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ASYMPTOTIC ANALYSIS AND TOPOLOGICAL DERIVATIVE FOR 3D
QUASI-LINEAR MAGNETOSTATICS

PETER GANGLY™ AND KEVIN STURM?

Abstract. In this paper we study the asymptotic behaviour of the quasilinear curl-curl equation of
3D magnetostatics with respect to a singular perturbation of the differential operator and prove the
existence of the topological derivative using a Lagrangian approach. We follow the strategy proposed in
Gangl and Sturm (ESAIM: COCV 26 (2020) 106) where a systematic and concise way for the derivation
of topological derivatives for quasi-linear elliptic problems in H' is introduced. In order to prove the
asymptotics for the state equation we make use of an appropriate Helmholtz decomposition. The evalu-
ation of the topological derivative at any spatial point requires the solution of a nonlinear transmission
problem. We discuss an efficient way for the numerical evaluation of the topological derivative in the
whole design domain using precomputation in an offline stage. This allows us to use the topological
derivative for the design optimization of an electrical machine.
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1. INTRODUCTION
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The main result of this paper is the computation of the topological derivative for the tracking-type cost

function

J(Q) z/ | curlu — Bg|?* da

subject to the constraint that u € V(D)3 := {u € Hy(D, curl) : div(u) = 0 in D} solves
/ Ag(z, curlu) - curlv de = (F,v) for all v € V(D)?,
D

where Ag : D x R?* — R3 is a piecewise nonlinear function defined by

 Jai(y) for xe€Q,
Aﬂ(zvy) T {az(y) fOI‘ T € D\Qv

with two continuously differentiable functions ay,as : R® — R3 satisfying the following assumption:
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Assumption A. There are constants c1,cy,cs3 > 0 such that the functions a; : R® — R2, i = 1,2 are differen-
tiable and satisfy:

(i) (ai(z) —ai(y)) - (x —y) > c1lz —yl?, forall z,ycR?,
(it) lai(z) —ai(y)| < colz —y| for all z,y € R?,
(iii) |0ai(x) — Oa;(y)| < cslz —y| for all x,y € R3.

The right hand side F is a linear and continuous functional on V(D)3 defined by

(F,v) ::/ J-vdr+ M -curlvdzr for v e V(D)3
Q1 Qo

where Q1,05 C D are open sets (see Fig. 1) and J, M € Ly(D)3. Properties (i) and (ii) of Assumption A imply

that the operator Ag : V(D)? — L(V(D)3,R) defined by (Aqp,v) := [; Aa(z,curlp) - curly dz is Lipschitz

continuous and strongly monotone for all measurable  C D. Hence the state equation (1.2) admits a unique

solution by the theorem of Zarantonello; see page 504, Theorem 25.B of [36].

Among other applications the set of equations (1.2) models a 3D electrical machine and captures nonlinear
physical effects. A realistic physical model for which the above assumption are satisfied in practice will be
presented in the last section.

The topological derivative has already been computed for many linear PDEs and also the literature on its
numerical implementation is rich. We refer to the monograph [23] for many examples and also references therein.
For nonlinear PDEs the literature is far less complete and only few articles dealing with nonlinear constraints
exist. Here we would like to mention [2,20], and more recently [33], where semilinear problems were studied.

Concerning quasi-linear problems, in which the topological perturbation enters in the main part of the non-
linearity, even less work has been done. Here we mention [3] where the authors consider a regularised version
of the p-Poisson equation and also [4] where the topological derivative for the quasi-linear equation of 2D
magnetostatics was derived. More recently, in [13] the topological derivative for a class of quasi-linear equations
under fairly general assumptions in an H'® setting was presented.

Shape optimisation for the linear Maxwell’s equation has been studied in the context of time-harmonic
electromagnetic waves [17], magnetic impedance tomography [18], in electromagentic scattering [9] and [19],
where the last work takes a geometric viewpoint using differential forms. All these articles deal with linear
problems and as far as the present authors knowledge no work has been done in the nonlinear case. In the
context of optimal control in a quasi-linear H(curl) setting we mention [34], where also numerical analysis is
presented.

The topological sensitivity of 2D nonlinear magnetostatics, which is a simplification of Maxwell’s equation
in 3D, was treated in [4]. The topological sensitivity of three dimensional linear Maxwell’s equations has been
studied in [22] and is based on asymptotics derived in [1]. In the nonlinear context it seems no work has been
done so far.

To our knowledge the asymptotics for (1.2) with respect to a singular perturbation of the operator is unknown.
Accordingly also the topological derivative for the functional (1.1) and its numerical implementation are new.
These are the main contribution of this paper.

The structure of the paper is as follows. In Section 2 we recall a regular Helmholtz decomposition and prove
a Helmholtz-type decomposition in R? which will be essential for the asymptotic analysis of the next section. In
Section 3 we present the asymptotic analysis of the state equation (1.2). In Section 4 we compute the topological
derivative for the cost function (1.1) using a Lagrangian method. In Section 5 we discuss the efficient numerical
realisation of the obtained topological derivative. Finally, in the last section, we apply our results to a 3D electric
machine and verify the pertinence of our approach in several numerical experiments.

Notation and definitions

Standard LP spaces and Sobolev spaces on an open set D C R? are denoted L, (D) and W} (D), respectively,
where p > 1 and & > 1. In case p = 2 and k > 1 we set as usual H¥(D) := W& (D). Vector valued spaces
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are denoted L,(D)? := L,(D,R?) and WZ’f(D)?’ = W;(D,Rz)’). Given a normed vector space V' we denote by
L(V,R) the space of linear and continuous functions on V. We recall the definition of the space H(D, curl) =
{u € Ly(D)3 : curl € Ly(D)3} and also

Hy(D,curl) = {u € H(D,curl) : / curlu-v = / u-curlv forall ve Hl(D)?’} (1.4)
D D

equipped with the norm ||u||§1,(D curl) 1= Hu||2L2(D)3 + || Curlu\|%2(D)3. It can be shown that Hy(D,curl) = {u €
L?(D)?| curlu € L?(D)? and u x n = 0 on dD}. Moreover, we define the subspace

V(D)? := {u € Ho(D,curl) : div(u) =0 on D}. (1.5)

Recall that the Friedrich’s inequality [|ul|,p): < C|| curlul|r,(pyz holds for all u € V(D)? provided D is a simply
connected bounded Lipschitz domain; see [30], Corollary 3.2 or [5], Theorem 5.1.

We let BL(R3) := {u € HJIOC(R?’) : Vu € Ly(R?)3} and define the Beppo—Levi space or homogeneous Sobolev
space as the quotient space BL(R?) := BL(R?)/R, where /R means that we quotient out the constant functions.
We denote by [u] the equivalence classes of BL(R?). Equipped with the norm

Iulllgrrs) = IVullL, sy, w € ful, (1.6)

the Beppo-Levi space is a Hilbert space (see [11,24]) and C°(R3)/R is dense in BL(R?). The vector valued
Beppo-Levi space BL(R?, R?) will be denoted by BL(R?)? and equipped with the standard norm. Whenever
no confusion is possible we will not distinguish between an equivalence class [u] and a representative u and use
the same notation. This will be clear from the context.

In the whole paper we equip R? with the Euclidean norm |-| and use the same notation for the corresponding

matrix (operator) norm. We denote by Bs(x) the Euclidean ball centred at x with radius § > 0.

Remark 1.1. As remarked in Remark 2.2 of [13], it follows from Assumption A that the non-linearity a;
satisfies:

|a;(2)] < |ai(0)| + caz], (L.7)
|0a;(z)| < 10a;(0)] + 3|z, (1.8)
|0a; (x)v]| < ealv], (1.9)

for i = 1,2 and for all z,v € R3.

