We have ∇𝜑 = −𝑢̂* and thus since 𝑢̂* is
divergence free, ∆𝜑 = 0, that is, 𝜑 is harmonic. By Weyl’s lemma 𝜑 is smooth. Since 𝜑 is harmonic 𝑣 := 𝜕2

𝑥𝑖𝑥𝑗
𝜑

is harmonic, too and hence enjoys the mean value property (see [12], Thm. 2, p. 25):

𝑣(𝑥0) =
1

|𝐵𝑟(𝑥0)|

∫︁
𝐵𝑟(𝑥0)

𝑣 d𝑥, 𝑟 > 0, 𝑥0 ∈ R3. (2.13)

Fix 𝑥0 ∈ R3. Then we obtain from Hölder’s inequality

|𝑣(𝑥0)| ≤ 1
|𝐵𝑟(𝑥0)|

∫︁
𝐵𝑟(𝑥0)

|𝑣| d𝑥 ≤ 1
|𝐵𝑟(𝑥0)|1/2

‖𝑣‖𝐿2(𝐵𝑟(𝑥0)) ≤ 𝐶𝑟−
3
2 ‖𝜕2𝜑‖𝐿2(R3)3×3 . (2.14)

Passing to the limit 𝑟 → ∞ we see that 𝑣(𝑥0) = 0 and since 𝑥0 was arbitrary we have 𝑣 = 𝜕2
𝑥𝑖𝑥𝑗

𝜑 = 0 on R3.

Hence 𝜑(𝑥) = 𝑎 · 𝑥+ 𝑏 for some 𝑎 ∈ R3, 𝑏 ∈ R and thus the corresponding equivalence class 𝜑 = 0 in ḂL
2
(R3)

or equivalently 𝜑 = 𝜑 as elements in ḂL
2
(R3). In view of 𝑎 = ∇𝜑 = −𝑢̂* it follows that 𝑢̂* = 0 in ḂL(R3)3 or

equivalently 𝑢* = 𝑢̃*. This shows that we have a direct sum. �

The following example illustrates the usefulness of the function space ˙BLC(R3) and the Helmholtz-type
decomposition.

Example 2.7. Let 𝜁 ∈ R3 be a vector and let 𝜔 ⊂ R3 be an open and bounded set. Consider the problem:
find 𝐾 ∈ ˙BLC(R3) such that∫︁

R3
𝛽𝜔 curl𝐾 · curl 𝑣 d𝑥 =

∫︁
𝜔

𝜁 · curl 𝑣 d𝑥 for all 𝑣 ∈ ˙BLC(R3), (2.15)

where 𝛽𝜔 := 𝛽1𝜒𝜔 +𝛽2𝜒R3∖𝜔 with 𝛽1, 𝛽2 > 0. This system appears in the derivation of the topological derivative
for Maxwell’s equation in the linear case; see [22] on page 553. Thanks to the theorem of Lax–Milgram there exists
a unique solution 𝐾 of (2.15) in ˙BLC(R3). Moreover, for given 𝑣 ∈ ḂL(R3)3 we find according to Lemma 2.6
the decomposition 𝑣 = ∇𝜑+ 𝑣* with 𝜑 ∈ ḂL

2
(R3) and 𝑣* ∈ ˙BLC(R3). Therefore plugging 𝑣* = 𝑣 −∇𝜑 as test

function in (2.15) and using curl(∇𝜑) = 0, we obtain∫︁
R3
𝛽𝜔 curl𝐾 · curl 𝑣 d𝑥 =

∫︁
𝜔

𝜁 · curl 𝑣 d𝑥 for all 𝑣 ∈ BL(R3)3. (2.16)
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Remark 2.8. We remark that there are alternatives to the choice of the space BLC(R3) defined in (2.4). We
mention the use of weighted Sobolev spaces as it was done in [1], where the 𝐿2-part of the norm is weighted by
the function 𝑥 ↦→ 1√

‖𝑥‖2+1
. Another alternative is to use the Beppo–Levi type factor space

𝐻̇(curl,R3) := {[𝑣 +∇ḂL(R3)] : 𝑣 ∈ 𝐻loc(curl,R3) : curl 𝑣 ∈ 𝐿2(R3)} (2.17)

together with the norm
‖[𝑣]‖𝐻̇(curl,R3) := ‖ curl 𝑣‖𝐿2(R3)3 . (2.18)

3. Asymptotics of the state equation

3.1. Main result for direct state

In this section we study the behaviour of 𝑢𝜀 − 𝑢0, where, for 𝜀 > 0, 𝑢𝜀 ∈ 𝑉 (D)3 is the solution to∫︁
D

𝒜𝜀(𝑥, curl𝑢𝜀) · curl 𝑣 d𝑥 = ⟨𝐹, 𝑣⟩ for all 𝑣 ∈ 𝑉 (D)3, (3.1)

with 𝒜𝜀 := 𝒜Ω𝜀
and Ω𝜀(𝑧) := Ω ∪ 𝜔𝜀(𝑧) and 𝑢0 is the solution to (1.2). Here, Ω b D is open and the scaled

inclusion 𝜔𝜀(𝑧) := 𝑧 + 𝜀𝜔 is defined by an open and bounded set 𝜔 ⊂ R𝑑 satisfying 0 ∈ 𝜔 and the center of the
inclusion 𝑧 ∈ Ω∪D ∖Ω. For simplicity and without loss of generality, we will assume 𝑧 := 0 ∈ D ∖Ω throughout
this paper. Moreover, for simplicity we assume that Ω = ∅ (the general case can be readily retrieved by minor
modifications).

Using Lemma 2.1 we find the regular decomposition

𝑢𝜀 = ∇𝜑𝜀 + 𝑢*𝜀, 𝜑𝜀 ∈ 𝐻1
0 (D), 𝑢*𝜀 ∈ 𝐻1

0 (D)3. (3.2)

Definition 3.1. The variation of 𝑢𝜀 is defined by

𝐾𝜀 :=
(︂
𝑢𝜀 − 𝑢0

𝜀

)︂
∘ 𝑇𝜀 ∈ 𝑉 (𝜀−1D)3, 𝜀 > 0, (3.3)

and the variation of 𝑢*𝜀 is defined by

𝐾*
𝜀 :=

(︂
𝑢*𝜀 − 𝑢*0

𝜀

)︂
∘ 𝑇𝜀 ∈ 𝐻1

0 (𝜀−1D)3, 𝜀 > 0, (3.4)

where 𝑇𝜀(𝑥) := 𝜀𝑥 for 𝑥 ∈ R3. By extending 𝑢*𝜀 by zero outside of D we can view 𝐾*
𝜀 as a function in ḂL(R3)3.

Now we can state our first main theorem.

Main Theorem 1. Assume that curl𝑢0 ∈ 𝐶𝛼(𝐵𝛿(𝑧))3 for some 𝛿 > 0 and 0 < 𝛼 < 1. Then we have

(i) There exists a unique 𝐾 ∈ ˙BLC(R3), such that∫︁
R3

(𝒜𝜔(𝑥, curl𝐾 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)) · curl𝜙 d𝑥

= −
∫︁

𝜔

(︀
𝑎1(𝑈0)− 𝑎2(𝑈0))

)︀
· curl𝜙 d𝑥 (3.5)

for all 𝜙 ∈ BLC(R3). Here 𝑈0 := curl(𝑢0)(𝑧) and 𝒜𝜔(𝑥, 𝑦) := 𝑎1(𝑦)𝜒𝜔(𝑥) + 𝑎2(𝑦)𝜒R3∖𝜔(𝑥).
(ii) The family (𝐾*

𝜀 ) defined in (3.4), satisfies

curl(𝐾*
𝜀 ) → curl(𝐾) strongly in 𝐿2(R3)3 as 𝜀↘ 0. (3.6)



S860 P. GANGL AND K. STURM

Proof. Proof of (i): Thanks to Assumption A the operator 𝐵𝜔 : ˙BLC(R3) → ˙BLC(R3)* defined by ⟨𝐵𝜔𝜙,𝜓⟩ :=∫︀
R3(𝒜𝜔(𝑥, curl𝜙 + 𝑈0) − 𝒜𝜔(𝑥, 𝑈0)) · curl𝜓 d𝑥 is strongly monotone and Lipschitz continuous and hence the

unique solvability follows by the theorem of Zarantonello; see [36], Theorem 25.B, p. 504.
The proof of (ii) is given in the subsequent sections. �

Before turning our attention to the proof of (ii) let us make two remarks.

Remark 3.2. Notice that the regular decomposition (3.2) is not necessarily unique. However, if we find another
𝜑𝜀 ∈ 𝐻1

0 (D) and 𝑢̃*𝜀 ∈ 𝐻1
0 (D)3 with 𝑢𝜀 = ∇𝜑𝜀 + 𝑢̃*𝜀, then curl(𝑢𝜀) = curl(𝑢*𝜀) = curl(𝑢̃*𝜀), so curl(𝑢𝜀) and

accordingly curl(𝐾*
𝜀 ) does not depend on the choice of decomposition in (3.2).