2. HELMHOLTZ-TYPE DECOMPOSITIONS IN BL(R?)?

In this section we develop the function space setting for the exterior equation that will appear in the asymp-
totic expansion of the state equation (see Sect. 3). In particular we will study a subspace of the Beppo—Levi space
B.L(R3)3 and derive a Helmholtz-type decomposition, which will be essential later on. We recall the following
regular Helmholtz decomposition of functions in Hy(D, curl); see, e.g., [16], Lemma 3.4, [28,30], Theorem 29.
Throughout this section we assume that D C R? is a simply connected bounded Lipschitz domain.

Lemma 2.1 (Regular decomposition of Hy(D,curl)). For every u € Ho(D,curl) there exist ¢ € H}(D),
u* € H} (D)3 such that
u=Vao+u®.

Moreover, the following estimates hold:

Hd)”Hl(D) § CHUHH(D,curl) and ||u*||H1(D)3 S CH cur1u||L2(D)3.
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FIGURE 1. Setting for topological derivative: Inclusion w, of radius € > 0 containing material
ay around point z € D\ 2 (where material ag is present).

The following Helmholtz decomposition is standard.
Lemma 2.2. For every u € H} (D)3 we find ¢ € H}(D) and ¢ € V(D)3, such that
u=Vo+1. (2.1)

Proof. This follows directly by solving for given u € H}(D)?: find ¢ € HZ (D), such that
/V(;S-Vv dx:/u-Vv dz forall v e H}(D). (2.2)
D D

Then v := u — V¢ satisfies (2.1) and div(¢)) = 0. To see the boundary condition note that since u € H}(D)?,
we have by partial integration

/Curlw'vdx:/curlumdx:/u'curlvdm:/umurlvdx—/V¢~curlvdx (2.3)
D D D D D

for all v € H*(D)3. Here we used that the last integral vanishes, which can be seen by partial integration due
to ¢ € H}(D). Noting that ¢ + V¢ = u, it follows ¢ € V(D)3; see (1.4). This finishes the proof. O

We will now introduce a subspace of the space BL(R?)3. The reason why we cannot work with H(R3, curl)
directly is that we do not have control over the function w itself, but only over its curl. In order to get around this
difficulty we introduce the following function space. We also refer to [1] for a different approach using weighted
spaces.

Definition 2.3. We define the space

BLC(R?) := [ € O (R)? : div(p) = 0] #®%enn) (2.4)

where |¢|%I(R3 curl) = Jrs lcurlp]? dz. We set BLC(R?) := BLC(R?)/R, where /R means that we quotient
out constants.

We have the following result.
Lemma 2.4. (i) We have BLC(R?) C BL(R?)? and hence BLC(R?) € BL(R?)3.



TOPOLOGICAL DERIVATIVE FOR 3D QUASI-LINEAR MAGNETOSTATICS S857

(ii) The space BLC(R?3) becomes a Hilbert space when equipped with, | - | i (R3 curl) -
(iii) We have BLC(R?) = {u € BL(R3)3 s div(u) = 0}.

Proof. We start by observing that (see [30], Rem. 1.1)

/R3 |div(go)\2 + \curl(go)|2 dz = /R3 |V<,0|2 dx (2.5)

holds for all test functions ¢ € C2°(R?)3. Therefore we have

P21 s ety = / |ewrl()? dz = / Vol da (2.6)
R3 R3

for all test functions ¢ € C2°(R3)? satisfying div(¢) = 0. Let (¢,) be a sequence in C2°(R3)? with div(p,) =0
that is Cauchy with respect to | - [g(R3,cu).- Then in view of (2.6) it also converges in BL(R?)? and hence its
limit belongs to BL(R?)3, which shows the inclusion (i). Also (ii) follows at once since a closed subspace of a
Hilbert space is a Hilbert space itself.

To see (iii) we can use standard mollifier techniques; see page 21 of [37]. Let u € Laoc(R?)® with
Vu € Ly(R?)**? and div(u) = 0. Let £ € C°(B1(0)) with [gs & dz = 1. Set &.(z) := e ?¢(x/e) and define
the convolution of u with & by uc(x) := (& * u)(x) := [gs & (2 — y)u(y) dy. Then wu. is smooth, has compact
support and satisfies 0,,uc(7) = & * (0,,u)(z) and thus div(u.) = & * (div(u)) = 0. Since d,,u € Ly(R3)3 we
conclude from [37], Theorem 1.6.1, (iii) that 0,,u. — 9,,u strongly in Ly(R3)% as € \, 0. But this means that
u € BLC(R?) and finishes the proof. O

We now prove a Helmholtz-type decomposition in B'L(R3)3. It can be seen as an analogue of Lemma 2.2 in
case D = R3. We also refer to [31,32] for Helmholtz decompositions in exterior domains.
Let us introduce

BL*(R?) := {¢ € Lo10c(R?) : 02, ¢ € La(R?), i,j € {1,2,3}}, (2.7)

and the associated second order Beppo—Levi space BLz(R3) := BL?(R?)/P, where P := {z > b+x-a:b¢c
R, a € R?} denotes the space of linear functions in R?. The function

.2
[¢llsL2 == 10¢| Lomsysxs, ¢ € BL'(R?) (2.8)

is a norm on BLQ(R?’) and makes it a Hilbert space; see [11], Section III and Theorem 2.1.

Remark 2.5. We note that it makes sense to say that an equivalence class ¢ € B'L(R3)3 has zero divergence
div(p) = 0, since the divergence of a constant function is zero and hence the divergence free property is
independent of the representative.

Lemma 2.6. For every u € BL(R3)? there is ¢ € B-L2(R3) and u* € BL(R?)3 with div(u*) = 0, such that
u=V¢+u* (in BL(R?®?). (2.9)

In fact, we have the direct sum BL(R3)3 = V(BLQ(R:)’)) @ BLC(R?)3.

Proof. We will use arguments from [27], Theorem 3.3. Given u € C°(R3?)3 we define ¢ € C°(R?) as

1 div u(y)
At Jrs |z —y|

() = dy, zecR. (2.10)
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Since u is smooth and has compact support we have A¢ = divu pointwise in R? (see [12], p. 21, Thm. 1). The
Caldéron-Zygmund theorem (see [7,8] and also [15], Para. 9.4) implies that

H82¢”L2(R3)3X3 < OHdiVUHLz(Rs). (2.11)

However, this means that ¢ € B.L2(R3) and hence u* := V¢ — u satisfies div(u*) = 0 and Vu* € Ly(R?)3.
Therefore u* € BLC(RS) and u* satisfies (2.9).

Let now u € BL(R?)? and (u,) C C*(R?)? with Vu,, — Vu strongly in Ly(R?)**® as n — oco. The first
part of the proof shows that we can split u,, = V¢, + u}, with ¢, € BL(R?) and u} € BL(R?)? satisfying
div(ukr) = 0. In view of (2.11) it follows that (¢,) is a Cauchy sequence in BLQ(R?’) and thus converging to
some ¢ € BL (R3). From this it follows that also (u}) is a Cauchy sequence in B'L(R?’)?’ and converges to some
u* € BL(R?)? satisfying div(u*) = 0. Now we can pass to the limit in 0,,u, = 0,V + O, ul, i = 1,2,3 with
respect to the Lo(R?)? norm to obtain

Op,(u—Vo¢—u*)=0, ae on R3} i=1,23. (2.12)

It follows that u — V¢ — u* is constant on R?. Therefore u = V¢ + u* in BL(R3)3.

To show that the sum is direct, we let ¢, ¢ € BL® (R3) and @*,u* € BLC(R?)?, such that
u = V¢ + u* —quH— Setng o — ¢ and u* = u* — u* WehavquS——u and thus since 4 is
divergence free, Aqﬁ =0, that is, d) is harmonic. By Weyl’s lemma ng is smooth. Since gb is harmonic v := 92, IJ(ﬁ
is harmonic, too and hence enjoys the mean value property (see [12], Thm. 2, p. 25):

1
v(xo) = 1B, (z0)| 5o vdz, r>0, 79 € R (2.13)
)
Fix 2o € R3. Then we obtain from Holder’s inequality
1 1 3 R
[v(o)| < Bzl Ju )Ivl dz < anummm) < Cr 2|09 1, (reysxs- (2.14)
r(zo r

Passing to the limit 7 — oo we see that v(x¢) = 0 and since zy was arbitrary we have v = 8%1,%(;3 =0 on R3.

Hence ¢(z) = a - 2 + b for some a € R3,b € R and thus the corresponding equivalence class ¢ = 0 in BL (R3)
or equivalently ¢ = ¢ as elements in BLQ(R?’). In view of a = V¢ = —a* it follows that 4* = 0 in BL(R3)?
equivalently u* = u*. This shows that we have a direct sum. O

The following example illustrates the usefulness of the function space BLC(R?) and the Helmholtz-type
decomposition.

Example 2.7. Let ¢ € R3 be a vector and let w C R? be an open and bounded set. Consider the problem:
find K € BLC(R?) such that

Bycurl K - curlv doe = / ¢-curlvdz forall ve BLC(R?), (2.15)
R3 w

where 3, := 1 Xw+B2XR3\w With 31, B2 > 0. This system appears in the derivation of the topological derivative

for Maxwell’s equation in the linear case; see [22] on page 553. Thanks to the theorem of Lax—Milgram there exists

a unique solution K of (2.15) in BLC(R?). Moreover, for given v € BL(R?)? we find according to Lemma 2.6

the decomposition v = V¢ + v* with ¢ € BL’ (R3) and v* € BLC(R?’). Therefore plugging v* = v — V¢ as test

function in (2.15) and using curl(V¢) = 0, we obtain

- B curl K - curlv do = / ¢-curlvdr forall v e BL(R?)3. (2.16)
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Remark 2.8. We remark that there are alternatives to the choice of the space BLC(R?) defined in (2.4). We
mention the use of weighted Sobolev spaces as it was done in [1], where the Lo-part of the norm is weighted by
the function & — ——i—. Another alternative is to use the Beppo-Levi type factor space

BEE pp yp p

H(curl,R?) := {[v + VBL(R?)] : v € Hjoe(curl, R?) : curlv € Ly(R3)} (2.17)

together with the norm
||[U]HH(curl,R3) = || CurlvHLz(RS)a' (218)

3. ASYMPTOTICS OF THE STATE EQUATION

3.1. Main result for direct state

In this section we study the behaviour of u. — ug, where, for € > 0, u. € V(D)3 is the solution to
/ A.(x,curlu,) - curlo de = (F,v) for all v € V(D)3 (3.1)
D

with A := Aq, and Q.(z) := QU w(z) and ug is the solution to (1.2). Here, Q2 € D is open and the scaled
inclusion w, (z) := z + cw is defined by an open and bounded set w C R? satisfying 0 € w and the center of the
inclusion z € QUD \ Q. For simplicity and without loss of generality, we will assume z := 0 € D\  throughout
this paper. Moreover, for simplicity we assume that = @) (the general case can be readily retrieved by minor
modifications).

Using Lemma 2.1 we find the regular decomposition

u. = Voo +ul, ¢ € Hy(D), uf € H(D)?. (3.2)

Definition 3.1. The variation of u. is defined by

K. = (“ ;“") oT. € V(e7'D)3, &3>0, (3.3)
and the variation of u? is defined by
K= (“;“0> oT. € Hi (D), &>0, (3.4)

where Ty(z) := ex for € R3. By extending u’ by zero outside of D we can view K* as a function in BL(R3)3.
Now we can state our first main theorem.

Main Theorem 1. Assume that curlug € C*(Bs(z))? for some § >0 and 0 < a < 1. Then we have
(i) There exists a unique K € BLC(R?), such that

/R3 (A, (z, curl K 4+ Up) — Ay (x,Up)) - curl o dx
= —/ (a1(Uo) — a2(Uy))) - curl p dz (3.5)

for all ¢ € BLC(R?). Here Uy := curl(ug)(z) and A, (z,y) := a1(y)Xw(®) + a2(y) xm\w(2).
(ii) The family (KZ) defined in (3.4), satisfies

curl(K¥) — curl(K) strongly in  Lo(R*)® as e\, 0. (3.6)
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Proof. Proof of (i): Thanks to Assumption A the operator B,, : BLC(R?) — BLC(R?)* defined by (B, ¢, ) :=
Jrs (Aw(z, curlp + Uy) — Ay (x,Up)) - curlep dz is strongly monotone and Lipschitz continuous and hence the
unique solvability follows by the theorem of Zarantonello; see [36], Theorem 25.B, p. 504.

The proof of (ii) is given in the subsequent sections. (]

Before turning our attention to the proof of (ii) let us make two remarks.

Remark 3.2. Notice that the regular decomposition (3.2) is not necessarily unique. However, if we find another
¢ € HY(D) and @ € H}(D)? with u. = V. + @f, then curl(u.) = curl(u?) = curl(@?), so curl(u.) and
accordingly curl(K¥) does not depend on the choice of decomposition in (3.2).

Remark 3.3. Let us make an important remark. Equation (3.5) is actually only allowed to be tested with
functions v € BL(R?)? with div(v) = 0. However, we can in fact test this equation with all functions in BL(R?)3.

To see this let v € BL(R?)? be arbitrary. Thanks to Lemma 2.6 we find ¢ € BL2(R3) and v* € BL(R?)3, such
that v = V¢ + v*. Since v* € BLC(R?) we can use v* = v — V¢ as test function in (3.5) and using curl V¢) = 0
we obtain

/ (Au(z,curl K + Up) — Ay (z,Up)) - curlv da
R3

= —/ (a1(Uo) — az2(Uy))) - curlv dz (3.7)

for all v € BL(R?)3. This will be used later on.

3.2. Analysis of the perturbed state equation

We assume in the whole section that curlug € C(Bs(2))? for some § > 0. Moreover we assume that Assump-
tion A(i), (ii) are satisfied. Let u. denote the solution to (3.1).

Lemma 3.4. There is a constant C' > 0, such that for all small € > 0,
[te — ol Lo(pys + || curl(ue — uo)| L,y < Ce¥/2. (3.8)

Proof. Subtracting (3.1) for ¢ > 0 and € = 0 yields
/(Ag(x, curlu.) — A (z, curlug)) - curl p da
D
= —/ (a1(curlug) — az(curlug)) - curl p de, (3.9)

for all p € V(D)3. Hence choosing ¢ = u. —ug as a test function, using Holder’s inequality and the monotonicity
of A, yield

c| curl(ue — u0)||2L2(D)3 < OV |we|(1 + [ ewrlugll oz, (2))s) | curl(ue = uo)||z,(py2, (3.10)
where we used (1.7). Now the result follows from |w.| = |w|e® and the Friedrich’s inequality. O

A direct consequence of Lemmas 3.4 and 2.1 is the following. Recall the splitting u. = V¢, + u} introduced
in (3.2).