Remark 3.3. Let us make an important remark. Equation (3.5) is actually only allowed to be tested with
functions 𝑣 ∈ ḂL(R3)3 with div(𝑣) = 0. However, we can in fact test this equation with all functions in ḂL(R3)3.
To see this let 𝑣 ∈ ḂL(R3)3 be arbitrary. Thanks to Lemma 2.6 we find 𝜑 ∈ ḂL

2
(R3) and 𝑣* ∈ BL(R3)3, such

that 𝑣 = ∇𝜑+ 𝑣*. Since 𝑣* ∈ ˙BLC(R3) we can use 𝑣* = 𝑣−∇𝜑 as test function in (3.5) and using curl∇𝜑 = 0
we obtain ∫︁

R3
(𝒜𝜔(𝑥, curl𝐾 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)) · curl 𝑣 d𝑥

= −
∫︁

𝜔

(︀
𝑎1(𝑈0)− 𝑎2(𝑈0))

)︀
· curl 𝑣 d𝑥 (3.7)

for all 𝑣 ∈ BL(R3)3. This will be used later on.

3.2. Analysis of the perturbed state equation

We assume in the whole section that curl𝑢0 ∈ 𝐶(𝐵𝛿(𝑧))3 for some 𝛿 > 0. Moreover we assume that Assump-
tion A(i), (ii) are satisfied. Let 𝑢𝜀 denote the solution to (3.1).

Lemma 3.4. There is a constant 𝐶 > 0, such that for all small 𝜀 > 0,

‖𝑢𝜀 − 𝑢0‖𝐿2(D)3 + ‖ curl(𝑢𝜀 − 𝑢0)‖𝐿2(D)3 ≤ 𝐶𝜀3/2. (3.8)

Proof. Subtracting (3.1) for 𝜀 > 0 and 𝜀 = 0 yields∫︁
D

(𝒜𝜀(𝑥, curl𝑢𝜀)−𝒜𝜀(𝑥, curl𝑢0)) · curl𝜙 d𝑥

= −
∫︁

𝜔𝜀

(𝑎1(curl𝑢0)− 𝑎2(curl𝑢0)) · curl𝜙 d𝑥, (3.9)

for all 𝜙 ∈ 𝑉 (D)3. Hence choosing 𝜙 = 𝑢𝜀−𝑢0 as a test function, using Hölder’s inequality and the monotonicity
of 𝒜𝜀, yield

𝑐‖ curl(𝑢𝜀 − 𝑢0)‖2𝐿2(D)3 ≤ 𝐶
√︀
|𝜔𝜀|(1 + ‖ curl𝑢0‖𝐶(𝐵𝛿(𝑧))3)‖ curl(𝑢𝜀 − 𝑢0)‖𝐿2(D)3 , (3.10)

where we used (1.7). Now the result follows from |𝜔𝜀| = |𝜔|𝜀3 and the Friedrich’s inequality. �

A direct consequence of Lemmas 3.4 and 2.1 is the following. Recall the splitting 𝑢𝜀 = ∇𝜑𝜀 + 𝑢*𝜀 introduced
in (3.2).

Corollary 3.5. Under the assumptions of Lemma 3.4, there are constants 𝐶1, 𝐶2, such that for all small 𝜀 > 0
we have

‖𝑢*𝜀 − 𝑢*0‖𝐿2(D)3 + ‖∇(𝑢*𝜀 − 𝑢*0)‖𝐿2(D)3×3 ≤ 𝐶1𝜀
3/2 (3.11)

and
‖𝜑𝜀 − 𝜑‖𝐿2(D) + ‖∇(𝜑𝜀 − 𝜑)‖𝐿2(D)3 ≤ 𝐶2𝜀

3/2. (3.12)
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The proof of Main Theorem 1 is split into several lemmas. The outline of the proof is as follows:

– introduce an auxiliary function 𝐻𝜀 and decompose it into 𝐻𝜀 = ∇𝜑𝜀 +𝐻*
𝜀

– split 𝐾*
𝜀 −𝐾 = 𝐾*

𝜀 −𝐻*
𝜀 +𝐻*

𝜀 −𝐾
– show curl(𝐻*

𝜀 −𝐾) → 0 strongly in 𝐿2(R3)3

– show curl(𝐻*
𝜀 −𝐾*

𝜀 ) → 0 strongly in 𝐿2(R3)3

The proof is following the main arguments of [13], Theorem 4.3. The main difference is that we cannot directly
work with 𝐾𝜀 and 𝐻𝜀 but have to work with the functions 𝐾*

𝜀 and 𝐻*
𝜀 coming from the regular Helmholtz

decomposition as in Lemma 2.1.
Let us first investigate the variation 𝐻*

𝜀 −𝐾. We start by changing variables in (3.9) to obtain an equation
for 𝐾*

𝜀 ∈ 𝐻1
0 (𝜀−1D)3: ∫︁

R3
(𝒜𝜔(𝑥, curl𝐾*

𝜀 + curl𝑢0(𝑥𝜀))−𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀))) · curl𝜙 d𝑥

= −
∫︁

𝜔

(𝑎1(curl𝑢0(𝑥𝜀))− 𝑎2(curl𝑢0(𝑥𝜀))) · curl𝜙 d𝑥 (3.13)

for all 𝜙 ∈ 𝑉 (𝜀−1D)3. Here 𝑥𝜀 := 𝜀𝑥 and curl𝑢0(𝑥𝜀) denotes the curl of 𝑢0 evaluated at 𝑥𝜀.
We now introduce an approximation 𝐻𝜀 of 𝐾𝜀.

Definition 3.6. We define 𝐻𝜀 ∈ 𝑉 (𝜀−1D)3 as the solution to∫︁
𝜀−1D

(𝒜𝜔(𝑥, curl𝐻𝜀 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)) · curl𝜙 d𝑥

= −
∫︁

𝜔

(𝑎1(𝑈0)− 𝑎2(𝑈0)) · curl𝜙 d𝑥 for all 𝜙 ∈ 𝑉 (𝜀−1D)3. (3.14)

Remark 3.7. We can replace 𝑉 (𝜀−1D)3 as test space in (3.13) and also in (3.14) by 𝐻1
0 (𝜀−1D)3. Indeed in view

of Lemma 2.2 we can decompose every 𝑣 ∈ 𝐻1
0 (𝜀−1D)3 as 𝑣 = ∇𝜑+ 𝜓 with 𝜑 ∈ 𝐻1(𝜀−1D) and 𝜓 ∈ 𝑉 (𝜀−1D)3.

Hence we may test (3.14) with 𝜙 = 𝜓 and using curl(∇𝜑) = 0 implies that we can test (3.14) with all functions
in 𝑣 ∈ 𝐻1

0 (𝜀−1D)3. Compare the R3 analogue discussed in Remark 3.3.

Again we invoke Lemma 2.1 to decompose 𝐻𝜀 = ∇𝜑𝜀 +𝐻*
𝜀 , 𝐻*

𝜀 ∈ 𝐻1
0 (𝜀−1D)3 and 𝜑𝜀 ∈ 𝐻1

0 (𝜀−1D). We now
introduce the projection of 𝐾 into the space 𝐻1

0 (𝜀−1D)3:

Definition 3.8. We define 𝐾̂*
𝜀 ∈ 𝐻1

0 (𝜀−1D)3 as the minimiser of

min
𝜙∈𝐻1

0 (𝜀−1D)3

div 𝜙=0

‖ curl(𝜙−𝐾)‖𝐿2(𝜀−1D)3 . (3.15)

The minimisation problem (3.15) admits indeed a unique solution. To see this, we let 𝜙𝑛 ∈ 𝐻1
0 (𝜀−1D)3 be a

minimising sequence, such that div(𝜙𝑛) = 0 and

lim
𝑛→∞

‖ curl(𝜙𝑛 −𝐾)‖𝐿2(𝜀−1D)3 = inf
𝜙∈𝐻1

0 (𝜀−1D)3

div 𝜙=0

‖ curl(𝜙−𝐾)‖𝐿2(𝜀−1D)3 . (3.16)

Since the infimum on the right hand side is finite we conclude that there is𝐶 > 0, such that ‖ curl𝜙𝑛‖𝐿2(𝜀−1D)3 ≤ 𝐶
for all 𝑛. On the other hand in view of (2.5) and div(𝜙𝑛) = 0 we have

‖ curl𝜙𝑛‖𝐿2(𝜀−1D)3 = ‖∇𝜙𝑛‖𝐿2(𝜀−1D)3×3 . (3.17)
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Therefore (𝜙𝑛) is bounded in 𝐻1
0 (𝜀−1D)3 and we find a weakly converging subsequence (denoted the same)

converging to some element 𝜙 ∈ 𝐻1
0 (𝜀−1D)3 satisfying div(𝜙) = 0. Since also curl(𝜙𝑛) ⇀ curl(𝜙) weakly in

𝐿2(𝜀−1D)3, we conclude

‖ curl(𝜙−𝐾)‖𝐿2(𝜀−1D)3 ≤ lim
𝑛→∞

‖ curl(𝜙𝑛 −𝐾)‖𝐿2(𝜀−1D)3 , (3.18)

which together with (3.16) shows that (3.15) admits a solution. The uniqueness follows from that fact that
𝜙 ↦→ ‖ curl(𝜙)‖2𝐿2(𝜀−1D)3 is strictly convex on {𝜙 ∈ 𝐻1

0 (𝜀−1D)3 : div(𝜙) = 0}.
As for 𝐾*

𝜀 , we can also view 𝐻*
𝜀 and 𝐾̂*

𝜀 as elements of BL(R3)3 by extending them by 0 outside of 𝜀−1D.

Lemma 3.9. It holds that

curl 𝐾̂*
𝜀 → curl𝐾 strongly in 𝐿2(R3)3 as 𝜀↘ 0. (3.19)

Proof. We readily check that the minimiser to (3.15) satisfies∫︁
𝜀−1D

curl 𝐾̂*
𝜀 · curl𝜙 d𝑥 =

∫︁
𝜀−1D

curl𝐾 · curl𝜙 d𝑥 for all 𝜙 ∈ 𝐻1
0 (𝜀−1D)3, div(𝜙) = 0. (3.20)

Choosing 𝜙 = 𝐾̂*
𝜀 and using Hölder’s inequality and the fact that (see (2.5))

‖ curl 𝑣‖𝐿2(𝜀−1D)3 = ‖∇𝑣‖𝐿2(𝜀−1D)3×3 for all 𝑣 ∈ 𝐻1
0 (𝜀−1D)3 with div(𝑣) = 0, (3.21)

we obtain

‖∇𝐾̂*
𝜀 ‖2𝐿2(𝜀−1D)3×3 = ‖ curl 𝐾̂*

𝜀 ‖2𝐿2(𝜀−1D)3

≤ ‖ curl𝐾‖𝐿2(𝜀−1D)3‖ curl 𝐾̂*
𝜀 ‖𝐿2(𝜀−1D)3

= ‖ curl𝐾‖𝐿2(𝜀−1D)3‖∇𝐾̂*
𝜀 ‖𝐿2(𝜀−1D)3×3 . (3.22)

This implies ‖∇𝐾̂*
𝜀 ‖𝐿2(R3)3×3 ≤ 𝐶 for all 𝜀 > 0. Now fix 𝜀 > 0 and let 𝜀 ∈ (0, 𝜀). Then we obtain from (3.20)

(by extending 𝐾 and 𝐾̂*
𝜀 by zero outside of 𝜀−1D),∫︁

R3
curl 𝐾̂*

𝜀 · curl𝜙 d𝑥 =
∫︁
R3

curl𝐾 · curl𝜙 d𝑥 for all 𝜙 ∈ 𝐻1
0 (𝜀−1D)3, div(𝜙) = 0. (3.23)

Let (𝜀𝑛) be a null-sequence. In view of the boundedness of (𝐾̂*
𝜀𝑛

) in ḂL(R3)3, we can extract a subsequence
(denoted the same) and find 𝐾̃ ∈ ḂL(R3)3, such that ∇𝐾̂*

𝜀𝑛
⇀ ∇𝐾̃ and thus also curl 𝐾̂*

𝜀𝑛
⇀ curl 𝐾̃ weakly in

𝐿2(R3)3. Therefore, selecting 𝜀 = 𝜀𝑛 in (3.23) we can pass to the limit 𝑛→∞ to obtain∫︁
R3

curl 𝐾̃ · curl𝜙 d𝑥 =
∫︁
R3

curl𝐾 · curl𝜙 d𝑥 for all 𝜙 ∈ 𝐻1
0 (𝜀−1D)3, div(𝜙) = 0. (3.24)

Since div(𝐾̂*
𝜀 ) = 0 for all 𝜀 > 0 and in view of the weak convergence ∇𝐾̂*

𝜀𝑛
⇀ ∇𝐾̃, it is also readily checked

that div(𝐾̃) = 0. Since 𝜀 was arbitrary and since 𝐶∞𝑐 (R3)/R is dense in ḂL(R3) it follows that (3.24) holds
for test functions in BL(R3)3 from which we conclude that 𝐾̃ = 𝐾. Therefore 𝐾̂*

𝜀 ⇀ 𝐾 weakly in ḂL(R3)3.
The strong convergence follows by testing (3.20) with 𝜙 = 𝐾̂*

𝜀 and passing to the limit 𝜀↘ 0. This shows that
‖ curl 𝐾̂*

𝜀 ‖𝐿2(R3)3 → ‖ curl𝐾‖𝐿2(R3)3 as 𝜀 ↘ 0. Since in a Hilbert space norm convergence together with weak
convergence implies strong convergence we finish the proof. �

Lemma 3.10. We have

curl𝐻*
𝜀 → curl𝐾 strongly in 𝐿2(R3)3 as 𝜀↘ 0. (3.25)
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Proof. Subtracting (3.14) from (3.5) and introducing a zero term leads to∫︁
R3

(𝒜𝜔(𝑥, curl 𝐾̂*
𝜀 + 𝑈0)−𝒜𝜔(𝑥, curl𝐻*

𝜀 + 𝑈0)) · curl𝜙 d𝑥

=
∫︁
R3

(𝒜𝜔(𝑥, curl 𝐾̂*
𝜀 + 𝑈0)−𝒜𝜔(𝑥, curl𝐾 + 𝑈0)) · curl𝜙 d𝑥 (3.26)

for all 𝜙 ∈ 𝐻1
0 (𝜀−1D)3. Here we used the observation of Remark 3.3 and 𝐻1

0 (𝜀−1D)3 ⊂ ḂL(R3)3. Now we test
this equation with 𝜙 = 𝐾̂*

𝜀 −𝐻*
𝜀 ∈ 𝐻1

0 (𝜀−1D)3 ⊂ ḂL(R3)3, use the monotonicity of 𝒜𝜔 and Hölder’s inequality:

𝐶‖ curl(𝐾̂*
𝜀 −𝐻*

𝜀 )‖2𝐿2(R3)3

≤
∫︁
R3

(𝒜𝜔(𝑥, curl 𝐾̂*
𝜀 + 𝑈0)−𝒜𝜔(𝑥, curl𝐻*

𝜀 + 𝑈0)) · curl(𝐾̂*
𝜀 −𝐻*

𝜀 ) d𝑥

(3.26)
=

∫︁
R3

(𝒜𝜔(𝑥, curl 𝐾̂*
𝜀 + 𝑈0)−𝒜𝜔(𝑥, curl𝐾 + 𝑈0)) · curl(𝐾̂*

𝜀 −𝐻*
𝜀 ) d𝑥

≤ ‖ curl(𝐾̂*
𝜀 −𝐾)‖𝐿2(R3)3‖ curl(𝐾̂*

𝜀 −𝐻*
𝜀 )‖𝐿2(R3)3 . (3.27)

It follows from Lemma 3.9, we have curl 𝐾̂*
𝜀 → curl𝐾 strongly in 𝐿2(R3)3. Therefore (3.27) implies curl(𝐾̂*

𝜀 −
𝐻*

𝜀 ) → 0 strongly in 𝐿2(R3)3 and therefore also ‖ curl(𝐻*
𝜀 −𝐾)‖𝐿2(R3)3 ≤ ‖ curl(𝐻*

𝜀 −𝐾̂*
𝜀 )‖𝐿2(R3)3 +‖ curl(𝐾̂*

𝜀 −
𝐾)‖𝐿2(R3)3 → 0 as 𝜀↘ 0. �

We now prove that curl(𝐻*
𝜀 −𝐾*

𝜀 ) → 0 strongly in 𝐿2(R3)3.

Lemma 3.11. Assume there are 𝛿 > 0 and 𝛼 > 0, such that curl𝑢0 ∈ 𝐶𝛼(𝐵𝛿(𝑧))3. Then we have

curl(𝐻*
𝜀 −𝐾*

𝜀 ) → 0 strongly in 𝐿2(R3)3 as 𝜀↘ 0. (3.28)

Proof. Subtracting (3.13) and (3.14) we obtain∫︁
R3

(𝒜𝜔(𝑥, curl𝐾*
𝜀 + curl𝑢0(𝑥𝜀))−𝒜𝜔(𝑥, curl𝐻*

𝜀 + 𝑈0)) · curl𝜙 d𝑥

+
∫︁
R3

(𝒜𝜔(𝑥, 𝑈0)−𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀))) · curl𝜙 d𝑥

= −
∫︁

𝜔

(𝑎1(curl𝑢0(𝑥𝜀))− 𝑎2(curl𝑢0(𝑥𝜀))) · curl𝜙− (𝑎1(𝑈0)− 𝑎2(𝑈0)) · curl𝜙 d𝑥 (3.29)

for all 𝜙 ∈ 𝐻1
0 (𝜀−1D)3 where we recall the notation 𝑥𝜀 = 𝜀𝑥. We want to use the monotonicity of 𝒜𝜔 and

therefore we rewrite the previous equation as follows∫︁
R3

(𝒜𝜔(𝑥, curl𝐾*
𝜀 + curl𝑢0(𝑥𝜀))−𝒜𝜔(𝑥, curl𝐻*

𝜀 + curl𝑢0(𝑥𝜀)))) · curl𝜙 d𝑥

= −
∫︁
R3

((𝒜𝜔(𝑥, curl𝐻*
𝜀 + curl𝑢0(𝑥𝜀))− (𝒜𝜔(𝑥, curl𝐻*

𝜀 + 𝑈0) · curl𝜙 d𝑥⏟  ⏞  
=:𝐼1(𝜀,𝜙)