Corollary 3.5. Under the assumptions of Lemma 3.4, there are constants Cy,Ca, such that for all small e > 0
we have
[ = ugll oy + IV (uf = ug) | Lyoysxs < Cre®/? (3.11)

and
6= — Al o) + [ V(de — )| LoDz < Cae™?. (3.12)
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The proof of Main Theorem 1 is split into several lemmas. The outline of the proof is as follows:

— introduce an auxiliary function H. and decompose it into H. = V({)E + H;
—-split K —K=K—-H+H-K

show curl(H} — K) — 0 strongly in Ly(R3?)3

show curl(H} — K?) — 0 strongly in La(R?)3

The proof is following the main arguments of [13], Theorem 4.3. The main difference is that we cannot directly
work with K. and H. but have to work with the functions K} and H; coming from the regular Helmholtz
decomposition as in Lemma 2.1.

Let us first investigate the variation HY — K. We start by changing variables in (3.9) to obtain an equation
for K € H}(e7'D)3:

/ (Ay (z, curl K7 + curl ug(z.)) — Aw(z, curl ug(z,))) - curl ¢ da
R3
=— / (a1 (curlug(z.)) — ag(curlug(x.))) - curl p da (3.13)

for all ¢ € V(¢7!D)3. Here z. := ex and curlug(z.) denotes the curl of ug evaluated at z..
We now introduce an approximation H. of K.

Definition 3.6. We define H. € V(¢71D)? as the solution to
/ (Au(z,curl He + Up) — Au(x,Up)) - curlp do
e~1D
=— / (a1(Up) — az(Uy)) -curlp dz for all ¢ € V(7'D)>. (3.14)
w

Remark 3.7. We can replace V (¢71D)3 as test space in (3.13) and also in (3.14) by H}(¢71D)3. Indeed in view
of Lemma 2.2 we can decompose every v € H}(¢71D)? as v = V¢ + ¢ with ¢ € H*(¢7!D) and ¢ € V(¢71D)3.
Hence we may test (3.14) with ¢ = ¢ and using curl(V¢) = 0 implies that we can test (3.14) with all functions
in v € H}(¢7'D)3. Compare the R? analogue discussed in Remark 3.3.

Again we invoke Lemma 2.1 to decompose H. = V. + HZ, H* € Hi(¢7'D)? and ¢. € H}(c71D). We now
introduce the projection of K into the space Hg(71D)3:

Definition 3.8. We define K* € H}(¢~'D)? as the minimiser of

min_eurl(e — K)llL, - py- (3.15)
p€EH;(e™"D)
div =0

The minimisation problem (3.15) admits indeed a unique solution. To see this, we let ¢,, € Hi(¢71D)3 be a
minimising sequence, such that div(y,) = 0 and

lim || curl(¢, — K)| 1,10y = inf =~ || curl(p — K)||1,c1D)3- (3.16)
n—00 eHl(e~1D)
div =0

Since the infimum on the right hand side is finite we conclude that there is C' > 0, such that || curl o, ||z, -1p)s < C
for all n. On the other hand in view of (2.5) and div(y,) = 0 we have

|| curl ‘Pn|‘L2(e*1D)3 = HV(,DnHLQ(E—lD)Ms. (3.17)
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Therefore (p,,) is bounded in H}(¢7'D)? and we find a weakly converging subsequence (denoted the same)
converging to some element ¢ € H}(e71D)? satisfying div(¢) = 0. Since also curl(p,) — curl(y) weakly in
Ly(e71D)3, we conclude

| ewrl(p — )| a(e-r0ye < lim || wrl(gy — K|l yge-10)s, (3.18)

which together with (3.16) shows that (3.15) admits a solution. The uniqueness follows from that fact that
w | (:ur1(<p)||iz(£_1D)3 is strictly convex on {¢ € H}(¢71D)? : div(yp) = 0}.
As for K*, we can also view H* and K* as elements of BL(R?)? by extending them by 0 outside of e~ !D.

Lemma 3.9. It holds that
curl K* — curl K strongly in Lo(R*)3 as e \, 0. (3.19)

Proof. We readily check that the minimiser to (3.15) satisfies
/ curl K* - curl o dz = / curl K - curlp dz for all o € H}(e7'D)3, div(p) = 0. (3.20)
e~1D e~1D

Choosing ¢ = K* and using Hélder’s inequality and the fact that (see (2.5))
| curlv||p,e-1pys = |V 1yc-1pysxs  for all v € Hj(e™'D)? with div(v) =0, (3.21)
we obtain
IVEZ(3,c1pysxs = llcurl K213, c-1pys
< el K|z, (c-1pys || curl KZ|| 1, (-—1p)s
= CurlKHLz(rlD)B HVK:HLQ(EAD)M& (3.22)

This implies ||VX§\|L2(R3)3x3 < C for all € > 0. Now fix € > 0 and let € € (0,£). Then we obtain from (3.20)
(by extending K and K* by zero outside of e~ 1D),

/ curl K7 - curl o do = / curl K - curlp dz for all o € Hy(7'D)3, div(p) = 0. (3.23)
R3 R3

Let (g,) be a null-sequence. In view of the boundedness of (IA(;:) in BL(R?)3, we can extract a subsequence

(denoted the same) and find K € BL(R?)?, such that VK — VK and thus also curl K — curl K weakly in
Ly (R3)3. Therefore, selecting € = ¢, in (3.23) we can pass to the limit n — oo to obtain

/ curl K - curl p dz = / curl K -curlp dz for all o € Hy(67'D)3, div(p) = 0. (3.24)
R3 R3

Since div(K*) = 0 for all £ > 0 and in view of the weak convergence VK P VK, it is also readily checked
that div(K) = 0. Since & was arbitrary and since C2°(R3)/R. is dense in BL(R?) it follows that (3.24) holds
for test functions in BL(R?)? from which we conclude that K = K. Therefore K* — K weakly in BL(R?)3.
The strong convergence follows by testing (3.20) with ¢ = K 2 and passing to the limit ¢ N\, 0. This shows that
|| curl K§||L2(R3)3 — |[eurl K[|z, (ms)s as € \, 0. Since in a Hilbert space norm convergence together with weak
convergence implies strong convergence we finish the proof. (Il

Lemma 3.10. We have

curl HX — curl K strongly in  Lo(R*)® as e\, 0. (3.25)
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Proof. Subtracting (3.14) from (3.5) and introducing a zero term leads to
/R3 (A (z, curl K + Ug) — Ay (z, curl H* + Up)) - curl ¢ dz
= /R3 (Au (2, curl KF + Up) — Ay (z, curl K + Up)) - curl p dz (3.26)

for all p € H}(e71D)3. Here we used the observation of Remark 3.3 and H}(¢7'D)® ¢ BL(R?)?. Now we test
this equation with p = K — H* € H}(¢7'D)? C BL(R?)?, use the monotonicity of A, and Hélder’s inequality:

Cllewrl(KZ — H)IIZ, oy

< / (A (z, carl K* + Up) — A, (2, curl HY 4 Up)) - curl(K* — HY) dz
R3

(529 / (Ao (z, curl K + Up) — Ay (z, curl K + Up)) - cwrl(K* — HY) da
R3
< |lewl(K? — K)| 1,meys || curl(KZ — HY)| 1, (reye- (3.27)
It follows from Lemma 3.9, we have curl K* — curl K strongly in Ly(R3)3. Therefore (3.27) implies curl(K* —

HZ) — 0 strongly in Ly(R?)? and therefore also || curl(H? — K)| 1, ey < || curl(HZ — KF)| 1, rs)s + || curl (K —
K)||L2(R3)3—>0386\0. (I

We now prove that curl(H* — K?) — 0 strongly in Lo(R?)3.