−
∫︁
R3

(𝒜𝜔(𝑥, 𝑈0)−𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀))) · curl𝜙 d𝑥⏟  ⏞  
=:𝐼2(𝜀,𝜙)

−
∫︁

𝜔

(𝑎1(curl𝑢0(𝑥𝜀))− 𝑎2(curl𝑢0(𝑥𝜀))) · curl𝜙 d𝑥− (𝑎1(𝑈0)− 𝑎2(𝑈0)) · curl𝜙 d𝑥⏟  ⏞  
=:𝐼3(𝜀,𝜙)

. (3.30)
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Now the 𝑎𝑖 are Lipschitz continuous and curl𝑢0 ∈ 𝐶𝛼(𝐵𝛿(𝑧))3 with 𝛼, 𝛿 > 0, we immediately obtain that
|𝐼3(𝜀, 𝜙)| ≤ 𝐶𝜀𝛼‖ curl𝜙‖𝐿2(R3)3 for a suitable constant 𝐶 > 0. We now show that also |𝐼1(𝜀, 𝜙) + 𝐼2(𝜀, 𝜙)| ≤
𝐶(𝜀)‖ curl𝜙‖𝐿2(R3)3 and 𝐶(𝜀) → 0 as 𝜀↘ 0. We write for arbitrary 𝑟 ∈ (0, 1),

𝐼1(𝜀, 𝜙) + 𝐼2(𝜀, 𝜙) = −
∫︁

𝐵𝜀−𝑟

((𝒜𝜔(𝑥, curl𝐻*
𝜀 + curl𝑢0(𝑥𝜀))− (𝒜𝜔(𝑥, curl𝐻*

𝜀 + 𝑈0) · curl𝜙 d𝑥

−
∫︁

𝐵𝜀−𝑟

(𝒜𝜔(𝑥, 𝑈0)−𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀))) · curl𝜙 d𝑥

−
∫︁
R3∖𝐵𝜀−𝑟

((𝒜𝜔(𝑥, curl𝐻*
𝜀 + curl𝑢0(𝑥𝜀))− (𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀)) · curl𝜙 d𝑥

+
∫︁
R3∖𝐵𝜀−𝑟

((𝒜𝜔(𝑥, curl𝐻*
𝜀 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)) · curl𝜙 d𝑥. (3.31)

Now we can estimate the right hand side of (3.31) using the Lipschitz continuity of 𝑎𝑖 (see Assumption A(ii))
as follows

|𝐼1(𝜀, 𝜙) + 𝐼2(𝜀, 𝜙)| ≤ 2𝐶
∫︁

𝐵𝜀−𝑟

|𝑈0 − curl𝑢0(𝑥𝜀)|| curl𝜙| d𝑥+ 2𝐶
∫︁
R3∖𝐵𝜀−𝑟

| curl𝐻*
𝜀 | | curl𝜙| d𝑥

≤ 𝐶

∫︁
𝐵𝜀−𝑟

|𝑥𝜀|𝛼| curl𝜙|d𝑥+ 2𝐶
∫︁
R3∖𝐵𝜀−𝑟

| curl𝐻*
𝜀 | | curl𝜙| d𝑥

≤ 𝜀−𝑟𝛼𝜀𝛼𝜀−3𝑟/2𝐶‖ curl𝜙‖𝐿2(R3)3 + 2𝐶‖ curl𝐻*
𝜀 ‖𝐿2(R3∖𝐵𝜀−𝑟 )3‖ curl𝜙‖𝐿2(R3∖𝐵𝜀𝑟 )3 (3.32)

For 𝑟 sufficiently close to 0, we have 𝜀−𝑟𝛼𝜀𝛼𝜀−3𝑟/2 = 𝜀𝛼−𝑟( 3
2+𝛼) → 0. Moreover, by the triangle inequality we

have
‖ curl𝐻*

𝜀 ‖𝐿2(R3∖𝐵𝜀−𝑟 )3 ≤ ‖ curl(𝐻*
𝜀 −𝐾)‖𝐿2(R3∖𝐵𝜀−𝑟 )3 + ‖ curl𝐾‖𝐿2(R3∖𝐵𝜀−𝑟 )3 . (3.33)

The first term on the right hand side goes to zero in view of Lemma 3.10. The second term goes to zero since
curl𝐾 ∈ 𝐿2(R3)3 thus ‖ curl𝐾‖𝐿2(R3∖𝐵𝜀−𝑟 )3 → 0 as 𝜀 ↘ 0. Using 𝐾*

𝜀 − 𝐻*
𝜀 as test function in (3.30), using

the monotonicity of 𝒜𝜔 and employing |𝐼1(𝜀, 𝜙) + 𝐼2(𝜀, 𝜙) + 𝐼3(𝜀, 𝜙)| ≤ 𝐶(𝜀)‖ curl𝜙‖𝐿2(R3)3 with 𝐶(𝜀) → 0 as
𝜀↘ 0, shows the result. �

Combining Lemmas 3.10 and 3.11 proves the Main Theorem 1(ii). �

4. The topological derivative

In this section we show that the hypotheses of Theorem A.4 are satisfied for the Lagrangian 𝐺 given by (4.1).
Let ℓ(𝜀) := |𝜔𝜀|, and introduce the Lagrangian 𝐺 : [0, 𝜏 ]×𝐻0(D, curl)×𝐻0(D, curl) → R associated with the

perturbation 𝜔𝜀 by

𝐺(𝜀, 𝑢, 𝑝) :=
∫︁

Ω𝑔

| curl(𝑢)−𝐵𝑑|2 d𝑥+
∫︁

D

𝒜Ω𝜀
(𝑥, curl𝑢) · curl 𝑝 d𝑥− ⟨𝐹, 𝑝⟩. (4.1)

Here, the operator 𝒜Ω𝜀
is defined according to (1.3) with Ω𝜀 = Ω ∪ 𝜔𝜀. It is clear from Assumption A that the

Lagrangian 𝐺 is ℓ-differentiable in the sense of Definition A.3 with 𝑋 = 𝑌 = 𝑉 (D)3 and ℓ(𝜀) := |𝜔𝜀|.

Main Theorem 2. Let Assumption A be satisfied. Let Ω ⊂ 𝐷 open and 𝑢0 the solution to (1.2) and 𝑝0 the
solution to (4.6). Let 𝑧 ∈ D ∖ Ω, such that 𝑧 ̸∈ (Ω1 ∪ Ω2 ∪ Ω𝑔). Further assume that curl𝑢0 ∈ 𝐶𝛼(𝐵𝛿(𝑧))3 for
some 𝛿 > 0 and 0 < 𝛼 < 1 and also curl 𝑝0 ∈ 𝐶(𝐵𝛿(𝑧))3 ∩ 𝐿∞(D)3.
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(a) Then the assumptions of Theorem A.4 are satisfied for the Lagrangian 𝐺 given by (4.1) and hence the
topological derivative at 𝑧 ∈ D ∖ Ω is given by

d𝐽(Ω)(𝑧) = 𝜕ℓ𝐺(0, 𝑢0, 𝑝0) +𝑅1(𝑢0, 𝑝0) +𝑅2(𝑢0, 𝑝0). (4.2)

(b) We have
𝜕ℓ𝐺(0, 𝑢0, 𝑝0) = ((𝑎1(𝑈0)− 𝑎2(𝑈0)) · 𝑃0 (4.3)

and

𝑅1(𝑢0, 𝑝0) =
1
|𝜔|

(︂ ∫︁
R3

[︀
𝒜𝜔(𝑥, curl𝐾 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)− 𝜕𝑢𝒜𝜔(𝑥, 𝑈0)(curl𝐾)

]︀
· 𝑃0 d𝑥

)︂
(4.4)

and
𝑅2(𝑢0, 𝑝0) =

1
|𝜔|

∫︁
𝜔

[𝜕𝑢𝑎1(𝑈0)− 𝜕𝑢𝑎2(𝑈0)] (curl𝐾) · 𝑃0 d𝑥 (4.5)

where 𝑈0 := curl𝑢0(𝑧), 𝑃0 := curl 𝑝0(𝑧) and 𝒜𝜔(𝑥, 𝑦) := 𝑎1(𝑦)𝜒𝜔(𝑥) + 𝑎2(𝑦)𝜒R3∖𝜔(𝑥), and 𝐾 is the unique
solution to (3.5) and 𝑝0 ∈ 𝑉 (D)3 solves∫︁

D

𝜕𝑢𝒜Ω(𝑥, curl𝑢0)(curl𝜙) · curl 𝑝0 d𝑥 = −
∫︁

D

2(curl𝑢0 −𝐵𝑑) · curl𝜙 d𝑥 (4.6)

for all 𝜙 ∈ 𝑉 (D)3.