Lemma 3.11. Assume there are § > 0 and o > 0, such that curlug € C*(Bs(2))®. Then we have
curl(H* — K) — 0 strongly in  Ly(R?®)® as &\, 0. (3.28)

Proof. Subtracting (3.13) and (3.14) we obtain
/RB (Ay(z, curl K7 + curlug(z:)) — Aw(x, curl HY + Up)) - curl ¢ dz
+ /Rs(Aw(x, Ug) — A, (z, curl ug(xe))) - curl p dz
=— / (a1 (curlug(x.)) — ag(curlug(ze))) - curl p — (a1 (Un) — a2(Uy)) - curl ¢ dx (3.29)

for all p € H}(¢7!D)3 where we recall the notation z. = ex. We want to use the monotonicity of A, and
therefore we rewrite the previous equation as follows

/ (Ay (z, curl K7 + curlug(z:)) — Aw(x, curl HY 4 curlug(z)))) - curl o do
R3

= —/ ((Ay(z,curl HE + curlug(z.)) — (A, (z,curl H + Up) - curl ¢ dx
R3

=:I1(e,p)

—/ (A (z,Uy) — Ay (z, curl ug(z,))) - curl o da
R3

=:I3(e,p)

- / (a1 (curlug(xe)) — ag(curlup(ze))) - curl p dz — (a1 (Up) — a2(Up)) - curlp dz . (3.30)

=:I3(e,¢)
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Now the a; are Lipschitz continuous and curluy € C®(Bs(2))® with «,§ > 0, we immediately obtain that
|I3(e, )| < Ce®| curl ||, ms)s for a suitable constant C' > 0. We now show that also |I1(e, @) + Ia(e, ¢)| <
C(e)|l curl @[/ L, (rs)s and C(e) — 0 as e \, 0. We write for arbitrary r € (0, 1),

Li(g,0) + Ia(e,p) = —/ ((Ay(z,curl HY + curlug(xe)) — (Ay (2, curl H + Up) - curl ¢ dx
B

e— T

- /B (Ay(z,Ug) — Ay (z, curl ug(ze))) - curl p dz

e—T

- / ((Ay(z,curl H + curlug(z.)) — (A, (z, curl ug(x.)) - curl p da
RI\B,_,

+ / (Ay(z,carl HE + Uy) — Ay (z,Up)) - curl ¢ dx. (3.31)
R3\B__,

Now we can estimate the right hand side of (3.31) using the Lipschitz continuity of a; (see Assumption A(ii))
as follows

|1 (e, ) + L2(g, 0)] < 20/ |Uo — curlug(ze)|| curl p| dz + 2C/ |curl HZ| | curl | dz:
B._. R3\B__,

§C/ \xs\a|curlgp\dm+20/ |curl HY| | curl ¢| dz
B, R3\B,__,
< e eI 20| curl [ 1, (re)s + 20| cwrl HY [| 1, (ra\B, )3 || curl || 1, o\ B.rye (3.32)

ro a€—3r/2

For r sufficiently close to 0, we have e~ = gar(§+a) Moreover, by the triangle inequality we

have

€

H curl H:”LQ(RE'\BE_T)S’ S || CUI‘I(H: — K)||L2(R3\BE_T)3 + H CUI‘IKHL2(R3\BE_T)3. (333)

The first term on the right hand side goes to zero in view of Lemma 3.10. The second term goes to zero since
curl K € Ly(R?)? thus [|cwrl K1, ms\5__,)s — 0 as e \, 0. Using K — H as test function in (3.30), using
the monotonicity of A, and employing |11 (e, ) + I2(g, ») + I3(c, )| < C(e)| curl ||z, rs)s with C(e) — 0 as
€ \\ 0, shows the result. (I

Combining Lemmas 3.10 and 3.11 proves the Main Theorem 1(ii). [ |

4. THE TOPOLOGICAL DERIVATIVE

In this section we show that the hypotheses of Theorem A.4 are satisfied for the Lagrangian G given by (4.1).
Let £(¢) := |we|, and introduce the Lagrangian G : [0, 7] x Hy(D, curl) x Hy(D, curl) — R associated with the
perturbation w. by

G(e,u,p) := / | curl(u) — By|? dz + / Aq_(x,curlu) - curlp dz — (F,p). (4.1)
Q D

g

Here, the operator Ag, is defined according to (1.3) with Q. = Q U w,. It is clear from Assumption A that the
Lagrangian G is ¢-differentiable in the sense of Definition A.3 with X =Y = V(D)3 and /(¢) := |we|.

Main Theorem 2. Let Assumption A be satisfied. Let Q@ C D open and ug the solution to (1.2) and po the
solution to (4.6). Let z € D\ Q, such that z & (4 U Qo U Q). Further assume that curlug € C*(Bs(2))? for
some § >0 and 0 < a < 1 and also curlpy € C(Bs(2))? N Lo (D)3.
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(a) Then the assumptions of Theorem A.j are satisfied for the Lagrangian G given by (4.1) and hence the
topological derivative at z € D\ Q is given by

dJ(2)(z) = 9eG(0,u0, po) + Ri(uo, po) + R2(uo, po). (4.2)
(b) We have

0¢G(0,ug, po) = ((a1(Uo) — a2(Uy)) - Po (4.3)

and
Ry (ug, po) = 1 (/ [Aw(x, curl K + Up) — A, (z,Up) — O Au(x,Up)(curl K)] - Py dx) (4.4)

|wl R3

and

Rafuo.) = 17 [ 10uar(U) = uoa(U0)] (curl K) - Py o (45)

where Ug := curlug(z), Py := curlpg(z) and A, (z,y) := a1(y)Xw(®) + a2(y)xre\w(z), and K is the unique
solution to (3.5) and py € V(D)? solves

/ OuAq(x, curl ug)(curl p) - curl pg da = 7/ 2(curlug — By) - curl p da (4.6)
D D

for all ¢ € V(D)3.

Remark 4.1. — We restrict ourselves to the case where z € D \ Q without loss of generality. However, the
exact same proof can be conducted in the case where z € Q and z ¢ (21 UQ2UQQ,). In that case, the formula
for the topological derivative is obtained by just switching the roles of a; and ay in the theorem above (in
particular also in the definition of A,,).

— Also the case where z € Q; U Qs U, can be dealt with in a similar manner. Indeed the derivation of [13]
shows that for instance if z € €, an additional term [, [VK|* dz in dJ(Q)(z) appears. The case z € ()
and/or z € Q9 have to be treated separately since in this case the right hand side F' becomes domain
dependent.

— The assumption z = 0 is without loss of generality, too. In the general case, this situation can be obtained
by a simple change of the coordinate system.

— Recall that we made the assumption Q = ). The general case can be treated similarly by small modifications.

4.1. Computation of R;(ug,po) and Rz (ug,po)

It remains to check that the limits of Ry (uo,po) and Ra(uo, po) exist. For this we use Assumption A(i)—(iii).
Using the change of variables T;(z) = ez and the definition ¢(g) = |w.| = £3|w|, we have

1
R (ug, po) = %/0 /D (OuAe (z, curl(sue + (1 — s)ug)) — OuAc(z, curlug)) (curl(ue — ug)) - curl pg da ds

1
— W(ue — ug)|* d
—|—€(€) /Qq | curl(u, — ug)|” dz

s
= |wl|/ / (Ou Ay (z, scurl K + curl ug(z.)) — Oy Ay (z, curlug(ze))) (curl K7) - curl po(zz) dz ds
0o JR3

=:1.
1 * |2
+ — |curl K7|° da
|w| e~ 1Q,

=:11.