Remark 4.1. – We restrict ourselves to the case where 𝑧 ∈ 𝐷 ∖ Ω without loss of generality. However, the
exact same proof can be conducted in the case where 𝑧 ∈ Ω and 𝑧 ̸∈ (Ω1∪Ω2∪Ω𝑔). In that case, the formula
for the topological derivative is obtained by just switching the roles of 𝑎1 and 𝑎2 in the theorem above (in
particular also in the definition of 𝒜𝜔).

– Also the case where 𝑧 ∈ Ω1 ∪ Ω2 ∪ Ω𝑔 can be dealt with in a similar manner. Indeed the derivation of [13]
shows that for instance if 𝑧 ∈ Ω𝑔 an additional term

∫︀
R3 |∇𝐾|2 d𝑥 in d𝐽(Ω)(𝑧) appears. The case 𝑧 ∈ Ω1

and/or 𝑧 ∈ Ω2 have to be treated separately since in this case the right hand side 𝐹 becomes domain
dependent.

– The assumption 𝑧 = 0 is without loss of generality, too. In the general case, this situation can be obtained
by a simple change of the coordinate system.

– Recall that we made the assumption Ω = ∅. The general case can be treated similarly by small modifications.

4.1. Computation of 𝑅1(𝑢0, 𝑝0) and 𝑅2(𝑢0, 𝑝0)

It remains to check that the limits of 𝑅1(𝑢0, 𝑝0) and 𝑅2(𝑢0, 𝑝0) exist. For this we use Assumption A(i)–(iii).
Using the change of variables 𝑇𝜀(𝑥) = 𝜀𝑥 and the definition ℓ(𝜀) = |𝜔𝜀| = 𝜀3|𝜔|, we have

𝑅𝜀
1(𝑢0, 𝑝0) =

1
ℓ(𝜀)

∫︁ 1

0

∫︁
D

(𝜕𝑢𝒜𝜀(𝑥, curl(𝑠𝑢𝜀 + (1− 𝑠)𝑢0))− 𝜕𝑢𝒜𝜀(𝑥, curl𝑢0)) (curl(𝑢𝜀 − 𝑢0)) · curl 𝑝0 d𝑥 d𝑠

+
1
ℓ(𝜀)

∫︁
Ω𝑔

| curl(𝑢𝜀 − 𝑢0)|2 d𝑥

=
1
|𝜔|

∫︁ 1

0

∫︁
R3

(𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾*
𝜀 + curl𝑢0(𝑥𝜀))− 𝜕𝑢𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀))) (curl𝐾*

𝜀 ) · curl 𝑝0(𝑥𝜀) d𝑥 d𝑠⏟  ⏞  
=:𝐼𝜀

+
1
|𝜔|

∫︁
𝜀−1Ω𝑔

| curl𝐾*
𝜀 |2 d𝑥⏟  ⏞  

=:𝐼𝐼𝜀

→ 1
|𝜔|

∫︁ 1

0

∫︁
R3

(𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾 + 𝑈0)− 𝜕𝑢𝒜𝜔(𝑥, 𝑈0)) (curl𝐾) · 𝑃0 d𝑥 d𝑠.

(4.7)
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Since curl𝐾*
𝜀 → curl𝐾 strongly in 𝐿2(R3)3 as 𝜀 ↘ 0 and since 𝜀−1Ω𝑔 goes to “infinity” because 𝑧 ̸∈ Ω𝑔 it

readily follows that 𝐼𝐼𝜀 → 0 as 𝜀↘ 0. To see the convergence of the first term, we may write 𝐼𝜀as follows∫︁ 1

0

∫︁
R3

(𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾*
𝜀 + curl𝑢0(𝑥𝜀))− 𝜕𝑢𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀)))(curl𝐾*

𝜀 ) · curl 𝑝0(𝑥𝜀) d𝑥d𝑠

=
∫︁ 1

0

∫︁
R3

(𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾*
𝜀 + curl𝑢0(𝑥𝜀))− 𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾 + curl𝑢0(𝑥𝜀)))(curl𝐾*

𝜀 ) · curl 𝑝0(𝑥𝜀) d𝑥 d𝑠

+
∫︁ 1

0

∫︁
R3

(𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾 + curl𝑢0(𝑥𝜀))− 𝜕𝑢𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀)))(curl(𝐾*
𝜀 −𝐾)) · curl 𝑝0(𝑥𝜀) d𝑥 d𝑠

+
∫︁ 1

0

∫︁
R3

(𝜕𝑢𝒜𝜔(𝑥, 𝑠 curl𝐾 + curl𝑢0(𝑥𝜀))− 𝜕𝑢𝒜𝜔(𝑥, curl𝑢0(𝑥𝜀)))(curl𝐾) · curl 𝑝0(𝑥𝜀) d𝑥d𝑠.

Using Assumption A(iii) and curl 𝑝0 ∈ 𝐿∞(D)3, we see that the absolute value of the first and second term on the
right hand side can be bounded by 𝐶‖ curl(𝐾*

𝜀 −𝐾)‖𝐿2(R3)3‖ curl𝐾‖𝐿2(R3)3 and hence using curl𝐾*
𝜀 → curl𝐾

in 𝐿2(R3)3 as 𝜀↘ 0 they disappear in the limit. The last term converges to the desired limit by using Lebesgue’s
dominated convergence theorem. Using the fundamental theorem, we obtain the expression in (4.4). Similarly,
using (1.8), the continuity of curl𝑢0 and curl 𝑝0 at 𝑧, the continuity of 𝜕𝑢𝑎1, 𝜕𝑢𝑎2, and again curl𝐾*

𝜀 → curl𝐾
strongly in 𝐿2(R3)3, we obtain by Lebesgue’s dominated convergence theorem

𝑅𝜀
2(𝑢, 𝑝) =

1
ℓ(𝜀)

∫︁
𝜔𝜀

(𝜕𝑢𝑎1(curl𝑢0)− 𝜕𝑢𝑎1(curl𝑢0))(curl(𝑢𝜀 − 𝑢0)) · curl 𝑝0 d𝑥

=
1
|𝜔|

∫︁
𝜔

(𝜕𝑢𝑎1(curl𝑢0(𝑥𝜀))− 𝜕𝑢𝑎2(curl𝑢0(𝑥𝜀)))(curl𝐾*
𝜀 ) · curl 𝑝0(𝑥𝜀) d𝑥

→ 1
|𝜔|

∫︁
𝜔

(𝜕𝑢𝑎1(𝑈0)− 𝜕𝑢𝑎2(𝑈0))(curl𝐾) · 𝑃0 d𝑥. (4.8)

Therefore all Hypotheses of Theorem A.4 are satisfied. This finishes the proof of our Main Theorem 2.

5. Numerical realization

Formula (4.2) together with (4.3)–(4.6) states the topological derivative for problem (1.1) and (1.2) at a single
spatial point 𝑧. Note that the evaluation of the topological derivative involves the solution of problem (3.5),
which in turn depends on the point 𝑧 via the vector 𝑈0 = curl(𝑢0)(𝑧). When using the topological derivative (4.2)
in a numerical optimization algorithm, it has to be evaluated at every point in the design area in every iteration
of the algorithm. Therefore, a direct evaluation of (4.2) is unfeasible and an efficient technique for numerical
approximation is indispensable. In this section, we show a way to approximately evaluate formula (4.2) by first
precomputing certain values in an offline phase and looking them up and interpolating them during the online
phase of the optimization algorithm. We proceed in an analogous way to [4], Section 7.

For this, we need the following additional assumption:

Assumption B. (i) For all orthogonal matrices 𝑅 ∈ R3×3 and all 𝑦 ∈ R3, it holds that

𝑎𝑖(𝑅𝑦) = 𝑅𝑎𝑖(𝑦) for 𝑖 = 1, 2. (5.1)

(ii) The inclusion is the unit ball: 𝜔 = 𝐵1(0).

We will show a concrete application that satisfies this assumption in Section 6. We note that the topological
derivative (4.2) depends on the spatial point 𝑧 only via 𝑈0, 𝑃0 and 𝐾 = 𝐾𝑈0 . Let us make this dependence
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more clear by introducing the notation

d𝐽(Ω)(𝑈0, 𝑃0) := ((𝑎1(𝑈0)− 𝑎2(𝑈0)) · 𝑃0 (5.2)

+
1
|𝜔|

(︂ ∫︁
R3

[︀
𝒜𝜔(𝑥, curl𝐾𝑈0 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)− 𝜕𝑢𝒜𝜔(𝑥, 𝑈0)(curl𝐾𝑈0)

]︀
· 𝑃0 d𝑥

)︂
(5.3)

+
1
|𝜔|

∫︁
𝜔

[𝜕𝑢𝑎1(𝑈0)− 𝜕𝑢𝑎2(𝑈0)] (curl𝐾𝑈0) · 𝑃0 d𝑥. (5.4)

Remark 5.1. Recall that 𝑒𝑖, 𝑖 = 1, 2, 3, denotes the 𝑖-th unit vector in the Cartesian coordinate system in R3.
For every vector 𝑊 ∈ R3 there exists an orthogonal rotation matrix 𝑅𝑊 such that 𝑊 = |𝑊 |𝑅𝑊 𝑒1.

The next result will allow us to introduce an efficient strategy for the approximate evaluation of the topological
derivative d𝐽(𝑈0, 𝑃0) for any 𝑈0, 𝑃0 ∈ R3.

Main Theorem 3. Let Assumption B hold and 𝑈0, 𝑃0 ∈ R3. Then it holds:

(i) the mapping 𝑃 ↦→ d𝐽(Ω)(𝑈0, 𝑃 ) is linear on R3,
(ii) d𝐽(Ω)(𝑅⊤𝑈0, 𝑅

⊤𝑃0) = d𝐽(Ω)(𝑈0, 𝑃0) for all orthogonal matrices 𝑅 ∈ R3×3.
(iii) Write 𝑈0 = |𝑈0|𝑅𝑈0𝑒1 and 𝑃0 = |𝑃0|𝑅𝑃0𝑒1 for some orthogonal matrices 𝑅𝑈0 , 𝑅𝑃0 ∈ R3×3 and set

(𝑐1, 𝑐2, 𝑐3)⊤ := |𝑃0|𝑅⊤𝑈0
𝑅𝑃0𝑒1. Then we have

d𝐽(Ω)(𝑈0, 𝑃0) = 𝑐1d𝐽(Ω)(|𝑈0|𝑒1, 𝑒1) + 𝑐2d𝐽(Ω)(|𝑈0|𝑒1, 𝑒2) + 𝑐3d𝐽(Ω)(|𝑈0|𝑒1, 𝑒3). (5.5)

Corollary 5.2. Let Assumption B hold. Suppose that the values d𝐽(Ω)(𝑡𝑒1, 𝑒𝑖), 𝑖 = 1, 2, 3 are given for all
𝑡 ∈ [𝑡min, 𝑡max] with 0 ≤ 𝑡min < 𝑡max. Then, for all 𝑈0 ∈ R3 with 𝑡min ≤ |𝑈0| ≤ 𝑡max and all 𝑃0 ∈ R3 it holds

d𝐽(Ω)(𝑈0, 𝑃0) = 𝑐1d𝐽(Ω)(|𝑈0|𝑒1, 𝑒1) + 𝑐2d𝐽(Ω)(|𝑈0|𝑒1, 𝑒2) + 𝑐3d𝐽(Ω)(|𝑈0|𝑒1, 𝑒3). (5.6)

with (𝑐1, 𝑐2, 𝑐3)⊤ = |𝑃0|𝑅⊤𝑈0
𝑅𝑃0𝑒1.

We first prove the following properties of the solution mapping 𝑊 ↦→ 𝐾𝑊 , where 𝐾𝑊 denotes the unique
solutions in ˙BLC(R3) to (3.5) with 𝑈0 being replaced by 𝑊 ∈ R3.

Lemma 5.3. Let Assumption B hold. Let 𝑊 ∈ R3, 𝑅 ∈ R3×3 orthogonal. Then the following relations hold:

𝐾𝑅⊤𝑊 (𝑥) = 𝑅⊤𝐾𝑊 (𝑅𝑥) +∇𝜂, (5.7)

curl(𝐾𝑅⊤𝑊 )(𝑥) = 𝑅⊤(curl(𝐾𝑊 ))(𝑅𝑥). (5.8)

Proof. To see the first identity, we perform the change of variables 𝑦 = Φ(𝑥) = 𝑅𝑥 in (3.5) with 𝑈0 replaced by
𝑊 . Noting that the chain rule yields

curl𝑦(𝐾) ∘ Φ = 𝑅 curl𝑥(𝑅𝑇 (𝐾 ∘ Φ)), (5.9)

where we used det(𝑅) = 1, we get for (3.5)∫︁
R3

(︂
𝒜Φ−1(𝜔)(𝑥,𝑅 curl𝑥(𝐾̃) +𝑊 )−𝒜Φ−1(𝜔)(𝑥,𝑊 )

)︂
·𝑅 curl𝑥(𝜙) =

−
∫︁

𝜑−1(𝜔)

(︂
𝑎1(𝑊 )− 𝑎2(𝑊 )

)︂
·𝑅 curl𝑥(𝜙).

Here we used the notation 𝐾̃ = 𝑅⊤(𝐾𝑊 ∘Φ) and 𝜙 = 𝑅⊤(𝜙∘Φ). Using Assumption B, this can be rewritten as∫︁
R3

(︂
𝒜𝜔(𝑥, curl𝑥(𝐾̃) +𝑅⊤𝑊 )−𝒜𝜔(𝑥,𝑅⊤𝑊 )

)︂
· curl𝑥(𝜙) = −

∫︁
𝜔

(︂
𝑎1(𝑅⊤𝑊 )− 𝑎2(𝑅⊤𝑊 )

)︂
· curl𝑥(𝜙).



S868 P. GANGL AND K. STURM

Since 𝐾𝑅⊤𝑊 is the unique solution in ˙BLC(R3) to the problem above, we conclude that 𝑅⊤(𝐾𝑊 ∘ Φ) = 𝐾̃ =
𝐾𝑅⊤𝑊 in ˙BLC(R3). Finally this relation together with (5.9) yields

curl𝑥(𝐾𝑅⊤𝑊 ) = curl𝑥(𝑅⊤(𝐾𝑊 ∘ Φ)) = 𝑅⊤ curl𝑦(𝐾𝑊 ) ∘ Φ. (5.10)

�

Proof of Main Theorem 3. The first statement can be seen directly from (5.2) to (5.4). The second result follows
immediately by Assumption B using (5.8) noting that Assumption B(i) implies 𝜕𝑢𝑎𝑖(𝑅𝑦)(𝑅𝑧) = 𝑅𝜕𝑢𝑎𝑖(𝑦)(𝑧)
for 𝑅 ∈ R3×3 orthogonal and 𝑦, 𝑧 ∈ R3 and 𝑖 = 1, 2.

Using the representations 𝑈0 = |𝑈0|𝑅𝑈0𝑒1 and 𝑃0 = |𝑃0|𝑅𝑃0𝑒1 and item (ii), we get

d𝐽(Ω)(𝑈0, 𝑃0) = d𝐽(Ω)(|𝑈0|𝑅𝑈0𝑒1, |𝑃0|𝑅𝑃0𝑒1) = d𝐽(Ω)(|𝑈0|𝑒1, |𝑃0|𝑅⊤𝑈0
𝑅𝑃0𝑒1).

The result now follows from the definition (𝑐1, 𝑐2, 𝑐3)⊤ = |𝑃0|𝑅⊤𝑈0
𝑅𝑃0𝑒1 and the linearity of d𝐽(Ω)(·, ·) in the

second argument (cf. item (i)). �

Our proposed strategy now consists in first precomputing d𝐽(Ω)(𝑡𝑒1, 𝑒𝑖), 𝑖 = 1, 2, 3 for a range of values of
𝑡 = |𝑈0| = | curl𝑢0(𝑧)| between a minimum value 𝑡min = 0 and a maximum value 𝑡max in an offline stage. During
the optimization, the values of d𝐽(Ω)(𝑡𝑒1, 𝑒𝑖) for any 𝑡 ∈ [𝑡min, 𝑡max] can be approximated by interpolation
and the topological derivative can be (approximately) evaluated with the help of Corollary 5.2. In practical
applications, often reasonable values for 𝑡max are known.

For the precomputation of the values d𝐽(Ω)(𝑡𝑒1, 𝑒𝑖) for a fixed 𝑡 ∈ [𝑡min, 𝑡max], problem (3.5) has to be solved
with 𝑈0 := 𝑡𝑒1. For the numerical solution of (3.5) recall that the solution 𝐻𝜀 to (3.14) is a good approximation
of 𝐾 for small 𝜀 > 0 due to Lemma 3.10. Moreover, it can be shown in an analogous way to Lemma 3.10 that
for 𝐵 := 𝐵𝑅(0) with 𝑅 such that 𝐵 ⊂ D, the solution 𝐻̃𝜀 ∈ 𝑉 (𝜀−1𝐵)3 to∫︁

𝜀−1𝐵

(𝒜𝜔(𝑥, curl 𝐻̃𝜀 + 𝑈0)−𝒜𝜔(𝑥, 𝑈0)) · curl𝜙 d𝑥

= −
∫︁

𝜔

(𝑎1(𝑈0)− 𝑎2(𝑈0)) · curl𝜙 d𝑥 for all 𝜙 ∈ 𝑉 (𝜀−1𝐵)3. (5.11)

satisfies curl 𝐻̃𝜀 → curl𝐾 strongly in 𝐿2(R3). Motivated by this observation, one may solve (5.11) with
𝐵 = 𝐵1(0) and a comparatively small value for 𝜀, e.g., 𝜀 = 1/1000, as a good approximation to (3.5).

6. Application to electrical machines

In this section we show a real-world application where the setting of this paper applies. We consider the
topology optimisation of an electrical machine in the setting of three-dimensional magnetostatics with nonlinear
material behavior.