1
— ﬁ/o /R3 (Ou Ay (2, scurl K + Up) — 0y Aw(x,Up)) (curl K) - Py dz ds.
(4.7)
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Since curl K} — curl K strongly in Lo(R?)3 as e \, 0 and since e 71, goes to “infinity” because z & Q, it
readily follows that II. — 0 as € \, 0. To see the convergence of the first term, we may write I.as follows

/01 /RB (OuAu(z, scurl K + curlug(x.)) — 0y Ay (x, curl ug(z:))) (curl K7) - curl po(xe ) da ds
= /01 /R3 (OuAy (x, scurl K + curlug(z:)) — 0 Ay (z, scurl K + curlug(z.))) (curl KF) - curl po(z.) do ds
+ /O 1 /R (BuAu (@, senrl K + curlug(ze)) — Oy A (a, curl ug (xe))) (curl (K7 = K)) - curl po () dards
+ /01 /m@uflw@’scuﬂf( + curlug(22)) — Oy Au(, curlug(2))) (curl K) - curl po(z.) da: ds.

Using Assumption A(iii) and curl py € L>°(D)?, we see that the absolute value of the first and second term on the
right hand side can be bounded by C|| curl(K? — K)||1,(rs)3|| curl K[|z, ®s)s and hence using curl K — curl K
in Ly(R?)? as e \, 0 they disappear in the limit. The last term converges to the desired limit by using Lebesgue’s
dominated convergence theorem. Using the fundamental theorem, we obtain the expression in (4.4). Similarly,
using (1.8), the continuity of curlug and curlpg at z, the continuity of dya1, dyaz, and again curl K — curl K
strongly in Lo(R?)3, we obtain by Lebesgue’s dominated convergence theorem

R5(u,p) = %/ (Oyaq (curl ug) — dyay(curl ug))(curl(ue — ug)) - curl py dz

= ﬁ / (Ouaq (curlug(ze)) — Oyas(curlug(ze)))(curl K7) - curl po(x.) da

I (Ouar (Uo) = Buas (Vo)) (curl K) - Py da. (4.8)

jwl S

Therefore all Hypotheses of Theorem A.4 are satisfied. This finishes the proof of our Main Theorem 2.

5. NUMERICAL REALIZATION

Formula (4.2) together with (4.3)—(4.6) states the topological derivative for problem (1.1) and (1.2) at a single
spatial point z. Note that the evaluation of the topological derivative involves the solution of problem (3.5),
which in turn depends on the point z via the vector Uy = curl(ug)(z). When using the topological derivative (4.2)
in a numerical optimization algorithm, it has to be evaluated at every point in the design area in every iteration
of the algorithm. Therefore, a direct evaluation of (4.2) is unfeasible and an efficient technique for numerical
approximation is indispensable. In this section, we show a way to approximately evaluate formula (4.2) by first
precomputing certain values in an offline phase and looking them up and interpolating them during the online
phase of the optimization algorithm. We proceed in an analogous way to [4], Section 7.

For this, we need the following additional assumption:

Assumption B. (i) For all orthogonal matrices R € R**3 and all y € R?, it holds that
a;(Ry) = Ra;(y) for i=1,2. (5.1)
(ii) The inclusion is the unit ball: w = B1(0).

We will show a concrete application that satisfies this assumption in Section 6. We note that the topological
derivative (4.2) depends on the spatial point z only via Uy, Py and K = Ky,. Let us make this dependence
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more clear by introducing the notation

dJ(Q)(Us, o) := (@1 (Uo) = aa(U0)) - Py (5.2)
+ 1(/ (A (@, curl Ky, + Up) — Au(z,Up) — 0 Ay (x, Up)(curl Ky, )| - Py dx) (5.3)

|| RS
+ |w1|/ [audl(UO) - 3ua2(Uo)] (Cur] KUO) . Py dz. (5.4)

Remark 5.1. Recall that e;, 1 = 1,2, 3, denotes the i-th unit vector in the Cartesian coordinate system in R3.
For every vector W € R? there exists an orthogonal rotation matrix Ry, such that W = |W|Rye;.

The next result will allow us to introduce an efficient strategy for the approximate evaluation of the topological
derivative dJ(Uy, Py) for any Uy, Py € R3.

Main Theorem 3. Let Assumption B hold and Uy, Py € R3. Then it holds:

(i) the mapping P — dJ(Q)(Uy, P) is linear on R3,
(ii) dJ(Q)(R"Uy, RT Py) = dJ(Q)(Uo, Py) for all orthogonal matrices R € R3*3.
(iii) Write Uy = |Up|Ry,e1 and Py = |Po|Rp,e1 for some orthogonal matrices Ry,, Rp, € R3*3 and set
(c1,c0,¢3)" :=|Po| Ry Rp,e1. Then we have

dJ(Q)(U@, Po) = CldJ(Q)(‘UM@l, 61) + CQdJ(Q)(|U@|61, 62) + ngJ(Q)(|Ug|€1, 63). (55)

Corollary 5.2. Let Assumption B hold. Suppose that the values dJ(Q)(te1,e;), i = 1,2,3 are given for all
t € [tmin, tmax] With 0 < tmin < tmax. Then, for all Uy € R with tmin < |Up| < tmax and all Py € R3 it holds

dJ(Q)(U()7 P()) = CldJ(Q)(‘U0|61, 61) + CQdJ(Q)(|U0|61, 62) + C3dJ(Q)(|U0‘€17 63). (56)
with (Cl,CQ,Cg)T = ‘P0|REORPO€1.

We first prove the following properties of the solution mapping W — Ky, where Ky denotes the unique
solutions in BLC(R?) to (3.5) with Uy being replaced by W € R3.

Lemma 5.3. Let Assumption B hold. Let W € R3, R € R3**3 orthogonal. Then the following relations hold:

Kprw(z) = R"Kw(Rzx) + V1, (5.7)
curl(K gy ) (z) = R (curl(Kw))(Rx). (5.8)

Proof. To see the first identity, we perform the change of variables y = ®(x) = Rz in (3.5) with Uy replaced by
W. Noting that the chain rule yields

curl, (K) o ® = Reurl, (RT (K o ®)), (5.9)

where we used det(R) = 1, we get for (3.5)
/ (Aq)—l(w)(x, Reurl, (K) + W) — Ap-1(u) (T, W)) - Rcurl,(¢) =
R3
— / (al(W) — ag(W)> - Rcurl, ().
¢~ (w)
Here we used the notation K = R' (Ky o®) and ¢ = R (¢ o ®). Using Assumption B, this can be rewritten as

/R 3 (Aw(x,curlx(f() FRTW) - Aw(m,RTW)) curly(@) = — /w <a1(RTW) - ag(RTW)> - curly ().
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Since KTy is the unique solution in BLC(R?) to the problem above, we conclude that RT (Kyw o ®) = K =
Kgrrw in BLC(R?). Finally this relation together with (5.9) yields

curl, (Kprw) = curl, (R (Kw o ®)) = R' curl, (Kw) o ®. (5.10)
([l

Proof of Main Theorem 3. The first statement can be seen directly from (5.2) to (5.4). The second result follows
immediately by Assumption B using (5.8) noting that Assumption B(i) implies 0,a;(Ry)(Rz) = ROya:(y)(2)
for R € R3*3 orthogonal and y,z € R3 and i = 1, 2.

Using the representations Uy = |Up|Ry,e1 and Py = |Py|Rpy,e1 and item (ii), we get

dJ(Q)(Uo, Po) = dJ(Q)(|U()|RU0€1, ‘P0|Rp061) = dJ(Q)(|UQ|€1, |P0|R[—;0Rp061).

The result now follows from the definition (c1, ¢, ¢3)" = |Po| Ry, Rp,e1 and the linearity of dJ(€)(-,-) in the
second argument (cf. item (i)). O

Our proposed strategy now consists in first precomputing dJ(2)(te1,e;), ¢ = 1,2,3 for a range of values of
t = |Uy| = | curlup(2)| between a minimum value ¢y, = 0 and a maximum value ¢,y in an offline stage. During
the optimization, the values of dJ(Q)(te1,e;) for any ¢ € [tmin, fmax] can be approximated by interpolation
and the topological derivative can be (approximately) evaluated with the help of Corollary 5.2. In practical
applications, often reasonable values for t,.,x are known.

For the precomputation of the values dJ(2)(tey, e;) for a fixed t € [tmin, tmax], Problem (3.5) has to be solved
with Up := tey. For the numerical solution of (3.5) recall that the solution H, to (3.14) is a good approximation
of K for small € > 0 due to Lemma 3.10. Moreover, it can be shown in an analogous way to Lemma 3.10 that
for B := Bg(0) with R such that B C D, the solution H. € V(¢! B)? to

/ (A (x, curl H, + Up) — Ay (x,Up)) - curl o dz
e~'B

= f/(al(Uo) —ag(Up)) -curlp dz for all ¢ € V(e 'B)>. (5.11)

satisfies curl H. — curl K strongly in Ly(R?3). Motivated by this observation, one may solve (5.11) with
B = B;(0) and a comparatively small value for ¢, e.g., ¢ = 1/1000, as a good approximation to (3.5).

6. APPLICATION TO ELECTRICAL MACHINES

In this section we show a real-world application where the setting of this paper applies. We consider the
topology optimisation of an electrical machine in the setting of three-dimensional magnetostatics with nonlinear
material behavior.

6.1. Physical modeling

The magnetostatic regime is a low frequency approximation to the full Maxwell equations where all quantities
are assumed to be time-independent and where one only considers the magnetic equations

curlH =J; and divB=0. (6.1)

Here, J; denotes the impressed current density, and the magnetic field intensity H and the magnetic flux density
B are related by the nonlinear material law

H =v(|B|)(B—- M), (6.2)
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FI1GURE 2. Three-dimensional model of electrical machine D with ferromagnetic subdomain €2
(red), permanent magnet regions {2y (yellow), air subdomain D \ (2 U 2) (blue) with air gap
region €, (turquoise), lateral boundaries I';, ', and inner and outer boundaries I'p.

where v : ]Rg — Rar is the material-dependent magnetic relucitivity and M denotes the permanent magnetiza-
tion. Due to symmetry, we consider only a quarter of the machine. Let D = {(z,y,2) € R® : 1o < /22 + 2 < 73,
—2.5 < z < 2.5} with rp = 4mm and r3 = 33mm the bounded, simply connected Lipschitz domain which con-
tains the quarter of the electric motor as depicted in Figure 2. We set periodic boundary conditions on the
lateral boundaries I'; and T, natural boundary conditions v(|B|)B x n. = 0 on the top and bottom and induc-
tion boundary conditions B -n = 0 on the inner and outer parts I'g of dD.

The motor consists of an inner, rotating part (the rotor) and an outer, fixed part (the stator), both containing
ferromagnetic components. They are separated by a thin air gap Q, = {(z,y,2) € D : r1 < /22 + 3% < rp} with
r1 = 19.67mm and ro = 19.83 mm, see the turquoise area in Figure 2. We denote the union of all ferromagnetic
subdomains by €2 which we assume to be open. The current density J; is in general supported in the coil regions
Q; € D\ Q, which lie between the air gap and the stator core. The magnetization M is supported in the
permanent magnets o C D\ Q. In this particular application, which was also treated in a two-dimensional
setting in [4, 14], we assume the currents to be switched off, i.e., J; = 0 and therefore treat )y as air.

The magnetic reluctivity v is equal to a constant vy = 107/(47) in the air and coil subdomains of the
computational domain, a constant v, close to vy in the permanent magnet regions 2o and is given by a
nonlinear function # in the ferromagnetic subdomain 2. For more compact presentation we assume v, = 1.
Moreover, we assume that o has the following properties:

Assumption C. We assume that the magnetic reluctivity function v : RS‘ — R7T satisfies:

(i) The mapping s — v(s)s, is strongly monotone, i.e., there is a constant v such that
(9(s)s — D(E)E) (5 — ) > us — 1) (63)
(ii) The mapping s +— v(s)s is Lipschitz continuous, i.e., there is a constant v such that
|D(s)s — 0(t)t| < p|s —t|. (6.4)

(iil) We assume that for v € C*(Rg), #'(0) = 0, and that there is a constant ¢ such that for all s € Ry,
'(s) <candd'(s) <ec.
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The first two points of Assumption C follow from physical properties of B—H-curves, i.e., of the relations
between magnetic flux density B and magnetic field intensitiy H (cf. [25,26]). In practice, the function 7 is
obtained by interpolation of measured values [26], thus the smoothness assumption in Assumption C(iii) is
justified. In our numerical experiments, we chose the analytic reluctivity function

v(s) =1y — (Vo — q1) exp(—qa s%), (6.5)
which was also used in [34], with the values ¢; = 200, g2 = 0.001 and g3 = 6, which satisfies all of Assumption C.

Lemma 6.1. Let Assumption C hold and define ai(y) = v(|ly|)y and az(y) := voy for y € R3. Then Assump-
tion A is satisfied.

Proof. All properties of Assumption A are clear for the linear function ag. For ay, items (i) and (ii) of Assump-
tion A follow immediately from items (i) and (ii) of Assumption C, respecitively (see e.g., [25]). Moreover, it
is shown in [4], Lemma 3.7 that Assumption C(iii) implies that ao is twice continuously differentiable, which is
sufficient for Assumption A(iii). O

Using the ansatz B = curl u together with the Coulomb gauging condition divu = 0, as well as the material
law (6.2) and a1 (y) := P(|y|)y and az(y) := voy, we get from (6.1) the boundary value problem

findueV: / Agq(z, curlu) - curlvde = M -curlvdz forall velV, (6.6)
D Q2

with the function space V = {v € H(curl, D) : u x n =0 on I'g, u|r, = u|r,,div(u) = 0 in D} and the operator
Aa(z,y) = xa(z)ai(y) + xp\o(r)az(y). Note that we used the fact that u x n = 0 on I'p is sufficient for
curlu-n = B-n=0onI'g, see [6,21,25].