6.1. Physical modeling

The magnetostatic regime is a low frequency approximation to the full Maxwell equations where all quantities
are assumed to be time-independent and where one only considers the magnetic equations

curl𝐻 = 𝐽𝑖 and div𝐵 = 0. (6.1)

Here, 𝐽𝑖 denotes the impressed current density, and the magnetic field intensity 𝐻 and the magnetic flux density
𝐵 are related by the nonlinear material law

𝐻 = 𝜈(|𝐵|)(𝐵 −𝑀), (6.2)
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Figure 2. Three-dimensional model of electrical machine D with ferromagnetic subdomain Ω
(red), permanent magnet regions Ω2 (yellow), air subdomain D ∖ (Ω ∪ Ω2) (blue) with air gap
region Ω𝑔 (turquoise), lateral boundaries Γ𝑙, Γ𝑟 and inner and outer boundaries Γ𝐵 .

where 𝜈 : R+
0 → R+

0 is the material-dependent magnetic relucitivity and 𝑀 denotes the permanent magnetiza-
tion. Due to symmetry, we consider only a quarter of the machine. Let D = {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑟0 <

√︀
𝑥2 + 𝑦2 < 𝑟3,

−2.5 < 𝑧 < 2.5} with 𝑟0 = 4mm and 𝑟3 = 33mm the bounded, simply connected Lipschitz domain which con-
tains the quarter of the electric motor as depicted in Figure 2. We set periodic boundary conditions on the
lateral boundaries Γ𝑙 and Γ𝑟, natural boundary conditions 𝜈(|𝐵|)𝐵 × 𝑛 = 0 on the top and bottom and induc-
tion boundary conditions 𝐵 · 𝑛 = 0 on the inner and outer parts Γ𝐵 of 𝜕D.

The motor consists of an inner, rotating part (the rotor) and an outer, fixed part (the stator), both containing
ferromagnetic components. They are separated by a thin air gap Ω𝑔 = {(𝑥, 𝑦, 𝑧) ∈ D : 𝑟1 <

√︀
𝑥2 + 𝑦2 < 𝑟2} with

𝑟1 = 19.67 mm and 𝑟2 = 19.83 mm, see the turquoise area in Figure 2. We denote the union of all ferromagnetic
subdomains by Ω which we assume to be open. The current density 𝐽𝑖 is in general supported in the coil regions
Ω1 ⊂ D ∖ Ω, which lie between the air gap and the stator core. The magnetization 𝑀 is supported in the
permanent magnets Ω2 ⊂ D ∖ Ω. In this particular application, which was also treated in a two-dimensional
setting in [4, 14], we assume the currents to be switched off, i.e., 𝐽𝑖 = 0 and therefore treat Ω1 as air.

The magnetic reluctivity 𝜈 is equal to a constant 𝜈0 = 107/(4𝜋) in the air and coil subdomains of the
computational domain, a constant 𝜈𝑚 close to 𝜈0 in the permanent magnet regions Ω2 and is given by a
nonlinear function 𝜈 in the ferromagnetic subdomain Ω. For more compact presentation we assume 𝜈𝑚 = 𝜈0.
Moreover, we assume that 𝜈 has the following properties:

Assumption C. We assume that the magnetic reluctivity function 𝜈 : R+
0 → R+ satisfies:

(i) The mapping 𝑠 ↦→ 𝜈(𝑠)𝑠, is strongly monotone, i.e., there is a constant 𝜈 such that

(𝜈(𝑠)𝑠− 𝜈(𝑡)𝑡) (𝑠− 𝑡) ≥ 𝜈(𝑠− 𝑡)2. (6.3)

(ii) The mapping 𝑠 ↦→ 𝜈(𝑠)𝑠 is Lipschitz continuous, i.e., there is a constant 𝜈 such that

|𝜈(𝑠)𝑠− 𝜈(𝑡)𝑡| ≤ 𝜈|𝑠− 𝑡|. (6.4)

(iii) We assume that for 𝜈 ∈ 𝐶2(R+
0 ), 𝜈′(0) = 0, and that there is a constant 𝑐 such that for all 𝑠 ∈ R+

0 ,
𝜈′(𝑠) ≤ 𝑐 and 𝜈′′(𝑠) ≤ 𝑐.
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The first two points of Assumption C follow from physical properties of 𝐵−𝐻-curves, i.e., of the relations
between magnetic flux density 𝐵 and magnetic field intensitiy 𝐻 (cf. [25, 26]). In practice, the function 𝜈 is
obtained by interpolation of measured values [26], thus the smoothness assumption in Assumption C(iii) is
justified. In our numerical experiments, we chose the analytic reluctivity function

𝜈(𝑠) = 𝜈0 − (𝜈0 − 𝑞1) exp(−𝑞2 𝑠𝑞3), (6.5)

which was also used in [34], with the values 𝑞1 = 200, 𝑞2 = 0.001 and 𝑞3 = 6, which satisfies all of Assumption C.

Lemma 6.1. Let Assumption C hold and define 𝑎1(𝑦) := 𝜈(|𝑦|)𝑦 and 𝑎2(𝑦) := 𝜈0𝑦 for 𝑦 ∈ R3. Then Assump-
tion A is satisfied.

Proof. All properties of Assumption A are clear for the linear function 𝑎2. For 𝑎1, items (i) and (ii) of Assump-
tion A follow immediately from items (i) and (ii) of Assumption C, respecitively (see e.g., [25]). Moreover, it
is shown in [4], Lemma 3.7 that Assumption C(iii) implies that 𝑎2 is twice continuously differentiable, which is
sufficient for Assumption A(iii). �

Using the ansatz 𝐵 = curl𝑢 together with the Coulomb gauging condition div 𝑢 = 0, as well as the material
law (6.2) and 𝑎1(𝑦) := 𝜈(|𝑦|)𝑦 and 𝑎2(𝑦) := 𝜈0𝑦, we get from (6.1) the boundary value problem

find 𝑢 ∈ 𝑉 :
∫︁

D

𝒜Ω(𝑥, curl𝑢) · curl 𝑣 d𝑥 =
∫︁

Ω2

𝑀 · curl 𝑣 d𝑥 for all 𝑣 ∈ 𝑉, (6.6)

with the function space 𝑉 = {𝑣 ∈ 𝐻(curl,D) : 𝑢× 𝑛 = 0 on Γ𝐵 , 𝑢|Γ𝑙
= 𝑢|Γ𝑟

,div(𝑢) = 0 in D} and the operator
𝒜Ω(𝑥, 𝑦) = 𝜒Ω(𝑥)𝑎1(𝑦) + 𝜒𝐷∖Ω(𝑥)𝑎2(𝑦). Note that we used the fact that 𝑢 × 𝑛 = 0 on Γ𝐵 is sufficient for
curl𝑢 · 𝑛 = 𝐵 · 𝑛 = 0 on Γ𝐵 , see [6, 21,25].

As an objective function we consider

𝐽(Ω) =
∫︁

Ω𝑔

| curl𝑢 · 𝑛̂−𝐵𝑛
𝑑 |2 d𝑥 (6.7)

where Ω𝑔 represents the air gap of the machine, 𝑛̂ = (𝑥/
√︀
𝑥2 + 𝑦2, 𝑦/

√︀
𝑥2 + 𝑦2, 0)⊤ denotes an extension to

the subdomain Ω𝑔 of a unit normal vector field on a circular curve in the air gap and 𝐵𝑛
𝑑 denotes the desired

distribution of the normal component of the magnetic flux density 𝐵 = curl𝑢 in the air gap. In our experiments,
𝐵𝑛

𝑑 is given in cylindrical coordinates by

𝐵𝑛
𝑑 (𝑟, 𝜙, 𝑧) = −amp(𝑧) sin(4𝜙) (6.8)

where amp(𝑧) is given by the evaluation of (curl𝑢𝑖𝑛𝑖𝑡 ·𝑛̂) at the point (19.75, 22.5∘, 𝑧) inside the air gap Ω𝑔. Here,
𝑢𝑖𝑛𝑖𝑡 denotes the solution to the PDE constraint in the initial configuration. The left picture in Figure 3 shows
curl(𝑢) · 𝑛̂ as a function of the angle 𝜙 ∈ [0, 90∘] and 𝑧 ∈ [−2.5, 2.5] for a fixed value of 𝑟 = 19.75 (center of the
air gap) for the initial configuration. The desired curve 𝐵𝑛

𝑑 is depicted in the center of Figure 3. We remark that
the minimization of the objective function (6.7) yields a design of a machine which exhibits a smooth rotation
pattern. Note the slight difference of objective function (6.7) to the functional (1.1) which was treated in the
earlier sections. We remark, however, that all of the analysis can be performed for the given functional (6.7) in
the exact same way. Note that the corresponding adjoint equation reads∫︁

D

𝜕𝑢𝒜Ω(𝑥, curl𝑢)(curl𝜙) · curl 𝑝 d𝑥 = −
∫︁

D

2(curl𝑢 · 𝑛̂−𝐵𝑛
𝑑 )(curl𝜙 · 𝑛̂) d𝑥, (6.9)

for all 𝜙 ∈ 𝑉 (D)3 where 𝑢 solves (6.6).
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Figure 3. curl(𝑢) · 𝑛2𝐷 along the air gap for (𝑟, 𝜙, 𝑧) with 𝑟 = 19.75 and 𝜙 ∈ [0, 90∘], 𝑧 ∈
[−2.5, 2.5]. Left: initial configuration. Center: desired curve 𝐵𝑛

𝑑 . Right: improved configuration.