As an objective function we consider

J() :/ |curlu -7 — B} > dx (6.7)
Q

g

where , represents the air gap of the machine, 7 = (z/y/22 4+ y2,y/1/22 +4%,0)T denotes an extension to
the subdomain €2, of a unit normal vector field on a circular curve in the air gap and B} denotes the desired
distribution of the normal component of the magnetic flux density B = curlw in the air gap. In our experiments,

B} is given in cylindrical coordinates by
Bi(r, ¢, z) = —amp(2) sin(4¢) (6.8)

where amp(z) is given by the evaluation of (curl u;y,i;-7) at the point (19.75,22.5°, z) inside the air gap €2,. Here,
U;ni+ denotes the solution to the PDE constraint in the initial configuration. The left picture in Figure 3 shows
curl(u) - 7 as a function of the angle ¢ € [0,90°] and z € [—2.5,2.5] for a fixed value of r» = 19.75 (center of the
air gap) for the initial configuration. The desired curve B} is depicted in the center of Figure 3. We remark that
the minimization of the objective function (6.7) yields a design of a machine which exhibits a smooth rotation
pattern. Note the slight difference of objective function (6.7) to the functional (1.1) which was treated in the
earlier sections. We remark, however, that all of the analysis can be performed for the given functional (6.7) in
the exact same way. Note that the corresponding adjoint equation reads

/ OuAq(z, curlu)(curl @) - curlp doe = — / 2(curlwu - o — BY)(curlp - 1) dz, (6.9)
D D

for all ¢ € V(D)? where u solves (6.6).
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curl(u)*n in air gap (initial design) desired curve B} in air gap curl(u)*n in air gap (improved design)

2 2 2
angle o z-component angle o z-component angle o z-component

FIGURE 3. curl(u) - nap along the air gap for (r,¢,2) with r = 19.75 and ¢ € [0,90°], z €
[—2.5,2.5]. Left: initial configuration. Center: desired curve Bj. Right: improved configuration.

6.2. Numerical results

In this section, we illustrate how the formula derived in Section 4 can be applied to the optimization of
the electrical machine introduced in this section. The evaluation of the topological derivative (4.2) is done as
described in Section 5. We precomputed the values dJ(2)(tey,e;) for i = 1,2,3 and t € {j (575}?20 with 6; = 0.05
and interpolated the obtained data using quadratic B-splines in an offline phase.

For the numerical solution of the state equation (6.6), we used second order Nédélec finite elements, see e.g.,
[35], [28], Section 3, in the framework of the finite element software package NETGEN/NGSolve [29]. Problem (6.6)
involves a divergence-free condition. In order to avoid solving a saddle point problem, we added an L?-term
fD ku - vdx with a small constant k > 0 as regularization to the bilinear form, yielding an elliptic problem on
H (D, curl). We proceeded analogously in the numerical solution of the corresponding adjoint equation (6.9) and
the problems for the approximation of the variation K (5.11) in the offline phase.

We started with the initial configuration shown in Figure 2, where all material data is constant in z-direction.
Figures 4 and 5 show the application of a one-shot topology optimisation approach to (6.7) using a level set
representation. The first row of Figure 4 shows the level set function in the two design subdomains of interest.
We start with a constant level set function ¥y = 1 corresponding to ferromagnetic material in all of the two
design subdomains. The left column in Figures 4 and 5 correspond to a horizontal cut at the bottom (z = —2.5),
the central column shows a cut through the center of the machine (z = 0), and the right column a cut through
the top of the machine (z =~ 2.5).

The second row of Figure 4 shows the absolute value of the magnetic flux density |B| = | curl u| for the three
cross sections and the third row depicts the topological derivative. Note that the topological derivative attains
its most negative values in the central cross section. For better visibility, we only show the negative part of the
topological derivative in the central picture.

In order to change the material in the position where the topological derivative is most negative, we set

dJ(Q)

V= 00 S ) o)

(6.10)

for an appropriately chosen value of s (here: s & 0.14).

The result can be seen in Figure 5 where the design in the top and bottom cross section remain unchanged
and in total four holes of air are introduced in the center. The first row of Figure 5 shows the updated level set
function 97 and the second row the corresponding distribution of the magnetic flux density in the new design.

The third picture in Figure 3 shows the distribution of curlw - 7 for the new configuration. The objective
value (6.7) has dropped from 2.33 x 1078 to 4.68 x 1079,
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R
A

FIGURE 4. Initial configuration, objective value 2.33 x 1078, 1st row: level set function. 2nd row:
B-field (|B| = |curlu|). 8rd row: topological derivative. Left column: bottom. Central column:

center. Right column: top.

.

FIGURE 5. Improved configuration (after 1 iteration, objective value 4.68 x 10~?). 1st row: level
set function. 2nd row: B-field (|B| = |curlul). Left column: bottom. Central column: center.
Right column: top.
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7. CONCLUSION

In this work we presented the rigorous derivation of the topological derivative for a class of quasi-linear
curl-curl problems under the assumption that curlug and curlpg are (Holder) continuous at the point where
the topological perturbation takes place. We also discussed the efficient evaluation of the obtained formulas
and applied our results to a physical model for an electrical machine. The results seem promising and show a
significant improvement compared to the initial design.

The magnetostatic model does not capture eddy currents. Therefore in a future work it would be interesting
to consider the time-dependent magnetoquasistatic problem rather than the magnetostatics case. This however
requires a thorough analysis and new tools have to be developed.

APPENDIX A.
Lagrangian framework
In this section we recall results on a Lagrangian framework. This section is taken from [13], Section 2.

Definition A.1 (Parametrised Lagrangian). Let X and Y be vector spaces and 7 > 0. A parametrised
Lagrangian (or short Lagrangian) is a function

(e,u,q) — G(e,u,q) : [0,7] x X xY — R,

satisfying,
q— G(e,u,q) is affine on Y. (A.1)

Definition A.2 (State and adjoint state). Let € € [0,7]. We define the state equation by: find u. € X, such
that

0,G(e,u,0)(¢) =0 foral eV (A.2)
The set of states is denoted E(e). We define the adjoint state by: find p. € Y, such that

0uG(e,ue,q-)(p) =0 forall e X. (A.3)
The set of adjoint states associated with (e, uc) is denoted Y (e, u.).

Definition A.3 ({-differentiable Lagrangian). Let X and Y be vector spaces and 7 > 0. Let £: [0,7] — R be
a given function satisfying ¢(0) = 0 and ¢(¢) > 0 for ¢ € (0, 7]. An {-differentiable parametrised Lagrangian is a
parametrised Lagrangian G : [0,7] x X x Y — R, satisfying,

(a) forallv,we X andp €Y,
s — G(g,v + sw,p) is continuously differentiable on [0, 1]. (A.4)
(b) for all ug € E(0) and gy € Y (0,up) the limit

1 G(€7u07qo) - G(07U0»(I0) .
0¢G(0,up, qo) := C}l{r(l) 5 exists. (A.5)

{uc} is a singleton.

Assumption D (H0). (i) We assume that for all € € [0, 7], the set E(e) =
= 0 for all p € E, admits a unique

(il) We assume that the adjoint equation for ¢ = 0, 0, G(0,ug,po)(p)
solution.
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We now give sufficient conditions when the function

—R A6
e g(e) := G(e,ue,0), (4.6
is one sided ¢-differentiable, that means, when the limit
_g(e) —9(0)
d = lim =——7—~= A.
0g(0) = lim © (A7)

exists, where £ : [0,7] — R is a given function satisfying ¢(0) = 0 and ¢(¢) > 0 for € € (0, 7].

Theorem A.4 ([13], Thm. 3.4 and [10], Thm. 3.3). Let G : [0, 7] x X XY — R be an {-differentiable parametrised
Lagrangian satisfying Hypothesis (HO). Define for e > 0,

R (o, po) = Tle)/o (OuG(E, stue + (1 — 8)tg, po) — DuGl(E, 10, Po)) (e — o) ds (A.8)
and )
R5(u,p) := 57— (0uG (g, 0, p0) — DuG(0,u0,po))(ue — uo). (A.9)

L(e)

If Rq(uo,po) := lime o RS (w0, po) and Ra(ug,po) = limes o RS (uo, po) exist, then
deg(0) = 9¢G(0, ug, qo) + Ri(uo, po) + Ra(uo, po)-
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