6.2. Numerical results

In this section, we illustrate how the formula derived in Section 4 can be applied to the optimization of
the electrical machine introduced in this section. The evaluation of the topological derivative (4.2) is done as
described in Section 5. We precomputed the values d𝐽(Ω)(𝑡𝑒1, 𝑒𝑖) for 𝑖 = 1, 2, 3 and 𝑡 ∈ {𝑗 𝛿𝑡}40𝑗=0 with 𝛿𝑡 = 0.05
and interpolated the obtained data using quadratic B-splines in an offline phase.

For the numerical solution of the state equation (6.6), we used second order Nédélec finite elements, see e.g.,
[35], [28], Section 3, in the framework of the finite element software package NETGEN/NGSolve [29]. Problem (6.6)
involves a divergence-free condition. In order to avoid solving a saddle point problem, we added an 𝐿2-term∫︀
D
𝜅𝑢 · 𝑣 d𝑥 with a small constant 𝜅 > 0 as regularization to the bilinear form, yielding an elliptic problem on

𝐻(D, curl). We proceeded analogously in the numerical solution of the corresponding adjoint equation (6.9) and
the problems for the approximation of the variation 𝐾 (5.11) in the offline phase.

We started with the initial configuration shown in Figure 2, where all material data is constant in 𝑧-direction.
Figures 4 and 5 show the application of a one-shot topology optimisation approach to (6.7) using a level set
representation. The first row of Figure 4 shows the level set function in the two design subdomains of interest.
We start with a constant level set function 𝜓0 = 1 corresponding to ferromagnetic material in all of the two
design subdomains. The left column in Figures 4 and 5 correspond to a horizontal cut at the bottom (𝑧 ≈ −2.5),
the central column shows a cut through the center of the machine (𝑧 = 0), and the right column a cut through
the top of the machine (𝑧 ≈ 2.5).

The second row of Figure 4 shows the absolute value of the magnetic flux density |𝐵| = | curl𝑢| for the three
cross sections and the third row depicts the topological derivative. Note that the topological derivative attains
its most negative values in the central cross section. For better visibility, we only show the negative part of the
topological derivative in the central picture.

In order to change the material in the position where the topological derivative is most negative, we set

𝜓1 = (1− 𝑠)𝜓0 + 𝑠
d𝐽(Ω)

‖d𝐽(Ω)‖𝐿2(D)
(6.10)

for an appropriately chosen value of 𝑠 (here: 𝑠 ≈ 0.14).
The result can be seen in Figure 5 where the design in the top and bottom cross section remain unchanged

and in total four holes of air are introduced in the center. The first row of Figure 5 shows the updated level set
function 𝜓1 and the second row the corresponding distribution of the magnetic flux density in the new design.

The third picture in Figure 3 shows the distribution of curl𝑢 · 𝑛̂ for the new configuration. The objective
value (6.7) has dropped from 2.33× 10−8 to 4.68× 10−9.
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Figure 4. Initial configuration, objective value 2.33×10−8. 1st row: level set function. 2nd row:
𝐵-field (|𝐵| = | curl𝑢|). 3rd row: topological derivative. Left column: bottom. Central column:
center. Right column: top.

Figure 5. Improved configuration (after 1 iteration, objective value 4.68×10−9). 1st row: level
set function. 2nd row: 𝐵-field (|𝐵| = | curl𝑢|). Left column: bottom. Central column: center.
Right column: top.
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7. Conclusion

In this work we presented the rigorous derivation of the topological derivative for a class of quasi-linear
curl-curl problems under the assumption that curl𝑢0 and curl 𝑝0 are (Hölder) continuous at the point where
the topological perturbation takes place. We also discussed the efficient evaluation of the obtained formulas
and applied our results to a physical model for an electrical machine. The results seem promising and show a
significant improvement compared to the initial design.

The magnetostatic model does not capture eddy currents. Therefore in a future work it would be interesting
to consider the time-dependent magnetoquasistatic problem rather than the magnetostatics case. This however
requires a thorough analysis and new tools have to be developed.

Appendix A.

Lagrangian framework

In this section we recall results on a Lagrangian framework. This section is taken from [13], Section 2.

Definition A.1 (Parametrised Lagrangian). Let 𝑋 and 𝑌 be vector spaces and 𝜏 > 0. A parametrised
Lagrangian (or short Lagrangian) is a function

(𝜀, 𝑢, 𝑞) ↦→ 𝐺(𝜀, 𝑢, 𝑞) : [0, 𝜏 ]×𝑋 × 𝑌 → R,

satisfying,
𝑞 ↦→ 𝐺(𝜀, 𝑢, 𝑞) is affine on 𝑌. (A.1)

Definition A.2 (State and adjoint state). Let 𝜀 ∈ [0, 𝜏 ]. We define the state equation by: find 𝑢𝜀 ∈ 𝑋, such
that

𝜕𝑞𝐺(𝜀, 𝑢𝜀, 0)(𝜙) = 0 for all 𝜙 ∈ 𝑌. (A.2)

The set of states is denoted 𝐸(𝜀). We define the adjoint state by: find 𝑝𝜀 ∈ 𝑌 , such that

𝜕𝑢𝐺(𝜀, 𝑢𝜀, 𝑞𝜀)(𝜙) = 0 for all 𝜙 ∈ 𝑋. (A.3)

The set of adjoint states associated with (𝜀, 𝑢𝜀) is denoted 𝑌 (𝜀, 𝑢𝜀).

Definition A.3 (ℓ-differentiable Lagrangian). Let 𝑋 and 𝑌 be vector spaces and 𝜏 > 0. Let ℓ : [0, 𝜏 ] → R be
a given function satisfying ℓ(0) = 0 and ℓ(𝜀) > 0 for 𝜀 ∈ (0, 𝜏 ]. An ℓ-differentiable parametrised Lagrangian is a
parametrised Lagrangian 𝐺 : [0, 𝜏 ]×𝑋 × 𝑌 → R, satisfying,

(a) for all 𝑣, 𝑤 ∈ 𝑋 and 𝑝 ∈ 𝑌 ,

𝑠 ↦→ 𝐺(𝜀, 𝑣 + 𝑠𝑤, 𝑝) is continuously differentiable on [0, 1]. (A.4)

(b) for all 𝑢0 ∈ 𝐸(0) and 𝑞0 ∈ 𝑌 (0, 𝑢0) the limit

𝜕ℓ𝐺(0, 𝑢0, 𝑞0) := lim
𝜀↘0

𝐺(𝜀, 𝑢0, 𝑞0)−𝐺(0, 𝑢0, 𝑞0)
ℓ(𝜀)

exists. (A.5)

Assumption D (H0). (i) We assume that for all 𝜀 ∈ [0, 𝜏 ], the set 𝐸(𝜀) = {𝑢𝜀} is a singleton.
(ii) We assume that the adjoint equation for 𝜀 = 0, 𝜕𝑢𝐺(0, 𝑢0, 𝑝0)(𝜙) = 0 for all 𝜙 ∈ 𝐸, admits a unique

solution.
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We now give sufficient conditions when the function

→ R

𝜀 ↦→ 𝑔(𝜀) := 𝐺(𝜀, 𝑢𝜀, 0),
(A.6)

is one sided ℓ-differentiable, that means, when the limit

𝑑ℓ𝑔(0) := lim
𝜀↘0

𝑔(𝜀)− 𝑔(0)
ℓ(𝜀)

(A.7)

exists, where ℓ : [0, 𝜏 ] → R is a given function satisfying ℓ(0) = 0 and ℓ(𝜀) > 0 for 𝜀 ∈ (0, 𝜏 ].

Theorem A.4 ([13], Thm. 3.4 and [10], Thm. 3.3). Let 𝐺 : [0, 𝜏 ]×𝑋×𝑌 → R be an ℓ-differentiable parametrised
Lagrangian satisfying Hypothesis (H0). Define for 𝜀 > 0,

𝑅𝜀
1(𝑢0, 𝑝0) :=

1
ℓ(𝜀)

∫︁ 1

0

(𝜕𝑢𝐺(𝜀, 𝑠𝑢𝜀 + (1− 𝑠)𝑢0, 𝑝0)− 𝜕𝑢𝐺(𝜀, 𝑢0, 𝑝0)) (𝑢𝜀 − 𝑢0) d𝑠 (A.8)

and
𝑅𝜀

2(𝑢, 𝑝) :=
1
ℓ(𝜀)

(𝜕𝑢𝐺(𝜀, 𝑢0, 𝑝0)− 𝜕𝑢𝐺(0, 𝑢0, 𝑝0))(𝑢𝜀 − 𝑢0). (A.9)

If 𝑅1(𝑢0, 𝑝0) := lim𝜀↘0𝑅
𝜀
1(𝑢0, 𝑝0) and 𝑅2(𝑢0, 𝑝0) := lim𝜀↘0𝑅

𝜀
2(𝑢0, 𝑝0) exist, then

𝑑ℓ𝑔(0) = 𝜕ℓ𝐺(0, 𝑢0, 𝑞0) +𝑅1(𝑢0, 𝑝0) +𝑅2(𝑢0, 𝑝0).
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